EP1317360B1 - Träger - Google Patents

Träger Download PDF

Info

Publication number
EP1317360B1
EP1317360B1 EP01962990A EP01962990A EP1317360B1 EP 1317360 B1 EP1317360 B1 EP 1317360B1 EP 01962990 A EP01962990 A EP 01962990A EP 01962990 A EP01962990 A EP 01962990A EP 1317360 B1 EP1317360 B1 EP 1317360B1
Authority
EP
European Patent Office
Prior art keywords
foregoing
carrier
beam according
flange
flanges
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01962990A
Other languages
English (en)
French (fr)
Other versions
EP1317360A1 (de
Inventor
Dieter Reichel
Ralf Waidhauser
Erich Lindner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Max Boegl Bauunternehmung GmbH and Co KG
Original Assignee
Max Boegl Bauunternehmung GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10133337A external-priority patent/DE10133337A1/de
Application filed by Max Boegl Bauunternehmung GmbH and Co KG filed Critical Max Boegl Bauunternehmung GmbH and Co KG
Publication of EP1317360A1 publication Critical patent/EP1317360A1/de
Application granted granted Critical
Publication of EP1317360B1 publication Critical patent/EP1317360B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L13/00Electric propulsion for monorail vehicles, suspension vehicles or rack railways; Magnetic suspension or levitation for vehicles
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B25/00Tracks for special kinds of railways
    • E01B25/30Tracks for magnetic suspension or levitation vehicles
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B25/00Tracks for special kinds of railways
    • E01B25/30Tracks for magnetic suspension or levitation vehicles
    • E01B25/305Rails or supporting constructions
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B25/00Tracks for special kinds of railways
    • E01B25/30Tracks for magnetic suspension or levitation vehicles
    • E01B25/32Stators, guide rails or slide rails
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present invention relates to a carrier for a track of a track-bound vehicle, in particular a magnetic levitation train, made of concrete, in particular as precast concrete, with a running in the longitudinal direction of the carrier first belt, arranged thereon, also extending in the longitudinal direction of the carrier webs and with a on the first of Belt spaced end of the webs arranged second belt, wherein the cross-section of the carrier spaced from each other ends of the straps attachments for guiding the vehicle can be arranged, and a formwork for producing a corresponding carrier.
  • a carrier for a track of a track-bound vehicle in particular a magnetic levitation train, made of concrete, in particular as precast concrete, with a running in the longitudinal direction of the carrier first belt, arranged thereon, also extending in the longitudinal direction of the carrier webs and with a on the first of Belt spaced end of the webs arranged second belt, wherein the cross-section of the carrier spaced from each other ends of the straps attachments for guiding the vehicle can
  • the carrier itself consists of a solid concrete body or in a more advantageous embodiment of a hollow box-shaped component in cross-section.
  • the carriers are sometimes over 30 meters long.
  • the demands on the carriers are very high in terms of their dimensional accuracy and dimensional stability in order to ensure the functionality of the maglev train at all. It was therefore always provided for this construction that the wearer very resistant to bending and torsion.
  • multi-field carriers To effect an even better behavior of the carrier with respect to the guidance of the maglev train, it was even intended to use multi-field carriers.
  • Such dimensionally prestressed multi-field carriers were either made in one piece, or mostly for reasons of transport, in several parts and subsequently coupled together.
  • Object of the present invention is therefore to provide a support for a track of a track-bound vehicle, in particular a maglev, which can meet the high requirements of a maglev and still can be made quickly and inexpensively.
  • a second belt which extends substantially towards the outside of the carrier, is arranged in each case.
  • a carrier is provided, which has a sufficient torsional rigidity for most applications, since the second straps, which usually serve as lower straps, are designed such that they contribute to the torsional rigidity of the wearer by their pronounced transverse extent.
  • a particularly advantageous embodiment of the invention arises between the webs from the side of the second straps ago open cavity.
  • the carrier during its manufacture is at least partially demolded from the side of the second straps ago.
  • the carrier is quick and inexpensive to produce.
  • An elaborate disassembly of an inner formwork to remove them from the end faces of the wearer, or by Entformschrägen in the center of the carrier severely limited cavities are thus avoidable.
  • the bending stiffness of the carrier when the first belt is an upper belt and the second belts are lower belts of the carrier. In special cases, it can also be the other way round.
  • the cross-sectional center of gravity of the carrier is in the region of the average cross-sectional height, an increase in the cross-sectional stiffness is achieved with no or only slight increase in mass of the carrier. This requires an increase in the first natural frequency and at the same time a reduction in the deflection of loads, which has a positive effect on the driving dynamics. In particular, the transverse rigidity and the torsional stiffness is significantly increased.
  • the support is accordingly made so that the demolding of the longitudinal sides of the carrier and largely done without disassembly of the formwork can.
  • the carrier thus has no closed cavity, but due to its design, in particular the extending to the outside of the carrier lower chords apply a sufficiently high torsional stiffness, so that it is suitable as a carrier for magnetic levitation and still has the previously proven large spans.
  • Another advantage of the carrier according to the invention in the production is that the reinforcement of the carrier outside the carrier can be prefabricated.
  • the largely finished reinforcement can then be set, for example, hat-like on the inner formwork.
  • the shape of the beam and its formwork make it possible to use a more rigid concrete texture during concreting. This has a positive effect on the quality of the concrete and the costs.
  • high-strength concrete or high-strength lightweight concrete can be used.
  • the webs are connected to each other by means of end plates at the ends of the carrier.
  • the end plates serve on the one hand to increase the torsional rigidity.
  • they are intended to allow connection to adjacent carriers.
  • the connection to adjacent carriers may be such as to provide a substantially firm connection whereby two or more carriers act as multiple field carriers.
  • the end plates are designed such that they receive the bearings for the carrier. As a result, an advantageous introduction of force from the carriers in the supports on which the carrier are stored, possible.
  • a further increase in the torsional rigidity of the carrier is achieved in that at least one bulkhead connecting the webs is arranged in the cavity. Through the bulkhead is avoided that a movement of the webs and lower chords takes place to each other. Through the bars is thus further increasing the torsional stiffness of the wearer.
  • a plurality of bulkheads may be provided, whereby each further increases the torsional stiffness of the carrier.
  • the bulkheads are advantageously arranged at substantially uniform intervals from one another. As a particularly torsion-resistant carrier, a carrier with three bulkheads is obtained.
  • the bulkheads can in each case completely fill the cavity of the carrier in the carrier cross-section.
  • the bulkheads have openings or are merely designed as struts, so that openings are formed through which supply lines or clamping devices can run.
  • the bulkheads are arranged in the region of a transverse preload of the carrier, and / or in the region of the attachments, in particular brackets for guiding the vehicle.
  • the carrier in the areas in which, for example, the attachments are secured by means of brackets on the carrier, reinforced. A closed power flow is obtained without substantially increasing the overall weight of the carrier.
  • the second straps in particular the lower straps in the region of the cavity, are connected to each other at least partially by a base plate arranged after the carrier has been produced.
  • the bottom plate can either complete the cavity completely, so that again a closed hollow body is formed.
  • the bottom plate is only partially arranged on the carrier. This can already give a sufficient torsional rigidity, whereby the production, the bottom plate is in turn simplified.
  • the bottom plate is concreted. It can be provided here that at the webs or lower chords connecting iron protrude from the concrete of the carrier to which the bottom plate is connected or concreted. It thus creates an intimate connection between the bottom plate and the carrier. This connection is such that in turn a torsion-resistant shape of the carrier is obtained, which is the high requirements in the construction of carriers for magnetic levitation particularly well.
  • the bottom plate is made of metal or plastic, especially as a frame construction. This can allow a simplified assembly and disassembly of the bottom plate to the carrier.
  • the bottom plate is at least partially supporting, then the torsional rigidity of the carrier is further increased. If preload elements are arranged in the carrier, it is possible to achieve a flexural rigidity of the carrier that is adequate for the intended application.
  • a tension reinforcement is arranged in the outer regions of the straps. Due to the tension reinforcement, in particular if it is still readjustable even during or after assembly of the carrier, ie without a composite, the carrier can be deformed in the y- and z-direction and thus adjusted very precisely. For the readjustment, it is advantageous if the clamping points, for example, in the cavities of the carrier are accessible even after assembly of the carrier.
  • the cavity of the carrier is used to arrange centric tendons.
  • the tendons are to be guided in an advantageous manner.
  • the central tendons can be thermally insulated in a simple manner. This is the temperature gradient the carrier advantageously influenced and the thermal deformation of the carrier over conventional carriers significantly reduced.
  • the biasing elements is advantageously provided that in at least one of the end plates, in particular in the region of the cavity, clamping niches are provided.
  • the carrier is part of a multi-field carrier, wherein a plurality of carriers are connected to one another in a form-true-biased manner, a particularly viable and tolerance-accurate structure is created.
  • the support is designed such that the sunlit surfaces and / or masses of the wearer on the first belt and those on the second belts are similar to one another, it is achieved in a particularly advantageous manner that a low temperature gradient will be present within the support.
  • At least parts of the outside of the carrier have a heat absorbing or reflecting surface. In this way, for example, a different solar irradiation of the individual parts of the carrier can be compensated, so that in turn takes place a uniform expansion of the carrier.
  • the heat absorbing and / or reflecting surface may be applied to the support in the form of a paint. As a result, the different thermal properties of the carrier are very easy to obtain.
  • a low temperature gradient of the support can also be obtained by this measure.
  • the operating characteristics of the carrier are thus adjustable to a variety of sunshine.
  • the second straps protrude relatively far beyond the lateral webs, they can be used as a route for other vehicles, especially inspection or auxiliary vehicles.
  • the vehicles can drive on the top of the second straps and control or measure, for example, attachments for the maglev train. But it can also be used as the first belt as such track. 1.
  • a carrier of the type described above that are provided between the first belt and second belt or second belts means for heat balance, in particular for heat exchange. If the carrier is heated differently by, for example, solar irradiation, it would be due to the resulting Deform temperature gradient undesirable.
  • the precisely aligned attachments would not have the required accuracy, so that the operation of a maglev could not be guaranteed safe.
  • cooling and / or heating elements are advantageous. These cooling and / or heating elements, which can be operated, for example, via solar cells, can also keep the temperature gradient within the carrier low, if necessary, and thus largely avoid deformations of the carrier.
  • a carrier of a guideway for a track-bound vehicle in particular a maglev train formwork, which is composed of individual modules, so that a plurality of different carriers can be produced by replacing individual modules.
  • the track is composed of a variety juxtaposed carrier together. These carriers have substantially the same shape. Depending on the environmental conditions in which the carriers are set up or the special route guidance, individual differences of the carriers are required.
  • the proposed formwork it is now possible that carriers, which basically have the same shape can be customized by replacing individual modules. Due to the modular design a very fast production of the carrier is possible because the conversion of the formwork from one mold to the next form can be realized very quickly.
  • the modular construction of the formwork can relate to both the longitudinal and the cross section of the carrier.
  • the formwork consists of a base frame, an associated exchangeable core and a movable side formwork.
  • Other elements of the formwork can be provided for the support brackets and be the front formwork. With these individual elements, which are optionally again subdivided into sub-modules, a very flexible individual production of modified support is obtained.
  • the modules for length compensation in the relaxation of the tendons are displaceably connected to each other during demoulding. If the tension of the tendons is reduced during removal of the carrier, the concrete of the carrier is pressed and shortens it. This can lead to a clamping of the formwork in the concrete part. To avoid this, the modules are slidably connected together, so that a demolding of the formwork modules is still possible even with relaxed tendons.
  • the support brackets which have horizontal, oblique or staggered bearings or bearing plates as needed, are very fast and customizable.
  • the modules in the region of the support brackets have recesses with potting and ventilation openings for receiving the storage.
  • different carrier lengths can be produced by the modular construction of the formwork according to the invention without major conversion effort of the formwork.
  • the core pieces consist of other sub-modules, so it may only be necessary to remove individual inner module pieces and put the end pieces together.
  • a length-changed carrier is produced in a very simple manner.
  • modules allow different bulkheads in terms of number, shape and size. This also makes it easy to customize the carrier to different conditions.
  • FIG. 1 a cross section of a carrier 1 according to the invention is shown.
  • the carrier 1 has a top flange 2 and two bottom straps 3 and 3 '.
  • Upper flange 2 and lower straps 3, 3 ' are each connected to a web 4 and 4' with each other.
  • consoles are arranged in a manner not shown, are attached to which functional elements for guiding a track-bound vehicle.
  • the carrier 1 is a precast concrete element, which is essentially finished concreted and optionally finished or pre-assembled delivered to the site.
  • the end plate 5 prevents together with the pronounced lower chords 3, 3 'and the connection of the webs 4, 4' on the upper flange 2, that the carrier despite excessive lengths in a crossing of a vehicle inadmissible twisting.
  • a support bracket 6 is provided, which cooperates with bearings and supports, not shown.
  • the carrier 1 can thus be stored with exact position on a corresponding substructure.
  • the support 1 comprises FIG. 1 an additional bottom plate 7.
  • the bottom plate 7 extends between the lower straps 3 and 3 'and is connected thereto via a reinforcement 8.
  • the bottom plate 7, which is also made of concrete, is after the manufacture of the actual carrier 1 in a projecting from the carrier 1 Reinforced reinforcement 8. This can be done, for example, after the introduction of various built-in parts in the carrier, whereby the accessibility of the cavity of the carrier 1 is given for mounting purposes.
  • the bottom plate 7 is fixedly connected to the carrier 1 in the present embodiment. Alternatively, it is also possible that the bottom plate 7 is screwed, for example, or otherwise releasably or permanently connected to the carrier 1. It is important in any case that the bottom plate 7 reinforces the carrier 1 with respect to its torsional rigidity.
  • a further reinforcement 9 is arranged in the upper flange 2 and in the lower chords 3, 3 '.
  • the carrier 1 may also be made of fiber concrete, for example, whereby additional strength is achieved.
  • End plates 5 serve to support tensioning presses for the biasing elements, by which the carrier 1 is brought into the predetermined shape with respect to its deflection.
  • elements for clamping the carrier 1 or for connecting a plurality of carriers 1 are also provided.
  • FIG. 2 is a partially sectioned side view of a carrier 1 is shown.
  • the upper flange 2 and the web 4 are integrally connected to the end plates 5, 5 '.
  • the support brackets 6, 6' are arranged.
  • the end plates 5, 5 'and the support brackets 6, 6' are formed differently thick.
  • the carrier 1 is coupled to a further carrier, whereby a multi-field carrier is formed with a corresponding coupling.
  • the bottom plate 7 is arranged in the area of the lower chords 3. In the embodiment of the FIG. 2 the bottom plate 7 closes the gap between the webs 4, 4 'completely and extends from one end plate 5 to the other end plate 5'. This creates a closed cavity of the carrier 1, which is created only after the production of the actual carrier 1.
  • Such a carrier 1 has a torsional stiffness, which substantially corresponds to the rigidity of conventional carriers.
  • a carrier 1 is shown in side view, which has no bottom plate 7.
  • a bulkhead 13 is provided, which is arranged centrally in the carrier 1.
  • the bulkhead 13 connects the webs 4, 4 'and the lower chords 3, 3' with each other, whereby a displacement of the webs 4, 4 'and lower chords 3, 3' to each other largely avoided.
  • Such a support 1 is sufficient in terms of its torsional stiffness in many cases for the intended use as a carrier for magnetic levitation railways.
  • FIG. 4 another embodiment of the invention is shown.
  • the carrier 1 has two bulkheads 13. Between the two bulkheads 13, a bottom plate 7 'is arranged. This bottom plate 7 'extends only from a bulkhead 13 to the other bulkhead 13. The areas between the bulkhead 13 and the end plates 5, 5', however, are designed without a bottom plate.
  • Such a carrier 1 has a relation to the carrier of FIG. 3 increased torsional stiffness.
  • FIG. 5 shows a part of a longitudinal section of a carrier with short bulkheads 13.
  • the bulkheads 13 are arranged only in the upper region of the cavity of the carrier 1.
  • brackets 14 are provided in the region of the bulkheads, to which the attachments, not shown, are attached for the guidance of the vehicle.
  • the bulkheads 13 thereby not only increase the rigidity of the carrier 1, but also provide optimized fastening of the vehicle guides to the carrier 1 ,
  • FIG. 6 another embodiment of a carrier 1 is shown.
  • the lower straps 3 and 3 'of the carrier 1 are designed such that the upper sides serves as a travel path for an inspection or assembly vehicle.
  • On the upper side of the lower straps 3, 3 ' is sufficient space to provide a roadway for the vehicle can.
  • the Scots 13, which the representation of FIG. 5 Corresponding to a sectional view, are located only in the upper region of the cavity and support in this way the power flow, which are introduced via the brackets 14 in the carrier 1, the webs 4, 4 'and the lower chords 3, 3'.
  • FIG. 6 are arranged on the web 4 'solar cells 20.
  • the web 4 ' is exposed to the sun more than the web 4.
  • This is expected that the side of the web 4' heated more and thus lead to a deformation of the carrier 1, if no heat balance would take place.
  • This heat balance is effected by means of the solar cells 20 and a line 21 connected thereto.
  • the line 21 conveys a heat transfer fluid from the sunlit side to the shaded side of the carrier 1.
  • the web 4 and the lower flange 3 is also heated. This in turn results in that the thermal expansion on both sides of the carrier 1 is similar and thus the deformation of the carrier 1 is within a tolerable range.
  • a similar heat balance can take place between the top flange 2 and the bottom straps 3, 3 ', if a heat transport, for example, from the top flange 2 to the bottom straps 3, 3' by a corresponding routing of the lines 21 takes place.
  • a heat transport for example, from the top flange 2 to the bottom straps 3, 3' by a corresponding routing of the lines 21 takes place.
  • FIG. 7 is a further alternative of a carrier 1 shown in cross section.
  • this carrier 1 the lower flange of a single component, while the upper straps 2, 2 'are made separately.
  • the cavity is accessible from the top of the carrier 1 in this embodiment.
  • the cavity of the carrier 1 is closed.
  • clamping reinforcements 9 are arranged in the outer regions. Due to the arrangement of the clamping reinforcements 9 in the outer region of the straps 2, 2 'and 3, in particular when the clamping reinforcements 9 are formed such that they are still accessible after the installation of the carrier 1, an adjustment of the carrier 1 in y and z Direction possible.
  • This adjustment in the y- and z-direction is carried out by a corresponding retightening of the individual clamping reinforcements 9, whereby the carrier 1 is warped in a predetermined manner.
  • the setting can be done in a particularly sensitive and accurate manner by the use of temperature-controlled presses that clamp the relevant tendons 9 correspondingly more or less to compensate for the deformation of the support 1 by one-sided heating.
  • the presses can be connected to corresponding solar cells.
  • FIG. 8 shows the sketch of a modular design formwork for a carrier 1 in cross section.
  • the formwork consists of a base frame 31 on which the further formwork modules are constructed.
  • the further formwork modules consist of the core parts 32a and 32b as well as the side formworks 33a, 33'a and 33b and 33'b.
  • the individual modules are juxtaposed and can be replaced with relatively little effort against other types of modules. Moreover, it is possible to use filling pieces with which recesses are obtained in the carrier 1.
  • FIG. 9 is an alternative core 32'a for the formwork of the FIG. 8 shown.
  • a carrier 1 having short bulkheads 13 is obtained.
  • FIG. 10 is a longitudinal section of a carrier 1 shown outlined with the formwork.
  • a carrier 1 is produced with a certain length. If an example shorter carrier 1 is required, then according to FIG. 10a the core piece 32d replaced by the core piece 32'd and the front formwork 34 'offset according to the desired length of the carrier 1 on the base frame 31 is arranged. It can be seen that it is possible to create different carrier 1 by only two very simple assembly work. This has the considerable advantage that in the construction of a variety of carriers 1 for a given route in a very simple way individual carrier 1 can be made without having to make major alterations to the formwork.
  • the core pieces 32c and 32d are arranged to be movable relative to each other. As a result, a spreading of the core pieces 32c and 32d in the relaxed carrier 1 is not to be feared.
  • FIGS. 11 and 11a show a section of a formwork in the area of the support brackets 6.
  • the support bracket 6 is not orthogonal to the axis of the carrier 1.
  • a formwork module 31a of the base frame 31 is provided.
  • a slight inclination of the carrier 1 is desired.
  • bearing plates 16 are arranged for the storage of the carrier 1. The bearing plates 16 are each anchored with headed bolts in the concrete of the support bracket 6.
  • the module 31'a formed such that the bearing plates 16 parallel but offset in height to each other. Again, this is to be effected by simply replacing a module on the base frame 31.
  • a plurality of carriers 1 are arranged on a base frame 31.
  • a base frame 31 it is possible for either one long or, for example, two short carriers 1 to be produced on a base frame 31. This can be effected by using different core parts 32 and additional end formworks 34 which are built on the base frame 31.
  • FIG. 12 a further embodiment of the carrier 1 according to the invention is shown.
  • the upper flange 2 which extends transversely to the longitudinal axis of the carrier 1, and at the ends thereof in a manner not shown, for example, brackets for attaching the functional levels are arranged for the magnetic levitation vehicle.
  • two webs 4, 4 ' are arranged spaced. Between the two webs 4, 4 ', a cavity of the carrier 1, which extends through substantially the entire length of the carrier 1 is formed. However, this cavity could also be interrupted for further reinforcement of the carrier 1 with bulkheads.
  • 4 'lower straps 3, 3' are arranged. The lower straps 3, 3 'extend towards the outside of the carrier 1.
  • the lower straps 3, 3 ' have approximately the same wall thickness as the webs 4, 4'. Due to the splayed shape of the lower chords 3, 3 ', an increased rigidity of the carrier 1 is achieved. By a correspondingly steep formation of the outer surface of the lower chords 3, 3 'causes snow and ice can adhere less. The winter driving is thus possible problem.
  • the lower straps 3, 3 ' are connected to bulkheads 13. This also contributes to the further increase in rigidity of the carrier 1.
  • the bulkheads 13 are arranged isolated in the longitudinal direction of the carrier 1.
  • the bulkheads 13 are produced either in a subsequent step of the actual manufacturing process of the carrier 1.
  • individual modules of the formwork which are arranged above the bulkheads 13 in the cavity of the carrier 1, are moved in the demolding in the longitudinal direction of the carrier 1 and thus in the cavity between the individual bulkheads 13 and then can be removed from the carrier 1. Due to the division according to the invention of the formwork into individual modules, this longitudinal displacement of the corresponding formwork modules is very easy to perform.
  • a further step in the production of the bulkhead 13 provided with the carrier 1 is therefore not required. The preparation of the carrier 1 can be done quickly and inexpensively.
  • FIG. 13 shows a section through the carrier of FIG. 12 along the dash-dotted line. It can be seen from this that the bulkheads 13 only on lower part of the carrier 1 in the region of the lower chords 3, 3 'are arranged. In the region of the webs 4, 4 'creates a cavity within the carrier 1. This cavity causes that for the production of the carrier 1 only a small material requirement is required. In addition, a space is created by the cavity in which supply lines can be laid.
  • the carrier 1 is closed by end plates 5, 5 'in the longitudinal direction. In the end plates 5, 5 'may, in a manner not shown, anchors of tendons or connecting elements to other carriers 1 may be provided.
  • FIGS. 14 and 15 further embodiments of carriers are shown, which can be made very quickly and inexpensively by the modular design of the formwork.
  • By exchanging individual formwork areas it is possible to create a multiplicity of different supports 1, which are similar to one another. This is done by using modified formwork modules.
  • a lower carrier 1 can be produced, which has only one upper flange 2 and lower flange 3, 3 '.
  • Such carriers 1 can be used for example in bridge structures.
  • the carrier 1 is designed to be very low.
  • the carrier 1 is poured without a cavity. This, too, is readily possible by means of the formwork according to the invention, since corresponding formwork modules can be removed from the formwork and thus a lower full-volume carrier 1 can be created.
  • the bulkheads 10 may be either full-walled or with through-openings. It is advantageous if the bulkheads 10 as well as the end plates 5, 5 'have Entformschrägen, so that a formwork in the installation direction of Carrier 1 down from the carrier 1 can be removed.
  • the bottom plate 7 may be made of concrete or metal, it may also have openings, for example for inspection purposes or for removing formwork. It can be embedded in concrete or be screwed in, for example. By a corresponding shaping of the joints, a shear-resistant connection between the bottom plate and the carrier can be created.
  • the bottom plate 7 can be made such that formwork is applied from the outside and concrete is introduced into the cavity by means of hoses and forms the bottom plate.
  • the base plate 7 can also be produced, for example, by inserting the carrier 1 into a concrete bed, which is firmly connected to the carrier 1 by means of reinforcing bars projecting from the carrier 1 after setting and closes off the cavity.
  • a targeted heating of the clamping reinforcement can take place, whereby the required, permissible tolerances of the carrier can be maintained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Railway Tracks (AREA)
  • Control Of Vehicles With Linear Motors And Vehicles That Are Magnetically Levitated (AREA)
  • Photovoltaic Devices (AREA)
  • Bridges Or Land Bridges (AREA)
  • Refuge Islands, Traffic Blockers, Or Guard Fence (AREA)
  • Vibration Prevention Devices (AREA)
  • Non-Mechanical Conveyors (AREA)

Description

  • Die vorliegende Erfindung betrifft einen Träger für einen Fahrweg eines spurgebundenen Fahrzeuges, insbesondere einer Magnetschwebebahn, aus Beton, insbesondere als Betonfertigteil, mit einem in Längsrichtung des Trägers verlaufenden ersten Gurt, daran angeordneten, ebenfalls in Längsrichtung des Trägers verlaufenden Stegen und mit einem am vom ersten Gurt beabstandeten Ende der Stege angeordneten zweiten Gurt, wobei an den im Querschnitt des Trägers voneinander beabstandeten Enden eines der Gurte Anbauteile zum Führen des Fahrzeuges anordenbar sind, sowie eine Schalung zur Herstellung eines entsprechenden Trägers.
  • Bekannt sind beispielsweise aus der WO 01/11142 A1 Träger für Magnetschwebebahnen mit einem Obergurt mit Stegen, bei welchen an den Obergurten mittels Konsolen die Führungselemente für das Fahrzeug angeordnet sind. Die Konsolen sind an dem Obergurt angeschraubt oder in diesen eingegossen. An den Konsolen sind die Statoren und die horizontalen und vertikalen Führungen des Fahrzeuges befestigt. Der Träger selbst besteht aus einem massiven Betonkörper oder in einer vorteilhafteren Ausgestaltung aus einem im Querschnitt hohlkasten-förmigen Bauteil.
  • Für eine wirtschaftliche Fertigung des Fahrweges für die Magnetschwebebahn sind die Träger teilweise über 30 Meter lang. Die Anforderungen an die Träger sind hinsichtlich ihrer Formgenauigkeit und Formstabilität sehr hoch, um die Funktionalität der Magnetschwebebahn überhaupt zu gewährleisten. Es wurde daher für diese Bauweise stets vorgesehen, daß der Träger sehr biege- und torsionssteif ist. Um ein noch besseres Verhalten des Trägers in Bezug auf die Führung der Magnetschwebebahn zu bewirken, wurde sogar vorgesehen Mehrfeldträger zu verwenden. Derartige formtreu vorgespannte Mehrfeldträger wurden entweder einstückig, oder meist aus Transportgründen, mehrteilig hergestellt und anschließend miteinander gekoppelt. Diese Bauteile sind zwar optimal für die Verwendung als Träger für Magnetschwebebahnen geeignet, die Herstellung ist aber aufgrund der Entformungsarbeiten des Hohlträgers sehr zeit- und damit kostenaufwendig, da nach dem Entformen der Hohlkörper Abschlußplatten angeordnet werden mußten oder in den Abschlußplatten Öffnungen vorgesehen waren, welche eine komplizierte innere Schaltung entnehmbar machten.
  • Aufgabe der vorliegenden Erfindung ist es somit, einen Träger für einen Fahrweg eines spurgebundenen Fahrzeuges, insbesondere einer Magnetschwebebahn zu schaffen, welcher die hohen Anforderungen einer Magnetschwebebahn erfüllen kann und trotzdem schnell und kostengünstig hergestellt werden kann.
  • Die Aufgabe wird gelöst durch einen Träger mit den Merkmalen der unabhängigen Ansprüche.
  • Erfindungsgemäß ist an jedem vom ersten Gurt beabstandeten Ende der Stege jeweils ein sich im wesentlichen zur Außenseite des Trägers erstrekkender zweiter Gurt angeordnet. Hierdurch wird ein Träger geschaffen, welcher für die meisten Anwendungsfälle eine ausreichende Torsionssteifigkeit hat, da die zweiten Gurte, welche meist als Untergurte dienen, derart ausgebildet sind, daß sie durch ihre ausgeprägte Quererstreckung zur Torsionssteifigkeit des Trägers beitragen.
  • Bei einer besonders vorteilhaften Ausführung der Erfindung entsteht zwischen den Stegen ein von der Seite der zweiten Gurte her offener Hohlraum. Sind die Stege im Bereich der zweiten Gurte weiter voneinander beabstandet als im Bereich des ersten Gurtes, so ist der Träger bei dessen Herstellung zumindest teilweise von der Seite der zweiten Gurte her entformbar. Dadurch ist der Träger schnell und kostengünstig herstellbar. Eine aufwendige Zerlegung einer inneren Schalung, um sie aus den Stirnseiten des Trägers entnehmen zu können, oder durch Entformschrägen im Zentrum des Trägers stark eingeschränkte Hohlräume sind somit vermeidbar.
  • Vorteilhaft hinsichtlich der Biegesteifigkeit des Trägers ist es, wenn der erste Gurt ein Obergurt und die zweiten Gurte Untergurte des Trägers sind. In besonderen Anwendungsfällen kann es aber auch umgekehrt sein.
  • Befindet sich der Querschnittsschwerpunkt des Trägers im Bereich der mittleren Querschnittshöhe, so wird bei keiner oder bei lediglich geringer Massenerhöhung des Trägers eine Erhöhung der Querschnittssteifigkeit erzielt. Dies bedingt eine Erhöhung der ersten Eigenfrequenz und gleichzeitig eine Reduktion der Durchbiegung aus Lasten, was sich auf die Fahrdynamik positiv auswirkt. Speziell die Quersteifigkeit und die Torsionssteifigkeit wird deutlich erhöht.
  • Bei der Herstellung des Trägers ist es auch nicht erforderlich nach dem Herstellen des Hohlraums eine weitere Platte an den Stirnseiten des Trägers anzubetonieren, um eine Verbindung bei Mehrfeldträgern schaffen zu können. Durch diesen weiteren Betoniervorgang wird die Herstellung des gesamten Trägers beim Stand der Technik deutlich gegenüber der vorliegenden erfinderischen Ausgestaltung des Trägers verlängert, da bei der vorliegenden Erfindung diese Abschlußplatten, wenn sie erforderlich sind, sofort mit vorgesehen werden können. Ein Abwarten des Abbindens des Betons des Trägers bis dann schließlich die Abschlußplatten betoniert werden können ist nicht mehr erforderlich.
  • Der Träger ist dementsprechend so hergestellt, daß die Entformung von den Längsseiten des Trägers und weitgehend ohne Zerlegen der Schalung erfolgen kann. Der Träger weist somit keinen geschlossenen Hohlraum auf, kann aber aufgrund seiner Gestaltung, insbesondere der sich zur Außenseite des Trägers erstreckenden Untergurte eine genügend hohe Torsionssteifigkeit aufbringen, so daß er als Träger für Magnetschwebebahnen geeignet ist und trotzdem die bisher bereits bewährten großen Spannweiten aufweist.
  • Ein weiterer Vorteil des erfindungsgemäßen Trägers bei der Herstellung besteht darin, daß die Bewehrung des Trägers außerhalb des Trägers vorgefertigt werden kann. Die weitgehend fertige Bewehrung kann dann beispielsweise hutartig auf die Innenschalung gesetzt werden. Darüber hinaus ist es durch die Form des Trägers und dessen Schalung möglich eine steifere Konsistenz des Betons beim Betonieren zu verwenden. Dies wirkt sich positiv auf die Betonqualität und die Kosten aus. Außerdem kann hochfester Beton oder hochfester Leichtbeton zur Anwendung kommen.
  • Vorteilhafterweise sind an den Enden des Trägers die Stege miteinander mittels Abschlußplatten verbunden. Die Abschlußplatten dienen einerseits der Erhöhung der Torsionssteifigkeit. Andererseits sind sie dafür vorgesehen einen Anschluß an benachbarte Träger zu ermöglichen. Der Anschluß an benachbarte Träger kann derart sein, daß eine weitgehend feste Verbindung geschaffen wird, wodurch zwei oder mehrere Träger als Mehrfeldträger wirken.
  • Besonders vorteilhaft ist es, wenn die Abschlußplatten derart ausgebildet sind, daß sie die Lager für den Träger aufnehmen. Hierdurch ist eine vorteilhafte Krafteinleitung von den Trägern in die Stützen, auf welchen die Träger aufgelagert sind, möglich.
  • Eine weitere Erhöhung der Torsionssteifigkeit des Trägers wird dadurch erzielt, daß in dem Hohlraum wenigstens ein die Stege miteinander verbindendes Schott angeordnet ist. Durch das Schott wird vermieden, daß eine Bewegung der Stege und Untergurte zueinander erfolgt. Durch die Stege wird somit die Torsionssteifigkeit des Trägers weiter erhöht. Je nach Bedarf können mehrere Schotten vorgesehen sein, wodurch sich jeweils die Torsionssteifigkeit des Trägers weiter erhöht. Die Schotten sind vorteilhafterweise in weitgehend gleichmäßigen Abständen zueinander angeordnet. Als besonders torsionssteifer Träger wird ein Träger mit drei Schotten erhalten. Die Schotten können dabei jeweils im Trägerquerschnitt vollständig den Hohlraum des Trägers ausfüllen. In anderen Ausführungsformen kann auch vorgesehen sein, daß die Schotten Öffnungen aufweisen oder lediglich als Streben ausgebildet sind, so daß Öffnungen entstehen, durch welche Versorgungsleitungen oder Spanneinrichtungen verlaufen können.
  • Besonders vorteilhaft ist es, wenn die Schotten im Bereich einer Quervorspannung des Trägers, und/oder im Bereich der Anbauteile, insbesondere Konsolen zum Führen des Fahrzeuges angeordnet sind. Hierdurch wird der Träger in den Bereichen, in denen beispielsweise die Anbauteile mittels Konsolen am Träger befestigt sind, verstärkt. Es wird ein geschlossener Kraftflußohne wesentlicher Erhöhung des Gesamtgewichts des Trägers erhalten.
  • Ausreichend für eine genügende Festigkeit des Trägers kann es häufig sein, wenn die Schotten lediglich einen Teil der Stege miteinander verbinden. Auch hierdurch wird Gewicht und damit Material für den Träger eingespart.
  • Um eine außerordentlich hohe Torsionssteifigkeit zu erlangen, kann vorteilhafterweise vorgesehen sein, daß die zweiten Gurte, insbesondere die Untergurte im Bereich des Hohlraums zumindest teilweise durch eine, nach dem Herstellen des Trägers, angeordnete Bodenplatte miteinander verbunden sind. Die Bodenplatte kann entweder den Hohlraum komplett abschließen, so daß wiederum ein geschlossener Hohlkörper entsteht. Es kann in vielen Anwendungsfällen aber bereits ausreichend sein, daß die Bodenplatte lediglich abschnittsweise an dem Träger angeordnet ist. Dies kann bereits eine ausreichende Torsionssteifigkeit ergeben, wodurch die Herstellung, der Bodenplatte wiederum vereinfacht ist.
  • Vorteilhafterweise wird die Bodenplatte betoniert. Es kann hierbei vorgesehen sein, daß an den Stegen bzw. Untergurten Verbindungseisen aus dem Beton des Trägers ragen, an welchen die Bodenplatte angeschlossen bzw. anbetoniert wird. Es entsteht somit eine innige Verbindung zwischen der Bodenplatte und dem Träger. Diese Verbindung ist derart, daß wiederum eine torsionsfeste Form des Trägers erhalten wird, welche den hohen Anforderungen beim Bau von Trägern für Magnetschwebebahnen besonders gerecht wird.
  • Alternativ ist die Bodenplatte aus Metall oder Kunststoff, insbesondere als eine -Rahmen-Konstruktion hergestellt. Dies kann eine vereinfachte Montage und Demontage der Bodenplatte an dem Träger ermöglichen.
  • Ist die Bodenplatte zumindest teilweise tragend ausgebildet, so wird die Torsionssteifigkeit des Trägers weiter erhöht.
    Sind im Träger Vorspannelemente angeordnet, so ist eine für den vorgesehenen Einsatzzweck ausreichende Biegesteifigkeit des Trägers zu erzielen.
  • Besonders vorteilhaft ist es, wenn in den Außenbereichen der Gurte eine Spannbewehrung angeordnet ist. Durch die Spannbewehrung, insbesondere wenn sie auch bei oder nach der Montage des Trägers noch nachjustierbar, also ohne Verbund ist, kann der Träger in y- und z-Richtung verformt und damit sehr exakt justiert werden. Für die Nachjustierung ist es vorteilhaft, wenn auch nach der Montage der Träger die Spannstellen, beispielsweise in den Hohlräumen der Träger zugänglich sind.
  • Vorteilhafterweise wird der Hohlraum des Trägers genutzt um zentrische Spannglieder anzuordnen. Die Spannglieder sind darin in vorteilhafter Weise zu führen. Außerdem können die zentrischen Spannglieder darin auf einfache Weise thermisch isoliert werden. Hierdurch ist der Temperaturgradient des Träger vorteilhafterweise beeinflußbar und die thermische Verformung des Trägers gegenüber herkömmlichen Trägern deutlich reduzierbar.
    Zum Spannen der Vorspannelemente ist vorteilhafterweise vorgesehen, daß in wenigstens einer der Abschlußplatten, insbesondere im Bereich des Hohlraumes, Spann-Nischen vorgesehen sind.
  • Um ein Abstützen von Spannpressen für die Vorspannelemente zu ermöglichen, weisen vorteilhafterweise die Abschlußplatten, insbesondere im Bereich des Hohlraumes, Stahlplatten auf.
  • Ist der Träger Teil eines Mehrfeldträgers, wobei mehrere Träger formtreu vorgespannt miteinander verbunden sind, so wird ein besonders tragfähiges und toleranzgenaues Bauwerk geschaffen.
  • Sind Ober- und/oder Untergurt bezüglich des Fahrzeuges strömungsgünstig, unter weitgehender Vermeidung von dem Fahrzeug zugewandten Querschnittsveränderungen, ausgebildet, so ist der Träger nicht nur erfindungsgemäß biege- und torsionssteif, sondern ermöglicht darüber hinaus, daß die mit extrem hohen Geschwindigkeiten auf dem Träger fahrende Magnetschwebebahn mit möglichst geringen Strömungswiderständen oder Strömungsstößen sehr komfortabel betrieben werden kann. Darüber hinaus trägt eine derartige Gestaltung der Energieeinsparung beim Betrieb des Fahrzeuges bei.
  • Wird der Träger derart gestaltet, daß die sonnenbeschienenen Flächen und/oder Massen des Trägers an dem ersten Gurt und die an den zweiten Gurten einander ähnlich sind, so wird in besonders vorteilhafter Weise erreicht, daß ein niedriger Temperaturgradient innerhalb des Trägers vorhanden sein wird. Dies bedeutet, daß die Erwärmung des Trägers im Bereich des ersten Gurtes und im Bereich der zweiten Gurte weitgehend gleichmäßig erfolgt und somit vermieden wird, daß der erste Gurt oder die zweiten Gurte eine höhere Ausdehnung erfahren als die jeweils anderen Gurte. Eine Biegung des Trägers auf Grund unterschiedlicher Erwärmung ist somit weitgehend zu vermeiden.
  • Zur Unterstützung einer gleichmäßigen Erwärmung und Ausdehnung des Trägers ist vorgesehen, daß zumindest Teile der Außenseite des Trägers eine wärmeabsorbierende oder reflektierende Oberfläche aufweisen. Hierdurch kann beispielsweise eine unterschiedliche Sonnenbestrahlung der einzelnen Teile des Trägers ausgeglichen werden, so daß wiederum eine gleichmäßige Ausdehnung des Trägers erfolgt.
  • Die wärmeabsorbierende und/oder reflektierende Oberfläche kann auf den Träger in Form eines Anstrichs aufgebracht werden. Hierdurch sind die unterschiedlichen thermischen Eigenschaften des Trägers sehr einfach zu erhalten.
  • Werden zumindest Teilen der Außenseite des Trägers Beschattungselemente zugeordnet, so ist auch durch diese Maßnahme ein niedriger Temperaturgradient des Trägers zu erhalten. Die Betriebseigenschaften des Trägers sind damit auf die verschiedensten Sonnenbestrahlungen einstellbar.
  • Dadurch, daß die zweiten Gurte relativ weit über die seitlichen Stege hinausragen, können sie als Fahrweg für weitere Fahrzeuge, insbesondere Inspektions- oder Hilfsfahrzeuge genutzt werden. Die Fahrzeuge können dabei auf der Oberseite der zweiten Gurte fahren und beispielsweise Anbauteile für die Magnetschwebebahn kontrollieren oder vermessen. Es kann aber auch der erste Gurt als derartiger Fahrweg genutzt werden.
    1. In erfinderischer Weise ist bei einem Träger der zuvor beschriebenen Art vorgesehen, daß zwischen erstem Gurt und zweitem Gurt bzw. zweiten Gurten Mittel zum Wärmeausgleich, insbesondere zum Wärmetausch vorgesehen sind. Wird der Träger durch beispielsweise Sonnenbestrahlung unterschiedlich erwärmt, so würde er sich auf Grund des dadurch entstehenden Temperaturgradienten unerwünscht verformen. Die exakt ausgerichteten Anbauteile hätten nicht mehr die erforderliche Genauigkeit, so daß der Betrieb beispielsweise einer Magnetschwebebahn nicht sicher gewährleistet werden könnte. Durch die Anordnung von Wärmeausgleichs- oder Wärmeaustauschmittel ist es nunmehr möglich, daß beispielsweise bei einem stärker erwärmten ersten Gurt die hierbei entstehende Wärme dem zweiten Gurt zugeführt wird, wodurch dieser ebenfalls erwärmt wird und sich in ähnlicher Weise ausdehnt wie der erste Gurt. Die Wärme kann gezielt in die Bereiche des Trägers geführt werden, welche voraussichtlich weniger erwärmt werden oder welche eine höhere Masse aufweisen und somit längere Zeit für eine Erwärmung benötigen würden. Hierzu ist vorteilhafterweise ein Steuerungs- oder Regelungssystem, insbesondere mit Sensoren und Pumpen vorgesehen.
  • Als Mittel zum Wärmeausgleich haben sich Leitungen mit WärmeträgerFlüssigkeit, insbesondere Öl erwiesen. Über diese Leitungen wird die Wärme von stärker erwärmten Bereichen des Trägers in weniger erwärmte Bereiche des Trägers transportiert. Der Transport durch die Leitungen kann aktiv mittels Pumpen oder passiv mittel der Schwerkraft erfolgen.
  • Als aktive Mittel für einen Wärmeausgleich sind Kühl-und/oder Heizelemente vorteilhaft. Diese Kühl- und/oder Heizelemente, welche beispielsweise über Solarzellen betreibbar sind, können ebenfalls bei Bedarf den Temperaturgradienten innerhalb des Trägers niedrig halten und somit Verformungen des Trägers weitgehend vermeiden.
  • Erfindungsgemäß wird weiterhin für die Herstellung eines Trägers eines Fahrwegs für ein spurgebundenes Fahrzeug, insbesondere eine Magnetschwebebahn eine Schalung vorgeschlagen, welche aus einzelnen Modulen zusammengesetzt ist, so daß durch Auswechslung einzelner Module eine Vielzahl unterschiedlicher Träger herstellbar ist. Besonders beim Bau von Magnetschwebebahnen setzt sich der Fahrweg aus einer Vielzahl aneinandergesetzter Träger zusammen. Diese Träger haben im Wesentlichen dieselbe Form. Je nach Umgebungsbedingungen, in welchen die Träger aufgestellt werden oder der speziellen Trassenführung sind individuelle Unterschiede der Träger erforderlich. Durch die vorgeschlagene Schalung ist es nun möglich, daß Träger, welche grundsätzlich die gleiche Gestalt haben durch Austausch einzelner Module individualisiert werden können. Durch die Modulbauweise ist eine sehr schnelle Fertigung der Träger möglich, da der Umbau der Schalung von der einen Form zu der nächsten Form sehr schnell realisierbar ist. Die Modulbauweise der Schalung kann sowohl den Längsals auch den Querschnitt des Trägers betreffen.
  • Als vorteilhaft hat sich erwiesen, daß die Schalung aus einem Grundrahmen, einem damit verbundenen austauschbaren Kernstück und einer beweglichen Seitenschalung besteht. Weitere Elemente der Schalung können für die Auflagerkonsolen vorgesehen sein sowie die Stirnschalung sein. Mit diesen einzelnen Elementen, welche gegebenenfalls nochmals in Teilmodule unterteilt sind, ist eine sehr flexible individuelle Herstellung abgewandelter Träger zu erhalten.
  • Besonders vorteilhaft ist es, wenn die Module zum Längenausgleich bei der Entspannung der Spannglieder während des Entformens verschieblich miteinander verbunden sind. Wird beim Entformen des Trägers die Spannung der Spannglieder nachgelassen, so wird der Beton des Trägers gepreßt und verkürzt sich damit. Hierdurch kann es zu einer Klemmung der Schalung in dem Betonteil kommen. Um dies zu vermeiden, sind die Module verschieblich miteinander verbunden, so daß eine Entformung der Schalungsmodule auch bei entspannten Spanngliedern noch möglich ist.
  • Durch das Einsetzen unterschiedlicher Module für verschiedene Auflagerkonsolen ist es möglich, einen Träger an die vorgegebene Trassierung anzupassen. Träger, welche auf unterschiedlichen Stützen gelagert sind, können durch variable Auflagerkonsolen in der gewünschten Lage montiert werden.
  • Die Auflagerkonsolen, welche je nach Bedarf horizontale, schräge oder zueinander versetzte Lager bzw. Lagerplatten aufweisen, sind sehr schnell und individuell herzustellen.
  • Vorteilhafterweise haben die Module im Bereich der Auflagerkonsolen Aussparungen mit Verguß- und Entlüftungsöffnungen zur Aufnahme der Lagerung.
  • Durch beispielsweise unterschiedlich lange Kerne oder Seitenteile können unterschiedliche Trägerlängen durch die erfindungsgemäße Modulbauweise der Schalung ohne großen Umbauaufwand der Schalung hergestellt werden. Insbesondere wenn die Kernstücke aus weiteren Teilmodulen bestehen, so ist es unter Umständen lediglich erforderlich, einzelne innere Modulstücke zu entfernen und die Endstücke aneinander zu setzen. Hierdurch wird auf eine sehr einfache Weise ein längenveränderter Träger hergestellt.
  • Durch unterschiedliche Gestaltungen der Kernteile ist es sehr einfach möglich, unterschiedliche Hohlraumgestaltungen zu schaffen. So können beispielsweise je nach Bedarf unterschiedliche Radien oder Verstärkungen in dem Hohlraum vorgesehen werden, wodurch auf unterschiedliche Belastungsfälle sehr individuell hergestellte Träger geschaffen werden können.
  • Besonders vorteilhaft ist es, wenn die Module hinsichtlich Anzahl, Form und Größe unterschiedliche Schotten ermöglichen. Auch hierdurch ist eine individuelle Anpassung der Träger an unterschiedliche Bedingungen sehr einfach zu schaffen.
  • Weitere Vorteile der Erfindung sind in den nachfolgenden Ausführungsbeispielen beschrieben. Es zeigen
  • Figur 1
    einen Querschnitt eines Trägers;
    Figur 2
    einen Längsschnitt eines Trägers ohne Schott;
    Figur 3
    einen Längsschnitt eines Trägers mit einem Schott;
    Figur 4
    einen Längsschnitt eines Trägers mit zwei Schotten;
    Figur 5
    einen Längsschnitt eines Trägers mit kurzen Schotten;
    Figur 6
    einen Querschnitt eines weiteren Trägers ;
    Figur 7
    einen Querschnitt eines weiteren Trägers ;
    Figur 8
    eine skizzierte Schalung mit einem Träger;
    Figur 9
    ein alternatives Kernstück;
    Figur 10
    einen Längsschnitt eines Trägers mit dessen Schalung;
    Figur 10a
    einen Längsschnitt eines Trägers mit alternativer Schalung;
    Figur 11
    einen Querschnitt eines Trägers mit dessen Schalung;
    Figur 11a
    einen Querschnitt eines Trägers mit alternativer Schalung
    Figur 12
    einen Querschnitt eines weiteren Trägers;
    Figur 13
    einen Längsschnitt des Trägers aus Fig.12;
    Figur 14 und 15
    einen Querschnitt weiterer Träger.
  • In Figur 1 ist ein Querschnitt eines erfindungsgemäßen Trägers 1 dargestellt. Der Träger 1 weist einen Obergurt 2 sowie zwei Untergurte 3 und 3' auf. Obergurt 2 und Untergurte 3, 3' sind jeweils mit einem Steg 4 bzw. 4' miteinander verbunden. An den Obergurten 2 werden in nicht dargestellter Weise beispielsweise Konsolen angeordnet, an welchen Funktionselemente zum Führen eines spurgebundenen Fahrzeuges befestigt werden. Der Träger 1 ist ein Betonfertigteil, welches im wesentlichen fertig betoniert und gegebenenfalls fertig- oder vormontiert an die Baustelle geliefert wird.
  • Die Untergurte 3 und 3' erstrecken sich ausgehend von den Stegen 4, 4' in Richtung zur Außenseite des Trägers 1. Hierdurch wird für einen an sich offenen Träger 1 eine relativ hohe Torsionssteifigkeit erzielt. Die Untergurte 3 und 3' sind sehr massiv ausgebildet, so daß die Torsionssteifigkeit hierdurch zusätzlich erhöht wird. An den Stirnseiten des Trägers 1 sind die Stege 4, 4' mit einer Abschlußplatte 5 verbunden. Die Abschlußplatte 5 verhindert zusammen mit den ausgeprägten Untergurten 3, 3' und der Verbindung der Stege 4, 4' über den Obergurt 2, daß sich der Träger trotz großer Baulängen bei einer Überfahrt eines Fahrzeuges unzulässig verwindet.
  • Im Bereich der Abschlußplatte 5 ist eine Auflagerkonsole 6 vorgesehen, welche mit nicht dargestellten Lagern und Stützen zusammenwirkt. Der Träger 1 kann somit positionsgenau auf einem entsprechenden Unterbau gelagert werden.
  • Um einen besonders torsionssteifen Träger 1 zu schaffen, welcher einen Hohlraum zwischen den Stegen 4, 4' aufweist, und welcher trotzdem sehr einfach und schnell herzustellen ist, weist der Träger 1 aus Figur 1 eine zusätzliche Bodenplatte 7 auf. Die Bodenplatte 7 erstreckt sich zwischen den Untergurten 3 und 3' und ist mit diesen über eine Bewehrung 8 verbunden. Die Bodenplatte 7, welche ebenfalls aus Beton hergestellt ist, wird nach dem Herstellen des eigentlichen Trägers 1 in eine aus dem Träger 1 überstehende Bewehrung 8 einbetoniert. Dies kann beispielsweise auch nach Einbringung verschiedener Einbauteile in dem Träger erfolgen, wodurch die Zugänglichkeit des Hohlraums des Trägers 1 für Montagezwecke gegeben ist. Die Bodenplatte 7 ist im vorliegenden Ausführungsbeispiel fest mit dem Träger 1 verbunden. Alternativ ist es auch möglich, daß die Bodenplatte 7 beispielsweise eingeschraubt ist oder anderweitig lösbar oder unlösbar mit dem Träger 1 verbunden ist. Wichtig ist in jedem Falle, daß die Bodenplatte 7 den Träger 1 bezüglich seiner Torsionssteifigkeit verstärkt.
  • Zur Erhöhung der Festigkeit des Trägers 1 ist in dem Obergurt 2 und in den Untergurten 3, 3' eine weitere Bewehrung 9 angeordnet. Der Träger 1 kann darüber hinaus beispielsweise auch aus Faserbeton hergestellt sein, wodurch eine zusätzliche Festigkeit erzielt wird.
  • In der Abschlußplatte 5 sind Vorkehrungen für die Verbindung des Trägers 1 mit weiteren Trägern geschaffen. Außerdem sind Aufnahmen für Vorspannelemente vorgesehen. Abschlußplatten 5 dienen zur Abstützung von Spannpressen für die Vorspannelemente, durch welche der Träger 1 in die vorbestimmte Form hinsichtlich seiner Durchbiegung gebracht wird. In den Spann-Nischen 11 werden ebenfalls Elemente zum Spannen des Trägers 1 oder zum Verbinden mehrerer Träger 1 vorgesehen.
  • In Figur 2 ist eine teilweise geschnittene Seitenansicht eines Trägers 1 dargestellt. Der Obergurt 2 und der Steg 4 sind einstückig mit den Abschlußplatten 5, 5' verbunden. An den Abschlußplatten 5, 5' sind die Auflagerkonsolen 6, 6' angeordnet. Die Abschlußplatten 5, 5' sowie die Auflagerkonsolen 6, 6' sind unterschiedlich dick ausgebildet. An der dünneren Abschlußplatte 5 wird der Träger 1 mit einem weiteren Träger gekoppelt, wodurch bei entsprechender Koppelung ein Mehrfeldträger entsteht.
  • Im Bereich der Untergurte 3 ist die Bodenplatte 7 angeordnet. Bei dem Ausführungsbeispiel der Figur 2 schließt die Bodenplatte 7 den Zwischenraum zwischen den Stegen 4, 4' vollständig ab und reicht von einer Abschlußplatte 5 bis zur anderen Abschlußplatte 5'. Hierdurch entsteht ein geschlossener Hohlraum des Trägers 1, welcher erst nach der Herstellung des eigentlichen Trägers 1 geschaffen wird. Ein derartiger Träger 1 weist eine Torsionssteifigkeit auf, welche im wesentlichen der Steifigkeit herkömmlicher Träger entspricht.
  • In Figur 3 ist ein Träger 1 in Seitenansicht dargestellt, welcher keine Bodenplatte 7 aufweist. Zur Versteifung des Trägers 1 ist ein Schott 13 vorgesehen, welches mittig in dem Träger 1 angeordnet ist. Das Schott 13 verbindet die Stege 4, 4' sowie die Untergurte 3, 3' miteinander, wodurch eine Verschiebung der Stege 4, 4' und Untergurte 3, 3' zueinander weitgehend vermieden wird. Ein derartiger Träger 1 ist hinsichtlich seiner Torsionssteifigkeit in vielen Fällen ausreichend für den vorgesehenen Einsatz als Träger für Magnetschwebebahnen.
  • In Figur 4 ist ein weiteres Ausführungsbeispiel der Erfindung dargestellt. Hierbei weist der Träger 1 zwei Schotten 13 auf. Zwischen den beiden Schotten 13 ist eine Bodenplatte 7' angeordnet. Diese Bodenplatte 7' reicht lediglich von einem Schott 13 bis zum anderen Schott 13. Die Bereiche zwischen Schott 13 und den Abschlußplatten 5, 5' sind dagegen ohne Bodenplatte ausgeführt. Ein derartiger Träger 1 weist eine gegenüber dem Träger der Figur 3 erhöhte Torsionssteifigkeit auf. Alternativ ist es auch möglich die Bodenplatte 7 in den Bereichen zwischen Schott 13 und Abschlußplatte 5, 5' anzuordnen oder sie unabhängig von der Position der Schotten 13 einzusetzen.
  • Figur 5 zeigt einen Teil eines Längsschnitts eines Trägers mit kurzen Schotten 13. Die Schotten 13 sind lediglich im oberen Bereich des Hohlraums des Trägers 1 angeordnet. An den Enden des Obergurtes 2 sind im Bereich der Schotten 13 Konsolen 14 vorgesehen, an welchen die nicht dargestellten Anbauteile für die Führung des Fahrzeuges befestigt werden. Die Konsolen 14, welche mittels Spannstählen in dem Beton des Obergurts 2 verankert sind, bewirken über die Schotten 13 eine hervorragende Krafteinleitung in den Träger 1. Die Schotten 13 bewirken hierdurch neben der Erhöhung der Steifigkeit des Trägers 1 auch eine optimierte Befestigung der Fahrzeugführungen an dem Träger 1.
  • In Figur 6 ist ein weiteres Ausführungsbeispiel eines Trägers 1 dargestellt. Die Untergurte 3 und 3' des Trägers 1 sind derart ausgebildet, daß deren Oberseiten als Fahrweg für ein Inspektions- oder Montagefahrzeug dient. Auf der Oberseite der Untergurte 3, 3' ist ausreichend Platz, um eine Fahrbahn für das Fahrzeug zur Verfügung stellen zu können.
  • Die Schotten 13, welche der Darstellung der Figur 5 als Schnittdarstellung entsprechen, befinden sich lediglich im oberen Bereich des Hohlraums und unterstützen auf diese Weise den Kraftfluß, welcher über die Konsolen 14 in den Träger 1, die Stege 4, 4' und die Untergurte 3, 3' eingeleitet werden.
  • Gemäß Figur 6 sind an dem Steg 4' Solarzellen 20 angeordnet. Bei dieser Ausführung ist angenommen, daß der Steg 4' der Sonnenbestrahlung stärker ausgesetzt ist als der Steg 4. Hierdurch ist zu erwarten, daß sich die Seite des Stegs 4' stärker erwärmt und somit zu einer Verformung des Trägers 1 führen würde, wenn kein Wärmeausgleich stattfinden würde. Dieser Wärmeausgleich wird mit Hilfe der Solarzellen 20 und einer damit verbundenen Leitung 21 bewirkt. Die Leitung 21 fördert eine Wärmeträgerflüssigkeit von der sonnenbeschienenen Seite auf die im Schatten liegende Seite des Trägers 1. Hierdurch wird der Steg 4 und der Untergurt 3 ebenfalls erwärmt. Dies wiederum führt dazu, daß die Wärmeausdehnung auf beiden Seiten des Trägers 1 ähnlich ist und somit die Verformung des Trägers 1 in einem tolerierbaren Bereich liegt. Ein ähnlicher Wärmeausgleich kann zwischen Obergurt 2 und den Untergurten 3, 3' stattfinden, wenn ein Wärmetransport beispielsweise vom Obergurt 2 zu den Untergurten 3, 3' durch eine entsprechende Verlegung der Leitungen 21 erfolgt. Alternativ zu den dargestellten Solarzellen 20 ist es möglich, die Isolierung oder Wärmeabsorption des Trägers mittels Anstrichen, Wärmedämmelementen, Kühl- oder Heizelementen sowie Beschattungseinrichtungen durchzuführen.
  • In Figur 7 ist eine weitere Alternative eines Trägers 1 im Querschnitt dargestellt. Bei diesem Träger 1 besteht der Untergurt aus einem einzigen Bauteil, während die Obergurte 2, 2' getrennt ausgeführt sind. Der Hohlraum ist bei dieser Ausführung von der Oberseite des Trägers 1 her zugänglich. Mittels einer Platte 7 ist der Hohlraum des Trägers 1 verschlossen. In den Gurten 2, 2' und 3 sind jeweils in den äußeren Bereichen Spannbewehrungen 9 angeordnet. Durch die Anordnung der Spannbewehrungen 9 im äußeren Bereich der Gurte 2, 2' und 3 ist insbesondere wenn die Spannbewehrungen 9 derart ausgebildet sind, daß sie auch nach dem Einbau des Trägers 1 noch zugänglich sind, eine Justierung des Trägers 1 in y- und z-Richtung möglich. Diese Justierung in y- und z-Richtung erfolgt durch ein entsprechendes Nachspannen der einzelnen Spannbewehrungen 9, wodurch der Träger 1 in vorbestimmter Weise verzogen wird. Auf diese Weise kann beispielsweise bei Senkungen des Untergrundes oder anderen Veränderung in der Trassierung eine exakte Einstellung des Trägers 1 auf die Erfordernisse des Fahrweges Einfluß vorgenommen werden. Die Einstellung kann in besonders feinfühliger und exakter Weise durch den Einsatz temperaturabhängig gesteuerter Pressen erfolgen, die zur Kompensation der Verformung des Trägers 1 durch einseitige Erwärmung die relevanten Spannglieder 9 entsprechend mehr oder weniger anspannen. Die Pressen können beispielsweise mit entsprechenden Solarzellen verbunden sein. Figur 8 zeigt die Skizze einer modulartig aufgebauten Schalung für einen Träger 1 im Querschnitt. Die Schalung besteht aus einem Grundrahmen 31, auf welchem die weiteren Schalungsmodule aufgebaut sind. Die weiteren Schalungsmodule bestehen aus den Kernteilen 32a und 32b sowie den Seitenschalungen 33a, 33'a sowie 33b und 33'b. Die einzelnen Module sind aneinandergesetzt und können mit relativ geringem Aufwand gegen andersartige Module ausgetauscht werden. Darüber hinaus ist es möglich, Füllstücke einzusetzen, mit welchen Aussparungen in dem Träger 1 erhalten werden.
  • In Figur 9 ist ein alternatives Kernstück 32'a für die Schalung der Figur 8 dargestellt. Durch Austausch des Kernstücks 32a durch das Kernstück 32'a wird ein Träger 1 erhalten, welcher kurze Schotten 13 aufweist. Die kurzen Schotten 13, welche durch Aussparungen in dem Kernstück 32'a (dargestellt durch die gestrichelte Linie) erhalten werden, entsprechen sodann im wesentlichen einer Gestaltung gemäß den Darstellungen der Figur 5 bzw. 6.
  • In Figur 10 ist ein Längsschnitt eines Trägers 1 mit dessen Schalung skizziert dargestellt. Auf dem Grundrahmen 31 sind Kernteile 32c und 32d sowie Stirnschalungen 34 und 34' aufgebaut. Mit einem derartigen Aufbau der einzelnen Schalungsmodule wird ein Träger 1 mit einer bestimmten Länge hergestellt. Wird ein beispielsweise kürzerer Träger 1 benötigt, so wird gemäß Figur 10a das Kernstück 32d durch das Kernstück 32'd ersetzt und die Stirnschalung 34' entsprechend der gewünschten Länge des Trägers 1 versetzt auf dem Grundrahmen 31 angeordnet. Es ist daraus ersichtlich, daß es durch lediglich zwei sehr einfache Montagearbeiten möglich ist unterschiedliche Träger 1 zu schaffen. Dies weist den erheblichen Vorteil auf, daß beim Bau einer Vielzahl von Trägern 1 für eine bestimmte Trasse auf sehr einfache Weise individuelle Träger 1 hergestellt werden können, ohne jeweils große Umbaumaßnahmen an der Schalung vornehmen zu müssen.
  • Um Verspannungen zwischen den Kernstücken 32c und 32d beim Entspannen der Bewehrung für den Träger 1 zu vermeiden, ist vorgesehen, daß die Kernstücke 32c und 32d beweglich zueinander angeordnet sind. Hierdurch ist ein Verspreizen der Kernstücke 32c und 32d in dem entspannten Träger 1 nicht zu befürchten.
  • Figur 11 und 11a zeigen einen Ausschnitt einer Schalung im Bereich der Auflagerkonsolen 6. Um beispielsweise eine Neigung des Trägers 1 auf vorgefertigten Stützen zu ermöglichen, kann vorgesehen sein, daß die Auflagerkonsole 6 nicht orthogonal zu der Achse des Trägers 1 verläuft. Um dies zu erreichen, ist wiederum ein Schalungsmodul 31a des Grundrahmens 31 vorgesehen. Bei dem in Figur 11 dargestellten Modul 31a ist eine leichte Neigung des Trägers 1 erwünscht. In der Auflagerkonsole 6 sind für die Lagerung des Trägers 1 Lagerplatten 16 angeordnet. Die Lagerplatten 16 sind jeweils mit Kopfbolzen in dem Beton der Auflagerkonsole 6 verankert.
  • Gemäß der Ausführung der Figur 11a ist das Modul 31'a derart ausgebildet, daß die Lagerplatten 16 parallel, aber höhenversetzt zueinander verlaufen. Auch dies ist wiederum durch einfachen Austausch eines Moduls an dem Grundrahmen 31 zu bewirken.
  • Alternativ oder zusätzlich zu den hier dargestellten Ausführungen der Schalung ist es ebenso möglich, daß auf einem Grundrahmen 31 mehrere Träger 1 angeordnet werden. So ist es beispielsweise möglich, daß auf einem Grundrahmen 31 entweder ein langer oder beispielsweise zwei kurze Träger 1 gefertigt werden. Dies kann dadurch bewirkt werden, daß unterschiedliche Kernteile 32 und zusätzliche Stirnschalungen 34 verwendet werden, welche auf dem Grundrahmen 31 aufgebaut werden.
  • In Figur 12 ist eine weitere Ausführungsform des erfindungsgemäßen Trägers 1 dargestellt. An den Obergurt 2, welcher quer zur Längsachse des Trägers 1 verläuft, und an dessen Enden in nicht dargestellter Weise beispielsweise Konsolen für die Befestigung der Funktionsebenen für das Magnetschwebefahrzeug angeordnet werden, sind zwei Stege 4, 4' beabstandet angeordnet. Zwischen den beiden Stegen 4, 4' entsteht ein Hohlraum des Trägers 1, welcher im wesentlichen durch die ganze Länge des Trägers 1 hindurch verläuft. Dies Hohlraum könnte allerdings auch zur weiteren Verstärkung des Trägers 1 mit Schotten unterbrochen sein. Am vom Obergurt 2 beabstandeten Ende der Stege 4, 4' sind Untergurte 3, 3' angeordnet. Die Untergurte 3, 3' erstrecken sich zur Außenseite des Trägers 1 hin. Die Untergurte 3, 3' weisen etwa die gleiche Wandstärke wie die Stege 4, 4' auf. Durch die abgespreizte Form der Untergurte 3, 3' wird eine erhöhte Steifigkeit des Trägers 1 erzielt. Durch eine entsprechend steile Ausbildung der äußeren Oberfläche der Untergurte 3, 3' wird bewirkt, daß Schnee und Eis weniger anhaften können. Der Winterfahrbetrieb ist dadurch problemloser möglich. Die Untergurte 3, 3' sind mit Schotten 13 verbunden. Auch dies trägt zur weiteren Steifigkeitserhöhung des Trägers 1 bei. Die Schotten 13 sind in Längsrichtung des Träges 1 vereinzelt angeordnet.
  • Hergestellt werden die Schotten 13 entweder in einem dem eigentlichen Herstellungsvorgang des Trägers 1 nachfolgenden Arbeitsschritt. Alternativ kann vorgesehen sein, daß durch eine entsprechende Teilung der Schalung einzelne Module der Schalung, welche oberhalb der Schotten 13 in dem Hohlraum des Trägers 1 angeordnet sind, bei der Entformung in Längsrichtung des Trägers 1 bewegt werden und somit in den Hohlraum zwischen den einzelnen Schotten 13 gelangen und dann aus dem Träger 1 entnommen werden können. Durch die erfindungsgemäße Teilung der Schalung in einzelne Module ist diese Längsverschiebung der entsprechenden Schalungsmodule sehr einfach durchzuführen. Ein weiterer Arbeitsschritt zur Herstellung des mit den Schotten 13 versehenen Trägers 1 ist daher nicht erforderlich. Die Herstellung des Trägers 1 kann dadurch schnell und kostengünstig erfolgen. Die gleiche Herstellungsmethode mit Hilfe der in Modulen aufgeteilten Schalung kann eingesetzt werden zur Herstellung von nicht dargestellten Bodenplatten 7, welche nur an einem Teil des Trägers 1 angeordnet sind. Auch hierbei kann durch eine Längsverschiebung der Schalung der Hohlraum oberhalb der Bodenplatte 7 beibehalten werden und das entsprechende Schalungsmodul seitlich neben der Bodenplatte 7 aus dem Träger 1 entnommen werden. Auch hierdurch ist eine sehr schnelle und kostengünstige Herstellung eines Trägers mit integrierter Bodenplatte 7 möglich.
  • Figur 13 zeigt einen Schnitt durch den Träger der Figur 12 entlang der strichpunktierten Linie. Es ist hieraus ersichtlich, daß die Schotten 13 lediglich am unteren Teil des Trägers 1 im Bereich der Untergurte 3, 3' angeordnet sind. Im Bereich der Stege 4, 4' entsteht ein Hohlraum innerhalb des Trägers 1. Dieser Hohlraum bewirkt, daß für die Herstellung des Trägers 1 lediglich ein geringer Materialbedarf erforderlich ist. Darüber hinaus ist durch den Hohlraum ein Raum geschaffen, in welchem Versorgungsleitungen verlegt werden können. Der Träger 1 ist durch Abschlußplatten 5, 5' in Längsrichtung abgeschlossen. In den Abschlußplatten 5, 5' können, in nicht dargestellter Weise, Verankerungen von Spanngliedern oder Verbindungselemente zu weiteren Trägern 1 vorgesehen sein.
  • In den Figuren 14 und 15 sind weitere Ausführungsformen von Trägem dargestellt, welche durch die Modulbauweise der Schalung sehr schnell und kostengünstig hergestellt werden können. Durch Austausch einzelner Schalungsbereiche ist es möglich eine Vielzahl unterschiedlicher Träger 1, welche einander ähnlich sind, zu schaffen. Dies erfolgt durch Einsatz veränderter Schalungsmodule. So ist gemäß Figur 14 ein niedriger Träger 1 herstellbar, welcher lediglich einen Obergurt 2 und Untergurt 3, 3' aufweist. Derartige Träger 1 können beispielsweise bei Brückenbauwerken eingesetzt werden.
  • Für die Verlegung des Fahrweges ohne Stützen ist es häufig ausreichend, wenn der Träger 1 sehr niedrig ausgebildet ist. Hierzu kann es vorteilhaft sein, daß der Träger 1 ohne Hohlraum gegossen wird. Auch dies ist durch die erfindungsgemäße Schalung ohne weiteres möglich, da entsprechende Schalungsmodule aus der Schalung entfernt werden können und somit ein niedriger vollvolumiger Träger 1 geschaffen werden kann.
  • Weitere, nicht dargestellte Ausführungsbeispiele sind ebenfalls erfindungsgemäß. So ist es durchaus möglich, daß mehrere Schotten 10 als hier dargestellt mit und ohne Bodenplatte 7 eingesetzt werden. Die Schotten 10 können entweder vollwandig oder mit Durchgangsöffnungen versehen sein. Vorteilhaft ist es, wenn die Schotten 10 ebenso wie die Abschlußplatten 5, 5' Entformschrägen aufweisen, so daß eine Schalung in Einbaurichtung des Trägers 1 nach unten aus dem Träger 1 entnommen werden kann. Die Bodenplatte 7 kann aus Beton oder aus Metall sein, sie kann ebenfalls Öffnungen, beispielsweise zu Inspektionszwecken oder zum Entfernen von Schalungen aufweisen. Sie kann einbetoniert oder beispielsweise eingeschraubt sein. Durch eine entsprechende Formgebung der Verbindungsstellen kann eine schubfeste Verbindung zwischen der Bodenplatte und dem Träger geschaffen werden. Die Bodenplatte 7 kann derart hergestellt werden, daß von außen eine Schalung angelegt wird und mittels Schläuchen Beton in den Hohlraum eingeführt wird und die Bodenplatte bildet. Die Bodenplatte 7 kann beispielsweise aber auch dadurch hergestellt werden, daß der Träger 1 in ein Betonbett eingesetzt wird, welches durch aus dem Träger 1 überstehende Bewehrungseisen nach dem Abbinden fest mit dem Träger 1 verbunden ist und den Hohlraum abschließt.
  • Zur Verformung des Trägers kann eine gezielte Erwärmung der Spannbewehrung erfolgen, wodurch die erforderlichen, zulässigen Toleranzen des Trägers eingehalten werden können.

Claims (41)

  1. Träger für einen Fahrweg eines spurgebundenen Fahrzeuges, insbesondere einer Magnetschwebebahn, aus Beton, insbesondere als Betonfertigteil, mit einem in Längsrichtung des Trägers (1) verlaufenden ersten Gurt (2), daran angeordneten, ebenfalls in Längsrichtung des Trägers (1) verlaufenden Stegen (4, 4') und mit einem am vom ersten Gurt (2) beabstandeten Ende der Stege (4, 4') angeordneten zweiten Gurt (3, 3'), wobei an den im Querschnitt des Trägers (1) voneinander beabstandeten Enden eines der Gurte (2, 3, 3') Anbauteile zum Führen des Fahrzeuges anordenbar sind, dadurch gekennzeichnet, dass an jedem vom ersten Gurt (2) beabstandeten Ende der Stege (4, 4') jeweils ein zweiter Gurt (3, 3') angeordnet ist, wobei sich diese zweiten Gurte (3, 3') ausgehend von dem Ende der Stege (4, 4') im wesentlichen zur Außenseite des Trägers (1) hin erstrecken.
  2. Träger nach Anspruch 1, dadurch gekennzeichnet, dass die Stege (4, 4') im Bereich der zweiten Gurte (3, 3') weiter voneinander beabstandet sind als im Bereich der ersten Gurte (2), so dass der Träger (1) bei dessen Herstellung zumindest teilweise von der Seite der zweiten Gurte (3, 3') entformbar ist.
  3. Träger nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der erste Gurt (2) ein Ober- oder Untergurt (2) und die zweiten Gurte (3, 3') Unter- oder Obergurte (3, 3') des Trägers (1) sind.
  4. Träger nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass sich der Querschnittsschwerpunkt des Trägers (1) im Bereich der mittleren Querschnittshöhe befindet.
  5. Träger nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass an den Enden des Trägers (1) die Stege (4, 4') miteinander verbindende Abschlussplatten (5, 5') angeordnet sind.
  6. Träger nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass an den Abschlussplatten (5, 5') Auflagerkonsolen (6, 6') für den Träger (1) angeordnet sind.
  7. Träger nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass in dem Hohlraum wenigstens ein die Stege (4, 4') miteinander verbindendes Schott (13) angeordnet ist.
  8. Träger nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Schotten (13) im Bereich einer Quervorspannung des Trägers (1), und/oder im Bereich der Anbauteile, insbesondere Konsolen (14) zum Führen des Fahrzeuges angeordnet sind.
  9. Träger nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Schotten (13) lediglich einen Teil der Stege (4, 4') miteinander verbinden.
  10. Träger nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die zweiten Gurte (3, 3') im Bereich des Hohlraumes zumindest teilweise durch eine nach dem Herstellen des Trägers (1) angeordnete Bodenplatte (7) miteinander verbunden sind.
  11. Träger nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Bodenplatte (7) betoniert ist.
  12. Träger nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Bodenplatte (7) aus Metall, Kunststoff oder Beton, insbesondere in Form einer Rahmen-Konstruktion ist.
  13. Träger nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Bodenplatte (7) zumindest teilweise tragend ausgebildet ist.
  14. Träger nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Bodenplatte (7) torsionsfest mit dem Träger (1) verbunden ist.
  15. Träger nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass in dem Träger (1) Vorspannelemente angeordnet sind.
  16. Träger nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass in den Außenbereichen der Gurte (2;3,3') eine Spannbewehrung (9) ohne Verbund angeordnet ist.
  17. Träger nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass im Hohlraum zentrische Spannglieder angeordnet sind.
  18. Träger nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die zentrischen Spannglieder thermisch isoliert sind.
  19. Träger nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass in wenigstens einer der Abschlussplatten (5, 5'), insbesondere im Bereich des Hohlraumes Spann-Nischen (11) vorgesehen sind.
  20. Träger nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass in wenigstens einer der Abschlussplatten (5, 5'), insbesondere im Bereich des Hohlraumes Stahlplatten (10) zum Abstützen von Spannpressen für die Vorspannelemente vorgesehen sind.
  21. Träger nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Träger (1) Teil eines Mehrfeldträgers ist, wobei mehrere Träger (1) formtreu vorgespannt miteinander verbunden sind.
  22. Träger nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der erste Gurt und/oder die zweiten Gurte (2, 3, 3') bezüglich des Fahrzeuges strömungsgünstig, unter weitgehender Vermeidung von dem Fahrzeug zugewandten Querschnittsveränderungen, ausgebildet ist.
  23. Träger nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die sonnenbeschienenen Flächen und/oder Massen des Trägers (1) an dem ersten Gurt (2) und den zweiten Gurten (3, 3') ähnlich sind zum Erhalt eines niedrigen Temperaturgradienten.
  24. Träger nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass zumindest Teile der Außenseite des Trägers (1) eine wärmeabsorbierende und/oder -reflektierende Oberfläche aufweisen.
  25. Träger nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass zumindest Teile der Außenseite des Trägers (1) einen Anstrich aufweisen.
  26. Träger nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass zumindest Teilen der Außenseite des Trägers (1) Beschattungselemente zugeordnet sind. ,
  27. Träger nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der erste oder die zweiten Gurte (2, 3, 3') als Fahrweg für weitere Fahrzeuge, insbesondere Montage-, Inspektions- oder Hilfsfahrzeuge ausgebildet sind.
  28. Träger nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass zwischen erstem Gurt und zweitem Gurt Mittel zum Wärmeausgleich, insbesondere zum Wärmetausch vorgesehen sind.
  29. Träger nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass zum Wärmeausgleich ein Steuerungs- oder Regelungssystem, insbesondere mit Sensoren und Pumpen vorgesehen ist.
  30. Träger nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Mittel zum Wärmeausgleich Leitungen mit Wärmeträgerflüssigkeit, insbesondere Öl, welche aktiv oder passiv durch die Leitungen zirkuliert, sind.
  31. Träger nach einem der vorherigen Ansprüche, dadurch gekennzeichnet , dass die Mittel zum Wärmeausgleich Kühl- und/oder Heizelemente sind.
  32. Träger nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass mittels temperaturabhängig gesteuerter Pressen der Träger (1) insbesondere durch einseitige Erwärmung der relevanten Spannglieder (9) verformbar ist.
  33. Träger nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Pressen mit entsprechenden Solarzellen und/oder Sonnenkollektoren verbunden sind.
  34. Schalung zur Herstellung eines Trägers (1) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Schalung aus einzelnen Modulen (31, 32, 33, 34) zusammengesetzt ist, so dass durch Auswechselung einzelner Module eine Vielzahl unterschiedlicher Träger (1) herstellbar ist.
  35. Schalung nach dem vorherigen Anspruch, dadurch gekennzeichnet, dass die Module zum Längenausgleich bei der Entspannung der Spannglieder während des Entformens verschieblich miteinander verbunden sind.
  36. Schalung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Module unterschiedliche Auflagerkonsolen ermöglichen.
  37. Schalung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Module im Bereich der Auflagerkonsolen mit Lagerplatten (16) ausgestattet sind.
  38. Schalung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Module im Bereich der Auflagerkonsolen Aussparungen mit Verguss- und Entlüftungsöffnungen zur Aufnahme der Lagerung aufweisen.
  39. Schalung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Module unterschiedliche Trägerlängen ermöglichen.
  40. Schalung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Module unterschiedliche Hohlraumgestaltungen ermöglichen.
  41. Schalung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Module hinsichtlich Anzahl, Form und Größe unterschiedliche Schotten (13) ermöglichen.
EP01962990A 2000-09-12 2001-09-01 Träger Expired - Lifetime EP1317360B1 (de)

Applications Claiming Priority (15)

Application Number Priority Date Filing Date Title
DE10045336 2000-09-12
DE10045336 2000-09-12
DE10064724 2000-12-22
DE10064724 2000-12-22
DE10111918 2001-03-13
DE10111918 2001-03-13
DE10120909 2001-04-30
DE10120909 2001-04-30
DE10133316 2001-07-12
DE10133337 2001-07-12
DE10133337A DE10133337A1 (de) 2000-09-12 2001-07-12 Träger für ein spurgebundenes Hochgeschwindigkeitsfahrzeug
DE10133318A DE10133318A1 (de) 2000-09-12 2001-07-12 Fahrwegträger
DE10133318 2001-07-12
DE10133316A DE10133316A1 (de) 2000-09-12 2001-07-12 Träger
PCT/EP2001/010100 WO2002022389A1 (de) 2000-09-12 2001-09-01 Träger

Publications (2)

Publication Number Publication Date
EP1317360A1 EP1317360A1 (de) 2003-06-11
EP1317360B1 true EP1317360B1 (de) 2008-03-05

Family

ID=27561721

Family Applications (3)

Application Number Title Priority Date Filing Date
EP01962990A Expired - Lifetime EP1317360B1 (de) 2000-09-12 2001-09-01 Träger
EP01982236A Expired - Lifetime EP1317581B1 (de) 2000-09-12 2001-09-01 Träger für ein spurgeführtes hochgeschwindigkeitsfahrzeug
EP01982235A Withdrawn EP1317580A1 (de) 2000-09-12 2001-09-01 Fahrwegträger

Family Applications After (2)

Application Number Title Priority Date Filing Date
EP01982236A Expired - Lifetime EP1317581B1 (de) 2000-09-12 2001-09-01 Träger für ein spurgeführtes hochgeschwindigkeitsfahrzeug
EP01982235A Withdrawn EP1317580A1 (de) 2000-09-12 2001-09-01 Fahrwegträger

Country Status (15)

Country Link
US (2) US20030116692A1 (de)
EP (3) EP1317360B1 (de)
JP (3) JP3910533B2 (de)
CN (3) CN1455747B (de)
AR (3) AR030602A1 (de)
AT (2) ATE345419T1 (de)
AU (5) AU1387402A (de)
BR (3) BR0113538A (de)
CA (3) CA2422071A1 (de)
CZ (2) CZ2003628A3 (de)
DE (2) DE50113706D1 (de)
EA (3) EA004356B1 (de)
HU (3) HU223630B1 (de)
PL (1) PL360854A1 (de)
WO (3) WO2002022389A1 (de)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002022389A1 (de) * 2000-09-12 2002-03-21 Max Bögl Bauunternehmung Gmbh & Co Kg Träger
DE10215668A1 (de) * 2002-04-10 2003-10-30 Zueblin Ag Fahrweg für Magnetschwebebahn
DE10353949A1 (de) * 2003-11-18 2005-06-16 Max Bögl Bauunternehmung GmbH & Co. KG Verfahren zum lagegenauen Aufstellen eines Trägers für einen Fahrweg und Fahrweg
DE102004032979A1 (de) * 2004-07-08 2006-01-26 Max Bögl Bauunternehmung GmbH & Co. KG Träger
US7334525B2 (en) * 2004-10-15 2008-02-26 General Atomics Modular guideway for a magnetic levitation vehicle and method for manufacturing a guideway module
CN1317454C (zh) * 2005-06-29 2007-05-23 上海磁浮交通工程技术研究中心 磁浮交通叠合式轨道梁及其制造方法
CN100465376C (zh) * 2005-06-29 2009-03-04 上海磁浮交通工程技术研究中心 高速磁浮叠合式轨道梁连接机构、轨道梁及其制造方法
DE102005034552B4 (de) * 2005-07-23 2007-12-20 Jost-Werke Gmbh & Co. Kg Stützwinde
DE102006025014A1 (de) * 2006-05-26 2007-11-29 Max Bögl Bauunternehmung GmbH & Co. KG Fahrweg
DE102008005888A1 (de) * 2008-01-22 2009-07-23 Thyssenkrupp Transrapid Gmbh Magnetschwebebahn
FR2938800B1 (fr) * 2008-11-21 2010-12-24 Alstom Transport Sa Support isolant de pistes d'alimentation
CN102079981B (zh) * 2009-11-27 2013-05-15 五冶集团上海有限公司 一种焦炉装煤车轨道和支撑梁的连接结构及方法
WO2014093422A1 (en) * 2012-12-11 2014-06-19 Diebel Peter H Solar railway system and related methods
CN104149661A (zh) * 2014-08-04 2014-11-19 镇江大全赛雪龙牵引电气有限公司 嵌地式供电系统端头连接机构
CA2973238C (en) * 2015-01-09 2019-04-23 Dynamic Structures, Ltd. V-track support structure component
CN105714627A (zh) * 2015-11-10 2016-06-29 北京交通大学 一种底板开口、顶板悬挂的组合箱型轨道梁
CN105625157B (zh) * 2015-11-10 2024-04-30 北京交通大学 一种应用于悬挂式单轨交通中的底板外伸、顶板悬挂的组合箱型轨道梁
US11643269B2 (en) 2016-12-01 2023-05-09 Bedford Systems, LLC Container and opening arrangement for beverage production
CN108221509A (zh) * 2018-02-09 2018-06-29 北京交通大学 一种带肋板的跨座式单轨交通预制轨道梁
EP3768127B1 (de) * 2018-03-22 2023-12-06 Bedford Systems LLC Punktionsmechanismus für getränkemaschine
KR102550615B1 (ko) * 2018-06-27 2023-07-04 엘지전자 주식회사 진공단열체 및 냉장고
CN110004779A (zh) * 2019-04-11 2019-07-12 中铁磁浮交通投资建设有限公司 一种含有π型轨道的梁轨一体化中低速磁浮轨道梁
CN111300633B (zh) * 2020-04-08 2021-06-18 上海建工建材科技集团股份有限公司 一种高速磁悬浮轨道梁板功能区高精度定位架及定位方法

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1320072A (en) * 1919-10-28 Etoehe mcleabt i
US2184137A (en) * 1936-12-01 1939-12-19 Nat Fireproofing Corp Composite building member
DE928047C (de) 1953-04-03 1955-05-31 Gutehoffnungshuette Sterkrade Eisenbahnbruecke mit geschlossener Fahrbahn
US2783638A (en) * 1953-10-19 1957-03-05 Henderson Albert Continuous precast concrete girders and columns
US3212390A (en) 1963-03-20 1965-10-19 Otto J Litzkow Mortar recess nut and thread protector
US3710727A (en) * 1970-02-16 1973-01-16 E Svensson Air beam way and switching system
FR2163782A5 (de) * 1971-12-01 1973-07-27 Aerotrain
DE2216484B2 (de) 1972-04-06 1975-03-13 Dyckerhoff & Widmann Ag, 8000 Muenchen Verfahren zum Herstellen einer Fahrbahn aus Stahl- oder Spannbeton sowie nach diesem Verfahren hergestellte Fahrbahn
US3890904A (en) * 1973-10-01 1975-06-24 Lawrence K Edwards Railway system
US4375193A (en) * 1980-05-29 1983-03-01 Universal Mobility, Inc. Monorail guideway assembly
CH653729A5 (de) 1981-11-17 1986-01-15 Bureau Bbr Ltd Bauglied.
US4631772A (en) * 1983-12-28 1986-12-30 Bonasso S G Tension arch structure
DE3322019C2 (de) 1983-06-18 1986-09-04 Dyckerhoff & Widmann AG, 8000 München Verfahren zum vorübergehenden Übertragen von außerhalb der Querschnittsfläche eines Bauwerks parallel zu dessen Außenfläche wirkenden Kräften sowie Vorrichtung zum Durchführen des Verfahrens
CA1167797A (en) * 1983-06-30 1984-05-22 Herbert E. Gladish Air conveyor components
DE3370500D1 (en) * 1983-08-11 1987-04-30 Harries & Kinkel Ingenieurgese Method and apparatus for constructing a prestressed concrete superstructure of a bridge
DE3404061C1 (de) * 1984-02-06 1985-09-05 Thyssen Industrie Ag, 4300 Essen Verfahren zur Iagegenauen Befestigung von Ausruestungsteilen an vorgegebenen Anschlussorten an der Tragkonstruktion von Fahrwegen
DE3412584A1 (de) 1984-04-04 1985-10-24 Karlheinz Schulz Sonnenkraftanlage
US4690064A (en) * 1986-05-20 1987-09-01 Owen William E Side-mounted monorail transportation system
DE3639265A1 (de) 1986-11-17 1988-06-16 Marijan Dipl Ing Kresic Dom-schalung
DE3705773A1 (de) 1987-02-24 1988-09-01 Dyckerhoff & Widmann Ag Verfahren zur justierung, befestigung und/oder bearbeitung von funktionsflaechen eines fahrwegs einer elektromagnetischen schnellbahn
CH676617A5 (de) * 1987-03-13 1991-02-15 Dyckerhoff & Widmann Ag
DE3709619A1 (de) 1987-03-24 1988-10-13 Thyssen Industrie Duale weichenanordnung zur gemeinsamen benutzung durch spurgefuehrte schienen- und magnetfahrzeuge
DE3716260C1 (de) 1987-05-15 1988-07-28 Dyckerhoff & Widmann Ag Verfahren zur Justierung und Befestigung von Funktionsflaechen eines Fahrwegs einer elektromagnetischen Schnellbahn und Vorrichtung zur Durchfuehrung des Verfahrens
DE3810326A1 (de) 1988-03-26 1989-10-05 Thyssen Industrie Verfahren zur lagegenauen befestigung von ausruestungsteilen
US4987833A (en) * 1988-03-28 1991-01-29 Antosh Mark J Solar induction monorail apparatus and method
DE3825508C1 (de) 1988-07-27 1989-10-19 Dyckerhoff & Widmann Ag Verfahren zur Justierung und Befestigung von Funktionsflächen eines Fahrwegs einer elektromagnetischen Schnellbahn und Vorrichtung zur Durchführung des Verfahrens
DE3902949A1 (de) * 1989-02-01 1990-08-09 Thyssen Industrie Fahrwegtraeger fuer magnetbahnen
DE3924486C1 (en) 1989-07-25 1991-01-03 Dyckerhoff & Widmann Ag, 8000 Muenchen, De Side-rail fixing system - is for electromagnetic railway and uses recesses in sides of concrete beam folded with poured concrete
DE3928277C1 (de) 1989-07-25 1990-12-13 Thyssen Industrie Ag, 4300 Essen, De
DE4021834A1 (de) 1990-07-09 1992-01-16 Brodthage Dieter Fahrwegkonfigurationen fuer magnetschwebebahnen
DE4115935C2 (de) 1991-05-16 1996-11-07 Dyckerhoff & Widmann Ag Fahrwegkonstruktion für Magnetschwebefahrzeuge
DE4115936A1 (de) * 1991-05-16 1992-11-19 Dyckerhoff & Widmann Ag Aus stahl- oder spannbeton bestehender traeger fuer einen fahrweg fuer magnetschwebefahrzeuge
US5437072A (en) * 1992-01-23 1995-08-01 J. Muller International Rapid transit viaduct with post-tensioning cable system
DE9217792U1 (de) 1992-12-29 1993-07-15 Witting, Gerhard, 8243 Ramsau, De
DE4228310C2 (de) 1992-08-26 1997-06-19 Magnetbahn Gmbh Verfahren und Vorrichtung zum Befestigen von Statorpaketen an Magnetschwebebahnfahrwegen mittels Verschraubungen
US5490363A (en) * 1992-10-06 1996-02-13 Anchor Wall Sytems, Inc. Composite masonry block
DE4434121A1 (de) * 1994-09-23 1996-03-28 Thyssen Industrie Verfahren und Vorrichtung zur lagegenauen Anordnung von Funktionskomponenten an der Tragkonstruktion von Fahrwegen für spurgebundene Fahrzeuge, insbesondere Magnetschwebebahnen
US5651318A (en) * 1994-12-01 1997-07-29 O'donohue; James P. Straddle and underwrap nebel beam and jimmy electromagnetic technology train prototype mating system
US5823114A (en) 1996-03-25 1998-10-20 Maglev, Inc. Utility distribution system incorporating magnetic levitation vehicle guideways
DE19619866C2 (de) 1996-05-17 2003-10-02 Boegl Max Bauunternehmung Gmbh Fahrweg für Magnetbahnzüge
DE29612404U1 (de) * 1996-07-17 1996-09-12 Szekely Istvan Solarstrasse mit Linealmotor
DE19805086A1 (de) 1998-02-09 1998-07-23 Bock Manfred Multifunktionales Brückenelement
US6321657B1 (en) * 1998-03-03 2001-11-27 William E. Owen Rail transit system
US6564516B1 (en) * 1998-04-08 2003-05-20 Einar Svensson Support structure for elevated railed-vehicle guideway
EP1075397B1 (de) * 1998-04-08 2006-10-11 Einar Svensson Traganordnung für erhöhte fahrstrecke für schienenfahrzeug
US6571717B2 (en) * 1998-04-08 2003-06-03 Einar Svensson Y-shaped support structure for elevated rail-vehicle guideway
DE29809580U1 (de) 1998-05-28 1998-08-20 Noell Stahl Und Maschinenbau G Fahrwegplatte für die Fahrbahn von Magnetbahnzügen
AU4803299A (en) 1998-07-01 2000-01-24 Grimbergen Holding B.V. Railway system and its supporting structure, as well as their method of construction
DE19841936C2 (de) 1998-09-14 2001-03-01 Boegl Max Bauunternehmung Gmbh Fahrweg für Hochbahnen
DE29923408U1 (de) 1998-10-02 2000-08-31 Gus Ring Gmbh & Co Vertriebs K Vorrichtung zur Aufnahme von Lasten an Betonbauwerken
DE19919703C2 (de) 1999-04-30 2001-05-23 Pfleiderer Infrastrukturt Gmbh Fahrweg für Transrapid
DE19936756A1 (de) * 1999-08-09 2001-02-15 Boegl Max Bauunternehmung Gmbh Fahrweg eines spurgebundenen Fahrzeuges
WO2002022389A1 (de) * 2000-09-12 2002-03-21 Max Bögl Bauunternehmung Gmbh & Co Kg Träger
DE10111919A1 (de) * 2001-03-13 2002-09-19 Boegl Max Bauunternehmung Gmbh Fahrwegträger

Also Published As

Publication number Publication date
WO2002022955A1 (de) 2002-03-21
ATE345419T1 (de) 2006-12-15
AU2002213873A1 (en) 2002-03-26
CN1474897A (zh) 2004-02-11
CA2422071A1 (en) 2003-03-11
CN100547162C (zh) 2009-10-07
JP3910533B2 (ja) 2007-04-25
JP2004509247A (ja) 2004-03-25
AU2001284048B2 (en) 2004-09-02
AR030602A1 (es) 2003-08-27
BR0113805A (pt) 2004-08-17
DE50113706D1 (de) 2008-04-17
HUP0302129A3 (en) 2004-03-01
JP2004509248A (ja) 2004-03-25
HU223630B1 (hu) 2004-10-28
BR0113804A (pt) 2004-01-13
HUP0302129A2 (hu) 2003-10-28
PL360854A1 (en) 2004-09-20
CZ2003626A3 (cs) 2003-09-17
CN1474896A (zh) 2004-02-11
HUP0301989A3 (en) 2004-03-01
EA004358B1 (ru) 2004-04-29
EA200300366A1 (ru) 2003-08-28
EP1317360A1 (de) 2003-06-11
CA2422118A1 (en) 2003-03-11
EA004356B1 (ru) 2004-04-29
WO2002022389A1 (de) 2002-03-21
HUP0301989A2 (hu) 2003-09-29
AU8404801A (en) 2002-03-26
EA200300364A1 (ru) 2003-08-28
EA200300367A1 (ru) 2003-08-28
CN1455747B (zh) 2011-01-12
HUP0302087A3 (en) 2004-03-01
AR030600A1 (es) 2003-08-27
CN1455747A (zh) 2003-11-12
CZ2003628A3 (cs) 2003-08-13
AU2002213874B2 (en) 2004-07-29
EP1317580A1 (de) 2003-06-11
ATE388040T1 (de) 2008-03-15
EP1317581B1 (de) 2006-11-15
US6782832B2 (en) 2004-08-31
US20030116692A1 (en) 2003-06-26
JP2004509246A (ja) 2004-03-25
EP1317581A1 (de) 2003-06-11
WO2002022956A1 (de) 2002-03-21
WO2002022389A9 (de) 2002-09-19
EA004359B1 (ru) 2004-04-29
AU1387402A (en) 2002-03-26
BR0113538A (pt) 2004-02-03
CA2422116A1 (en) 2003-03-11
HUP0302087A2 (hu) 2003-09-29
AR030601A1 (es) 2003-08-27
DE50111462D1 (de) 2006-12-28
US20030154877A1 (en) 2003-08-21

Similar Documents

Publication Publication Date Title
EP1317360B1 (de) Träger
EP0381136B1 (de) Fahrwegträger für Magnetbahnen
EP0987370B1 (de) Herstellungsverfahren der lagegenauen Verbindungen von Statoren an einer Magnetschwebebahn und deren Tragkonstruktion
EP1048784B1 (de) Fahrweg für Magnetschwebebahnen, z.B. TRANSRAPID
EP1146180B1 (de) Verfahren zur Herstellung eines Beton-Deckenelements und Beton-Deckenelement
DE10321047B4 (de) Fahrbahn für Magnetschwebebahnen und Herstellungsverfahren dafür
WO2001011142A1 (de) Mehrfeldträger
DE3825508C1 (de) Verfahren zur Justierung und Befestigung von Funktionsflächen eines Fahrwegs einer elektromagnetischen Schnellbahn und Vorrichtung zur Durchführung des Verfahrens
EP1203123B1 (de) Fahrweg für ein spurgebundenes fahrzeug, insbesondere eine magnetschwebebahn
WO2008061728A1 (de) Trägerelement, lageranordnung und einstellanordnung für eine biegeweichenanordnung
DE102019112014A1 (de) Verfahren zur Befestigung eines Brückenüberbaus und dabei zu verwendendes Randabschlusselement
DE10133607C5 (de) Verfahren und Palette zur Herstellung eines präzisen Betonfertigteiles
EP1597434B1 (de) Fahrbahn für magnetschwebebahnen und herstellungsverfahren dafür
DE10133316A1 (de) Träger
DE102006038888B3 (de) Fahrbahn für Magnetschwebebahnen
WO2002075051A2 (de) Fahrweg für spurgeführte fahrzeuge
DE19920146B4 (de) Lagerung einer Schiene für Schienenfahrzeuge
EP1114221A1 (de) Schwellenrahmen für eine gleisanlage für schienengebundene fahrzeuge, insbesondere für einen schotteroberbau
WO2007000417A1 (de) Fahrwegträger für eine magnetschwebebahn
EP1063361B1 (de) Montageträgersystem und Verfahren zur Montage eines Fertigbauteils an einem Gebäudeteil
EP2029813B1 (de) Verfahren zur herstellung einer segmentfertigteilbrücke und segmentfertigteilbrücke
EP1360397B2 (de) Verfahren und palette zur herstellung eines präzisen betonfertigteiles
WO2004022852A1 (de) Fahrbahn für magnetbahnzüge
DE2303515A1 (de) Fahrbahnelement fuer ein magnetisch gefuehrtes schwebefahrzeug
WO2004033798A1 (de) Verfahren zum herstellen einer lagegenauen verbindung an einem fahrweg

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030208

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20060829

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50113706

Country of ref document: DE

Date of ref document: 20080417

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080616

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080605

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080805

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

EN Fr: translation not filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080930

Year of fee payment: 8

26N No opposition filed

Effective date: 20081208

BERE Be: lapsed

Owner name: MAX BOGL BAUUNTERNEHMUNG G.M.B.H. & CO. KG

Effective date: 20080930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080930

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081226

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080930

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080901

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100401

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080606