EP1222143A1 - Procede pour produire un composant a semiconducteurs et composant a semiconducteurs ainsi produit - Google Patents

Procede pour produire un composant a semiconducteurs et composant a semiconducteurs ainsi produit

Info

Publication number
EP1222143A1
EP1222143A1 EP01940181A EP01940181A EP1222143A1 EP 1222143 A1 EP1222143 A1 EP 1222143A1 EP 01940181 A EP01940181 A EP 01940181A EP 01940181 A EP01940181 A EP 01940181A EP 1222143 A1 EP1222143 A1 EP 1222143A1
Authority
EP
European Patent Office
Prior art keywords
layer
cavity
etching
porous layer
cavern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01940181A
Other languages
German (de)
English (en)
Inventor
Hubert Benzel
Heribert Weber
Hans Artmann
Frank Schaefer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Priority to EP07107755.6A priority Critical patent/EP1810947B1/fr
Publication of EP1222143A1 publication Critical patent/EP1222143A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0042Constructional details associated with semiconductive diaphragm sensors, e.g. etching, or constructional details of non-semiconductive diaphragms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00023Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
    • B81C1/00047Cavities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00436Shaping materials, i.e. techniques for structuring the substrate or the layers on the substrate
    • B81C1/00555Achieving a desired geometry, i.e. controlling etch rates, anisotropy or selectivity
    • B81C1/00595Control etch selectivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0042Constructional details associated with semiconductive diaphragm sensors, e.g. etching, or constructional details of non-semiconductive diaphragms
    • G01L9/0045Diaphragm associated with a buried cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3063Electrolytic etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0264Pressure sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/01Suspended structures, i.e. structures allowing a movement
    • B81B2203/0127Diaphragms, i.e. structures separating two media that can control the passage from one medium to another; Membranes, i.e. diaphragms with filtering function
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/03Static structures
    • B81B2203/0315Cavities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0111Bulk micromachining
    • B81C2201/0115Porous silicon

Definitions

  • the invention is based on a method for producing a semiconductor component, such as, in particular, a multilayer semiconductor component, and on a semiconductor component produced in accordance with the method according to the type of the relevant independent claim.
  • a common process sequence for producing a cavern in surface micromechanics consists in particular of depositing a sacrificial layer, depositing a membrane layer, which usually consists of polysilicon, creating openings in the membrane layer or opening a lateral etching channel, etching out the sacrificial layer and closing it of the openings, whereby the internal cavern pressure is defined when closing.
  • the method according to the invention with the characterizing features of the relevant independent claim has in contrast
  • a micromechanical component such as, in particular, a pressure sensor with piezoresistive resistors made of single-crystal silicon, a capacitive pressure sensor, or a pressure sensor that has resistors whose resistance changes due to the deflection of a membrane of the pressure sensor when pressure is applied, is simple and inexpensive Surface micromechanics can be produced.
  • the measures listed in the dependent claims enable advantageous further developments and improvements of the method and the semiconductor component according to the relevant independent claims.
  • An essential aspect of the invention consists in creating a cavern or a cavity in a semiconductor substrate, such as in particular in a silicon substrate, with an etching medium.
  • a semiconductor substrate such as in particular in a silicon substrate
  • an etching medium for this purpose, the cover layer of the substrate is etched in the region of the subsequently produced cavern in such a way that openings or etching openings, such as, in particular, pores or cavities are formed in it.
  • the etching medium or one or more further etching media reaches deeper regions of the substrate via the etching openings or pores open to the outside.
  • the part of the semiconductor substrate decomposed in this area by the etching medium or by the further etching media is preferably removed via the openings or pores of the cover layer and / or via an external access opening to this area.
  • the cover layer preferably has a thickness of approximately 2 to 10 ⁇ m, in particular 3 to 5 ⁇ m.
  • a porous cover layer is preferably formed, which preferably has a thickness of approximately 40 to 80 ⁇ m, in particular 50 to 60 ⁇ m.
  • the greater thickness has the purpose that the cover layer can serve as an etching buffer layer when etching the access opening and thus enables a reliable etching stop in front of an epitaxial layer deposited on the cover layer.
  • the epitaxial layer deposited on the cover layer forms the actual sensor membrane.
  • measures are taken during the etching process which ensure that the rate of expansion of the pores in the cover layer is lower, is preferably significantly lower than the rate of expansion of the pores or cavities in the region of the substrate which forms the later cavity or the cavern.
  • etching parameters and / or the etching media or the etching media in the cover layer and the etching parameters and / or the etching media or the etching media or the etching media in the area of the later Caverns are chosen differently.
  • the porosity of the cover layer for the removal of the silicon to be decomposed for the manufacture of the cavern can preferably only be set to an appropriately large extent in a manner which is easy to control in terms of process technology.
  • the cavern can be manufactured quickly and therefore inexpensively.
  • etching parameters in such a way and / or to select the etching medium or media during the etching of the cavern in such a way that the rate of expansion of the pores or cavities is so high that the pores or cavities very quickly " overlap ".
  • the etching parameters and / or the etching media or the etching media during etching of the cavern are selected such that the porosity of the region of the substrate which forms the later cavern is greater than the porosity the top layer is.
  • the precursor of the later cavern preferably has a porosity of more than 80%.
  • the cavern is subsequently formed from the porous area of the substrate by executing one or more tempering steps, preferably above approximately 900 ° C.
  • the pores arrange themselves in the area of the silicon that forms the the later cavern forms, with a porosity of approximately more than 80%, whereby a single large pore, i.e. a cavity or a cavern, is created under the slightly porous cover layer or starting layer for an epitaxial layer to be subsequently deposited.
  • the pores on the top of the slightly porous layer or starting layer are largely closed in this high-temperature step, so that a largely monocrystalline silicon layer, which forms the actual sensor membrane, can be deposited on the starting layer.
  • the etching medium and / or the etching media for producing the openings and / or pores in the cover layer and / or for producing the cavern are hydrofluoric acid (HF) or a liquid mixture or a chemical compound, which contains hydrofluoric acid.
  • the etching medium or the etching media is a volatile component, preferably an alcohol, such as. B. ethanol, and / or purified water to dilute the etching medium or the etching media.
  • an alcohol such as. B. ethanol
  • Ethanol reduces the surface tension of an etching medium provided with it, which enables better wetting of the silicon surface and a better penetration of the etching medium into etched pores or openings or cavities. Furthermore, the bubbles formed during the etching process are smaller than without the addition of ethanol to the etching medium and the bubbles can thus escape better through the pores of the cover layer. Therefore, the pore size and / or the porosity of the cover layer can advantageously be kept smaller than without the addition of the alcohol.
  • the openings and / or pores in the cover layer and / or in the area of the subsequent cavern are produced using an electrochemical process, preferably using the aforementioned etching medium or the aforementioned etching media.
  • an electrochemical etching process preferably an etching process using hydrofluoric acid (HF)
  • HF hydrofluoric acid
  • the rate of expansion of the pores or cavities depends in particular on the doping of the silicon substrate to be etched, the current density, possibly the HF concentration in the etching medium and the temperature. It goes without saying that these are merely examples of relevant process parameters of an etching process according to the invention.
  • the etching medium, the HF concentration in the etching medium and / or the doping of the area to be etched and / or the temperature and optionally further process parameters of the etching process are selected such that the
  • a first current density in the etching medium which is not necessarily constant over time, is set in a first period during which the etching medium is in the region of the cover layer.
  • a second current density which is not necessarily constant over time, is preferably set, which is higher or significantly higher than the current density set during the first period.
  • the cavern or a preliminary stage of the cavern is formed by pores or cavities whose rate of expansion during the etching process of the cavern is higher or significantly higher than the rate of expansion of the pores for producing the porous cover layer.
  • the porous area of the top surface of the substrate is etched with a mask layer or To surround support layer, which allows or allow free access of the etching medium or the etching media to the porous area to be etched and which shields the non-porous areas of the top surface of the substrate against an etching attack.
  • the support layer is such that it mechanically fixes the porous area or the porous layer of the cover surface and after the cavern is etched on the non-etched part of the substrate.
  • the support layer is created prior to the etching of the region to be etched porously or the layer to be etched, in that at least the region around the porous layer to be etched is provided with an n-doping on the top surface of a p-doped silicon substrate becomes. This largely prevents the substrate from being "undercut", particularly in the area in which the porous-etched layer is mechanically bonded to the silicon substrate.
  • a silicon nitride layer can be used as a mask and, in particular, to protect against an etching attack from possibly underlying electronic circuits.
  • a metal layer or metal mask can be provided instead of the n-doping or an n-doped layer, which likewise largely prevents the substrate from being undercut.
  • a metal layer or metal mask will generally only be expedient if no circuits are to be provided in the substrate, since otherwise metal atoms remaining in the substrate even after removal of the metal layer or metal mask could impair the function of the circuits.
  • a porous-etched cover layer such as in particular a silicon layer
  • an epitaxial layer preferably a largely monocrystalline layer
  • Silicon layer is applied or deposited.
  • the pretreatment pursues the goal of completely or partially closing the pores in the porous-etched cover layer or starting layer in order to further improve the quality of the largely monocrystalline silicon layer, if necessary or expedient.
  • a pretreatment according to the invention can consist in tempering the porous-etched cover layer or starting layer, the tempering being carried out at a high temperature, for example at a temperature in the range from approximately 900 ° C. to approximately 1100 ° C.
  • the heat treatment is preferably carried out under a hydrogen, nitrogen and / or a noble gas atmosphere.
  • a (slight) oxidation of the porous-etched silicon starting layer can be provided.
  • the oxidation is preferably carried out with (slight) addition of oxygen into the atmosphere to which the starting layer in the reactor is exposed, the oxidation preferably taking place at a temperature in the range from about 400 ° C. to 600 ° C. Minor is to be understood as an oxidation which largely only partially or completely closes the pores of the starting layer and forms an approximately network-like oxide structure.
  • the oxide structure should cover the surface of the porously etched starting layer as little as possible in order to ensure that a silicon layer which is as single-crystalline as possible can be deposited on the starting layer and forms the actual sensor membrane. If necessary, the oxidation is removed in a subsequent process step until this desired state occurs.
  • the thickness of the starting layer is significantly smaller than the thickness of the silicon layer deposited on it, so that the physical behavior of the sensor membrane is largely determined by the thickness of the silicon layer, which can be adjusted in terms of process technology.
  • the slightly porous layer or starting layer for the deposition of an epitaxial layer which for example forms the membrane of a pressure sensor, is etched with an etching medium which has a hydrofluoric acid concentration (HF concentration) in the range from approximately 20% to approximately 50%, preferably approximately 30% to approximately 40%, in particular approximately 33%.
  • HF concentration hydrofluoric acid concentration
  • the porous layer which forms a precursor of the later cavity or the cavern, is etched with an etching medium which has a hydrofluoric acid concentration (HF concentration) in the range from approximately 0% to approximately 40%, preferably about 5% to about 20%, in particular less than about 20.
  • HF concentration hydrofluoric acid concentration
  • an inventive etching medium is provided in an embodiment of the invention.
  • the etching medium according to the invention has a hydrofluoric acid concentration (HF concentration) in the range from approx. 0% to approx. 5%, preferably approx. 1% to approx. 3%, in particular less than approx. 5% on.
  • HF concentration hydrofluoric acid concentration
  • the remaining part of this etching medium, which is not formed by hydrofluoric acid preferably consists largely of an alcohol, such as, in particular, ethanol, and / or of purified water.
  • FIG. 1 shows a first preferred variant of a preliminary stage of a pressure sensor according to the invention after the production of a silicon membrane with low porosity in a silicon substrate with one below the Silicon membrane lying porous silicon layer with high porosity - in cross section;
  • Fig. 2 shows the first preliminary stage shown in Fig. 1 after the one lying under the silicon membrane
  • Silicon layer with high porosity has become a cavity - in cross section
  • Fig. 3 shows a first variant of another based on the preliminary stage shown in Fig. 2
  • Fig. 4 shows a second variant of a based on the in
  • FIG. 2 shows the preliminary stage of a further preliminary stage of a pressure sensor, after the porous silicon membrane has been provided with an epitaxial layer, which forms the actual membrane of the pressure sensor - in cross section;
  • FIG. 5 a manufactured on the basis of the preliminary stage shown in Figures 3 or 4
  • Absolute pressure sensor which has been provided with monocrystalline, piezoresistive resistors and doped leads - in cross section;
  • FIG. 6 shows the absolute pressure sensor shown in FIG. 5, which has been provided with circuits integrated in the sensor - in cross section;
  • FIG. 7 shows a first variant of a differential pressure sensor according to the invention with an access opening and a lateral channel to the cavity - in cross section;
  • FIG. 8 shows the outline of the membrane area of the differential pressure sensor shown in FIG. 7 - in a top view;
  • Fig. 9 shows a second variant of an inventive
  • Differential pressure sensor with an access opening to the cavity - in cross section; 10 shows a preliminary stage of a third variant of a differential pressure sensor according to the invention with a single thick porous layer - in cross section;
  • FIG. 11 shows the preliminary stage shown in FIG. 10 with a first access opening - in cross section
  • FIG. 12 shows the preliminary stage shown in FIG. 10 with a second access opening - in cross section
  • FIG. 13 shows a preliminary stage of a fourth variant of a differential pressure sensor according to the invention with a porous layer which extends to the underside of the substrate - in cross section;
  • FIG. 14 shows the preliminary stage shown in FIG. 13 after the porous layer extending to the underside of the substrate has been removed - in cross section;
  • Fig. 16 shows the preliminary stage shown in Fig. 15 after the
  • Pressure sensor with resistors the resistance of which changes due to the deflection of a membrane of the pressure sensor when pressurized
  • FIG. 19 shows the preliminary stage shown in FIG. 17 after the creation of a porous silicon membrane in the silicon epitaxial layer deposited on the silicon substrate with a cavity lying under the silicon membrane - in cross section;
  • FIG. 20 shows the further preliminary stage shown in FIG. 19 after the porous silicon membrane has been provided with a sealing layer - in cross section;
  • FIG. 21 shows a first variant of a differential pressure sensor which has been produced on the basis of the absolute pressure sensor shown in FIG. 20 - in cross section;
  • FIG. 22 shows a second variant of a differential pressure sensor which has been produced on the basis of the absolute pressure sensor shown in FIG. 20 - in cross section.
  • FIG. 1 shows a preferred variant of a preliminary stage 100 of the absolute pressure sensor 500 shown in FIG. 5 - in cross section.
  • a mask layer 102 is first produced on the upper side of a silicon substrate 101, an area 103 not covered by the mask layer 102 being created.
  • the mask layer can be, for example, a nitride layer, an n-doped layer (in the case of p-doped silicon substrate) or another suitable layer which is largely unaffected by the etching medium used below.
  • the top of the silicon substrate 101 is electrochemically etched using a suitable etching medium such that the etching medium creates small openings or pores in the silicon substrate 101 immediately below the uncovered area 103. It a silicon layer 104 with low porosity is formed. Through these small openings or pores of the silicon layer 104, the etching medium reaches lower regions of the silicon substrate 101 and likewise forms pores in the silicon located there. This creates a porous silicon layer 105 below the porous silicon layer 104.
  • the etching medium for electrochemical etching is preferably hydrofluoric acid (HF) or an etching medium which u. a. Contains hydrofluoric acid (HF).
  • HF hydrofluoric acid
  • an electric field is preferably generated between the top and the bottom of the silicon substrate 101, the rate of expansion of the pores or openings or cavities being influenced by the set electric field strength or the set electric current density.
  • precursors of the pressure sensors to be etched are placed in a trough-shaped vessel which is filled with the etching medium, and an electrical voltage is applied to opposite ends of the etching medium in such a way that the electric field arises.
  • a not necessarily constant electrical current density is set in a first step after the etching medium has been applied to the uncovered area 103. It is preferably selected such that openings or pores are formed in the silicon substrate 101 directly under the uncovered area 103.
  • Another important criterion for the not necessarily constant electrical current density set in the first step is to set such an electrical current density at which suitable openings or pores in the
  • Openings or pores are particularly suitable which subsequently permit a largely formed on the porous silicon layer 104 formed during the etching process to deposit monocrystalline silicon layer, which forms the actual sensor membrane. Therefore, the openings or pores may only have an adequate size or diameter. Preferred openings or pores have, for example, a diameter of approximately 10 to 100 nm, preferably approximately 10-30 nm.
  • the current density is preferably increased in a second step in comparison to the current density during the first step, as a result of which the pore or cavity expansion speed is increased and larger pores in the silicon layer 105 compared to the pores in FIG of the porous silicon layer 104 arise.
  • the silicon decomposed by the etching medium is removed during the etching process and / or subsequently via the openings or pores in the porous silicon layer 104 and “fresh” etching medium is introduced.
  • the etching process for producing the later cavity 201 is carried out by selecting suitable process parameters and / or one or more suitable ones Etching media set such that the porosity of the silicon layer 105, which forms the later cavity 201, is sufficiently large.
  • "Sufficient" is preferably understood to mean a porosity that is greater than 80 percent and less than 100 percent.
  • Annealing is carried out below. The tempering is preferably carried out under a hydrogen, nitrogen or noble gas atmosphere and / or at a temperature above about 900 ° C. Due to the high porosity of the silicon layer 105, the pores rearrange during the annealing in such a way that the pores are less porous
  • Silicon layer 104 creates a single large pore, that is, the cavity shown in FIG. 2 or the cavern 201 shown.
  • the pores on the upper side of the slightly porous silicon layer 104 become largely in the tempering or high-temperature step sealed, so that the actual sensor membrane can be deposited as a largely monocrystalline silicon layer on this.
  • the process parameters are set after the formation of the silicon layer 104 of low porosity such that the rate of expansion of the pores or cavities within a thin transition layer under the silicon layer 104 rises sharply, with the pores in this
  • Transition layer grow together or virtually "overlap" each other.
  • the transition layer is an initially flat cavity, which grows in depth during the further etching process and ultimately forms the cavity or the cavern 201. That is, pores are not first etched and then enlarged, but rather the transition layer, a flat "giant pore" with an initially small thickness, grows slowly into the depth.
  • the etching medium and / or the etching media is preferably provided with a slightly volatile component.
  • An alcohol such as ethanol is preferably used.
  • the porous area of the top surface of the substrate 101 with a mask layer and / or cladding layer which covers the porous layer of the top surface, i. H. the silicon layer 104, mechanically fixed (not shown) during and after the etching or during the creation of the cavity 201 at the connection points in the region of the non-etched top surface of the substrate.
  • Such a support layer can be created, for example, by providing at least the area around the porous silicon layer 104 of the top surface of the p-doped silicon substrate 101 with an n-doping. This can largely prevent the silicon substrate 101 from being “undercut” in the region of the connection points or interfaces between the silicon layer 104 and the silicon substrate 101. Furthermore, care can be taken to ensure that a preferably thin porous silicon layer 104, which forms the starting layer Silicon epitaxial layer 301 or 401 (Fig. 3 and 4) forms, is securely attached to the silicon substrate 101.
  • FIG. 3 shows a first variant of a further preliminary stage of the created on the basis of the preliminary stage shown in FIG.
  • Absolute pressure sensor 500 in cross section which is shown in FIG. 5, after the porous silicon membrane or silicon layer 104 has been pretreated and then provided with a largely monocrystalline silicon epitaxial layer 301.
  • the pressure that prevails in the epitaxial process or in the deposition of the epitaxial layer 301 defines the pressure enclosed in the cavity 201.
  • a preferred pretreatment according to the invention consists of tempering the porous silicon layer 104.
  • the tempering is preferably carried out at a high temperature, such as, for example, at a temperature in the range from approximately 900 ° C. to approximately 1100 ° C. and / or the tempering is carried out at Hydrogen, nitrogen and / or noble gas atmosphere made.
  • the pretreatment allows the pores in the porous etched, monocrystalline silicon layer 104 to be largely closed, so that a largely monocrystalline silicon epitaxial layer 301 can be deposited thereon. It goes without saying that such pretreatment, in particular for reasons of cost, can be dispensed with if the quality of the deposited
  • Silicon layer is satisfactory even without pretreatment.
  • FIG. 4 shows a second variant of a further preliminary stage of the absolute pressure sensor 500 shown in FIG. 5, produced on the basis of the preliminary stage shown in FIG. 2, after the porous silicon membrane or silicon layer 104 has been pretreated with a likewise largely monocrystalline silicon Epitaxial layer 401 has been provided. This in turn forms the actual membrane of the pressure sensor.
  • Epitaxial layer 401 defines the pressure enclosed in cavity 201.
  • hydrogen is mainly used in the Cavity 201 included. If the epitaxy takes place approximately at atmospheric pressure and thus at higher growth rates compared to lower process pressures, the included hydrogen pressure is approximately 1 bar.
  • the hydrogen diffuses due to its small molecular size and due to the gradient of the hydrogen concentration, in particular through the epitaxial layer 301 or 401, which is generally thinner in relation to the substrate. This almost creates a vacuum in the cavern 201.
  • Such a method step according to the invention is particularly expedient in the production of an absolute pressure sensor. Its cavity generally has a reduced pressure compared to the atmosphere, such as in particular a vacuum. Furthermore, it may be appropriate to carry out the high-temperature step according to the invention under one
  • the pressure of the hydrogen atmosphere is preferably set to the pressure that is desired in the cavern or in the cavity of the absolute pressure sensor.
  • an absolute pressure sensor 500 produced on the basis of the preliminary stage shown in FIGS. 3 or 4 is shown in cross section.
  • monocrystalline, piezoresistive resistors 501 and leads 502 made of doped silicon have been produced in a known manner on the largely monocrystalline silicon epitaxial layer 301 or 401.
  • an absolute pressure sensor 600 produced on the basis of the absolute pressure sensor 500 shown in FIG. 5 is shown in cross section.
  • the absolute pressure sensor 500 shown in FIG. 5 has been provided with integrated circuits 601, 602 and 603 in a known manner.
  • FIG. 7 shows a first variant of a differential pressure sensor 700 according to the invention - in cross section - with a Access opening 701 to the cavity or to the cavern 201 via a lateral channel 702.
  • the first variant of the differential pressure sensor 700 according to the invention shown in FIG. 7 has been manufactured like the absolute pressure sensor 600 shown in FIG. 6.
  • a differential pressure sensor it is desirable to be able to supply pressure from the rear side of the membrane or the epitaxial layer 301 or 401.
  • An opening 703, which preferably has largely vertical walls, can be created, for example, by dry etching, such as plasma etching or trenching. Plasma cats or trench cats stop on oxide layers.
  • an oxidation of the cavity 201 before the deposition of the silicon epitaxial layer 301 or 401 is not possible, since an undesired polycrystalline epitaxial layer would then grow on the slightly porous silicon layer or start layer 104.
  • the lateral channel 702 must be taken into account in the mask layer 102 and the lateral channel 702 must be created together with the cavity or with the cavern 201 in the manner described.
  • one or more holes or openings 701 are produced, for example by dry etching, from the top of the epitaxial layer to the cavity 201. This can be done (not shown) either directly in the membrane area (the area of the epitaxial layer 301 or 401 above the opening 703, see also FIG. 8) or outside the membrane, as shown in FIGS. 7 and 8.
  • the walls of the cavity or the cavern 201, the lateral channel 702 and the access opening 701 are oxidized in a known manner in an oxidation step.
  • the oxidation step may already be necessary for the production of circuit elements and may not require any additional effort. With a suitable choice of the size of the access opening 701, this is already closed by the oxidation step. Otherwise, the access opening 701 can be closed by a special locking step or by taking advantage of further process steps necessary for the production of circuit elements, for example by the deposition of oxide, nitride, metal, etc.
  • the opening 703 is formed from the underside of the substrate or wafer 101 by dry etching, such as, in particular, trench cats. This etching process stops on the oxide layer, which delimits the cavity from below.
  • a subsequent etching step such as a dry etching step or a wet chemical etching step, removes the thin oxide layer delimiting the cavity from below and an oxide mask which may be present on the back of the wafer, and opens the cavity or the cavity 201.
  • Fig. 9 shows a second variant of an inventive
  • Differential pressure sensor 900 with an access opening 901 to the cavity 201 - in cross section.
  • a lateral channel 702 is created.
  • an oxide stop layer 902 is deposited on the epitaxial layer 301 or 401 at least above the lateral channel 702.
  • an opening 901, such as in particular by trenching, is created below the oxide stop layer 902. The etching process stops in the area of the lateral channel 702 on the underside of the oxide stop layer 902, which is located above the epitaxial layer 301 or 401.
  • the oxide stop layer 902 can be reinforced by further layers. It is also conceivable not to use a lateral channel, but to provide the opening in the membrane area (not shown).
  • 10 shows a preliminary stage 1000 of a third variant of a differential pressure sensor 1100 or 1200 according to the invention with a single thick porous layer 1001 - in cross section.
  • the thick porous layer 1001 is made in a manner analogous to that in particular in FIG.
  • the porous layer 1001 is preferably significantly thicker than the slightly porous silicon layer 104.
  • the formation of a cavity or a cavern 201 is prior to the formation of an open on one side
  • Cavity 1101 or 1201 is not necessary.
  • the areas denoted by 1002 are doped areas of the substrate 101, which limit an undercut at the edge of the membrane, which extends over the cavity open on one side (cf. FIGS. 11 to 14). This makes sense due to the high etching depth for producing the thick porous layer 1001, for example approximately 50 ⁇ m. This makes the membrane somewhat stiffer at the edge of the membrane.
  • isotropic or anisotropic etching techniques are used to produce the cavity 1101 or 1201, which is open on one side, from the back of the substrate or wafer 101.
  • the width of the cavity 1101 open on one side is less than the width of the membrane region or as the width of the porous layer 1001, whereas the width of the cavity 1201 open on one side is greater than the width of the membrane region or as the width of the porous layer 1001.
  • FIG. 13 shows a preliminary stage 1300 of a fourth variant of a differential pressure sensor 1400 according to the invention in cross section.
  • the porous layer 1301 extends, in contrast to the preliminary stage shown in FIG. 10, to the underside of the substrate 101.
  • the porous layer 1301 can be selectively removed in the manner mentioned in connection with FIGS. 10 to 12 without an access opening must be etched.
  • a cavity 1401 which is open on one side is located under the sensor membrane or the epitaxial layer 401.
  • Standard semiconductor processes make the preliminary stage 1500, shown in cross section in FIG.
  • Absolute pressure sensor 1600 (Fig. 16).
  • a bottom electrode 1501 on the top side of the silicon substrate 101 in the silicon substrate 101 preferably produced by suitable doping of the silicon substrate 101
  • a silicon epitaxial layer 401 which is preferably monocrystalline, is provided.
  • a cover electrode 1502 preferably produced by a suitable doping, is provided in the silicon epitaxial layer 401 at a high offset from the bottom electrode 1501.
  • the upper side of the silicon epitaxial layer 401 is covered except in the area 103 of the cover electrode 1502 by a mask layer 102 for protection against an etching attack.
  • the area 103 not covered by the mask layer 102 is, as already described in detail, etched porously, preferably electrochemically, such as in particular using hydrofluoric acid (HF) or an etching medium which contains hydrofluoric acid.
  • HF hydrofluoric acid
  • an etching medium which contains hydrofluoric acid Starting from the lid electrode 1502, a porous lid electrode or membrane 1601 is created.
  • the cover electrode 1502 is formed from a p-doped layer of the likewise p-doped epitaxial layer 401.
  • a p-doped layer is etched porously by the etching medium.
  • the bottom electrode 1501 can be formed by both a p-doped and an n-doped layer.
  • both the bottom electrode 1501 and the cover electrode 1502 are formed by a sieve or mesh-like, n-doped layer in the p-doped epitaxial layer 401 or in the p-doped substrate 101.
  • the n-doped regions of the sieve or mesh-like layer are preferably very narrow, flat and have a suitable spacing from one another so that they can be easily undercut by the etching medium to form the porous cover electrode 1502.
  • n-doped layer is largely not attacked by the etching medium, and the etching medium penetrates the sieve-like or mesh-like layer of the cover electrode 1502 to form the later cavity 201.
  • the cavity 201 can in particular be formed by one of those already in connection with FIGS 3 described methods are formed.
  • a sieve or mesh-like, preferably also n-doped layer is preferably also provided for the bottom electrode 1501. This advantageously results in a largely homogeneous electric field during the electrochemical etching process.
  • An external pressure acting on the cover electrode 1502 of the absolute pressure sensor bends the cover electrode 1502 towards the bottom electrode 1501, as a result of which the capacitance of the capacitor formed by the two electrodes changes.
  • the electronically evaluable capacity is a measure of the absolute pressure acting on the cover electrode.
  • the contact area around the porous cover electrode 1502 is preferably n-doped, as a result of which the n-doped areas designated 1503 are formed.
  • a sealing layer (not shown) is subsequently deposited on the porous cover electrode or membrane 1601, e.g. B. a nitride layer.
  • the pressure prevailing during the deposition defines the pressure in the cavity or in the cavern 201 (cf. the explanations above on this point).
  • the pressure changes the distance between the cover electrode and the bottom electrode changes, and thus the Capacity.
  • the change in capacitance is evaluated by the integrated circuits 601 and 603.
  • the membrane 1601 by an oxidation step and / or a sealing layer (not shown), such as. B. an oxide layer, closed.
  • a further layer (not shown), such as in particular a doped polysilicon layer or a metal layer, is deposited on the oxidized membrane 1601 or on the sealing layer, which (possibly after structuring) has the function of a
  • Cover electrode has.
  • the cover electrode can also be provided, for example, in the form of a doped region in the further layer, such as in particular in an undoped poly-silicon layer.
  • further layers can be deposited and structured, for example in order to stiffen the membrane 1601, in particular in the central membrane area.
  • FIG. 17 shows a first variant of a preliminary stage 1700 of an absolute pressure sensor 2000 (cf. FIG. 20) with resistors, such as in particular polycrystalline piezoresistive resistors or metal thin film resistors - in cross section.
  • the preliminary stage 1700 formed by standard semiconductor processes for the further preliminary stage 1900 shown in FIG. 19 has a silicon substrate 101, a silicon epitaxial layer 401 deposited on the silicon substrate 101 and a mask layer 102 applied on the upper side of the silicon epitaxial layer 401.
  • the mask layer 102 is provided with an uncovered area 103.
  • an integrated circuit 601 or 603 has been formed in each case in the top of the silicon epitaxial layer 401 and between the silicon substrate or wafer 101 and the epitaxial layer 401.
  • FIG. 18 shows a second variant of a preliminary stage 1800 for forming the absolute pressure sensor 2000 (FIG. 20) in cross section.
  • the alternative second preliminary stage 1800 differs from the preliminary stage 1700 shown in FIG. 17 in that instead of one Silicon substrate 101 and a silicon epitaxial layer 401 deposited on this, only a silicon substrate or wafer 101 serves as a preliminary stage for the formation of the absolute pressure sensor 2000 (cf. FIG. 20), which, however, in contrast to the embodiment shown in FIG. 20, does not have a silicon epitaxial layer 401.
  • a porous silicon membrane 104 and an underlying cavity or cavern 201 in the region 103 are produced in the silicon epitaxial layer 401 of the preliminary stage 1700 or in the silicon substrate 101 of the preliminary stage 1800, as is shown in FIG. 19 for the prepress 1700 is shown.
  • the porous membrane 104 is deposited by the deposition of a closure layer 2001, such as. B. a nitride, an oxide, a poly-silicon layer or a monocrystalline silicon layer, or sealed by oxidation.
  • a closure layer 2001 such as. B. a nitride, an oxide, a poly-silicon layer or a monocrystalline silicon layer, or sealed by oxidation.
  • the pressure prevailing during the deposition of the sealing layer 2001 or during the oxidation defines the pressure enclosed in the cavity or in the cavern 201 (cf. the above
  • Resistors 2002 such as in particular polycrystalline piezoresistive resistors or metal thin-film resistors, are produced on the closure layer 2001 or on the oxidized membrane (not shown).
  • the resistors 2002 can be produced, for example, by the deposition of polysilicon on the sealing layer 2001, a subsequent doping of the deposited polysilicon and a subsequent structuring of the deposited polysilicon layer (not shown).
  • the resistors 2002 can be produced, for example, by the deposition of a polysilicon layer and a structured doping of the polysilicon layer (not shown).
  • strain gauges is also conceivable (not shown).
  • a change in pressure leads to a changed deflection in the membrane formed by the porous silicon layer 104 and the sealing layer 2001 over the cavity or the cavern 201. This goes with a change in resistance of the piezoresistive resistors in 2002 This is preferably evaluated by the integrated circuits 601 or 603 or by a separate circuit.
  • the resistors 2002 are produced in a sealing layer 2001, which is a monocrystalline silicon layer.
  • the pressure-dependent piezoresistive resistors 2002 in the absolute pressure sensor 2000 shown in FIG. 20 can be formed by n-doped resistors in the region of the epitaxial layer 401, which forms the later porous silicon layer 104 (not shown).
  • a differential pressure sensor it is desirable if the pressure can be supplied from the rear of the membrane of the differential pressure sensor.
  • a differential pressure sensor 2100 see FIG. 21
  • a differential pressure sensor 2200 see FIG. 22
  • an opening 2101 or an opening 2201 from the underside of the To create silicon substrate 101 to the cavity or to the cavern 201.
  • the opening 2101 or 2201 is preferably created by dry etching, such as in particular by trench cats or plasma etching (cf. the above explanations for creating openings by dry etching). Since such an etching process stops on oxide layers, the embodiment of a differential pressure sensor 2100 shown in FIG. 21 provides for the cavity or the cavern 201 to be provided with an oxide layer. This is achieved when the cavity or the cavern 201 is closed by oxidation of the porous silicon layer 104.
  • a silicon layer is preferably deposited on the oxidized porous silicon layer or membrane 104, on or in which the piezoresistive resistors 2002, in particular by suitable ones
  • Doping of the silicon layer can be generated.
  • a pressure supply in the form of the opening 2101 is subsequently produced in the membrane region from the rear side of the silicon substrate or wafer 101, preferably by means of a trench process.
  • On such an etching process stops on the preferably thin oxide layer, which delimits the cavity or the cavern 201 from below.
  • the oxide layer can optionally be removed from the back of the substrate or wafer 101 by a subsequent, suitable dry etching step or by a wet chemical etching step. In this step, the cavity or the cavern 201 is opened.
  • the etching step is preferably such that all the oxide is etched out of the cavity or from the cavern 201 and the oxidized, porous silicon layer 104 is thus removed.
  • the advantage of this is that the membrane thickness of the differential pressure sensor 2100 is then only determined by the sealing layer 2001 deposited on the oxidized, porous silicon layer 104.
  • the layer thickness of the sealing layer 2001 can advantageously be set very precisely and reproducibly, which means the production of
  • FIG. 22 shows a second variant of a differential pressure sensor, which was produced on the basis of the absolute pressure sensor 2000 shown in FIG. 20, in cross section, with the difference between the upper side of the silicon epitaxial layer 401 and the one shown in FIG. 20 being different Closure layer 2001, an oxide layer 2202 is additionally provided.
  • an opening 2201 is preferably made through
  • Trench cats generated.
  • the etching process stops on the oxide layer 2202 and the pressure supply to the cavity or to the cavern 201 is created.
  • an additional oxide layer 2202 may be dispensed with. This applies in particular if the stability of the sealing layer 2001, which serves as the membrane of the differential pressure sensor, is sufficient.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Pressure Sensors (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

L'invention concerne un procédé pour produire un composant à semiconducteurs (100;; 2200), notamment un composant à semiconducteurs multicouche, de préférence un composant micromécanique, en particulier un détecteur de pression, qui présente un substrat semiconducteur (101), notamment en silicium. L'invention concerne également un composant à semiconducteurs ainsi produit. L'objectif de l'invention est notamment de réduire les frais de production d'un tel composant à semiconducteurs. A cet effet, dans une première étape du procédé, une première couche poreuse (104; 1001; 1301) est formée dans le composant à semiconducteurs et, dans une deuxième étape, une cavité (201; 1101; 1201; 1401; 2101; 2201) est ménagée en-dessous ou à partir de la première couche poreuse (104; 1001; 1301) dans le composant à semiconducteurs, ladite cavité pouvant être pourvue d'un orifice d'accès extérieur.
EP01940181A 2000-07-05 2001-04-20 Procede pour produire un composant a semiconducteurs et composant a semiconducteurs ainsi produit Withdrawn EP1222143A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07107755.6A EP1810947B1 (fr) 2000-07-05 2001-04-20 Dispositif semi-conducteur et son procédé de fabrication

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10032579 2000-07-05
DE10032579.3A DE10032579B4 (de) 2000-07-05 2000-07-05 Verfahren zur Herstellung eines Halbleiterbauelements sowie ein nach dem Verfahren hergestelltes Halbleiterbauelement
PCT/DE2001/001516 WO2002002458A1 (fr) 2000-07-05 2001-04-20 Procede pour produire un composant a semiconducteurs et composant a semiconducteurs ainsi produit

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP07107755.6A Division EP1810947B1 (fr) 2000-07-05 2001-04-20 Dispositif semi-conducteur et son procédé de fabrication

Publications (1)

Publication Number Publication Date
EP1222143A1 true EP1222143A1 (fr) 2002-07-17

Family

ID=7647815

Family Applications (2)

Application Number Title Priority Date Filing Date
EP01940181A Withdrawn EP1222143A1 (fr) 2000-07-05 2001-04-20 Procede pour produire un composant a semiconducteurs et composant a semiconducteurs ainsi produit
EP07107755.6A Expired - Lifetime EP1810947B1 (fr) 2000-07-05 2001-04-20 Dispositif semi-conducteur et son procédé de fabrication

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP07107755.6A Expired - Lifetime EP1810947B1 (fr) 2000-07-05 2001-04-20 Dispositif semi-conducteur et son procédé de fabrication

Country Status (6)

Country Link
US (4) US7037438B2 (fr)
EP (2) EP1222143A1 (fr)
JP (1) JP5100949B2 (fr)
KR (1) KR100859613B1 (fr)
DE (1) DE10032579B4 (fr)
WO (1) WO2002002458A1 (fr)

Families Citing this family (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10032579B4 (de) * 2000-07-05 2020-07-02 Robert Bosch Gmbh Verfahren zur Herstellung eines Halbleiterbauelements sowie ein nach dem Verfahren hergestelltes Halbleiterbauelement
DE10054484A1 (de) * 2000-11-03 2002-05-08 Bosch Gmbh Robert Mikromechanisches Bauelement und entsprechendes Herstellungsverfahren
FI112644B (fi) 2000-11-10 2003-12-31 Vaisala Oyj Pintamikromekaaninen absoluuttipaineanturi ja menetelmä sen valmistamiseksi
DE10064494A1 (de) * 2000-12-22 2002-07-04 Bosch Gmbh Robert Verfahren zur Herstellung eines Halbleiterbauelements sowie ein nach dem Verfahren hergestelltes Halbleiterbauelement, wobei das Halbleiterbauelement insbesondere eine bewegliche Masse aufweist
DE10117486A1 (de) * 2001-04-07 2002-10-17 Bosch Gmbh Robert Verfahren zur Herstelung eines Halbleiterbauelements sowie ein nach dem Verfahren hergestelltes Halbleiterbauelement
DE10138759A1 (de) 2001-08-07 2003-03-06 Bosch Gmbh Robert Verfahren zur Herstellung eines Halbleiterbauelements sowie Halbleiterbauelement, insbesondere Membransensor
DE10154867A1 (de) 2001-11-08 2003-05-28 Bosch Gmbh Robert Halbleiterbauelement, insbesondere mikromechanischer Drucksensor
FR2838423B1 (fr) * 2002-04-12 2005-06-24 Thales Sa Procede de fabrication d'une microstructure comportant une cavite sous vide et microstructure correspondante
DE10241066A1 (de) * 2002-09-05 2004-03-18 Robert Bosch Gmbh Halbleiterbauelement und Verfahren
DE10244786A1 (de) 2002-09-26 2004-04-08 Robert Bosch Gmbh Mikromechanisches Bauelement und Verfahren
DE10260859B4 (de) * 2002-12-23 2008-12-04 Robert Bosch Gmbh Strukturkörper mit einem porösen Bereich und dessen Verwendung sowie Verfahren zur Einstellung der Wärmeleitfähigkeit eines porösen Bereiches
EP1439383B1 (fr) * 2003-01-20 2008-12-31 Biotechnologie Kempe GmbH Sonde pour mesurer la concentration en éthanol dans une solution aqueuse
US6928879B2 (en) * 2003-02-26 2005-08-16 Robert Bosch Gmbh Episeal pressure sensor and method for making an episeal pressure sensor
DE10311795B4 (de) * 2003-03-18 2012-09-27 Robert Bosch Gmbh Mikromechanischer Druckschalter sowie Verfahren zur Herstellung des Mikromechanischen Druckschalters
DE10333960A1 (de) * 2003-07-25 2005-02-10 Robert Bosch Gmbh Vorrichtung zur kapazitiven Druckmessung sowie Vefahren zur Herstellung einer kapazitiven Druckmessvorrichtung
US7071017B2 (en) 2003-08-01 2006-07-04 Yamaha Corporation Micro structure with interlock configuration
DE10350036B4 (de) * 2003-10-27 2014-01-23 Robert Bosch Gmbh Verfahren zum Vereinzeln von Halbleiterchips und entsprechende Halbleiterchipanordnung
DE102004036035B4 (de) 2003-12-16 2015-10-15 Robert Bosch Gmbh Verfahren zur Herstellung eines Halbleiterbauelements sowie ein Halbleiterbauelement, insbesondere ein Membransensor
EP1544163B1 (fr) * 2003-12-16 2021-02-24 Robert Bosch GmbH Méthode de production d'un capteur à membrane et capteur à membrane correspondant
US7569412B2 (en) 2003-12-16 2009-08-04 Robert Bosch Gmbh Method for manufacturing a diaphragm sensor
US7368313B2 (en) 2004-02-17 2008-05-06 Robert Bosch Gmbh Method of making a differential pressure sensor
DE102004011203B4 (de) * 2004-03-04 2010-09-16 Robert Bosch Gmbh Verfahren zum Montieren von Halbleiterchips und entsprechende Halbleiterchipanordnung
US7531002B2 (en) * 2004-04-16 2009-05-12 Depuy Spine, Inc. Intervertebral disc with monitoring and adjusting capabilities
DE102004021041A1 (de) 2004-04-29 2005-11-24 Robert Bosch Gmbh Kombinierter Absolutdruck- und Relativdrucksensor
DE102004023063A1 (de) 2004-05-11 2005-12-01 Robert Bosch Gmbh Mikromechanische piezoresistive Drucksensorenvorrichtung
JP2006050592A (ja) * 2004-07-06 2006-02-16 Matsushita Electric Ind Co Ltd 圧電共振器及びその製造方法
DE102004043356A1 (de) 2004-09-08 2006-03-09 Robert Bosch Gmbh Sensorelement mit getrenchter Kaverne
DE102004043357B4 (de) * 2004-09-08 2015-10-22 Robert Bosch Gmbh Verfahren zur Herstellung eines mikromechanischen Sensorelements
DE102004051468A1 (de) 2004-10-22 2006-04-27 Robert Bosch Gmbh Verfahren zum Montieren von Halbleiterchips und entsprechende Halbleiterchipanordnung
DE102005029097A1 (de) 2005-06-23 2007-01-04 Robert Bosch Gmbh Mikromechanisches Drucksensorelement und Verfahren zur Verwendung eines derartigen Drucksensorelementes
DE102005032635A1 (de) 2005-07-13 2007-01-25 Robert Bosch Gmbh Mikromechanische Vorrichtung mit zwei Sensorstrukturen, Verfahren zur Herstellung einer mikromechanischen Vorrichtung
DE102005038752B4 (de) 2005-08-17 2018-04-19 Robert Bosch Gmbh Verfahren zum Montieren von Halbleiterchips und entsprechende Halbleiterchipanordnung
DE102005042648B4 (de) * 2005-09-08 2007-06-21 Robert Bosch Gmbh Verfahren zur Herstellung von kommunizierenden Hohlräumen
DE102005053861A1 (de) 2005-11-11 2007-05-16 Bosch Gmbh Robert Sensoranordnung und Verfahren zur Herstellung einer Sensoranordnung
US7691130B2 (en) * 2006-01-27 2010-04-06 Warsaw Orthopedic, Inc. Spinal implants including a sensor and methods of use
DE102006009076A1 (de) * 2006-02-28 2007-08-30 Robert Bosch Gmbh Verfahren und Vorrichtung zur Erkennung des freien Falls
DE102006012857A1 (de) 2006-03-21 2007-09-27 Robert Bosch Gmbh Verfahren zur Herstellung einer Halbleiterstruktur und entsprechende Halbleiterstruktur
DE102006022377B4 (de) * 2006-05-12 2016-03-03 Robert Bosch Gmbh Mikromechanische Vorrichtung und Verfahren zur Herstellung einer mikromechanischen Vorrichtung
US7998788B2 (en) * 2006-07-27 2011-08-16 International Business Machines Corporation Techniques for use of nanotechnology in photovoltaics
DE102007002273A1 (de) * 2007-01-16 2008-07-17 Robert Bosch Gmbh Verfahren zur Herstellung eines Bauteils und Sensorelement
DE102007003544A1 (de) 2007-01-24 2008-07-31 Robert Bosch Gmbh Verfahren zur Herstellung eines Bauteils und Sensorelement
DE102007019639A1 (de) 2007-04-26 2008-10-30 Robert Bosch Gmbh Mikromechanisches Bauelement und entsprechendes Herstellungsverfahren
DE102007022852A1 (de) 2007-05-15 2008-11-20 Robert Bosch Gmbh Differenzdruck-Sensoranordnung und entsprechendes Herstellungsverfahren
DE102007024199B4 (de) 2007-05-24 2015-06-25 Robert Bosch Gmbh Herstellungsverfahren eines mikromechanischen Bauelements mit porösifizierter Membran
DE102007026445A1 (de) 2007-06-06 2008-12-11 Robert Bosch Gmbh Mikromechanisches Bauelement und Verfahren zur Herstellung eines mikromechanischen Bauelements
DE102007027708A1 (de) 2007-06-15 2008-12-18 Robert Bosch Gmbh Fluiddrucksensorvorrichtung und entsprechendes Herstellungsverfahren
DE102007053280A1 (de) 2007-11-08 2009-05-14 Robert Bosch Gmbh Mikromechanisches Bauelement mit einem Membrangitter
DE102007061184A1 (de) * 2007-12-17 2009-06-25 Endress + Hauser Gmbh + Co. Kg Differenzdruckmesszelle
DE102008002668A1 (de) 2008-06-26 2009-12-31 Robert Bosch Gmbh Mikromechanisches Bauelement und entsprechendes Herstellungsverfahren
DE102008040521A1 (de) 2008-07-18 2010-01-21 Robert Bosch Gmbh Verfahren zur Herstellung eines Bauelements, Verfahren zur Herstellung einer Bauelementanordnung, Bauelement und Bauelementanordnung
DE102008040564A1 (de) 2008-07-21 2010-01-28 Robert Bosch Gmbh Mikromechanisches Sensorbauelement und Verfahren zur Herstellung eines mikromechanischen Sensorbauelements
DE102008041942A1 (de) * 2008-09-10 2010-03-11 Robert Bosch Gmbh Sensoranordnung, Verfahren zum Betrieb einer Sensoranordnung und Verfahren zur Herstellung einer Sensoranordnung
DE102008043084A1 (de) 2008-10-22 2010-04-29 Robert Bosch Gmbh Verfahren zum Erzeugen von monokristallinen Piezowiderständen und Drucksensorelemente mit solchen Piezowiderständen
DE102008054428A1 (de) 2008-12-09 2010-06-10 Robert Bosch Gmbh Aufbau eines Drucksensors
DE102009000071A1 (de) 2009-01-08 2010-07-15 Robert Bosch Gmbh Kapazitiver Drucksensor
DE102009026676A1 (de) 2009-06-03 2010-12-09 Robert Bosch Gmbh Drucksensoranordnung und entsprechendes Herstellungsverfahren
DE102009045158A1 (de) 2009-09-30 2011-04-07 Robert Bosch Gmbh Sensoranordnung und Verfahren zur Herstellung einer Sensoranordnung
US8120074B2 (en) 2009-10-29 2012-02-21 Infineon Technologies Austria Ag Bipolar semiconductor device and manufacturing method
JP5115618B2 (ja) * 2009-12-17 2013-01-09 株式会社デンソー 半導体装置
WO2011083162A2 (fr) * 2010-01-11 2011-07-14 Elmos Semiconductor Ag Élément semi-conducteur microélectromécanique
US8889021B2 (en) * 2010-01-21 2014-11-18 Kla-Tencor Corporation Process condition sensing device and method for plasma chamber
DE102010002818B4 (de) 2010-03-12 2017-08-31 Robert Bosch Gmbh Verfahren zur Herstellung eines mikromechanischen Bauelementes
DE102010041101B4 (de) 2010-09-21 2018-05-30 Robert Bosch Gmbh Bauelement mit einer Durchkontaktierung und ein Verfahren zur Herstellung eines Bauelements mit einer Durchkontaktierung
DE102010042399A1 (de) 2010-10-13 2012-04-19 Robert Bosch Gmbh Drucksensor
US9162876B2 (en) * 2011-03-18 2015-10-20 Stmicroelectronics S.R.L. Process for manufacturing a membrane microelectromechanical device, and membrane microelectromechanical device
US8816503B2 (en) 2011-08-29 2014-08-26 Infineon Technologies Austria Ag Semiconductor device with buried electrode
US9212940B2 (en) * 2012-09-07 2015-12-15 Xiang Zheng Tu Vacuum cavity-insulated flow sensors
DE102013211970A1 (de) 2013-06-25 2015-01-22 Robert Bosch Gmbh Mikro-elektromechanischer Resonator und Verfahren zum Herstellen eines mikro-elektromechanischen Resonators
US9085120B2 (en) * 2013-08-26 2015-07-21 International Business Machines Corporation Solid state nanopore devices for nanopore applications to improve the nanopore sensitivity and methods of manufacture
US20150090030A1 (en) * 2013-09-27 2015-04-02 Infineon Technologies Ag Transducer arrangement comprising a transducer die and method of covering a transducer die
DE102014214525B4 (de) 2014-07-24 2019-11-14 Robert Bosch Gmbh Mikro-elektromechanisches Bauteil und Herstellungsverfahren für mikro-elektromechanische Bauteile
EP3106426B1 (fr) 2015-06-19 2019-11-06 Invensense, Inc. Capteur de pression
CN106365109A (zh) * 2015-07-24 2017-02-01 中芯国际集成电路制造(上海)有限公司 一种mems器件及其制备方法、电子装置
DE102015224545A1 (de) * 2015-12-08 2017-06-08 Robert Bosch Gmbh Verfahren zum Herstellen eines mikromechanisches Bauelements
DE102016201144B4 (de) 2016-01-27 2024-05-23 Robert Bosch Gmbh Halbleitersensor für eine Gaskonzentration
WO2017161224A1 (fr) 2016-03-18 2017-09-21 Massachusetts Institute Of Technology Matériaux semi-conducteurs nanoporeux et leur fabrication
DE102017212838A1 (de) 2017-07-26 2019-01-31 Robert Bosch Gmbh Drucksensoranordnung, Messvorrichtung und Verfahren zu deren Herstellung
DE102017212866A1 (de) 2017-07-26 2019-01-31 Robert Bosch Gmbh Drucksensoranordnung, Messvorrichtung und Verfahren zu deren Herstellung
US11004943B2 (en) 2018-04-05 2021-05-11 Massachusetts Institute Of Technology Porous and nanoporous semiconductor materials and manufacture thereof
DE102018207689B4 (de) * 2018-05-17 2021-09-23 Robert Bosch Gmbh Verfahren zum Herstellen mindestens einer Membrananordnung, Membrananordnung für einen mikromechanischen Sensor und Bauteil
DE102020200335A1 (de) 2020-01-14 2021-07-15 Robert Bosch Gesellschaft mit beschränkter Haftung Herstellungsverfahren für zumindest ein mikromechanisches Bauteil und mikromechanisches Bauteil für eine Sensor- oder Mikrofonvorrichtung
JP7444628B2 (ja) * 2020-02-19 2024-03-06 アズビル株式会社 圧力センサ
DE102020211230A1 (de) 2020-09-08 2021-08-19 Robert Bosch Gesellschaft mit beschränkter Haftung Mikromechanisches Drucksensorelement und Verfahren zum Herstellen eines mikromechanischen Drucksensorelements
DE102020211348A1 (de) 2020-09-10 2022-03-10 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Herstellen eines elektroakustischen Bauelements

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61170618A (ja) * 1985-01-24 1986-08-01 Toyota Central Res & Dev Lab Inc 流速検出用半導体センサ
CN1027011C (zh) * 1990-07-12 1994-12-14 涂相征 一种硅梁压阻加速度传感器及其制造方法
US5139624A (en) * 1990-12-06 1992-08-18 Sri International Method for making porous semiconductor membranes
FR2670579A1 (fr) * 1990-12-14 1992-06-19 Schlumberger Ind Sa Capteur semi-conducteur de debit.
JPH0590113A (ja) * 1991-09-30 1993-04-09 Canon Inc Si基体及びその加工方法
DE4202455C1 (fr) 1992-01-29 1993-08-19 Siemens Ag, 8000 Muenchen, De
US5298767A (en) * 1992-10-06 1994-03-29 Kulite Semiconductor Products, Inc. Porous silicon carbide (SiC) semiconductor device
JPH07115209A (ja) * 1993-10-18 1995-05-02 Omron Corp 半導体圧力センサ及びその製造方法並びに触覚センサ
KR970007108B1 (ko) 1993-11-02 1997-05-02 손병기 2중 확산을 이용한 실리콘 미세구조의 스톱퍼 제조방법
KR0155141B1 (ko) * 1993-12-24 1998-10-15 손병기 다공질실리콘을 이용한 반도체 장치의 제조방법
US5464509A (en) * 1994-05-20 1995-11-07 Massachusetts Institute Of Technology P-N junction etch-stop technique for electrochemical etching of semiconductors
JP3399660B2 (ja) * 1994-10-06 2003-04-21 株式会社東海理化電機製作所 表面型の加速度センサの製造方法
JPH08236784A (ja) 1995-02-23 1996-09-13 Tokai Rika Co Ltd 加速度センサ及びその製造方法
US5604144A (en) * 1995-05-19 1997-02-18 Kulite Semiconductor Products, Inc. Method for fabricating active devices on a thin membrane structure using porous silicon or porous silicon carbide
CA2176052A1 (fr) * 1995-06-07 1996-12-08 James D. Seefeldt Transducteur a faisceau resonnant au silicium et methode correspondante
RU2099813C1 (ru) * 1995-12-05 1997-12-20 Научно-исследовательский институт измерительных систем Способ формирования мембран в монокристаллической кремниевой подложке
JP3542491B2 (ja) * 1997-03-17 2004-07-14 キヤノン株式会社 化合物半導体層を有する半導体基板とその作製方法及び該半導体基板に作製された電子デバイス
SG63832A1 (en) * 1997-03-26 1999-03-30 Canon Kk Substrate and production method thereof
JP3697052B2 (ja) * 1997-03-26 2005-09-21 キヤノン株式会社 基板の製造方法及び半導体膜の製造方法
GB9710062D0 (en) * 1997-05-16 1997-07-09 British Tech Group Optical devices and methods of fabrication thereof
EP0996967B1 (fr) * 1997-06-30 2008-11-19 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Procédé pour produire des structures en couche sur un substrat à semiconducteur, substrat à semiconducteur et composants à semiconducteur produits à l'aide dudit procédé
EP0895276A1 (fr) * 1997-07-31 1999-02-03 STMicroelectronics S.r.l. Procédé de fabrication de microstructures intégrées de matériau semi-conducteur en couches monocristallines
DE19752208A1 (de) 1997-11-25 1999-06-02 Bosch Gmbh Robert Thermischer Membransensor und Verfahren zu seiner Herstellung
JP4075021B2 (ja) * 1997-12-26 2008-04-16 ソニー株式会社 半導体基板の製造方法および薄膜半導体部材の製造方法
DE19803013B4 (de) 1998-01-27 2005-02-03 Robert Bosch Gmbh Verfahren zum Ablösen einer Epitaxieschicht oder eines Schichtsystems und nachfolgendem Aufbringen auf einen alternativen Träger
NL1010234C1 (nl) 1998-03-02 1999-09-03 Stichting Tech Wetenschapp Werkwijze voor het elektrochemisch etsen van een p-type halfgeleidermateriaal, alsmede substraat van althans gedeeltelijk poreus halfgeleidermateriaal.
CN1118103C (zh) * 1998-10-21 2003-08-13 李韫言 微细加工热辐射红外传感器
DE19940512A1 (de) 1999-08-26 2001-03-22 Bosch Gmbh Robert Verfahren zur Verkappung eines Bauelementes mit einer Kavernenstruktur und Verfahren zur Herstellung der Kavernenstruktur
DE10032579B4 (de) * 2000-07-05 2020-07-02 Robert Bosch Gmbh Verfahren zur Herstellung eines Halbleiterbauelements sowie ein nach dem Verfahren hergestelltes Halbleiterbauelement
DE10046622B4 (de) * 2000-09-20 2010-05-20 Robert Bosch Gmbh Verfahren zur Herstellung einer Membransensoreinheit sowie Membransensoreinheit
DE10058009A1 (de) * 2000-11-23 2002-06-06 Bosch Gmbh Robert Strömungssensor
DE10064494A1 (de) * 2000-12-22 2002-07-04 Bosch Gmbh Robert Verfahren zur Herstellung eines Halbleiterbauelements sowie ein nach dem Verfahren hergestelltes Halbleiterbauelement, wobei das Halbleiterbauelement insbesondere eine bewegliche Masse aufweist
GR1004040B (el) * 2001-07-31 2002-10-31 Μεθοδος για την κατασκευη αιωρουμενων μεμβρανων πορωδους πυριτιου και εφαρμογης της σε αισθητηρες αεριων
DE10160830A1 (de) * 2001-12-11 2003-06-26 Infineon Technologies Ag Mikromechanische Sensoren und Verfahren zur Herstellung derselben
US7091057B2 (en) * 2003-12-19 2006-08-15 Agency For Science, Technology And Research Method of making a single-crystal-silicon 3D micromirror
JP5345404B2 (ja) * 2006-03-14 2013-11-20 インスティチュート フュア ミクロエレクトロニク シュトゥットガルト 集積回路の製造方法
DE102006024668A1 (de) * 2006-05-26 2007-11-29 Robert Bosch Gmbh Mikromechanisches Bauelement und Verfahren zu dessen Herstellung
DE102007019639A1 (de) * 2007-04-26 2008-10-30 Robert Bosch Gmbh Mikromechanisches Bauelement und entsprechendes Herstellungsverfahren

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0202458A1 *

Also Published As

Publication number Publication date
KR100859613B1 (ko) 2008-09-23
US7479232B2 (en) 2009-01-20
JP2004502555A (ja) 2004-01-29
DE10032579B4 (de) 2020-07-02
EP1810947B1 (fr) 2016-06-22
EP1810947A3 (fr) 2014-04-02
EP1810947A2 (fr) 2007-07-25
KR20020060170A (ko) 2002-07-16
JP5100949B2 (ja) 2012-12-19
WO2002002458A1 (fr) 2002-01-10
DE10032579A1 (de) 2002-01-24
US20080286970A1 (en) 2008-11-20
US7037438B2 (en) 2006-05-02
USRE44995E1 (en) 2014-07-08
US20060014392A1 (en) 2006-01-19
US20020170875A1 (en) 2002-11-21
US8123963B2 (en) 2012-02-28

Similar Documents

Publication Publication Date Title
EP1810947B1 (fr) Dispositif semi-conducteur et son procédé de fabrication
EP1345842B1 (fr) Procédé de production d'un composant semi-conducteur et composant semi-conducteur produit selon ce procédé et ayant notamment une masse mobile
DE102004036035B4 (de) Verfahren zur Herstellung eines Halbleiterbauelements sowie ein Halbleiterbauelement, insbesondere ein Membransensor
DE102005004878B4 (de) Mikromechanischer kapazitiver Drucksensor und entsprechendes Herstellungsverfahren
EP1379463B1 (fr) Procédé pour produire un composant à semi-conducteur et composant à semi-conducteur obtenu selon le procédé
DE10063991A1 (de) Verfahren zur Herstellung von mikromechanischen Bauelementen
EP1167934A1 (fr) Composant micromécanique, en particulier élément capteur, ayant une membrane stabilisée et procédé pour le produire
DE10332725A1 (de) Verfahren zur selbstjustierenden Verkleinerung von Strukturen
EP2125607B1 (fr) Élément détecteur de pression relative et méthode de fabrication
DE10161202C1 (de) Verfahren zur Reduktion der Dicke eines Silizium-Substrates
WO2002051742A2 (fr) Composant micromecanique et procede de production correspondant
EP1597193B1 (fr) Procede de fabrication d'un composant comportant un support a semiconducteurs
EP1396469A2 (fr) Dispositif semi-conducteur avec des régions de structure de pores différentes et procédé de fabrication
EP1716070B1 (fr) Detecteur micromecanique
WO2007071500A1 (fr) Procede de fabrication d'une membrane sur un substrat semi-conducteur et element de construction micromecanique comprenant une telle membrane
DE102004024285B4 (de) Verfahren zur Herstellung eines mikrostrukturierten Bauelements
DE102007002273A1 (de) Verfahren zur Herstellung eines Bauteils und Sensorelement
DE102020211554B3 (de) Herstellungsverfahren für ein mikromechanisches Bauteil
WO2004028956A2 (fr) Procede et composant micromecanique
DE102005009422B4 (de) Mikromechanisches Bauelement und entsprechendes Herstellungsverfahren
DE102008040564A1 (de) Mikromechanisches Sensorbauelement und Verfahren zur Herstellung eines mikromechanischen Sensorbauelements

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17P Request for examination filed

Effective date: 20020710

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ARTMANN, HANS

Inventor name: WEBER, HERIBERT

Inventor name: BENZEL, HUBERT

Inventor name: SCHAEFER, FRANK

RBV Designated contracting states (corrected)

Designated state(s): DE ES FR GB IT SE

17Q First examination report despatched

Effective date: 20100127

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140909