DE102004043357B4 - Verfahren zur Herstellung eines mikromechanischen Sensorelements - Google Patents

Verfahren zur Herstellung eines mikromechanischen Sensorelements Download PDF

Info

Publication number
DE102004043357B4
DE102004043357B4 DE102004043357.7A DE102004043357A DE102004043357B4 DE 102004043357 B4 DE102004043357 B4 DE 102004043357B4 DE 102004043357 A DE102004043357 A DE 102004043357A DE 102004043357 B4 DE102004043357 B4 DE 102004043357B4
Authority
DE
Germany
Prior art keywords
semiconductor substrate
membrane
cavity
substrate
sensor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE102004043357.7A
Other languages
English (en)
Other versions
DE102004043357A1 (de
Inventor
Hubert Benzel
Stefan Finkbeiner
Matthias Illing
Frank Schaefer
Simon Armbruster
Gerhard Lammel
Christoph Schelling
Joerg Brasas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Priority to DE102004043357.7A priority Critical patent/DE102004043357B4/de
Priority to FR0552686A priority patent/FR2874909B1/fr
Priority to IT001638A priority patent/ITMI20051638A1/it
Priority to US11/223,637 priority patent/US7572661B2/en
Priority to JP2005260722A priority patent/JP2006075982A/ja
Publication of DE102004043357A1 publication Critical patent/DE102004043357A1/de
Application granted granted Critical
Publication of DE102004043357B4 publication Critical patent/DE102004043357B4/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00023Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
    • B81C1/00047Cavities
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0042Constructional details associated with semiconductive diaphragm sensors, e.g. etching, or constructional details of non-semiconductive diaphragms
    • G01L9/0045Diaphragm associated with a buried cavity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/01Suspended structures, i.e. structures allowing a movement
    • B81B2203/0109Bridges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0111Bulk micromachining
    • B81C2201/0115Porous silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0111Bulk micromachining
    • B81C2201/0116Thermal treatment for structural rearrangement of substrate atoms, e.g. for making buried cavities

Abstract

Verfahren zur Herstellung eines mikromechanischen Sensorelements mit einem Hohlraum (275, 500, 505) und einer Membran (285, 585), wobei zur Herstellung des Sensorelements die Verfahrensschritte – Aufbringen einer strukturierten Ätzmaske (210) mit einer Vielzahl von Löchern (230) auf ein Halbleitersubstrat (200), und – Erzeugen von Vertiefungen (220, 300, 440, 445) unterhalb der Löcher mittels eines Ätzprozesses mit KOH oder TMAH oder einem Trenchätzprozess, und – Bildung – mehrerer nebeneinander liegender porösizierten Bereichs (270) unterhalb den Vertiefungen mittels einer Anodisierung im Halbleitersubstrat, wobei vorgesehen ist, dass bei zunehmender Zeitdauer, in der der Anodisierungsprozess durchgeführt wird, die nebeneinander liegenden porösen Bereiche ineinander übergehen und einen gemeinsamen porösen Bereich bilden, und – einer gitterartigen Struktur (280, 430) an der Oberfläche des Halbleitersubstrats aus unporösiziertem Substratmaterial zwischen den Vertiefungen, und – Entfernen der Ätzmaske, und – Erzeugung – des Hohlraums aus dem wenigstens einen porösizierten Bereich und – einer monokristallinen Membran oberhalb des Hohlraums aus der gitterartigen Struktur mittels einer Temperaturbehandlung oder einer Elektropolitur des Halbleitersubstrats, vorgesehen sind.

Description

  • Stand der Technik
  • Die Erfindung geht aus von einem Verfahren zur Herstellung eines mikromechanischen Sensorelements bzw. einem durch ein derartiges Verfahren hergestelltes mikromechanisches Sensorelement nach den Oberbegriffen der unabhängigen Ansprüche.
  • Zur Erfassung verschiedener physikalischer Größen (Druck, Temperatur, Luftmasse, Beschleunigung, Drehrate) werden insbesondere im Kraftfahrzeugbereich vielfach Bauelemente mit mikromechanischen Sensorelementen verwendet. Typischerweise werden dabei häufig Messelemente auf Membranen verwendet, die oberhalb einer Kaverne angeordnet sind. Zur Herstellung der Membran bzw. der Kaverne ist neben der sog. Oberflächenmikromechanik, bei der Schichtstapel aus Opfer- und Funktionsschichten abgeschieden, strukturiert und selektiv entfernt werden, auch die sog. Bulkmikromechanik bekannt, bei der Strukturen aus massivem Material herausgearbeitet werden.
  • So wird beispielsweise in der WO 02/02458 A1 bzw. DE 100 32 579 A1 ein Verfahren beschrieben, bei dem zur Herstellung eines Hohlraums unter einer Membran unterschiedlich poröse Bereiche in einem Substrat gebildet werden.
  • Aus der DE 100 30 352 A1 ist bekannt, eine Membran oberhalb einer Kaverne mit Stabilisierungselementen zu stützen. Die Erzeugung derartiger Stabilisierungselemente ist beispielsweise durch Ätzprozesse möglich, die selektiv unterschiedlich dotierte Bereiche aus einem Substrat herauslösen bzw. porös ätzen, wie es auch in den nicht vorveröffentlichten Schriften DE 10 2004 036 035 A1 und DE 101 38 759 A1 beschrieben wird.
  • Eine weitere Möglichkeit zur Ausbildung eines Hohlraums in einem Substrat wird in der DE 101 14 036 A1 gezeigt. In dem in dieser Schrift beschriebenen Verfahren wird zunächst eine Öffnung in dem Substrat erzeugt, woran sich eine Temperaturbehandlung des Substrats anschließt. Durch die Wahl der Temperatur und der Zeitdauer dieser Temperung bildet sich in der Tiefe des Substrats unter Schließung der Öffnung ein Hohlraum aus. Durch die Verwendung einer Vielzahl von nebeneinander liegender Öffnungen kann mit diesem Verfahren eine Membran mit darunter liegendem Hohlraum erzeugt werden.
  • In der EP 1 043 770 A1 wird ein Verfahren zur Erzeugung einer Kavität beschrieben, bei dem zunächst mittels eines ersten Ätzschrittes wenigstens ein Graben in einem Substrat erzeugt wird. Nach einer Passivierung der Wände des Grabens wird im Rahmen eines zweiten anisotropen Ätzschrittes die Kavität gebildet. Zur Bildung einer Membran über der Kavität wird abschließend eine monokristalline Schicht auf das Substrat aufgewachsen.
  • Aus der Schrift DE 10 2004 036 035 A1 ist ein Verfahren bekannt, eine Gitter als Basis für eine epitaktisch erzeugte Membran zu verwenden. Um den Hohlraum unter dem Gitter zu erzeugen, ist zunächst eine Porösifizierung und anschließend eine thermische Umlagerung des porösen Bereichs vorgesehen Aus der Schrift DE 100 65 026 A1 ist ein Verfahren zur Herstellung eines mikromechanischen Bauelements bekannt, bei dem mittels einer vergrabenen Schicht ein Bereich unter einem Membranbereich erzeugt wird.
  • Aus der Schrift DE 101 14 036 A1 ist ein SON Verfahren bekannt, bei dem mittels des Einbringens von tiefen Öffnungen in die Oberfläche eines Substrats durch eine nachfolgende Temperaturbehandlung Hohlräume erzeugt werden können.
  • In der US 2001/0023094 A1 wird ein Verfahren zur Herstellung SOI Wafers beschrieben, bei dem eine vergrabene dotierte Region innerhalb eines Substrats verwendet wird. Durch Trenchlöcher wird diese vergrabene Schicht mittels eines speziellen Ätzangriffs selektiv porös geätzt, bevor die Trenchlöcher mit Polysilizium verfüllt werden.
  • In der Schrift Mizushima et al.; „Empty-space-in-Silicon technique for fabricating a silicon-on-nothing structure”, Appl. Phys. Lett., Vol. 77, No. 20, 13. November 2000, S. 3290–3292 wird die Möglichkeit eines SON beschrieben. Dabei wird ohne eine zusätzliche Behandlung des Substrats eine Membran oberhalb einer Kaverne erzeugt.
  • Vorteile der Erfindung
  • Die Erfindung geht aus von einem Verfahren zur Herstellung eines mikromechanischen Sensorelements bzw. ein durch ein derartiges Verfahren hergestelltes mikromechanisches Sensorelement, welches einen Hohlraum bzw. eine Kaverne und eine Membran zur Erfassung einer physikalischen Größe aufweist. Dabei ist vorgesehen, dass zur Herstellung des Sensorelements verschiedene Verfahrensschritte durchgeführt werden, wobei u. a. eine strukturierte Ätzmaske mit einer Vielzahl von Löchern bzw. Öffnungen auf ein Halbleitersubstrat aufgebracht wird. Weiterhin ist vorgesehen, dass durch einen Ätzvorgang unterhalb der Löcher in der strukturierten Ätzmaske Vertiefungen im Halbleitersubstrat erzeugt werden. Anschließend wird eine Anodisierung des Halbleitermaterials durchgeführt, wobei die Anodisierung vorzugsweise ausgehend von den erzeugten Vertiefungen in dem Halbleitersubstrat stattfindet. Dabei entstehen unterhalb der Vertiefungen poröse Bereiche, wobei zwischen den porösen Bereichen bzw. den Vertiefungen eine gitterartige Struktur aus unbehandeltem d. h. nicht anodisiertem Substratmaterial stehen bleibt. Diese gitterartige Struktur erstreckt sich vorzugsweise von der Oberfläche des Halbleitersubstrats in die Tiefe. Wahlweise vor oder nach der Anodisierung kann die Ätzmaske zur Erstellung der Vertiefungen entfernt werden. Zur Erzeugung des Hohlraums und der Membran in dem das Sensorelement bildenden Halbleitersubstrat wird eine Temperaturbehandlung durchgeführt. Dabei wird der Hohlraum aus dem wenigstens einen porösizierten Bereich unterhalb einer Vertiefung und die Membran oberhalb des Hohlraums aus der gitterartigen Struktur durch Umlagerung des Halbleitermaterials während der Temperaturbehandlung erzeugt.
  • Vorteilhafterweise kann durch die Kombination eines Ätzprozesses und einer Anodisierung ein dotierungsfreies bzw. schwach dotiertes monokristallines Gitter oberhalb einer porösen Schicht erzeugt werden, die durch eine thermische Behandlung in eine Membran bzw. einen Hohlraum umgewandelt werden kann. Durch die gezielte Erzeugung der Vertiefungen und deren Eindringtiefe in das Halbleitersubstrat können durch das erfindungsgemäße Verfahren Membranen oder Kanäle bzw. Hohlräume mit geringer Dickentoleranz gebildet werden, die beispielsweise bei der Druckmessung oder der Luftmassenmessung von Vorteil sein können.
  • In einer Ausgestaltung der Erfindung ist vorgesehen, dass unter jeder Vertiefung im Substrat genau ein porösizierter (Teil-)Bereich erzeugt wird, wobei der Hohlraum aus einer Vielzahl zusammenhängender porösizierten (Teil-)Bereiche entsteht.
  • Bei der Herstellung der Vertiefungen kann ein (Kristall-)anisotroper Ätzprzess, beispielsweise mit KOH- oder TMAH-Ätzung, oder ein (Kristall-)isotroper Ätzprozess, beispielsweise mittels eines Trenchätzverfahrens, verwendet werden. Dabei kann vorgesehen sein, dass der Trenchätzprozess wenigstens einen Trenchzyklus aufweist, wobei der Trenchzyklus wenigstens einen Trenchätzschritt und einen Passivierungsschritt enthält. Die Tiefe der Vertiefung und somit die Dicke der Membran kann dabei durch die Anzahl der Wiederholungen eines Trenchzyklus bei der Erzeugung der Vertiefung vorgegeben werden. Somit können vorteilhafterweise sowohl die vertikalen Ausdehnungen der Hohlräume als auch die die Hohlräume bedeckenden Membran in fast beliebiger Dicke vorgegeben werden.
  • In einer Weiterbildung der Erfindung ist vorgesehen, dass das Halbleitersubstrat wenigstens im porösizierten Bereich und in der gitterartigen Struktur die gleiche Dotierungsart und/oder die gleiche Dotierungskonzentration aufweist. Dabei kann das Halbleitersubstrat auch nur sehr schwach dotiert sein, bzw. im Extremfall auch ein Dotierungskonzentration eine Größe von Null aufweisen, d. h. dass Halbleitersubstrat kann vollständig undotiert sein. Eine besondere Ausgestaltung der Erfindung sieht vor, dass die Bildung des porösen Bereichs unterhalb der Vertiefung und die Bildung der gitterartigen Struktur unabhängig von der Dotierungsart und -konzentration sind.
  • Zur Anodisierung wird das Halbleitersubstrat in eine elektrisch leitfähige Ätzflüssigkeit getaucht, wobei die Ätzflüssigkeit eine Elektrode aufweist, die mit dem Pol einer Spannungsquelle verbunden ist. Im Gegensatz dazu wird das Halbleitersubstrat mit dem anderen Pol der Spannungsquelle verbunden. Vorzugsweise wird dabei die Elektrode mit dem Minuspol und das Substrat mit dem Pluspol der Spannungsquelle verbunden, wobei bei entsprechend gewählten Flüssigkeiten und Substraten auch eine umgekehrte Polung denkbar ist.
  • Die Ausdehnung des porösen Bereichs, der durch die Anodisierung erzeugt wird, kann vorteilhafterweise durch eine erste Zeitdauer vorgegeben werden, in der das Halbleitersubstrat ausgehend von den Vertiefungen anodisiert wird. Dabei kann weiterhin vorgesehen sein, dass die erste Zeitdauer zur Anodisierung in Abhängigkeit von der geometrischen Verteilung der Löcher auf der Ätzmaske bzw. den Vertiefungen im Substrat vorgegeben wird. Dabei kann diese Abhängigkeit beispielsweise über den mittleren Abstand der Löcher bzw. Vertiefungen bestimmt werden. Darüber hinaus ist auch möglich, die Bildung der lateralen und vertikalen Ausdehnungen des Hohlraums in Abhängigkeit von der ersten Anodisierungszeitdauer vorzugeben.
  • In weiteren Ausgestaltungen der Erfindung kann vorgesehen sein, dass die Temperaturbehandlung der gitterartigen Struktur oberhalb des Hohlraums dazu führt, dass sich eine monokristalline Membran bildet. Weiterhin ist denkbar, dass die Lochgeometrie in der Ätzmaske und somit die Verteilung der Vertiefungen auf dem Halbleitersubstrat in Abhängigkeit von der Kristallstruktur des einkristallinen Halbleitersubstrats vorgegeben wird. Bevorzugterweise ist das Halbleitersubstratmaterial nur schwach dotiert oder undotiert. Optional kann auf die durch die Temperaturbehandlung erzeugte Membran eine weitere Schicht, beispielsweise epitaktisch, aufgebracht werden.
  • Weiterhin kann der vorgeschlagene Membranherstellungsprozess in einen Halbleiterprozess (CMOS- oder mixed-Signal) integriert werden, der keinen Epitaxieschritt aufweist. Daneben kann jedoch ein optionaler Epitaxieschritt die Membrandicke weiter erhöhen oder die Membran mit einer weiteren funktionalen Schicht belegen. Insbesondere durch die Verwendung eines dotierungsfreien Substrats kann das erfindungsgemäße Verfahren vorteilhaft mit einem Schaltungsprozess zur Erzeugung einer Auswerteschaltung kombiniert werden. So können mikroelektronische Bauelemente auch im Bereich des Kanals bzw. des Hohlraums oder der Membran integriert werden. Durch die Herstellung einer einkristallinen Halbleitermembran bzw. -hohlraumstruktur können weitere Vorteile in Form einer erhöhten mechanischen Festigkeit erreicht werden. Darüber hinaus können in monokristallinen Membranen bzw. Gitter- oder Kanalstrukturen zur Auswertung von darin eingebrachten Stress Piezowiderstände mit hohem K-Faktor integriert werden, die ein hohes Messsignal liefern. Die Herstellung des Hohlraums ist auch durch Elektropolitur möglich, wodurch keine Umlagerung des porösen Materials durch einen thermischen Prozess nötig ist. Dabei entsteht direkt bei der Anodisierung ein freitragendes Gitter. Durch das vorgestellte Verfahren kann allgemein ein Hohlraum mit beliebiger vertikaler und lateraler Ausdehnung in beliebiger Tiefe erzeugt werden.
  • Durch die Verwendung eines Trenchätzprozesses können tiefere Vertiefungen erzeugt werden, so dass der Hohlraum in größeren Tiefen erzeugt werden kann. Dadurch kann die Dicke der Membran in weiten Grenzen freigewählt werden. Ein Epitaxieschritt wie beim bekannten Stand der Technik kann entfallen. Dadurch kann der Prozess in einen Halbleiterschaltungsprozess integriert werden, der keinen Epitaxieschritt beinhaltet, beispielsweise in einen CMOS-Prozess.
  • Weitere Vorteile ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen bzw. aus den abhängigen Patentansprüchen.
  • Zeichnungen
  • In den 1a bis c ist schematisch ein Prozessablauf zur Herstellung einer Kaverne mit einer darüber liegenden Membran mittels porösen Siliziums dargestellt, wie er aus dem Stand der Technik bekannt ist. Dagegen zeigen die 2a bis f den erfindungsgemäßen Verfahrensverlauf. 3 zeigt eine alternative Herstellung von Vertiefungen, von denen das erfindungsgemäße Verfahren ausgeht. In den 4a bis f sind verschiedene Öffnungsgeometrien u. a. in relativer Position zu der Kristallgeometrie des Halbleitersubstrats dargestellt, die alternativ zur Erzeugung der Vertiefungen verwendet werden können. Schlussendlich sind in den 5a und b weitere Anwendung des erfindungsgemäßen Verfahrens zur Erzeugung eines Kanals abgebildet.
  • Ausführungsbeispiel
  • Im vorliegenden Ausführungsbeispiel wird das erfindungsgemäße Verfahren anhand der Herstellung eines Sensorelements mit einer Membran und einem Hohlraum verdeutlicht. Dieses erfindungsgemäße Sensorelement kann vorzugsweise bei einem Drucksensor eingesetzt werden, wobei darüber hinaus auch eine Verwendung in einem Luftmassensensor, einem Temperatursensor, einem Beschleunigungssensor und/oder einem Drehratensensor denkbar ist.
  • In den 1a bis c ist schematisch ein bekanntes Verfahren zur Herstellung einer Membran über einer Kaverne dargestellt. Dabei wird das Material in einem ersten Bereich 110 eines dotierten beispielsweise einkristallinen Siliziumsubstrats 100 entweder in eine andere Dotierungsart umgewandelt oder mit einer anderen Dotierungskonzentration versehen. Anschließend kann durch einen entsprechenden lokalen Anodisierungsprozess dieser Bereich 110 porös geätzt werden, indem der Ätzprozess bevorzugt die im Bereich 110 vorhandene Dotierungsart bzw. Dotierungskonzentration selektiv ätzt. Auf das so erzeugte poröse Silizium im Bereich 110 kann in einem weiteren Verfahrensschritt eine Epitaxieschicht 130 aufgebracht werden. die ebenfalls einkristallin aufwachsen kann. Durch die Epitaxiebedingungen oder eine zusätzliche Temperaturbehandlung des Substrats 100 kann das poröse Siliziummaterial im Bereich 110 umgelagert werden, so dass ein Hohlraum 120 unter der Epitaxieschicht 130 entsteht, wobei gleichzeitig eine Membran 160 gebildet wird. Abschließend können weitere Halbleiterprozesse durchgeführt werden, die beispielsweise Piezowiderstände 140 und/oder eine Auswerteschaltung 150 in oder auf dem so hergestellten mikromechanischen Sensorelement erzeugen.
  • In dem erfindungsgemäßen Verfahren, welches schematisch in den 2a bis f dargestellt ist. kann dagegen auf eine spezielle Dotierung bzw. auf eine Umdotierung des späteren Hohlraumbereichs verzichtet werden. Darüber hinaus ist das Verfahren auch bei nur schwach dotierten Substraten einsetzbar. Zunächst wird auf einem Substrat 200, beispielsweise aus einem Halbleitermaterial wie Silizium, eine geeignete (Ätz-)Maske 210, z. B. Lack, Oxid- oder Nitrid-Schicht(en). für die nachfolgende Herstellung von Vertiefungen 220 im Substrat 200 mittels eines Ätzprozesses erstellt und strukturiert. Bei der Strukturierung der Maske 210 werden Löcher 230 beispielsweise in regelmäßigen Abständen erzeugt, wobei unterschiedliche Muster, z. B. rechteckig, diagonal, hexagonal, ringförmig oder streifenförmig, denkbar sind. Des Weiteren ist nicht nur die Anordnung der Löcher variabel, sondern auch die Form der einzelnen Löcher. So können die Löcher z. B. quadratisch (siehe u. a. die Aufsicht in 2a), rund (siehe 4b) oder rechteckig (siehe u. a. 4e) gestaltet sein. Mit Hilfe dieser so strukturierten Ätzmaske 210 können nun durch einen Ätzprozess entsprechende Vertiefungen 220 in das Siliziumsubstrat 200 eingebracht werden. In der 2a bzw. b sind Vertiefungen 220 dargestellt, die mittels eines anisotropen Ätzprozesses, beispielsweise mit KOH oder TMAH typische pyramidenförmige Strukturen in das Substrat geätzt wurden. Die Pyramidenwände der Vertiefungen 220 bilden dabei bevorzugte Ätzrichtungen im (einkristallinen) Siliziumsubstrat 200 ab, wobei die Ätzfront stoppt, nachdem pyramidenförmige Strukturen geätzt wurden. Nach Erzeugung der Vertiefungen 220 kann das so vorgeätzte Substrat 200 zur Anodisierung in eine elektrisch leitfähige Ätzlösung 240, beispielsweise Flusssäure) getaucht werden. Wird nun das Siliziumsubstrat 200 mit einem Pol einer Spannungsquelle verbunden und in die elektrisch leitfähige Lösung 240 eine Elektrode 250 getaucht, die mit dem anderen Pol der Spannungsquelle verbunden ist, so kann die Anodisierung gestartet werden, da sich innerhalb des Siliziumsubstrats 200 Feldlinien 260 beginnend von den Spitzen der Vertiefungen 220 ausbilden. Wie in 2c gezeigt wird, kann dabei vorzugsweise das Substrat 200 auf das positive Potential gelegt werden, wohingegen die Elektrode 250 in der Lösung 240 auf Massepotential liegt. Durch die so durchgeführte Anodisierung kann das Substratmaterial unter den Vertiefungen 220 porös geätzt werden, so dass mehrere nebeneinander liegende poröse Bereiche 270 entstehen, wie in 2d gezeigt wird. Mit zunehmender Zeitdauer, in der der Anodisierungsprozess durchgeführt wird, vergrößern sich die porösen Bereiche unterhalb der Vertiefungen sowohl in lateraler als auch in vertikaler Richtung, bis mehrere nebeneinander liegende poröse Bereiche ineinander übergehen und einen gemeinsamen großen porösen Bereich bilden. Dabei ist naheliegend die Anodisierungszeit in Abhängigkeit von der geometrischen Verteilung oder dem mittleren Abstand der Vertiefungen 220 und/oder der Löcher 230 in der Ätzmaske 210 vorzugeben, um ein gezieltes Ineinanderwachsen der porösen Bereiche zu ermöglichen. Neben dem Abstand der Ätzlöcher beeinflusst auch das Vorhandensein einer möglicherweise vorliegenden Dotierung des Substrats das Ätzergebnis. Zwischen den Vertiefungen 220 entstehen durch diesen Anodisierungsprozess Bereiche 280, die nicht geätzt werden und somit dem unbehandelten Substratmaterial entsprechen. Aus der Gesamtheit der ungeätzten Bereiche entsteht somit eine gitterartige Struktur 280, welche ebenfalls wie das Substrat 200 einkristallin vorliegt und vorzugsweise schwach oder gering dotiert ist. Nach dem Entfernen der Ätzmaske 210 vom Substrat 200 ist vorgesehen, eine Temperaturbehandlung durchzuführen. Im Rahmen dieser Temperaturbehandlung erfolgt eine Umlagerung des Siliziummaterials sowohl in der gitterartiger Struktur 280 als auch im porösen Bereich 270. So schließen sich die anfangs pyramidenförmigen Vertiefungen 220 und bilden eine vorzugsweise einkristalline Membran 285, während sich das Siliziummaterial im porösen Bereich 270 zu einem unter der Membran geschlossenen Hohlraum 275 umlagert. Auch die Spitzen zwischen den einzelnen Vertiefungen, wie sie in 2d abgebildet sind, werden durch diese Temperaturbehandlung geglättet, so dass eine durchgehend (monokristalline) Membran 285 entsteht. Optional kann auf das so erzeugte mikromechanische Sensorelement noch eine weitere Materialschicht 290 aus dem gleichen oder einem anderen Material abgeschieden werden, beispielweise mit einem Epitaxieverfahren.
  • Statt einem anisotropen Ätzprozess, wie er anhand der 2a und 2b zur Erzeugung der Vertiefungen 220 verwendet wird, kann auch ein isotropes Ätzverfahren bzw. ein Trenchätzverfahren verwendet werden, um Vertiefungen 300 zu erzeugen. Zu diesem Zweck wird ebenfalls zunächst eine Ätzmaske 210 auf das Substrat 200 aufgebracht, welche Löcher 230 zur Erzeugung der Vertiefungen 300 aufweist. Durch diese Ätzmaske können nun mittels wenigstens eines Trenchzyklus die Vertiefungen 300 erzeugt werden. Typischerweise wird bei einem bevorzugten Trenchätzverfahren wie das RIE- oder das DRIE-Verfahren in einem Trenchzyklus abwechselnd ein Trenchätzschritt (z. B. mit SF6) mit nachfolgender Passivierung (z. B. mit C1F8) der getrenchten Seitenwände durchgeführt. Dabei entsteht an den Seitenwänden eine typische Einbuchtung, die bei einer Wiederholung des Trenchzyklus zu einer Riffelung führt, wie sie in 3 am Rand der Vertiefung 300 dargestellt sind (siehe Bereich 310). Durch die Wahl der Wiederholungen, in denen jeweils ein Trenchzyklus durchgeführt wird, kann die vertikale Ausdehnung der Vertiefung 300 und schlussendlich die Dicke der Membran 285 eingestellt werden. Die Anodisierung erfolgt im weiteren entsprechend dem vorherig beschriebenen Verfahren (vergleiche auch 2c).
  • Durch die Verwendung eines Trenchätzprozesses können tiefere Vertiefungen erzeugt werden, so dass der Hohlraum in größeren Tiefen erzeugt werden kann. Dadurch kann die Dicke der Membran in weiten Grenzen frei gewählt werden. Ein Epitaxieschritt wie beim bekannten Stand der Technik kann entfallen. Dadurch kann der Prozess in einen Halbleiterprozess integriert werden, der keinen Epitaxieschritt beinhaltet, beispielsweise einen CMOS-Prozess.
  • Neben der Anordnung der Löcher 230 in der Ätzmaske 210 können, wie bereits erwähnt, auch. andere geometrische Verteilungen oder Ausgestaltungen zur Erzeugung der Vertiefungen gewählt werden, wie sie in den 2a, 4b, 4c, 4d, 4e und 4f dargestellt sind. Darüber hinaus kann die Lochgeometrie bzw. die Ausrichtung des Anodisierungsprozesses auch an bestimmte Kristallstrukturen des Substrats bzw. eines Wafers ausgerichtet werden. So ist beispielsweise denkbar, dass ein Wafer zur Herstellung des erfindungsgemäßen Sensorelements verwendet wird, wie er in 4a dargestellt ist, der eine Oberfläche mit einer (100)-Orientierung und einer Seitenfläche mit (110)-Orientierung aufweist. Somit kann die Lochgeometrie und die Ätzprozesse entsprechend abgestimmt werden, um ein optimales Zusammenwachsen der porösen Bereiche unterhalb der Vertiefungen zu ermöglichen.
  • In der 4c ist eine Aufsicht auf ein Substrat gezeigt, welches einen Membranrand 420, eine gitterartige Struktur 430 und Ätzlöcher 440 aufweist. Durch die Ätzlöcher 440 erfolgt eine (Kristall-)anisotrope Unterätzung, beispielsweise mit KOH oder TMAH, so dass sich benachbarte Bereiche überlappen. Zwischen den unterätzten Bereichen können Stellen 460 entstehen, die bei einer entsprechenden Steuerung des Ätzprozesses ebenfalls unterätzt werden. Eine Abwandlung zur Lochgeometrie, wie sie in 4e dargestellt ist, zeigt 4f. Dabei ermöglicht die Verwendung zusätzlicher Ätzöffnungen 445 eine gleichmäßigere Unterätzung am Membranrand und somit ein bessere Randeinspannung. Allgemein können die gitterartigen Strukturen in den 4c bis f sowohl bei porös geätzten, als auch bei mit KOH oder TMAH geätzten Bereichen verwendet werden.
  • Neben der Verwendung für das erfindungsgemäße Verfahren können die vorgeschlagenen Lochgeometrien der 4b bis f auch bei der Herstellung eines Hohlraums bzw. einer Membran mit dotiertem Substratmaterial verwendet werden. wie sie beispielsweise in der DE 10 2004 036 035 A1 und DE 101 38 759 A1 beschrieben werden. Dabei können die Ätzöffnungen sowohl durch das Überwachsen mit einer weiteren Materialschicht als auch durch eine Temperaturbehandlung verschlossen werden.
  • In einem weiteren Ausführungsbeispiel wird das erfindungsgemäße Verfahren dazu genutzt, durch Membranen 585 vergrabene Kanäle 500, wie sie in 5a dargestellt sind, zu erzeugen. Derartige Kanäle lassen sich beispielsweise dadurch erzeugen, dass die Löcher 230 entsprechend nebeneinander angeordnet sind, so dass durch die Unterätzung ein zusammenhängender länglicher Hohlraum entsteht. Diese Kanäle 500 können eine oder mehrere Zugangsöffnungen 510 aufweisen, die nach der Temperaturbehandlung und somit nach dem Verschließen der Ätzöffnungen und Bildung der Membran 585 zusätzlich in die Membran und somit in das Substrat eingebracht werden können. Als spezielle Ausgestaltung ist in 5b ein mäanderartiger Verlauf eines so erzeugten vergrabenen Kanals 505 im Substrat 200 dargestellt, der ebenfalls durch geeignete Anordnungen der Löcher 230 gebildet werden kann und bei dem zwei Zugangsöffnungen 515 vorgesehen sind. Durch diese Zugangsöffnungen kann dann beispielsweise ein Medium durch den Kanal geleitet werden.

Claims (12)

  1. Verfahren zur Herstellung eines mikromechanischen Sensorelements mit einem Hohlraum (275, 500, 505) und einer Membran (285, 585), wobei zur Herstellung des Sensorelements die Verfahrensschritte – Aufbringen einer strukturierten Ätzmaske (210) mit einer Vielzahl von Löchern (230) auf ein Halbleitersubstrat (200), und – Erzeugen von Vertiefungen (220, 300, 440, 445) unterhalb der Löcher mittels eines Ätzprozesses mit KOH oder TMAH oder einem Trenchätzprozess, und – Bildung – mehrerer nebeneinander liegender porösizierten Bereichs (270) unterhalb den Vertiefungen mittels einer Anodisierung im Halbleitersubstrat, wobei vorgesehen ist, dass bei zunehmender Zeitdauer, in der der Anodisierungsprozess durchgeführt wird, die nebeneinander liegenden porösen Bereiche ineinander übergehen und einen gemeinsamen porösen Bereich bilden, und – einer gitterartigen Struktur (280, 430) an der Oberfläche des Halbleitersubstrats aus unporösiziertem Substratmaterial zwischen den Vertiefungen, und – Entfernen der Ätzmaske, und – Erzeugung – des Hohlraums aus dem wenigstens einen porösizierten Bereich und – einer monokristallinen Membran oberhalb des Hohlraums aus der gitterartigen Struktur mittels einer Temperaturbehandlung oder einer Elektropolitur des Halbleitersubstrats, vorgesehen sind.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass – der Hohlraum vollständig vergraben im Halbleitersubstrat erzeugt wird und – wenigstens zwei Durchgangsöffnungen (510, 515) durch die Membran erzeugt werden, so dass ein Kanal (585) im Halbleitersubstrat gebildet wird.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass der erzeugte Kanal einen mäanderförmigen Verlauf im Substrat darstellt.
  4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Ausdehnung des porösizierten Bereichs im Halbleitersubstrat durch eine vom mittleren Abstand der Löcher bzw. Vertiefungen abhängige erste Anodisierungszeitdauer vorgebbar ist.
  5. Verfahren nach einem der vorhergehenden Ansprüchen, dadurch gekennzeichnet, dass das Verhältnis der Durchmesser der Löcher bzw. Vertiefungen zu deren Abstand in lateraler Richtung ein Verhältnis von 0,3 zu 2,3 bzw. in wenigstens einer lateraler Richtung ein Verhältnis von 0,4 zu 2,3 aufweist.
  6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass – der Trenchätzprozess wenigstens einen Trenchzyklus aufweist, und – der Trenchzyklus einen Trenchätzschritt und einen Passivierungsprozess aufweist, und – die Tiefe der Vertiefung und somit die Dicke der Membran in Abhängigkeit von der Anzahl der durchgeführten Trenchzyklen bei der Erzeugung der Vertiefung vorgebbar ist.
  7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Halbleitersubstrat im porösizierten Bereich und in der gitterartigen Struktur die gleiche Dotierungskonzentration aufweist, wobei insbesondere vorgesehen ist, dass – die Bildung des porösizierten Bereichs unterhalb der Vertiefungen und – die Bildung der gitterartigen Struktur dotierungsunabhängig ist.
  8. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass zur Anodisierung das Substrat in eine elektrisch leitfähige Ätzflüssigkeit, insbesondere Flusssäure, getaucht wird, wobei – die Ätzflüssigkeit eine Elektrode (250) aufweist, die mit dem Minuspol einer Spannungsquelle verbunden ist und – das Substrat mit dem Pluspol der Spannungsquelle verbunden wird.
  9. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass – die Lochgeometrie auf der Ätzmaske in Abhängigkeit von der Kristallstruktur des einkristallinen Halbleitersubstrats vorgebbar ist, und/oder – das Halbleitersubstratmaterial nur schwach dotiert ist, und/oder – auf die Membran eine weitere, insbesondere epitaktische, Schicht (290) aufgebracht wird.
  10. Mikromechanisches Sensorelement hergestellt nach einem der in den Ansprüchen 1 bis 9 beschriebenen Herstellungsverfahren, wobei vorgesehen ist, dass das Sensorelement – den in dem Halbleitersubstrat vergrabenen Hohlraum (275, 500, 505) und – die über dem Hohlraum befindliche einkristalline Membran (285, 585) aus dem Halbleitersubstratmaterial aufweist, wobei der Hohlraum einen Kanal (500, 505) mit wenigstens zwei Zugangsöffnungen (510, 515) durch die Membran aufweist.
  11. Mikromechanisches Sensorelement nach Anspruch 10, dadurch gekennzeichnet, dass vorgesehen ist, dass der Kanal (505) einen mäanderförmigen Verlauf im Halbleitersubstrat (200) aufweist.
  12. Mikromechanisches Sensorelement nach Anspruch 10 oder 11, dadurch gekennzeichnet, dass ein Medium durch die Zugangsöffnungen und den Kanal geleitet werden kann.
DE102004043357.7A 2004-09-08 2004-09-08 Verfahren zur Herstellung eines mikromechanischen Sensorelements Expired - Fee Related DE102004043357B4 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE102004043357.7A DE102004043357B4 (de) 2004-09-08 2004-09-08 Verfahren zur Herstellung eines mikromechanischen Sensorelements
FR0552686A FR2874909B1 (fr) 2004-09-08 2005-09-06 Element de capteur micromecanique
IT001638A ITMI20051638A1 (it) 2004-09-08 2005-09-06 Elemento sensore micromeccanico
US11/223,637 US7572661B2 (en) 2004-09-08 2005-09-08 Method for manufacturing a micromechanical sensor element
JP2005260722A JP2006075982A (ja) 2004-09-08 2005-09-08 マイクロマシニング型のセンサ素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102004043357.7A DE102004043357B4 (de) 2004-09-08 2004-09-08 Verfahren zur Herstellung eines mikromechanischen Sensorelements

Publications (2)

Publication Number Publication Date
DE102004043357A1 DE102004043357A1 (de) 2006-03-09
DE102004043357B4 true DE102004043357B4 (de) 2015-10-22

Family

ID=35851994

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102004043357.7A Expired - Fee Related DE102004043357B4 (de) 2004-09-08 2004-09-08 Verfahren zur Herstellung eines mikromechanischen Sensorelements

Country Status (5)

Country Link
US (1) US7572661B2 (de)
JP (1) JP2006075982A (de)
DE (1) DE102004043357B4 (de)
FR (1) FR2874909B1 (de)
IT (1) ITMI20051638A1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10244786A1 (de) * 2002-09-26 2004-04-08 Robert Bosch Gmbh Mikromechanisches Bauelement und Verfahren
DE102005060855A1 (de) 2005-12-20 2007-06-28 Robert Bosch Gmbh Mikromechanischer kapazitiver Druckwandler und Herstellungsverfahren
US7425465B2 (en) 2006-05-15 2008-09-16 Fujifilm Diamatix, Inc. Method of fabricating a multi-post structures on a substrate
DE102006028435A1 (de) 2006-06-21 2007-12-27 Robert Bosch Gmbh Sensor und Verfahren zu seiner Herstellung
EP1931173B1 (de) * 2006-12-06 2011-07-20 Electronics and Telecommunications Research Institute Kondensatormikrofon mit Membran mit Biegescharnier und Herstellungsverfahren dafür
DE102008054428A1 (de) 2008-12-09 2010-06-10 Robert Bosch Gmbh Aufbau eines Drucksensors
FI125960B (en) 2013-05-28 2016-04-29 Murata Manufacturing Co Improved pressure gauge box
US9321635B2 (en) * 2013-11-28 2016-04-26 Solid State System Co., Ltd. Method to release diaphragm in MEMS device
DE102014204664A1 (de) * 2014-03-13 2015-09-17 Robert Bosch Gmbh Drucksensor und Verfahren zum Herstellen des Drucksensors
FR3069072B1 (fr) * 2017-07-11 2021-06-04 Commissariat Energie Atomique Procede de fabrication d'un micro/nano-filtre sur un micro/nano-canal ou micro/nano-cavite realise dans un substrat silicium

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4241045C1 (de) * 1992-12-05 1994-05-26 Bosch Gmbh Robert Verfahren zum anisotropen Ätzen von Silicium
EP1043770A1 (de) * 1999-04-09 2000-10-11 STMicroelectronics S.r.l. Herstellung von vergrabenen Hohlräumen in einer einkristallinen Halbleiterscheibe
US6261962B1 (en) * 1996-08-01 2001-07-17 Surface Technology Systems Limited Method of surface treatment of semiconductor substrates
US20010023094A1 (en) * 1999-12-31 2001-09-20 Stmicroelectronics S.R.L. Method for manufacturing a SOI wafer
DE10030352A1 (de) * 2000-06-21 2002-01-10 Bosch Gmbh Robert Mikromechanisches Bauelement, insbesondere Sensorelement, mit einer stabilisierten Membran und Verfahren zur Herstellung eines derartigen Bauelements
WO2002002458A1 (de) * 2000-07-05 2002-01-10 Robert Bosch Gmbh Verfahren zur herstellung eines halbleiterbauelements sowie ein nach dem verfahren hergestelltes halbleiterbauelement
DE10065026A1 (de) * 2000-12-23 2002-07-04 Bosch Gmbh Robert Mikromechanisches Bauelement und entsprechendes Herstellungsverfahren
DE10114036A1 (de) * 2001-03-22 2002-10-02 Bosch Gmbh Robert Verfahren zur Herstellung von mikromechanischen Sensoren und damit hergestellte Sensoren
DE10138759A1 (de) * 2001-08-07 2003-03-06 Bosch Gmbh Robert Verfahren zur Herstellung eines Halbleiterbauelements sowie Halbleiterbauelement, insbesondere Membransensor
DE102004036035A1 (de) * 2003-12-16 2005-07-21 Robert Bosch Gmbh Verfahren zur Herstellung eines Halbleiterbauelements sowie ein Halbleiterbauelement, insbesondere ein Membransensor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0155141B1 (ko) * 1993-12-24 1998-10-15 손병기 다공질실리콘을 이용한 반도체 장치의 제조방법
DE19847455A1 (de) * 1998-10-15 2000-04-27 Bosch Gmbh Robert Verfahren zur Bearbeitung von Silizium mittels Ätzprozessen
AU2002246565A1 (en) * 2000-10-24 2002-08-06 Nanosciences Corporation Process for etching buried cavities within silicon wafers
DE10054484A1 (de) * 2000-11-03 2002-05-08 Bosch Gmbh Robert Mikromechanisches Bauelement und entsprechendes Herstellungsverfahren
ITVA20000042A1 (it) * 2000-12-15 2002-06-15 St Microelectronics Srl Sensore di pressione monoliticamente integrato e relativo processo direalizzazione.
DE10118568A1 (de) * 2001-04-14 2002-10-17 Bosch Gmbh Robert Verfahren zum Erzeugen von optisch transparenten Bereichen in einem Siliziumsubstrat

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4241045C1 (de) * 1992-12-05 1994-05-26 Bosch Gmbh Robert Verfahren zum anisotropen Ätzen von Silicium
US6261962B1 (en) * 1996-08-01 2001-07-17 Surface Technology Systems Limited Method of surface treatment of semiconductor substrates
EP1043770A1 (de) * 1999-04-09 2000-10-11 STMicroelectronics S.r.l. Herstellung von vergrabenen Hohlräumen in einer einkristallinen Halbleiterscheibe
US20010023094A1 (en) * 1999-12-31 2001-09-20 Stmicroelectronics S.R.L. Method for manufacturing a SOI wafer
DE10030352A1 (de) * 2000-06-21 2002-01-10 Bosch Gmbh Robert Mikromechanisches Bauelement, insbesondere Sensorelement, mit einer stabilisierten Membran und Verfahren zur Herstellung eines derartigen Bauelements
WO2002002458A1 (de) * 2000-07-05 2002-01-10 Robert Bosch Gmbh Verfahren zur herstellung eines halbleiterbauelements sowie ein nach dem verfahren hergestelltes halbleiterbauelement
DE10032579A1 (de) * 2000-07-05 2002-01-24 Bosch Gmbh Robert Verfahren zur Herstellung eines Halbleiterbauelements sowie ein nach dem Verfahren hergestelltes Halbleiterbauelement
DE10065026A1 (de) * 2000-12-23 2002-07-04 Bosch Gmbh Robert Mikromechanisches Bauelement und entsprechendes Herstellungsverfahren
DE10114036A1 (de) * 2001-03-22 2002-10-02 Bosch Gmbh Robert Verfahren zur Herstellung von mikromechanischen Sensoren und damit hergestellte Sensoren
DE10138759A1 (de) * 2001-08-07 2003-03-06 Bosch Gmbh Robert Verfahren zur Herstellung eines Halbleiterbauelements sowie Halbleiterbauelement, insbesondere Membransensor
DE102004036035A1 (de) * 2003-12-16 2005-07-21 Robert Bosch Gmbh Verfahren zur Herstellung eines Halbleiterbauelements sowie ein Halbleiterbauelement, insbesondere ein Membransensor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
I. Mizushima et al.; "Empty-space-in-silicon technique for fabricating a silicon-on-nothing structure"; Appl. Phys. Lett., Vol. 77, No. 20, 13 November 2000, S. 3290 - 3292 *
I. Mizushima et al.; "Empty-space-in-silicon technique for fabricating a silicon-on-nothing structure"; Appl. Phys. Lett., Vol. 77, No. 20, 13 November 2000, S. 3290 – 3292

Also Published As

Publication number Publication date
US7572661B2 (en) 2009-08-11
ITMI20051638A1 (it) 2006-03-09
DE102004043357A1 (de) 2006-03-09
FR2874909A1 (fr) 2006-03-10
FR2874909B1 (fr) 2011-07-15
US20060063293A1 (en) 2006-03-23
JP2006075982A (ja) 2006-03-23

Similar Documents

Publication Publication Date Title
DE4341271B4 (de) Beschleunigungssensor aus kristallinem Material und Verfahren zur Herstellung dieses Beschleunigungssensors
DE10063991B4 (de) Verfahren zur Herstellung von mikromechanischen Bauelementen
DE102004043356A1 (de) Sensorelement mit getrenchter Kaverne
EP1169650B1 (de) Unterschiedliche opferschichtdicken unter festen und beweglichen elektroden ( kapazitiver beschleunigungssensor )
DE102011080978B4 (de) Verfahren zur Herstellung einer mikromechanischen Struktur
DE10006035A1 (de) Verfahren zur Herstellung eines mikromechanischen Bauelements sowie ein nach dem Verfahren hergestelltes Bauelement
DE102004043357B4 (de) Verfahren zur Herstellung eines mikromechanischen Sensorelements
WO2009149980A2 (de) Verfahren zur herstellung einer mikromechanischen membranstruktur mit zugang von der substratrückseite
DE19843984B4 (de) Verfahren zur Herstellung von Strahlungssensoren
DE10114036A1 (de) Verfahren zur Herstellung von mikromechanischen Sensoren und damit hergestellte Sensoren
DE102006031506A1 (de) Verfahren zur Herstellung von Mikronadeln in einem Si-Halbleitersubstrat
DE4016472A1 (de) Verfahren zur herstellung von mikromechanischen sensoren mit ueberlastsicherung
DE4003473C2 (de)
DE102005023699A1 (de) Mikromechanisches Bauelement mit einer Membran und Verfahren zur Herstellung eines solchen Bauelements
DE4106933A1 (de) Strukturierungsverfahren
DE102019210285B4 (de) Erzeugen eines vergrabenen Hohlraums in einem Halbleitersubstrat
EP1594799A2 (de) Verfahren zur herstellung einer mikromechanischen vorrichtung und vorrichtung
DE4036895C2 (de)
DE10046621B4 (de) Verfahren zur Herstellung eines Membransensor-Arrays sowie Membransensor-Array
WO2006063885A1 (de) Verfahren zum bilden eines grabens in einer mikrostruktur
WO2021151884A1 (de) Mems mit hohem aspektverhältnis
EP1440034B1 (de) Verfahren zum erzeugen von hohlräumen mit einer optisch transparenten wandung
DE4336774A1 (de) Verfahren zur Herstellung von Strukturen
DE102007004344A1 (de) Verfahren zur Herstellung von Halbkegel-Mikronadeln und nach diesem Verfahren herstellbare Halbkegel-Mikronadeln
EP1546027A2 (de) Verfahren und mikromechanisches bauelement

Legal Events

Date Code Title Description
R012 Request for examination validly filed

Effective date: 20110531

R016 Response to examination communication
R016 Response to examination communication
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee