EP0327311B1 - Beschichtungsflüssigkeit zur Herstellung einer Oxidschicht - Google Patents

Beschichtungsflüssigkeit zur Herstellung einer Oxidschicht Download PDF

Info

Publication number
EP0327311B1
EP0327311B1 EP19890300927 EP89300927A EP0327311B1 EP 0327311 B1 EP0327311 B1 EP 0327311B1 EP 19890300927 EP19890300927 EP 19890300927 EP 89300927 A EP89300927 A EP 89300927A EP 0327311 B1 EP0327311 B1 EP 0327311B1
Authority
EP
European Patent Office
Prior art keywords
coating
och3
forming
oxide
ch3si
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19890300927
Other languages
English (en)
French (fr)
Other versions
EP0327311A2 (de
EP0327311A3 (en
Inventor
Hiroyuki Yamazaki Works Of Morishima
Shun-Ichiro Yamazaki Works Of Uchimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Publication of EP0327311A2 publication Critical patent/EP0327311A2/de
Publication of EP0327311A3 publication Critical patent/EP0327311A3/en
Application granted granted Critical
Publication of EP0327311B1 publication Critical patent/EP0327311B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1212Zeolites, glasses

Definitions

  • This invention relates to a coating fluid for forming an oxide coating which is thermally stable and has good coating properties and a method for forming an oxide coating using the same.
  • EP-A-0008215 discloses a method of preparing alkoxide coatings on substrates.
  • a clear solution is prepared by reacting metal alkoxides with a mixture of critical amounts of water and/or acid in an alcohol diluted medium.
  • the alkoxides can be Ti(OR)4 or Ta(OR)5, or Si(OR)4 in admixture with these alkoxides.
  • the coatings are deposited by applying the alkoxide solution to the substrate then heating the coating at over 350°C.
  • US-A-3847,583 discloses a process for producing glassy, crystalline or glassy crystalline oxide multi-component substances, which are produced without going through a molten phase.
  • An alkali or alkali earth metal compound and at least one other metal compound, both dissolved in an organic solvent are reacted in the solvent, the solvent is evaporated to form a precipitate, and the precipitate is heated to form the multi-component substance.
  • These compositions are applied as coatings to substrates e.g. glasses.
  • the present invention provides a coating fluid for forming an oxide coating on a substrate, which comprises a reaction product obtained by subjecting: (A) a silane compound expressed by the formula RmSi(OR) 4-m wherein R represents an alkyl group of 1 to 4 carbon atoms or an aryl group and m represents an integer of 0 to 2 and (B) an organic metal compound expressed by the formula M(OR') n wherein M represents a atom, R' represents an alkyl group of 1 to 4 carbon atoms or an aryl group and n represents a valence of the atom, to hydrolysis and condensation by the use of a catalyst in the presence of a solvent, characterised in that the atom is selected from magnesium, boron, phosphorous, zirconium, yttrium or barium.
  • the present invention also provides a process for forming a coating oxide on a substrate which comprises A process for forming a coating oxide on a substrate which comprises a step of coating a coating fluid on a substrate, said coating fluid comprising a reaction product obtained by subjecting (A) a silane compound expressed by the formula RmSi(OR) 4-m wherein R represents an alkyl group of 1 to 4 carbon atoms or an aryl group and m represents an integer of 0 to 2 and (B) an organic compound expressed by the formula M(OR') n wherein M represents a atom, R' represents an alkyl group of 1 to 4 carbon atoms or an aryl group and n represents a valence of the atom, to hydrolysis and condensation by the use of a catalyst in the presence of a solvent; and a step of calcining said coated substrate at a temperature of 400-800°C: characterised in that the atom is selected from magnesium, boron, phosphorous, zirconium, yttrium
  • the silane compound used in the present invention is expressed by the formula RmSi(OR) 4-m and its concrete examples are tetrafunctional silanes such as Si(OCH3)4, Si(OC2H5)4, Si(OC3H7), etc., trifunctional silanes such as CH3Si(OCH3)3, CH3Si(OC2H5)3, CH3Si(OC3H7)3, C2H5Si(OCH3)3, C6H5Si(OCH3)3, CH3Si(OC6H5)3, etc.
  • tetrafunctional silanes such as Si(OCH3)4, Si(OC2H5)4, Si(OC3H7), etc.
  • trifunctional silanes such as CH3Si(OCH3)3, CH3Si(OC2H5)3, CH3Si(OC3H7)3, C2H5Si(OCH3)3, C6H5Si(OCH3)3, CH3Si(OC6H5)3, etc.
  • alkoxysilanes such as (CH3)2Si(OCH3)2, (CH3)2Si(OC2H5)2, (CH3)2Si(OC3H7)2, (C2H5)2Si(OCH3)2, (C6H5)2Si(OCH3)2, (CH3)2Si(OC6H5)2, etc.
  • alkoxysilanes may be used singly or in admixture of two or more members thereof.
  • the organic metal compound used in the present invention is expressed by the formula M(OR') n and its concrete examples are B(O i-C3H7)3, Mg(OC3H7)2, P(O i-C3H7)3, etc. These metal compounds may be used singly or in admixture of two or more members thereof. Further, the above-mentioned R and R' may be the same or different.
  • the proportions of the silane compound and the organic metal compound used in the present invention it is preferred in the aspects of coating properties, carbon residue, etc. that the proportion of the silane compound be in the range of 70 to 90% by mol and that of the organic metal compound be in the range of 10 to 30% by mol.
  • the silane compound is preferred to be a tetrafunctional silane Si(OR)4 singly or a mixture of 20 to 40% by mol of a tetrafunctional silane Si(OR)4, 20 to 60% by mol of a trifunctional silane RSi(OR)3 and 0 to 40% by mol of a bifunctional silane R2Si(OR)2.
  • amide solvents such as N,N-dimethylformamides which do not react with alkyl groups or aryl groups,alcohol solvents which have the same carbon atoms as those of the alkyl or aryl group in the silane compound, etc. are preferably used in the aspect of coating properties. These solvents may be used in admixture.
  • reaction catalyst used in the present invention are inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, boric acid, hydrofluoric acid, etc., oxides such as phosphorus pentoxide, boron oxide and organic acids such as oxalic acid, etc.
  • the quantity of the catalyst added is preferably in the range of 0.1 to 5% by weight based on the total weight of the silane and the organic metal compound.
  • the coating fluid of the present invention is obtained by subjecting the silane compound and the organic metal compound to hydrolysis and condensation by the use of a catalyst as described above in the presence of a solvent. Further, the thermal expansion coefficient of the oxide coating obtained using the resulting solution can be optinally varied by selecting the kind and quantity of the organic metal compound.
  • the coating fluid is coated on the surface of a substrate such as silicon, glass, ceramics, aluminium, etc. by means of spinner, brush, spray, etc., followed by drying usually at 50 to 200°C, preferably 100 to 150°C and then calcining usually at 400 to 800°C, preferably 400 to 500°C.
  • the oxide coating obtained using the coating fluid of the present invention is smaller in the carbon content than oxide coatings obtained using conventional silanol condensates, and an oxide of e.g. Mg, P, Zr, Y, or Ba is contained therein as a second component to form a reaction product with SiO2, whereby the resulting coating is thermally stable and good coating properties is obtained.
  • an oxide of e.g. Mg, P, Zr, Y, or Ba is contained therein as a second component to form a reaction product with SiO2, whereby the resulting coating is thermally stable and good coating properties is obtained.
  • Si(OCH3)4 (51g), CH3Si(OCH3)3 (45g), (CH3)2Si(OCH3)2 (12g), B(O i-C3H7)3 (31g) and Mg(OC3H7)2 (10g) were dissolved in a mixed solvent of N,N-dimethylformamide (160g) and methanol (40g), followed by adding to the solution, a solution (55g) of oxalic acid (0.6g) in water and subjecting the mixture to hydrolysis and condensation to prepare a solution of the reaction product.
  • This solution was coated on a Si wafer by means of a spinner at 3,000 rpm, followed by drying at 150°C for one hour and then calcining in an electric oven at 400°C for one hour to obtain a colorless, transparent silica coating without any crack.
  • the coating thickness of the silica coating was measured by means of a surface roughness meter (TALYSTEP, trademark of product made by RANK TAYLOR HOBSON Co. LTD.) to give 0.7 ⁇ m. Further, when the inflared absorption spectra of the coating was measured by means of an inflared spectrophotometer, absorptions of Mg-O and B-O bonds were observed besides Si-O-Si absorption; thus it was confirmed that the coating was a complete oxide coating. Further, when the oxide coating was treated by means of a barrel type oxygen plasma ashing device (PR-501A, tradename of product made by Yamato Kagaku Co. LTD.) at 400W for 20 minutes, no crack was observed in the coating.
  • PR-501A barrel type oxygen plasma ashing device
  • thermophysical tester TMA 8,150 type, tradename of product made by Rigaku Denki Co. LTD.
  • Si(OC2H5)4 (145g), P(OC3H7)3 (41g) and Mg(OC3H7)2 (14g) were dissolved in ethyl alcohol (300g), followed by adding to the solution, a solution (66g) of oxalic acid (0.8g) in water and subjecting the mixture to hydrolysis and condensation to prepare a solution of the reaction product.
  • Example 2 When the solution was coated onto a Si wafer, followed by drying and calcining under the same conditions as in Example 1 to obtain a colorless, transparent silica coating having a coating thickness of 0.5 ⁇ m and no crack. Further, when coating of the above solution was carried out on a Si wafer having an aluminum pattern deposited thereon under the same conditions as in Example 1, a colorless, transparent oxide coating without any crack was obtained.
  • Si(OC2H5)4(69g), CH3Si(OC2H5)3 (59g), (CH3)2Si(OC2H5)2 (31g) and B(O i-C3H7)3 (31g) were dissolved in a mixed solvent of ethanol (26g) and N,N-dimethylformamide (105g), followed by adding to the solution, a solution of oxalic acid (0.6g) in water (56g) and subjecting the mixture to hydrolysis and condensation to prepare a solution of the reaction product.
  • Si(OCH3)4 (51g), CH3Si(OCH3)3 (30g), C6H5Si(OCH3)3 (22g), (CH3)2Si(OCH3)2 (12g), B(O i-C3H7)3 (31g) and Mg(OC3H7)2 (10g) were dissolved in diethylene glycol diethyl ether (200g), followed by adding to the solution, a solution (55g) of phosphoric acid (0.5g) in water and subjecting the mixture to hydrolysis and condensation to prepare a solution of the reaction product.
  • This solution was coated on a Si wafer and a Si wafer having an aluminum pattern deposited thereon, followed by drying and calcining under the same conditions as in Example 1 to obtain a colorless, transparent oxide coating having a coating thickness of 0.8 ⁇ m without any crack.
  • Si(OC2H5)4 35g was dissolved in a mixed solvent of ethanol (64g) and ethyl acetate (26g), followed by adding to the solution, a solution of oxalic acid (0.5g) in water (12g), followed by subjecting the mixture to hydrolysis and condensation to prepare a silanol oligomer solution.
  • Si(OCH3)4 (17g), CH3Si(OCH3)3 (25g) and (CH3)2Si(OCH3)2 (5g) were dissolved in a mixed solvent of N,N-dimethylformamide (48g) and methanol (6g), followed by adding to the solution, a solution of phosphoric acid (0.5g) in water (20g) and subjecting the mixture to hydrolysis and condensation to prepare a silanol oligomer solution.
  • the coating fluid for forming an oxide coating of the present invention is thermally stable and superior in the coating properties; hence cracks do not occur in the oxide coating of even about 1.5 ⁇ m or more formed on the surface of a substrate using the coating fluid.
  • the coating fluid for forming an oxide coating of the present invention is effective for coating electronic parts, particularly coating for step-covering on multilevel inter connection of semiconductors, planarizing the element surface of magnetic bubble domain memory, etc.
  • the present invention aims to provide a coating fluid for forming an oxide coating having overcome the above-mentioned drawbacks of the prior art and having a good thermal stability and superior coating properties.
  • the inventors of the present Invention have made extensive research in order to achieve the above-mentioned aims and as a result have noted that in order to form an oxide coating without any cracks on a substrate such as silicon, aluminum, etc. and further without any occurrence of cracks even at the time of the subsequent oxidizing step such as oxygen plasma treatment, it is necessary to use a coating fluid satisfying conditions of (1) reducing the strain of curing shrinkage at the time of calcination, (2) bringing the thermal expansion coefficient of the coating close to that of the substrate, and (3) making the carbon content in the coating very low or nil and such a coating fluid is obtained by subjecting a specified compound to hydrolysis and condensation by the use of a catalyst in the presence of a solvent; thus we have achieved the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Silicon Polymers (AREA)
  • Local Oxidation Of Silicon (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Formation Of Insulating Films (AREA)

Claims (10)

  1. Beschichtungsflüssigkeit zur Bildung einer Oxidschicht auf einem Substrat, welche ein Reaktionsprodukt enthält, das erhalten wird, indem
    (A) eine Silanverbindung, welche durch die Formel RmSi(OR)4-m ausgedrückt wird,
    worin R eine Alkylgruppe mit 1 bis 4 Kohlenstoffatomen oder eine Arylgruppe und m eine ganze Zahl zwischen 0 und 2 bedeutet, und
    (B) eine organische Verbindung, die durch die Formel M(OR')n ausgedrückt wird,
    worin M ein Atom, R' eine Alkylgruppe mit 1 bis 4 Kohlenstoffatomen oder eine Arylgruppe und n die Wertigkeit des Atoms bedeutet,
    der Hydrolyse und Kondensation durch die Verwendung eines Katalysators in der Anwesenheit eines Lösungsmittels unterworfen wird,
    dadurch gekennzeichnet, daß das Atom ausgewählt ist aus Magnesium, Bor, Phosphor, Zirkonium, Yttrium oder Barium.
  2. Beschichtungsflüssigkeit zur Bildung einer Oxidschicht auf einem Substrat nach Anspruch 1, bei der die Silanverbindung ausgewählt ist aus Si(OC₂H₅)₄, Si(OC₃H₇), CH₃Si(OCH₃)₃, CH₃Si(OC₂H₅)₃, CH₃Si(OC₃H₇)₃, C₂H₅Si(OCH₃)₃, C₆H₅Si(OCH₃)₃, CH₃Si(OC₆H₅)₃, (CH₃)₂Si(OCH₃)₂, (CH₃)₂Si(OC₂H₅)₂, (CH₃)₂Si(OC₃H₇)₂, (C₂H₅)₂Si(OCH₃)₂, (C₆H₅)₂Si(OCH₃)₂ und (CH₃)₂Si(OC₆H₅)₂.
  3. Beschichtungsflüssigkeit zur Bildung einer Oxidschicht auf einem Substrat nach Anspruch 1, bei der die organische Verbindung hergestellt ist aus
  4. Beschichtungsflüssigkeit zur Bildung einer Oxidschicht auf einem Substrat nach Anspruch 1, bei der der Anteil der Silanverbindung im Bereich von 70 bis 90 Mol-% und derjenige der organischen Verbindung im Bereich von 10 bis 30 Mol-% liegt.
  5. Beschichtungsflüssigkeit zur Bildung einer Oxidschicht auf einem Substrat nach Anspruch 4, bei der die Silanverbindung aus einem tetrafunktionellen Silan oder einer Mischung von zwischen 20 und 40 Mol-% eines tetrafunktionellen Silans, zwischen 20 und 60 Mol-% eines trifunktionellen Silans und zwischen 0 und 40 Mol-% eines bifunktionellen Silans besteht.
  6. Beschichtungsflüssigkeit zur Bildung einer Oxidschicht auf einem Substrat nach Anspruch 1, bei der das Lösungsmittel ausgewählt ist aus Amiden und Alkoholen.
  7. Beschichtungsflüssigkeit zur Bildung einer Oxidschicht auf einem Substrat nach Anspruch 1, bei der der Katalysator ausgewählt ist aus Salzsäure, Schwefelsäure, Phosphorsäure, Borsäure, Flußsäure, Phosphorpentoxid, Boroxid und Oxalsäure.
  8. Verfahren zur Bildung einer Oxidschicht auf einem Substrat, welches umfaßt:
    einen Schritt des Aufschichtens einer Beschichtungsflüssigkeit auf ein Substrat, wobei die Beschichtungsflüssigkeit ein Reaktionsprodukt enthält, das erhalten wird, indem (A) eine Silanverbindung, die durch die Formel RmSi(OR)4-m ausgedrückt wird, worin R eine Alkylgruppe mit 1 bis 4 Kohlenstoffatomen oder eine Arylgruppe und m eine ganze Zahl zwischen 0 und 2 bedeutet, und (B) eine organische Verbindung, welche durch die Formel M(OR')n ausgedrückt wird, worin M ein Atom, R' eine Alkylgruppe mit 1 bis 4 Kohlenstoffatomen oder eine Arylgruppe und n eine Wertigkeit des Atoms bedeutet, der Hydrolyse und Kondensation durch die Anwendung eines Katalysators in Anwesenheit eines Lösungsmittels unterworfen wird; und
    einen Schritt des Kalzinierens des beschichteten Trägers bei einer Temperatur von 400 bis 800°C,
    dadurch gekennzeichnet, daß das Atom ausgewählt ist aus Magnesium, Bor, Phosphor, Zirkonium, Yttrium oder Barium;
    und daß vor dem Kalzinierungsschritt ein Schritt zum Trocknen des beschichteten Substrats bei einer Temperatur von 50 bis 200°C durchgeführt wird.
  9. Verfahren zur Bildung einer Oxidschicht auf einem Substrat nach Anspruch 8, bei welchem die Silanverbindung ausgewählt ist aus Si(OC₂H₅)₄, Si(OC₃H₇), CH₃Si(OCH₃)₃, CH₃Si(OC₂H₅)₃, CH₃Si(OC₃H₇)₃, C₂H₅Si(OCH₃)₃, C₆H₅Si(OCH₃)₃, CH₃Si(OC₆H₅)₃, (CH₃)₂Si(OCH₃)₂, (CH₃)₂Si(OC₂H₅)₂, (CH₃)₂Si(OC₃H₇)₂, (C₂H₅)₂Si(OCH₃)₂, (C₆H₅)₂Si(OCH₃)₂ und (CH₃)₂Si(OC₆H₅)₂.
  10. Verfahren zur Bildung einer Oxidschicht auf einem Substrat nach Anspruch 8, bei welchem die Kalzinierungstemperatur im Bereich von 400°C bis 500°C liegt.
EP19890300927 1988-02-02 1989-01-31 Beschichtungsflüssigkeit zur Herstellung einer Oxidschicht Expired - Lifetime EP0327311B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2237088 1988-02-02
JP22370/88 1988-02-02

Publications (3)

Publication Number Publication Date
EP0327311A2 EP0327311A2 (de) 1989-08-09
EP0327311A3 EP0327311A3 (en) 1990-08-01
EP0327311B1 true EP0327311B1 (de) 1994-09-14

Family

ID=12080747

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19890300927 Expired - Lifetime EP0327311B1 (de) 1988-02-02 1989-01-31 Beschichtungsflüssigkeit zur Herstellung einer Oxidschicht

Country Status (3)

Country Link
EP (1) EP0327311B1 (de)
JP (1) JPH021778A (de)
DE (1) DE68918124T2 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2453550C1 (ru) * 2011-03-09 2012-06-20 Федеральное государственное унитарное предприятие "Государственный ордена Трудового Красного Знамени научно-исследовательский институт химии и технологии элементоорганических соединений" (ФГУП ГНИИХТЭОС) Способ получения иттрийсодержащих органоалюмоксансилоксанов, связующие и пропиточные композиции на их основе
US8557877B2 (en) 2009-06-10 2013-10-15 Honeywell International Inc. Anti-reflective coatings for optically transparent substrates
US8864898B2 (en) 2011-05-31 2014-10-21 Honeywell International Inc. Coating formulations for optical elements
US10544329B2 (en) 2015-04-13 2020-01-28 Honeywell International Inc. Polysiloxane formulations and coatings for optoelectronic applications

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02258841A (ja) * 1989-03-31 1990-10-19 Fuji Xerox Co Ltd 無機・有機複合材料の製造方法
JPH02258839A (ja) * 1989-03-31 1990-10-19 Fuji Xerox Co Ltd 無機・有機複合材料の製造方法
JP2576065B2 (ja) * 1989-03-31 1997-01-29 富士ゼロックス株式会社 半導電性重合体組成物
JP2576066B2 (ja) * 1989-03-31 1997-01-29 富士ゼロックス株式会社 半導電性重合体組成物
BE1008162A5 (fr) * 1989-09-27 1996-02-06 Air Prod & Chem Produits manufactures carbones et procede pour les produire.
DE4018984A1 (de) * 1990-06-13 1991-12-19 Wacker Chemitronic Verfahren zur herstellung lagerstabiler oberflaechen von polierten siliciumscheiben
JP2739916B2 (ja) * 1992-02-18 1998-04-15 キヤノン株式会社 光学素子製造用ガラスブランク及びこれを用いた光学素子の製造方法
DE4225106C2 (de) * 1992-07-30 1995-10-05 Heraeus Kulzer Gmbh Verfahren und Vorrichtung zur Herstellung eines Metall-Kunststoff-Verbundes
AU3460095A (en) * 1994-06-30 1996-01-25 Hitachi Chemical Company, Ltd. Material for forming silica-base coated insulation film, process for producing the material, silica-base insulation film, semiconductor device, and process for producing the device
DE19714949A1 (de) * 1997-04-10 1998-10-15 Inst Neue Mat Gemein Gmbh Verfahren zum Versehen einer metallischen Oberfläche mit einer glasartigen Schicht
JP4499907B2 (ja) * 2000-12-07 2010-07-14 富士化学株式会社 無機高分子化合物の製造方法、無機高分子化合物、および無機高分子化合物膜
US7015061B2 (en) 2004-08-03 2006-03-21 Honeywell International Inc. Low temperature curable materials for optical applications
US20060057418A1 (en) 2004-09-16 2006-03-16 Aeromet Technologies, Inc. Alluminide coatings containing silicon and yttrium for superalloys and method of forming such coatings
WO2006065819A2 (en) * 2004-12-13 2006-06-22 Aeromet Technologies, Inc. Metal components with silicon-containing protective coatings and methods of forming such protective coatings
US9133718B2 (en) 2004-12-13 2015-09-15 Mt Coatings, Llc Turbine engine components with non-aluminide silicon-containing and chromium-containing protective coatings and methods of forming such non-aluminide protective coatings
KR20070108658A (ko) * 2006-05-08 2007-11-13 유영선 반도체 장치의 절연막 형성용 도포액 조성물의 제조방법 및제조된 도포액 조성물
EP2046893A2 (de) * 2006-08-04 2009-04-15 Dow Corning Corporation Silikonharz und silikonzusammensetzung
RU2444540C1 (ru) * 2010-10-21 2012-03-10 Общество с ограниченной ответственностью "Пента-91" Способ получения полиметаллосилоксанов
EP2661648A1 (de) * 2011-01-05 2013-11-13 Dow Corning Corporation Polyheterosiloxane für materialien mit hohem brechungsindex
GB2496708A (en) * 2011-11-17 2013-05-22 Dow Corning Solvent-borne scratch resistant coating compositions containing polymetallosiloxanes
JP6015389B2 (ja) 2012-11-30 2016-10-26 株式会社リコー 電界効果型トランジスタ、表示素子、画像表示装置、及びシステム
CN110289204B (zh) * 2018-03-19 2023-08-15 株式会社理光 氧化物绝缘体膜形成用涂布液

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3847583A (en) * 1969-08-13 1974-11-12 Jenaer Glaswerk Schott & Gen Process for the manufacture of multi-component substances
FR2123652A5 (de) * 1970-02-19 1972-09-15 Ibm
IN152814B (de) * 1978-08-08 1984-04-14 Westinghouse Electric Corp
JPS5534276A (en) * 1978-09-04 1980-03-10 Tokyo Denshi Kagaku Kabushiki Preparation of coating liquid for silica-based film formation
JPS5638472A (en) * 1979-09-06 1981-04-13 Tokyo Denshi Kagaku Kabushiki Formation of silica coating
US4318939A (en) * 1980-08-21 1982-03-09 Western Electric Co., Incorporated Stabilized catalyzed organopolysiloxanes
JPS60258477A (ja) * 1984-06-02 1985-12-20 Nippon Steel Corp 珪素鋼板の絶縁皮膜の形成方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8557877B2 (en) 2009-06-10 2013-10-15 Honeywell International Inc. Anti-reflective coatings for optically transparent substrates
US8784985B2 (en) 2009-06-10 2014-07-22 Honeywell International Inc. Anti-reflective coatings for optically transparent substrates
RU2453550C1 (ru) * 2011-03-09 2012-06-20 Федеральное государственное унитарное предприятие "Государственный ордена Трудового Красного Знамени научно-исследовательский институт химии и технологии элементоорганических соединений" (ФГУП ГНИИХТЭОС) Способ получения иттрийсодержащих органоалюмоксансилоксанов, связующие и пропиточные композиции на их основе
US8864898B2 (en) 2011-05-31 2014-10-21 Honeywell International Inc. Coating formulations for optical elements
US10544329B2 (en) 2015-04-13 2020-01-28 Honeywell International Inc. Polysiloxane formulations and coatings for optoelectronic applications

Also Published As

Publication number Publication date
JPH021778A (ja) 1990-01-08
JPH0559154B2 (de) 1993-08-30
EP0327311A2 (de) 1989-08-09
DE68918124T2 (de) 1995-02-23
DE68918124D1 (de) 1994-10-20
EP0327311A3 (en) 1990-08-01

Similar Documents

Publication Publication Date Title
EP0327311B1 (de) Beschichtungsflüssigkeit zur Herstellung einer Oxidschicht
US4753856A (en) Multilayer ceramic coatings from silicate esters and metal oxides
US5387480A (en) High dielectric constant coatings
EP0270241B1 (de) Mehrschicht-Keramik ausgehend von Silikatestern
US4808653A (en) Coating composition containing hydrogen silsesquioxane resin and other metal oxide precursors
US4753855A (en) Multilayer ceramic coatings from metal oxides for protection of electronic devices
EP0460868B1 (de) Amin-Katalysatoren für die Umwandlung von Kieselsäure-Vorprodukten zu Kieselsäure bei niedriger Temperatur
CA1284748C (en) Platinum or rhodium catalyzed multilayer ceramic coatings from hydrogen silsesquioxane resin and metal oxides
EP0461782A2 (de) Umwandlung bei niedrigen Temperaturen von Kieselvorproduktion in Kieselerden
US5445894A (en) Ceramic coatings
JPS6346095B2 (de)
US5271768A (en) Coating for forming an oxide coating
US4997482A (en) Coating composition containing hydrolyzed silicate esters and other metal oxide precursors
JPH05214296A (ja) 酸化物被膜形成用塗布液および酸化物被膜の製造法
JPH06293879A (ja) 酸化物被膜形成用塗布液および酸化物被膜の製造法
JPH07173434A (ja) 酸化物被膜形成用塗布液および酸化物被膜の製造法
JP3977896B2 (ja) 低誘電率材料
JPH0371472B2 (de)
JPH06172709A (ja) 酸化物被膜形成用塗布液および酸化物被膜の製造法
JPH0524950B2 (de)
JPH04352329A (ja) 酸化物被膜形成用塗布液および酸化物被膜の製造法
JPH03190984A (ja) 酸化物被膜形成用塗布液及び酸化物被膜の製造法
JPH1036769A (ja) 酸化物被膜形成用塗布液、酸化物被膜の製造法、酸化物被膜及び半導体装置
JPH0673339A (ja) 酸化物被膜形成用塗布液および酸化物被膜の製造法
JPH03179740A (ja) 半導体装置およびその製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE DE GB LU NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE DE GB LU NL

17P Request for examination filed

Effective date: 19901022

17Q First examination report despatched

Effective date: 19911223

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE GB LU NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19940914

REF Corresponds to:

Ref document number: 68918124

Country of ref document: DE

Date of ref document: 19941020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19950131

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19980122

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19980128

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990801

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19990131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010122

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020801