EP0100941B1 - Verfahren zum Aufarbeiten eines Kernreaktorbrennstabes - Google Patents

Verfahren zum Aufarbeiten eines Kernreaktorbrennstabes Download PDF

Info

Publication number
EP0100941B1
EP0100941B1 EP19830107170 EP83107170A EP0100941B1 EP 0100941 B1 EP0100941 B1 EP 0100941B1 EP 19830107170 EP19830107170 EP 19830107170 EP 83107170 A EP83107170 A EP 83107170A EP 0100941 B1 EP0100941 B1 EP 0100941B1
Authority
EP
European Patent Office
Prior art keywords
nuclear fuel
cladding tube
encasing pipe
autoclave
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP19830107170
Other languages
English (en)
French (fr)
Other versions
EP0100941A1 (de
Inventor
Wolfgang Dr. Stoll
Karl Ennerst
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alkem GmbH
Original Assignee
Alkem GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alkem GmbH filed Critical Alkem GmbH
Publication of EP0100941A1 publication Critical patent/EP0100941A1/de
Application granted granted Critical
Publication of EP0100941B1 publication Critical patent/EP0100941B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C19/00Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
    • G21C19/34Apparatus or processes for dismantling nuclear fuel, e.g. before reprocessing ; Apparatus or processes for dismantling strings of spent fuel elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Definitions

  • the invention relates to a method for working up a nuclear reactor fuel rod, which contains nuclear fuel in a cladding tube, by removing the cladding tube from the nuclear fuel.
  • the nuclear reactor fuel rod to be worked up by this method has a cladding tube made of a magnesium alloy, in which a uranium metal body is located as the nuclear fuel.
  • the cladding tube is heated in a shredder system with high-frequency electrical current, thereby expanded and softened and finally machined from the uranium metal body with shredder cylinders.
  • the fuel rod is located in the shredder system with the outer surface of its cladding tube between two axially parallel shredder cylinders which have cutting teeth on their outer jacket and which are guided along the longitudinal axis of the fuel rod rotating about this longitudinal axis.
  • the uranium metal body is further chemically treated.
  • the object of the invention is to remove the cladding tube of a nuclear reactor fuel rod from the nuclear fuel in such a way that there is no cladding tube material at least in the core fuel separated from the cladding tube.
  • a method of the type mentioned at the outset is characterized according to the invention in that the cladding tube, in the gas-tightly closed state, is heated uniformly to such an extent together with the nuclear fuel therein that the diameter of the cladding tube increases while increasing the distance between the nuclear fuel and the Cladding tube expands without cracking in the cladding tube, that the expanded cladding tube is then opened at one end and that the nuclear fuel is finally discharged from the opened cladding tube and further processed separately from the cladding tube.
  • the expansion of the cladding tube made of metal is supported during heating by increasing the gas pressure of gases which are located in the gastightly closed cladding tube and are also heated.
  • gases which are located in the gastightly closed cladding tube and are also heated.
  • these heated gases can be gaseous fission products.
  • connection points between the nuclear fuel and the cladding tube inner wall which may have arisen from caking, are separated, and even oxidic, ie ceramic nuclear fuel, such as nuclear fuel consisting of (U / Pu) 0 2 mixed crystals, can be effortlessly removed Exploitation of gravity is poured out at the open end of the cladding tube and thus separated from the cladding tube. For this purpose, it is even possible to dispense with the previous dismantling of spent nuclear reactor fuel elements or the prior removal of the irradiated fuel rods from such nuclear reactor fuel elements.
  • the nuclear fuel discharged in this way from the cladding tube does not contain any cladding tube material and, particularly if it is ceramic nuclear fuel, can be ground very small, as a result of which the solubility of this nuclear fuel in a solvent and its conveyability are considerably improved. Since there is no cladding tube material, for example zirconium, in the discharged nuclear fuel, this can be dissolved at particularly high temperatures to further improve the solubility in the solvent.
  • the cladding tube material is a metal, such as Zirconium alloys, which are used at particularly high solvent temperatures - solvents are usually acids, e.g. Nitric acid - would react with the solvent to form violent hydrogen. In addition, there is no risk of ignition of the chips produced when the cladding tubes are shredded.
  • the emptied cladding tube if it has been an irradiated nuclear reactor fuel rod, can be flat-rolled and compacted with other flat-rolled cladding tubes and can thus be disposed of in a final storage, saving in volume.
  • tritium which arises as a fission product during operation in a nuclear reactor has diffused to a greater extent into the metallic material of the cladding tube, which is made of zirconium, for example. is practically not in the nuclear fuel of an irradiated fuel rod, but in the material of the cladding tube of this irradiated fuel rod and is easily stored together with it.
  • the removal of tritium from the dissolved nuclear fuel is therefore at least not necessary to the extent that has been done up to now.
  • the nuclear fuel of a spent nuclear reactor fuel rod contains a great deal of ruthenium, palladium and / or rhodium in oxide form, as is particularly the case, for example, in the fuel rods of spent fuel elements from fast breeding reactors, it is advantageous to separate these highly radioactive chemical noble metal compounds from the dissolved nuclear fuel, when the out of the cladding tube discharged nuclear fuel is dissolved in the presence of an oxygen-containing atmosphere in the autoclave and when volatile oxygen compounds, in particular of ruthenium and other noble metals, as well as fission gases are separated from the atmosphere in the autoclave with the aid of a cold trap.
  • This heating can also be carried out by means of an electric current which flows through the cladding tube 3 in the longitudinal direction.
  • an electric current which flows through the cladding tube 3 in the longitudinal direction.
  • the fuel rod 2 is then removed from the muffle furnace. After cooling to ambient temperature of about 20 ° C, the cladding tube 3 is expanded on average to a permanent diameter without cracking, which is about 10% larger than the initial diameter. Finally, the end cap 5 is separated from the cladding tube 3 using a cutting tool. Then the nuclear fuel pellets 6, the caking points of which are blown up with the inside of the cladding tube 3 by widening in the muffle furnace, are poured out of the cladding tube 3 with the aid of gravity.
  • nuclear fuel pellets 6 are mechanically comminuted in a ball mill into powder, which has a grain size of less than 400 lm. This powder is then filled into an autoclave together with nitric acid, which is then rinsed with pure oxygen. The gas space in this autoclave is then filled with pure oxygen at a pressure of about 20 bar and the autoclave is sealed gas-tight. The nitric acid is then heated to 220 ° C. in an autoclave and kept constant for about 20 hours. A pressure of about 64 bar is established in the autoclave.
  • nitric acid nuclear fuel solution is finally fed to a conventional process for further processing.
  • the expanded cladding tube 3 can initially still contain up to 0.5 percent by weight of irradiated nuclear fuel, which is advantageously removed from the cladding tube 3 by vibration and deformation (squeezing rolling) and is fed to the solution in nitric acid in the autoclave. It can then be pressed together with emptied cladding tubes of other irradiated fuel rods with considerable volume reduction in a favorable manner to form cubes or cylinders which are fed to a final storage facility.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Catalysts (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zum Aufarbeiten eines Kernreaktorbrennstabes, welcher Kernbrennstoff in einem Hüllrohr enthält, durch Entfernen des Hüllrohres vom Kernbrennstoff.
  • Ein derartiges Verfahren ist aus der GB-A 1 097 597 bekannt. Der nach diesem Verfahren aufzuarbeitende Kernreaktorbrennstab weist ein Hüllrohr aus einer Magnesiumlegierung auf, in dem sich ein Uran-Metallkörper als Kernbrennstoff befindet. Das Hüllrohr wird in einer Schredderanlage mit elektrischem Hochfrequenzstrom erwärmt, dadurch geweitet und aufgeweicht und schliesslich mit Schredderzylindern vom Uran-Metallkörper abgespant. Der Brennstab befindet sich hierbei in der Schredderanlage mit der Mantelfläche seines Hüllrohres zwischen zwei achsparallelen Schredderzylindern, die auf ihrem Aussenmantel Schneidezähne aufweisen und die entlang der Längsachse des sich um diese Längsachse drehenden Brennstabes geführt werden. Nach dem Entfernen des Hüllrohres in der Schredderanlage wird der Uran-Metallkörper chemisch weiterbehandelt.
  • Insbesondere da sich bestrahlte Brennstäbe irregulär verformt haben, kann nicht ausgeschlossen werden, dass auch Hüllrohrwerkstoff zusammen mit dem Uran-Metallkörper der chemischen Weiterbehandlung zugeführt wird. Es kann aber auch Kernbrennstoff an den Spänen haften bleiben, die beim Abspanen des Hüllrohres entstehen und die nur unter grossem Aufwand von dem Kernbrennstoff getrennt werden können.
  • Durch die Erfindung wird die Aufgabe gelöst, das Hüllrohr eines Kernreaktorbrennstabes vom Kernbrennstoff so zu entfernen, dass sich zumindest im vom Hüllrohr getrennten Kernbrennstoff kein Hüllrohrwerkstoff mehr befindet.
  • Zur Lösung dieser Aufgabe ist ein Verfahren der eingangs erwähnten Art erfindungsgemäss dadurch gekennzeichnet, dass das Hüllrohr in gasdicht verschlossenem Zustand zusammen mit dem in ihm befindlichen Kernbrennstoff gleichmässig so stark aufgeheizt wird, dass sich der Durchmesser des Hüllrohres unter Vergrössern des Abstandes zwischen dem Kernbrennstoff und dem Hüllrohr ohne Rissbildung im Hüllrohr bleibend aufweitet, dass anschliessend das aufgeweitete Hüllrohr an einem Ende geöffnet wird und dass schliesslich der Kernbrennstoff aus dem geöffneten Hüllrohr ausgetragen und vom Hüllrohr getrennt weiterbehandelt wird.
  • Das Aufweiten des aus Metall bestehenden Hüllrohres wird beim Aufheizen durch Erhöhen des Gasdruckes von Gasen unterstützt, die sich im gasdicht verschlossenen Hüllrohr befinden und mit aufgeheizt werden. Im Falle von bestrahlten Kernreaktorbrennstäben, die beispielsweise von in einem Kernreaktor abgebrannten Kernreaktorbrennelementen stammen, können diese aufgeheizten Gase gasförmige Spaltprodukte sein.
  • Durch das bleibende Aufweiten des Hüllrohres werden Verbindungsstellen zwischen dem Kernbrennstoff und der Hüllrohrinnenwand, die durch Verbacken entstanden sein können, getrennt, und sogar oxidischer, d.h. keramischer Kernbrennstoff, wie z.B. aus (U/Pu)02-Mischkristallen bestehender Kernbrennstoff, kann mühelos unter Ausnutzung der Schwerkraft am geöffneten Ende des Hüllrohres ausgeschüttet und so vom Hüllrohr getrennt werden. Hierzu kann sogar auf das vorherige Zerlegen von abgebrannten Kernreaktorbrennelementen bzw. auf den vorherigen Ausbau der bestrahlten Brennstäbe aus solchen Kernreaktorbrennelementen verzichtet werden.
  • Der auf diese Weise aus dem Hüllrohr ausgetragene Kernbrennstoff enthält überhaupt keinen Hüllrohrwerkstoff und kann, insbesondere wenn es sich um keramischen Kernbrennstoff handelt, sehr klein gemahlen werden, wodurch die Löslichkeit dieses Kernbrennstoffes in einem Lösungsmittel und seine Förderbarkeit erheblich verbessert werden. Da sich kein Hüllrohrwerkstoff, also beispielsweise Zirkonium, im ausgetragenen Kernbrennstoff befindet, kann dieser zur weiteren Verbesserung der Löslichkeit im Lösungsmittel bei besonders hohen Temperaturen gelöst werden. In der Regel handelt es sich bei dem Hüllrohrwerkstoff um Metalle, wie z.B. Zirkoniumlegierungen, die bei besonders hohen Lösungsmitteltemperaturen - Lösungsmittel sind in der Regel Säuren, z.B. Salpetersäure - mit dem Lösungsmittel unter heftiger Bildung von störendem Wasserstoff reagieren würden. Ausserdem entfällt das Entzündungsrisiko der beim Zerkleinern der Hüllrohre entstehenden Späne.
  • Das entleerte Hüllrohr kann, falls es sich um einen bestrahlten Kernreaktorbrennstab gehandelt hat, flachgewalzt und mit anderen flachgewalzten Hüllrohren kompaktiert und so unter Volumenersparnis einer Endlagerung zugeführt werden. Während des Betriebes in einem Kernreaktor als Kernspaltprodukt entstehendes Tritium ist nach der genannten Wärmebehandlung in erhöhtem Masse in den beispielsweise aus Zirkonium bestehenden metallischen Werkstoff des Hüllrohres hineindiffundiert, d.h. befindet sich praktisch nicht im Kernbrennstoff eines bestrahlten Brennstabes, sondern im Werkstoff des Hüllrohres dieses bestrahlten Brennstabes und wird zusammen mit diesem problemlos endgelagert. Eine Beseitigung von Tritium aus dem aufgelösten Kernbrennstoff ist daher zumindest nicht im bisherigen Umfang erforderlich.
  • Von Vorteil ist es, wenn der aus dem Hüllrohr ausgetragene Kernbrennstoff in einem Autoklaven in Salpetersäure gelöst wird. In einem solchen Autoklaven gelingt auch das Auflösen von schwerlöslichen (U/PU)o2-Mischkristallen.
  • Enthält der Kernbrennstoff eines abgebrannten Kernreaktorbrennstabes sehr viel Ruthenium, Palladium und/oder Rhodium in Oxidform, wie dies im besonderen Masse beispielsweise in den Brennstäben abgebrannter Brennelemente von schnellen Brutreaktoren der Fall ist, so ist es zur Abtrennung dieser hochradioaktiven chemischen Edelmetallverbindungen vom gelösten Kernbrennstoff günstig, wenn der aus dem Hüllrohr ausgetragene Kernbrennstoff in Gegenwart sauerstoffhaltiger Atmosphäre im Autoklaven gelöst wird und wenn flüchtige Sauerstoffverbindungen insbesondere von Ruthenium und anderen Edelmetallen sowie von Spaltgasen aus der Atmosphäre im Autoklaven mit Hilfe einer Kühlfalle ausgeschieden werden.
  • Die Erfindung und ihre Vorteile seien anhand der Zeichnung an einem Ausführungsbeispiel näher erläutert:
    • In der Zeichnung ist im Längsschnitt ein in einem Kernreaktor bestrahlter Kernreaktorbrennstab 2 dargestellt, welcher etwa 1500 mm lang ist und einen Durchmesser von ca. 14,5 mm hat. Dieser Brennstab 2 weist ein Hüllrohr 3 aus einer Zirkoniumlegierung (Zirkaloy) auf, welches eine Wandstärke von 0,6 mm hat. An beiden Enden ist dieses Hüllrohr 3 mit Endstopfen 4 und 5 verschlossen, die ebenfalls aus der Zirkoniumlegierung (Zirkaloy) bestehen und die mit dem Hüllrohr 3 verschweisst sind. Im Hüllrohr 2 befinden sich keramische Kernbrennstoffpellets 6, die im wesentlichen aus (U/Pu)02-Mischoxid bestehen. Sie enthalten ferner radioaktive Kernspaltprodukte. Ferner befindet sich im Hüllrohr 3 noch eine Spannfeder 7 aus Stahl. Schliesslich ist der Innenraum des gasdicht verschlossenen Hüllrohres 3 noch mit einem aus Helium bestehenden Schutzgas und gasförmigen Kernspaltprodukten aufgefüllt.
  • Zum Aufarbeiten des Brennstabes 2 wird dieser bei gasdicht verschlossenem Hüllrohr 3 in einem Muffelofen bei einer Temperatur von 1200°C drei Stunden lang erhitzt.
  • Dieses Erhitzen kann auch mittels elektrischen Stromes erfolgen, der das Hüllrohr 3 in Längsrichtung durchfliesst. Hierdurch weitet sich der Durchmesser des Hüllrohres 3 im Mittel um 10% ohne Rissbildung im Hüllrohr 3.
  • Anschliessend wird der Brennstab 2 dem Muffelofen entnommen. Nach dem Abkühlen auf Umgebungstemperatur von etwa 20°C ist das Hüllrohr 3 im Mittel auf einen bleibenden Durchmesser ohne Rissbildung geweitet, der etwa 10% grösser ist als der Ausgangsdurchmesser. Schliesslich wird die Endkappe 5 vom Hüllrohr 3 mit Hilfe eines Schneidwerkzeuges abgetrennt. Sodann werden die Kernbrennstoffpellets 6, deren Verbackungsstellen mit der Innenseite des Hüllrohres 3 durch das Weiten im Muffelofen gesprengt sind, aus dem Hüllrohr 3 mit Hilfe der Schwerkraft ausgeschüttet.
  • Diese Kernbrennstoffpellets 6 werden in einer Kugelmühle mechanisch zu Pulver zerkleinert, welches eine Korngrösse kleiner 400 I-Lm hat. Anschliessend wird dieses Pulver zusammen mit Salpetersäure in einen Autoklaven eingefüllt, der dann mit reinem Sauerstoff gespült wird. Anschliessend wird der Gasraum in diesem Autoklaven mit reinem Sauerstoff von einem Druck von etwa 20 bar gefüllt und der Autoklav gasdicht verschlossen. Sodann wird die Salpetersäure im Autoklaven auf 220°C aufgeheizt und etwa 20 Stunden lang konstant gehalten. Hierbei stellt sich im Autoklaven ein Druck von etwa 64 bar ein.
  • Nach dem Erkalten des Autoklaven auf Umgebungstemperatur von etwa 20°C wird eine aus dem Autoklaven führende Entspannungsleitung geöffnet und die dem Autoklaven entströmende Atmosphäre über eine Kühlfalle geleitet, in der Sauerstoffverbindungen von Rhutenium und anderen Edelmetallen sowie Jod und Krypton abgeschieden werden. Die salpetersaure Kernbrennstofflösung wird schliesslich einem üblichen Verfahren zur Weiterverarbeitung zugeführt.
  • Das geweitete Hüllrohr 3 kann zunächst noch bis 0,5 Gewichtsprozent bestrahlten Kernbrennstoff enthalten, der vorteilhafterweise durch Vibration und Verformung (quetschendes Walzen) aus dem Hüllrohr 3 entfernt und der Auflösung in Salpetersäure im Autoklaven zugeführt wird. Es kann dann zusammen mit entleerten Hüllrohren anderer bestrahlter Brennstäbe unter erheblicher Volumenverminderung in günstiger Weise zu Würfeln oder Zylindern verpresst werden, die einer Endlagerung zugeführt werden.

Claims (4)

1. Verfahren zum Aufarbeiten eines Kernreaktorbrennstabes, welcher Kernbrennstoff in einem Hüllrohr enthält, durch Entfernen des Hüllrohres vom Kernbrennstoff, dadurch gekennzeichnet, dass das Hüllrohr (3) in gasdicht verschlossenem Zustand zusammen mit dem in ihm befindlichen Kernbrennstoff (6) gleichmässig so stark aufgeheizt wird, dass sich der Durchmesser des Hüllrohres (3) unter Vergrössern des Abstandes zwischen dem Kernbrennstoff (6) und dem Hüllrohr (3) ohne Rissbildung im Hüllrohr (3) bleibend aufweitet, dass anschliessend das aufgeweitete Hüllrohr (3) an einem Ende geöffnet wird und dass schliesslich der Kernbrennstoff (6) aus dem geöffneten Hüllrohr (3) ausgetragen und vom Hüllrohr (3) getrennt weiterbehandelt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der aus dem Hüllrohr (3) ausgetragene Kernbrennstoff (6) mechanisch zerkleinert wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der aus dem Hüllrohr (3) ausgetragene Kernbrennstoff (6) in einem Autoklaven in Salpetersäure gelöst wird.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass der aus dem Hüllrohr (3) ausgetragene Kernbrennstoff (6) in Gegenwart sauerstoffhaltiger Atmosphäre im Autoklaven gelöst wird und dass flüchtige Sauerstoffverbindungen von Ruthenium und anderen Edelmetallen sowie von Spaltgasen aus der Atmosphäre des Autoklaven mit Hilfe einer Kühlfalle ausgeschieden werden.
EP19830107170 1982-08-03 1983-07-21 Verfahren zum Aufarbeiten eines Kernreaktorbrennstabes Expired EP0100941B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19823228979 DE3228979A1 (de) 1982-08-03 1982-08-03 Verfahren zum aufarbeiten eines kernreaktorbrennstabes
DE3228979 1982-08-03

Publications (2)

Publication Number Publication Date
EP0100941A1 EP0100941A1 (de) 1984-02-22
EP0100941B1 true EP0100941B1 (de) 1986-10-29

Family

ID=6170028

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19830107170 Expired EP0100941B1 (de) 1982-08-03 1983-07-21 Verfahren zum Aufarbeiten eines Kernreaktorbrennstabes

Country Status (7)

Country Link
US (1) US4514364A (de)
EP (1) EP0100941B1 (de)
JP (1) JPS5977392A (de)
BE (1) BE897436A (de)
BR (1) BR8304128A (de)
CA (1) CA1212787A (de)
DE (2) DE3228979A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2025141172A1 (fr) * 2023-12-29 2025-07-03 Framatome Méthode de production de combustible nucléaire

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2627621B1 (fr) * 1988-02-18 1990-06-08 Commissariat Energie Atomique Procede et installation de detection de crayons non etanches dans un assemblage de combustible nucleaire
US5317608A (en) * 1992-09-14 1994-05-31 Southwest Research Institute Method for thermally treating discharged nuclear fuel
RU2260211C1 (ru) * 2004-09-03 2005-09-10 Кудрявцев Михаил Юрьевич Система управления корпусным ядерным реактором и двухпозиционный переключатель пассивной защиты ядерного реактора
US20080161629A1 (en) * 2007-01-03 2008-07-03 Oleg Naljotov Radioactive waste processing
FR3053151B1 (fr) * 2016-06-23 2018-08-10 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de dissolution d'un combustible nucleaire
CN111430055B (zh) * 2020-03-24 2023-10-20 中核四0四有限公司 一种mox燃料包壳管重利用方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL113467C (de) * 1956-08-07 1900-01-01
BE567254A (de) * 1957-04-30
US3165377A (en) * 1962-04-11 1965-01-12 Herbert M Katz Separation of stainless steel from a nuclear fuel
GB1097597A (en) * 1964-11-03 1968-01-03 Atomic Energy Authority Uk Improvements in or relating to the removal of sheaths from nuclear fuel elements
DE1589815A1 (de) * 1967-03-03 1970-05-14 Kernforschung Gmbh Ges Fuer Verfahren und Vorrichtung zum Durchtrennen von Reaktorbrennelementhuellen,Bestrahlungskapseln oder Lager- und Transportbehaeltern mittels Hochfrequenz
SE328344B (de) * 1967-04-21 1970-09-14 Atomenergi Ab
DE1926827A1 (de) * 1969-05-27 1970-12-03 Kernforschungsanlage Juelich Verfahren zum Aufarbeiten von Brenn- und/oder Brutelementen fuer Kernreaktoren
GB1274357A (en) * 1970-02-03 1972-05-17 Atomic Energy Authority Uk Improvements in or relating to the treatment of irradiated nuclear fuel elements
DE2426764C2 (de) * 1974-06-01 1981-07-09 Kernforschungsanlage Jülich GmbH, 5170 Jülich Verfahren zum Abtrennen von Krypton aus einem radioaktiven Abgasgemisch und Gastrennanlage zum Durchführen des Verfahrens
US4174369A (en) * 1976-12-13 1979-11-13 Westinghouse Electric Corp. Fluid pressure method for recovering fuel pellets from nuclear fuel elements
US4116767A (en) * 1976-12-13 1978-09-26 Westinghouse Electric Corp. Fluid pressure apparatus for recovering fuel pellets from nuclear fuel elements
US4296074A (en) * 1978-04-10 1981-10-20 Rockwell International Corporation Method of decladding
ZA792684B (en) * 1978-09-20 1980-06-25 Vaw Ver Aluminium Werke Ag Method for extraction of uranium from ores
FR2444998A1 (fr) * 1978-12-20 1980-07-18 Commissariat Energie Atomique Procede de traitement des solutions alcalines contenant l'iode radioactif au cours du retraitement des combustibles nucleaires
DE3011760A1 (de) * 1980-03-26 1981-10-01 Kraftwerk Union AG, 4330 Mülheim Verfahren zum zerlegen abgebrannter kernreaktorbrennstaebe
JPS578437A (en) * 1980-06-18 1982-01-16 Matsushita Electric Ind Co Ltd Optical defect inspecting device
FR2485396A1 (fr) * 1980-06-25 1981-12-31 Commissariat Energie Atomique Procede et dispositif pour la denaturation par concassage de pieces metalliques

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2025141172A1 (fr) * 2023-12-29 2025-07-03 Framatome Méthode de production de combustible nucléaire

Also Published As

Publication number Publication date
DE3228979A1 (de) 1984-02-09
BR8304128A (pt) 1984-03-13
EP0100941A1 (de) 1984-02-22
CA1212787A (en) 1986-10-14
US4514364A (en) 1985-04-30
DE3367296D1 (en) 1986-12-04
JPS5977392A (ja) 1984-05-02
BE897436A (fr) 1983-12-01

Similar Documents

Publication Publication Date Title
DE69432775T2 (de) Verfahren zur Herstellung von Zircaloy Rohren mit hohem Widerstand gegen Rissausbreitung
DE69710901T2 (de) Verfahren und vorrichtung zur rückextraktion von metallchelaten
DE69309305T2 (de) Erzeugung eines zirkoniumhüllrohres mit innerer beschichtung
DE69125249T2 (de) Teil aus Zirkonlegierung mit niedrigem Bestrahlungswachstum, dessen Herstellungsverfahren, Brennelementkanalkasten und Aufbau sowie deren Verwendung
DE2550029C3 (de) Kernbrennstoffelement
DE2549971A1 (de) Kernbrennstoffelement
EP0100941B1 (de) Verfahren zum Aufarbeiten eines Kernreaktorbrennstabes
EP1238395B1 (de) Brennelement für einen druckwasser-reaktor und verfahren zur herstellung seiner hüllrohre
DE2206182B2 (de) Verfahren zur rueckgewinnung von radioaktiven edelgasen
DE1467322B2 (de) Verfahren zur wiederaufbereitung von oxydischen kernreaktorbrennstoffen
DE2820060C2 (de)
DE1170919B (de) Verfahren zur Pulverisierung bzw. Aufbereitung von gesinterten Urandioxyd-Reaktorbrennstoffkoerpern
DE3318584C2 (de) Verfahren zum Herstellen einer Kernbrennstoffeinheit mit Wasserstäben und Brennstoffstäben
DE2613537A1 (de) Verfahren zur konditionierung von metallischen, aus zirkonium oder zirkoniumlegierungen bestehenden huelsenabfaellen aus der aufarbeitung bestrahlter kernreaktor-brennelemente zur umweltschuetzenden endlagerung
DE1040710B (de) Reaktorbrennstoffelement und Verfahren zu seiner Herstellung
DE1242767B (de) Verfahren zur Herstellung eines mit einem Metallmantel bekleideten nuklearen Brennstoffkoerpers
DE2512552A1 (de) Verfahren zur abtrennung von uran, plutonium und deren verbindungen
DE1055143B (de) Verfahren zur Herstellung von keramischen Brennelementen fuer Kernreaktoren
EP0100026B1 (de) Verfahren zum Behandeln von Plutoniumoxid und/oder Plutonium-Uran-Mischoxid
DE1433101A1 (de) Verfahren zur Hydridisierung von Festkoerpermetall
AT345569B (de) Verfahren zur herstellung eines dispersionsverfestigten metalles
DE102019207824A1 (de) Verfahren zur Herstellung von Eisenpulver
DE917034C (de) Verfahren zur Abspaltung des Sauerstoffs, Schwefels oder der Halogene aus oxydischen, sulfidischen oder Halogen-Verbindungen schwer reduzierbarer Metalle
DE1564684C3 (de) Verfahren zum Verbinden von rohrförmigen Kernbrennstoffelementen mit einem inneren Schutzrohr
DE1592129C (de) Verfahren zum Wiederaufarbeiten von Kernbrennstoffelementen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19831108

AK Designated contracting states

Designated state(s): DE FR GB

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 3367296

Country of ref document: DE

Date of ref document: 19861204

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19890925

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19900614

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19900724

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19910403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19910721

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19920331

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST