CN1853261A - 单个或多个栅极场板的制造 - Google Patents

单个或多个栅极场板的制造 Download PDF

Info

Publication number
CN1853261A
CN1853261A CNA2004800259769A CN200480025976A CN1853261A CN 1853261 A CN1853261 A CN 1853261A CN A2004800259769 A CNA2004800259769 A CN A2004800259769A CN 200480025976 A CN200480025976 A CN 200480025976A CN 1853261 A CN1853261 A CN 1853261A
Authority
CN
China
Prior art keywords
field plate
grid
dielectric material
electron mobility
high electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2004800259769A
Other languages
English (en)
Other versions
CN100541745C (zh
Inventor
A·池尼
U·K·米什拉
P·帕瑞克
Y·巫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wolfsburg Peter Co
University of California
Original Assignee
Cory Co
University of California
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cory Co, University of California filed Critical Cory Co
Publication of CN1853261A publication Critical patent/CN1853261A/zh
Application granted granted Critical
Publication of CN100541745C publication Critical patent/CN100541745C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/404Multiple field plate structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0605Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits made of compound material, e.g. AIIIBV
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40117Multistep manufacturing processes for data storage electrodes the electrodes comprising a charge-trapping insulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/762Charge transfer devices
    • H01L29/765Charge-coupled devices
    • H01L29/768Charge-coupled devices with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/207Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds further characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

一种制造单个或多个栅极场板的方法,其利用了下列连续步骤:在场效应晶体管表面上进行介电材料沉积/生长、介电材料蚀刻以及金属蒸镀。由于介电材料沉积/生长是一种充分可控的处理,因此这种制造方法允许对场板工作进行严格控制。而且,沉积在器件表面上的介电材料无需从器件本征区中去除:这实质上使得无需低损伤介电材料干法/湿法蚀刻便能实现场板器件。使用多个栅极场板还通过多个连接来减少栅极电阻,从而改善了大周边和/或亚微米栅器件的性能。

Description

单个或多个栅极场板的制造
相关申请的交叉引用
【0001】依据美国法典第35篇第119(e)款规定,本申请要求下列共同待决且进行了常规转让的美国临时专利申请的优选权:
【0002】序列号60/501,557,名称“Fabrication of Single or MultipleGate Field Plates”,其于2003年9月9日由Alessandro Chini、Umesh K.Mishra、Primit Parikh和Yifeng Wu提交,代理人案卷号为30794.105-US-P1;
【0003】在此以引用方式将该申请并入本文。
关于联邦政府资助的研发项目声明
【0004】本发明是在ONR MURI计划所授予的批准号N00014-01-1-0764、以及AFOSR MURI计划所授予的批准号F49620-99-1-0296下通过美国政府的支持完成的。美国政府就本发明享有一定的权利。
技术领域
【0005】本发明涉及半导体器件,特别是涉及单个或多个栅极场板的制造。
背景技术
【0006】  (注:本申请在说明书中以括号内加参考编号的方式(例如[x])引用了各种出版物。在后文题为“参考文献”一节中,根据这些参考编号的顺序给出了上述出版物的列表。在此以引用方式将所有这些出版物并入本文。)
【0007】在基于半导体的场效应晶体管(FET)中,正常工作时,在栅漏通道区内会产生高电场。场电镀(field plating)是一项众所周知的技术,用于改善高电场工作条件下的器件性能,并减轻表面陷获或陷阱(trap)现象,参见文献[1]、[2]。例如,为了减轻所有出现在工作于高电场下的器件中的有害效应(击穿电压、陷获效应、可靠性),场电镀已成为一种有效的公知技术。
【0008】场电镀的基本概念就在于器件有源区的垂直耗尽(depletion),从而使水平耗尽区能够得到较大的扩展。这对于给定的偏置电压,将在器件有源区中形成低电场,从而减少在器件工作于高电场时出现的所有有害效应(低击穿电压、陷获现象、低可靠性)。而且,位于栅源通道区中的一个场板(field plate)还具有对器件有源区进行调整的能力,从而减少在大射频(RF)信号下妨碍正常器件操作的表面陷获效应。
【0009】因此,所需要的是制造单个或多个栅极场板的改进方法以及合并了单个或多个栅极场板的改进结构。
发明内容
【0010】本发明的实施例提供了制造单个和多个栅极场板的改进方法。一种根据本发明的制造方法使用了如下连续步骤:在场效应晶体管的表面上进行介电材料沉积或生长、介电材料蚀刻以及金属蒸镀。所述制造方法的优点包括严格控制了介电材料的厚度,并且使器件有源区的表面完全不会暴露于任何干法或湿法蚀刻处理,其中所述干法或湿法蚀刻处理可能会在形成场效应晶体管的半导体材料中引起损伤。而且,无需从器件本征区中去除沉积在器件表面上的介电材料,从而能够使场电镀器件被制成,而无干法或湿法蚀刻处理所引起的损伤。通过使用多个连接来利用多个栅极场板减小了栅极电阻,因此改善了大周边区和/或亚微米栅器件的性能。最后,通过适当调整介电材料的厚度,可将平行栅极触点沉积在介电材料的顶上,以便通过在器件非本征区上电连接所述平行栅极触点来显著减小栅极电阻。
附图说明
【0011】现参看附图,其中类似的附图标记在所有附图中均表示相应的部件:
【0012】图1A是场效应晶体管(FET)的横截面图,而图1B为其顶视图;
【0013】图2A为器件横截面图,图2B为器件顶视图,其示出了介电材料的沉积/生长;
【0014】图3A为器件横截面图,图3B为器件顶视图,其示出正在从器件非本征区被除去的介电材料;
【0015】图4A为器件横截面图,图4B为器件顶视图,其示出栅极场板的蒸镀;
【0016】图5A为器件横截面图,图5B为器件顶视图,其示出了多场板结构的一个示例;
【0017】图6是fmax与栅极指宽(gate finger width)依赖关系的模拟曲线图;
【0018】图7A为器件横截面图,图7B为器件顶视图,图7C为器件横截面图,其示出了用于减小栅极电阻的多场板器件;
【0019】图8为一个基于氮化物的HEMT(高电子迁移率晶体管)器件的单元元件的示意性横截面图;
【0020】图9为一个基于氮化物的HEMT器件的单元元件的示意性横截面图,该器件具有与图8所示器件不同的结构;以及
【0021】图10为曲线图,其示出了场板距离对器件性能的影响。
具体实施方式
【0022】在优选实施例的下列描述中参考了附图,所述附图构成了描述的一部分,且其中通过图解说明的方式示出了一个可实现本发明的特定实施例。应理解的是,在不脱离本发明范围的情况下,还可利用其它实施例,并且可对结构进行改动。
概述
【0023】本发明描述了用于实现场效应晶体管(FET)的单个或多个栅极场板结构的简单制造方法。本发明使用了下列简单的、通常充分可控的连续处理步骤:介电材料沉积或生长、介电材料蚀刻和金属蒸镀(metal evaporation)。
制造方法
【0024】图1A、1B、2A、2B、3A、3C、4A及4B根据本发明的一实施例来说明制造方法一种可能实现方式的步骤,其中所述制造方法包括制造栅极场板的方法。
【0025】图1A是场效应晶体管(FET)10的横截面图,图1B是场效应晶体管(FET)10的顶视图,该场效应晶体管包括源极和漏极欧姆触点(ohmic contact)12和14、栅极触点16以及有源区18。将所述制造方法的步骤应用于场效应晶体管10或其它器件上。所述方法一般包括执行如下连续步骤:介电材料的沉积或生长、介电材料的蚀刻以及金属蒸镀,从而在器件的表面上形成一个或多个场板,其中所述步骤允许对场板操作进行严格控制,且其中沉积在所述表面上的介电材料无需从有源区18除去,从而能够获得场板器件,而无需使用低损伤介电材料的干法或湿法蚀刻方法。所执行的步骤进一步包括以下步骤:(1)在所述器件的本征和非本征区上沉积或生长介电材料,其中所述介电材料的厚度是受控的,以便实现器件的正常操作;(2)通过干法或湿法蚀刻处理或通过剥离(lift-off)处理使介电材料图案化,从而使介电材料主要保留在所述器件的有源区上;以及(3)在图案化介电材料上蒸镀(evaporating)场板,其中栅极和场板触点至少在非本征区的一侧电短路,从而在它们之间提供低电阻连接。下面结合图2A、2B、3A、3B、4A和4B,更详细地说明这些步骤。
【0026】图2A是一个器件横截面图,图2B是一个器件顶视图,它们说明所述制造方法的第一个步骤,该步骤包括在器件10的本征和非本征区上沉积或生长介电材料20。介电材料20的厚度是要被控制的关键参数,以便实现所完成的器件10的正常工作。然而,在大多数沉积/生长技术中,例如在PECVD(等离子体增强化学气相沉积)中,这通常都是一种充分可控的处理。典型材料是氮化硅和氧化硅,但也可用其它材料,只要它们能够通过干法或湿法蚀刻或通过剥离而被图案化即可。
【0027】图3A是一个器件横截面图,图3B是一个器件顶视图,它们说明了所述制造方法的第二个步骤,该步骤包括通过从器件非本征区22蚀刻或除去介电材料20来使其图案化,从而让介电材料20主要保留在器件10的有源区18上。在通过蚀刻来形成图案的情况下,应当强调的是,器件10的表面在这一步骤中将会受到保护,以防止有源区18的表面暴露于任何能够使形成器件的半导体材料受损的干法或湿法蚀刻处理。此步骤之后,欧姆触点12、14以及处于器件非本征区22内的栅极部分16是可电访问的(electrically accessible)。
【0028】图4A是一个器件横截面图,图4B是一个器件顶视图,它们说明了所述制造方法的第三个步骤,该步骤包括在图案化介电材料20上形成场板24,其中栅极16和场板24的触点至少在非本征区的一侧电短路,从而在它们之间提供低电阻连接。优选用金属蒸镀来形成场板24,其中所述场板24是由金属片或接触件构成的。场板24被置于栅极16的漏极通道区内,从而提供了对有源区18进行调整的能力,使得在大RF信号情况下妨碍正常器件工作的表面陷获效应减轻。场板24被连接到器件本征区两侧,且栅极16和场板24至少在非本征区22的一侧电短路,从而在它们的两个金属线之间提供低电阻连接。相对于目标器件性能,即击穿电压、RF性能等,对场板24的偏移量和长度进行优化。
【0029】若需要多场板结构,可重复图2A、2B、3A、3B、4A和4B所示的介电材料沉积/生长、介电材料蚀刻以及金属蒸镀这三个步骤。
【0030】图5A是一个器件横截面图,图5B是一个器件顶视图,它们说明了这样一个示例:用多个栅极场板形成多个连接,以减少栅极电阻,从而改善大周边器件和/或亚微米栅器件的性能。此示例为双场板结构,该结构包括另一层介电材料26以及另一由金属片或接触件构成的场板28。介电材料26的厚度、场板28的长度和相对于栅极16和其它场板24的偏移量、以及所引入的场板24、28的数目构成制造工艺参数。使用多场板24、28,即能在器件10的设计中获得更大的自由度,且对获得高电压器件10有重要影响。
【0031】本发明的另一优点是,可能减少由大周边器件内的栅极电阻所导致的RF性能下降。通常,最大振荡频率(fmax)在栅极指宽(gatefinger width)因栅极电阻的增加而增加时下降。
【0032】图6是fmax与栅极指宽的依赖关系的模拟曲线图。如图所示,引入在有源区两端短接的场板结构能够改善具有大指宽的器件的fmax性能。使用具有等于栅极电阻Rg的电阻Rf、并连接到有源区两端的场板,显著改善了fmax性能。进一步的改善可通过降低场板电阻来取得。应强调的是,只有在场板结构所附加的寄生电容与本征器件的寄生电容相比可忽略时,这种降低才能被观察到。这可以通过适当选择介电材料及其厚度来实现,并且必须被作为一种优化处理来考虑。
【0033】栅极与场板之间的多个连接也导致栅极电阻显著减少。为实现这种多重连接而不使RF操作严重退化,在栅极沉积之前蚀刻一小部分有源区,以在栅极与场板之间形成所述多个连接,而不使器件的RF操作退化。
【0034】在此区域中,可连接栅极和场板,而不给器件引入任何寄生电容。同样,只有在被引入的寄生电容与本征器件的寄生电容相比较小时,器件性能才会改善。此外,与传统布局的器件相比,利用各个独立的有源区之间的间隔来操纵该器件的热阻抗更加有效。
【0035】关键参数在于选择介电材料、介电材料的厚度、及场板的长度。这些关键参数必须被作为所推荐的制造方法的优化步骤来考虑。
【0036】使用这种方法,即能以较少数目的风桥(air bridge)制造大周边器件。而且,可利用本发明制造亚微米器件。通常,亚微米栅极是用T形法(T-shape process)制造的,因为与标准栅极形状相比,T形减小了栅极电阻。通过形成多个连接而不用T形法,即使是对亚微米栅极也可获得低栅极电阻。
【0037】此外,通过适当地调整材料介电厚度,可在介电材料的顶部沉积平行栅极触点,以便通过用平行场板在器件非本征区上形成多个连接,来显著减少栅极电阻。低电阻路径是由所述平行场板,通过适当选择栅极与场板之间所形成连接处的宽度来提供的。
【0038】图7A是一个器件横截面图,图7B是一个器件顶视图,而图7C是一个器件横截面图,它们说明了用于减少栅极电阻的多场板结构的示例。而且,还利用如图7A、7B以及7C所示的覆盖栅源通道区的场板来调整源极通道电阻,以改善器件的线性性能。
具有场板的氮化镓基高电子迁移率晶体管
【0039】包括AlGaN/GaN高电子迁移率晶体管(HEMT)的基于GaN的晶体管能够在RF、微波和毫米波频率进行很高电压及高功率操作。然而,电子陷获以及DC与RF特性之间由此而来的差异限制了这些器件的性能。SiN钝化作用已被成功地用来缓解这种陷获问题,从而导致在10GHz具有10W/mm以上功率密度的高性能器件。例如,文献[3]公开了用于减小GaN晶体管中的陷获效应的方法和结构。然而,由于这类结构中存在高电场,因此电荷陷获仍然是个问题。
【0040】本发明已被成功地用来改善AlGaN/GaN HEMT功率器件的性能。在4GHz的工作条件下,已经分别对蓝宝石和碳化硅衬底上的器件实现了12W/mm和18.8W/mm功率密度。因场板制造中涉及的处理步骤简单,本发明可被用于开发AlGaN/GaN HEMT技术及其它半导体器件。利用适当设计的多场板,大大改善了这类器件的击穿性能和大RF信号性能。
【0041】基于GaN的HEMT包括通道层和位于该通道层上的阻挡层。金属源极和漏极欧姆触点被制成与阻挡层相接触。在阻挡层上,形成一个位于源极和漏极触点之间的栅极触点,并在阻挡层上方形成隔离层。隔离层可在栅极触点形成之前或之后形成。隔离层可包括介电层、非掺杂的或耗尽(depleted)的AlxGa1-xN(0≤x≤1)材料层,或它们的组合。一个导电场板被形成于隔离层上方,且从栅极触点的边缘向漏极触点延伸一个距离Lf(场板距离)。该场板可被电连接到栅极触点。在一些实施例中,所述场板是在相同沉积步骤中作为栅极触点的延伸而形成的。在其它实施例中,所述场板和栅极触点是在独立的沉积步骤中形成的。这种方案可减少器件内的峰值电场,从而提高了击穿电压并减小了陷获。该电场的减少还可带来其它益处,如泄漏电流减小以及可靠性提高。
【0042】图8中示出了本发明的一个实施例,该图是一个基于氮化物的HEMT器件的单元元件30的示意性横截面图。具体地,器件30包括衬底32,该衬底可包括碳化硅、蓝宝石、尖晶石、ZnO、硅,或任何能支持III族氮化物材料生长的其它材料。在衬底32上,通过外延晶体生长法,例如MOCVD(金属有机化学气相沉积)、HVPE(氢化物气相外延生长)或MBE(分子束外延生长),来生长AlzGa1-zN(0≤z≤1)结核层34。结核层34的形成可取决于衬底32的材料。例如,文献[4]和文献[5]中讲授了在各种衬底上形成结核层34的方法。文献[6]、[7]及[8]则公开了在碳化硅衬底形成结核层的方法。
【0043】在结核层34上形成一高电阻率III族氮化物的通道层36。通道层36可包括AlxGayIn(1-x-y)N(0≤x≤1,0≤y≤1,x+y≤1)。其后,在通道层36上形成一AlxGa1-xN(0≤x≤1)阻挡层38。每个通道层36与阻挡层38可包括子层,所述子层可包括掺杂或非掺杂的III族氮化物材料层。文献[3]、[9]、[10]、[11]及[12]中描述了多种示例性结构。其它基于氮化物的HEMT结构图则被描述于文献[13]和[14]中。
【0044】在图8所示的实施例中,III族氮化物半导体隔离层40是在AlxGa1-xN阻挡层28上生长的。隔离层40可具有均匀的或分级(graded)的成分。隔离层40可以是非掺杂的和/或可被设计成随着生长而被充分耗尽的(depleted)。
【0045】源极42和漏极44被形成为通过阻挡层38构成欧姆接触,以致当栅极46被偏置在适当电平时,通过在通道层36与阻挡层38之间异质界面(heterointerface)处引入的二维电子气(2DEG),在源极42与漏极44之间有电流流过。源极42和漏极44的形成被详细描述于上面引用的专利和出版物中。
【0046】隔离层40可被蚀刻,且栅极46被沉积以使栅极46的底部位于阻挡层38的表面上。形成栅极46的金属可被图案化,从而延伸过隔离层40,以致在栅极46顶部形成的场板结构48从栅极46的边缘朝向漏极44延伸一个距离Lf。换言之,位于隔离层40上的栅极46的金属部分形成外延场板48。最后,用介电钝化层50(例如氮化硅)来覆盖所述结构。形成介电钝化层50的方法被详细描述于上面引用的专利和出版物中。
【0047】本发明的其它实施例被示于图9中,该图是一个基于氮化物的HEMT器件的单元元件30的示意性横截面图,该器件具有与图8所示器件不同的结构。图9所示器件30中的衬底32、结核层34、通道层36以及阻挡层38类似于图8中所示的相应层。在一些实施例中,衬底32包括可从(美国)Cree,Inc.of Durham,N.C.处购得的半绝缘4H-SiC,结核层34由AlN制成,并且通道层36包括2μm厚的GaN:Fe层,而阻挡层38包括0.8nm的AlN和22.5nm的AlxGa1-xN,其中x=0.195,这是通过PL法(光致发光法)测量的。
【0048】栅极46是在形成阻挡层38之后形成的,且钝化层50沉积在所述器件上。随后在叠盖着栅极46的、并在栅漏区中延伸一段距离Lf的钝化层50上形成场板48。在图9所示的实施例中,钝化层50充当了场板48的隔离层。为取得最佳效果,可改变在栅极46上方场板48的叠盖方式以及在栅漏区内的延伸量。场板48和栅极46可与通孔或其它连接物(未示出)电连接。
【0049】在一些实施例中,场板48可延伸0.2-1μm的距离Lf。在一些实施例中,场板48可延伸0.5-0.9μm的距离Lf。在优选实施例中,场板48可延伸0.7μm的距离Lf。
【0050】构造并测试一个根据图9所示实施例的基于GaN的HEMT结构。该器件在120V、4GHz的工作条件下,实现了32W/mm的功率密度及55%的功率附加效率(PAE)。
【0051】测试了场板距离(Lf)对于器件性能的影响。器件大致是根据图9所示实施例制造的,只是从0到0.9μm改变场板长度Lf。随后测量了所获器件的PAE。如图10所示,当场板长度延伸到0.5μm时,PAE出现改善,其中最佳长度为约0.7μm。然而,该最佳长度可取决于具体的器件设计以及工作电压和频率。参考文献
【0052】在此以引用方式将下列参考文献并入本文:
[1]K Asano et al.,“Novel High PowerAlGaAs/GaAs HFET with aField-Modulating Plate Operated at 35V Drain Voltage”,IEDM Conference,1998,pp.59-62。
[2]Y.Ando et al.,“10-W/mmAIGaN-GaN HFET with a FieldModulating Plate”,IEEE Electron Device Letters,Vol.24,No.5,May2003,pp.289-291。
[3]美国专利第6,586,781号,公布于2003年7月1日,授予Wu等人,名称为“Group III nitride based FETs and HEMTs with reducedtrapping and method for producing the same”。
[4]美国专利第5,290,393号,公布于1994年3月1日,授予Nakamura,名称为“Crystal growth method for gallium nitride-basedcompound semiconductor”。
[5]美国专利第5,686,738号,公布于1997年11月11日,授予Moustakas,名称为“Highly insulating monocrystalline gallium nitride thinfilms”。
[6]美国专利第5,393,993号,公布于1995年2月28日,授予Edmond等人,名称为“Buffer structure between silicon carbide andgallium nitride and resulting semiconductor devices”。
[7]美国专利第5,523,589号,公布于1996年6月4日,授予Edmond等人,名称为“Vertical geometry light emitting diode with group III nitrideactive layer and extended lifetime”。
[8]美国专利第5,739,554号,公布于1998年4月14日,授予Edmond等人,名称为“Double heterojunction light emitting diode withgallium nitride active layer”。
[9]美国专利第6,316,793号,公布于2001年11月13日,授予Sheppard等人,名称为“Nitride based transistors on semi-insulating siliconcarbide substrates”。
[10]美国专利第6,548,333号,公布于2003年4月15日,授予Smith,名称为“Aluminum gallium nitride/gallium nitride high electronmobility transistors having a gate contact on a gallium nitride based capsegment”。
[11]美国专利申请第2002/0167023号,公布于2002年11月14日,属于Chavarkar、Prashant等人,名称为“Group-III nitride based highelectron mobility transistor(HEMT)with barrier/spacer layer”。
[12]美国专利申请第2003/0020092号,公布于2003年1月30日,属于Parikh、Primit等人,名称为“Insulating gate AlGaN/GaN HEMT”。
[13]美国专利第5,192,987号,公布于1993年3月9日,授予Khan等人,名称为“High electron mobility transistor withGaN/AlxGa1-xNheterojunctions”。
[14]美国专利第5,296,395号,公布于1994年3月22日,授予Khan等人,名称为“Method of making a high electron mobilitytransistor”。
[15]Y.-F.Wu,A.Saxler,M.Moore,R.P.Smith,S.Sheppard,P.M.Chavarkar,T.Wisleder,U.K.Mishra,P.Parikh,“30W/mm GaN HEMTsby field plate optimization”,IEEE EDL,Vol.25,No.3,pp.117-119,March2004。
[16]S.Karmalkar,U.K.Mishra,“Very high voltage AlGaN-GaNHEMT using a field plate deposited on a stepped insulator”,Solid StateElectronics,45(2001)1645-1652。
结论
【0053】本说明书包括对本发明优选实施例的描述。提供以上对本发明一个或多个实施例的描述是出于说明和描述的目的。它并不是穷举性的,也无意用其将本发明限制在所公开的精确形式。根据以上讲授的内容,许多修改和改动都是可能的。本发明的范围不应受到详细描述的限制,而是应该由所附权利要求来限定。

Claims (51)

1.一种制造一个或多个栅极场板的方法,包括:
在一器件的表面上执行下列连续步骤:介电材料沉积或生长、介电材料蚀刻和金属蒸镀,以形成一个或多个场板,其中沉积在所述表面上的所述介电材料无需从有源区中去除,由此使得能够在不利用低损伤干法或湿法蚀刻处理的情况下实现场板器件。
2.根据权利要求1所述的方法,其中所述步骤允许对场板工作进行严格控制。
3.根据权利要求1所述的方法,进一步包括用多个栅极场板形成多个连接以减小栅极电阻。
4.根据权利要求1所述的方法,其中所述场板被置于一栅源通道区内,以此提供调整所述有源区的能力,从而减少在大射频信号下妨碍正常器件操作的表面陷获效应。
5.根据权利要求1所述的方法,进一步包括使所述有源区的表面完全不会暴露于可在所述器件中引起损伤的所述干法或湿法蚀刻处理。
6.根据权利要求1所述的方法,进一步包括通过适当地调整介电材料厚度,在所述介电材料的顶上沉积一平行栅极触点,以通过在非本征区上电连接至少两个平行栅极来显著减小栅极电阻。
7.根据权利要求1所述的方法,其中所述器件是场效应晶体管,其包括源极和漏极欧姆触点、一栅极触点以及一有源区。
8.根据权利要求1所述的方法,其中所执行的步骤进一步包括:
(1)在所述器件的本征及非本征区上沉积或生长所述介电材料;
(2)对所述介电材料进行图案化,使得该介电材料主要保留在所述器件的一有源区上;以及
(3)在图案化的所述介电材料上形成一场板,其中栅极和场板触点至少在所述非本征区的一侧电短路,从而在其间提供低电阻连接。
9.根据权利要求8所述的方法,其中所述介电材料的厚度是受控的,以实现所述器件的正常工作。
10.根据权利要求8所述的方法,其中所述图案化步骤(3)包括通过干法或湿法蚀刻处理或通过剥离来图案化所述介电材料。
11.根据权利要求8所述的方法,其中所述形成步骤(3)包括在图案化的所述介电材料上蒸镀一场板。
12.根据权利要求8所述的方法,其中步骤(1)至(3)被重复进行,以形成多个所述场板。
13.根据权利要求8所述的方法,其中所述场板具有电阻Rf,其等于栅极电阻Rg。
14.根据权利要求8所述的方法,其中所述场板被连接到所述器件本征区的两侧。
15.根据权利要求8所述的方法,进一步包括在所述栅极与所述场板之间形成多个连接,以减小所述栅极电阻。
16.根据权利要求15所述的方法,其中所述形成步骤包括在沉积所述栅极之前,蚀刻一小部分所述有源区,以在所述栅极与所述场板之间形成多个连接。
17.根据权利要求15所述的方法,进一步包括在所述有源区之间进行间隔,以操纵所述器件的热阻抗。
18.根据权利要求15所述的方法,其中所述器件包括一带有较少数目风桥的大周边器件。
19.根据权利要求15所述的方法,其中所述形成步骤包括以下步骤:在不用T形法的情况下形成所述多个连接以降低栅极电阻。
20.根据权利要求15所述的方法,其中所述形成步骤包括以下步骤:用平行场板形成所述多个连接。
21.根据权利要求20所述的方法,其中所述形成步骤包括以下步骤:形成覆盖所述栅源通道区的所述场板,以调整源极通道电阻,改善器件线性性能。
22.一种器件,该器件是用权利要求1所述方法制造的。
23.一种制造栅极场板的方法,包括:
(a)在所述器件的本征及非本征区上沉积或生长所述介电材料;
(b)对所述介电材料进行图案化,以使该介电材料主要保留在所述器件的一有源区上;以及
(c)在图案化的所述介电材料上形成一场板,其中栅极和场板触点至少在所述非本征区的一侧电短路,从而在其间提供低电阻连接。
24.根据权利要求23所述的方法,其中所述介电材料的厚度是受控的,以实现所述器件的正常工作。
25.根据权利要求23所述的方法,其中所述图案化步骤(b)包括通过干法或湿法蚀刻处理或通过剥离处理来图案化所述介电材料。
26.根据权利要求23所述的方法,其中所述形成步骤(c)包括在图案化的所述介电材料上蒸镀一场板。
27.根据权利要求23所述的方法,其中步骤(a)至(b)被重复进行,以形成多个所述场板。
28.一种高电子迁移率晶体管,包括:
一衬底;
一结核层,其生长于所述衬底上;
一通道层,其形成于所述结核层上;
一阻挡层,其形成于所述通道层上;
一半导体隔离层,其生长于所述阻挡层上;以及
栅极和源极,其被形成为通过所述阻挡层构成欧姆接触,以致当栅极被偏置于一适当电平时,在所述栅极和源极之间有电流流过;
其中所述隔离层被蚀刻,且所述栅极被沉积,使得至少一部分所述栅极位于一阻挡层表面上;且
其中一部分所述栅极被图案化而延伸过所述隔离层,使得所述栅极构成一场板,该场板从所述栅极朝向所述漏极延伸一距离。
29.根据权利要求28所述的高电子迁移率晶体管,其中当所述栅极被偏置在所述适当电平时,通过在处于所述通道层与所述阻挡层之间的异质界面处引入的二维电子气,所述电流在所述栅极和源极之间流过。
30.根据权利要求28所述的高电子迁移率晶体管,其中在所述隔离层上的一部分所述栅极形成一外延场板。
31.根据权利要求28所述的高电子迁移率晶体管,进一步包括一介电钝化层,其覆盖所述隔离层。
32.根据权利要求28所述的高电子迁移率晶体管,其中所述隔离层包括一介电层、一非掺杂的或耗尽的AlxGa1-xN材料层,或它们的组合,其中0≤x≤1。
33.根据权利要求28所述的高电子迁移率晶体管,其中所述场板形成于所述隔离层的上方,且从所述栅极的边缘朝向所述漏极延伸一距离Lf,即场板距离。
34.根据权利要求28所述的高电子迁移率晶体管,其中所述场板被电连接到所述栅极。
35.根据权利要求28所述的高电子迁移率晶体管,其中所述场板是在与所述栅极的延伸相同的沉积步骤中形成的。
36.根据权利要求28所述的高电子迁移率晶体管,其中所述场板和栅极是在独立的沉积步骤中形成的。
37.根据权利要求28所述的高电子迁移率晶体管,其中所述衬底包括碳化硅、蓝宝石、尖晶石、氧化锌、硅,或任何能支持III族氮化物材料生长的其它材料。
38.根据权利要求28所述的高电子迁移率晶体管,其中所述结核层是AlzGa1-zN(0≤z≤1)结核层。
39.根据权利要求28所述的高电子迁移率晶体管,其中所述结核层是AlN结核层。
40.根据权利要求28所述的高电子迁移率晶体管,其中所述通道层是高电阻率的III族氮化物通道层。
41.根据权利要求28所述的高电子迁移率晶体管,其中所述通道层包括AlxGayIn(1-x-y)N,且0≤x≤1,0≤y≤1,x+y≤1。
42.根据权利要求28所述的高电子迁移率晶体管,其中所述通道层包括GaN:Fe。
43.根据权利要求28所述的高电子迁移率晶体管,其中所述阻挡层包括AlxGa1-xN,且0≤X≤1。
44.根据权利要求28所述的高电子迁移率晶体管,其中所述阻挡层包括AlN和AlGaN。
45.根据权利要求28所述的高电子迁移率晶体管,其中每个所述通道层和阻挡层均包括子层,所述子层是掺杂的或非掺杂的III族氮化物材料层。
46.根据权利要求28所述的高电子迁移率晶体管,其中所述隔离层是在AlxGa1-xN阻挡层上生长的III族氮化物半导体隔离层。
47.根据权利要求28所述的高电子迁移率晶体管,其中所述隔离层具有均匀成分。
48.根据权利要求28所述的高电子迁移率晶体管,其中所述隔离层具有分级成分。
49.根据权利要求28所述的高电子迁移率晶体管,其中所述隔离层是非掺杂的。
50.根据权利要求28所述的高电子迁移率晶体管,其中所述隔离层是随生长而充分耗尽的。
51.根据权利要求28所述的高电子迁移率晶体管,其中所述栅极是在形成所述阻挡层之后形成的,且钝化层被沉积在所述器件上,其中,随后在叠盖所述栅极的、在所述栅漏区内延伸一距离Lf的所述钝化层上形成所述场板,且所述钝化层充当了所述场板的隔离层。
CNB2004800259769A 2003-09-09 2004-09-09 单个或多个栅极场板的制造 Expired - Lifetime CN100541745C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US50155703P 2003-09-09 2003-09-09
US60/501,557 2003-09-09

Publications (2)

Publication Number Publication Date
CN1853261A true CN1853261A (zh) 2006-10-25
CN100541745C CN100541745C (zh) 2009-09-16

Family

ID=34312287

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004800259769A Expired - Lifetime CN100541745C (zh) 2003-09-09 2004-09-09 单个或多个栅极场板的制造

Country Status (8)

Country Link
US (3) US7812369B2 (zh)
EP (2) EP2592655B1 (zh)
JP (3) JP2007505483A (zh)
KR (1) KR101128376B1 (zh)
CN (1) CN100541745C (zh)
CA (1) CA2538077C (zh)
TW (3) TWI430341B (zh)
WO (1) WO2005024909A2 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105900339A (zh) * 2013-11-13 2016-08-24 天工方案公司 用于晶体管的堆栈中改进的品质因素的电路和方法
CN107170797A (zh) * 2017-03-29 2017-09-15 西安电子科技大学 基于漏场板的电流孔径异质结晶体管及其制作方法

Families Citing this family (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2592655B1 (en) * 2003-09-09 2019-11-06 The Regents of The University of California Fabrication of single or multiple gate field plates
US7501669B2 (en) 2003-09-09 2009-03-10 Cree, Inc. Wide bandgap transistor devices with field plates
US7612390B2 (en) * 2004-02-05 2009-11-03 Cree, Inc. Heterojunction transistors including energy barriers
US20050218414A1 (en) * 2004-03-30 2005-10-06 Tetsuzo Ueda 4H-polytype gallium nitride-based semiconductor device on a 4H-polytype substrate
US7550783B2 (en) * 2004-05-11 2009-06-23 Cree, Inc. Wide bandgap HEMTs with source connected field plates
US7573078B2 (en) * 2004-05-11 2009-08-11 Cree, Inc. Wide bandgap transistors with multiple field plates
US9773877B2 (en) 2004-05-13 2017-09-26 Cree, Inc. Wide bandgap field effect transistors with source connected field plates
US7161194B2 (en) 2004-12-06 2007-01-09 Cree, Inc. High power density and/or linearity transistors
US11791385B2 (en) 2005-03-11 2023-10-17 Wolfspeed, Inc. Wide bandgap transistors with gate-source field plates
JP2006286698A (ja) * 2005-03-31 2006-10-19 Furukawa Electric Co Ltd:The 電子デバイス及び電力変換装置
US20060223293A1 (en) * 2005-04-01 2006-10-05 Raytheon Company Semiconductor devices having improved field plates
US7800131B2 (en) 2005-06-10 2010-09-21 Nec Corporation Field effect transistor
CN101976686A (zh) * 2005-06-10 2011-02-16 日本电气株式会社 场效应晶体管
WO2007059220A2 (en) * 2005-11-15 2007-05-24 The Regents Of The University Of California Methods to shape the electric field in electron devices, passivate dislocations and point defects, and enhance the luminescence efficiency of optical devices
US7566918B2 (en) 2006-02-23 2009-07-28 Cree, Inc. Nitride based transistors for millimeter wave operation
US7388236B2 (en) 2006-03-29 2008-06-17 Cree, Inc. High efficiency and/or high power density wide bandgap transistors
JP5217151B2 (ja) * 2006-08-25 2013-06-19 日亜化学工業株式会社 電界効果トランジスタ及びその製造方法
KR100782430B1 (ko) * 2006-09-22 2007-12-05 한국과학기술원 고전력을 위한 내부전계전극을 갖는 갈륨나이트라이드기반의 고전자 이동도 트랜지스터 구조
EP1921669B1 (en) 2006-11-13 2015-09-02 Cree, Inc. GaN based HEMTs with buried field plates
US7692263B2 (en) 2006-11-21 2010-04-06 Cree, Inc. High voltage GaN transistors
US7501670B2 (en) * 2007-03-20 2009-03-10 Velox Semiconductor Corporation Cascode circuit employing a depletion-mode, GaN-based FET
US8541267B2 (en) * 2008-03-20 2013-09-24 Nxp B.V. FinFET transistor with high-voltage capability and CMOS-compatible method for fabricating the same
JP5499441B2 (ja) * 2008-04-01 2014-05-21 沖電気工業株式会社 半導体装置及びその製造方法
US8519438B2 (en) 2008-04-23 2013-08-27 Transphorm Inc. Enhancement mode III-N HEMTs
US8289065B2 (en) 2008-09-23 2012-10-16 Transphorm Inc. Inductive load power switching circuits
US7898004B2 (en) 2008-12-10 2011-03-01 Transphorm Inc. Semiconductor heterostructure diodes
US8742459B2 (en) 2009-05-14 2014-06-03 Transphorm Inc. High voltage III-nitride semiconductor devices
US8390000B2 (en) 2009-08-28 2013-03-05 Transphorm Inc. Semiconductor devices with field plates
US8389977B2 (en) 2009-12-10 2013-03-05 Transphorm Inc. Reverse side engineered III-nitride devices
US8829999B2 (en) 2010-05-20 2014-09-09 Cree, Inc. Low noise amplifiers including group III nitride based high electron mobility transistors
US8742460B2 (en) 2010-12-15 2014-06-03 Transphorm Inc. Transistors with isolation regions
US8643062B2 (en) 2011-02-02 2014-02-04 Transphorm Inc. III-N device structures and methods
US8716141B2 (en) 2011-03-04 2014-05-06 Transphorm Inc. Electrode configurations for semiconductor devices
US8772842B2 (en) 2011-03-04 2014-07-08 Transphorm, Inc. Semiconductor diodes with low reverse bias currents
CN102201442B (zh) * 2011-04-02 2014-06-18 中国科学院苏州纳米技术与纳米仿生研究所 基于沟道阵列结构的异质结场效应晶体管
US8901604B2 (en) 2011-09-06 2014-12-02 Transphorm Inc. Semiconductor devices with guard rings
US9257547B2 (en) 2011-09-13 2016-02-09 Transphorm Inc. III-N device structures having a non-insulating substrate
US8598937B2 (en) 2011-10-07 2013-12-03 Transphorm Inc. High power semiconductor electronic components with increased reliability
US9165766B2 (en) 2012-02-03 2015-10-20 Transphorm Inc. Buffer layer structures suited for III-nitride devices with foreign substrates
WO2013155108A1 (en) 2012-04-09 2013-10-17 Transphorm Inc. N-polar iii-nitride transistors
US9184275B2 (en) 2012-06-27 2015-11-10 Transphorm Inc. Semiconductor devices with integrated hole collectors
JP6268366B2 (ja) * 2012-09-28 2018-01-31 パナソニックIpマネジメント株式会社 半導体装置
US9171730B2 (en) 2013-02-15 2015-10-27 Transphorm Inc. Electrodes for semiconductor devices and methods of forming the same
JP2014165280A (ja) * 2013-02-22 2014-09-08 Toshiba Corp 半導体装置
US9087718B2 (en) 2013-03-13 2015-07-21 Transphorm Inc. Enhancement-mode III-nitride devices
US9245993B2 (en) 2013-03-15 2016-01-26 Transphorm Inc. Carbon doping semiconductor devices
US9679981B2 (en) 2013-06-09 2017-06-13 Cree, Inc. Cascode structures for GaN HEMTs
US9755059B2 (en) 2013-06-09 2017-09-05 Cree, Inc. Cascode structures with GaN cap layers
US9847411B2 (en) 2013-06-09 2017-12-19 Cree, Inc. Recessed field plate transistor structures
US9407214B2 (en) 2013-06-28 2016-08-02 Cree, Inc. MMIC power amplifier
WO2015009514A1 (en) 2013-07-19 2015-01-22 Transphorm Inc. Iii-nitride transistor including a p-type depleting layer
US9093394B1 (en) * 2013-12-16 2015-07-28 Hrl Laboratories, Llc Method and structure for encapsulation and interconnection of transistors
JP2015195288A (ja) * 2014-03-31 2015-11-05 住友電工デバイス・イノベーション株式会社 半導体装置及び半導体装置の製造方法
US9318593B2 (en) 2014-07-21 2016-04-19 Transphorm Inc. Forming enhancement mode III-nitride devices
CN104332498B (zh) * 2014-09-01 2018-01-05 苏州捷芯威半导体有限公司 一种斜场板功率器件及斜场板功率器件的制备方法
US9536966B2 (en) 2014-12-16 2017-01-03 Transphorm Inc. Gate structures for III-N devices
US9536967B2 (en) 2014-12-16 2017-01-03 Transphorm Inc. Recessed ohmic contacts in a III-N device
US10056478B2 (en) * 2015-11-06 2018-08-21 Taiwan Semiconductor Manufacturing Company Ltd. High-electron-mobility transistor and manufacturing method thereof
WO2017123999A1 (en) 2016-01-15 2017-07-20 Transphorm Inc. Enhancement mode iii-nitride devices having an al(1-x)sixo gate insulator
US9722063B1 (en) 2016-04-11 2017-08-01 Power Integrations, Inc. Protective insulator for HFET devices
TWI762486B (zh) 2016-05-31 2022-05-01 美商創世舫科技有限公司 包含漸變空乏層的三族氮化物裝置
US10354879B2 (en) 2016-06-24 2019-07-16 Cree, Inc. Depletion mode semiconductor devices including current dependent resistance
US11430882B2 (en) * 2016-06-24 2022-08-30 Wolfspeed, Inc. Gallium nitride high-electron mobility transistors with p-type layers and process for making the same
US10892356B2 (en) 2016-06-24 2021-01-12 Cree, Inc. Group III-nitride high-electron mobility transistors with buried p-type layers and process for making the same
US10192980B2 (en) 2016-06-24 2019-01-29 Cree, Inc. Gallium nitride high-electron mobility transistors with deep implanted p-type layers in silicon carbide substrates for power switching and radio frequency applications and process for making the same
US10840334B2 (en) 2016-06-24 2020-11-17 Cree, Inc. Gallium nitride high-electron mobility transistors with deep implanted p-type layers in silicon carbide substrates for power switching and radio frequency applications and process for making the same
KR20180068172A (ko) * 2016-12-13 2018-06-21 (주)웨이비스 고전자이동도 트랜지스터 및 그 제조방법
CN117976705A (zh) 2019-10-30 2024-05-03 联华电子股份有限公司 高电子迁移率晶体管及其制作方法
TWI812805B (zh) 2019-11-05 2023-08-21 聯華電子股份有限公司 高電子遷移率電晶體及其製作方法
FR3105580A1 (fr) * 2019-12-20 2021-06-25 Thales Transistor hemt ameliore
US11257940B2 (en) 2020-01-14 2022-02-22 Cree, Inc. Group III HEMT and capacitor that share structural features
US11424356B2 (en) 2020-03-16 2022-08-23 Raytheon Company Transistor having resistive field plate
US11228287B2 (en) 2020-06-17 2022-01-18 Cree, Inc. Multi-stage decoupling networks integrated with on-package impedance matching networks for RF power amplifiers
US11316019B2 (en) 2020-07-29 2022-04-26 Globalfoundries U.S. Inc. Symmetric arrangement of field plates in semiconductor devices
US11929428B2 (en) 2021-05-17 2024-03-12 Wolfspeed, Inc. Circuits and group III-nitride high-electron mobility transistors with buried p-type layers improving overload recovery and process for implementing the same

Family Cites Families (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL37300C (zh) 1933-06-27
JPS5893377A (ja) 1981-11-30 1983-06-03 Fujitsu Ltd 半導体装置の製造方法
US4999682A (en) * 1987-08-14 1991-03-12 Regents Of The University Of Minnesota Electronic and optoelectronic laser devices utilizing light hole properties
JPH04162633A (ja) 1990-10-26 1992-06-08 Fuji Xerox Co Ltd 薄膜トランジスタ
US5290393A (en) 1991-01-31 1994-03-01 Nichia Kagaku Kogyo K.K. Crystal growth method for gallium nitride-based compound semiconductor
DE69229265T2 (de) 1991-03-18 1999-09-23 Trustees Of Boston University, Boston Verfahren zur herstellung und dotierung hochisolierender dünner schichten aus monokristallinem galliumnitrid
US5192987A (en) 1991-05-17 1993-03-09 Apa Optics, Inc. High electron mobility transistor with GaN/Alx Ga1-x N heterojunctions
JP3135939B2 (ja) * 1991-06-20 2001-02-19 富士通株式会社 Hemt型半導体装置
JPH05326563A (ja) * 1992-05-21 1993-12-10 Toshiba Corp 半導体装置
JPH06124965A (ja) 1992-10-09 1994-05-06 Sumitomo Electric Ind Ltd 電界効果トランジスタ
JPH06163600A (ja) 1992-11-26 1994-06-10 Nec Corp 電界効果トランジスタ
US5393993A (en) 1993-12-13 1995-02-28 Cree Research, Inc. Buffer structure between silicon carbide and gallium nitride and resulting semiconductor devices
US5523589A (en) 1994-09-20 1996-06-04 Cree Research, Inc. Vertical geometry light emitting diode with group III nitride active layer and extended lifetime
US5739554A (en) * 1995-05-08 1998-04-14 Cree Research, Inc. Double heterojunction light emitting diode with gallium nitride active layer
US6002148A (en) * 1995-06-30 1999-12-14 Motorola, Inc. Silicon carbide transistor and method
KR0167273B1 (ko) 1995-12-02 1998-12-15 문정환 고전압 모스전계효과트렌지스터의 구조 및 그 제조방법
JPH09232827A (ja) * 1996-02-21 1997-09-05 Oki Electric Ind Co Ltd 半導体装置及び送受信切り替え型アンテナスイッチ回路
JP3616447B2 (ja) * 1996-02-27 2005-02-02 富士通株式会社 半導体装置
US6316820B1 (en) * 1997-07-25 2001-11-13 Hughes Electronics Corporation Passivation layer and process for semiconductor devices
DE19800647C1 (de) * 1998-01-09 1999-05-27 Siemens Ag SOI-Hochspannungsschalter
TW373247B (en) 1998-04-02 1999-11-01 Taiwan Semiconductor Mfg Co Ltd Contact face having uplift and delay S/D and stock silicon gate electrode P type gold oxygen semi-field effect transistor forming method
JP3534624B2 (ja) * 1998-05-01 2004-06-07 沖電気工業株式会社 半導体装置の製造方法
US6009023A (en) 1998-05-26 1999-12-28 Etron Technology, Inc. High performance DRAM structure employing multiple thickness gate oxide
US6316793B1 (en) 1998-06-12 2001-11-13 Cree, Inc. Nitride based transistors on semi-insulating silicon carbide substrates
JP3111985B2 (ja) * 1998-06-16 2000-11-27 日本電気株式会社 電界効果型トランジスタ
JP2000082671A (ja) 1998-06-26 2000-03-21 Sony Corp 窒化物系iii−v族化合物半導体装置とその製造方法
JP3180776B2 (ja) 1998-09-22 2001-06-25 日本電気株式会社 電界効果型トランジスタ
JP3271613B2 (ja) * 1999-05-06 2002-04-02 日本電気株式会社 電界効果トランジスタ
TW517260B (en) 1999-05-15 2003-01-11 Semiconductor Energy Lab Semiconductor device and method for its fabrication
JP2001085670A (ja) 1999-09-14 2001-03-30 Nec Corp 電界効果型トランジスタ及びその製造方法
JP3344416B2 (ja) 1999-09-16 2002-11-11 松下電器産業株式会社 半導体装置およびその製造方法
US6774449B1 (en) 1999-09-16 2004-08-10 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method for fabricating the same
JP4592938B2 (ja) 1999-12-08 2010-12-08 パナソニック株式会社 半導体装置
US6639255B2 (en) * 1999-12-08 2003-10-28 Matsushita Electric Industrial Co., Ltd. GaN-based HFET having a surface-leakage reducing cap layer
US6586781B2 (en) 2000-02-04 2003-07-01 Cree Lighting Company Group III nitride based FETs and HEMTs with reduced trapping and method for producing the same
JP2001237250A (ja) * 2000-02-22 2001-08-31 Nec Corp 半導体装置
JP2001326335A (ja) * 2000-05-18 2001-11-22 Nec Corp 電界効果トランジスタ
JP4186032B2 (ja) 2000-06-29 2008-11-26 日本電気株式会社 半導体装置
TWI257179B (en) * 2000-07-17 2006-06-21 Fujitsu Quantum Devices Ltd High-speed compound semiconductor device operable at large output power with minimum leakage current
JP4198339B2 (ja) 2000-07-17 2008-12-17 ユーディナデバイス株式会社 化合物半導体装置
US6690042B2 (en) * 2000-09-27 2004-02-10 Sensor Electronic Technology, Inc. Metal oxide semiconductor heterostructure field effect transistor
JP2002118122A (ja) * 2000-10-06 2002-04-19 Nec Corp ショットキゲート電界効果トランジスタ
US6548333B2 (en) 2000-12-01 2003-04-15 Cree, Inc. Aluminum gallium nitride/gallium nitride high electron mobility transistors having a gate contact on a gallium nitride based cap segment
TW466747B (en) 2000-12-14 2001-12-01 United Microelectronics Corp Using inner field ring and complex multiple field plates to reduce surface breakdown of power LDMOSFET
JP2001230263A (ja) * 2001-01-29 2001-08-24 Nec Corp 電界効果型トランジスタ
JP2002270830A (ja) * 2001-03-12 2002-09-20 Fuji Electric Co Ltd 半導体装置
JP4220683B2 (ja) 2001-03-27 2009-02-04 パナソニック株式会社 半導体装置
US6849882B2 (en) 2001-05-11 2005-02-01 Cree Inc. Group-III nitride based high electron mobility transistor (HEMT) with barrier/spacer layer
JP3744381B2 (ja) * 2001-05-17 2006-02-08 日本電気株式会社 電界効果型トランジスタ
JP2005527102A (ja) 2001-07-24 2005-09-08 クリー インコーポレイテッド 高電子移動度トランジスタ及びその製造方法
JP2003059948A (ja) 2001-08-20 2003-02-28 Sanken Electric Co Ltd 半導体装置及びその製造方法
JP2003100778A (ja) 2001-09-26 2003-04-04 Toshiba Corp 半導体装置
TW511190B (en) 2001-11-09 2002-11-21 Macronix Int Co Ltd Non-volatile semiconductor memory device with multi-layer gate insulating structure
JP4117535B2 (ja) * 2001-11-30 2008-07-16 信越半導体株式会社 化合物半導体素子
US7030428B2 (en) * 2001-12-03 2006-04-18 Cree, Inc. Strain balanced nitride heterojunction transistors
WO2003050849A2 (en) 2001-12-06 2003-06-19 Hrl Laboratories, Llc High power-low noise microwave gan heterojunction field effet transistor
US6955858B2 (en) * 2001-12-07 2005-10-18 North Carolina State University Transition metal doped ferromagnetic III-V nitride material films and methods of fabricating the same
JP3705431B2 (ja) * 2002-03-28 2005-10-12 ユーディナデバイス株式会社 半導体装置及びその製造方法
US6559513B1 (en) * 2002-04-22 2003-05-06 M/A-Com, Inc. Field-plate MESFET
US6893947B2 (en) * 2002-06-25 2005-05-17 Freescale Semiconductor, Inc. Advanced RF enhancement-mode FETs with improved gate properties
JP3790500B2 (ja) * 2002-07-16 2006-06-28 ユーディナデバイス株式会社 電界効果トランジスタ及びその製造方法
US6740535B2 (en) 2002-07-29 2004-05-25 International Business Machines Corporation Enhanced T-gate structure for modulation doped field effect transistors
US6933544B2 (en) 2003-01-29 2005-08-23 Kabushiki Kaisha Toshiba Power semiconductor device
US7126426B2 (en) * 2003-09-09 2006-10-24 Cree, Inc. Cascode amplifier structures including wide bandgap field effect transistor with field plates
EP2592655B1 (en) * 2003-09-09 2019-11-06 The Regents of The University of California Fabrication of single or multiple gate field plates
US7501669B2 (en) * 2003-09-09 2009-03-10 Cree, Inc. Wide bandgap transistor devices with field plates
US7573078B2 (en) * 2004-05-11 2009-08-11 Cree, Inc. Wide bandgap transistors with multiple field plates
US7692263B2 (en) * 2006-11-21 2010-04-06 Cree, Inc. High voltage GaN transistors

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105900339A (zh) * 2013-11-13 2016-08-24 天工方案公司 用于晶体管的堆栈中改进的品质因素的电路和方法
CN107170797A (zh) * 2017-03-29 2017-09-15 西安电子科技大学 基于漏场板的电流孔径异质结晶体管及其制作方法
CN107170797B (zh) * 2017-03-29 2020-04-14 西安电子科技大学 基于漏场板的电流孔径异质结晶体管及其制作方法

Also Published As

Publication number Publication date
US7812369B2 (en) 2010-10-12
TWI430341B (zh) 2014-03-11
EP2592655B1 (en) 2019-11-06
EP1665358A4 (en) 2010-08-25
US20070059873A1 (en) 2007-03-15
US9496353B2 (en) 2016-11-15
TW201209895A (en) 2012-03-01
JP2007505483A (ja) 2007-03-08
EP1665358A2 (en) 2006-06-07
KR20070019641A (ko) 2007-02-15
TW201426883A (zh) 2014-07-01
US20110018062A1 (en) 2011-01-27
US20170025506A1 (en) 2017-01-26
JP2012044207A (ja) 2012-03-01
JP2012164994A (ja) 2012-08-30
WO2005024909A2 (en) 2005-03-17
KR101128376B1 (ko) 2012-03-23
CA2538077A1 (en) 2005-03-17
TWI431674B (zh) 2014-03-21
US10109713B2 (en) 2018-10-23
EP1665358B1 (en) 2020-07-01
CA2538077C (en) 2015-09-01
WO2005024909A3 (en) 2006-01-26
EP2592655A1 (en) 2013-05-15
TW200522170A (en) 2005-07-01
TWI560783B (en) 2016-12-01
CN100541745C (zh) 2009-09-16

Similar Documents

Publication Publication Date Title
CN1853261A (zh) 单个或多个栅极场板的制造
EP1665385B1 (en) Wide bandgap transistor devices with field plates
CN1950945A (zh) 具有多个场板的宽能带隙晶体管
JP2016511544A (ja) 半導体デバイスの電極及びその製造方法
EP2747143A1 (en) GaN HEMTs and GaN diodes
CN113178480B (zh) 具有栅漏复合阶梯场板结构的增强型hemt射频器件及其制备方法
CN112820648B (zh) 一种氮化镓金属氧化物半导体晶体管及其制备方法
CN210897283U (zh) 一种半导体器件
CN113644128A (zh) 一种槽栅多沟道结构GaN基高电子迁移率晶体管及制作方法
JP5386810B2 (ja) Mis型fet及びその製造方法
CN117613082B (zh) 一种氮化镓hemt器件及其制备方法
KR20240011386A (ko) 이중자기정렬 게이트를 갖는 GaN 반도체 소자의 구조 및 그 제조방법
CN114823850A (zh) P型混合欧姆接触的氮化镓晶体管

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: California, USA

Patentee after: THE REGENTS OF THE University OF CALIFORNIA

Country or region after: U.S.A.

Patentee after: Wolfsburg Peter Co.

Address before: California, USA

Patentee before: THE REGENTS OF THE University OF CALIFORNIA

Country or region before: U.S.A.

Patentee before: Cree Inc.

CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20090916