TW511190B - Non-volatile semiconductor memory device with multi-layer gate insulating structure - Google Patents

Non-volatile semiconductor memory device with multi-layer gate insulating structure Download PDF

Info

Publication number
TW511190B
TW511190B TW90127945A TW90127945A TW511190B TW 511190 B TW511190 B TW 511190B TW 90127945 A TW90127945 A TW 90127945A TW 90127945 A TW90127945 A TW 90127945A TW 511190 B TW511190 B TW 511190B
Authority
TW
Taiwan
Prior art keywords
layer
scope
silicon nitride
patent application
item
Prior art date
Application number
TW90127945A
Other languages
Chinese (zh)
Inventor
Tso-Hung Fan
Tao-Cheng Lu
Samuel Pan
Ta-Hui Wang
Original Assignee
Macronix Int Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix Int Co Ltd filed Critical Macronix Int Co Ltd
Priority to TW90127945A priority Critical patent/TW511190B/en
Application granted granted Critical
Publication of TW511190B publication Critical patent/TW511190B/en

Links

Landscapes

  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)

Abstract

A non-volatile semiconductor memory device with a multi-layer gate insulating structure is provided. The non-volatile semiconductor memory device comprises a gate insulating structure formed between a gate and a channel region, which includes a top silicon nitride layer, an intermediate silicon nitride layer and a bottom silicon nitride layer. When an electric field is applied between the gate and a drain region beside the channel region, hot carriers exhibit a direct tunneling across the bottom silicon nitride layer from the drain region for a write-erase operation. The hot carriers having exhibited the direct tunneling from the drain region are trapped into the intermediate silicon nitride layer.

Description

五、發明說明(l) 5-1 發明領域 本發明係有關於一種非揎 關於一種具有多重閛極絕緣;2 =圮憶體元件,·特別是有 件。 θ構&之非揮發性記憶體元 5-2發明背景·· 使用於微處理器之半導體記 在電源供應中斷時,儲存於此纪2通吊為揮發性。 失。一種解決方法係使用八n &二體兀件的貧料會完全流 體’例如-電池電源或電容 另、U 3:用記憶 中斷時,儲存的資:並『以性爾元件於電源供應 習知的非揮發性記憶體元件係屬電荷捕捉裝置。复且 體例子包括金屬-氮化物-氧化物_半導體(MN0S)記憶體^ 件、矽-氮化物-氧化物_半導體(SN0S)記憶體元件及矽— 化物-氮化物-氧化物-半導體(S〇N〇S)記憶體元件。 典型的金屬-氮化物-氧化物-半導體(MNOS)記憶體元件如 第一圖所示。金屬-氮化物—氧化物—半導體(MN〇s)記憶體 疋件1包括一半導體基底1 〇、形成於半導體基底1 〇中 之一源極/汲極1 1、位於一對源極/汲極1 1之間之一通、V. Description of the invention (l) 5-1 Field of the invention The present invention relates to a non- 揎, a type having multiple 閛 -pole insulation; 2 = 圮 memory element, especially a part. Theta structure & non-volatile memory cell 5-2 Background of the invention ... Semiconductors used in microprocessors When the power supply is interrupted, it is stored in this period as volatile. Missed. One solution is to use the eight-n & two-body element's lean material to be completely fluid. For example-battery power or capacitors, U 3: When the memory is interrupted, the stored data: The known non-volatile memory element is a charge trapping device. Examples of complexes include metal-nitride-oxide-semiconductor (MN0S) memory devices, silicon-nitride-oxide_semiconductor (SN0S) memory devices, and silicon-nitride-nitride-oxide-semiconductor ( SONOS) memory element. A typical metal-nitride-oxide-semiconductor (MNOS) memory device is shown in the first figure. The metal-nitride-oxide-semiconductor (MN0s) memory device 1 includes a semiconductor substrate 10, a source / drain 1 formed on the semiconductor substrate 10, and a pair of source / drain electrodes. One pass between poles 1 and 1,

第5頁 511190 、發明說明(2) 道區1 2、形成於通道區1 2上方之一二氧化矽層1 3、 形成於二氧化矽層1 3上之一氮化矽層1 4及形成於氮化 石夕層1 4上之一鋁閘極1 5。 此金屬-氮化物-氧化物-半導體(MN0S)記憶體元件1 $執行寫入操作時,一正電壓係施予在閘極上,以使一電 場橫跨上述四疊層(1()、13、14、15),進而於 半導體基底1 0之表面產生熱電子。此些熱電子將進行佛 勒〜諾罕(Fowler-Nordheim)穿透效應或直接穿透效應( Mr^ect tunneling),穿越二氧化矽層1 3,而被捕捉於 二氧化矽層1 3與氮化矽層1 4之間的界面。 …執行清除操作時,一負電壓係施予在閘極上,使陷於 上述二層界面間的電子可進行反方向的佛勒-諾罕( Fowler—Nordheim)穿透效應或反方向的直接穿透效應( direct tunneling),穿越二氧化矽層i 3,進入半導體 基底1 0。藉&,電子從二氧切層i 3與氮化梦層丄4 之間的界面射出。 執行寫入操作時,雖然大 氧化矽層1 3與氮化矽層1 4 子傾向於穿入氮化矽層1 4。 造成非必要的電場。即使未有 要的電場會趨使陷於二氧化石夕 多數的熱電子係被捕捉於二 之間的界面,但少數的熱電 穿入氮化矽層14的熱電子 電壓施予在閘極上,此非必 層1 3與氮化矽層1 4之間 511190Page 5 511190, description of the invention (2) channel region 1 2. a silicon dioxide layer 1 formed on the channel region 12 2, a silicon nitride layer 14 formed on the silicon dioxide layer 13 and formation One of the aluminum gates 15 on the nitrided layer 14. When this metal-nitride-oxide-semiconductor (MN0S) memory element performs a write operation, a positive voltage is applied to the gate so that an electric field spans the four stacks (1 (), 13). , 14, 15), and further generate hot electrons on the surface of the semiconductor substrate 10. These hot electrons will pass through the Fowler-Nordheim penetration effect or Mr ^ ect tunneling effect, pass through the silicon dioxide layer 13 and be captured in the silicon dioxide layer 13 and The interface between the silicon nitride layers 1 to 4. … When a clear operation is performed, a negative voltage is applied to the gate, so that the electrons trapped between the two-layer interface can perform the Fowler-Nordheim penetration effect in the reverse direction or the direct penetration in the opposite direction The effect (direct tunneling) passes through the silicon dioxide layer i 3 and enters the semiconductor substrate 10. By &, electrons are emitted from the interface between the dioxin layer i 3 and the nitrided dream layer 丄 4. When performing a write operation, although the large silicon oxide layer 13 and the silicon nitride layer 1 4 tend to penetrate the silicon nitride layer 14. Causes unnecessary electric fields. Even if an unnecessary electric field tends to trap most of the thermoelectronic systems trapped in the dioxide, the thermoelectric voltage of a small number of thermoelectrics penetrating the silicon nitride layer 14 is applied to the gate. Non-essential layer 1 3 and silicon nitride layer 1 4 511190

五、發明說明(3) 之界面的電子,經由反方向穿透效應穿越二氧化石夕層工3 而逐漸射出。此一現象使二氧化矽層1 3與氮化矽層工4 之間界面的資料電子不易被捕捉於此界面,或使此類型的 記憶體元件無法長時間儲存資料。 ' 為了改善金屬-氮化物-氧化物-半導體(MN〇s)記憶體 元件1的電街佔留特性(charge retention),遂有多曰 矽-氮化物-氧化物-半導體(SN0S )記憶體元件產生。/此_ 多晶矽-氮化物-氧化物-半導體(SN0S )記憶體元件傣以 低壓化學氣相沈積法沈積氮化物層,並採用氫氣回火 hydrogen annealing)方式以提高氮化物層與氧化物声之 間的界面特性。此多晶矽-氮化物—氧化物—半導體(s/〇s ^記憶體元件之佔留特性係隨著氮化物層厚度的減少而 兩。但當氮化物層厚度減少時,同時增進了閘極電極 洞射出效應。| 了解決此—問題,係在閉極電極與 層之間形成一頂部氧化物層,因此發展出多晶矽— 氮化物-氧化物-半導體(s〇N〇s )記憶體元件。 一 二Λ所示係為一典型的多晶矽-氧化物-氮化物-氧 - +導體(S0N0S)記憶體元件2,其包 乳 底20、形成於丰莫丄 丁夺體』 位#科、=f手¥體基底2 〇中的一源極/汲極2 i 位於一對源極/汲極2 1之間的一通道區2 2、开J 1 道區? ^ ζ 开> 成於i W 2=:ί氧化石夕層2 3、形成於底部二I Β 的一中間氮化矽層2 4、形成於中間氮化石 511190 五、發明說明(4) 部二氧化矽 〜諾罕( 基底2 〇穿 由電洞佛勒 多晶矽閘極 。以佛勒— 操作之一主 對元件的可 -諾罕 亦須要花較 層2 4上的一頂部二氧化矽層2 5及形成於頂 層2 5上的一多晶矽閘極2 6。藉由電子佛勒 Fowler—Nordheim)穿透效應,電子從半導體 入中間氮化矽層2 4 ,以執行寫入操作;而藉 -諾罕(Fowler-Nordheim)穿透效應,電洞從 2 6牙入中間氮化石夕層2 4 ’以執行清除操作 諾罕(Fowler—Nordheim)穿透效痺勃杆宜A 要缺點係須要施加高電場。此—施= 靠度(reliability )及耐久性(endurance characteristic )有非常重要的影響。以佛勒 (Fowler—Nordheim)穿透效應執^寫入 長時間。 據此,亟待提供一種具有新、^ ^ 性記憶體元件,其可克服m , 緣層構造的非揮發 缺失。 ”了克服上述習知非揮發性記憶體元件之 5 - 3發明目的及概述: 本發明之主要目的係接供_ 一中間氮化矽層及一頂部筒仆、種具有一底部氮化矽層、 非揮發性記憶體元件,复^矽層之一閘極絕緣層構造的 皆具有低能障,使得本發明記:J :::::;化珍層 載子射出以執行資料的寫入與胤南效率的熱 ^丄i丄yuV. Description of the invention (3) The electrons at the interface of (3) are gradually emitted through the stone dioxide layer 3 through the reverse penetration effect. This phenomenon prevents the data electrons at the interface between the silicon dioxide layer 13 and the silicon nitride layer 4 from being easily captured at this interface, or prevents this type of memory device from storing data for a long time. '' In order to improve the charge retention of the metal-nitride-oxide-semiconductor (MN0s) memory element 1, there are many silicon-nitride-oxide-semiconductor (SN0S) memories. The component is generated. / This_ Polycrystalline Silicon-Nitride-Oxide-Semiconductor (SN0S) memory device: The nitride layer is deposited by low-pressure chemical vapor deposition, and hydrogen annealing is used to improve the noise of the nitride layer and the oxide. Interface characteristics. The occupancy characteristics of the polycrystalline silicon-nitride-oxide-semiconductor (s / 0s ^ memory element are two as the thickness of the nitride layer is reduced. However, when the thickness of the nitride layer is reduced, the gate electrode is also improved The hole ejection effect. | To solve this problem, a top oxide layer was formed between the closed electrode and the layer, so a polycrystalline silicon-nitride-oxide-semiconductor (sonos) memory device was developed. The system shown in Fig. 12 is a typical polycrystalline silicon-oxide-nitride-oxy- + conductor (S0N0S) memory element 2, which includes a breast 20 and is formed in a body of morpholine. A source / drain 2 in the hand base 2 〇 A channel area 2 located between a pair of source / drain 2 1 2. Open the J 1 area? ^ ζ ON > W 2 =: oxidized oxide layer 2 3. An intermediate silicon nitride layer 2 formed on the bottom two I Β 4. formed on the intermediate nitride 511190 5. Description of the invention (4) Silicon dioxide ~ Nohan (substrate 20 volts pass through the hole in the polycrystalline silicon gate. With Fowler-one of the main pairs of components can be-Nohan also need to spend a top layer 2 4 A portion of the silicon dioxide layer 25 and a polycrystalline silicon gate 26 formed on the top layer 25. By the electron Fowler-Nordheim penetration effect, electrons enter the intermediate silicon nitride layer 2 4 from the semiconductor to perform writing In order to perform the clearing operation, Fowler-Nordheim penetrating effect can be achieved through the Fowler-Nordheim penetration effect. A The disadvantage is that a high electric field needs to be applied. This-Shi = Reliability and endurance characteristic have a very important effect. Fowler-Nordheim penetrating effect is used to write for a long time. According to Therefore, there is an urgent need to provide a new, non-volatile memory element that can overcome the non-volatile loss of the m, marginal layer structure. "It overcomes the above-mentioned conventional non-volatile memory element 5-3 invention objectives and summary: present The main purpose of the invention is to provide a middle silicon nitride layer and a top tube, a kind of gate insulation layer structure with a bottom silicon nitride layer, a non-volatile memory element, and a complex silicon layer. The low energy barrier makes this invention: J :::::; Zhen layer Carrier ejection to perform the writing of data and the heat of Tongnan efficiency ^ 丄 i 丄 yu

本發明之另 一中間氣化欲爲目的係提供一種具有一底部氮化矽層、 # m ^ " 夕層及一頂部氮化矽層之一閘極絕緣層|、1 y 子資料M U 件,其可提高儲存於中間氮化矽;t € "# ^ ^ ^ ^ ^ (retention characteristic -中SIIJ:::f提供-種具有-底部氮化矽層、 非揮發性圮丨咅^ _杜卩虱化矽層之一閘極絕緣層構造的 本發明記憶體元件有利於縮小化。 數’使侍 根據以 絕緣層之非 緣層之非揮 之一半導體 導電性之一 第二氮化碎 係位於半導體基底之一 極之間之半 道區上方, 三氮化矽層 氮化矽層上 係從半導體 層内。 上所述之目 揮發性半導 發性半導體 基底、具有 源極/汲極 層 第三 導體基底之 第二氮化矽 係形成於第 。當一電場 基底直接穿 的,本發明 體記憶體元 記憶體元件 電性與該第 、一通道區 氮化矽層及 表面上,而 表面上。第 層係形成於 -一氮化秒層 施予在閘極 越第一氮化 提供一種具有 件。此具有多 包括具有一第 一導電性相反 、一第一氮化 一閘極。此源 通道區係位於 一氮化矽層係 第一氮化層上 上。閘極係形 與沒極之間時 矽層並陷於第 多層閘 層閘極 一導電 之一第 石夕層、 極/汲 源極與 形成於 ,以及 成於第 ,敎盤 Ο、、 平人 -氮化 五、發明說明(6) 5 4舍明洋細說明· 本發明提供一種呈右 記憶體元件。&閘極結構t = f構之—非揮發性半導體 層:第:絶緣層係形成於—:導::疊之三層同材質絕緣 係形成第一絕緣層上。一 ^ ”體基底上及一第二絕緣層 上及供作閑極之一導電性:::J層係形成於第二絕緣層 明之非揮發性記情體二係形成於第三絕緣層上。本發 晶體元件㈣道非揮發性::= =性記憶體電 » 層結構之非揮半導體( ,一 :+導體基底包含有—Ρ型石夕基底3 〇。一對上 "1又距離之1^埋入擴散區係形成於Ρ型矽基底3 〇中, 以供作源極/汲極3 i。_Ν通道3 2係位於源極/汲極3 1之間之Ρ型矽基底3 0中。具有厚度約4 〇〜2 〇 〇埃 之一第一氮化矽層3 3係形成於ν通道3 2上方。具有厚 ^約4 0〜1 〇 〇埃之一第二氮化矽層3 4係形成於第一 氮化矽層3 3上。具有厚度約40〜1 00埃之一第三氮 化矽層3 5係形成於第二氮化矽層3 4上。一導電性層, 例如一多晶矽層3 6 ,係形成於第三氮化矽層3 5上。第 一氮化石夕層3 4係供作一電荷捕捉層(charge trappingAnother purpose of the present invention is to provide a gate insulating layer having a bottom silicon nitride layer, a # m ^ " layer, and a top silicon nitride layer. , Which can be stored in intermediate silicon nitride; t € "# ^ ^ ^ ^ ^ (retention characteristic -SIIJ ::: f provides-a kind of silicon nitride layer with a bottom, non-volatile 圮 丨 咅 ^ _ The memory element of the present invention constructed with a gate insulating layer, which is one of the silicon layers, is advantageous for miniaturization. It is based on the non-volatile semiconductor conductivity of the non-edge layer of the insulating layer and the second nitride chip. It is located above the half-way region between one pole of the semiconductor substrate, and the silicon nitride layer on the silicon nitride layer is inside the semiconductor layer. The above-mentioned volatile semi-conductive semiconductor substrate has a source / sink. The second silicon nitride system of the third conductor substrate of the polar layer is formed on the first layer. When an electric field substrate is directly penetrated, the body memory element memory element of the present invention is electrically connected to the first and first channel region silicon nitride layer and the surface. And on the surface. The second layer is formed in a nitride layer The gate electrode is provided with a first nitride device. The device includes a first nitride layer and a first nitride layer. The source channel region is located in a silicon nitride layer and a first nitride layer. Above. When the gate system is between the gate and the electrode, the silicon layer is trapped in the second layer of the gate. The gate is a conductive one of the first layer, the electrode / drain source, and the first layer, and the second layer. 5. Pingren-Nitride V. Description of the invention (6) 5 4 Detailed description of She Mingyang · The present invention provides a right-side memory element. &Amp; Gate structure t = f-Non-volatile semiconductor layer: Section: Insulation The layer system is formed on the first insulation layer of the three-layer insulation system of the same material. A conductive layer is formed on a substrate and a second insulating layer and is used as a free electrode. The layer is formed on the second insulating layer and the non-volatile memory is formed on the third insulating layer. The crystal element of the present invention is non-volatile :: == Sexual memory electrical »Layer structure of the non-volatile semiconductor ( One: + Conductor substrate contains -P-type Shixi substrate 3 0. A pair of " 1 and distance The buried diffusion region 1 is formed in the P-type silicon substrate 30 for the source / drain 3 i. The _N channel 3 2 is a P-type silicon substrate 30 between the source / drain 31 1. Medium. A first silicon nitride layer 33 having a thickness of about 400 to 2000 angstroms is formed over the ν channel 32. It has a second silicon nitride layer having a thickness of about 40 to 100 angstroms. The 3 4 series is formed on the first silicon nitride layer 3 3. The third silicon nitride layer 3 having a thickness of about 40 to 100 angstroms is formed on the second silicon nitride layer 34. A conductive layer For example, a polycrystalline silicon layer 36 is formed on the third silicon nitride layer 35. The first nitrided layer 34 is used as a charge trapping layer.

第10頁 511190 五、發明說明(7) 5係供作 layer),而第一氮化矽層3 3及第三氮化矽層 穿透層(tunneling iayers)。 藉由汲極端之通道熱電子射出經過底部穿透層,即第 D匕石夕層3 3,進入中間捕捉層,即第二氮化石夕層 C Μ Μ行本土明之夕晶石夕""氮化石夕""氮化矽—氮化矽_半導體( 明之?!宜非揮發性記憶體元件 曰矽:ί刼作執行步驟如下:施予第一操作電壓於多 曰第曰二層=石夕基底30之間以打開Ν通道32,及施予 電壓於汲極端3 1與源極端3 1之間’以誘發一 射-、產,熱電子。此些熱電子係經由第一氮化矽層3 3 :入:一虱化矽層3 4。較佳地,第一操作電壓約: 特、弟二操作電壓約2 5〜5伏转 | 伏 地。萨由佛勤令哎rr 矽基底3 〇與源極皆接 精由佛勒 5右干(Fowler—Nordheim) in人;、 應執行本發明多晶矽—氮化 . ^ 、令電洞效 (漏NS)类員非揮發性夕一氮夕一半導體 係由N通道3 2射出冷雷、、π〜1 #作;其 -3 4 VA 3 3 ^ , T ^ ^ , 貝料清除操作條件如下:竑; -正偏M P〇sltlve blas)於石夕基底3 〇及一二予 7广Ve blas)於多晶石夕層36,以 諾偏[ F广:N:dheim )通道冷電洞經由第-氮化石夕層;# :二:Γ夕層3 4。較佳地,多晶矽層3 6之偏壓1牙 _6〜-1〇伏特及梦基底3 〇之偏壓為約〇〜5伏特。烏[為約Page 10 511190 V. Description of the invention (7) 5 is used as a layer), and the first silicon nitride layer 33 and the third silicon nitride layer are tunneling iayers. The hot electrons emitted through the channel of the drain terminal pass through the bottom penetrating layer, namely the D dagger stone layer 33, and enter the intermediate capture layer, that is, the second nitride stone layer C Μ Μ local native evening spar crystal stone " " Nitride stone " " Silicon Nitride—Silicon Nitride_Semiconductor (Ming ?! Should be non-volatile memory device silicon: the operation steps are as follows: the first operating voltage is given to the second Layer = Shi Xi base 30 to open N channel 32, and a voltage is applied between the drain terminal 31 and the source terminal 31 to induce a shot, production, and hot electrons. These hot electrons pass through the first Silicon nitride layer 3 3: Into a silicon layer 3 4. Preferably, the first operating voltage is about: The operating voltage of the second and second brothers is about 2 5 ~ 5 volts | Volt. The silicon substrate 3 and the source are connected by Fowler-Nordheim in humans; the polycrystalline silicon-nitriding of the present invention should be performed. ^, So that the hole effect (leakage NS) class is non-volatile. A nitrogen oxide semiconductor system is made by N channel 3 2 emitting cold thunder, π ~ 1 #; its-3 4 VA 3 3 ^, T ^ ^, shell material removal operation conditions are as follows: 正; -Positive Partial MP (Osltlve blas) on Shixi substrate 30 and 12 (Ve blas) on polycrystalline stone layer 36, and Enoch (F: N: dheim) channel cold hole via the -nitride stone Layer; #: 二: Γ 夕 layer 3 4. Preferably, the bias voltage of the polycrystalline silicon layer 36 is about 6 to 10 volts and the bias of the dream substrate 30 is about 0 to 5 volts. Black

五、發明說明(8) 一第四圖係電子與電洞相對於第_翁 不意圖。供作底部穿透層砂展了層3 3之能障 之能障約2.1電子伏特,其低於^化/層3 3提供給電子 約3.2電子伏特的能障。第一氮:二2提供給電子之 =約U伏特,其亦低於二氧;給電洞之 電子伏特的能障。據在匕,本發 /曰^供給電洞之約4. 8 -氮化矽-半導體(SNNNS ) 夕Ba矽-虱化矽-氮化矽 第一氮化石夕層3 3供作底部穿體元件3使用 除操作,可提供高效率的敎載子;出對^貧料的寫入與清 層3 3具有高介電常數,有利於外二第-氮化矽 小化’以降低資料寫人與清除摔作^ = 體70件之縮 吝曰功-备儿λ· γ 、月陈蘇作之細作電壓。本發明之 發;/體元石件化石夕—半導體(snnns)類非揮 忑體兀件3之功率消耗亦可降低。 非常2層之第三氮切層3 5具有良好品質及 氮化石夕二(traps),熱電子將不容易穿入第三 r 可避免由於熱電子穿入及陷於第三 ' „所引起的不必要電場。儲存於電荷捕捉層即 第二氮化石夕層34之電子資料之佔留特性(他心 characteristic)因此可獲得改善。 以上所述僅為本發明之較佳實施例而已,並非用以限 疋本發明之申清專利範圍;凡其它未脫離本發明所揭示之 精神下所兀成之等效改變或修飾,均應包含在下述之專利-V. Description of the invention (8) The fourth picture is that the electrons and holes are not intended with respect to the __Weng. The energy barrier for the bottom penetrating layer sand to develop the energy barrier of layer 3 3 is about 2.1 electron volts, which is lower than the energy barrier provided by the layer 3 3 to electrons of about 3.2 electron volts. The first nitrogen: two 2 = about U volts for electrons, which is also lower than dioxygen; energy barrier for electron volts for holes. According to the dagger, the hair / supply hole is about 4.8-silicon nitride-semiconductor (SNNNS) Xi Ba silicon-lice silicon-silicon nitride first nitride layer 3 3 for the bottom body Element 3 uses a division operation, which can provide high-efficiency plutonium carriers; the write and clear layer of the ^ lean material has a high dielectric constant, which is conducive to the miniaturization of the second silicon nitride to reduce data writing. Man and clear wrestling ^ = the shrinkage of 70 pieces of the body, the work-preparation λ · γ, the fine working voltage of Yuechen Su Zuo. Development of the present invention; / Volume stone fossil eve-power consumption of the semiconductor (snnns) non-volatile body 3 can also be reduced. The third nitrogen cut layer 3 of 2 has very good quality and nitrides (traps), and the hot electrons will not easily penetrate the third r. It can avoid the inconvenience caused by the penetration of the hot electrons and trapped in the third. The necessary electric field. Therefore, the retention characteristics (characteristics) of the electronic data stored in the charge trapping layer, that is, the second nitride stone layer 34 can be improved. The above description is only a preferred embodiment of the present invention, and is not intended to Limits the scope of the claimed patent of the invention; all other equivalent changes or modifications that do not depart from the spirit disclosed by the invention should be included in the following patents-

I 第12頁 511190I P.12 511190

第13頁 M1190Page 13 M1190

第一圖係一習知腳⑽類非揮發性記憶體元件之截面示 圖係、—習知麵8類非揮發性記憶體元件之截面 第三圖係本發明之一SNNNS類非揮發性記憶體元件之 截面示意圖;以及 意圖 第四圖係配合第三圖之閘極結構的電子及電洞能障示 主要部1 10 11 12 131 4 1522 0 份之代表符號:金屬-氮化物-氧化物-半導體(MN〇s)記憶體元 件 半導體基底 源極/汲極 通道區 一氧化秒層 氮化石夕層 無閘極 多晶石夕-氧化物-氮化物-氧化物—半導(s〇N〇s ) 記憶體元件 半導體基底 _The first diagram is a cross-sectional view of a conventional fuss-type non-volatile memory element. The cross-section of a conventional 8-type non-volatile memory element. The third diagram is one of the present invention's SNNNS-type non-volatile memory. The schematic diagram of the cross-section of the body element; and the main part of the electron and hole energy barrier shown in the fourth figure to match the gate structure of the third figure 1 10 11 12 131 4 1522 0 part representative symbol: metal-nitride-oxide -Semiconductor (MN〇s) memory element semiconductor substrate source / drain channel region monoxide layer nitride nitride layer non-gate polycrystalline silicon oxide-nitride-oxide-semiconductor (s〇N 〇s) Memory element semiconductor substrate _

第14頁 511190 圖式簡單說明 2 1 源極/汲極 2 2 通道區 2 3 底部二氧化矽層 2 4 中間氮化矽層 2 5 頂部二氧化矽層 2 6 多晶石夕閘極Page 14 511190 Brief description of the diagram 2 1 Source / Drain 2 2 Channel area 2 3 Bottom silicon dioxide layer 2 4 Middle silicon nitride layer 2 5 Top silicon dioxide layer 2 6 Polycrystalline silicon gate

3 多晶矽-氮化矽-氮化矽-氮化矽-半導體(SNNNS 類非揮發性記憶體元件 3 0 P型矽基底 3 1 源極/汲極 3 2 N通道 3 3 第一氮化矽層 3 4 第二氮化矽層 3 5 第三氮化矽層 3 6 多晶矽閘極3 Polycrystalline silicon-silicon nitride-silicon nitride-silicon nitride-semiconductor (SNNNS-type non-volatile memory element 3 0 P-type silicon substrate 3 1 source / drain 3 2 N channel 3 3 first silicon nitride layer 3 4 Second silicon nitride layer 3 5 Third silicon nitride layer 3 6 Polycrystalline silicon gate

第15頁Page 15

Claims (1)

511190 案號 90127945 年分月曰 修正 六、申請專利範圍 1 · 一種多層(mu 11 i - 1 ayer )結構,其包括: 一半導體層; 一第一絕緣層,係形成於該半導體層上,該第一絕緣 層具有一第介電常數及一第一厚度; 一第二絕緣暑,係形成於該第一絕緣層上,該第二絕 緣層具有一第二介電常數及一第二厚度; 一第三絕緣層,係形成於該第二絕緣層上,該第三絕 緣層具有一第三介電常數及一第三厚度;以及 一導電性層,係形成於該第三絕緣層上,當一電場施 予在該半導體層與該導電性層之間時,熱載子係從該半導 體層直接穿越該第一絕緣層並被捕捉於該第二絕緣層内。 2. 如申請專利範圍第1項所述之結構,其中上述之第一絕 緣層包含氮化矽。 3. 如申請專利範圍第1項所述之結構,其中上述之第二絕 緣層包含氮化矽。 4. 如申請專利範圍第1項所述之結構,其中上述之第三絕 緣層包含氮化矽。 5. 如申請專利範圍第1項所述之結構,其中上述之導電性 層包含多晶石夕。511190 Case No. 90127945 Date of Amendment VI. Patent Application Scope 1. A multi-layer (mu 11 i-1 ayer) structure including: a semiconductor layer; a first insulating layer formed on the semiconductor layer, the The first insulating layer has a first dielectric constant and a first thickness; a second insulating layer is formed on the first insulating layer, and the second insulating layer has a second dielectric constant and a second thickness; A third insulating layer is formed on the second insulating layer, the third insulating layer has a third dielectric constant and a third thickness; and a conductive layer is formed on the third insulating layer, When an electric field is applied between the semiconductor layer and the conductive layer, hot carriers pass through the first insulating layer directly from the semiconductor layer and are captured in the second insulating layer. 2. The structure described in item 1 of the scope of the patent application, wherein the above-mentioned first insulating layer comprises silicon nitride. 3. The structure described in item 1 of the scope of the patent application, wherein the above-mentioned second insulating layer comprises silicon nitride. 4. The structure described in item 1 of the scope of the patent application, wherein the third insulating layer mentioned above comprises silicon nitride. 5. The structure according to item 1 of the scope of patent application, wherein the above-mentioned conductive layer comprises polycrystalline stone. 第15頁 ------- 案號 9m?/7(U5_ 年 月__Ξ-—修正 _ 六、申請專概® ""〜—〜 6 ·如申請專利範圍第2項所述之結構,其中上述之第一絕 緣層之該第一厚度約40〜100埃。 、、、 7 ·如申請專利範圍第3項所述之結構,其中上述之第二絕 緣層之該第二厚度約4〇〜1〇〇埃。 、、巴 $ .如申請專利範圍第4項所述之結構,其中上述之第三絕 緣層之第三厚度約4 0〜1 〇 〇埃。 巴 9· 種多層(multi-layer)結構’其包括·Page 15 ------- Case No. 9m? / 7 (U5_ year month __Ξ --- revision_ VI. Application Summary ® " " ~~~ 6 · As described in the second item of the scope of patent application The structure, wherein the first thickness of the first insulating layer is about 40 to 100 angstroms. The structure according to item 3 of the scope of patent application, wherein the second thickness of the second insulating layer is About 40 to 100 angstroms. The structure described in item 4 of the scope of patent application, wherein the third thickness of the third insulating layer is about 40 to 100 angstroms. Multi-layer structure 'which includes · 一半導體層; 一第一氮化矽層,係形成於該半導體層上,該箓—^ 化矽層具有一第一厚度; 弟—氮 一第二氮化石夕層,係形成於該第一氮化石夕層上, 二氮化矽層具有一第二厚度; 〜第 一 第二氮化石夕層,係形成於該第二氮化石夕層上,今第 二氮化矽層具有一第三厚度;以及 ^ ^ 一導電性層,係形成於該第三氮化矽層上,當一電場 =予在該半導體層與該導電性層之間時,熱載子係從該半A semiconductor layer; a first silicon nitride layer formed on the semiconductor layer; the silicon nitride layer has a first thickness; a nitrogen-second nitrogen nitride layer is formed on the first layer The silicon nitride layer has a second thickness on the nitride layer. The first and second nitride layers are formed on the second nitride layer. The second silicon nitride layer has a third layer. Thickness; and ^ ^ a conductive layer is formed on the third silicon nitride layer, when an electric field = between the semiconductor layer and the conductive layer, the hot carrier is from the half 導體層直接穿越該第_氮化矽層並被捕捉於該第二氮化石夕 層内。 ·如申請專利範圍第9項所述之結構,其中上述之第一 氮化石夕層之該第一厚度約4 0〜1 〇 〇埃。The conductor layer directly passes through the silicon nitride layer and is captured in the second nitride layer. The structure according to item 9 of the scope of the patent application, wherein the first thickness of the first nitrided layer is about 40 to 100 angstroms. 第16頁 。丄 Π9〇P.16.丄 Π9〇 •如申請專利範圍第9項所述之結構,其中上一友 化矽層之該第二厚度約4〇~1〇0埃。 弟一虱 12·如申請專利範圍第9項所述之結構’其中上述之 化石夕層之第三厚度約4 〇〜丨〇 〇埃。 、 其中上述之導電性 1 3 ·如申請專利範圍第9項所述之結構, 層包含多晶矽。 1 4. 一種具有多層閘極絕緣層之非揮發性半導體記憶體一 件,其包括: 。思凡 具有/第一導電性之一半導體基底; 具有電性與該第一導電性相反之一第二導電性之一源 極/汲極,該源極/汲極係位於該半導體基底之一表面上"·、 一通道區,係位於該源極與該汲極之間之該半導體美 底之該表面上, - 一第/氮化矽層,係形成於該通道區上方; 一第二氮化石夕層,係形成於該第一氮化層上; 一第 > 氮化石夕層’係形成於該第二氮化石夕層上;以及 一閘極’係形成於該第三氮化矽層上,當_電場施予 在該閘極與該汲極之間時,熱載子係從該半導體基底直接 穿越該第〆氮化矽層並被捕捉於該第二氮化矽層内。• The structure described in item 9 of the scope of the patent application, wherein the second thickness of the previous friendly silicon layer is about 40 to 100 angstroms. Brother Yi Liao 12. The structure according to item 9 of the scope of the patent application, wherein the third thickness of the fossil evening layer described above is about 40 to 丨 0 Å. Among them, the above-mentioned conductivity 1 3. The structure as described in item 9 of the scope of patent application, the layer includes polycrystalline silicon. 1 4. A non-volatile semiconductor memory device having multiple gate insulation layers, comprising:. Sifan has a semiconductor substrate with one of the first conductivity; a source / drain with a second conductivity that is opposite to the first conductivity; the source / drain is located on a surface of the semiconductor substrate On ", a channel region is located on the surface of the semiconductor substrate between the source and the drain,-a / silicon nitride layer is formed over the channel region; a second A nitride nitride layer is formed on the first nitride layer; a first > nitride nitride layer is formed on the second nitride layer; and a gate electrode is formed on the third nitride layer On the silicon layer, when an electric field is applied between the gate and the drain, hot carriers pass through the third silicon nitride layer directly from the semiconductor substrate and are captured in the second silicon nitride layer. . 第17頁 六 申睛專利範圍 月 曰Page 17 VI. Application scope of patent 15·如申請專利範圍第14項所述之具有多層閘極絕緣層之 非揮發性半導體記憶體元件,其中上述之第一導電性係為 N型及p型導電性其中任一者。 ^ 16·如申請專利範圍第14項所述之具有多層閘極絕緣層之 非揮發性半導體記憶體元件,其中上述之第_氮化矽9層之 厚度約40〜1〇〇埃。 9 1 7.如申請專利範圍第丨4項所述之具有多層閘極絕緣層之 非揮發性半導體記憶體元件,其中上述之第二氮化矽曰芦 厚度約4 0〜1 〇 〇埃。 18.如申請專利範圍第14項所述之具有多層閘極絕緣芦 非揮發性半導體記憶體元件,其中上述之第三氮化H 厚度約40〜1〇〇埃。 曰< 19.如申請專利範圍第14項所述之具有多層閘極絕緣層之 非揮發性半導體記憶體元件,其中上述之閘極電極包曰含多 晶秒。 20· —種SNNNS類非揮發性記憶胞之資料清除方法,該非揮 發性記憶胞包括一 p型半導體基底、具N型導電性之一第一 擴散區、具N型導電性之一第二擴散區,該第一擴散區與 該第二擴散區係互、相隔開一段距離並且皆位於該半導體基* ΛΜ 90127945 年 月 中請專利範目 底表面下方、位於該半導體基底内之該第一擴散區與該第 擴政區之間之一通道區、〆多晶石夕閘極及位於該多晶石夕 閉極與該通道區之間之包括/頂部氮化矽層、一中間氮化 石夕層及一底部氮化矽層之 一 ^ a极人& ^ 方法包括: 曰 修正 ,該資料清除 施予一負操作電壓於該多晶石夕閘極;以及 知予一正操作電壓於該半導體基底,藉此產生一電場 方^古女 曰 產^夕日日矽閘極與該半導體基底之間,該電場之強度足以 生通道冷電洞經由該底部氮化矽層射入該中間氮化矽声 ,以執行資料清除。 曰 21 ·如申請專利範圍第2 0項所述之資料清除方法,其中上 述之負操作電壓約-6〜-10伏特。 2 2 ·如申請專利範圍第2 0項所述之資料清除方法,其中上 述之正操作電壓約〇〜5伏特。 23·如申請專利範圍第2〇項所述之資料清除方法,其中上 述之負操作電壓約—6〜-丨0伏特及該正操作電壓約〇〜5伏 特。15. The non-volatile semiconductor memory device having a plurality of gate insulating layers as described in item 14 of the scope of the patent application, wherein the above-mentioned first conductivity is any of N-type and p-type conductivity. ^ 16. The non-volatile semiconductor memory device having a multilayer gate insulating layer as described in item 14 of the scope of the patent application, wherein the thickness of the 9th silicon nitride layer is about 40 to 100 angstroms. 9 1 7. The non-volatile semiconductor memory device having a multi-layer gate insulation layer as described in item 4 of the scope of the patent application, wherein the thickness of the second silicon nitride is about 40 to 100 angstroms. 18. The non-volatile semiconductor memory device with multi-layer gate insulation as described in item 14 of the scope of the patent application, wherein the thickness of the third nitride H is about 40 to 100 angstroms. ≪ 19. The non-volatile semiconductor memory device having a plurality of gate insulating layers as described in item 14 of the scope of the patent application, wherein the gate electrode described above contains polycrystalline seconds. 20 · —A method for erasing data of SNNNS-type non-volatile memory cells, the non-volatile memory cells including a p-type semiconductor substrate, a first diffusion region with N-type conductivity, and a second diffusion with N-type conductivity Region, the first diffusion region and the second diffusion region are spaced apart from each other and are located on the semiconductor substrate. The first diffusion is located below the bottom surface of the patent specification in the semiconductor substrate and is located in the semiconductor substrate. A channel region between the region and the expanded region, a polycrystalline silicon gate, and a silicon nitride layer including / on top of the polycrystalline silicon gate and the channel region Layer and one of the bottom silicon nitride layers ^ a pole person & ^ method includes: said correction, the data erasing a negative operating voltage is applied to the polycrystalline silicon gate; and a positive operating voltage is known to the The semiconductor substrate is used to generate an electric field between the ancient silicon gate and the semiconductor substrate, and the electric field is strong enough to generate a channel cold hole through the bottom silicon nitride layer into the intermediate nitride. Silicon sound to perform data clearing . 21 • The data erasing method as described in item 20 of the scope of patent application, wherein the negative operating voltage is about -6 to -10 volts. 2 2 · The data erasing method described in item 20 of the scope of patent application, wherein the positive operating voltage is about 0 to 5 volts. 23. The data erasing method as described in item 20 of the scope of patent application, wherein the negative operating voltage is about -6 to -0 volts and the positive operating voltage is about 0 to 5 volts. 第19頁Page 19
TW90127945A 2001-11-09 2001-11-09 Non-volatile semiconductor memory device with multi-layer gate insulating structure TW511190B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW90127945A TW511190B (en) 2001-11-09 2001-11-09 Non-volatile semiconductor memory device with multi-layer gate insulating structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW90127945A TW511190B (en) 2001-11-09 2001-11-09 Non-volatile semiconductor memory device with multi-layer gate insulating structure

Publications (1)

Publication Number Publication Date
TW511190B true TW511190B (en) 2002-11-21

Family

ID=27752370

Family Applications (1)

Application Number Title Priority Date Filing Date
TW90127945A TW511190B (en) 2001-11-09 2001-11-09 Non-volatile semiconductor memory device with multi-layer gate insulating structure

Country Status (1)

Country Link
TW (1) TW511190B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9496353B2 (en) 2003-09-09 2016-11-15 The Regents Of The University Of California Fabrication of single or multiple gate field plates

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9496353B2 (en) 2003-09-09 2016-11-15 The Regents Of The University Of California Fabrication of single or multiple gate field plates
US10109713B2 (en) 2003-09-09 2018-10-23 The Regents Of The University Of California Fabrication of single or multiple gate field plates

Similar Documents

Publication Publication Date Title
White et al. A low voltage SONOS nonvolatile semiconductor memory technology
US4360900A (en) Non-volatile semiconductor memory elements
TWI415269B (en) High-κ capped blocking dieletric bandgap engineered sonos and monos
JP5459999B2 (en) Nonvolatile semiconductor memory element, nonvolatile semiconductor device, and operation method of nonvolatile semiconductor element
TWI451562B (en) Methods of operating non-volatile memory cells having an oxide/nitride multilayer insulating structure
TW561513B (en) Semiconductor device and method of manufacturing the same
EP0436156A1 (en) Nonvolatile semiconductor memory device having tunnel insulating film structure
US20030089935A1 (en) Non-volatile semiconductor memory device with multi-layer gate insulating structure
TW200822374A (en) Cylindrical channel charge trapping devices with effectively high coupling ratios
JP2006114905A (en) Non-volatile semiconductor memory element
JP2008544526A (en) Memory using hole traps in high-k dielectrics
TW200849607A (en) Nonvolatile semiconductor memory devices with charge injection corner
JP2010074096A (en) Memory cell of nonvolatile semiconductor storage device
US8638614B2 (en) Non-volatile memory device and MOSFET using graphene gate electrode
JP4965878B2 (en) Nonvolatile semiconductor memory device
US20050167734A1 (en) Flash memory devices using large electron affinity material for charge trapping
TW200816492A (en) Semiconductor decice
JPWO2007064048A1 (en) Semiconductor memory device, driving method thereof, and manufacturing method thereof
JP5361294B2 (en) Nonvolatile semiconductor memory device
CN106024889A (en) Semiconductor device and manufacturing method thereof
JP2005347328A (en) Memory device
TW511190B (en) Non-volatile semiconductor memory device with multi-layer gate insulating structure
KR20070082509A (en) Semiconductor memory device using alloy metal gate electrode
JP2019220670A (en) Vertically integrated three-dimensional flash memory for improved cell reliability and method for manufacturing same
WO2008069325A1 (en) Semiconductor storage device and semiconductor device

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MK4A Expiration of patent term of an invention patent