TW201426883A - 單一或多重閘極場平板之製造 - Google Patents

單一或多重閘極場平板之製造 Download PDF

Info

Publication number
TW201426883A
TW201426883A TW103103844A TW103103844A TW201426883A TW 201426883 A TW201426883 A TW 201426883A TW 103103844 A TW103103844 A TW 103103844A TW 103103844 A TW103103844 A TW 103103844A TW 201426883 A TW201426883 A TW 201426883A
Authority
TW
Taiwan
Prior art keywords
transistor
field plates
gate
dielectric material
field
Prior art date
Application number
TW103103844A
Other languages
English (en)
Other versions
TWI560783B (en
Inventor
Alessandro Chini
Umesh K Mishra
Primit Parikh
Yi-Feng Wu
Original Assignee
Univ California
Cree Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ California, Cree Inc filed Critical Univ California
Publication of TW201426883A publication Critical patent/TW201426883A/zh
Application granted granted Critical
Publication of TWI560783B publication Critical patent/TWI560783B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/404Multiple field plate structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0605Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits made of compound material, e.g. AIIIBV
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40117Multistep manufacturing processes for data storage electrodes the electrodes comprising a charge-trapping insulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/762Charge transfer devices
    • H01L29/765Charge-coupled devices
    • H01L29/768Charge-coupled devices with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/207Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds further characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本發明揭示一種用於製造單一或多重閘極場平板之方法,該方法使用在場效應電晶體之表面上之介電材料沈積/生長、介電材料蝕刻及金屬蒸鍍之連續步驟。因為介電材料沈積/生長通常為良好可控的過程,所以此製造方法允許基於場平板運作之嚴密控制。此外,沈積於裝置表面上之介電材料不需自裝置本質(intrinsic)區域移除:此基本上使得能夠無需低損壞介電材料之乾式/濕式蝕刻而實現場平板裝置。使用多重閘極場平板亦藉由多重連接而減少閘極電阻,因此而改良較大周邊及/或次微米閘極裝置之效能。

Description

單一或多重閘極場平板之製造
本發明係關於半導體裝置,且更特定言之,本發明係關於單一或多重閘極場平板之製造。
(註:本申請案參考各種公開案,如在說明書中由在方括號中之參考數字(如[x])所指示的。根據該等參考數字排列之該等公開案之清單位於題為參考文獻之區中的下方。該等公開案之每一以引用方式併入本文中。)
在基於半導體之場效應電晶體(FET)中,在正常運作期間較大電場出現在閘極汲極存取區域中。場平板為用於改良在高電場運作下之裝置效能及減輕表面俘獲現象[1]、[2]之熟知技術。舉例而言,為減輕發生於以高電場運作之裝置中之所有有害效應(崩潰電壓、俘獲效應、可靠性),場平板已經成為有效且熟知之技術。
場平板之基本概念依裝置作用區域之垂直耗盡而定,因此,能夠增大水平耗盡區域之延伸。對於給定偏壓,此導致在裝置作用區域中之更低電場,減輕了以高電場運作之裝置隨時可發生的所有有害效應(低崩潰、俘獲現象、差可靠性)。此外,定位於閘極汲極存取區域中之場平板亦具有調變裝置作用區域之能力,導致減小減少會在較大射頻(RF)訊號下妨礙適當裝置運作的表面俘獲效應。
但是,所需要的是製造單一或多重閘極場平板之改良方法,及 併入單一或多重閘極場平板之改良結構。
本發明之實施例提供製造單一及多重閘極場平板之改良方法。根據本發明之製造方法使用在場效應電晶體之表面上之介電材料沈積或生長、介電材料蝕刻及金屬蒸鍍之連續步驟。製造方法之優點包括嚴密控制介電材料的厚度,且不存在裝置作用區域之表面對於可能導致在形成場效應電晶體之半導體材料中之損壞的任何乾式或濕式蝕刻製程的任何曝露。此外,沈積於裝置表面上之介電材料不必自裝置本質區域移除,此使得能夠在沒有由乾式或濕式製程引起之損壞的狀況下實現場平板裝置。使用多重閘極場平板藉由使用多重連接而減少閘極電阻,因此,改良較大周邊及/或次微米裝置之效能。最後,藉由適當調整介電材料之厚度,可將平行閘極接觸件沈積於介電材料之頂上,以藉由電連接在裝置非本質區域上之平行閘極接觸件而顯著減少閘極電阻。
10‧‧‧場效應電晶體
12,14‧‧‧歐姆接觸件
16‧‧‧閘極接觸件
18‧‧‧作用區域
20‧‧‧介電材料
22‧‧‧裝置非本質區域
24‧‧‧場平板
26‧‧‧介電材料
28‧‧‧場平板
30‧‧‧單位單元
32‧‧‧基板
34‧‧‧長晶層
36‧‧‧通道層
38‧‧‧障壁層
40‧‧‧間隔層
42‧‧‧源極
44‧‧‧汲極
46‧‧‧閘極
48‧‧‧場平板
50‧‧‧鈍化層
圖1A為場效應電晶體(FIG)之橫截面圖,且圖1B為場效應電晶體(FET)之俯視圖;圖2A為說明介電材料沈積/生長之裝置橫截面圖,且圖2B為說明介電材料沈積/生長之裝置俯視圖;圖3A為說明將介電材料自裝置非本質區域移除之裝置橫截面圖,且圖3B為說明將介電材料自裝置非本質區域移除之裝置俯視圖;圖4A為說明閘極場平板之蒸鍍之裝置橫截面圖,且圖4B為說明閘極場平板之蒸鍍之裝置俯視圖;圖5A為說明多重場平板結構之一實例之裝置橫截面圖,且圖5B為說明多重場平板結構之一實例之裝置俯視圖; 圖6為fmax相關性對閘極指狀物寬度之模擬之圖表;圖7A為說明用於減少之閘極電阻之多重場平板裝置之裝置橫截面圖,且圖7B為說明用於減少之閘極電阻之多重場平板裝置之裝置俯視圖,且圖7C為說明用於減少之閘極電阻之多重場平板裝置之裝置橫截面圖;圖8為基於氮化物HEMT(高電子遷移率電晶體)裝置之單位單元之圖解橫截面圖;圖9為具有與如圖8所說明之裝置不同的組態之基於氮化物HEMT裝置之單位單元的圖解橫截面圖;且圖10為說明基於裝置效能之場平板距離之效應之圖表。
在較佳實施例之以下描述中,參看形成其一部分之隨附圖示,且其中藉由說明本發明可能實施之一特定實施例來展示。應瞭解,可利用其它實施例,且可在未脫離本發明之範疇的情況下對結構加以改變。
概述
本發明描述了用於實現場效應電晶體(FET)之單一或多重閘極場平板結構的簡單製造方法。本發明使用介電材料沈積或生長、介電材料蝕刻及金屬蒸鍍之簡單及通常可良好控制的連續處理步驟。
製造方法
圖1A、1B、2A、2B、3A、3B、4A及4B說明了根據本發明之一實施例之一可能實現之製造方法的步驟,其中該製造方法包含用於製造閘極場平板之方法。
圖1A為場效應電晶體(FET)之橫截面圖,且圖1B為場效應電晶體(FET)10之俯視圖,該場效應電晶體包括源極及汲極歐姆接觸件12及14、一閘極接觸件16及一作用區域18。將製造方法之步驟應用於場效 應電晶體10或其它裝置。該方法通常包含執行介電材料沈積或生長、介電材料蝕刻及金屬蒸鍍以建立在裝置之表面上之一個或一個以上之場平板的連續步驟,其中該等步驟允許基於場平板運作之嚴密控制,且其中沈積於表面上之介電材料不需要自作用區域18移除,進而能夠在無需使用低損壞介電材料之乾式或濕式蝕刻製程的狀況下實現場平板裝置。所執行的步驟進一步包括以下步驟:(1)在裝置之本質區域及非本質區域上使介電材料沈積或生長,其中為達成裝置之適當運作而控制介電材料的厚度;(2)藉由乾式或濕式製程或藉由起離製程圖案化介電材料,使得介電材料主要保持於裝置之作用區域上;及(3)蒸鍍在經圖案化之介電材料上之場平板,其中至少在非本質區域之一側使閘極及場平板接觸件電短路,以在其間提供低電阻連接。將結合圖2A、2B、3A、3B、4A及4B而在下文更詳細地描述該等步驟。
圖2A為說明製造方法之第一步驟之裝置橫截面圖,且圖2B為說明製造方法之第一步驟之裝置俯視圖,該步驟包含在裝置10之本質區域及非本質區域上使介電材料20沈積或生長。為達成完成的裝置10之適當運作,介電材料20之厚度為被控制之關鍵參數。然而,在諸如PECVD(電漿增強化學氣相沈積)之多數沈積/生長技術中,此通常為可良好控制方法。典型材料為氮化矽及二氧化矽,但是,可使用其它材料,只要其可藉由乾式或濕式蝕刻法或藉由起離法而圖案化。
圖3A為說明製造方法之第二步驟之裝置橫截面圖,且圖3B為說明製造方法之第二步驟之裝置俯視圖,該步驟包含藉由蝕刻或自裝置非本質區域22移除而圖案化介電材料20,使得介電材料20主要保持於裝置10之作用區域18上。在藉由蝕刻而形成圖案之狀況下,應強調,在該步驟期間將保護裝置10之表面,防止作用區域18之表面對於可能導致在形成裝置之半導體材料中之損壞的任何乾式或濕式蝕刻製程的任何曝露。在該步驟後,歐姆接觸件12、14以及位於裝置非本質區域 22之閘極部分16為電可存取的。
圖4A為說明製造方法之第三步驟之裝置橫截面圖,且圖4B為說明製造方法之第三步驟之裝置俯視圖,該步驟包含在經圖案化之介電材料20上建立場平板24,其中至少在非本質區域之一側使閘極16及場平板24接觸件電短路,以在其間提供低電阻連接。較佳使用金屬蒸鍍以形成場平板24,其中場平板24包括金屬條或接觸件。場平板24定位於閘極16汲極存取區域,進而提供調變作用區域18的能力,而導致減小妨礙在大射頻訊號下適當的裝置運作之表面俘獲效應。將場平板24連接至裝置本質區域之兩側,且至少在非本質區域22之一側使閘極16及場平板24電短路,以在其兩金屬線之間提供低電阻連接。使場平板24之偏移及長度關於目標裝置效能(如崩潰電壓、射頻效能等)最佳化。
若需要多重場平板結構,則可重複如圖2A、2B、3A、3B、4A及4B所示之介電材料沈積/生長、介電材料蝕刻及金屬蒸鍍的三個步驟。
圖5A為說明一實例之裝置橫截面圖,且圖5B為說明一實例之裝置俯視圖,其係為減少閘極電阻而使用多重閘極場平板來建立多重連接,進而改良較大周邊裝置及/或次微米閘極裝置之效能的實例。該實例為二重場平板結構,該結構包括另一層介電材料26及由金屬條或接觸件構成之另一場平板28。製造方法的參數包含關於閘極16及其它場平板24之介電材料26之厚度、場平板28之長度及偏移,以及引入之場平板24、28之數目。使用多重場平板24、28允許在裝置10之設計中更自由,且在實現高電壓裝置10中具有顯著影響。
本發明之另一優點為能夠減輕因較大周邊裝置中之閘極電阻而造成降低RF效能。通常,在由於閘極電阻增加而導致閘極指狀物寬度增加之情況下,最大振盪頻率(fmax)會隨之減小。
圖6為fmax相關性對閘極指狀物寬度之模擬之圖表。如圖表所示,引入在作用區域之兩端上短路之場平板結構可改良具有較大指狀物寬度之裝置之fmax效能。使用具有與閘極電阻Rg相等之電阻Rf之場平板且將其連接至作用區域之兩側可顯著改良fmax效能。可藉由降低場平板電阻而達成進一步改良。應強調,僅當若藉由場平板結構而加入之寄生電容與本質裝置之寄生電容相比可忽略時,則可觀察到該減小。此可藉由介電材料及其厚度之適當選擇而達成,且必須考慮其作為最佳方法。
在閘極及場平板之間之多重連接亦導致閘極電阻之顯著減少。為在不使RF運作嚴重降級的情況下達成該多重連接,在閘極沈積前蝕刻作用區域之一小部分,以建立在閘極及場平板之間之多重連接,而不使裝置RF運作降級。
在該區域中,可連接閘極及場平板而不對裝置引入任何額外寄生電容。此外,僅當若引入之寄生電容與本質裝置之寄生電容相比較小時,則改良裝置效能。此外,在個別作用區域之間之使用間隔以設計裝置之熱阻抗,其比使用習之技術之裝置更有效。
關鍵參數為介電材料、介電材料之厚度及場平板之長度的選擇。必須考慮該等關鍵參數作為建議之製造方法之最佳化步驟。
使用該方法允許製造具有減小之數目之空橋的較大周邊裝置。此外,次微米裝置之製造可利用本發明。通常,因為與標準閘極形狀相比T形減少了閘極電阻,所以使用T形方法製造次微米裝置。即使使用次微米閘極,可藉由建立多重連接而無T形方法來達成低閘極電阻。
此外,可藉由適當調整介電材料厚度,而將平行閘極接觸件沈積於介電材料上,以藉由使用在裝置之非本質區域上之平行場平板而建立多重連接來顯著減少閘極電阻。藉由平行場平板,藉由在閘極及 場平板之間發生連接處之厚度的適當選擇而提供低電阻路徑。
圖7A為說明用於減少之閘極電阻之多重場平板結構之實例的裝置橫截面圖,且圖7B為說明用於減少閘極電阻之多重場平板結構之實例的裝置俯視圖,且圖7C為說明用於減少閘極電阻之多重場平板結構之實例的裝置橫截面圖。此外,具有覆蓋閘極源極存取區域之場平板(如圖7A、7B及7C所示)亦用於調變源極存取電阻以改良裝置線性效能。
具有場平板之基於氮化鎵之高電子遷移率電晶體
包括AlGaN/GaN高電阻遷移率電晶體(HEMT)之基於GaN之電晶體能夠在RF、微波及毫米波頻率下以高電壓及高功率運作。然而,電子俘獲及在DC及RF特性之間的隨後之差異限制了該等裝置之效能。SiN鈍化已經成功地應用於減輕該俘獲問題,長生具有在10GHz下之10W/mm之功率密度之高效能裝置。舉例而言,[3]揭示一種用於減少在GaN電晶體中之俘獲效應之方法及結構。然而,由於高電場存在於該等結構中,電荷俘獲仍為一問題。
本發明已成功用於改良AlGaN/GaN HEMT功率裝置之效能。在4GHz運作下,對於在藍寶石及碳化矽基板上之裝置已分別達成為12W/mm及18.8W/mm的功率密度。由於涉及場平板之製造的處理步驟的簡單性,本發明可用於AlGaN/GaN HEMT技術及其它半導體裝置的開發。使用適當設計之多重場平板可大大改良該等裝置中之崩潰及較大RF訊號效能。
基於GaN之HEMT包括一通道層及在通道層上之一障壁層。與障壁層接觸形成金屬源極及汲極歐姆接觸件。閘極接觸件形成於在源極及汲極接觸件之間之障壁層上,且間隔層形成於障壁層上方。間隔層可在形成閘極接觸件之前或之後形成。間隔層可包括介電層、未摻雜或耗盡之AlxGa1-xN(0<=x<=1)材料層、或其組合。導電場平板形成於 間隔層上方,且自閘極接觸件之邊緣朝向汲極接觸件延伸距離Lf(場平板距離)。場平板可電連接至閘極接觸件。在一些實施例中,在相同沈積步驟期間場平板作為閘極接觸件之延伸而形成。在其它實施例中,場平板及閘極接觸件在分開的沈積步驟中形成。該排列可減少在裝置中之峰值電場,導致增大崩潰電壓且減小俘獲。電場之減小亦可產生其它利益,例如減小漏電流及增強可靠性。
在圖8中說明了本發明之一實施,該圖為基於氮化物之HEMT裝置之單位單元30之圖解橫截面圖。詳言之,裝置30包括一基板32,其可包含碳化矽、藍寶石、尖晶石、ZnO、矽或能夠支撐第三族氮化物材料之生長的任何其它材料。藉由諸如MOCVD(有機金屬氣相沈積法)、HVPE(氫化物氣相磊晶法)及MBE(分子束磊晶法)之磊晶生長方法使AlzGa1-zN(0<=z<=1)長晶層34在該基板32上生長。長晶層34之形成可視基板32之材料而定。舉例而言,在參考文獻[4]及[5]中教示了在各種基板上形成長晶層34之方法。在參考文獻[6]、[7]及[8]中揭示了在碳化矽基板之上形成長晶層之方法。
高電阻率第三族氮化物通道層36形成於長晶層34上。通道層36可包含AlxGayIn(1-x-y)N(0<=x<=1,0<=y<=1,x+y<=1)。接著,AlxGa1-xN(0<=x<=1)障壁層38形成於通道層36上。通道層36及障壁層38各可包含子層,該等子層可包含第三族氮化物材料之摻雜或未摻雜層。在參考文獻[3]、[9]、[10]、[11]及[12]中說明了例示性結構。在參考文獻[13]及[14]中說明了其它基於氮化物之HEMT結構。
在圖8中說明之實施例中,第三族氮化物半導體間隔層40生長於AlxGa1-xN障壁層28上。間隔層40可具有均勻或分級組合物。間隔層40可被摻雜及/或可被設計為當生長時完全耗盡。
所形成源極42及汲極44電極使歐姆接觸件通過障壁層38,使得當閘電極46以適當位準偏壓時,電流在源極電極及汲極電極42、44之 間經由在通道層36及障壁層38之間之異介面產生之二維電子氣(2DEG),而流動。在以上引用之專利案及公開案中詳細描述了源極電極及汲極電極42、44之形成。
可蝕刻間隔層40且沈積閘電極46,使得閘電極46之底部位於障壁層38之表面上。形成閘極電極46之金屬可被圖案化,以延伸通過間隔層40,使得閘極46之頂部形成自閘極46之邊緣朝向汲極44延伸距離Lf的場平板結構48。換言之,基於間隔層40之閘極46金屬之部分來形成磊晶場平板48。最後,以介電鈍化層50(如氮化矽)覆蓋該結構。在以上引用之專利案及公開案中詳細描述了形成介電鈍化層50之方法。
在圖9中說明了本發明之其它實施例,該圖為具有與圖8所說明之裝置不同組態之基於氮化物之HEMT裝置之單位單元30的圖解橫截面圖。在圖9中說明之裝置30中之基板32、長晶層34、通道層36及障壁層38類似於在圖8中說明之相應的層。在一些實施例中,基板32包含可自Cree,Inc.of Durham N.C,購得之半絕緣4H-SiC,長晶層34由AlN形成,且通道層36包含GaN:Fe之2μm厚度層,而障壁層38包含0.8nm之AlN及22.5nm之AlxGa1-xN,其中x=0.195,如PL(光致發光)所量測的。
閘電極46形成於障壁層38形成後且鈍化層50沈積於裝置上。然後,場平板48形成於鈍化層50上,該場平板與閘極46重疊且在閘極汲極區域中延伸距離Lf。在圖9中所說明之實施例中,鈍化層50作為用於場平板48之間隔層。在閘極46上方之場平板48之重疊及在閘極汲極區域中之延伸的量為達成最佳結果可變化。場平板48及閘極46可以通路或其它連接件電連接(未圖示)。
在一些實施例中,場平板48可延伸0.2μm至1μm之距離Lf。在一些實施例中,場平板48可延伸0.5μm至0.9μm之距離Lf。在較佳實施例中,場平板48可延伸0.7μm之距離Lf。
建構且測試根據圖9之實施例之基於GaN的HEMT結構。該裝置可在120V及4GHz下運作而達成具有55%之功率增加效率(PAE)之32W/mm的功率密度。
測試基於裝置效能之場平板距離(Lf)的效果。通常根據圖9之實施例製造裝置,除場平板長度Lf自0至0.9μm之距離變化外。然後量測所得裝置之PAE。如圖10所說明的,一旦場平板長度延伸至0.5μm(最佳長度為約0.7μm),則PAE展示出改良。然而,最佳長度可視特定裝置設計及運作電壓與頻率而定。
參考文獻
以下文獻以引用方式併入本文中:
[1] K Asano等人"Novel High Power AlGaAs/GaAs HFET with a Field-Modulating Plate Operated at 35V Drain Voltage," IEDM Conference, 1998,第59至62頁。
[2] Y. Ando等人"10-W/mm AlGaN-GaN HFET With a Field Modulating Plate," IEEE Electron Device Letters,第24卷,No. 5, 2003年5月,第289至291頁。
[3] 2003年7月1日頒予Wu等人之題為"Group III nitride based FETs and HEMTs with reduced trapping and method for producing the same."的美國專利第6,586,781號
[4] 1994年3月1日頒予Nakamura之題為"Crystal growth method for gallium nitride-based compound semiconductor."的美國專利第5,290,393號
[5] 1997年11月11日頒予Moustakas之題為"Highly insulating monocrystalline gallium nitride thin films."的美國專利第5,686,738號
[6] 1995年2月28日頒予Edmond等人之題為"buffer structure between silicon carbide and gallium nitride and resulting semiconductor devices."的美國專利第5,393,993號
[7] 1996年6月4日頒予Edmond等人之題為"vertical geometry light emitting diode with group III nitride active layer and extended lifetime."的美國專利第5,523,589號
[8] 1998年4月14日頒予Edmond等人之題為"double heterojunction light emitting diode with gallium nitride active layer."的美國專利第5,739,554號
[9] 2001年11月13日頒予Sheppard等人之題為"nitride based transistors on semi-insulating silicon carbide substrates."的美國專利第6,316,793號
[10] 2003年4月15日頒予Smith之題為"aluminum gallium nitride/gallium nitride high electron mobility transistors having a gate contact on a gallium nitride based cap segment."的美國專利第6,548,333號
[11] 2002年11月14日由Chavarkar、Prashant等人公開之題為"group-III nitride based high electron mobility transistor (HEMT) with barrier/spacer layer."的美國專利申請公開案No. 2002/0167023
[12] 2003年1月30日由Parikh、Primit等人公開之題為"insulating gate AlGaN/GaN HEMT."的美國專利申請公開案No. 2003/0020092
[13] 1993年3月9日頒予Khan等人之題為"high electron mobility transistor with GaN/AlxGa1-xN heterojunctions."的美國專利第5,192,987號
[14] 1994年3月22日頒予Khan等人之題為"Method of making a high electron mobility transistor."的美國專利第5,296,395號
[15] Y. -F. Wu, A. Saxler, M. Moore, R.P. Smith, S. Sheppard, P.M. Chavarkar, T. Wisleder, U.K. Mishra, P. Parikh, 0 W/mm GaN HEMTs by field plate optimization IEEE EDL,第25卷,No.3,第117至119頁,2004年3月
[16] S. Karmalkar, U.K. Mishra, Very high voltage AlGaN-GaN HEMT using a field plate deposited on a stepped insulator, Solid State Electronics, 45 (2001) 1645-1652.
結論
在此結束對本發明之較佳實施例之描述。為達成說明及描述之目的,已經提出了本發明之一個或一個以上之實施例之上述描述。吾人不希望窮舉,或將本發明限制為所揭示之精確形式。根據上述教示,可存在許多修正及改變。吾人希望本發明之範疇未被該詳細描述所限制,而藉由附加之申請專利範圍限制本發明之範疇。
10‧‧‧場效應電晶體
12,14‧‧‧歐姆接觸件
16‧‧‧閘極接觸件
18‧‧‧作用區域
20‧‧‧介電材料
22‧‧‧裝置非本質區域
24‧‧‧場平板
26‧‧‧介電材料
28‧‧‧場平板

Claims (30)

  1. 一種電晶體,其包含:一半導體層;一閘極,其位於該半導體層上或位於該半導體層上方;介電材料,其位於該半導體層及一裝置之閘極上;及一或多個場平板,其位於該介電材料上,其中該介電材料並未被移除以曝露該半導體層。
  2. 如請求項1之電晶體,其中:該電晶體係一場效電晶體;及該等場平板之一或多個中關於該閘極的一或多個偏移、一數目之場平板、該等場平板之一或多個的一或多個長度、該介電材料之一或多個厚度或該閘極及該等場平板之一或多個之間的一或多個電連結係使得該電晶體之最大振盪頻率對於範圍在0-100微米之間的一閘極指狀物寬度係減少0-0.5%。
  3. 如請求項1之電晶體,其中:該電晶體係一場效電晶體;及該等場平板之一或多個中關於該閘極的一或多個偏移、一數目之場平板、該等場平板之一或多個的一或多個長度、該介電材料之一或多個厚度或該閘極及該等場平板之一或多個之間的一或多個電連結係使得該電晶體密度在運作於120V及4GHz時產生具有至少55%之功率增加效率之至少32W/mm的一功率密度。
  4. 如請求項1之電晶體,其中:該電晶體係一場效電晶體;及該等場平板之一或多個中關於該閘極的一或多個偏移、一數 目之場平板、該等場平板之一或多個的一或多個長度、該介電材料之一或多個厚度或該閘極及該等場平板之一或多個之間的一或多個電連結係使得該電晶體具有52-60%之一功率增加效率及包含8W/mm之3dB次方的一輸出功率。
  5. 如請求項4之電晶體,其中該等場平板之一或多個在一閘極汲極存取區域中延伸0.5-1微米之一距離。
  6. 如請求項1之電晶體,其進一步包含在該等場平板與該閘極間的多個場平板及多個連接。
  7. 如請求項6之電晶體,其中:該多個場平板包含位於該介電材料之頂部上的平行場平板,該等平行場平板之至少兩者在該裝置之非本質(extrinsic)區域上係電連接,及該介電材料之一或多個厚度係使得由該等場平板所增加之寄生電容相較於一本質(intrinsic)電晶體之寄生電容係可以忽略的。
  8. 如請求項1之電晶體,其中:(1)該介電材料係位於該電晶體之本質及非本質區域;(2)該介電材料主要保持在該半導體層上;及(3)該閘極及該等場平板之一或多個至少在該電晶體之非本質區域之一側處係電連結。
  9. 如請求項8之電晶體,其中該電連結包含一電短路。
  10. 如請求項8之電晶體,其中該等場平板之一或多個具有一電阻Rf,該電阻Rf係等於一閘極電阻Rg。
  11. 如請求項8之電晶體,其中該等場平板之一或多個係連結至該電晶體之本質區域之兩側。
  12. 如請求項9之電晶體,其進一步包含該閘極及該等場平板之一或 多個之間的多個連結。
  13. 如請求項12之電晶體,其進一步包含一作用區域,其中包含該半導體層之該作用區域的一部分係經蝕刻以製造該閘極及該等場平板之一或多個之間的該多個連結。
  14. 如請求項13之電晶體,其進一步包括包含該半導體層之一作用區域,其中該作用區域被劃分為複數個作用區域且該等作用區域之間的間隔建造該電晶體之一熱阻。
  15. 如請求項13之電晶體,其中該電晶體與不具有該多個連結、不具有主要保持在該半導體層上的該介電材料且不具有該電短路之一電晶體相較之下具有一減小之數目之空橋。
  16. 如請求項13之電晶體,其不具有一T形連結。
  17. 如請求項13之電晶體,其中該等場平板之一或多個覆蓋一閘極源極存取區域。
  18. 如請求項1之電晶體,其中該電晶體係以基於氮化物之一高電子遷移率電晶體(HEMT)。
  19. 如請求項1之電晶體,其中該閘極及該等場平板之一或多個至少在該電晶體之一非本質區域中係電連結。
  20. 如請求項11之電晶體,其中該閘極係直接位於該半導體層上。
  21. 如請求項1之電晶體,其中該閘極及該等場平板之一或多個僅在該電晶體之一非本質區域之一或多側處係電連結。
  22. 如請求項1之電晶體,其中該電晶體係一高電子遷移率電晶體(HEMT)且該半導體層係形成於該HEMT之一導電通道之一作用區域之部分。
  23. 如請求項1之電晶體,其中該電晶體之源極接點及該等場平板之一或多個係電連結的。
  24. 如請求項1之電晶體,其中該電晶體係一第三族氮化物場效電晶 體,且該半導體層包含在一通道上之一障壁層使得一二維電子氣被限制於該通道層中。
  25. 如請求項24之電晶體,其中該障壁係AlGaN且該通道係GaN。
  26. 如請求項1之電晶體,其進一步包含在該等場平板之間的多個場平板及額外介電材料。
  27. 如請求項1之電晶體,其中該電晶體係一高電子遷移率電晶體。
  28. 如請求項1之電晶體,其中該一或多個場平板係位於被蝕刻之介電材料上。。
  29. 如請求項1之電晶體,其中該等場平板之至少一者係電連結至該閘極。
  30. 如請求項1之電晶體,其進一步包含連接至該等場平板之一或多個之一源極接點,其中電連結至該源極接點之該場平板之該一或多個係並未電連結至該閘極。
TW103103844A 2003-09-09 2004-09-09 Fabrication of single or multiple gate field plates TWI560783B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US50155703P 2003-09-09 2003-09-09

Publications (2)

Publication Number Publication Date
TW201426883A true TW201426883A (zh) 2014-07-01
TWI560783B TWI560783B (en) 2016-12-01

Family

ID=34312287

Family Applications (3)

Application Number Title Priority Date Filing Date
TW093127327A TWI430341B (zh) 2003-09-09 2004-09-09 單一或多重閘極場平板之製造
TW100142118A TWI431674B (zh) 2003-09-09 2004-09-09 單一或多重閘極場平板之製造
TW103103844A TWI560783B (en) 2003-09-09 2004-09-09 Fabrication of single or multiple gate field plates

Family Applications Before (2)

Application Number Title Priority Date Filing Date
TW093127327A TWI430341B (zh) 2003-09-09 2004-09-09 單一或多重閘極場平板之製造
TW100142118A TWI431674B (zh) 2003-09-09 2004-09-09 單一或多重閘極場平板之製造

Country Status (8)

Country Link
US (3) US7812369B2 (zh)
EP (2) EP2592655B1 (zh)
JP (3) JP2007505483A (zh)
KR (1) KR101128376B1 (zh)
CN (1) CN100541745C (zh)
CA (1) CA2538077C (zh)
TW (3) TWI430341B (zh)
WO (1) WO2005024909A2 (zh)

Families Citing this family (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2592655B1 (en) * 2003-09-09 2019-11-06 The Regents of The University of California Fabrication of single or multiple gate field plates
US7501669B2 (en) 2003-09-09 2009-03-10 Cree, Inc. Wide bandgap transistor devices with field plates
US7612390B2 (en) 2004-02-05 2009-11-03 Cree, Inc. Heterojunction transistors including energy barriers
US20050218414A1 (en) * 2004-03-30 2005-10-06 Tetsuzo Ueda 4H-polytype gallium nitride-based semiconductor device on a 4H-polytype substrate
US7573078B2 (en) * 2004-05-11 2009-08-11 Cree, Inc. Wide bandgap transistors with multiple field plates
US7550783B2 (en) * 2004-05-11 2009-06-23 Cree, Inc. Wide bandgap HEMTs with source connected field plates
US9773877B2 (en) * 2004-05-13 2017-09-26 Cree, Inc. Wide bandgap field effect transistors with source connected field plates
US7161194B2 (en) 2004-12-06 2007-01-09 Cree, Inc. High power density and/or linearity transistors
US11791385B2 (en) * 2005-03-11 2023-10-17 Wolfspeed, Inc. Wide bandgap transistors with gate-source field plates
JP2006286698A (ja) * 2005-03-31 2006-10-19 Furukawa Electric Co Ltd:The 電子デバイス及び電力変換装置
US20060223293A1 (en) * 2005-04-01 2006-10-05 Raytheon Company Semiconductor devices having improved field plates
WO2006132419A1 (ja) * 2005-06-10 2006-12-14 Nec Corporation 電界効果トランジスタ
CN101976686A (zh) * 2005-06-10 2011-02-16 日本电气株式会社 场效应晶体管
WO2007059220A2 (en) * 2005-11-15 2007-05-24 The Regents Of The University Of California Methods to shape the electric field in electron devices, passivate dislocations and point defects, and enhance the luminescence efficiency of optical devices
US7566918B2 (en) 2006-02-23 2009-07-28 Cree, Inc. Nitride based transistors for millimeter wave operation
US7388236B2 (en) 2006-03-29 2008-06-17 Cree, Inc. High efficiency and/or high power density wide bandgap transistors
JP5217151B2 (ja) * 2006-08-25 2013-06-19 日亜化学工業株式会社 電界効果トランジスタ及びその製造方法
KR100782430B1 (ko) * 2006-09-22 2007-12-05 한국과학기술원 고전력을 위한 내부전계전극을 갖는 갈륨나이트라이드기반의 고전자 이동도 트랜지스터 구조
JP5105160B2 (ja) 2006-11-13 2012-12-19 クリー インコーポレイテッド トランジスタ
US7692263B2 (en) * 2006-11-21 2010-04-06 Cree, Inc. High voltage GaN transistors
US7501670B2 (en) * 2007-03-20 2009-03-10 Velox Semiconductor Corporation Cascode circuit employing a depletion-mode, GaN-based FET
WO2009116015A1 (en) * 2008-03-20 2009-09-24 Nxp B.V. Finfet transistor with high-voltage capability and cmos-compatible method for fabricating the same
JP5499441B2 (ja) * 2008-04-01 2014-05-21 沖電気工業株式会社 半導体装置及びその製造方法
US8519438B2 (en) 2008-04-23 2013-08-27 Transphorm Inc. Enhancement mode III-N HEMTs
US8289065B2 (en) 2008-09-23 2012-10-16 Transphorm Inc. Inductive load power switching circuits
US7898004B2 (en) 2008-12-10 2011-03-01 Transphorm Inc. Semiconductor heterostructure diodes
US8742459B2 (en) 2009-05-14 2014-06-03 Transphorm Inc. High voltage III-nitride semiconductor devices
US8390000B2 (en) 2009-08-28 2013-03-05 Transphorm Inc. Semiconductor devices with field plates
US8389977B2 (en) 2009-12-10 2013-03-05 Transphorm Inc. Reverse side engineered III-nitride devices
US8829999B2 (en) 2010-05-20 2014-09-09 Cree, Inc. Low noise amplifiers including group III nitride based high electron mobility transistors
US8742460B2 (en) 2010-12-15 2014-06-03 Transphorm Inc. Transistors with isolation regions
US8643062B2 (en) 2011-02-02 2014-02-04 Transphorm Inc. III-N device structures and methods
US8716141B2 (en) 2011-03-04 2014-05-06 Transphorm Inc. Electrode configurations for semiconductor devices
US8772842B2 (en) 2011-03-04 2014-07-08 Transphorm, Inc. Semiconductor diodes with low reverse bias currents
CN102201442B (zh) * 2011-04-02 2014-06-18 中国科学院苏州纳米技术与纳米仿生研究所 基于沟道阵列结构的异质结场效应晶体管
US8901604B2 (en) 2011-09-06 2014-12-02 Transphorm Inc. Semiconductor devices with guard rings
US9257547B2 (en) 2011-09-13 2016-02-09 Transphorm Inc. III-N device structures having a non-insulating substrate
US8598937B2 (en) 2011-10-07 2013-12-03 Transphorm Inc. High power semiconductor electronic components with increased reliability
US9165766B2 (en) 2012-02-03 2015-10-20 Transphorm Inc. Buffer layer structures suited for III-nitride devices with foreign substrates
US9093366B2 (en) 2012-04-09 2015-07-28 Transphorm Inc. N-polar III-nitride transistors
US9184275B2 (en) 2012-06-27 2015-11-10 Transphorm Inc. Semiconductor devices with integrated hole collectors
JP6268366B2 (ja) * 2012-09-28 2018-01-31 パナソニックIpマネジメント株式会社 半導体装置
CN105164811B (zh) 2013-02-15 2018-08-31 创世舫电子有限公司 半导体器件的电极及其形成方法
JP2014165280A (ja) * 2013-02-22 2014-09-08 Toshiba Corp 半導体装置
US9087718B2 (en) 2013-03-13 2015-07-21 Transphorm Inc. Enhancement-mode III-nitride devices
US9245993B2 (en) 2013-03-15 2016-01-26 Transphorm Inc. Carbon doping semiconductor devices
US9847411B2 (en) 2013-06-09 2017-12-19 Cree, Inc. Recessed field plate transistor structures
US9679981B2 (en) 2013-06-09 2017-06-13 Cree, Inc. Cascode structures for GaN HEMTs
US9755059B2 (en) 2013-06-09 2017-09-05 Cree, Inc. Cascode structures with GaN cap layers
US9407214B2 (en) 2013-06-28 2016-08-02 Cree, Inc. MMIC power amplifier
US9443938B2 (en) 2013-07-19 2016-09-13 Transphorm Inc. III-nitride transistor including a p-type depleting layer
US20150171860A1 (en) * 2013-11-13 2015-06-18 Skyworks Solutions, Inc. Circuits and methods for improved quality factor in a stack of transistors
US9093394B1 (en) * 2013-12-16 2015-07-28 Hrl Laboratories, Llc Method and structure for encapsulation and interconnection of transistors
JP2015195288A (ja) * 2014-03-31 2015-11-05 住友電工デバイス・イノベーション株式会社 半導体装置及び半導体装置の製造方法
US9318593B2 (en) 2014-07-21 2016-04-19 Transphorm Inc. Forming enhancement mode III-nitride devices
CN104332498B (zh) * 2014-09-01 2018-01-05 苏州捷芯威半导体有限公司 一种斜场板功率器件及斜场板功率器件的制备方法
US9536966B2 (en) 2014-12-16 2017-01-03 Transphorm Inc. Gate structures for III-N devices
US9536967B2 (en) 2014-12-16 2017-01-03 Transphorm Inc. Recessed ohmic contacts in a III-N device
US10056478B2 (en) * 2015-11-06 2018-08-21 Taiwan Semiconductor Manufacturing Company Ltd. High-electron-mobility transistor and manufacturing method thereof
CN108604597B (zh) 2016-01-15 2021-09-17 创世舫电子有限公司 具有al(1-x)sixo栅极绝缘体的增强模式iii-氮化物器件
US9722063B1 (en) * 2016-04-11 2017-08-01 Power Integrations, Inc. Protective insulator for HFET devices
WO2017210323A1 (en) 2016-05-31 2017-12-07 Transphorm Inc. Iii-nitride devices including a graded depleting layer
US11430882B2 (en) * 2016-06-24 2022-08-30 Wolfspeed, Inc. Gallium nitride high-electron mobility transistors with p-type layers and process for making the same
US10892356B2 (en) 2016-06-24 2021-01-12 Cree, Inc. Group III-nitride high-electron mobility transistors with buried p-type layers and process for making the same
US10354879B2 (en) 2016-06-24 2019-07-16 Cree, Inc. Depletion mode semiconductor devices including current dependent resistance
US10192980B2 (en) 2016-06-24 2019-01-29 Cree, Inc. Gallium nitride high-electron mobility transistors with deep implanted p-type layers in silicon carbide substrates for power switching and radio frequency applications and process for making the same
US10840334B2 (en) 2016-06-24 2020-11-17 Cree, Inc. Gallium nitride high-electron mobility transistors with deep implanted p-type layers in silicon carbide substrates for power switching and radio frequency applications and process for making the same
KR20180068172A (ko) * 2016-12-13 2018-06-21 (주)웨이비스 고전자이동도 트랜지스터 및 그 제조방법
CN107170797B (zh) * 2017-03-29 2020-04-14 西安电子科技大学 基于漏场板的电流孔径异质结晶体管及其制作方法
CN112750700B (zh) 2019-10-30 2024-01-30 联华电子股份有限公司 高电子迁移率晶体管及其制作方法
TWI812805B (zh) 2019-11-05 2023-08-21 聯華電子股份有限公司 高電子遷移率電晶體及其製作方法
FR3105580A1 (fr) * 2019-12-20 2021-06-25 Thales Transistor hemt ameliore
US11257940B2 (en) 2020-01-14 2022-02-22 Cree, Inc. Group III HEMT and capacitor that share structural features
US11424356B2 (en) 2020-03-16 2022-08-23 Raytheon Company Transistor having resistive field plate
US11228287B2 (en) 2020-06-17 2022-01-18 Cree, Inc. Multi-stage decoupling networks integrated with on-package impedance matching networks for RF power amplifiers
US11316019B2 (en) 2020-07-29 2022-04-26 Globalfoundries U.S. Inc. Symmetric arrangement of field plates in semiconductor devices
US11929428B2 (en) 2021-05-17 2024-03-12 Wolfspeed, Inc. Circuits and group III-nitride high-electron mobility transistors with buried p-type layers improving overload recovery and process for implementing the same

Family Cites Families (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL37300C (zh) 1933-06-27
JPS5893377A (ja) 1981-11-30 1983-06-03 Fujitsu Ltd 半導体装置の製造方法
US4999682A (en) 1987-08-14 1991-03-12 Regents Of The University Of Minnesota Electronic and optoelectronic laser devices utilizing light hole properties
JPH04162633A (ja) 1990-10-26 1992-06-08 Fuji Xerox Co Ltd 薄膜トランジスタ
US5290393A (en) 1991-01-31 1994-03-01 Nichia Kagaku Kogyo K.K. Crystal growth method for gallium nitride-based compound semiconductor
DE69229265T2 (de) 1991-03-18 1999-09-23 Univ Boston Verfahren zur herstellung und dotierung hochisolierender dünner schichten aus monokristallinem galliumnitrid
US5192987A (en) 1991-05-17 1993-03-09 Apa Optics, Inc. High electron mobility transistor with GaN/Alx Ga1-x N heterojunctions
JP3135939B2 (ja) * 1991-06-20 2001-02-19 富士通株式会社 Hemt型半導体装置
JPH05326563A (ja) * 1992-05-21 1993-12-10 Toshiba Corp 半導体装置
JPH06124965A (ja) 1992-10-09 1994-05-06 Sumitomo Electric Ind Ltd 電界効果トランジスタ
JPH06163600A (ja) 1992-11-26 1994-06-10 Nec Corp 電界効果トランジスタ
US5393993A (en) 1993-12-13 1995-02-28 Cree Research, Inc. Buffer structure between silicon carbide and gallium nitride and resulting semiconductor devices
US5523589A (en) 1994-09-20 1996-06-04 Cree Research, Inc. Vertical geometry light emitting diode with group III nitride active layer and extended lifetime
US5739554A (en) 1995-05-08 1998-04-14 Cree Research, Inc. Double heterojunction light emitting diode with gallium nitride active layer
US6002148A (en) * 1995-06-30 1999-12-14 Motorola, Inc. Silicon carbide transistor and method
KR0167273B1 (ko) 1995-12-02 1998-12-15 문정환 고전압 모스전계효과트렌지스터의 구조 및 그 제조방법
JPH09232827A (ja) * 1996-02-21 1997-09-05 Oki Electric Ind Co Ltd 半導体装置及び送受信切り替え型アンテナスイッチ回路
JP3616447B2 (ja) * 1996-02-27 2005-02-02 富士通株式会社 半導体装置
US6316820B1 (en) * 1997-07-25 2001-11-13 Hughes Electronics Corporation Passivation layer and process for semiconductor devices
DE19800647C1 (de) 1998-01-09 1999-05-27 Siemens Ag SOI-Hochspannungsschalter
TW373247B (en) 1998-04-02 1999-11-01 Taiwan Semiconductor Mfg Co Ltd Contact face having uplift and delay S/D and stock silicon gate electrode P type gold oxygen semi-field effect transistor forming method
JP3534624B2 (ja) * 1998-05-01 2004-06-07 沖電気工業株式会社 半導体装置の製造方法
US6009023A (en) 1998-05-26 1999-12-28 Etron Technology, Inc. High performance DRAM structure employing multiple thickness gate oxide
US6316793B1 (en) 1998-06-12 2001-11-13 Cree, Inc. Nitride based transistors on semi-insulating silicon carbide substrates
JP3111985B2 (ja) * 1998-06-16 2000-11-27 日本電気株式会社 電界効果型トランジスタ
JP2000082671A (ja) 1998-06-26 2000-03-21 Sony Corp 窒化物系iii−v族化合物半導体装置とその製造方法
JP3180776B2 (ja) 1998-09-22 2001-06-25 日本電気株式会社 電界効果型トランジスタ
JP3271613B2 (ja) * 1999-05-06 2002-04-02 日本電気株式会社 電界効果トランジスタ
TW517260B (en) 1999-05-15 2003-01-11 Semiconductor Energy Lab Semiconductor device and method for its fabrication
JP2001085670A (ja) 1999-09-14 2001-03-30 Nec Corp 電界効果型トランジスタ及びその製造方法
US6774449B1 (en) 1999-09-16 2004-08-10 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method for fabricating the same
JP3344416B2 (ja) 1999-09-16 2002-11-11 松下電器産業株式会社 半導体装置およびその製造方法
US6639255B2 (en) * 1999-12-08 2003-10-28 Matsushita Electric Industrial Co., Ltd. GaN-based HFET having a surface-leakage reducing cap layer
JP4592938B2 (ja) 1999-12-08 2010-12-08 パナソニック株式会社 半導体装置
US6586781B2 (en) 2000-02-04 2003-07-01 Cree Lighting Company Group III nitride based FETs and HEMTs with reduced trapping and method for producing the same
JP2001237250A (ja) * 2000-02-22 2001-08-31 Nec Corp 半導体装置
JP2001326335A (ja) * 2000-05-18 2001-11-22 Nec Corp 電界効果トランジスタ
JP4186032B2 (ja) * 2000-06-29 2008-11-26 日本電気株式会社 半導体装置
JP4198339B2 (ja) 2000-07-17 2008-12-17 ユーディナデバイス株式会社 化合物半導体装置
TWI257179B (en) 2000-07-17 2006-06-21 Fujitsu Quantum Devices Ltd High-speed compound semiconductor device operable at large output power with minimum leakage current
US6690042B2 (en) * 2000-09-27 2004-02-10 Sensor Electronic Technology, Inc. Metal oxide semiconductor heterostructure field effect transistor
JP2002118122A (ja) 2000-10-06 2002-04-19 Nec Corp ショットキゲート電界効果トランジスタ
US6548333B2 (en) 2000-12-01 2003-04-15 Cree, Inc. Aluminum gallium nitride/gallium nitride high electron mobility transistors having a gate contact on a gallium nitride based cap segment
TW466747B (en) 2000-12-14 2001-12-01 United Microelectronics Corp Using inner field ring and complex multiple field plates to reduce surface breakdown of power LDMOSFET
JP2001230263A (ja) * 2001-01-29 2001-08-24 Nec Corp 電界効果型トランジスタ
JP2002270830A (ja) * 2001-03-12 2002-09-20 Fuji Electric Co Ltd 半導体装置
JP4220683B2 (ja) 2001-03-27 2009-02-04 パナソニック株式会社 半導体装置
US6849882B2 (en) * 2001-05-11 2005-02-01 Cree Inc. Group-III nitride based high electron mobility transistor (HEMT) with barrier/spacer layer
JP3744381B2 (ja) 2001-05-17 2006-02-08 日本電気株式会社 電界効果型トランジスタ
AU2002357640A1 (en) 2001-07-24 2003-04-22 Cree, Inc. Insulting gate algan/gan hemt
JP2003059948A (ja) 2001-08-20 2003-02-28 Sanken Electric Co Ltd 半導体装置及びその製造方法
JP2003100778A (ja) 2001-09-26 2003-04-04 Toshiba Corp 半導体装置
TW511190B (en) 2001-11-09 2002-11-21 Macronix Int Co Ltd Non-volatile semiconductor memory device with multi-layer gate insulating structure
JP4117535B2 (ja) * 2001-11-30 2008-07-16 信越半導体株式会社 化合物半導体素子
US7030428B2 (en) 2001-12-03 2006-04-18 Cree, Inc. Strain balanced nitride heterojunction transistors
US7470941B2 (en) 2001-12-06 2008-12-30 Hrl Laboratories, Llc High power-low noise microwave GaN heterojunction field effect transistor
US6955858B2 (en) * 2001-12-07 2005-10-18 North Carolina State University Transition metal doped ferromagnetic III-V nitride material films and methods of fabricating the same
JP3705431B2 (ja) * 2002-03-28 2005-10-12 ユーディナデバイス株式会社 半導体装置及びその製造方法
US6559513B1 (en) * 2002-04-22 2003-05-06 M/A-Com, Inc. Field-plate MESFET
US6893947B2 (en) * 2002-06-25 2005-05-17 Freescale Semiconductor, Inc. Advanced RF enhancement-mode FETs with improved gate properties
JP3790500B2 (ja) * 2002-07-16 2006-06-28 ユーディナデバイス株式会社 電界効果トランジスタ及びその製造方法
US6740535B2 (en) * 2002-07-29 2004-05-25 International Business Machines Corporation Enhanced T-gate structure for modulation doped field effect transistors
US6933544B2 (en) * 2003-01-29 2005-08-23 Kabushiki Kaisha Toshiba Power semiconductor device
US7126426B2 (en) * 2003-09-09 2006-10-24 Cree, Inc. Cascode amplifier structures including wide bandgap field effect transistor with field plates
EP2592655B1 (en) * 2003-09-09 2019-11-06 The Regents of The University of California Fabrication of single or multiple gate field plates
US7501669B2 (en) * 2003-09-09 2009-03-10 Cree, Inc. Wide bandgap transistor devices with field plates
US7573078B2 (en) * 2004-05-11 2009-08-11 Cree, Inc. Wide bandgap transistors with multiple field plates
US7692263B2 (en) * 2006-11-21 2010-04-06 Cree, Inc. High voltage GaN transistors

Also Published As

Publication number Publication date
CA2538077A1 (en) 2005-03-17
EP1665358B1 (en) 2020-07-01
US20070059873A1 (en) 2007-03-15
US9496353B2 (en) 2016-11-15
JP2007505483A (ja) 2007-03-08
KR101128376B1 (ko) 2012-03-23
WO2005024909A3 (en) 2006-01-26
US20170025506A1 (en) 2017-01-26
US10109713B2 (en) 2018-10-23
TWI430341B (zh) 2014-03-11
CN1853261A (zh) 2006-10-25
TWI431674B (zh) 2014-03-21
JP2012044207A (ja) 2012-03-01
US7812369B2 (en) 2010-10-12
TW201209895A (en) 2012-03-01
TWI560783B (en) 2016-12-01
TW200522170A (en) 2005-07-01
KR20070019641A (ko) 2007-02-15
EP1665358A4 (en) 2010-08-25
US20110018062A1 (en) 2011-01-27
EP2592655A1 (en) 2013-05-15
EP2592655B1 (en) 2019-11-06
WO2005024909A2 (en) 2005-03-17
EP1665358A2 (en) 2006-06-07
CN100541745C (zh) 2009-09-16
JP2012164994A (ja) 2012-08-30
CA2538077C (en) 2015-09-01

Similar Documents

Publication Publication Date Title
TWI431674B (zh) 單一或多重閘極場平板之製造
KR101108300B1 (ko) 필드 플레이트를 갖는 광폭 대역갭 트랜지스터 장치
TWI553859B (zh) 具有閘極源場極板之寬能帶隙電晶體
US11075271B2 (en) Stepped field plates with proximity to conduction channel and related fabrication methods
US20200273974A1 (en) Iii-n transistor structures with stepped cap layers
TWI404208B (zh) 具場板之寬能帶隙電晶體裝置
KR20230055221A (ko) GaN RF HEMT 소자 및 그 제조방법