CN1669122A - 向接收基板转移碳化硅薄层的优化方法 - Google Patents

向接收基板转移碳化硅薄层的优化方法 Download PDF

Info

Publication number
CN1669122A
CN1669122A CNA038046911A CN03804691A CN1669122A CN 1669122 A CN1669122 A CN 1669122A CN A038046911 A CNA038046911 A CN A038046911A CN 03804691 A CN03804691 A CN 03804691A CN 1669122 A CN1669122 A CN 1669122A
Authority
CN
China
Prior art keywords
substrate
ion
source substrate
aforementioned
thin layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA038046911A
Other languages
English (en)
Other versions
CN100576448C (zh
Inventor
B·吉瑟兰
F·勒特尔特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soitec SA
Original Assignee
Soitec SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Soitec SA filed Critical Soitec SA
Publication of CN1669122A publication Critical patent/CN1669122A/zh
Application granted granted Critical
Publication of CN100576448C publication Critical patent/CN100576448C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02032Preparing bulk and homogeneous wafers by reclaiming or re-processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/7602Making of isolation regions between components between components manufactured in an active substrate comprising SiC compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • H01L21/76254Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/185Joining of semiconductor bodies for junction formation
    • H01L21/187Joining of semiconductor bodies for junction formation by direct bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • H01L21/2003Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate
    • H01L21/2007Bonding of semiconductor wafers to insulating substrates or to semiconducting substrates using an intermediate insulating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26586Bombardment with radiation with high-energy radiation producing ion implantation characterised by the angle between the ion beam and the crystal planes or the main crystal surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/266Bombardment with radiation with high-energy radiation producing ion implantation using masks

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Recrystallisation Techniques (AREA)
  • Physical Vapour Deposition (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明涉及从源基板(1)向接收基板(4)转移单晶碳化硅薄层(100)的优化方法,包括由以下组成的步骤:用大多数的H+离子轰击所述源基板(1)的正面以形成脆化带(5);沿所述脆化带(5)从所述源基板(1)的剩余部分(10)分离所述薄层(100)。其特征在于,根据以下不等式进行H+离子的注入,其中注入计量D用每平方厘米的H+离子数目来表示,且用keV表示注入能量E,其大于或等于95keV:[(E×1·1014+5·1016)/1.1]≤D≤[(E×1·1014+5·1016)/0.9]且其特征在于,在粘合步骤之后,施加足够的热量束以完整地或几乎完整地剥落未转移到所述接收基板(4)的源基板(1)的所述薄层(100)的带(12)。

Description

向接收基板转移碳化硅薄层的优化方法
本发明涉及向接收基板或增强基板转移得自相同材料源基板的单晶碳化硅薄层的优化方法,特别地,该方法允许在转移该薄层后再循环所述基板。
例如,已知的商标为“Smart Cut”的方法能够从源基板向氧化硅或多晶碳化硅型的接收基板转移薄层。该方法同样能够再利用已移除该薄层的源基板。
然而,在每个层转移操作之后,源基板的上表面会有一定数量的表面不规则。
将参考图1-5描述这些表面不规则的形成,图1-5示出了进行“Smart Cut”方法的具体示例。该方法是本领域技术人员已知的并不再详细描述。
图1示出了源基板1,其具有称为“正面”的平坦面2,在其上已完成注入气体种类的步骤。通过离子轰击进行注入,例如用H+离子(在图1上标记为B)并使用注入器。
在特定能量、注入剂量和温度下进行注入,以便在离子的平均注入深度p的附近产生标记为3的脆化区域。
脆化区域3在所述的源基板1中限定两个部分,即,一方面,在正面2与所述脆化区域3之间延伸的上薄层100,而另一方面为基板的剩余部分,标记为10。
如图2所示,然后,在源基板1的正面2上施加增强或接收基板4。
由本领域技术人员根据最终的应用预计选择增强件。在已知方式中,可以如下方式施加增强件,例如,通过蒸发、溅射、化学气相淀积,或可以使用粘接剂粘合,或通过英文术语为“wafer bonding”的已知的“分子附着粘合(bonding bymolecular adhesion)”技术。
如图3所示,然后进行从基板1的剩余部分10分离薄层100的步骤。通过向增强件4施加机械应力或通过向增强件4和基板1的组合施加热能进行用箭头S表示的分离步骤。
由于所进行的倒角操作,例如在它们的制造期间,用于分子附着的构成源基板1的胶片具有有下陷边缘。结果,增强件4与正面2之间的粘着力在所述源基板1的基本为环形的外围区域中较弱。
因此,在剥去增强件4的期间,只有与增强件4牢固粘着的薄层100的中心部分被分离,而薄层100基本为环形的外围与源基板1的剩余部分10保持为整体。
由此,源基板1上在其中心部分同时存在由脆化区域3区域中的断裂引起的表面粗糙11和在其外围的额外厚度12或表面拓扑,该额外厚度或表面拓扑是与未转移到接收基板或增强件4上的区域相对应的起泡区域。
额外厚度12的区域深度等于所转移的薄层100的厚度。其典型地从几十纳米变化到大于一微米。该深度决定于氢离子的注入能量。
在这些图中,为了简化和图解,对于源基板的剩余部分10有意使用直角和显著的厚度以截面示出了额外厚度的区域12。实际上,其具有更加不规则的形状和按比例更小的厚度。
在进行以下薄层的转移之前,再循环源基板的剩余部分10是必不可少的。
这种再循环包括,一方面,表面平面化步骤(箭头P),即,额外厚度12和下陷区域的消除,以及另一方面,进行消除表面粗糙11的特定修整步骤(箭头F)以获得具有新正面2’的基板。
这些再循环步骤通常通过机械和/或机械化学抛光技术来完成。
在源基板1为碳化硅的具体情况中,由于材料非常硬,发现这些抛光步骤进行得非常长并且昂贵。
现有技术文献:“The effect of damage onhydrogen-implant-induced thin-film separation from bulksilicon carbide”,R.B.Gregory,Material Research SocietySymp.,Vol.572,1999,示出了可以改变剥落的区域的百分比来选择向碳化硅中注入氢的条件,即,碳化硅自由表面的百分比,其在基板热退火期间被自发地消除。
在该文献中,在60keV注入能量下,作为剥落区域百分比的函数,表示H+离子注入剂量的结果曲线具有圆锥形,对于5.5·1016H+/cm2的注入剂量来说,剥落区域的最大值为33%。离开该值,即注入剂量增大或降低,则剥落百分比降低。
文献“Complete surface exfoliation of 4H-SiC by H+and Si+co-implantation”,J.A.Bennett,Applied Physics Letters,Vol.76,No.22,pp.3265-3267,2000年5月29日,示出了可以通过共同注入H+和Si+离子完成碳化硅基板表面的完整剥落。
更具体地,该文献描述了在4H-SiC碳化硅上完成的试验,其通过在不同剂量和190keV能量下注入Si+离子,然后在6·1016H+/cm2的注入剂量和60keV能量下注入H+离子。Si+的注入剂量大于或等于5·105Si+/cm2而使碳化硅表面100%剥落。
然而,整个剥落SiC层所必需的Si离子注入剂量同样足够高而使碳化硅变成非晶形态。因此,该方法不适宜转移具有良好晶体质量的碳化硅薄膜,这是由于无法回收用于在微电子或光电子中使用的以后形成的器件的该薄膜。
本发明的目的是纠正所述缺点,特别地是优化注入条件以利于碳化硅源基板的再循环。
该目的通过向接收基板转移得自相同材料源基板的单晶碳化硅薄层的方法来实现,该方法倾向利于源基板剩余部分的循环再利用,其包括以下步骤:
-用大多数的H+离子轰击所述源基板的称为“正面”的平坦面,以便在所述离子的平均注入深度p附近的深度上形成脆化区域,该区域在所述薄层和所述基板的剩余部分之间形成界限,用注入能量E和注入剂量D完成使用所述H+离子的轰击。
-将所述接收基板粘合到所述正面,
-沿所述脆化区域从源基板的剩余部分分离所述薄层。
根据本发明的特征,H+离子的注入根据以下不等式完成,其中注入剂量D用每平方厘米的H+离子数目来表示,且用keV表示注入能量E,其大于或等于95keV:
[(E×1·1014+5·1016)/1.1]≤D≤[(E×1·1014+5·1016)/0.9]
以便以优化方式使所述脆化区域脆化,并在粘合步骤后,施加足够的热量束以便于完整地或几乎完整地剥落未转移到所述接收基板的、源基板的所述薄层区域。
根据本发明的其它优点,但不限于该特征,单独或组合进行:
-所注入的离子为专用H+离子;
-在离子束曝光期间,在不故意加热源基板的情况下完成H+离子的注入;
-源基板是非定向单晶碳化硅;
-首先通过施加外部机械应力沿所述优化的脆化区域完成分离,然后施加足够的热量束用于完整地或几乎完整地剥落未转移到接收基板的薄层区域,否则:
-通过施加适当的热量束同时完成沿优化的脆化区域分离并完整地-或几乎完整地-剥落未转移到接收基板的薄层区域;
-施加完整地或几乎完整地剥落所述薄层区域的所述区域所必需的热量束在700℃以上进行;
-以随机方式实现离子轰击;
-在离子轰击步骤之前,用厚度小于或等于约50纳米(50nm)的非晶形材料层覆盖源基板;
-通过分子粘着完成接收基板向源基板正面的粘合;
-在接收基板的正面和接触面中,至少一个面是用中间粘合层覆盖的;
-所述非晶形材料层和/或所述中间粘合层由选自二氧化硅(SiO2)或氮化硅(Si3N4)的材料构成;
-接收基板选自硅、碳化硅、氮化镓、氮化铝、蓝宝石、磷化铟、砷化镓或锗;
-接收基板是通过区域熔融生长获得的低氧含量的硅;
-该方法还包括修整分离后获得的源基板正面的步骤。
现在将参考本发明的仅作为说明性示例给出的实施例描述本发明,该描述基于附图,其中:
图1-5是表示根据技术状况的转移薄碳化硅层方法的不同步骤的示意图;
图6-18是表示根据本发明的方法及其可替代选择方案的不同步骤的示意图;
图19是表示在不同注入能量下,作为H+离子注入剂量D的函数的剥落区域百分比的曲线图;以及
图20是表示为获得注入层100%剥落的作为H+离子注入剂量D的函数的H+离子注入能量E的值的曲线图。
现在将参考图6-18描述根据本发明的方法。
图6-18非常类似图1-5,且同一元件具有相同的参考数字。
在图6中可以看出本发明的目的是优化单晶碳化硅源基板1中原子种类的注入条件B,以便在离子注入平均深度p的附近产生称为“优化脆化区域”的区域5,从而在层100分离后并在已施加适当的热量束之后,在以后能够100%或约100%剥落起泡的额外厚度区域12,该起泡的额外厚度区域12在现有技术的方法中(参见图3)与基板的剩余部分10保持为整体。
术语“优化脆化”意味着,为了以最佳方式活化所使用的脆化机制,以精确且受控的方式向晶体引入原子种。
在本发明的范围内,原子种的注入包括使用H+离子的基板1的正面2的离子轰击,且可能用H+离子和氦或硼离子联合轰击,而H+离子保持占大多数。
优选使用离子束注入器在单晶碳化硅源基板1的表面中进行这些离子的注入。
为了确定最好的操作条件,在碳化硅源基板1中使用不同的注入轨迹。
如图7和8所示,其示出了碳化硅的晶体结构,通常对源基板1的平坦表面垂直进行离子的注入B。
在图7所示的情况中,相应于定向的碳化硅晶体(以英文术语“on axis”为本领域技术人员所知),使硅和碳原子的堆叠处于平行于上平坦表面或正面2的平面中。然后离子平行于所述晶体的晶体生长轴C穿透。
与之相反,在图8所示的情况中,相应于不定向的碳化硅晶体(以英文术语“off axis”为本领域技术人员所知),使硅和碳原子的堆叠处于与正面2不平行而是与其形成角度α的平面中。然后离子沿垂直于所述正面2的轴穿透而以角度α的值从所述晶体生长轴C有角度地偏移。
在两种所述情况中,由离子注入产生的微腔50主要在垂直于晶体生长轴C的平面中形成。
因此,在定向晶体中,微腔50平行于正面2,且形成与所述正面2的平面平行的并产生实际上连续的断裂线的优化脆化区域5,而在不定向晶体中,这些微腔50对于正面2的平面倾斜且不形成连续的线。
实验上已经观测到,对于给定的注入剂量D和能量E来说,当在不定向晶体上进行注入时,获得更大的脆化区域5并在以后获得更好的额外厚度12的剥落百分比。
在有利的意义上,在本发明的方法中,以随机方式进行该离子注入,以避免称为“沟道效应(channeling)”的现象。
当沿特定沟道或结晶轴注入离子时发生沟道效应现象。由此,引入的离子在它们的轨道上遇到较少的原子,结果所述离子的相互作用较少且减速更少。因此这些离子将注入地更深。
在根据本发明的工艺中,由于沟道注入不是工业上可行的技术,而寻求相反地避免了由于工业原因引起的沟道效应现象。
而且,为了在分离期间提高最终获得的剥落百分比并在随机注入模式中操作,优选的是(但不是必需的)通过在基板1的正面2上形成的非晶材料20的层进行离子注入。该可选实施例在图9中示出。
该非晶材料20的层有利的是由二氧化硅(SiO2)或氮化硅(Si3N4)构成的层。然而,由于将在以后确定的连接注入能量E和注入剂量D关系有被改变的危险,该层不应超过约50nm(5·10-9)的厚度。
最后,优选地在不提供外部热量的情况下进行完成所示离子注入的试验,即,在最大温度约200℃下,该注入能够使碳化硅基板到达该温度。
如果在注入期间加热基板,例如到显著大于650℃的温度,则观察到大范围剥落现象的退化或抑制。这可以由扩散注入和参与在工艺中的再结晶机制期间的活化来解释。这种不受控的原位活化退化了对所期望的剥落效应的控制。
此外,为了确定所使用的最好的注入剂量D和注入能量E数值对,进行补充试验。这些试验将在以后详细描述。
然后,将接收基板4粘合到源基板1的正面2。
该基板4的粘合有利地通过分子粘着来实现,因为这种粘合模式最适于电子应用,特别是归因于使用的粘合力的均匀性和不同种类的众多材料粘合在一起的可能性。然而,同样可以通过其它已知的现有技术来完成。
通过将接收基板4的称为“接触面”的一个面40加到源基板1的正面2上,并直接(参见图10)或通过一个或多个中间粘合层6(如图11所示)完成该粘合,其中该中间粘合层6设置在基板4的接触面40上,或源基板1的正面2上,或在这两个面上。
这些中间粘合层6是绝缘层,例如,由二氧化硅(SiO2)或氮化硅(Si3N4)构成,或者另一方面,这些中间粘合层6为导电层。
应该注意到,当通过由非晶材料20构成的层进行注入B时,则该层可以作为部分中间粘合层6。
分别如图12和13所示得到层的组合。
接收基板有利地(但不是必须的)选自硅、碳化硅、氮化镓(GaN)、氮化铝(AlN)、蓝宝石、磷化铟(InP)、砷化镓(GaAs)或锗(Ge)。同样可以使用其它材料。
同样,接收基板可以是易碎基板,例如通过区域熔融生长获得的低氧含量的硅,即,由多晶硅通过区域熔融得到的单晶硅。
然后进行接收基板4的分离并从基板1的剩余部分10分离薄层100(箭头S)。
可以通过施加外部机械应力(如图14所示)或通过具有适当热量束的热处理(参见图17)进行该分离S。
在本领域技术人员所知的方式中,这些外部机械应力可以是例如施加剪切力、牵引力或压力,或施加超声波、静电场或电磁场。
如果采用外部机械应力进行分离S,则随后进行退火处理,该退火处理根据适当的热量束完整地或几乎完整地将薄层100的区域12从未与接收基板4粘合的源基板1上剥落(参见图15)。热量束等于处理持续时间与退火处理温度的乘积。
然而,该处理比技术状况中用于进行这种操作所使用的抛光更简单且更快。
此时,仅剩下源基板1的合适修整步骤F(参见图16)。
该修整步骤的目的在于消除表面粗糙11。通常通过机械化学抛光来进行。
同样可以进行薄层100的自由表面的修整步骤。
如果薄层100从源基板1的剩余部分10的分离S通过热退火处理进行(参见图17),则同时进行区域12的完整或几乎完整的剥落(参见图18)。实际上,热的施加使缺陷或微腔50生长直到它们形成微裂纹51,它们连接起来,结果形成解理面并沿所述优化的脆化区域5的裂开。
然后进行合适的修整步骤F,如图16所示。
现在将描述确定H+离子最佳注入剂量D和注入能量E的数值对的试验。
操作条件:
在8°不定向的单晶碳化硅SiC4H基板(以“SiC4H 8°off-axis”为本领域技术人员所知)的正面上进行H+离子注入,该基板覆盖有约50纳米(50nm)厚的二氧化硅非晶层。
注入温度为200℃以下。
分别在50keV、95keV、140keV和180keV的注入能量E下进行四组试验。
对每个能量E的数值来说,注入剂量D在5.25·1016H+/cm2到8·1016H+/cm2之间变化。
然后将由硅构成的接收基板4加到源基板1上,然后在900℃下进行1小时退火。
然后测量外围区域12的剥落百分比,该外围区域12在现有技术中与基板的剩余部分保持为整体。
获得的结果在下表中给出。
数值100%意味着未与接收基板4密切接触(即,未粘着)的这个区域12被整体剥落。例如,数值30%意味着只有30%的额外厚度区域12被剥落,而70%的区域12与基板1的剩余部分10保持为整体。
                                  注入剂量D(1016H+/cm2)
 注入能量E(keV) 5.25 5.5 5.75 6 6.5 6.75 7 7.25 7.5 8
剥落区域(%)     50     5   50    15
    95   10   100   60   30
    140   40   80    100   60   40
    180   30   90   100   80   40
注入能量低于50keV进行的试验未给出良好的剥落结果。
获得的结果已转换成图19的曲线。可以看出,对于大于或等于95keV的各个注入能量E的数值来说,可以获得能够100%剥落的注入剂量数值D(获得圆锥形曲线)。
图20是表示作为这些相同离子的注入能量E的函数的为获得100%剥落区域的H+离子注入剂量D的曲线图。
获得的直线与以下等式相对应:
       D=E×1·1014+5·1016        (1)
其中E≥95keV,
其中H+离子的注入能量E用keV表示,并用H+离子/cm2表示注入这些离子的剂量D。
考虑到与可能的微小的实验变化和制造公差以及使用的注入设备的控制相关的D和E数值的波动,认为D和E的数值对应遵循以下不等式:
-ε×D≤D-(E×1·1014+5·1016)≤ε×D     (2)
其中D和E具有前述意义,且ε×D表示对于给定的E的数值来说,根据以上等式(1)获得的D的理论值和D的允许值之间的绝对公差,且其中ε表示相对公差。
试验后,认为该相对公差ε等于10%。
由此得到以下不等式(3):
-0.1×D≤D-(E×1·1014+5·1016)≤0.1×D        (3)
其还可以表示为以下不等式(4)
[(E×1·1014+5·1016)/1.1]≤D≤[(E×1·1014+5·1016)/0.9]
遵循以上不等式的D和E的数值对能够获得优化的脆化区域5的脆化,且在施加足够的热量束后,能够完整地或几乎完整地剥落未转移到接收基板4上的薄层100的区域12。
然后进行补充试验以确定适当的热量束。
在700℃以下,SiC中的氢扩散机制几乎不起作用。
由此可以确定,完整地或几乎完整地剥落区域12所必需的热量束必须在700℃以上且优选地在800℃以上。
另一方面,由此获得具有良好结晶质量的SiC薄层100,且另一方面,源基板1的正面不具有表面拓扑12。

Claims (15)

1.一种转移单晶碳化硅薄层(100)的方法,其从相同材料的源基板(1)向接收基板(4)转移,该方法意图利于源基板(1)的剩余部分(10)的再循环,包括由以下组成的步骤:
-用大多数的H+离子轰击所述源基板(1)的称为“正面”的平坦面(2),以便在所述离子的平均注入深度p附近的深度上形成脆化区域(5),该区域(5)在所述薄层(100)和所述基板(1)的剩余部分(10)之间形成界限,用注入能量E和注入剂量D完成该使用H+离子的轰击。
-将所述接收基板(4)粘合到所述正面(2),
-沿所述脆化区域(5)从源基板(1)的剩余部分(10)分离所述薄层(100),
其特征在于,H+离子的注入根据以下不等式完成,其中注入计量D用每平方厘米的H+离子数目来表示,且用keV表示注入能量E,其大于或等于95keV:[(E×1·1014+5·1016)/1.1]≤D≤[(E×1·1014+5·1016)/0.9]
以便以优化方式使所述脆化区域(5)脆化,并在粘合步骤后,施加足够的热量束以便于完整地或几乎完整地剥落未转移到所述接收基板(4)的源基板(1)的所述薄层(100)的区域(12)。
2.根据权利要求1所述的方法,其特征在于,注入的离子是专用H+离子。
3.根据权利要求1或2所述的方法,其特征在于,在离子束曝光期间,在不故意加热源基板(1)的情况下完成H+离子的注入。
4.根据前述任一项权利要求的方法,其特征在于,源基板(1)是不定向单晶碳化硅。
5.根据前述任一项权利要求的方法,其特征在于,首先通过施加外部机械应力沿所述优化的脆化区域(5)完成分离,且在于然后施加足够的热量束用于完整地或几乎完整地剥落未转移到接收基板(4)的薄层(100)的区域(12)。
6.根据前述权利要求1-4中任一项的方法,其特征在于,通过施加适当的热量束同时完成沿优化的脆化区域(5)的分离以及完整地-或几乎完整地-剥落未转移到接收基板(4)的薄层(100)的区域(12)。
7.根据前述任一项权利要求的方法,其特征在于,施加完整地或几乎完整地从薄层(100)剥落所述区域(12)所必需的热量束在700℃以上进行。
8.根据前述任一项权利要求的方法,其特征在于,以随机方式实现离子轰击。
9.根据前述任一项权利要求的方法,其特征在于,在离子轰击步骤之前,用厚度小于或等于约50纳米的由非晶材料(20)构成的层覆盖源基板(1)。
10.根据前述任一项权利要求的方法,其特征在于,通过分子粘着完成接收基板(4)向源基板(1)的正面(2)的粘合。
11.根据权利要求10的方法,其特征在于,在正面(2)和接收基板(4)的接触面(40)中,至少一个面是用中间粘合层(6)覆盖。
12.根据权利要求9或11的方法,其特征在于,所述非晶材料(20)构成的层和/或所述中间粘合层(6)由选自二氧化硅(SiO2)或氮化硅(Si3N4)的材料构成。
13.根据前述任一项权利要求的方法,其特征在于,接收基板(4)选自硅、碳化硅、氮化镓、氮化铝、蓝宝石、磷化铟、砷化镓或锗。
14.根据前述任一项权利要求的方法,其特征在于,接收基板(4)是通过区域熔融生长获得的低氧含量的硅。
15.根据前述任一项权利要求的方法,其特征在于进一步包括分离后获得的源基板(1)剩余部分(10)的正面(11)的修整步骤F。
CN03804691A 2002-01-23 2003-01-21 向接收基板转移碳化硅薄层的优化方法 Expired - Lifetime CN100576448C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0200813 2002-01-23
FR0200813A FR2835097B1 (fr) 2002-01-23 2002-01-23 Procede optimise de report d'une couche mince de carbure de silicium sur un substrat d'accueil

Publications (2)

Publication Number Publication Date
CN1669122A true CN1669122A (zh) 2005-09-14
CN100576448C CN100576448C (zh) 2009-12-30

Family

ID=27589565

Family Applications (1)

Application Number Title Priority Date Filing Date
CN03804691A Expired - Lifetime CN100576448C (zh) 2002-01-23 2003-01-21 向接收基板转移碳化硅薄层的优化方法

Country Status (10)

Country Link
US (2) US6974760B2 (zh)
EP (1) EP1468445B1 (zh)
JP (1) JP4549063B2 (zh)
KR (1) KR100767138B1 (zh)
CN (1) CN100576448C (zh)
AT (1) ATE336077T1 (zh)
DE (1) DE60307419T2 (zh)
FR (1) FR2835097B1 (zh)
TW (1) TWI266362B (zh)
WO (1) WO2003063213A2 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101373722B (zh) * 2007-08-24 2013-03-13 株式会社半导体能源研究所 半导体装置及其制造方法
CN103632924A (zh) * 2012-08-23 2014-03-12 法国原子能及替代能源委员会 用于将InP薄膜转移到加强基板上的方法
US9875935B2 (en) 2013-03-08 2018-01-23 Infineon Technologies Austria Ag Semiconductor device and method for producing the same
CN109564891A (zh) * 2016-08-11 2019-04-02 索泰克公司 用于转移有用层的方法
CN111902571A (zh) * 2018-03-28 2020-11-06 索泰克公司 AlN材料单晶层的制造方法和外延生长AlN材料单晶膜的衬底

Families Citing this family (225)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2773261B1 (fr) 1997-12-30 2000-01-28 Commissariat Energie Atomique Procede pour le transfert d'un film mince comportant une etape de creation d'inclusions
US7238622B2 (en) * 2001-04-17 2007-07-03 California Institute Of Technology Wafer bonded virtual substrate and method for forming the same
US7019339B2 (en) 2001-04-17 2006-03-28 California Institute Of Technology Method of using a germanium layer transfer to Si for photovoltaic applications and heterostructure made thereby
US20050026432A1 (en) * 2001-04-17 2005-02-03 Atwater Harry A. Wafer bonded epitaxial templates for silicon heterostructures
FR2874455B1 (fr) * 2004-08-19 2008-02-08 Soitec Silicon On Insulator Traitement thermique avant collage de deux plaquettes
EP1427002B1 (en) * 2002-12-06 2017-04-12 Soitec A method for recycling a substrate using local cutting
FR2861497B1 (fr) 2003-10-28 2006-02-10 Soitec Silicon On Insulator Procede de transfert catastrophique d'une couche fine apres co-implantation
WO2005104192A2 (en) * 2004-04-21 2005-11-03 California Institute Of Technology A METHOD FOR THE FABRICATION OF GaAs/Si AND RELATED WAFER BONDED VIRTUAL SUBSTRATES
FR2871172B1 (fr) * 2004-06-03 2006-09-22 Soitec Silicon On Insulator Support d'epitaxie hybride et son procede de fabrication
US20060021565A1 (en) * 2004-07-30 2006-02-02 Aonex Technologies, Inc. GaInP / GaAs / Si triple junction solar cell enabled by wafer bonding and layer transfer
US7846759B2 (en) * 2004-10-21 2010-12-07 Aonex Technologies, Inc. Multi-junction solar cells and methods of making same using layer transfer and bonding techniques
US10374120B2 (en) * 2005-02-18 2019-08-06 Koninklijke Philips N.V. High efficiency solar cells utilizing wafer bonding and layer transfer to integrate non-lattice matched materials
WO2006116030A2 (en) * 2005-04-21 2006-11-02 Aonex Technologies, Inc. Bonded intermediate substrate and method of making same
FR2889887B1 (fr) 2005-08-16 2007-11-09 Commissariat Energie Atomique Procede de report d'une couche mince sur un support
FR2891281B1 (fr) 2005-09-28 2007-12-28 Commissariat Energie Atomique Procede de fabrication d'un element en couches minces.
US7456080B2 (en) * 2005-12-19 2008-11-25 Corning Incorporated Semiconductor on glass insulator made using improved ion implantation process
JP2007227415A (ja) 2006-02-21 2007-09-06 Shin Etsu Chem Co Ltd 貼り合わせ基板の製造方法および貼り合わせ基板
US20070243703A1 (en) * 2006-04-14 2007-10-18 Aonex Technololgies, Inc. Processes and structures for epitaxial growth on laminate substrates
EP1870927A1 (en) * 2006-06-21 2007-12-26 Nissan Motor Co., Ltd. Method of manufacturing a semiconductor device
US20070298586A1 (en) * 2006-06-21 2007-12-27 Nissan Motor Co., Ltd. Method of manufacturing semiconductor device
FR2914110B1 (fr) * 2007-03-20 2009-06-05 Soitec Silicon On Insulator Procede de fabrication d'un substrat hybride
KR100828029B1 (ko) * 2006-12-11 2008-05-08 삼성전자주식회사 스택형 반도체 장치의 제조 방법
FR2910179B1 (fr) 2006-12-19 2009-03-13 Commissariat Energie Atomique PROCEDE DE FABRICATION DE COUCHES MINCES DE GaN PAR IMPLANTATION ET RECYCLAGE D'UN SUBSTRAT DE DEPART
US7732301B1 (en) 2007-04-20 2010-06-08 Pinnington Thomas Henry Bonded intermediate substrate and method of making same
US20090115052A1 (en) * 2007-05-25 2009-05-07 Astralux, Inc. Hybrid silicon/non-silicon electronic device with heat spreader
FR2917232B1 (fr) 2007-06-06 2009-10-09 Soitec Silicon On Insulator Procede de fabrication d'une structure pour epitaxie sans zone d'exclusion.
WO2008156040A1 (en) * 2007-06-20 2008-12-24 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
US20090278233A1 (en) * 2007-07-26 2009-11-12 Pinnington Thomas Henry Bonded intermediate substrate and method of making same
JP5250228B2 (ja) * 2007-09-21 2013-07-31 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP5452900B2 (ja) * 2007-09-21 2014-03-26 株式会社半導体エネルギー研究所 半導体膜付き基板の作製方法
JP2009094488A (ja) * 2007-09-21 2009-04-30 Semiconductor Energy Lab Co Ltd 半導体膜付き基板の作製方法
FR2922359B1 (fr) * 2007-10-12 2009-12-18 Commissariat Energie Atomique Procede de fabrication d'une structure micro-electronique impliquant un collage moleculaire
KR101539246B1 (ko) 2008-11-10 2015-07-24 삼성전자 주식회사 광추출 효율이 향상된 발광 장치의 제조 방법 및 그 방법으로 제조된 발광 장치
US8058137B1 (en) 2009-04-14 2011-11-15 Monolithic 3D Inc. Method for fabrication of a semiconductor device and structure
US9509313B2 (en) 2009-04-14 2016-11-29 Monolithic 3D Inc. 3D semiconductor device
US8362482B2 (en) 2009-04-14 2013-01-29 Monolithic 3D Inc. Semiconductor device and structure
US8669778B1 (en) 2009-04-14 2014-03-11 Monolithic 3D Inc. Method for design and manufacturing of a 3D semiconductor device
US9577642B2 (en) 2009-04-14 2017-02-21 Monolithic 3D Inc. Method to form a 3D semiconductor device
US8395191B2 (en) 2009-10-12 2013-03-12 Monolithic 3D Inc. Semiconductor device and structure
US8754533B2 (en) 2009-04-14 2014-06-17 Monolithic 3D Inc. Monolithic three-dimensional semiconductor device and structure
FR2947098A1 (fr) 2009-06-18 2010-12-24 Commissariat Energie Atomique Procede de transfert d'une couche mince sur un substrat cible ayant un coefficient de dilatation thermique different de celui de la couche mince
US8513090B2 (en) * 2009-07-16 2013-08-20 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor substrate, and semiconductor device
US9099424B1 (en) 2012-08-10 2015-08-04 Monolithic 3D Inc. Semiconductor system, device and structure with heat removal
US10354995B2 (en) 2009-10-12 2019-07-16 Monolithic 3D Inc. Semiconductor memory device and structure
US8742476B1 (en) 2012-11-27 2014-06-03 Monolithic 3D Inc. Semiconductor device and structure
US8294159B2 (en) 2009-10-12 2012-10-23 Monolithic 3D Inc. Method for fabrication of a semiconductor device and structure
US8476145B2 (en) 2010-10-13 2013-07-02 Monolithic 3D Inc. Method of fabricating a semiconductor device and structure
US11374118B2 (en) 2009-10-12 2022-06-28 Monolithic 3D Inc. Method to form a 3D integrated circuit
US10157909B2 (en) 2009-10-12 2018-12-18 Monolithic 3D Inc. 3D semiconductor device and structure
US10043781B2 (en) 2009-10-12 2018-08-07 Monolithic 3D Inc. 3D semiconductor device and structure
US11018133B2 (en) 2009-10-12 2021-05-25 Monolithic 3D Inc. 3D integrated circuit
US10388863B2 (en) 2009-10-12 2019-08-20 Monolithic 3D Inc. 3D memory device and structure
US10366970B2 (en) 2009-10-12 2019-07-30 Monolithic 3D Inc. 3D semiconductor device and structure
US10910364B2 (en) 2009-10-12 2021-02-02 Monolitaic 3D Inc. 3D semiconductor device
US11984445B2 (en) 2009-10-12 2024-05-14 Monolithic 3D Inc. 3D semiconductor devices and structures with metal layers
US9099526B2 (en) 2010-02-16 2015-08-04 Monolithic 3D Inc. Integrated circuit device and structure
US8541819B1 (en) 2010-12-09 2013-09-24 Monolithic 3D Inc. Semiconductor device and structure
US8492886B2 (en) 2010-02-16 2013-07-23 Monolithic 3D Inc 3D integrated circuit with logic
US8026521B1 (en) 2010-10-11 2011-09-27 Monolithic 3D Inc. Semiconductor device and structure
US8461035B1 (en) 2010-09-30 2013-06-11 Monolithic 3D Inc. Method for fabrication of a semiconductor device and structure
US20110207306A1 (en) * 2010-02-22 2011-08-25 Sarko Cherekdjian Semiconductor structure made using improved ion implantation process
US8148189B2 (en) * 2010-06-30 2012-04-03 Twin Creeks Technologies, Inc. Formed ceramic receiver element adhered to a semiconductor lamina
US8642416B2 (en) * 2010-07-30 2014-02-04 Monolithic 3D Inc. Method of forming three dimensional integrated circuit devices using layer transfer technique
US9953925B2 (en) 2011-06-28 2018-04-24 Monolithic 3D Inc. Semiconductor system and device
US8901613B2 (en) 2011-03-06 2014-12-02 Monolithic 3D Inc. Semiconductor device and structure for heat removal
US9219005B2 (en) 2011-06-28 2015-12-22 Monolithic 3D Inc. Semiconductor system and device
US10217667B2 (en) 2011-06-28 2019-02-26 Monolithic 3D Inc. 3D semiconductor device, fabrication method and system
US10497713B2 (en) 2010-11-18 2019-12-03 Monolithic 3D Inc. 3D semiconductor memory device and structure
US8273610B2 (en) 2010-11-18 2012-09-25 Monolithic 3D Inc. Method of constructing a semiconductor device and structure
US11482440B2 (en) 2010-12-16 2022-10-25 Monolithic 3D Inc. 3D semiconductor device and structure with a built-in test circuit for repairing faulty circuits
US8163581B1 (en) 2010-10-13 2012-04-24 Monolith IC 3D Semiconductor and optoelectronic devices
US11469271B2 (en) 2010-10-11 2022-10-11 Monolithic 3D Inc. Method to produce 3D semiconductor devices and structures with memory
US11158674B2 (en) 2010-10-11 2021-10-26 Monolithic 3D Inc. Method to produce a 3D semiconductor device and structure
US11257867B1 (en) 2010-10-11 2022-02-22 Monolithic 3D Inc. 3D semiconductor device and structure with oxide bonds
US10290682B2 (en) 2010-10-11 2019-05-14 Monolithic 3D Inc. 3D IC semiconductor device and structure with stacked memory
US11315980B1 (en) 2010-10-11 2022-04-26 Monolithic 3D Inc. 3D semiconductor device and structure with transistors
US11024673B1 (en) 2010-10-11 2021-06-01 Monolithic 3D Inc. 3D semiconductor device and structure
US11018191B1 (en) 2010-10-11 2021-05-25 Monolithic 3D Inc. 3D semiconductor device and structure
US10896931B1 (en) 2010-10-11 2021-01-19 Monolithic 3D Inc. 3D semiconductor device and structure
US11600667B1 (en) 2010-10-11 2023-03-07 Monolithic 3D Inc. Method to produce 3D semiconductor devices and structures with memory
US11227897B2 (en) 2010-10-11 2022-01-18 Monolithic 3D Inc. Method for producing a 3D semiconductor memory device and structure
US10978501B1 (en) 2010-10-13 2021-04-13 Monolithic 3D Inc. Multilevel semiconductor device and structure with waveguides
US11437368B2 (en) 2010-10-13 2022-09-06 Monolithic 3D Inc. Multilevel semiconductor device and structure with oxide bonding
US11404466B2 (en) 2010-10-13 2022-08-02 Monolithic 3D Inc. Multilevel semiconductor device and structure with image sensors
US11133344B2 (en) 2010-10-13 2021-09-28 Monolithic 3D Inc. Multilevel semiconductor device and structure with image sensors
US10943934B2 (en) 2010-10-13 2021-03-09 Monolithic 3D Inc. Multilevel semiconductor device and structure
US11163112B2 (en) 2010-10-13 2021-11-02 Monolithic 3D Inc. Multilevel semiconductor device and structure with electromagnetic modulators
US10833108B2 (en) 2010-10-13 2020-11-10 Monolithic 3D Inc. 3D microdisplay device and structure
US11043523B1 (en) 2010-10-13 2021-06-22 Monolithic 3D Inc. Multilevel semiconductor device and structure with image sensors
US10998374B1 (en) 2010-10-13 2021-05-04 Monolithic 3D Inc. Multilevel semiconductor device and structure
US11694922B2 (en) 2010-10-13 2023-07-04 Monolithic 3D Inc. Multilevel semiconductor device and structure with oxide bonding
US11164898B2 (en) 2010-10-13 2021-11-02 Monolithic 3D Inc. Multilevel semiconductor device and structure
US11855114B2 (en) 2010-10-13 2023-12-26 Monolithic 3D Inc. Multilevel semiconductor device and structure with image sensors and wafer bonding
US11855100B2 (en) 2010-10-13 2023-12-26 Monolithic 3D Inc. Multilevel semiconductor device and structure with oxide bonding
US11929372B2 (en) 2010-10-13 2024-03-12 Monolithic 3D Inc. Multilevel semiconductor device and structure with image sensors and wafer bonding
US11327227B2 (en) 2010-10-13 2022-05-10 Monolithic 3D Inc. Multilevel semiconductor device and structure with electromagnetic modulators
US9197804B1 (en) 2011-10-14 2015-11-24 Monolithic 3D Inc. Semiconductor and optoelectronic devices
US11063071B1 (en) 2010-10-13 2021-07-13 Monolithic 3D Inc. Multilevel semiconductor device and structure with waveguides
US11984438B2 (en) 2010-10-13 2024-05-14 Monolithic 3D Inc. Multilevel semiconductor device and structure with oxide bonding
US11869915B2 (en) 2010-10-13 2024-01-09 Monolithic 3D Inc. Multilevel semiconductor device and structure with image sensors and wafer bonding
US11605663B2 (en) 2010-10-13 2023-03-14 Monolithic 3D Inc. Multilevel semiconductor device and structure with image sensors and wafer bonding
US10679977B2 (en) 2010-10-13 2020-06-09 Monolithic 3D Inc. 3D microdisplay device and structure
US11854857B1 (en) 2010-11-18 2023-12-26 Monolithic 3D Inc. Methods for producing a 3D semiconductor device and structure with memory cells and multiple metal layers
US11355380B2 (en) 2010-11-18 2022-06-07 Monolithic 3D Inc. Methods for producing 3D semiconductor memory device and structure utilizing alignment marks
US11482438B2 (en) 2010-11-18 2022-10-25 Monolithic 3D Inc. Methods for producing a 3D semiconductor memory device and structure
US11094576B1 (en) 2010-11-18 2021-08-17 Monolithic 3D Inc. Methods for producing a 3D semiconductor memory device and structure
US11569117B2 (en) 2010-11-18 2023-01-31 Monolithic 3D Inc. 3D semiconductor device and structure with single-crystal layers
US11164770B1 (en) 2010-11-18 2021-11-02 Monolithic 3D Inc. Method for producing a 3D semiconductor memory device and structure
US11355381B2 (en) 2010-11-18 2022-06-07 Monolithic 3D Inc. 3D semiconductor memory device and structure
US11615977B2 (en) 2010-11-18 2023-03-28 Monolithic 3D Inc. 3D semiconductor memory device and structure
US11862503B2 (en) 2010-11-18 2024-01-02 Monolithic 3D Inc. Method for producing a 3D semiconductor device and structure with memory cells and multiple metal layers
US11521888B2 (en) 2010-11-18 2022-12-06 Monolithic 3D Inc. 3D semiconductor device and structure with high-k metal gate transistors
US11031275B2 (en) 2010-11-18 2021-06-08 Monolithic 3D Inc. 3D semiconductor device and structure with memory
US11018042B1 (en) 2010-11-18 2021-05-25 Monolithic 3D Inc. 3D semiconductor memory device and structure
US11495484B2 (en) 2010-11-18 2022-11-08 Monolithic 3D Inc. 3D semiconductor devices and structures with at least two single-crystal layers
US11508605B2 (en) 2010-11-18 2022-11-22 Monolithic 3D Inc. 3D semiconductor memory device and structure
US11482439B2 (en) 2010-11-18 2022-10-25 Monolithic 3D Inc. Methods for producing a 3D semiconductor memory device comprising charge trap junction-less transistors
US11121021B2 (en) 2010-11-18 2021-09-14 Monolithic 3D Inc. 3D semiconductor device and structure
US11004719B1 (en) 2010-11-18 2021-05-11 Monolithic 3D Inc. Methods for producing a 3D semiconductor memory device and structure
US11211279B2 (en) 2010-11-18 2021-12-28 Monolithic 3D Inc. Method for processing a 3D integrated circuit and structure
US11107721B2 (en) 2010-11-18 2021-08-31 Monolithic 3D Inc. 3D semiconductor device and structure with NAND logic
US11443971B2 (en) 2010-11-18 2022-09-13 Monolithic 3D Inc. 3D semiconductor device and structure with memory
US11784082B2 (en) 2010-11-18 2023-10-10 Monolithic 3D Inc. 3D semiconductor device and structure with bonding
US11901210B2 (en) 2010-11-18 2024-02-13 Monolithic 3D Inc. 3D semiconductor device and structure with memory
US11610802B2 (en) 2010-11-18 2023-03-21 Monolithic 3D Inc. Method for producing a 3D semiconductor device and structure with single crystal transistors and metal gate electrodes
US11804396B2 (en) 2010-11-18 2023-10-31 Monolithic 3D Inc. Methods for producing a 3D semiconductor device and structure with memory cells and multiple metal layers
US11735462B2 (en) 2010-11-18 2023-08-22 Monolithic 3D Inc. 3D semiconductor device and structure with single-crystal layers
US11923230B1 (en) 2010-11-18 2024-03-05 Monolithic 3D Inc. 3D semiconductor device and structure with bonding
US8196546B1 (en) 2010-11-19 2012-06-12 Corning Incorporated Semiconductor structure made using improved multiple ion implantation process
US8008175B1 (en) 2010-11-19 2011-08-30 Coring Incorporated Semiconductor structure made using improved simultaneous multiple ion implantation process
US8558195B2 (en) 2010-11-19 2013-10-15 Corning Incorporated Semiconductor structure made using improved pseudo-simultaneous multiple ion implantation process
JP5477302B2 (ja) * 2011-01-06 2014-04-23 株式会社デンソー 炭化珪素半導体基板の製造方法および炭化珪素半導体装置の製造方法
US8975670B2 (en) 2011-03-06 2015-03-10 Monolithic 3D Inc. Semiconductor device and structure for heat removal
FR2977069B1 (fr) 2011-06-23 2014-02-07 Soitec Silicon On Insulator Procede de fabrication d'une structure semi-conductrice mettant en oeuvre un collage temporaire
US10388568B2 (en) 2011-06-28 2019-08-20 Monolithic 3D Inc. 3D semiconductor device and system
US8687399B2 (en) 2011-10-02 2014-04-01 Monolithic 3D Inc. Semiconductor device and structure
US9029173B2 (en) 2011-10-18 2015-05-12 Monolithic 3D Inc. Method for fabrication of a semiconductor device and structure
US9000557B2 (en) 2012-03-17 2015-04-07 Zvi Or-Bach Semiconductor device and structure
US8557632B1 (en) 2012-04-09 2013-10-15 Monolithic 3D Inc. Method for fabrication of a semiconductor device and structure
US11164811B2 (en) 2012-04-09 2021-11-02 Monolithic 3D Inc. 3D semiconductor device with isolation layers and oxide-to-oxide bonding
US11410912B2 (en) 2012-04-09 2022-08-09 Monolithic 3D Inc. 3D semiconductor device with vias and isolation layers
US10600888B2 (en) 2012-04-09 2020-03-24 Monolithic 3D Inc. 3D semiconductor device
US11735501B1 (en) 2012-04-09 2023-08-22 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers and a connective path
US11616004B1 (en) 2012-04-09 2023-03-28 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers and a connective path
US11088050B2 (en) 2012-04-09 2021-08-10 Monolithic 3D Inc. 3D semiconductor device with isolation layers
US11881443B2 (en) 2012-04-09 2024-01-23 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers and a connective path
US11694944B1 (en) 2012-04-09 2023-07-04 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers and a connective path
US11476181B1 (en) 2012-04-09 2022-10-18 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers
US11594473B2 (en) 2012-04-09 2023-02-28 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers and a connective path
US8686428B1 (en) 2012-11-16 2014-04-01 Monolithic 3D Inc. Semiconductor device and structure
US8574929B1 (en) 2012-11-16 2013-11-05 Monolithic 3D Inc. Method to form a 3D semiconductor device and structure
US11961827B1 (en) 2012-12-22 2024-04-16 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers
US8674470B1 (en) 2012-12-22 2014-03-18 Monolithic 3D Inc. Semiconductor device and structure
US11784169B2 (en) 2012-12-22 2023-10-10 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers
US11018116B2 (en) 2012-12-22 2021-05-25 Monolithic 3D Inc. Method to form a 3D semiconductor device and structure
US11217565B2 (en) 2012-12-22 2022-01-04 Monolithic 3D Inc. Method to form a 3D semiconductor device and structure
US11967583B2 (en) 2012-12-22 2024-04-23 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers
US11916045B2 (en) 2012-12-22 2024-02-27 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers
US11309292B2 (en) 2012-12-22 2022-04-19 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers
US11063024B1 (en) 2012-12-22 2021-07-13 Monlithic 3D Inc. Method to form a 3D semiconductor device and structure
US11177140B2 (en) 2012-12-29 2021-11-16 Monolithic 3D Inc. 3D semiconductor device and structure
US9385058B1 (en) 2012-12-29 2016-07-05 Monolithic 3D Inc. Semiconductor device and structure
US11087995B1 (en) 2012-12-29 2021-08-10 Monolithic 3D Inc. 3D semiconductor device and structure
US10651054B2 (en) 2012-12-29 2020-05-12 Monolithic 3D Inc. 3D semiconductor device and structure
US10892169B2 (en) 2012-12-29 2021-01-12 Monolithic 3D Inc. 3D semiconductor device and structure
US9871034B1 (en) 2012-12-29 2018-01-16 Monolithic 3D Inc. Semiconductor device and structure
US11430668B2 (en) 2012-12-29 2022-08-30 Monolithic 3D Inc. 3D semiconductor device and structure with bonding
US11430667B2 (en) 2012-12-29 2022-08-30 Monolithic 3D Inc. 3D semiconductor device and structure with bonding
US10903089B1 (en) 2012-12-29 2021-01-26 Monolithic 3D Inc. 3D semiconductor device and structure
US10115663B2 (en) 2012-12-29 2018-10-30 Monolithic 3D Inc. 3D semiconductor device and structure
US11004694B1 (en) 2012-12-29 2021-05-11 Monolithic 3D Inc. 3D semiconductor device and structure
US10600657B2 (en) 2012-12-29 2020-03-24 Monolithic 3D Inc 3D semiconductor device and structure
US8902663B1 (en) 2013-03-11 2014-12-02 Monolithic 3D Inc. Method of maintaining a memory state
US11869965B2 (en) 2013-03-11 2024-01-09 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers and memory cells
US11935949B1 (en) 2013-03-11 2024-03-19 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers and memory cells
US10325651B2 (en) 2013-03-11 2019-06-18 Monolithic 3D Inc. 3D semiconductor device with stacked memory
US10840239B2 (en) 2014-08-26 2020-11-17 Monolithic 3D Inc. 3D semiconductor device and structure
US8994404B1 (en) 2013-03-12 2015-03-31 Monolithic 3D Inc. Semiconductor device and structure
US11398569B2 (en) 2013-03-12 2022-07-26 Monolithic 3D Inc. 3D semiconductor device and structure
US11923374B2 (en) 2013-03-12 2024-03-05 Monolithic 3D Inc. 3D semiconductor device and structure with metal layers
US11088130B2 (en) 2014-01-28 2021-08-10 Monolithic 3D Inc. 3D semiconductor device and structure
US9117749B1 (en) 2013-03-15 2015-08-25 Monolithic 3D Inc. Semiconductor device and structure
US10224279B2 (en) 2013-03-15 2019-03-05 Monolithic 3D Inc. Semiconductor device and structure
US11341309B1 (en) 2013-04-15 2022-05-24 Monolithic 3D Inc. Automation for monolithic 3D devices
US11030371B2 (en) 2013-04-15 2021-06-08 Monolithic 3D Inc. Automation for monolithic 3D devices
US11574109B1 (en) 2013-04-15 2023-02-07 Monolithic 3D Inc Automation methods for 3D integrated circuits and devices
US11487928B2 (en) 2013-04-15 2022-11-01 Monolithic 3D Inc. Automation for monolithic 3D devices
US9021414B1 (en) 2013-04-15 2015-04-28 Monolithic 3D Inc. Automation for monolithic 3D devices
US11720736B2 (en) 2013-04-15 2023-08-08 Monolithic 3D Inc. Automation methods for 3D integrated circuits and devices
US11270055B1 (en) 2013-04-15 2022-03-08 Monolithic 3D Inc. Automation for monolithic 3D devices
WO2015009669A1 (en) 2013-07-16 2015-01-22 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Lift-off of epitaxial layers from silicon carbide or compound semiconductor substrates
US10297586B2 (en) 2015-03-09 2019-05-21 Monolithic 3D Inc. Methods for processing a 3D semiconductor device
US11107808B1 (en) 2014-01-28 2021-08-31 Monolithic 3D Inc. 3D semiconductor device and structure
US11031394B1 (en) 2014-01-28 2021-06-08 Monolithic 3D Inc. 3D semiconductor device and structure
US11056468B1 (en) 2015-04-19 2021-07-06 Monolithic 3D Inc. 3D semiconductor device and structure
US11011507B1 (en) 2015-04-19 2021-05-18 Monolithic 3D Inc. 3D semiconductor device and structure
US10825779B2 (en) 2015-04-19 2020-11-03 Monolithic 3D Inc. 3D semiconductor device and structure
US10381328B2 (en) 2015-04-19 2019-08-13 Monolithic 3D Inc. Semiconductor device and structure
US11956952B2 (en) 2015-08-23 2024-04-09 Monolithic 3D Inc. Semiconductor memory device and structure
US11978731B2 (en) 2015-09-21 2024-05-07 Monolithic 3D Inc. Method to produce a multi-level semiconductor memory device and structure
CN108401468A (zh) 2015-09-21 2018-08-14 莫诺利特斯3D有限公司 3d半导体器件和结构
US10522225B1 (en) 2015-10-02 2019-12-31 Monolithic 3D Inc. Semiconductor device with non-volatile memory
US11991884B1 (en) 2015-10-24 2024-05-21 Monolithic 3D Inc. 3D semiconductor device and structure with logic and memory
US10847540B2 (en) 2015-10-24 2020-11-24 Monolithic 3D Inc. 3D semiconductor memory device and structure
US11296115B1 (en) 2015-10-24 2022-04-05 Monolithic 3D Inc. 3D semiconductor device and structure
US11114464B2 (en) 2015-10-24 2021-09-07 Monolithic 3D Inc. 3D semiconductor device and structure
US10418369B2 (en) 2015-10-24 2019-09-17 Monolithic 3D Inc. Multi-level semiconductor memory device and structure
US11937422B2 (en) 2015-11-07 2024-03-19 Monolithic 3D Inc. Semiconductor memory device and structure
US11114427B2 (en) 2015-11-07 2021-09-07 Monolithic 3D Inc. 3D semiconductor processor and memory device and structure
FR3048548B1 (fr) * 2016-03-02 2018-03-02 Soitec Procede de determination d'une energie convenable d'implantation dans un substrat donneur et procede de fabrication d'une structure de type semi-conducteur sur isolant
US20180033609A1 (en) * 2016-07-28 2018-02-01 QMAT, Inc. Removal of non-cleaved/non-transferred material from donor substrate
US11812620B2 (en) 2016-10-10 2023-11-07 Monolithic 3D Inc. 3D DRAM memory devices and structures with control circuits
US11329059B1 (en) 2016-10-10 2022-05-10 Monolithic 3D Inc. 3D memory devices and structures with thinned single crystal substrates
US11711928B2 (en) 2016-10-10 2023-07-25 Monolithic 3D Inc. 3D memory devices and structures with control circuits
US11869591B2 (en) 2016-10-10 2024-01-09 Monolithic 3D Inc. 3D memory devices and structures with control circuits
US11930648B1 (en) 2016-10-10 2024-03-12 Monolithic 3D Inc. 3D memory devices and structures with metal layers
US11251149B2 (en) 2016-10-10 2022-02-15 Monolithic 3D Inc. 3D memory device and structure
US10600635B2 (en) 2017-04-20 2020-03-24 Elyakim Kassel Method and apparatus for a semiconductor-on-higher thermal conductive multi-layer composite wafer
FR3073083B1 (fr) * 2017-10-31 2019-10-11 Soitec Procede de fabrication d'un film sur un feuillet flexible
US11018156B2 (en) 2019-04-08 2021-05-25 Monolithic 3D Inc. 3D memory semiconductor devices and structures
US10892016B1 (en) 2019-04-08 2021-01-12 Monolithic 3D Inc. 3D memory semiconductor devices and structures
US11158652B1 (en) 2019-04-08 2021-10-26 Monolithic 3D Inc. 3D memory semiconductor devices and structures
US11763864B2 (en) 2019-04-08 2023-09-19 Monolithic 3D Inc. 3D memory semiconductor devices and structures with bit-line pillars
US11296106B2 (en) 2019-04-08 2022-04-05 Monolithic 3D Inc. 3D memory semiconductor devices and structures
TWI745110B (zh) 2020-10-06 2021-11-01 環球晶圓股份有限公司 半導體基板及其製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2748851B1 (fr) * 1996-05-15 1998-08-07 Commissariat Energie Atomique Procede de realisation d'une couche mince de materiau semiconducteur
US6251754B1 (en) * 1997-05-09 2001-06-26 Denso Corporation Semiconductor substrate manufacturing method
US6150239A (en) * 1997-05-31 2000-11-21 Max Planck Society Method for the transfer of thin layers monocrystalline material onto a desirable substrate
US6534380B1 (en) * 1997-07-18 2003-03-18 Denso Corporation Semiconductor substrate and method of manufacturing the same
WO1999009585A1 (fr) * 1997-08-13 1999-02-25 Matsushita Electric Industrial Co., Ltd. Substrat et dispositif semi-conducteurs
JP2998724B2 (ja) * 1997-11-10 2000-01-11 日本電気株式会社 張り合わせsoi基板の製造方法
FR2774214B1 (fr) * 1998-01-28 2002-02-08 Commissariat Energie Atomique PROCEDE DE REALISATION D'UNE STRUCTURE DE TYPE SEMI-CONDUCTEUR SUR ISOLANT ET EN PARTICULIER SiCOI
JP3127892B2 (ja) * 1998-06-30 2001-01-29 日新電機株式会社 水素負イオンビーム注入方法及び注入装置
FR2784795B1 (fr) * 1998-10-16 2000-12-01 Commissariat Energie Atomique Structure comportant une couche mince de materiau composee de zones conductrices et de zones isolantes et procede de fabrication d'une telle structure
US6355541B1 (en) * 1999-04-21 2002-03-12 Lockheed Martin Energy Research Corporation Method for transfer of thin-film of silicon carbide via implantation and wafer bonding
JP3900741B2 (ja) * 1999-05-21 2007-04-04 信越半導体株式会社 Soiウェーハの製造方法
JP4103391B2 (ja) * 1999-10-14 2008-06-18 信越半導体株式会社 Soiウエーハの製造方法及びsoiウエーハ
WO2001048825A1 (fr) * 1999-12-24 2001-07-05 Shin-Etsu Handotai Co., Ltd. Procédé de production de tranche collée
FR2816445B1 (fr) * 2000-11-06 2003-07-25 Commissariat Energie Atomique Procede de fabrication d'une structure empilee comprenant une couche mince adherant a un substrat cible
US6566158B2 (en) * 2001-08-17 2003-05-20 Rosemount Aerospace Inc. Method of preparing a semiconductor using ion implantation in a SiC layer
US20040224482A1 (en) * 2001-12-20 2004-11-11 Kub Francis J. Method for transferring thin film layer material to a flexible substrate using a hydrogen ion splitting technique
US6562127B1 (en) * 2002-01-16 2003-05-13 The United States Of America As Represented By The Secretary Of The Navy Method of making mosaic array of thin semiconductor material of large substrates

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101373722B (zh) * 2007-08-24 2013-03-13 株式会社半导体能源研究所 半导体装置及其制造方法
CN103632924A (zh) * 2012-08-23 2014-03-12 法国原子能及替代能源委员会 用于将InP薄膜转移到加强基板上的方法
CN103632924B (zh) * 2012-08-23 2017-10-20 法国原子能及替代能源委员会 用于将InP薄膜转移到加强基板上的方法
US9875935B2 (en) 2013-03-08 2018-01-23 Infineon Technologies Austria Ag Semiconductor device and method for producing the same
CN104037070B (zh) * 2013-03-08 2018-05-04 英飞凌科技奥地利有限公司 半导体器件及其生产方法
CN109564891A (zh) * 2016-08-11 2019-04-02 索泰克公司 用于转移有用层的方法
CN109564891B (zh) * 2016-08-11 2023-08-29 索泰克公司 用于转移有用层的方法
CN111902571A (zh) * 2018-03-28 2020-11-06 索泰克公司 AlN材料单晶层的制造方法和外延生长AlN材料单晶膜的衬底

Also Published As

Publication number Publication date
US7262113B2 (en) 2007-08-28
US20050266659A1 (en) 2005-12-01
JP2005516392A (ja) 2005-06-02
DE60307419D1 (de) 2006-09-21
US6974760B2 (en) 2005-12-13
US20050032330A1 (en) 2005-02-10
EP1468445B1 (en) 2006-08-09
WO2003063213A2 (en) 2003-07-31
TWI266362B (en) 2006-11-11
TW200306620A (en) 2003-11-16
KR100767138B1 (ko) 2007-10-15
CN100576448C (zh) 2009-12-30
ATE336077T1 (de) 2006-09-15
EP1468445A2 (en) 2004-10-20
KR20040077795A (ko) 2004-09-06
FR2835097B1 (fr) 2005-10-14
DE60307419T2 (de) 2007-03-29
FR2835097A1 (fr) 2003-07-25
WO2003063213A3 (en) 2004-01-15
JP4549063B2 (ja) 2010-09-22

Similar Documents

Publication Publication Date Title
CN1669122A (zh) 向接收基板转移碳化硅薄层的优化方法
CN1217381C (zh) 化合物半导体衬底及其制造方法
CN1781188A (zh) 用于同时得到一对由有用层覆盖的衬底的方法
CN109671612B (zh) 一种氧化镓半导体结构及其制备方法
CN1802737A (zh) 用于获得具有支撑衬底和超薄层的结构的方法
CN1666330A (zh) 从包括缓冲层的晶片转移薄层
CN1153259C (zh) 半导体基片和薄膜半导体部件及它们的制造方法
CN1259692C (zh) 应变半导体覆绝缘层型基底的制造方法
CN1175498C (zh) 复合部件及其分离方法和半导体衬底的制备方法
CN1473361A (zh) 制造含有粘接于-目标基片上的-薄层的-叠置结构的方法
CN1568540A (zh) 获得用于电子电路的自支撑薄半导体层的方法
CN1541406A (zh) 具有受控机械强度的可拆除基片及其生产方法
CN1930674A (zh) 用于改进所剥离薄层质量的热处理
CN1723543A (zh) 通过装配受力结构实现一复合结构的方法
CN101044620A (zh) 应变绝缘体上半导体结构以及应变绝缘体上半导体结构的制造方法
JP2005516392A6 (ja) 炭化珪素薄層の受け取り基板への最適移載方法
CN1828830A (zh) 在具有空位团的衬底中形成的薄层的转移的方法
CN103828021B (zh) 制造复合晶片的方法
CN1586004A (zh) 用于制造含微型元件的薄层的方法
CN1959952A (zh) 再循环外延施予晶片的方法
CN1748312A (zh) Soi晶片的制造方法及soi晶片
CN104736477A (zh) 纳米碳膜的制造方法及纳米碳膜
JP2023519165A (ja) SiCでできたキャリア基板の上に単結晶SiCでできた薄層を備える複合構造を製造するための方法
CN1708843A (zh) 在共注入后在中等温度下分离薄膜的方法
JP2002348198A (ja) 半導体素子エピタキシャル成長用基板及びその製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20091230