CN1660526A - 制备Mo合金制靶材料的方法 - Google Patents

制备Mo合金制靶材料的方法 Download PDF

Info

Publication number
CN1660526A
CN1660526A CN2005100095854A CN200510009585A CN1660526A CN 1660526 A CN1660526 A CN 1660526A CN 2005100095854 A CN2005100095854 A CN 2005100095854A CN 200510009585 A CN200510009585 A CN 200510009585A CN 1660526 A CN1660526 A CN 1660526A
Authority
CN
China
Prior art keywords
particle size
container
sintered compact
powder
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2005100095854A
Other languages
English (en)
Other versions
CN1314504C (zh
Inventor
岩崎克典
井上惠介
植村典夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Publication of CN1660526A publication Critical patent/CN1660526A/zh
Application granted granted Critical
Publication of CN1314504C publication Critical patent/CN1314504C/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • B22F3/162Machining, working after consolidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/1208Containers or coating used therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Powder Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开的是一种制备Mo合金制靶材料的方法,该方法包含下面步骤:(a)通过压制由平均颗粒尺寸不超过20μm的Mo粉末和平均颗粒尺寸不超过500μm的过渡金属粉末组成的原料粉末混合物,制备生坯;(b)粉碎生坯以制备次级粒子,其平均颗粒尺寸为不低于原料粉末混合物的平均颗粒尺寸至不超过10mm;(c)将次级粒子装入到加压用容器中;和(d)对次级粒子和加压用容器在压力下进行烧结,因此得到制靶材料的烧结体。

Description

制备Mo合金制靶材料的方法
技术领域
本发明涉及一种通过粉末烧结方法制备Mo合金制靶材料的方法。
背景技术
现在,将具有低电阻的难熔金属例如Mo的薄膜用于液晶显示器(以下称为LCD)中的薄膜电极、薄膜配线等,其金属薄膜一般是由用于溅射的制靶材料形成的。近年来,倾向于更大尺寸的LCD,随之需要更大尺寸的制靶材料,特别是,长度不低于1m的长尺寸物品,或溅射面积大于1m2的大尺寸物品。
传统地,适应于更大尺寸的溅射面积的趋势,已经建议了一些方法,包括将大量原始制靶材料型材与背板粘合的方法。但是,根据这种使用粘合大量原料制靶材料型材的方法,这提出了由于材料不正常的飞溅,在沉积薄膜中包含颗粒的问题,这是在溅射过程中由于在各自的邻近粘合原料制靶材料部分之间存在的间隙所产生的。为了克服这个问题,需要使用集成的原料制靶材料元件。
迄今为止,虽然为了制备难熔金属例如Mo的制靶材料而使用粉末烧结方法,但是当制备这种具有更大尺寸的集成原料制靶材料时,重要的是如何得到高密度和更大尺寸的材料。有各种粉末烧结方法,其包括热等静压成型方法(以下称为HIP)。根据HIP方法,可以向原料粉末立体地施加高压制压力,因此有利的是,与根据可以仅向原料粉末平面施加高压制压力的热压制方法相比,它可以具有高和均匀的密度。
在HIP方法中,在加压原料粉末之前,需要有效和均匀地将烧结的原料粉末装入加压用容器中。因此,已经建议一些如何向填充的原料粉末增加压力的方法,例如这些方法可以参见,JP-A-2002-167669和JP-A-2003-342720。
但是,即使通过上面的专利出版物所公开的制备Mo或Mo合金制靶材料的方法,当制备包含一种或多种添加元素的Mo合金的制靶材料时,产生了这样的问题,即容易出现一种或多种添加元素的偏析,该问题不能通过上面方法解决。此外,还产生了一个加压和烧结体的不利形状改变的问题。
发明内容
发明概述
本发明的一个目的是提供一种制备Mo合金的制靶材料的方法,根据该方法,提高了装入加压用容器中的原料粉末的密度,减少了加压和烧结体的不利的形状改变的问题,且降低了材料组分的离析。
本发明人研究了各种制备Mo合金的制靶材料的方法,发现通过控制装入加压用容器中的原料粉末混合物的颗粒尺寸,可以解决上述的问题,因此完成了本发明。
根据本发明的一个方面,提供一种制备Mo合金制靶材料的方法,该方法包含下面步骤:(a)通过压制由平均颗粒尺寸不超过20μm的Mo粉末和平均颗粒尺寸不超过500μm的过渡金属粉末组成的原料粉末混合物,制备生坯;(b)粉碎生坯以制备次级粒子,其平均颗粒尺寸为不低于原料粉末混合物的平均颗粒尺寸至不超过10mm;(c)将次级粒子装入到加压用容器中;和(d)对次级粒子和加压用容器在压力下进行烧结,因此得到制靶材料的烧结体。
根据上面方法的一个实施方案,过渡金属是选自Ti、Zr、Hf、V、Nb、Ta、Cr和W中的任何一种。
根据上面方法的另一个实施方案,在过程(d)后,对密封在容器中的烧结体进行热塑性加工。
根据上面方法的再一个实施方案,在步骤(d)后,对密封在容器中的烧结体进行热塑性加工,接着进行重结晶热处理。
优选通过冷等静压成型,来压制原料粉末混合物。更优选在不低于100MPa的压力下进行压制。
优选生坯具有的相对密度不低于50%。
优选通过HIP方法,进行压力下的烧结。HIP方法的优选条件是1000至1500℃的温度和不低于100MPa的压力。优选烧结体的相对密度不低于98%。
优选装有次级粒子的容器具有最大长度不低于1000mm的内空间。
优选装有次级粒子的容器是基本上长方体形式的金属盒,其一个面用作装入次级粒子的进口,该面相对于形成最大深度的容器底壁,和其内空间具有的最大长度不低于1000mm。
优选热塑性加工是在缩小率为2至50%和温度为500至1500℃的条件下的多次塑性加工。
优选在1000至1500℃的温度下进行重结晶热处理。
优选将烧结体切片,以得到片状靶料,以便保持烧结体的最大边长。
根据本发明,可以达到上述的目的,即提高了在加压用容器中的原料粉末混合物的填料密度,减少了加压和烧结体的不利的形状改变的问题,且降低了材料组分的离析。
附图说明
图1所示为实施例1中烧结体的纵向侧视示意图;
图2是用于评估在实施例1中的本发明第2号样品制靶材料中的金属结构中离析的Nb区的照片;
图3是用于评估在实施例1中的本发明第9号样品制靶材料中的金属结构中离析的Nb区的照片;
图4是在实施例3中的第2-1-1号样品的微观结构的照片,其是由放大位数为100的光学显微镜拍摄的;和
图5是在实施例3中的第2-1-3号样品的微观结构的照片,其是由放大位数为100的光学显微镜拍摄的。
发明详述
本发明的一个主要方面在于通过下面的方法得到生坯的方法:压制由Mo粉末和过渡金属粉末组成的原料粉末混合物,接着将生坯粉碎,以制备次级粒子,其平均颗粒尺寸为不低于原料粉末混合物的平均颗粒尺寸至不超过10mm,将次级粒子装入加压用容器中,因此提高了容器中次级粒子的填充比,并且降低了材料组分的离析。
在通过利用加压用容器烧结粉末来制备Mo合金制靶材料的情况下,通常使用Mo细粉末。但是,当在容器中装入Mo粉末时,在容器中的粉末组分的分布容易变化,因为Mo粉末具有高结块倾向性和流动性差。
在这点上,本发明人充分研究后发现,通过调节原料粉末混合物的颗粒尺寸,可以改善容器中原料粉末混合物的填充比,以便在一定程度是大的。另一方面,在混和Mo粉末和其它过渡金属粉末的情况下,材料组分的离析容易发生,这与粉末的结块倾向性,粉末的流动性等有关。因此,本发明人还发现通过下面的方法可以有效地解决这个问题:通过压制由Mo粉末和过渡金属组成的原料粉末混合物,得到生坯,接着将生坯粉碎以制备次级粒子,且将次级粒子装入加压用容器中,由此改善加压用容器中的原料粉末混合物的离析和加压用容器中烧结体的材料组分的其它离析。
以下,将提供本发明方法的详细内容。
普通的Mo粉末具有细的颗粒尺寸,其平均颗粒尺寸不超过20μm,因为它是由化学制备的。另一方面,Nb、Cr、Ti等过渡金属具有相对大的颗粒尺寸,其平均颗粒尺寸不超过500μm,因为这种粉末通常是通过粉碎铸锭而制备的。在本发明中,生坯是这样制备的:通过压制细原料粉末混合物,接着对生坯进行粉碎,以得到次级粒子,其平均颗粒尺寸为不低于原料粉末混合物的平均颗粒尺寸至不超过10mm。将次级粒子装入加压用容器中,接着在压力下烧结,由此得到用于制靶材料原料的烧结体。
次级粒子的平均颗粒尺寸的下限应当不低于原料粉末混合物的平均颗粒尺寸的原因在于:制备和粉碎生坯以得到平均颗粒尺寸低于原料粉末混合物平均颗粒尺寸的次级粒子没有意义。次级粒子的平均颗粒尺寸的上限应当不超过10mm的原因在于:由平均颗粒尺寸超过10mm的次级粒子制备的烧结体的金属结构中出现明显的颗粒间界,其金属结构具有一种图案外观。这种烧结体意味着局部高氧量的危险,因为颗粒间界是与空气优先接触的。因此,为了使在外观上观察不到颗粒间界,并且还为了使次级粒子的颗粒尺寸尽可能均匀,平均颗粒尺寸应当不超过10mm。
在本发明中,在混和Mo和过渡金属粉末时,为了抑制过渡金属混和粉末与Mo粉末的离析,重要的是制备生坯和粉碎它,以便得到的平均颗粒尺寸不超过10mm。
这里,提供的限定是:在Mo粉末、过渡金属粉末、原料粉末混合物或次级粒子的颗粒尺寸分布中,其颗粒总数量的50%的颗粒尺寸(D50)称为平均颗粒(或粒子)尺寸。
优选地,将压制的Mo粉末的平均颗粒尺寸不超过10mm,通过粉碎生坯得到的次级粒子具有的平均颗粒尺寸不超过5mm。
原因在于:颗粒尺寸越小,可以容易地得到烧结体越高的相对密度。从提高加压用容器中金属粉末的填料密度考虑,使用更大颗粒尺寸的次级粒子是有效的。但是,从烧结性能考虑,优选高密度的原料粉末具有更小的颗粒尺寸。特别是,考虑到通过本发明方法制备的烧结体的主要成份是Mo,因为它是难熔金属和通常具有高扩散温度,优选在高温下加工容器中的原料粉末混合物,同时提高原料颗粒的接触面积。因此,优选Mo粉末的平均颗粒尺寸不超过10μm。优选次级粒子的平均颗粒尺寸不超过5mm的原因在于:通过这种颗粒尺寸,可以减少氧量的局部浓度,并且改善Mo合金中的一种或多种添加元素的分散度。更优选地,次级粒子的平均颗粒尺寸不超过0.5至3mm。
此外,与Mo粉末混和的过渡金属粉末的平均颗粒尺寸不超过500μm的原因在于:如果平均颗粒尺寸超过这个值,不能减少制靶材料中组分的离析。
至于生坯,为了保持装入到加压用容器中的次级粒子的颗粒尺寸,优选压制它,以便具有的相对密度不低于50%。
优选通过冷等静压成型方法(以下称为CIP)压制主要成份是Mo的原料,其中优选向原料粉末施加不低于100MPa的压力,以提高生坯,使其具有不低于50%的相对密度。
优选通过HIP方法进行在压力下的原料烧结,因为可以在烧结期间对原料立体地施加高压。HIP方法的理想条件是1000至1500℃的温度和不超过100MPa的压力。如果HIP方法是在低于100MPa的压力和低于1000℃的温度下进行的,侧难以制备制靶材料所需要的相对密度不低于98%的烧结体。另一方面,虽然为了得到主要组分是Mo的烧结体,优选在尽可能高的温度下进行烧结,但是HIP方法的加工温度受到加压用容器的材料种类和设备的限制。在普通的HIP装置中,加工温度的上限约为1500℃。高于1500℃的温度是不实用的。
至于加压用容器的尺寸,虽然存在一个问题,即当使用更大尺寸的容器时,几乎未提高填料密度和容易发生组分离析,本发明方法适用于制备大尺寸制靶材料,所述的大尺寸制靶材料要求使用最大长度不低于1000mm的加压用容器。至于将粉末装入容器的方法,为了利用粉末比重提高填料密度,更优选使用加压用容器,其是基本上长方体形式,其一个面用作装入次级粒子的进口,该面相对于形成最大深度的容器底壁,且其内空间具有的最大长度不低于1000mm。将粉末装入容器后,理想的是通过顶盖密封容器,同时使顶盖挤压容器中的粉末。这是因为通过这种顶盖挤压粉末,可以消除容器中粉末的顶部区域的多余空间,粉末的比重对该区域不发挥作用,因此达到粉末在容器中从顶部到底部的均匀和密集的填充状态。
根据本发明方法的一个特征,对密封在容器中的烧结体进行热塑性加工,因为这种处理适用于使烧结体具有更大的尺寸。
烧结体与容器一起进行热塑性加工的一个原因在于,如果烧结体在它的表面曝露下进行加工,烧结体的表面有污染的危险。从另一角度考虑,根据这种烧结体与容器的加工方法,可以省去从烧结体中去除容器的一个过程,因此可以降低生产成本。
理想的是,热塑性加工是每次用2至50%的缩小率多次进行,同时保持烧结的温度于500至1500℃。
如果温度低于500℃,必须提高对烧结体施加的加工负载,原因在于其低的压延性,因此产生生产率的问题。另一方面,如果温度超过1500℃,存在容器熔化的危险和烧结体的晶粒粗糙化的问题。如果热塑性加工的缩小率超过50%,产生在烧结体中出现破裂和内部缺陷的问题。如果热塑性加工的缩小率低于2%,烧结体几乎不变形,因此产生浪费生产成本的问题。此外,在整体上烧结体需要的高缩小加工的情况下,为了避免破裂或内部缺陷的产生,在上面所述的温度和缩小率的条件下,进行多次加工是有效的。
根据本发明的另一个特征,在热塑性加工后,对烧结体进行重结晶热处理。轧制的工件具有纤维金属结构,该程度的结构在工件的每一个剖面不同,特别是在该工件的表面部分和厚度方向的中心部分。优选制靶材料应当具有均匀的晶体结构,因为制靶材料非均匀的晶体结构不利地影响通过溅射形成的沉积薄膜的均匀性。因此,优选对轧制的工件进行利用重结晶现象的均质化处理,以使其晶体结构均匀。
优选重结晶热处理是在1000至1500℃的温度下进行的。如果温度不高于1000℃,极有可能在热处理后保留纤维金属结构,原因在于主要组分是Mo的化学组成的性能。如果温度超过1500℃,出现在以前进行高缩小加工遇到的表面区域发生晶体颗粒的部分粗糙化。
根据本发明的再一个特征,对烧结体,包括仅烧结的那些、进行热塑性加工的那些和进行热塑性加工和重结晶热处理那些,进行切片,得到多个片状靶料,以便保持相应烧结体的最大长度。这种方法有利之处在于:根据大尺寸制靶材料的需要,仅通过一次加压和烧结过程,制备许多制靶材料。
理想的是,在本发明方法中的原料粉末材料包含不低于50原子%Mo。考虑到具有高结块性能的Mo粉末难以均匀地装入加压用容器中,为了得到包含不低于50原子%Mo的制靶材料,使用本发明的原料粉末材料是非常有效的。
以下,将提供关于本发明方法的一些实施例描述。
具体实施方式
实施例1
制备平均颗粒尺寸为12μm的Mo粉末、平均颗粒尺寸为12μm的W(钨)粉末、平均颗粒尺寸为100μm的Nb粉末、平均颗粒尺寸为100μm的Ti粉末、和平均颗粒尺寸为100μm的Zr粉末。
通过下面的方法制备表1所示的第1至6号样品的制靶材料,其是本发明。
(1)为了制备每种样品,称重以原子%表示的给定量的Mo粉末和任何一种过渡金属粉末。
(2)利用V-型搅拌机混和所称重的粉末10分钟,得到原料粉末。
(3)通过CIP机器,在265MPa压力下压制原料粉末,形成生坯。
(4)利用颚式粉碎机和盘磨机粉碎生坯,制备次级粒子。
(5)在V-型搅拌机混和次级粒子10分钟,接着装入加压用容器中,加压用容器是由低碳软钢制成的,且内空间的尺寸是:厚度为100mm、宽度为1000mm和高度为1300mm。在装入次级粒子后,将具有除气口的顶盖与容器焊接,以密封其入口。
(6)在450℃、真空下,对装有次级粒子的容器进行除气处理,接着密封除气口。此后,通过HIP机器,在压力下,将次级粒子与容器一起烧结。HIP机器的操作条件是1250℃的温度、150MPa的压力和5小时的操作时间。
(7)将因此得到的烧结体切片,并且机械加工,以制备六块片状制靶材料,其每个具有长方体形状,其尺寸是:厚度为6mm、宽度为810mm和长度为950mm。
(8)测量在容器中的次级粒子的填料密度,其值示于表1中。
(9)通过阿基米德方法,从生坯和烧结体中取出样品,分别检查相对密度,其值示于表1中。
此外,为了制备表1所示的第7和8号参考样品制靶材料,制备平均颗粒尺寸为6μm的Mo粉末和平均颗粒尺寸为100μm的Nb粉末,且通过上述的同样方法加工,得到烧结体。将由此得到的每种烧结片切片和机械加工,以制备六块片状制靶材料,其每个具有长方体形状,其尺寸是:厚度为6mm、宽度为810mm和长度为950mm。
测量容器中的次级粒子的填料密度,其值示于表1中。
通过阿基米德方法,从生坯和烧结体中取出样品,分别检查相对密度,其值示于表1中。
为了制备表1所示的第9和10号比较样品制靶材料,制备Mo粉末和Nb粉末。通过下面的方法制备表1所示的第9和10号比较样品制靶材料。
(1)为了制备第9和10号比较样品,分别称重以原子%表示给定量的Mo粉末和Nb粉末。
(2)利用V-型搅拌机混和所称重的粉末10分钟,得到第9和10号比较样品的原料粉末。
(3)将第9和10号比较样品的原料粉末每种装入加压用容器中,不进行压制处理,加压用容器是由低碳钢制成的。
(4)在装入原料粉末后,将具有除气口的顶盖与容器焊接,以密封其进口。
(5)在450℃、真空下,对装有次级粒子的容器进行除气处理且密封除气口。此后,通过HIP机器,在压力下,将次级粒子与容器一起烧结。HIP机器的操作条件是1250℃的温度、150MPa的压力和5小时的操作时间。
(6)将因此得到的每种烧结体切片和机械加工,以制备三块片状制靶材料,其每个具有长方体形状,其尺寸是:厚度为6mm、宽度为610mm和长度为710mm。
(7)测量在容器中的次级粒子的填料密度,其值示于表1中。
(8)通过阿基米德方法,从生坯和烧结体中取出样品,分别检查相对密度,其值示于表1中。
至于所有第1至10号样品制靶材料,评估各自烧结体的形状变异,该变异发生在烧结期间。提供图1是为了描述如何进行评估的方法。该图用x-y坐标表示烧结体模型的纵向侧视示意图,其中具有参考点3,其在烧结体模型1中底面的纵向中心2(y轴上)。烧结体模型1的左端在图中向上弯曲,以便烧结体模型1左侧的最低点4偏离x轴,其为距离5,距离5显示形状变异度。各自样品的形状变异度的评估结果示于表1中,其中字母B是指形状变异度不低于12mm,这有问题,且字母A是指形状变异度低于12mm,评估其为良好。
表1
样品号     化学组成(原子%) 原始粉末的平均颗粒尺寸   次级粒子的平均颗粒尺寸(mm) 加压用容器的尺寸(mm)
    Mo(μm)     添加元素(μm)
    1     Mo     12     -     1.4     100×1000×1300
    2     95.0Mo-5.0Nb     12     100     1.1     100×1000×1300
    3     95.5Mo-4.5Nb     12     100     1.2     100×1000×1300
    4     70.0Mo-30.0Ti     12     100     1.3     100×1000×1300
    5     65.0Mo-35.0W     12     12     1.2     100×1000×1300
    6     91.6Mo-8.4Zr     12     100     1.5     100×1000×1300
    7     Mo     6     -     0.8     100×1000×1300
    8     95.0Mo-5.0Nb     6     100     0.8     100×1000×1300
    9     95.0Mo-5.0Nb     12     100     -     100×1000×1300
    10     Mo     12     -     -     100×1000×1300
  生坯的相对密度(%)     加压用容器中的填料密度(%)     烧结体的尺寸(mm)     烧结体的相对密度(%)   形状变异度的评估 备注
    69.0     53.0     81×816×1054     98.2     A   参考样品
    71.0     54.0     81×817×1053     98.3     A   发明样品
    70.0     53.5     81×815×1052     98.4     A   发明样品
    69.5     53.0     80×813×1054     98.3     A   发明样品
    70.0     53.5     81×816×1054     98.1     A   发明样品
    69.0     52.5     81×812×1049     98.2     A   发明样品
    68.0     58.5     83×835×1088     99.6     A   参考样品
    69.0     60.0     84×844×1097     99.4     A   发明样品
    -     39.5     73×735×955     98.3     B   比较样品
    -     38.5     72×729×945     98.1     B   参考样品
如表1所示,在第1至8号本发明和参考样品中,因为平均颗粒尺寸不超过10mm的次级粒子,分别是通过粉碎生坯制备的,所述的生坯是通过压制原料粉末制备的,在第1至8号样品中的次级粒子的填料密度不低于52%,这是非常高的。由此,看出可以具有满意产量地制备制靶材料,因为由于高填料密度,减少了烧结体的空间收缩和形状变异。
参见表1中的本发明8号样品,看出利用平均颗粒尺寸不超过10μm的原料粉末混合物和平均颗粒尺寸不超过1mm的次级粒子,极大提高了填料密度和相对密度。
另一方面,至于第9号比较样品,其中在没有压制的条件下,将原料粉末混合物直接装入加压用容器中,并进行在压力下的烧结,当制备制靶材料时,产量低,原因在于不超过40%的低填料密度,且因为烧结体的空间收缩和形状变异大。此外,即使使用与其它情况同样尺寸的容器,有由于烧结体的空间收缩大和形状变异大,不能制备具有需要尺寸的制靶材料的危险。
图2和3表示分别用于评估第2号本发明样品和第9号比较样品中的金属结构的Nb区域离析的照片。在图3所示的其中没有制备次级粒子的第9号比较样品的情况下,在照片中心存在长轴不低于20mm的Nb区域。由此,看出Nb离析产生。另一方面,在图2所示的第2号本发明样品的情况下,Nb区域分散在Mo基质中,因此不存在明显的Nb离析。
实施例2
具有示于实施例1中的与第2号本发明样品的那些相同化学组成和相同尺寸的烧结体是通过与第2号本发明样品的情况相同的方式制备的,在HIP过程后,在温度为1150℃和缩小率不超过50%的条件下,对它与加压用容器一起进行热轧三次。制靶材料的理想尺寸为:宽度是1500mm和长度是1800mm。烧结体的轧制结果示于表2中。
表2
样品号     化学组成(原子%)   烧结体的尺寸(mm)     轧制中的目标尺寸(mm)     加热温度(℃)
   2-1     95.0Mo-5.0Nb   81×812×1053     25.7×1500×1800     1150
表2(续)
  总轧制缩小率(%)     第一次轧制缩小率(%)   第二次轧制缩小率(%)     第三次轧制缩小率(%)   结果
    68     20     30     43.5   没有碎裂
从表2中看出,通过在加热温度为500至1500℃和缩小率为2至50%的条件下进行轧制,可以制备大尺寸的制靶原料而未出现破裂。
应当注意的是当对烧结体在450℃进行轧制时,由于低加热温度不能保持烧结体的延展性,不利地导致在几个百分比的缩小率的轧制必须循环进行。
实施例3
对实施例2中热轧的制靶材料分别在900℃、1150℃和1300℃、真空中进行重结晶热处理。在将制靶材料加热到热处理温度后,保持温度1小时,此后冷却工件。分别从三种类型的工件中取出第2-1-1、2-1-2和2-1-3号样品。利用放大倍数为100的光学显微镜相互比较样品的微观结构。观察的结果示于表3中。至于分别在900℃和1300℃的温度下进行重结晶热处理的样品,在图4和5中分别提供利用放大倍数为100的光学显微镜显示的样品微观结构的照片。
表3
样品号     化学组成(原子%)   重结晶热处理温度(℃) 微观结构
  2-1-1   95.0Mo-5.0Nb     900   保留纤维金属结构
  2-1-2   95.0Mo-5.0Nb     1150   各向同性结构
  2-1-3   95.0Mo-5.0Nb     130   各向同性结构
从表3、图4和5可以看出,当重结晶热处理温度低于1000℃时,存在保持纤维结构的可能性。

Claims (11)

1.一种制备Mo合金制靶材料的方法,该方法包含下面步骤:
(a)通过压制由平均颗粒尺寸不超过20μm的Mo粉末和平均颗粒尺寸不超过500μm的过渡金属粉末组成的原料粉末混合物,制备生坯;
(b)粉碎生坯以制备次级粒子,其平均颗粒尺寸为不低于原料粉末混合物的平均颗粒尺寸至不超过10mm;
(c)将次级粒子装入到加压用容器中;和
(d)对次级粒子和加压用容器在压力下进行烧结,因此得到制靶材料的烧结体。
2.根据权利要求1的方法,其中过渡金属是选自Ti、Zr、Hf、V、Nb、Ta、Cr和W中的任何一种。
3.根据权利要求1的方法,其中在烧结过程(d)后,对密封在容器中的烧结体进行热塑性加工。
4.根据权利要求1的方法,其中热塑性加工是在缩小率为2至50%和加热温度为500至1500℃的条件下的多次塑性加工。
5.根据权利要求1的方法,其中在步骤(d)后,对密封在容器中的烧结体进行热塑性加工,接着进行重结晶热处理。
6.根据权利要求5的方法,其中热塑性加工是在缩小率为2至50%和加热温度为500至1500℃的条件下的多次塑性加工。
7.根据权利要求6的方法,其中重结晶热处理是在1000至1500℃的温度下进行的。
8.根据权利要求1的方法,其中在步骤(a)中的压制过程是通过在不低于100MPa的压力下的冷等静压成型进行的。
9.根据权利要求1的方法,其中在烧结过程(d)中的烧结过程是通过在1000至1500℃、不低于100MPa的压力下的热等静压成型进行的。
10.根据权利要求1的方法,其中装有次级粒子的容器是基本上长方体形式的金属盒,其一个面用作装入次级粒子的进口,该面相对于形成最大深度的容器底壁,和其内空间具有的最大长度不低于1000mm。
11.根据权利要求10的方法,其中将烧结体切片,得到许多片状靶料以便保持烧结体的最大边长。
CNB2005100095854A 2004-02-27 2005-02-24 制备Mo合金制靶材料的方法 Active CN1314504C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004055021 2004-02-27
JP2004055021A JP4110533B2 (ja) 2004-02-27 2004-02-27 Mo系ターゲット材の製造方法

Publications (2)

Publication Number Publication Date
CN1660526A true CN1660526A (zh) 2005-08-31
CN1314504C CN1314504C (zh) 2007-05-09

Family

ID=34879772

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005100095854A Active CN1314504C (zh) 2004-02-27 2005-02-24 制备Mo合金制靶材料的方法

Country Status (3)

Country Link
US (1) US20050191202A1 (zh)
JP (1) JP4110533B2 (zh)
CN (1) CN1314504C (zh)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102321871A (zh) * 2011-09-19 2012-01-18 基迈克材料科技(苏州)有限公司 热等静压生产平板显示器用钼合金溅射靶材的方法
CN101648320B (zh) * 2009-05-08 2012-06-27 宁波江丰电子材料有限公司 靶材与背板的焊接方法
CN102560383A (zh) * 2012-01-12 2012-07-11 宝鸡市科迪普有色金属加工有限公司 钼铌合金板靶材加工工艺
CN102597301A (zh) * 2009-10-26 2012-07-18 株式会社爱发科 含钛溅射靶的制造方法
CN103014638A (zh) * 2011-09-26 2013-04-03 日立金属株式会社 MoTi靶材及其制造方法
CN103060762A (zh) * 2013-01-11 2013-04-24 江西科泰新材料有限公司 钼铌合金靶材的生产工艺
CN103140600A (zh) * 2010-09-30 2013-06-05 日立金属株式会社 钼靶的制造方法
CN103143710A (zh) * 2013-03-27 2013-06-12 宁夏东方钽业股份有限公司 一种钼合金靶材的制作方法
CN103154306A (zh) * 2010-06-30 2013-06-12 H·C·施塔克公司 含钼靶材
CN103154307A (zh) * 2010-06-30 2013-06-12 H·C·施塔克公司 含钼靶材
CN103182507A (zh) * 2013-03-19 2013-07-03 昆山海普电子材料有限公司 一种铬铝合金靶材的生产方法
CN103182508A (zh) * 2011-12-27 2013-07-03 北京有色金属研究总院 一种用于大电流密度m型阴极敷膜的合金靶材制备方法
CN103205721A (zh) * 2013-03-19 2013-07-17 昆山海普电子材料有限公司 一种钛铝合金靶材的生产方法
TWI415952B (zh) * 2005-10-20 2013-11-21 Starck H C Inc 製造鉬鈦濺鍍靶座及靶材之方法
US9334565B2 (en) 2012-05-09 2016-05-10 H.C. Starck Inc. Multi-block sputtering target with interface portions and associated methods and articles
US9334562B2 (en) 2011-05-10 2016-05-10 H.C. Starck Inc. Multi-block sputtering target and associated methods and articles
CN105683407A (zh) * 2013-10-29 2016-06-15 攀时奥地利公司 溅镀靶及其制造方法
CN105714253A (zh) * 2016-03-10 2016-06-29 洛阳爱科麦钨钼科技股份有限公司 大尺寸、细晶钼钽合金溅射靶材的制备方法
CN106567048A (zh) * 2016-11-10 2017-04-19 洛阳科威钨钼有限公司 一种大型高纯钼合金旋转靶材的制造方法
CN109790617A (zh) * 2016-09-29 2019-05-21 普兰西股份有限公司 溅镀靶材
CN111719125A (zh) * 2019-03-20 2020-09-29 日立金属株式会社 Mo合金靶材及其制造方法
CN111719126A (zh) * 2019-03-20 2020-09-29 日立金属株式会社 Mo合金靶材及其制造方法
CN112975102A (zh) * 2021-03-04 2021-06-18 宁波江丰电子材料股份有限公司 一种钴靶材与铜背板的扩散焊接方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101513672B (zh) * 2005-02-01 2011-09-14 东曹株式会社 成型模
AT8697U1 (de) * 2005-10-14 2006-11-15 Plansee Se Rohrtarget
JP4831468B2 (ja) * 2005-10-18 2011-12-07 日立金属株式会社 Moターゲット材の製造方法
JP2007277671A (ja) * 2006-04-11 2007-10-25 Hitachi Metals Ltd Mo合金粉末の製造方法およびスパッタリングターゲット材の製造方法
US20080087866A1 (en) * 2006-10-13 2008-04-17 H.C. Stark Inc. Titanium oxide-based sputtering target for transparent conductive film, method for producing such film and composition for use therein
CN101611165B (zh) * 2007-01-12 2012-03-21 新日铁高新材料 Mo系溅射靶板及其制造方法
JP2008255440A (ja) * 2007-04-06 2008-10-23 Hitachi Metals Ltd MoTi合金スパッタリングターゲット材
CN101977711B (zh) * 2008-03-27 2013-03-13 日立金属株式会社 被覆金属微粒及其制造方法
JP5550328B2 (ja) * 2009-12-22 2014-07-16 株式会社東芝 Moスパッタリングターゲットおよびその製造方法
EP2555287B1 (en) * 2010-04-01 2018-05-02 Mitsubishi Chemical Corporation Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
CN104439236B (zh) * 2014-12-23 2016-08-17 金堆城钼业股份有限公司 一种氧化锆钼合金电极的制备方法
JP7205213B2 (ja) * 2018-03-27 2023-01-17 日立金属株式会社 TiW合金ターゲットおよびその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0735152B1 (en) * 1993-12-14 2002-04-17 Kabushiki Kaisha Toshiba Molybdenum-tungsten material for wiring, molybdenum-tungsten target for wiring, process for producing the same, and molybdenum-tungsten wiring thin film
JP3863204B2 (ja) * 1995-08-25 2006-12-27 株式会社アライドマテリアル スパッタリングターゲット材及びその製造方法
US6797137B2 (en) * 2001-04-11 2004-09-28 Heraeus, Inc. Mechanically alloyed precious metal magnetic sputtering targets fabricated using rapidly solidfied alloy powders and elemental Pt metal
JP3748221B2 (ja) * 2001-10-23 2006-02-22 日立金属株式会社 Mo系スパッタリング用ターゲットおよびその製造方法

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI415952B (zh) * 2005-10-20 2013-11-21 Starck H C Inc 製造鉬鈦濺鍍靶座及靶材之方法
US8911528B2 (en) 2005-10-20 2014-12-16 H.C. Starck Inc. Methods of making molybdenum titanium sputtering plates and targets
CN101648320B (zh) * 2009-05-08 2012-06-27 宁波江丰电子材料有限公司 靶材与背板的焊接方法
CN102597301A (zh) * 2009-10-26 2012-07-18 株式会社爱发科 含钛溅射靶的制造方法
CN102597301B (zh) * 2009-10-26 2014-03-26 株式会社爱发科 含钛溅射靶的制造方法
US9837253B2 (en) 2010-06-30 2017-12-05 H.C. Starck Inc. Molybdenum containing targets for touch screen device
US9017762B2 (en) 2010-06-30 2015-04-28 H.C. Starck, Inc. Method of making molybdenum-containing targets comprising three metal elements
CN107083534B (zh) * 2010-06-30 2019-05-14 H·C·施塔克公司 含钼靶材
CN103154306A (zh) * 2010-06-30 2013-06-12 H·C·施塔克公司 含钼靶材
CN103154307A (zh) * 2010-06-30 2013-06-12 H·C·施塔克公司 含钼靶材
US9945023B2 (en) 2010-06-30 2018-04-17 H.C. Starck, Inc. Touch screen device comprising Mo-based film layer and methods thereof
CN107083534A (zh) * 2010-06-30 2017-08-22 H·C·施塔克公司 含钼靶材
US9150955B2 (en) 2010-06-30 2015-10-06 H.C. Starck Inc. Method of making molybdenum containing targets comprising molybdenum, titanium, and tantalum or chromium
CN103154307B (zh) * 2010-06-30 2015-09-09 H·C·施塔克公司 含钼靶材
CN103140600B (zh) * 2010-09-30 2015-06-10 日立金属株式会社 钼靶的制造方法
US9689067B2 (en) 2010-09-30 2017-06-27 Hitachi Metals, Ltd. Method for producing molybdenum target
CN103140600A (zh) * 2010-09-30 2013-06-05 日立金属株式会社 钼靶的制造方法
US9922808B2 (en) 2011-05-10 2018-03-20 H.C. Starck Inc. Multi-block sputtering target and associated methods and articles
US9334562B2 (en) 2011-05-10 2016-05-10 H.C. Starck Inc. Multi-block sputtering target and associated methods and articles
CN102321871A (zh) * 2011-09-19 2012-01-18 基迈克材料科技(苏州)有限公司 热等静压生产平板显示器用钼合金溅射靶材的方法
CN103014638A (zh) * 2011-09-26 2013-04-03 日立金属株式会社 MoTi靶材及其制造方法
CN103182508A (zh) * 2011-12-27 2013-07-03 北京有色金属研究总院 一种用于大电流密度m型阴极敷膜的合金靶材制备方法
CN102560383A (zh) * 2012-01-12 2012-07-11 宝鸡市科迪普有色金属加工有限公司 钼铌合金板靶材加工工艺
CN102560383B (zh) * 2012-01-12 2013-10-23 宝鸡市科迪普有色金属加工有限公司 钼铌合金板靶材加工工艺
US9334565B2 (en) 2012-05-09 2016-05-10 H.C. Starck Inc. Multi-block sputtering target with interface portions and associated methods and articles
US10643827B2 (en) 2012-05-09 2020-05-05 H.C. Starck Inc. Multi-block sputtering target with interface portions and associated methods and articles
CN103060762A (zh) * 2013-01-11 2013-04-24 江西科泰新材料有限公司 钼铌合金靶材的生产工艺
CN103205721B (zh) * 2013-03-19 2015-10-28 昆山海普电子材料有限公司 一种钛铝合金靶材的生产方法
CN103205721A (zh) * 2013-03-19 2013-07-17 昆山海普电子材料有限公司 一种钛铝合金靶材的生产方法
CN103182507A (zh) * 2013-03-19 2013-07-03 昆山海普电子材料有限公司 一种铬铝合金靶材的生产方法
CN103143710A (zh) * 2013-03-27 2013-06-12 宁夏东方钽业股份有限公司 一种钼合金靶材的制作方法
CN105683407B (zh) * 2013-10-29 2019-01-15 攀时奥地利公司 溅镀靶及其制造方法
CN105683407A (zh) * 2013-10-29 2016-06-15 攀时奥地利公司 溅镀靶及其制造方法
CN105714253B (zh) * 2016-03-10 2017-11-24 洛阳爱科麦钨钼科技股份有限公司 大尺寸、细晶钼钽合金溅射靶材的制备方法
CN105714253A (zh) * 2016-03-10 2016-06-29 洛阳爱科麦钨钼科技股份有限公司 大尺寸、细晶钼钽合金溅射靶材的制备方法
CN109790617A (zh) * 2016-09-29 2019-05-21 普兰西股份有限公司 溅镀靶材
CN106567048A (zh) * 2016-11-10 2017-04-19 洛阳科威钨钼有限公司 一种大型高纯钼合金旋转靶材的制造方法
CN111719125A (zh) * 2019-03-20 2020-09-29 日立金属株式会社 Mo合金靶材及其制造方法
CN111719126A (zh) * 2019-03-20 2020-09-29 日立金属株式会社 Mo合金靶材及其制造方法
CN112975102A (zh) * 2021-03-04 2021-06-18 宁波江丰电子材料股份有限公司 一种钴靶材与铜背板的扩散焊接方法
CN112975102B (zh) * 2021-03-04 2023-06-23 宁波江丰电子材料股份有限公司 一种钴靶材与铜背板的扩散焊接方法

Also Published As

Publication number Publication date
JP2005240160A (ja) 2005-09-08
US20050191202A1 (en) 2005-09-01
CN1314504C (zh) 2007-05-09
JP4110533B2 (ja) 2008-07-02

Similar Documents

Publication Publication Date Title
CN1314504C (zh) 制备Mo合金制靶材料的方法
KR100665243B1 (ko) 스퍼터링 표적재 및 그의 제조 방법
JP4894008B2 (ja) MoNb系焼結スパッタリングターゲット材の製造方法
CN103320756B (zh) 高纯度、高致密度、大尺寸钼合金靶材的制备方法
EP2578336A1 (en) Titanium alloy compound powder combined with copper powder, chrome powder or iron powder, titanium alloy material using said powder as raw material and production method thereof
CN111534800B (zh) 一种大尺寸钼铌平面靶材的制备方法
JPWO2004102586A1 (ja) アルミニウム系中性子吸収材及びその製造方法
CN113549780B (zh) 粉末冶金难熔多主元高熵合金及其制备方法
CN110158042B (zh) 一种钼铌合金旋转靶材及其制备方法
CN113981389B (zh) 一种复合靶材及其制造方法
JP2012237056A (ja) MoCrターゲット材の製造方法およびMoCrターゲット材
CN104416157B (zh) 钛铝硅合金靶材的制备方法
CN106834781B (zh) 一种氧化石墨烯增强镁基复合材料及其制作方法
JPH08120445A (ja) Ti−Al合金ターゲット材の製造方法
CN105887027A (zh) 一种钼铌合金溅射靶材的制备工艺
WO2019026251A1 (ja) チタン塊およびその製造方法、ならびに、チタンスラブ
JP4356071B2 (ja) スパッタリングターゲット材およびその製造方法
CN1798870A (zh) 放电表面处理用电极、放电表面处理用电极的制造方法、放电表面处理装置和放电表面处理方法
Zhang et al. The microstructure and mechanical properties of extra low interstitials (ELI) Ti-6Al-4V alloys manufactured from hydride–dehydride (HDH) powder
CN111136265B (zh) 一种钛硅合金靶材及其制造方法
CN103817334B (zh) 一种Al-Zn复合材料及其固态合金化制备方法
CN1708596A (zh) 复合材料、其制造方法及使用其的构件
CN1806967A (zh) 用废硬质合金破碎料生产高钴、大尺寸硬质合金的方法
CN1133753C (zh) 以气喷粉末制作铝合金溅镀靶材的方法
JP3652993B2 (ja) 焼結合金用球状水素化チタン粉末とその粉末の製造方法並びに焼結合金の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant