CN1478439A - 复合压电体 - Google Patents

复合压电体 Download PDF

Info

Publication number
CN1478439A
CN1478439A CNA031475477A CN03147547A CN1478439A CN 1478439 A CN1478439 A CN 1478439A CN A031475477 A CNA031475477 A CN A031475477A CN 03147547 A CN03147547 A CN 03147547A CN 1478439 A CN1478439 A CN 1478439A
Authority
CN
China
Prior art keywords
piezoelectrics
piezoelectric body
composite piezoelectric
key element
key elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA031475477A
Other languages
English (en)
Other versions
CN100376214C (zh
Inventor
���֪��
永原英知
杉内刚彦
桥本雅彦
浅井胜彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of CN1478439A publication Critical patent/CN1478439A/zh
Application granted granted Critical
Publication of CN100376214C publication Critical patent/CN100376214C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • B06B1/0622Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements on one surface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/09Forming piezoelectric or electrostrictive materials
    • H10N30/092Forming composite materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/852Composite materials, e.g. having 1-3 or 2-2 type connectivity

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Manufacturing & Machinery (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

一种复合压电体(1),具有排列配置的多个压电体要素(2)、位于多个压电体要素(2)之间的电介质部分(树脂)(3),多个压电体要素(2)中的至少1个压电体要素(2),具有与其它压电体要素(2)的共振频率不同的共振频率地,相应其在面内的不同位置来确定各压电体要素(2)的形状。从而在具有将多个压电体要素排列配置在电介质中的结构的复合压电体中,尽管厚度均匀,但也可以在宽频带内进行超声波的收发。

Description

复合压电体
技术领域
本发明涉及一种在超声波探头等中使用的复合压电体,特别涉及在面内具有共振频率分布的复合压电体及其制造方法,以及采用该复合压电体的、可以在短轴方向上实施开口控制的超声波探头以及超声波诊断装置。
背景技术
以往,作为可以在超声波探头的短轴方向上实施开口控制、具有宽频带的共振频率特性的超声波探头,例如已知在特开平7-107595号公报中有记载。
图16所示的现有技术的超声波探头100,包括沿短轴方向厚度增加的压电体101。在压电体101的声波辐射面侧设置有匹配层102。这样由压电体101和匹配层102构成的谐振子,沿图中的箭头所示方位的方向上排列配置多个,由背面负荷材103所支承。
各压电体101,在短轴方向的中央部比较薄,越接近两端越厚。通过采用这种结构的压电体,谐振子在短轴方向的中央部,可以收发高频的超声波,而在周边部可以收发低频的超声波。其结果,超声波谐振子的共振频率特性被宽带化。
另外,在图16所示的超声波谐振子中,短轴方向的开口尺寸对于高频的超声波较小,对于低频的超声波较宽。为此,从近距离到远距离,都可以形成细小的超声波束,从近距离到远距离都可以获得高分辨率。
但是,在图16所示的现有技术的超声波探头中,需要将压电体的表面加工成凹面形状。另外,还需要在压电体的凹面上形成不同曲率半径的匹配层。制造这样的超声波探头是非常困难的事情,即使可以制造,在成品率、成本上讲也是不现实的。
发明内容
本发明正是针对上述课题的发明,其目的在于提供一种尽管是厚度均匀的压电体也可以在宽带范围内进行超声波的收发的复合压电体及其制造方法。
本发明的另一目的在于提供一种包括这样的复合压电体的超声波探头。
本发明的复合压电体,是具有排列配置的多个压电体要素、位于上述多个压电体要素之间的电介质部分的复合压电体,在上述多个压电体要素的至少1个压电体要素中和超声波辐射方向垂直的截面面积,沿上述超声波辐射方向变化。
在优选实施例中,上述至少1个压电体要素,具有和其它压电体要素的共振频率不同的共振频率。
在优选实施例中,上述至多个压电体要素的共振频率,具有其最小值和最大值之间的差在平均值的10%以上的分布。
在优选实施例中,上述多个压电体要素的每一个,在和上述超声波辐射方向垂直的方向上的尺寸沿上述超声波辐射方向具有恒定的大小。
在优选实施例中,上述多个压电体要素的每一个,沿上述超声波辐射方向具有恒定的厚度。
在优选实施例中,上述多个压电体要素,沿和上述超声波辐射方向垂直的面排列配置成2维,上述多个压电体要素的共振频率,在上述面内根据位置的不同而变化。
在优选实施例中,上述多个压电体要素,具有大致恒定的高度。
在优选实施例中,与在上述压电体要素的和声波辐射方向垂直的面的中央部中上述压电体要素的共振频率相比,在上述面的周边部中上述压电体要素的共振频率要低一些。
在优选实施例中,上述多个压电体要素中的至少1个压电体要素的和声波辐射方向垂直的截面面积,与上述压电体要素的中央相比,在上述压电体要素的端面上要大一些。
在优选实施例中,上述多个压电体要素中的至少1个压电体要素的和声波辐射方向垂直的截面面积,与上述压电体要素的中央相比,在上述压电体要素的端面上要小一些。
在优选实施例中,上述多个压电体要素的每一个,具有沿上述声波辐射方向延伸的一对柱状部分,在其中央连接上述柱状部分的架桥部分的厚度在上述压电体要素的和声波辐射方向垂直的面内变化。
在优选实施例中,上述多个压电体要素的每一个,在中央具有开口部,上述开口部的大小在上述压电体要素的和声波辐射方向垂直的面内变化。
在优选实施例中,按照上述多个压电体要素的共振频率具有给定的面内分布那样地,选择上述多个压电体要素的形状。
在优选实施例中,相对于上述多个压电体要素的和声波辐射方向垂直的截面的最小尺寸S,上述压电体要素的声波反射方向的尺寸的比率在5以上。
在优选实施例中,上述电介质部分由树脂构成。
在优选实施例中,上述树脂的弹性系数在上述压电体要素的和声波辐射方向垂直的面内具有按照位置的给定分布。
本发明的单位复合片,是具有树脂层、和排列配置在上述树脂层上的多个压电体要素的单位复合片,上述多个压电体要素,上述树脂层中具有按照位置的不同形状。
本发明的复合片叠层体,具有:将各自具有树脂层、和排列配置在上述树脂层上的多个压电体要素的单位复合片层叠、并通过用上述树脂层夹持上述压电体要素而使配置关系固定的状态。包含在各单位复合片内的上述多个压电体要素,根据在上述树脂层上的位置具有不同的形状。
本发明的复合压电体,是将复合片叠层体按照横切上述压电体要素的声波辐射方向的方式切断而制成,所述复合片叠层体具有在将具有树脂层、和排列配置在上述树脂层上的多个压电体要素的单位复合片层叠、并通过用上述树脂层夹持上述压电体要素而使配置关系固定的状态,包含在各单位复合片内的上述多个压电体要素,根据在上述树脂层上的位置具有不同的形状,。
在优选实施例中,上述多个压电体要素的周围由树脂所包围。
在优选实施例中,上述树脂是通过使单位复合片的树脂层的一部分流动、固化后形成的。
本发明的超声波探头,包括是具有排列配置的多个压电体要素、位于上述多个压电体要素之间的电介质部分的复合压电体,在上述多个压电体要素的至少1个压电体要素中和超声波辐射方向垂直的截面面积沿上述超声波辐射方向变化的复合压电体、在上述复合压电体上形成的一对电极。
在优选实施例中,在上述复合压电体上形成匹配成,上述匹配层的厚度,沿上述复合压电体中的压电体要素的共振频率变化的方向变化。
本发明的超声波检查装置,是包括超声波探头、向上述超声波探头传送信号的发送部、接收从上述超声波探头输出的电信号的接收部、的超声波检查装置,上述超声波探头包括是具有排列配置的多个压电体要素、位于上述多个压电体要素之间的电介质部分的复合压电体,在上述多个压电体要素的至少1个压电体要素中和超声波辐射方向垂直的截面面积沿上述超声波辐射方向变化的复合压电体、在上述复合压电体上形成的一对电极。
本发明的单位复合片的制造方法,包括(a)准备在板状压电体的一表面上形成了树脂层的复合板的工艺、(b)对于上述复合板的上述压电体,通过不使上述树脂层完全切断而形成多个槽,从上述板状压电体形成多个压电体要素的工艺,上述工艺(b),对于上述多个压电体要素,根据上述树脂层上的位置使其具有不同的形状。
本发明的单位复合片的制造方法,包括(a)通过粘接片将板状压电体临时固定在基板上的工艺、(b)通过在上述板状压电体上形成多个槽,从上述板状压电体中形成多个细线状压电体的工艺、(c)将固定在上述基板上的多个上述细线状压电体复制在树脂层上的工艺,上述工艺(b),对于上述多个压电体要素,根据上述树脂层上的位置使其具有不同的形状。
在优选实施例中,上述多个槽通过喷沙加工形成。
本发明的复合压电体的制造方法,包括(a)准备好多张是具有树脂层、和配置在上述树脂层上的多个压电体要素的单位复合片、上述多个压电体要素在上述树脂层中具有按照位置的不同形状的单位复合片、(b)对多张上述单位复合片叠层的工艺、(c)将叠层的多张上述单位复合片一体化的工艺、
在优选实施例中,还包括对于上述一体化后的多张单位复合片,按照横切上述细线状压电体那样地切断的工艺。
附图说明
图1表示在本发明实施例1中的复合压电体的立体图。
图2表示在实施例1中的复合压电体的A-A′线剖视图。
图3表示在实施例1中的复合压电体的B-B′线剖视图。
图4表示本发明的超声波探头以及超声波诊断装置的构成例的剖视图。
图5(a)~(d)表示有关实施例2的、依据本发明的复合压电体的各种构成的剖视图。
图6表示在本发明实施例3中的复合压电体的剖视图。
图7表示本发明的复合压电体的制造工艺图。
图8表示本发明的复合压电体的制造工艺图。
图9(a)以及(b)表示本发明的复合压电体的制造工艺图。
图10表示本发明的复合压电体的制造工艺图。
图11表示本发明的复合压电体的制造工艺图。
图12(a)~(c)表示本发明的复合压电体的另一制造工艺图。
图13表示本发明的复合压电体的另一构成例的剖视图。
图14表示本发明的复合压电体的又一构成例的剖视图。
图15(a)以及(b)表示本发明的复合压电体的另一结构图。
图16表示现有技术的超声波探头的立体图。
图中:1-复合压电体、2-压电体要素(柱状压电体)、3-树脂、4-声音匹配层、5-背面负荷材、6-超声波探头、7-超声波诊断装置本体、8-发送部、9-接收部、10-系统控制部、11-图像构成部、12-图像显示部、13-板状压电体、14-树脂层、15-复合板、16-加工用掩模、17-单位复合片、18-复合压电体块、19-复合压电体、20-粘接片、21-基板、100-超声波探头、101-压电体、102-匹配层、103-背面负荷材。
具体实施方式
以下参照附图说明本发明的实施例。
(实施例1)
图1表示依据本发明的复合压电体的第1实施例。在本实施例的复合压电体1中,在图1所示坐标XY面内,将多个压电体要素2排列配置2维形状。压电体要素2之间充电树脂3,将各压电体要素2的相互位置关系固定,构成一体化的复合压电体1。
在本实施例中的各压电体要素2,具有以Z方向为长轴方向(超声波辐射方向)的大致柱状的形状,通过在Z方向上伸缩,可以在Z方向上辐射超声波。压电体要素2的两端面,位于复合压电体1的上面以及下面。复合压电体1的上面以及下面,与Z方向垂直并且与XY面平行。在本说明书中,将图1所示复合压电体1的上面称作为「超声波辐射面」。
此外,在图1中,虽然按照压电体要素2的两面呈露出那样记叙,但在复合压电体1的上面以及下面,分别形成有电极(图中未画出),各压电体要素2在Z轴方向上被极化。
在本实施例的复合压电体1中采用的压电体要素的材料,只要具有压电特性即可,并没有特别限制,适合采用压电陶瓷以及压电单晶体等。作为压电陶瓷,采用钛酸钴酸铅、钛酸铅、钛酸钡等。另外,作为压电单晶体,采用石英、铌酸锂、钛酸钴酸铅单晶体等。在本实施例中,作为压电体,采用压电性能高,加工比较容易的钛酸钴酸铅(PZT)陶瓷。
构成复合压电体1的树脂,只要是能固定各压电体要素2的配置关系、使其一体化的材料即可,可以采用环氧系树脂、丙稀酸系树脂等。在本实施例中,考虑到与压电陶瓷的粘接性,采用环氧树脂。
在与复合压电体1的Z方向垂直的两端面上设置的电极,优选采用电阻比较低,密接性优异的材料形成。作为电极材料,可以采用金、银、镍等一般金属。另外,电极的形成方法,可以采用电镀、溅射、蒸镀等方法。在本实施例中,通过无电解电镀法形成镍和金的2层金属膜。可以设定镀镍层的厚度为2μm,镀金层的厚度为0.1μm。
以下详细更说明复合压电体1的结构。
图2表示图1的复合压电体的A-A′线的剖面图。如图2所示,构成复合压电体1的多个压电体要素中,沿Y方向配置的压电体要素,分别具有相同的形状。为此,压电体要素2的共振频率特性沿Y方向恒定,沿Y方向复合压电体中的共振频率不变化。
图3表示图1的复合压电体的B-B′线的剖视图。如图3所示,构成复合压电体1的多个压电体要素2中,沿X方向配置的压电体要素2根据位置(X坐标)具有不同的形状,各压电体要素2的共振频率特性沿X方向变化(具有分布)。
以下详细说明压电体要素2的结构。
在本实施例中,在Z方向测量的各压电体要素2的长度L,即复合压电体1的厚度设定为约0.25mm(250μm)。图3所示的压电体要素2中,位于X方向中央部的压电体要素2,在Z方向呈一样的形状(笔直的柱状形状)。该压电体要素2在图3中的宽度(沿X方向所测量的尺寸S)约为0.05mm(50μm)。因此,相对于该压电体要素2的尺寸(最小尺寸)S,长度(高度)L的比率(L/S:长宽比)约为5。
这样的压电体要素2在Z方向上的共振频率(厚度方向的共振频率)约为5.7MHz,反共振频率为7.7MHz。另外,这种谐振形式的电-机耦合系数约为0.7。
另一方面,在图3所示的压电体要素2中,位于X方向周边部的压电体要素2,具有和字母的「I」字相似的截面形状。I型结构的压电体要素2,具有各压电体要素2所共同具有的一定宽度的中央部分、和连接该中央部分的上端部以及下端部。I型结构的压电体要素2的中央部在Z方向上的尺寸为0.15mm,上端部在Z方向上的尺寸为0.05mm,下端部在Z方向上的尺寸为0.05mm。I型结构的压电体要素2的上端部以及下端部在X方向上的尺寸,从图3表明,沿X方向变化。位于图3的最端部位置的压电体要素2中上端部以及下端部在X方向上的尺寸为0.1mm。
依据具有这种形状的压电体要素2,由于上端部以及下端部发挥重锤的功效,上端部以及下端部在X方向上的尺寸越大,在Z方向的共振频率越低。X方向尺寸为0.1mmm的上端部以及下端部的上述压电体要素2,在其Z方向上的共振频率(厚度方向的共振频率)约为3.1MHz。另外,反共振频率为4.1MHz,电-机耦合系数约为0.68。
处在复合压电体1的在X方向的中央部和端部之间的压电体要素2的共振频率,通过使上端部以及下端部在X方向上的尺寸在0.05~0.10范围内调节,可以在3.1~5.7MHz的范围内设定值。
此外,在沿X方向配置的1列压电体要素2中,各压电体要素2的Y方向尺寸相同。另外,在各个压电体要素2中,其Y方向尺寸,沿Z方向也不变化。换言之,将各个压电体要素2投影在Z-Y平面上的形状实际上是矩形,并且与压电体要素2在X方向上的位置无关,都相同。并且,该投影面的形状,在本实施例中,与压电体要素2在Y方向上的位置也无关,都相同(图2)。
在图3中,为了简化,虽然只画出了8个压电体要素2,但实际上,当复合压电体1的X方向尺寸为12mm,压电体要素2的配置间距为0.15mm时,在X方向上配置80个压电体要素2。
在图3中,表示具有4种形状的压电体要素2被分成2组的情况。压电体要素2,虽然以通过复合压电体1的中心部的轴(和Z方向平行的轴)对称配置,但本发明并不限定于这样的结构。包含在与X方向平行配置的多个压电体要素2中的压电体要素2的形状种类,也可以是5种以上。另外,具有相同形状的压电体要素2,也可以沿X方向连续配置2个以上。即,根据X方向的位置(X坐标),使压电体要素2的形状逐渐变化,从中央到周边部可以按每一个进行变化地配置,也可以按数个相同形状进行变化地配置压电体要素。
在本实施例中,共振频率虽然设置成在复合压电体的中央最高,而随着从中央朝周边部沿X方向移动逐渐降低,但本发明并不限定于此。根据用途,可以任意设定共振频率的分布。
以下参照图4说明采用上述复合压电体1的超声波探头以及超声波诊断装置。
图4表示超声波探头以及超声波诊断装置的构成图。在图4中,该超声波探头6,包括复合压电体1、在复合压电体1的超声波辐射面上形成的声音匹配层4、设置在复合压电体1的背面上的背面负荷材5。复合压电体1,具有图1到图3的构成。
声音匹配层4,是为了有效传输在复合压电体1中产生的超声波而设置的,图4的声音匹配层4,具有与其正下方的复合压电体1的共振频率对应的厚度。声音匹配层4,应满足以下说明的有关声阻抗以及厚度的2个条件。
声阻抗由音速和密度之积确定。声音匹配层4的声阻抗Zm,在假定复合压电体1的声阻抗为Zp,声波的传播介质的人体等的声阻抗为Zs时,优选满足以下(式1)。
Zm=(Zp×Zs)(1/2)         ……(1)
声音匹配层4的厚度,优选设定成收发的超声波的1/4波长。
通过将声音匹配层4的声阻抗Zm以及声音匹配层4的厚度设定成最佳值,可以减小在超声波探头6和传输介质的人体等之间的界面上的声波反射,可以高灵敏度进行超声波探测。
在本实施例中,声音匹配层4由环氧树脂形成。环氧树脂的音速由于约为2500m/s,其厚度根据复合压电体1收发的超声波的共振频率进行调整,在中央部约为0.4mm,在周边部约为0.8mm。
设置在复合压电体1的背面侧上的背面负荷材5,具有对在复合压电体1产生的、在和声波辐射方向相反的方向上传播的超声波衰减的作用。背面负荷材5,防止超声波从背面侧反射,有助于加宽超声波探头6的共振频率特性的频带。即,通过设置背面负荷材5,可以收发脉冲宽度短的超声波脉冲,可以实现高分辨率的超声波探测。在本实施例中,采用将铁粉分散后的橡胶构成的背面负荷材5。
依据本实施例的超声波探头6,复合压电体1的厚度均匀的情况下,在中央部可以收发高频的超声波,而在周边部可以收发低频的超声波,可以在宽共振频率带域内动作。如图1到图3所示,这是因为复合压电体1是由共振频率不同的压电体要素2配置成2维结构所构成。
对于在通常的平板状压电陶瓷构成的压电体上设置均匀厚度的声音匹配层的超声波探头,当共振频率设置成4MHz时,相对于4MHz的共振频率,其值达到-6dB的值时的共振频率被规定为带域,大约为2.8~5.2MHz,带宽率为60%的左右。而在本实施例的超声波探头中,在3.1~5.7MHz中,具有60%左右的带宽率。为此,作为超声波探头整体,就具有1.9~6.9MHz的宽频带。将中心共振频率设定成1.9~6.9MHz的中央值的3.4MHz,计算带宽率,则具有150%左右的极宽的频率带宽率。
超声波探头6,与图4所示超声波诊断装置本体7连接使用。超声波诊断装置本体7,包括将超声波信号传送给超声波探头6的发送部8,接收由超声波探头输出的电压信号的接收部9、进行有关超声波信号的收发的各种控制的系统控制部10、根据所获得的超声波信号形成图像的图像形成部11、以及根据图像形成部11所输出的图像信号显示图像的图像显示部12。
本实施例的超声波诊断装置1如下动作。
通过由发送部将所产生的驱动脉冲施加在设置在复合压电体1的两面上的电极上,使复合压电体1在厚度方向上变形产生超声波。所产生的超声波,通过声音匹配层4,向被测体的人体等(图中未画出)传输。在人体中散射、反射后的超声波最终返回到复合压电体1。由复合压电体1接收到的反射超声波,转变成电信号,通过接收电路9后被图像化,在图像显示部12中显示。
由于刚施加驱动脉冲后所接收的信号,是近距离反射的信号,所以利用滤波器只选择高频信号进行图像化。这样,可以构成近距离超声波波束聚焦后的高分辨率的图像。
在经过给定时间后接收到的信号,是远距离信号,利用滤波器接收低频信号后进行图像化,可以构成远距离超声波波束聚焦后的高分辨率的图像。这样,可以形成使超声波波束在从近距离到远距离的各点聚焦的图像。
本实施例的复合压电体1,由于具有均匀厚度,所以容易在其上面形成声音匹配层。另外,由于可以进行从低频到高频的超声波的收发,具有宽频带,所以可以进行短脉冲的超声波的收发,并且可以提高深度方向的分辨率。
依据本实施例的复合压电体1,由于在其中央部的狭小开口区域内进行高频的收发,而在周边部的宽大开口区域内进行低频超声波的收发,开口的大小可以根据超声波的共振频率进行控制。这样,可以在从近距离到远距离的宽范围内,形成细超声波波束,还可以提高方位方向的分辨率。
(实施例2)
参照图5(a)到(d)说明本发明的第2实施例。本实施例和第1实施例的不同点在于,压电体要素2的每一个的形状有差异。除了这一点以外,其余和实施例1的构成相同。
图5(a)到(d),相当于图2的剖视图。图中示出了5种复合压电体的截面。各复合压电体2,由于在Y方向具有均匀的结构,沿Y方向在任意位置截断的截面,都和图5(a)到(d)所示的截面相同。
在图5(a)的复合压电体1中,压电体要素2的与长轴方向(Z方向)垂直的截面面积,具有压电体要素2的中央部要比压电体要素的两端部较小的形状。另外,在压电体要素2的中央和长轴方向垂直的截面面积,沿X方向变化。沿X方向配置的多个压电体要素2中,位于复合压电体1的中央部的压电体要素2的共振频率,与位于复合压电体1的周边部的压电体要素2的共振频率相比较,设计成要高一些。
在图5(b)的复合压电体1中,各压电体要素2具有一对柱状部分,在一对柱状部分之间设置将其连接的渡桥部。压电体要素2的渡桥部的厚度,沿X方向变化。具体讲,压电体要素2的渡桥部,在X方向的中央部上相对厚一些,而越接近X方向的周边部越薄。通过采用这样的结构,可以使复合压电体的面内中央部上的共振频率相对高一些。
在图5(c)的复合压电体1中,各压电体要素2在中央具有开口部,该开口部的大小在x方向上变化。该结构,和图5(b)的结构相反,开口部越小的两端部的压电体要素越重,其共振频率降低。
在图5(d)的复合压电体1中,压电体要素2的和长轴方向垂直的截面面积,沿X方向保持一样,但在面内处在不同的位置具有不同的值。具体讲,越接近复合压电体的周边部,压电体要素2越细。采用这样的结构,也可以在复合压电体的中央部上进行高频超声波的收发,而在端部上进行低频超声波的收发。
(实施例3)
在本实施例中,其特征在于:在X方向采用不同的材料形成电介质部分的材料。图6是与图3对应的剖视图。
如图6所示,在X方向的中央部,采用弹性系数高的硬材料形成电介质部分,而在周边部采用弹性系数低的软材料形成电介质部分。
在本实施例中,由于中央部的压电体要素的周围比较硬,实际上加快了压电体要素的音速,提高了共振频率。另一方面,由于周边部的压电体要素的周围比较软,该压电体要素的共振频率,当压电体要素接近于自由状态的情况下,与位于中央的压电体要素的共振频率相比变低。
作为弹性系数相对高的电介质,可以使用在环氧树脂中混入了陶瓷填料的材料等。作为在周边部采用的电介质材料,可以适当选择环氧树脂单体,硅系树脂、橡胶等使用。
依据本实施例的复合压电体,和上述实施例同样,可以实现宽带化和高分辨率化。
(实施例4)
在本实施例中,说明制造实施例1~3的复合压电体的方法。
首先,参照图7。图7表示在板状压电体13的一表面上粘贴了树脂层14后的复合板15。板状压电体13,例如由钛酸钴酸铅(PZT)形成。在本实施例中所采用的板状压电体13的厚度在0.05mm左右。具有这样厚度的压电陶瓷,通过对价格低的陶瓷生片(厚度在0.07mm左右)烧结,容易并且价廉制作板状PZT陶瓷。陶瓷生片,是由陶瓷粉和树脂构成的烧结前的薄片,采用刮浆法等方法制作,形成薄层或者层状结构的压电体(叠层基板等)比较好。板状压电体13,虽然也可以通过切割块状的陶瓷制作,但该方法需要切断、研磨等成本高的工艺。对此,利用陶瓷生片制作板状压电体的方法,由于不需要切断、研磨等工艺,从降低成本上看是有利的。
通过对陶瓷生片烧结制作板状压电体13时,按照降低设备成本的观点,一般采用将多个陶瓷生片重叠后同时进行烧结的方法。这时,为了不使上下陶瓷生片在烧结时粘接,在各陶瓷生片之间撒上称为剥离粉的MgO等粉后进行重叠。烧结后的板状压电体13,为了去除剥离粉,将每张洗净。板状压电体13的尺寸在15mm见方左右。为了容易进行把持等处理,其厚度设定在30μm的程度以上,需要确保有足够的强度。对于厚度达不到30μm程度的板状压电体13,由于其处理困难,在把持中容易出现断裂或者破损,降低了制造成品率,有可能增加成本。
作为树脂层14,环氧系树脂为半固化状态的被形成片状的材料在市场上有销售,采用这样的材料即可。将这样的树脂片构成的树脂层14配置在板状压电体13上,在加压状态下提高温度使其固化,可以制作成复合板14。具体讲,使在单面上粘贴了剥离薄片(film)的环氧系半固化树脂(树脂层14)与板状压电体13重叠,利用活塞状的模具,使其叠层120张,然后,在将板状压电体13和树脂层14的叠层物放入到模具中的状态下加压。例如,在120℃、0.1Torr以下的大气环境中,施加约1MPa的压力,进行5分钟加压即可。然后,返回到大气环境,解除压力后,在150℃下保持1小时。这样,使树脂层14固化后,将叠层物从模具中取出,通过剥开剥离薄片,可以获得120张复合板14。
作为树脂层14,也可以采用旋转喷涂法等将液状树脂涂敷在板状压电体13上,使其固化后形成树脂层14,来替代采用树脂片。
此外,在压电体13的单面上粘贴树脂层14后,由于树脂层14对比较容易破损的薄板状压电体13可以起到保护作用,压电体13变得容易处理。
在本实施例中采用的压电体13以及树脂层14,均是在X方向的尺寸为15mm,在Y方向的尺寸为15mm。另外,压电体13以及树脂层14的Z方向,分别为0.05mm以及0.025mm。因此,粘贴后所获得的复合板的厚度为0.075mm。
在图7的复合板15的板状压电体13的露出表面上,如图8所示,形成加工用的掩模16。在本实施例中所采用的掩模16,具有制作实施例1的复合压电体的图案。即,掩模16,具有图3所示压电体要素2的截面沿Z方向重复连续配置的图案。在制作具有图5(a)到(d)的构成的复合压电体时,也可以采用分别具有图5(a)到(d)的截面重复连续配置的图案的掩模。此外,图8的掩模所形成的板状压电体13的露出面,和与Y方向垂直的XZ平面平行,最终制作的复合压电体的振动方向为Z方向。
掩模16,在X方向的中央部,包含X方向尺寸(宽度)为0.05mm的线状图案要素。在X方向的两端部上,在与中央部相同宽度的线要素的基础上,沿Z方向以相距0.15mm的间隔附加0.10mm×0.2mm的矩形凸部。
在X方向的中央部与X方向的两端部之间的区域,配置具有与X方向的位置对应的尺寸的0.05~0.10mm的矩形凸部。
掩模16,通过将感光性树脂片粘贴在板状压电体13上后,采用光掩模对树脂片进行曝光,显影后形成。在光掩模上,形成规定图8所示图案的遮光图案。感光性树脂片的曝光、显影,可以采用周知的光刻技术进行。通过改变光掩模图案,可以任意设定掩模16的图案以及形状。
然后,对形成了复合板15的加工用掩模16的面,进行喷沙加工。喷沙加工是指将细微粒子(铝或者钻石等研磨粒子)与压缩空气一起喷出,通过对被加工体冲击破坏进行加工的一种处理方法。
采用喷沙加工,可以对树脂等软物质不破坏,而对陶瓷等硬材料选择性脆性破坏。因此,通过采用树脂制作的加工用掩模16进行喷沙加工,在板状压电体13的表面中,可以只对没有被加工用掩模所覆盖的区域进行选择性削除。
随着喷沙加工的进行,设置在板状压电体13的背面测上的树脂层14虽然露出,但和加工用掩模16同样,树脂层14基本上不被破坏。这样,在本实施例中,如图9(a)所示,可以利用1张板状压电体13形成多个压电体要素。图9虽然画出了8个压电体要素2,实际上,利用1张板状压电体13可以形成数百个压电体要素2。
采用上述喷沙加工,虽然可以对板状压电体13的广阔面一次性地进行高速并且精密加工,但喷沙加工,在相对于加工用掩模16的开口部宽度的深度之间的比率(纵横比)比较大时成为不合适的加工方法。但是,在本实施例中,采用喷沙加工形成的切断槽的深度方向,与要形成的压电体要素的长轴方向不是平行,而是垂直。因此,假定通过加工形成切断槽的深度为D,切断槽的宽度为W时,在本实施例中比率D/W在1左右。该比率D/W规定了切断槽的纵横比,虽然它与压电体的材质有关,但优选设定在1~2左右的范围内。特别是在需要微细加工时,优选将比率D/W设定在1以下。
在本实施例中,如上所述,由于从与柱状的压电体要素2的长轴方向(Z方向)垂直的方向进行压电体的加工,「压电体要素2的纵横比」即使具有超过5的大小,也可以使切断槽的纵横比减小。为此,可以容易形成具有在现有技术中认为不可能的纵横比的柱状压电体。另外,在Z方向上使中央部加粗,或者变细等,可以形成在现有技术中认为不可能的任意结构。
加工后,通过剥离掩模16,如图9(b)所示,可以获得具有由树脂层14支承的多个压电体要素2的构成的单位复合片17。此外,只要是可以将板状压电体13加工成给定的形状,并不限定于喷沙加工,也可以采用超声波加工、激光加工。
然后,准备300张利用上述方法形成的单位复合片,进行叠层一体化工艺。此外,采用喷沙加工法,可以一次进行大量的加工,加工上述尺寸的复合板所需要的时间在2小时以下,非常短。为此可以缩短单位复合片的制造时间,降低成本。
然后,如图10所示在其间介入与构成单位复合片的树脂层14不同的树脂层14′,叠层单位复合片。在图10中,为了简化,虽然只画出了5张单位复合片17叠层时的情况,实际上是将300张单位复合片17叠层。在叠层时,使各层压电体实际上相互平行进行配置,在最上部配置具有和复合板相同地X、Y方向的尺寸的、厚度为0.025mm的环氧系固化树脂片。
对这样形成的叠层体一边施加压力,一边加热使树脂固化,进行一体化后,可以获得单位复合片的叠层体的复合压电体块18。具体讲,叠层体,在120℃、0.1Torr以下的环境中,在施加0.1MPa左右的压力下放置10分钟后,返回到大气压,在不施加压力的情况下,以180℃加热1小时。这样,使树脂层14、14′固化,使叠层体一体化,可以获得复合片叠层体的复合压电体块18。所获得的复合压电体块18,具有X方向尺寸为15mm、Y方向尺寸为30mm、Z方向尺寸为15mm的立方体形状,在1个复合压电体块18中,有30,000个压电体要素2在树脂的支承下平行保持。
然后,如图11所示,将复合压电体块18,沿和Z方向垂直的面切断分离成多个复合压电体19。这时,将切断间距设定成0.35mm,切断余量设定成0.1mm,将切断的开始位置设定在成为压电体的粗径化的中央部分。
在这样的切断条件下,从X方向尺寸为15mm、Y方向尺寸为30mm、Z方向尺寸为15mm的复合压电体块,可以获得42张X方向尺寸为15mm、Y方向尺寸为30mm、Z方向尺寸为0.25mm的复合压电体19。此外,在图11中,为了简化,只画出了4张复合压电体19。
然后,在所获得的复合压电体19的上下面(和Z方向垂直的两端面)上形成电极,通过进行极化处理,可以获得压电特性所示的复合压电体。
依据本发明的制造方法,可以形成具有复杂形状的压电体的柱的复合压电体,可以容易形成具有共振频率分别的复合压电体。另外,由于将薄板状的压电体粘贴在树脂层上后进行加工,不需要进行压电体的配置或者单独处理,可以在短时间内进行成品率高的制造。
(实施例5)
在图11所示复合压电体中,配置在各单位复合片上的压电体要素2之间存在空隙部分,在该空隙部分有时会充满空气。由于空气也是电介质,作为复合压电体作用,该空隙部分没有必要采用其它电介质材料填充。但是,如果在空隙部分中埋入可固化的电介质材料,使其固化,可以提高复合压电体的机械强度,另外,因可以适当调整复合压电体的振动模式所以是希望的。
在本实施例中,首先,准备和实施例4相同的制造方法所制造的压电体块。然后,在压电体块中的压电体要素2之间所形成的空隙部分,通过填充作为电介质材料的树脂,提高复合压电体的机械强度。然后,和上述各实施例同样,进行复合压电体10的切断工艺、电极形成工艺、极化处理。
依据本实施例,不容易出现切断等工艺中的破损,提高成品率,进一步降低制造成本。另外,如果在空隙部分埋入树脂,形成了电极的2个面不会通过空隙部分连通,即使采用无电解电镀形成电极,也可以容易防止2个电极的短路。为此,可以对大量复合压电体一次形成电极,更进一步降低成本。
(实施例6)
在本实施例中,如图12(a)所示,通过实施采用粘接片20将板状压电体13临时固定在玻璃制成的基板21上,形成单位复合片。作为粘接片20可以采用热剥离片。但是,该粘接片20,并不限定于热剥离片,只要可以保持板状压电体13、在压电体加工时不会从粘接片上使板状压电体剥离、并且在加工后在不破坏压电体的情况下采用某种方式能将其剥离即可。
然后,如图12(b)所示,通过喷沙对板状压电体13进行加工,形成所希望的形状的压电体要素2。在喷沙加工之前,在压电体13上形成在实施例4中采用的掩模(图中未画出)。这样,如图12(b)所示,可以获得利用粘接片20将压电体要素2的列临时固定在基板21上的结构。
然后,如图12(c)所示,使临时固定在基板21上的压电体要素2与片状的树脂层14对向,对该树脂层14同时施加热和压力。这样,将压电体要素2从粘接片20上剥离下来同时向树脂层14粘接。通过以上的工艺,可以获得单位复合片。
这以后的工艺,采用和上述方法相同的方法进行,最后,制作成图1所示的复合压电体。
本实施例的单位复合片,由于没有经过树脂层完全固化的热过程,仍然保持粘接力,在构成叠层体时,不需要介入新的粘接片。另外,通过施加比较高的压力,在叠层工艺中,使单位复合片的一部分流动、固化,可以向压电体的空间(空隙部)填充树脂。
(实施例7)
有关以上实施例的复合压电体1,均具有均匀的厚度,只是在X方向上具有使共振频率阶梯状变化的结构。但是,本发明的复合压电体,并不限定于上述的构成。例如,也可以使与X方向垂直的截面和与Y方向垂直的截面同样,如图3所示具有按照与位置对应使压电体要素的共振频率变化的结构。
在图3和图5所示的构成中,虽然具有在中央部共振频率最高,而周边部比较低的共振频率分布,但共振频率分别并不限定于此。图13表示沿X方向(或者Y方向),共振频率周期性变化的构成。共振频率的分布图案,根据复合压电体的用途可以任意设定。
图14表示复合压电体不具有与Z方向垂直的对称面的构成。依据参照图9说明的制造方法,由于可以自由设计掩模16的形状,可以容易形成图14所示的结构的压电体要素。
即使配置图14所示那样结构的压电体要素,也可以获得所希望的共振频率分布。
此外,复合压电体1,也没有不要一定具有均匀的厚度。通过改变压电体要素的形状,复合压电体的厚度在面内保持恒定的情况下,可以使所发射的声波的共振频率具有任意的分布,按照其目的,也可以使复合压电体的厚度根据不同位置变化。例如,对于使超声波聚焦或者发散的目的,也可以制作成具有图15(a)或者图15(b)所示那样的结构的复合压电体1。这时,通过使图中未画出的压电体要素的形状和电介质部分的弹性系数等根据不同位置适当变化,而使共振频率变化。
依据本发明,在具有将多个压电体要素配置在电介质中的结构的复合压电体中,压电体要素由于根据位置的不同具有不同的形状,在复合压电体的声波辐射面内,可以使共振频率不同。依据本发明的复合压电体,尽管是平板状的复合压电体,也可以在宽频带范围内进行超声波的收发。另外,通过使所收发的超声波的共振频率在复合压电体的面内具有给定的分布,可以提高超声波探头的分辨率。

Claims (29)

1.一种复合压电体,具有排列配置的多个压电体要素、和位于所述多个压电体要素之间的电介质部分,其特征在于:
在所述多个压电体要素的至少1个压电体要素中,与超声波辐射方向垂直的截面面积,沿所述超声波辐射方向变化。
2.根据权利要求1所述的复合压电体,其特征在于:所述至少1个压电体要素,具有和其它压电体要素的共振频率不同的共振频率。
3.根据权利要求1所述的复合压电体,其特征在于:所述多个压电体要素的共振频率,具有其最小值和最大值之间的差在平均值的10%以上的分布。
4.根据权利要求1所述的复合压电体,其特征在于:所述多个压电体要素的每一个,在与所述超声波辐射方向垂直的方向上的尺寸沿所述超声波辐射方向具有恒定的大小。
5.根据权利要求3所述的复合压电体,其特征在于:所述多个压电体要素的每一个,沿所述超声波辐射方向具有恒定的厚度。
6.根据权利要求1所述的复合压电体,其特征在于:所述多个压电体要素,沿与所述超声波辐射方向垂直的面排列配置成2维,
所述多个压电体要素的共振频率,相应在所述面内的位置的不同而变化。
7.根据权利要求1所述的复合压电体,其特征在于:所述多个压电体要素,具有大致恒定的高度。
8.根据权利要求1所述的复合压电体,其特征在于:与在所述压电体要素的垂直于声波辐射方向的面的中央部的所述压电体要素的共振频率相比,在所述面的周边部的所述压电体要素的共振频率要低。
9.根据权利要求1所述的复合压电体,其特征在于:所述多个压电体要素中的至少1个压电体要素的与声波辐射方向垂直的截面面积,与所述压电体要素的中央相比,在所述压电体要素的端面上要大。
10.根据权利要求1所述的复合压电体,其特征在于:所述多个压电体要素中的至少1个压电体要素的与声波辐射方向垂直的截面面积,与所述压电体要素的中央相比,在所述压电体要素的端面上要小。
11.根据权利要求1所述的复合压电体,其特征在于:所述多个压电体要素的每一个,具有沿所述声波辐射方向延伸的一对柱状部分,在其中央连接所述柱状部分的架桥部分的厚度在所述压电体要素的与声波辐射方向垂直的面内变化。
12.根据权利要求1所述的复合压电体,其特征在于:所述多个压电体要素的每一个,在中央具有开口部,所述开口部的大小在所述压电体要素的与声波辐射方向垂直的面内变化。
13.根据权利要求1所述的复合压电体,其特征在于:按照所述多个压电体要素的共振频率具有给定的面内分布那样地,选择所述多个压电体要素的形状。
14.根据权利要求1所述的复合压电体,其特征在于:所述压电体要素的声波辐射方向的尺寸,相对于所述多个压电体要素的与声波辐射方向垂直的截面的最小尺寸S之比的比率在5以上。
15.根据权利要求1所述的复合压电体,其特征在于:所述电介质部分由树脂构成。
16.根据权利要求15所述的复合压电体,其特征在于:所述树脂的弹性系数在所述压电体要素的与声波辐射方向垂直的面内具有按照位置的给定分布。
17.一种单位复合片,具有树脂层、和排列配置在所述树脂层上的多个压电体要素,其特征在于:
所述多个压电体要素,相应所述树脂层中的位置而具有不同形状。
18.一种复合片叠层体,其特征在于:具有将每一个具有树脂层、和排列配置在所述树脂层上的多个压电体要素的单位复合片层叠、并通过用所述树脂层夹持所述压电体要素而使配置关系固定的状态,包含在各单位复合片内的所述多个压电体要素,根据在所述树脂层上的位置具有不同的形状。
19.一种复合压电体,其特征在于:以横切所述压电体要素的声波辐射方向的方式将复合片叠层体切断而制作成,
所述复合片叠层体具有将每一个具有树脂层、和排列配置在所述树脂层上的多个压电体要素的单位复合片层叠、并通过用所述树脂层夹持所述压电体要素而使配置关系固定的状态,包含在各单位复合片内的所述多个压电体要素,根据在所述树脂层上的位置具有不同的形状。
20.根据权利要求19所述的复合压电体,其特征在于:所述多个压电体要素的周围由树脂所包围。
21.根据权利要求20所述的复合压电体,其特征在于:所述树脂是通过使单位复合片的树脂层的一部分流动、固化后形成的。
22.一种超声波探头,其特征在于:包括:
具有排列配置的多个压电体要素、和位于所述多个压电体要素之间的电介质部分,并且在所述多个压电体要素的至少1个压电体要素中与超声波辐射方向垂直的截面面积沿所述超声波辐射方向变化的复合压电体;和
在所述复合压电体上形成的一对电极。
23.根据权利要求22所述的超声波探头,其特征在于:在所述复合压电体上形成有匹配层,
所述匹配层的厚度,沿所述复合压电体中的压电体要素的共振频率变化的方向而变化。
24一种超声波检查装置,包括:超声波探头、向所述超声波探头传送信号的发送部、以及接收从所述超声波探头输出的电信号的接收部,其特征在于:
所述超声波探头包括:
具有排列配置的多个压电体要素、和位于所述多个压电体要素之间的电介质部分,在所述多个压电体要素的至少1个压电体要素中与超声波辐射方向垂直的截面面积沿所述超声波辐射方向变化的复合压电体;和
在所述复合压电体上形成的一对电极。
25.一种单位复合片的制造方法,其特征在于:包括:
(a)准备在板状压电体的一表面上形成了树脂层的复合板的工艺;
(b)对于所述复合板的所述压电体,通过不使所述树脂层完全切断而形成多个槽,从而由所述板状压电体形成多个压电体要素的工艺,
所述工艺(b),对于所述多个压电体要素,根据所述树脂层上的位置使其具有不同的形状。
26.一种单位复合片的制造方法,其特征在于:包括:
(a)通过粘接片将板状压电体临时固定在基板上的工艺;
(b)通过在所述板状压电体上形成多个槽,由所述板状压电体形成多个细线状压电体的工艺;
(c)将固定在所述基板上的多个所述细线状压电体复制在树脂层上的工艺,
所述工艺(b),对于所述多个压电体要素,根据所述树脂层上的位置使其具有不同的形状。
27.根据权利要求26所述的单位复合片的制造方法,其特征在于:所述多个槽通过喷沙加工而形成。
28一种复合压电体的制造方法,其特征在于:包括:
(a)准备好多张具有树脂层、和排列配置在所述树脂层上的多个压电体要素,并且所述多个压电体要素相应所述树脂层中的位置具有不同形状的单位复合片的工艺;
(b)对多张所述单位复合片进行层叠的工艺;
(c)将叠层的多张所述单位复合片一体化的工艺。
29.根据权利要求28所述的复合压电体的制造方法,其特征在于:还包括:对于所述一体化后的多张单位复合片,按照横切所述细线状压电体的方式切断的工艺。
CNB031475477A 2002-07-22 2003-07-22 复合压电体 Expired - Fee Related CN100376214C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002212072 2002-07-22
JP2002212072 2002-07-22

Publications (2)

Publication Number Publication Date
CN1478439A true CN1478439A (zh) 2004-03-03
CN100376214C CN100376214C (zh) 2008-03-26

Family

ID=29997208

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB031475477A Expired - Fee Related CN100376214C (zh) 2002-07-22 2003-07-22 复合压电体

Country Status (3)

Country Link
US (1) US6984922B1 (zh)
EP (1) EP1384525A2 (zh)
CN (1) CN100376214C (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103211619A (zh) * 2012-01-24 2013-07-24 株式会社东芝 超声波探头以及超声波诊断装置
TWI405955B (zh) * 2009-05-06 2013-08-21 Univ Nat Taiwan 使用超音波探頭聲波匹配層以改變聲波頻率的方法
CN104012114A (zh) * 2011-12-26 2014-08-27 奥林巴斯株式会社 超声波振动器件及超声波医疗装置
CN104665874A (zh) * 2015-02-13 2015-06-03 上海应用技术学院 超声波探测器及其制作方法
CN107170882A (zh) * 2017-05-09 2017-09-15 北京信息科技大学 基于改进聚合物相的1‑3型压电复合材料及其制备方法
CN108054275A (zh) * 2017-12-12 2018-05-18 北京信息科技大学 一种非等厚匹配层压电振子及其制备方法
CN111246354A (zh) * 2018-11-29 2020-06-05 乐金显示有限公司 振动产生装置和包括该振动产生装置的电子设备
CN113366526A (zh) * 2019-03-18 2021-09-07 株式会社村田制作所 压电器件

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6984922B1 (en) * 2002-07-22 2006-01-10 Matsushita Electric Industrial Co., Ltd. Composite piezoelectric transducer and method of fabricating the same
CA2555838A1 (en) * 2004-02-10 2005-08-25 Cardiovascular Resonances, Llc Methods, systems, and computer program products for analyzing cardiovascular sounds using eigen functions
US7880368B2 (en) 2004-09-21 2011-02-01 Olympus Corporation Ultrasonic transducer, ultrasonic transducer array and ultrasound endoscope apparatus
US20070046149A1 (en) * 2005-08-23 2007-03-01 Zipparo Michael J Ultrasound probe transducer assembly and production method
JP6004640B2 (ja) * 2011-01-07 2016-10-12 キヤノン株式会社 圧電素子、液体吐出ヘッド、超音波モータ、塵埃除去装置、およびデバイス
US8853918B2 (en) * 2011-09-22 2014-10-07 General Electric Company Transducer structure for a transducer probe and methods of fabricating same
JP5928151B2 (ja) 2012-05-21 2016-06-01 セイコーエプソン株式会社 超音波トランスデューサー、超音波プローブ、診断装置および電子機器
EP2925460A1 (en) * 2012-11-29 2015-10-07 Sound Technology Inc. Ultrasound transducer
JP6685982B2 (ja) 2017-09-20 2020-04-22 株式会社東芝 トランスデューサおよび検査装置
JP6862398B2 (ja) 2018-09-11 2021-04-21 株式会社東芝 超音波装置及び検査装置
DE102019218254A1 (de) * 2019-11-26 2021-05-27 Atlas Elektronik Gmbh Piezokeramik als Erhebungsstruktur, die durch einen Graben mit einer variablen Wandsteigung definiert ist
KR20210072536A (ko) * 2019-12-09 2021-06-17 엘지디스플레이 주식회사 복합 압전 소자 및 이를 구비하는 전자 장치

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3569750A (en) * 1968-11-29 1971-03-09 Collins Radio Co Monolithic multifrequency resonator
US4281550A (en) * 1979-12-17 1981-08-04 North American Philips Corporation Curved array of sequenced ultrasound transducers
JPS5821883A (ja) 1981-08-03 1983-02-08 Hitachi Medical Corp 複合圧電材料の製造方法
JPS6085699A (ja) 1983-10-17 1985-05-15 Hitachi Ltd 複合圧電材料の形成方法
JPS6359200A (ja) 1986-08-28 1988-03-15 Shimadzu Corp 超音波探触子の製造方法
JPH0251289A (ja) 1988-08-15 1990-02-21 Sekisui Plastics Co Ltd レーザー光線による複合圧電素子材料の製作方法
DE59008863D1 (de) * 1990-06-21 1995-05-11 Siemens Ag Verbund-Ultraschallwandler und Verfahren zur Herstellung eines strukturierten Bauelementes aus piezoelektrischer Keramik.
JP3208845B2 (ja) 1992-06-16 2001-09-17 松下電器産業株式会社 超音波探触子
JPH0750548A (ja) 1993-05-31 1995-02-21 Canon Inc 弾性表面波素子
AU688334B2 (en) 1993-09-07 1998-03-12 Siemens Medical Solutions Usa, Inc. Broadband phased array transducer design with frequency controlled two dimension capability and methods for manufacture thereof
JPH0888898A (ja) 1994-09-20 1996-04-02 Hitachi Metals Ltd 複合圧電スピーカー
JPH0888896A (ja) 1994-09-20 1996-04-02 Hitachi Metals Ltd 複合圧電スピーカー
JPH0888897A (ja) 1994-09-20 1996-04-02 Hitachi Metals Ltd 複合圧電スピーカー
JPH08256398A (ja) 1995-03-16 1996-10-01 Olympus Optical Co Ltd 超音波トランスデューサとその製造方法
JP3405375B2 (ja) 1995-03-20 2003-05-12 住友電気工業株式会社 複合体基材および表面弾性波素子
JP3459136B2 (ja) 1995-03-29 2003-10-20 Necトーキン株式会社 音響トランスデューサー
JP3882231B2 (ja) 1996-07-31 2007-02-14 住友電気工業株式会社 複合圧電材料の製造方法
JPH1056690A (ja) 1996-08-08 1998-02-24 Toshiba Corp 超音波トランスデューサ
JP3602684B2 (ja) 1997-04-09 2004-12-15 オリンパス株式会社 超音波トランスデューサ及びその製造方法
JPH11285096A (ja) 1998-03-31 1999-10-15 Olympus Optical Co Ltd 複合圧電振動子
JP2000028595A (ja) 1998-07-10 2000-01-28 Olympus Optical Co Ltd 圧電構造体の製造方法および複合圧電振動子
DE19917429A1 (de) * 1999-04-19 2000-10-26 Sonident Anstalt Vaduz Impulsschallwandler
JP2000307162A (ja) * 1999-04-20 2000-11-02 Olympus Optical Co Ltd 圧電構造体および複合圧電振動子の製造方法、複合圧電振動子
JP4234846B2 (ja) 1999-05-12 2009-03-04 上田日本無線株式会社 複合圧電体及び角柱状圧電セラミック焼結体
JP2001025094A (ja) 1999-07-12 2001-01-26 Tayca Corp 1−3複合圧電体
JP4320098B2 (ja) * 1999-12-02 2009-08-26 上田日本無線株式会社 アレイ型複合圧電体
JP2001326999A (ja) * 2000-05-18 2001-11-22 Olympus Optical Co Ltd 圧電構造体の加工方法および複合圧電体の製造方法
JP3556582B2 (ja) 2000-08-02 2004-08-18 松下電器産業株式会社 超音波診断装置
CN1263173C (zh) 2001-12-06 2006-07-05 松下电器产业株式会社 复合压电体及其制造方法
US6984922B1 (en) * 2002-07-22 2006-01-10 Matsushita Electric Industrial Co., Ltd. Composite piezoelectric transducer and method of fabricating the same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI405955B (zh) * 2009-05-06 2013-08-21 Univ Nat Taiwan 使用超音波探頭聲波匹配層以改變聲波頻率的方法
CN104012114B (zh) * 2011-12-26 2017-12-26 奥林巴斯株式会社 超声波振动器件及超声波医疗装置
CN104012114A (zh) * 2011-12-26 2014-08-27 奥林巴斯株式会社 超声波振动器件及超声波医疗装置
CN103211619A (zh) * 2012-01-24 2013-07-24 株式会社东芝 超声波探头以及超声波诊断装置
CN103211619B (zh) * 2012-01-24 2015-07-08 株式会社东芝 超声波探头以及超声波诊断装置
CN104665874A (zh) * 2015-02-13 2015-06-03 上海应用技术学院 超声波探测器及其制作方法
CN107170882A (zh) * 2017-05-09 2017-09-15 北京信息科技大学 基于改进聚合物相的1‑3型压电复合材料及其制备方法
CN108054275A (zh) * 2017-12-12 2018-05-18 北京信息科技大学 一种非等厚匹配层压电振子及其制备方法
CN108054275B (zh) * 2017-12-12 2021-11-16 北京信息科技大学 一种非等厚匹配层压电振子及其制备方法
CN111246354A (zh) * 2018-11-29 2020-06-05 乐金显示有限公司 振动产生装置和包括该振动产生装置的电子设备
CN111246354B (zh) * 2018-11-29 2021-11-30 乐金显示有限公司 振动产生装置和包括该振动产生装置的电子设备
US11596980B2 (en) 2018-11-29 2023-03-07 LG Display Co,. Ltd. Vibration generating device and electronic apparatus including the same
CN113366526A (zh) * 2019-03-18 2021-09-07 株式会社村田制作所 压电器件
CN113366526B (zh) * 2019-03-18 2024-01-30 株式会社村田制作所 压电器件

Also Published As

Publication number Publication date
CN100376214C (zh) 2008-03-26
EP1384525A2 (en) 2004-01-28
US6984922B1 (en) 2006-01-10

Similar Documents

Publication Publication Date Title
CN1478439A (zh) 复合压电体
US7424771B2 (en) Method of producing a piezocomposite
US6571444B2 (en) Method of manufacturing an ultrasonic transducer
US5164920A (en) Composite ultrasound transducer and method for manufacturing a structured component therefor of piezoelectric ceramic
JP6208933B2 (ja) トランスデューサプローブのためのトランスデューサ構造体およびその製造方法
CA2644224C (en) Ultrasonic matching layer and transducer
US20050162045A1 (en) Methods to make thick film single elements and arrays
JP4764057B2 (ja) 超音波プローブ及びその製造方法
JP4528606B2 (ja) 超音波プローブ及び超音波診断装置
JP3954543B2 (ja) 複合圧電体
JPH08256398A (ja) 超音波トランスデューサとその製造方法
CN1684776A (zh) 压电振动体及其制造方法以及具有该压电振动体的机器
JP2015115684A (ja) 複合圧電体、超音波探触子及び超音波画像診断装置
JP3857911B2 (ja) 複合圧電体およびその製造方法
JP2008005291A (ja) 音響整合層およびその製造方法、ならびに該音響整合層を含む超音波プローブ
JP2013026682A (ja) 医用複合単結晶圧電振動子、医用超音波プローブ、医用複合単結晶圧電振動子製造方法および医用超音波プローブ製造方法
JP2004104629A (ja) 超音波プローブ
JP2002232995A (ja) 超音波探触子及びその製造方法
TWI693731B (zh) 高頻超音波壓電元件、其製造方法以及包含該高頻超音波壓電元件的高頻超音波探頭
JP3101461B2 (ja) 超音波探触子
JP2004039836A (ja) 複合圧電体およびその製造方法
JPH11276480A (ja) 複合圧電振動子およびその製造方法
JP2624957B2 (ja) 圧電スピーカー
CN117415000A (zh) 一种超声换能器及其制备方法和应用
JPS61292550A (ja) アレイ形超音波探触子

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: KONICA MINOLTA OPTO INC.

Free format text: FORMER OWNER: MATSUSHITA ELECTRIC INDUSTRIAL CO, LTD.

Effective date: 20140318

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20140318

Address after: Tokyo, Japan, Japan

Patentee after: Konica Minolta Opto, Inc.

Address before: Osaka Japan

Patentee before: Matsushita Electric Industrial Co., Ltd.

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080326

Termination date: 20150722

EXPY Termination of patent right or utility model