US3569750A - Monolithic multifrequency resonator - Google Patents

Monolithic multifrequency resonator Download PDF

Info

Publication number
US3569750A
US3569750A US779909A US3569750DA US3569750A US 3569750 A US3569750 A US 3569750A US 779909 A US779909 A US 779909A US 3569750D A US3569750D A US 3569750DA US 3569750 A US3569750 A US 3569750A
Authority
US
United States
Prior art keywords
sections
thickness
plateaus
crystal
crystal plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US779909A
Inventor
William D Beaver
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Collins Radio Co
Original Assignee
Collins Radio Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Collins Radio Co filed Critical Collins Radio Co
Application granted granted Critical
Publication of US3569750A publication Critical patent/US3569750A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • H03H9/56Monolithic crystal filters

Definitions

  • Woodward ABSTRACT A multifrequency resonating device comprising a single, piezoelectric quartz crystal plate having a plurality of different thickness plateaus formed thereon and separated, one from the other, by sections of beveled surface areas which create acoustic impedance mismatches between the plateaus.
  • This invention relates generally to multifrequency resonators, and more particularly to a multifrequency resonator employing a bank of resonators formed on a common or piezoelectric quartz crystal blank.
  • a characteristic of prior art devices using monolithic crystal filters is that the difference in frequency of the various coated areas is determined by the size of the coated area as well as the thickness of the coating.
  • the foregoing is due to the fact that the crystal thickness is substantially uniform, thus limiting the frequency difference of the various resonating areas to that obtainable by changing the size and thickness of the conductive coating.
  • An object of the present invention is a relatively simple and inexpensive wide range multifrequency resonator employing a single quartz crystal plate.
  • a second purpose of the invention is a multifrequency resonator employing a single monolithic crystal plate.
  • a third object of the invention is a multifrequency resonator employing a monolithic crystal means and having a substantially uniform temperature coefficient.
  • a fourth purpose of the invention is the improvement of multifrequency crystal resonators generally.
  • a quartz plate having a multiplicity of sections, 'or plateaus, of various thickness.
  • Each of these sections or plateaus have their two major surfaces lying in parallel planes, which define the thickness of the section.
  • the two major surfaces of each section have a portion thereof coated with aeonductive material.
  • the sections of different thicknesses are separated, one from the other, by areas of changing thickness which are small in comparison with the areas of the plateaus, but yet large enough to provide substantial mechanical isolation between the plateaus.
  • each plateau constitutes a relatively isolated resonating area of the monolithic crystal.
  • a feature of the invention lies in the fact that the temperature coefficient for all of the resonating areas is substantially the same since a common crystal plate having a given crystallographic orientation is employed.
  • a second feature of the invention arises from the fact that the single monolithic crystal needs only a single container or holder whereas in prior art device's each of several crystals require a separate holder.
  • FIG. 1 shows'a cross section of a plated area of a crystal to facilitate the understanding of the relationship between the various parameters of the structure and its resonating frequen- Y;
  • FIG. 2 is a perspective view of the invention showing a monolithic crystal having five plateaus
  • FIG. 3 is a side view of the structure of FIG. 2;
  • FIG. 4 is a perspective view of a monolithic quartz crystal having ten plateaus, all of different thicknesses
  • FIG. 5 is a side view of the structure of FIG. 4.
  • FIG. 6 is an end view of the structure of FIG. 4.
  • the quartz crystal 10 has a pair of electrodes 11 and 12 coated thereon.
  • the FIG. is included in the specification primarily as a basis of a brief discussion of the factors determining crystal resonant frequency. Said relationship is given approximately by the following expression:
  • any thickness of electrode 11 beyond this optimum thickness results in a decreased 0 of the overall structure with resultant damping of the resonance, thus seriously limiting frequency variation obtainable by this technique. Consequently, any appreciable variation frequency is best obtained by changing the thickness of the quartz plate rather than by changing the thickness of the electrode coating.
  • FIG. 2 there is shown a perspective view of one form of the invention wherein crystal plate 13 has five plateaus formed thereon, and designated by reference characters 14, 15, 16, 17, and 18.
  • the thickness of each of the five plateaus 14 through 18 is shown in FIG. 3 and designated by characters I, through t respectively.
  • each of the plateaus 14 through 18 consist of two major surfaces upon each of which has been deposited an electrode of conductive material.
  • electrodes 19 and 20 have been deposited, with input leads 21 and 22 extending respectively from the associated electrode to the edge of the plateau.
  • the leads 21 and 22 are formed by depositing a conductive material on the quartz in a well-known manner.
  • Each of the remaining four plateaus also have a pair of elec- 'trodes and input terminals coated thereon. More specifically,
  • electrodes 23 and 24 are coated upon plateau 15; electrodes 25 and 26 upon plateau 16; electrodes 27 and 28 upon plateau l7; and electrodes 29 and 30 upon plateau 18.
  • Each of the five plateaus has a different thickness, as shown in FIG. 1 and, consequently, each plateau in combination with the electrodes coated thereon will resonate at a different frequency.
  • each of the plateaus is a beveled surface such as the beveled surface 31 between plateaus -14 and 15, and
  • These beveled surfaces define a slice of the quartz crystal which separates adjacent plateaus and isolates them, one from the other, both mechanically and electrically.
  • the mechanics by which such isolation occurs is well known in the crystal art and will not be described in detail herein other than to state generally that it is primarily a matter of acoustic impedance differences. More specifically, the energy generated at a given frequency plateau M for example, cannot pass freely through beveled section 31 into the plateau 15 because the acoustic wave will not propagate in the adjacent region. In essence, the beveled area 31 acts as a bidirectional energy trap, i.e., for both the energy generated in the resonator defined by plateau l5, and the energy generated in the resonator defined by plateau M.
  • the multiplateau crystal structure shown in FIGS. 2 and 3 can be manufactured in at least two ways, one of which includes the etching of the plate in either hydrofluoric acid or an ammonium bifluoride solution and the second of which involves a sand blasting operation for different periods of time in order to create plateaus of different thicknesses.
  • the plateaus are created by holding the plate at one end'and inserting a given length of it into the solution for a given amount of time to produce a desired thickness change.
  • the crystal plate of FIG. 2 is inserted into the etching solution so that portion of the plate which includes plateaus 15, 16, 17, and 18 are all immersed in the etching solution for a length of time necessary to create the proper thickness for plateau 15.
  • the crystal plate is then pulled out of the etching solution a short distance so that only that length of the plate including plateaus 16, 17, and 18 is immersed in the liquid. Such immersion continues until the plateau 16 obtains its desired thickness.
  • plateaus 17 and 18 are formed.
  • the beveled surfaces between plateaus can then be perfected to the degree desired by mechanical abrasion means.
  • the quartz plates are secured onto a large glass plate by beeswax or other suitable means.
  • the glass plate is then secured onto the periphery of a large wheel which carries the quartz crystal carrying glass plate under the sand blast.
  • the quartz surface is abraded a small but measurable amount.
  • the region which is not to be abraded is masked off with either a metal shield or a silicone rubber mask which deflects the abrasive. It has been found that the amount of material removed from the quart crystal with each pass under the abrasive means can be quite accurately predetermined so that the total amount of material removed from the crystal plate is measurable in terms of number of wheel revolutions.
  • FIG. 4 there is shown a perspective view of a monolithic quartz crystal having ten plateaus of different thicknesses which are identified by reference characters 40 through 49. Each of these plateaus is separated from the adjacent plateaus by beveled surfaces such as beveled surface 50. That portion of the crystal defined by a given plateau, resonates, in cooperation with the electrodes thereon, at a frequency in accordance with thethickness of that portion of the crystal.
  • TI-IE crystal plate configuration shown in FIG. 4 can be formed in a manner similar to that described in connection with FIG. 2 with the following additional steps.
  • the crystal plate of FIG..4 at some stage in its operation, must be dipped into the etching solution sideways such that the plateaus 45 through 49 define crystal thicknesses less than that defined by the corresponding plateaus 40 through 44.
  • FIG. 5 there is shown a side view of the structure of FIG. 4 illustrating the different thicknesses defined by the c various plateaus. It is to be understood that each portion of the crystal defined by a plateau must have electrodes of conductive material formed thereon, as in the case of the structure of FIG. 2, in order to complete the resonator.
  • One such pair of electrodes is identified by reference characters 51 and 52 of FIG. 4 and 51' and 52' in FIG. 5, and
  • a mechanical resonating device for generating a plurality of resonant frequencies and comprising:
  • a monolithic crystal plate having length, width, and thickness, and divided into at least two elongated regions; each of said elongated regions being further divided into sections, with each successive adjacent section in each region having a thickness less than the preceding section in said region, and with the thickness of each section being defined by the major surfaces thereof, which are parallel to each other; and opposing conductive electrode means formed on said sections; each of said sections being resonant at a given frequency different from the resonant frequencies of other sections.
  • a mechanical resonating device in accordance with claim 1 in which each section of each region, except the thickest and the thinnest portions of the crystal plate, have a thickness greater than one and less than the other of two adjacent sections in the same region and in the adjacent region.
  • a mechanical resonating device in accordance with claim 3 in which said sections of said monolithic crystal plate are separated one from the other by segments of said crystal blank positioned therebetween with their exposed surfaces providing a beveled transition between the different thicknesses of adjacent portions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

A multifrequency resonating device comprising a single, piezoelectric quartz crystal plate having a plurality of different thickness plateaus formed thereon and separated, one from the other, by sections of beveled surface areas which create acoustic impedance mismatches between the plateaus. Each plateau has coated upon both sides thereof conductive electrodes and suitable terminal leads extending therefrom. Each plateau is resonant at a different frequency without the necessity of separate crystal blank holders or separate temperature compensation circuits.

Description

United States Patent [54] MONOLITHIC MULTIFREQUENCY RESONATOR 4 Claims, 6 Drawing Figs. [52] US. Cl 310/95, 310/96, 310/9.8, 333/72 [51] Int. Cl. H01v 7/00 [50] Field ofSearch 310/82, 8.3, 8.5, 8.6, 9.5-9.8; 333/72, 30
3,222,622 12/1965 Curran et a1 333/72 3,264,583 8/1966 Fitch 333/72X 3,277,404 10/1966 Fabian 310/8.2X 3,283,264 11/1966 Papadakis 310/9.5X 3,310,761 3/1967 Braver 333/30 3,363,119 l/l968 Konevalet al.. 310/95 3,401,275 9/1968 Curran et al 310/82 Primary ExaminerMilton O. l-lirshfield Assistant Examiner-Mark O. Budd Attorneys- Robert J. Crawford and Henry K. Woodward ABSTRACT: A multifrequency resonating device comprising a single, piezoelectric quartz crystal plate having a plurality of different thickness plateaus formed thereon and separated, one from the other, by sections of beveled surface areas which create acoustic impedance mismatches between the plateaus.
[56] References Cited Each plateau has coated upon both sides thereof conductive UNITED STATES PATENTS electrodes and suitable terminal leads extending therefrom. 3,384,763 5/1968 Sh kl et 310 3 2 Each plateau is resonant at a different frequency without the 2 359 34 11/1953 Firestone gt 3L 250/36 necessity of separate crystal blank holders or separate tem- 3,146,415 8/1964 Albsmeieretal 310/9.6 Perawre compensation circuits- 1-- x 5| c. Q; Q 1' 1. 1 .r 4, l
mimanm 9|97l SHEET 1 OF 2 NGE INVENTOR. WILLIAM D. BEAVER ATTORNEY sum 2 or 2 FIG.6
FIG.5
' VENTOR. WILL D. BEAVER M Wa ATTORNEY This invention relates generally to multifrequency resonators, and more particularly to a multifrequency resonator employing a bank of resonators formed on a common or piezoelectric quartz crystal blank.
In the prior art, banks of crystals have long been employed to generate a multiplicity of frequencies. However, in these prior art devices, a separate crystal resonator is usually employed for each given frequency, or a harmonic thereof. The use of separate crystal resonator for each frequency involves a separate holder for each crystal as 'well as a separate temperature coefficient compensating circuit for each crystal, when temperature compensation is employed. Both the crystal holders and the temperature compensating circuits add appreciably to the expense of the resultant multifrequency resonator bank.
In other types of prior art devices several plated areas have been formed on the same monolithic crystal plate. Such use of the monolithic crystal has been confined largely to either filter-type circuits where the energy transfer between coated areas is either electric or mechaiiical, or sometimes a combination of the two energy transfer means.
A characteristic of prior art devices using monolithic crystal filters is that the difference in frequency of the various coated areas is determined by the size of the coated area as well as the thickness of the coating. The foregoing is due to the fact that the crystal thickness is substantially uniform, thus limiting the frequency difference of the various resonating areas to that obtainable by changing the size and thickness of the conductive coating.
An object of the present invention is a relatively simple and inexpensive wide range multifrequency resonator employing a single quartz crystal plate.
A second purpose of the invention is a multifrequency resonator employing a single monolithic crystal plate.
A third object of the invention is a multifrequency resonator employing a monolithic crystal means and having a substantially uniform temperature coefficient.
A fourth purpose of the invention is the improvement of multifrequency crystal resonators generally.
In accordance with one form of the invention, there is provided a quartz plate having a multiplicity of sections, 'or plateaus, of various thickness. Each of these sections or plateaus have their two major surfaces lying in parallel planes, which define the thickness of the section. The two major surfaces of each section have a portion thereof coated with aeonductive material. Further, the sections of different thicknesses are separated, one from the other, by areas of changing thickness which are small in comparison with the areas of the plateaus, but yet large enough to provide substantial mechanical isolation between the plateaus. Thus, each plateau constitutes a relatively isolated resonating area of the monolithic crystal. I
A feature of the invention lies in the fact that the temperature coefficient for all of the resonating areas is substantially the same since a common crystal plate having a given crystallographic orientation is employed.
A second feature of the invention arises from the fact that the single monolithic crystal needs only a single container or holder whereas in prior art device's each of several crystals require a separate holder.
The above mentioned and other objects and features of the invention will be more fully understood from the following detailed description thereof when read in conjunction with the drawings in which:
FIG. 1 shows'a cross section of a plated area of a crystal to facilitate the understanding of the relationship between the various parameters of the structure and its resonating frequen- Y;
FIG. 2 is a perspective view of the invention showing a monolithic crystal having five plateaus;
FIG. 3 is a side view of the structure of FIG. 2;
FIG. 4 is a perspective view of a monolithic quartz crystal having ten plateaus, all of different thicknesses;
FIG. 5 is a side view of the structure of FIG. 4; and
FIG. 6 is an end view of the structure of FIG. 4.
Referring now to FIG. 1, the quartz crystal 10 has a pair of electrodes 11 and 12 coated thereon. The FIG. is included in the specification primarily as a basis of a brief discussion of the factors determining crystal resonant frequency. Said relationship is given approximately by the following expression:
where C is the effective elastic constant in the direction nor mal to the plane of the crystal plate 10, t is the thickness of plate 10, t is the thickness'of the applied conductive electrodes 11 and 12, p is the density of the quartz, and p is the density of electrodes 11 and 12. From the foregoing expression, it is apparent that the frequency of the resonator can be changed by changing the thickness of either the plate 10 or the electrode 11, or by changing the density of the electrode 11. However, compared to the crystalline quartz, the metal electrodes having high internal mechanical friction which results in lowered mechanical 0. There is an optimum thickness for the metal electrodes, which optimum thickness is determined primarily by mechanical characteristics such as the nature of the bonding to the quartz, and also by internal electrical characteristics of the coating, such as the internal resistance thereof. However, any thickness of electrode 11 beyond this optimum thickness results in a decreased 0 of the overall structure with resultant damping of the resonance, thus seriously limiting frequency variation obtainable by this technique. Consequently, any appreciable variation frequency is best obtained by changing the thickness of the quartz plate rather than by changing the thickness of the electrode coating.
In FIG. 2 there is shown a perspective view of one form of the invention wherein crystal plate 13 has five plateaus formed thereon, and designated by reference characters 14, 15, 16, 17, and 18. The thickness of each of the five plateaus 14 through 18 is shown in FIG. 3 and designated by characters I, through t respectively. i
It can readily be seen from FIGS. 2 and 3 that each of the plateaus 14 through 18 consist of two major surfaces upon each of which has been deposited an electrode of conductive material. For example, on plateau 14, electrodes 19 and 20 have been deposited, with input leads 21 and 22 extending respectively from the associated electrode to the edge of the plateau. The leads 21 and 22 are formed by depositing a conductive material on the quartz in a well-known manner.
Each of the remaining four plateaus also have a pair of elec- 'trodes and input terminals coated thereon. More specifically,
electrodes 23 and 24 are coated upon plateau 15; electrodes 25 and 26 upon plateau 16; electrodes 27 and 28 upon plateau l7; and electrodes 29 and 30 upon plateau 18.
Each of the five plateaus has a different thickness, as shown in FIG. 1 and, consequently, each plateau in combination with the electrodes coated thereon will resonate at a different frequency.
Since frequency is inversely proportional to the thickness of the quartz plate, then the thinnest plateau 18 will have the highest frequency, and the thickest plateau 14 will have the lowest frequency with intermediate frequencies being generated therebetween by plateaus 17, 16, and 15.
It is to be noted that in FIG. 2 and FIG. 3 the relative thicknesses of the plateaus are greatly exaggerated for purposes of illustration. In actual practice, the difference in thickness between adjacent plateaus will be more on the order of micrometers, with the exact difference being determined by the frequency difference desired. With a plateau having a major surface of cross-sectional area equal to 20 sq. inm. a difference in thi'ckne'ssof 0.0043 millimeters will result, for example, in a difference of 600 kHz. at a center frequency of 15 mHz.
Separating each of the plateaus is a beveled surface such as the beveled surface 31 between plateaus -14 and 15, and
beveled surface 32 between plateaus and 16. These beveled surfaces define a slice of the quartz crystal which separates adjacent plateaus and isolates them, one from the other, both mechanically and electrically. The mechanics by which such isolation occurs is well known in the crystal art and will not be described in detail herein other than to state generally that it is primarily a matter of acoustic impedance differences. More specifically, the energy generated at a given frequency plateau M for example, cannot pass freely through beveled section 31 into the plateau 15 because the acoustic wave will not propagate in the adjacent region. In essence, the beveled area 31 acts as a bidirectional energy trap, i.e., for both the energy generated in the resonator defined by plateau l5, and the energy generated in the resonator defined by plateau M.
The multiplateau crystal structure shown in FIGS. 2 and 3 can be manufactured in at least two ways, one of which includes the etching of the plate in either hydrofluoric acid or an ammonium bifluoride solution and the second of which involves a sand blasting operation for different periods of time in order to create plateaus of different thicknesses.
More specifically, in the etching technique the plateaus are created by holding the plate at one end'and inserting a given length of it into the solution for a given amount of time to produce a desired thickness change. For example, the crystal plate of FIG. 2 is inserted into the etching solution so that portion of the plate which includes plateaus 15, 16, 17, and 18 are all immersed in the etching solution for a length of time necessary to create the proper thickness for plateau 15. The crystal plate is then pulled out of the etching solution a short distance so that only that length of the plate including plateaus 16, 17, and 18 is immersed in the liquid. Such immersion continues until the plateau 16 obtains its desired thickness.
In a similar manner plateaus 17 and 18 are formed. The beveled surfaces between plateaus can then be perfected to the degree desired by mechanical abrasion means.
In the sand blasting technique, the quartz plates are secured onto a large glass plate by beeswax or other suitable means. The glass plate is then secured onto the periphery of a large wheel which carries the quartz crystal carrying glass plate under the sand blast. At each pass of the wheel, the quartz surface is abraded a small but measurable amount. The region which is not to be abraded is masked off with either a metal shield or a silicone rubber mask which deflects the abrasive. It has been found that the amount of material removed from the quart crystal with each pass under the abrasive means can be quite accurately predetermined so that the total amount of material removed from the crystal plate is measurable in terms of number of wheel revolutions.
Referring now to FIG. 4, there is shown a perspective view of a monolithic quartz crystal having ten plateaus of different thicknesses which are identified by reference characters 40 through 49. Each of these plateaus is separated from the adjacent plateaus by beveled surfaces such as beveled surface 50. That portion of the crystal defined by a given plateau, resonates, in cooperation with the electrodes thereon, at a frequency in accordance with thethickness of that portion of the crystal.
TI-IE crystal plate configuration shown in FIG. 4 can be formed in a manner similar to that described in connection with FIG. 2 with the following additional steps. The crystal plate of FIG..4, at some stage in its operation, must be dipped into the etching solution sideways such that the plateaus 45 through 49 define crystal thicknesses less than that defined by the corresponding plateaus 40 through 44.
In FIG. 5, there is shown a side view of the structure of FIG. 4 illustrating the different thicknesses defined by the c various plateaus. It is to be understood that each portion of the crystal defined by a plateau must have electrodes of conductive material formed thereon, as in the case of the structure of FIG. 2, in order to complete the resonator.
One such pair of electrodes is identified by reference characters 51 and 52 of FIG. 4 and 51' and 52' in FIG. 5, and
reference characters 51" and 52" of FIG. 6.
I claim:
1. A mechanical resonating device for generating a plurality of resonant frequencies and comprising:
a monolithic crystal plate having length, width, and thickness, and divided into at least two elongated regions; each of said elongated regions being further divided into sections, with each successive adjacent section in each region having a thickness less than the preceding section in said region, and with the thickness of each section being defined by the major surfaces thereof, which are parallel to each other; and opposing conductive electrode means formed on said sections; each of said sections being resonant at a given frequency different from the resonant frequencies of other sections. 2. A mechanical resonating device in accordance with claim 1 in which said sections of said monolithic crystal plate are separated one from the other by segments of said crystal plate positioned therebetween with their exposed surfaces providing a beveled transition between the different thicknesses of adjacent sections.
3. A mechanical resonating device in accordance with claim 1 in which each section of each region, except the thickest and the thinnest portions of the crystal plate, have a thickness greater than one and less than the other of two adjacent sections in the same region and in the adjacent region.
4. A mechanical resonating device in accordance with claim 3 in which said sections of said monolithic crystal plate are separated one from the other by segments of said crystal blank positioned therebetween with their exposed surfaces providing a beveled transition between the different thicknesses of adjacent portions.

Claims (4)

1. A mechanical resonating device for generating a plurality of resonant frequencies and comprising: a monolithic crystal plate having length, width, and thickness, and divided into at least two elongated regions; each of said elongated regions being further divided into sections, with each successive adjacent section in each region having a thickness less than the preceding section in said region, and with the thickness of each section being defined by the major surfaces thereof, which are parallel to each other; and opposing conductive electrode means formed on said sections; each of said sections being resonant at a given frequency different from the resonant frequencies of other sections.
2. A mechanical resonating device in accordance with claim 1 in which said sections of said monolithic crystal plate are separated one from the other by segments of said crystal plate positioned therebetween with their exposed surfaces providing a beveled transition between the different thicknesses of adjacent sections.
3. A mechanical resonating device in accordance with claim 1 in which each section of each region, except the thickest and the thinnest portions of the crystal plate, have a thickness greater than one and less than the other of two adjacent sections in the same region and in the adjacent region.
4. A mechanical resonating device in accordance with claim 3 in which said sections of said monolithic crystal plate are separated one from the other by segments of said crystal blank positioned therebetween with their exposed surfaces providing a beveled transition between the different thicknesses of adjacent portions.
US779909A 1968-11-29 1968-11-29 Monolithic multifrequency resonator Expired - Lifetime US3569750A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US77990968A 1968-11-29 1968-11-29

Publications (1)

Publication Number Publication Date
US3569750A true US3569750A (en) 1971-03-09

Family

ID=25117963

Family Applications (1)

Application Number Title Priority Date Filing Date
US779909A Expired - Lifetime US3569750A (en) 1968-11-29 1968-11-29 Monolithic multifrequency resonator

Country Status (2)

Country Link
US (1) US3569750A (en)
CA (1) CA921612A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3694677A (en) * 1971-03-03 1972-09-26 Us Army Vhf-uhf piezoelectric resonators
US3697788A (en) * 1970-09-30 1972-10-10 Motorola Inc Piezoelectric resonating device
JPS4962055A (en) * 1972-05-24 1974-06-15
US4350917A (en) * 1980-06-09 1982-09-21 Riverside Research Institute Frequency-controlled scanning of ultrasonic beams
US4547748A (en) * 1984-08-13 1985-10-15 The United States Of America As Represented By The Secretary Of The Army Frequency synthesizer using a matrix of selectable piezoelectric resonators
US4549533A (en) * 1984-01-30 1985-10-29 University Of Illinois Apparatus and method for generating and directing ultrasound
US4907573A (en) * 1987-03-21 1990-03-13 Olympus Optical Co., Ltd. Ultrasonic lithotresis apparatus
US5283496A (en) * 1988-07-20 1994-02-01 Asahi Dempa Co., Ltd. Thickness shear crystal resonator and manufacturing method therefor
US5363852A (en) * 1992-06-19 1994-11-15 Advanced Cardiovascular Systems, Inc. Flow monitor and vascular access system with continuously variable frequency control
US5895855A (en) * 1996-04-12 1999-04-20 Hitachi Medical Co. Ultrasonic probe transmitting/receiving an ultrasonic wave of a plurality of frequencies and ultrasonic wave inspection apparatus using the same
EP1221770A1 (en) * 2001-01-05 2002-07-10 Nokia Corporation Baw filters having different center frequencies on a single substrate and a method for providing same
US6657363B1 (en) * 1998-05-08 2003-12-02 Infineon Technologies Ag Thin film piezoelectric resonator
FR2853473A1 (en) * 2003-04-01 2004-10-08 St Microelectronics Sa Electronic component for use in mobile telephony application, has two resonators, disposed on upper surface of silicon substrate, including lower electrodes, where respective lower electrodes are made of aluminum and molybdenum
US6984922B1 (en) * 2002-07-22 2006-01-10 Matsushita Electric Industrial Co., Ltd. Composite piezoelectric transducer and method of fabricating the same
US7183698B1 (en) * 2005-08-29 2007-02-27 Zippy Technology Corp. Piezoelectric structure
US10931284B2 (en) 2019-05-07 2021-02-23 Fox Enterprises, Inc. Resonators and devices with pixel based electrodes operating across a gap
US11005446B2 (en) 2019-05-07 2021-05-11 Fox Enterprises, Inc. Resonators and devices with a pixel electrode operating across a gap

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2859346A (en) * 1954-07-28 1958-11-04 Motorola Inc Crystal oscillator
US3146415A (en) * 1960-02-26 1964-08-25 Siemens Ag Electromechanical filter
US3222622A (en) * 1962-08-14 1965-12-07 Clevite Corp Wave filter comprising piezoelectric wafer electroded to define a plurality of resonant regions independently operable without significant electro-mechanical interaction
US3264583A (en) * 1963-06-12 1966-08-02 Bell Telephone Labor Inc Dispersive electromechanical delay line utilizing tapered delay medium
US3277404A (en) * 1963-08-23 1966-10-04 Bell Telephone Labor Inc Ultrasonic delay device
US3283264A (en) * 1963-12-24 1966-11-01 Bell Telephone Labor Inc Frequency selective system
US3310761A (en) * 1963-06-18 1967-03-21 Joseph B Brauer Tapped microwave acoustic delay line
US3363119A (en) * 1965-04-19 1968-01-09 Clevite Corp Piezoelectric resonator and method of making same
US3384768A (en) * 1967-09-29 1968-05-21 Clevite Corp Piezoelectric resonator
US3401275A (en) * 1966-04-14 1968-09-10 Clevite Corp Composite resonator

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2859346A (en) * 1954-07-28 1958-11-04 Motorola Inc Crystal oscillator
US3146415A (en) * 1960-02-26 1964-08-25 Siemens Ag Electromechanical filter
US3222622A (en) * 1962-08-14 1965-12-07 Clevite Corp Wave filter comprising piezoelectric wafer electroded to define a plurality of resonant regions independently operable without significant electro-mechanical interaction
US3264583A (en) * 1963-06-12 1966-08-02 Bell Telephone Labor Inc Dispersive electromechanical delay line utilizing tapered delay medium
US3310761A (en) * 1963-06-18 1967-03-21 Joseph B Brauer Tapped microwave acoustic delay line
US3277404A (en) * 1963-08-23 1966-10-04 Bell Telephone Labor Inc Ultrasonic delay device
US3283264A (en) * 1963-12-24 1966-11-01 Bell Telephone Labor Inc Frequency selective system
US3363119A (en) * 1965-04-19 1968-01-09 Clevite Corp Piezoelectric resonator and method of making same
US3401275A (en) * 1966-04-14 1968-09-10 Clevite Corp Composite resonator
US3384768A (en) * 1967-09-29 1968-05-21 Clevite Corp Piezoelectric resonator

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3697788A (en) * 1970-09-30 1972-10-10 Motorola Inc Piezoelectric resonating device
US3694677A (en) * 1971-03-03 1972-09-26 Us Army Vhf-uhf piezoelectric resonators
JPS4962055A (en) * 1972-05-24 1974-06-15
US3838366A (en) * 1972-05-24 1974-09-24 Thomson Csf Monolithic electro-mechanical filters
US4350917A (en) * 1980-06-09 1982-09-21 Riverside Research Institute Frequency-controlled scanning of ultrasonic beams
US4549533A (en) * 1984-01-30 1985-10-29 University Of Illinois Apparatus and method for generating and directing ultrasound
US4547748A (en) * 1984-08-13 1985-10-15 The United States Of America As Represented By The Secretary Of The Army Frequency synthesizer using a matrix of selectable piezoelectric resonators
US4907573A (en) * 1987-03-21 1990-03-13 Olympus Optical Co., Ltd. Ultrasonic lithotresis apparatus
US5283496A (en) * 1988-07-20 1994-02-01 Asahi Dempa Co., Ltd. Thickness shear crystal resonator and manufacturing method therefor
US5363852A (en) * 1992-06-19 1994-11-15 Advanced Cardiovascular Systems, Inc. Flow monitor and vascular access system with continuously variable frequency control
US5895855A (en) * 1996-04-12 1999-04-20 Hitachi Medical Co. Ultrasonic probe transmitting/receiving an ultrasonic wave of a plurality of frequencies and ultrasonic wave inspection apparatus using the same
US6657363B1 (en) * 1998-05-08 2003-12-02 Infineon Technologies Ag Thin film piezoelectric resonator
EP1221770A1 (en) * 2001-01-05 2002-07-10 Nokia Corporation Baw filters having different center frequencies on a single substrate and a method for providing same
US6518860B2 (en) * 2001-01-05 2003-02-11 Nokia Mobile Phones Ltd BAW filters having different center frequencies on a single substrate and a method for providing same
US6984922B1 (en) * 2002-07-22 2006-01-10 Matsushita Electric Industrial Co., Ltd. Composite piezoelectric transducer and method of fabricating the same
FR2853473A1 (en) * 2003-04-01 2004-10-08 St Microelectronics Sa Electronic component for use in mobile telephony application, has two resonators, disposed on upper surface of silicon substrate, including lower electrodes, where respective lower electrodes are made of aluminum and molybdenum
US20050001698A1 (en) * 2003-04-01 2005-01-06 Stmicroelectronics Sa Electronic component having a resonator and fabrication process
US7180224B2 (en) 2003-04-01 2007-02-20 Stmicroelectronics S.A. Electronic component having a resonator and fabrication process
US7183698B1 (en) * 2005-08-29 2007-02-27 Zippy Technology Corp. Piezoelectric structure
US20070046155A1 (en) * 2005-08-29 2007-03-01 Zippy Technology Corp. Piezoelectric structure
US10931284B2 (en) 2019-05-07 2021-02-23 Fox Enterprises, Inc. Resonators and devices with pixel based electrodes operating across a gap
US11005446B2 (en) 2019-05-07 2021-05-11 Fox Enterprises, Inc. Resonators and devices with a pixel electrode operating across a gap

Also Published As

Publication number Publication date
CA921612A (en) 1973-02-20

Similar Documents

Publication Publication Date Title
US3569750A (en) Monolithic multifrequency resonator
US3582839A (en) Composite coupled-mode filter
US4196407A (en) Piezoelectric ceramic filter
US6420820B1 (en) Acoustic wave resonator and method of operating the same to maintain resonance when subjected to temperature variations
US4365181A (en) Piezoelectric vibrator with damping electrodes
US3363119A (en) Piezoelectric resonator and method of making same
EP1557945A1 (en) Piezoelectric vibrator, filter using same, and method for adjusting piezoelectric vibrator
US2306909A (en) Piezoelectric crystal apparatus
US3576453A (en) Monolithic electric wave filters
US2373431A (en) Electric wave filter
US3573672A (en) Crystal filter
EP0483358B1 (en) Ultra thin quartz crystal filter element of multiple mode
JPH09275325A (en) Piezoelectric resonator and electronic component using it
JPH07105688B2 (en) Piezoelectric vibration parts
JPS6340491B2 (en)
US2185599A (en) Piezoelectric apparatus
JPS6163107A (en) Crystal resonator
US2284753A (en) Piezoelectric crystal apparatus
JPS58156220A (en) Thin film piezoelectric filter
US3566166A (en) Mechanical resonator for use in an integrated semiconductor circuit
US2281778A (en) Piezoelectric crystal apparatus
US3483402A (en) Quartz crystals for piezoelectric resonators
US2272994A (en) Piezoelectric crystal element
US4490698A (en) Surface acoustic wave bandpass filter
JPH104330A (en) Piezoelectric resonator and electronic component using it