CN1252313C - 清洗和调理等离子体反应腔体的方法 - Google Patents

清洗和调理等离子体反应腔体的方法 Download PDF

Info

Publication number
CN1252313C
CN1252313C CNB008174482A CN00817448A CN1252313C CN 1252313 C CN1252313 C CN 1252313C CN B008174482 A CNB008174482 A CN B008174482A CN 00817448 A CN00817448 A CN 00817448A CN 1252313 C CN1252313 C CN 1252313C
Authority
CN
China
Prior art keywords
cavity
conditioning
gas
wafer
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB008174482A
Other languages
English (en)
Other versions
CN1411514A (zh
Inventor
B·C·理查德森
D·奥特卡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lam Research Corp
Original Assignee
Lam Research Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lam Research Corp filed Critical Lam Research Corp
Publication of CN1411514A publication Critical patent/CN1411514A/zh
Application granted granted Critical
Publication of CN1252313C publication Critical patent/CN1252313C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32477Vessel characterised by the means for protecting vessels or internal parts, e.g. coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4404Coatings or surface treatment on the inside of the reaction chamber or on parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32853Hygiene
    • H01J37/32862In situ cleaning of vessels and/or internal parts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Drying Of Semiconductors (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

一种清洗和调理等离子体反应腔体内表面的方法,在该腔体中加工例如硅晶片的基片。该方法包括例如通过湿洗或就地等离子体清洗的清洗腔体,将调理气体通入到腔体中,将调理气体激发成等离子体,在内表面上沉积一层聚合物层和加工基片。进行调理步骤可在腔体内没有例如晶片的基片,而且在加工晶片产品之前不用使调理晶片通过腔体而进行加工步骤。在用于蚀刻铝的等离子体反应腔体的情况下,调理气体能够包括含氟气体,含碳气体和含氯气体。

Description

清洗和调理等离子体反应腔体的方法
技术背景
在半导体晶片的加工过程中,传统的是周期地就地进行等离子体蚀刻和CVD反应器的清洗。美国专利申请公开了一种用于清洗半导体晶片处理装置中CVD沉积腔体的方法,其中将腔体中的氟残留物,先前的氟等离子清洗步骤中留存的,与一种或多种例如硅烷(SiH4)、氨、氢气、膦(PH3)、乙硼烷(B2H6)和胂(AsH3)的还原气体接触。另一种用于清洗和调理等离子体CVD反应器的技术在本发明人自己的美国专利申请U.S.№.5647953中公开,其主要内容本文结合引用。过去,所作的这些清洗是在腔体中有晶片以便防护电极,但是现已变成更普遍的无晶片清洗。
其他用于清洗等离子体反应腔体的技术还公开于本发明人自己的美国专利申请U.S.№.5356478;和美国专利申请U.S.№.4657616;4786352;4816113;4842683,4857139;5006192;5129958;5158644和5207836以及日本待审公开专利申请№.57-201016;61-250185,62-214175,63-267430和3-62520中。例如,为了去除SiOx沉积物,已经使用一种激发成等离子态的含氟气体清洗腔体的内表面。通过将如氢气(H2)、硅烷(SiH4)、氨(NH4)、膦(PH3)、乙硼烷(B2H6)或胂(AsH3)的还原气体通过反应器就能够去除反应器清洗后留存的氟残留物。
通常也使用腔体调理加工,其中在调理过程期间将一种晶片放置在腔体中以保护电极。这些调理过程用于等离子体清洗后的沉积反应器是非常普通的,同时用于湿洗后的蚀刻反应器也是非常普通的。有时晶片上有沉积的膜,该膜有助于调理过程作为一个实施例,已经使用抗涂覆的晶片以加速调理过程。这些调理步骤可以使用没有底部电源来干燥腔体壁的加工条件。
当加工产品晶片时,使用调理晶片来干燥等离子体反应腔体以获得重新加工条件的问题是这些调理晶片增加了成本,同时导致产量下降。因比希望有在成本和生产率方面都更经济的一种调理处理。
附图简述
图1表示在本发明的无晶片自动清洗过程中703纳米发射的数据;
图2描述了0.25μm图案测试晶片的预蚀刻结构;
图3是用抗蚀剂晶片的腔体调理后和本发明的无晶片自动清洗过程后图案晶片终点轨迹的对比;
图4a-d是在本发明的无晶片自动清洗过程和无晶片恢复步骤后蚀刻结构的显微照片,和图4e是在腔体中加工的使用抗蚀剂晶片调理的蚀刻结构的显微照片;
图5a-d是在本发明的无晶片自动清洗过程和无晶片恢复步骤后蚀刻结构的显微照片,和图5e是在腔体中加工的使用抗蚀剂晶片调理的蚀刻结构的显微照片;和
图6a-c是在本发明的无晶片自动清洗过程和无晶片恢复步骤后蚀刻结构的显微照片,和图6d-f是在腔体中加工的使用抗蚀剂晶片调理的蚀刻结构的显微照片。
发明概述
本发明提供了一种清洗和处理加工基片的等离子体反应腔体的方法,包括的步骤是:清洗等离子体反应腔体以去除在腔体内表面上积累的沉积物,将包括含氟气体和含碳气体的调理气体通入到腔体中,将调理气体激发成等离子体,在腔体的内表面沉积一层聚合物层,以及在沉积步骤后加工腔体中基片。术语“聚合物”层是描述可以包含蚀刻或沉积副产品的有机物膜。
根据本发明一个优选的实施方案,通过将调理气体暴露在感应电场中来进行激发步骤,该感应电场由在射频天线线圈中射频电流谐振而产生,该射频天线线圈放置在腔体的外部,靠近形成腔体外壳部件的绝缘屏蔽件。另外,通过打开腔体并实行湿洗来进行清洗步骤,或者通过将清洗气体通入到腔体中,将清洗气体激发成等离子体,用等离子体接触内表面而去除沉积物进行清洗步骤。在优选的方法中,当腔体中不含有基片和/或基片包含一产品晶片的时候进行调理步骤,同时在加工产品晶片之前不需要在腔体中加工调理晶片而进行加工步骤。并且,进行调理步骤时并不需要对基片件支撑的射频偏压电极通电,该支撑体在加工步骤中支撑基片。
在清洗铝蚀刻反应器中,调理气体能够进一步包括含氯气体以使在沉积步骤中沉积的聚合物中含有氯。而加工步骤包括在产品晶片上蚀刻一种铝层。在这种情况下,调理气体可以包括Cl2、BCl3、CCl4、SiCl4或它们的混合物。例如,能够在一个或多个步骤中进行调理步骤而使用CHF3、BCl3和/或Cl2作为调理气体。在调理步骤中腔体的压力可以是在从大约5至80毫托的范围内和/或在调理步骤中在产生等离子体天线上施加200至1000瓦功率。
优选实施方案详述
本发明提供了一种经济的清洗和调理其中加工基片的等离子体反应腔体的方法。该方法包括清洗等离子体反应腔体以去除在腔体内表面上积累的沉积物,将包括含氟气体和含碳气体的调理气体通入到腔体中,将调理气体激发成等离子体,在腔体的内表面沉积一层聚合物层,在沉积步骤后在腔体中加工基片。
在一个优选的实施方案中,本发明对等离子刻蚀铝膜堆积使用的调理腔体提供一种无晶片等离子体清洗的恢复方法。等离子体蚀刻铝的方法产生一种沉积在整个反应器上的副产品。最终该副产品达到一定厚度,而不再粘附在反应器壁上并且成颗粒脱落污染待蚀刻的基片。当发生这种情况时,必须打开反应器用湿洗方法清洗反应器。
制备用于清洗的反应器的过程,和实际清洗过程以及腔体清洗之后调理腔体所需的步骤一起,需要大量的时间。为了尽量扩大晶片加工的生产率,希望延长每次打开腔体进行开腔清洗之间的时间。这样作的一种方法将是进行等离子体清洗,该方法适宜减少沉积在腔体中的蚀刻副产品从而导致延长每次开腔清洗之间的时间。然而,由于等离子体清洗代替通过去除反应器沉积的腔体调理,在等离子体清洗后一般有工艺变化。结果,铝蚀刻速率,蚀刻图案和CDs(临界尺寸)特征的变化就能超出待制造器件的可接受范围。如果使用等离子体清洗。将晶片循环通过腔体以便在蚀刻晶片产品之前重新修复腔壁。
在腔体内需要晶片的调理方法中,也可需要一种特殊的晶片种类。这就限制了在生产环境中铝蚀刻的等离子体清洗过程的适应性,因为要中断生产流水线,不得不在腔体中放置特殊晶片并且在等离子体清洗后进行调理过程。结果,在生产中,不使用等离子体清洗而需要更频繁地打开反应器进行长的湿洗工序。因此,使用等离子体清洗来延长湿洗时间的反应器有效性的优点被用特殊类型晶片修复腔体而抵消。
本发明提供了一种方法,运行该方法能够在腔体中不需要晶片而修复等离子清洗后的腔体。由铝蚀刻沉积的副产品已经表现出包含大量有机材料。沉积物出现在整个蚀刻过程,而且通过提供侧壁钝化源,和提供各种反应物重新结合和吸收的场所而参与该过程。能够利用含氧等离子体清洗沉积物。然而这将在腔体中残留一些O2。另外,众所周知,在铝蚀刻气体中加入O2会增加铝蚀刻速率而且对蚀刻图案结果具有影响。
为了在等离子体清洗后修复腔体,要求去除或结合残留O2以使蚀刻过程不受影响。还要求提供有机沉积物,该物以沉积物副产品所作的相同方式参与过程。在无晶片调理过程中,必须作到不侵蚀卡盘,在该过程中没有覆盖或保护该卡盘。
这样作的优选方法是使用BCl3和CHF3的等离子体方法。在例如可从LAMReasearch Corporation获得的TCP9600TM蚀刻器的电感耦合等离子体蚀刻器中,进行该方法是通过对上面电极(TCPTM电源)源而不是底部电极施加高的射频功率,底部电极在晶片加工中提供底偏压。这就是成低的等离子体势并防止晶片卡盘的侵蚀。BCl3适宜清除腔体中的残留O2而CHF3是腔体内壁上有机材料沉积源。BCl3也是出现在蚀刻副产品沉积物中的氯源。在表1中表示TCP9600TM蚀刻反应器经典的加工条件和范围。
                                  表1
                       无晶片恢复过程的加工条件
  压力   TCPTM功率   偏压功率   BCl3   CHF3
  典型   50mt   700瓦   0瓦   15sccm   37sccm
  范围   10-99   400-1200   0-5   10-30   10-60
根据铝蚀刻堆积和加工的需求,可以需要无晶片恢复加工的第二步骤。如果铝蚀刻加工以不包含CHF3的步骤结束,消除CHF3的恢复过程中的最终步骤将改善恢复加工。在表2中表示两步法无晶片恢复方法的一个实施例。
                               表2
两步法无晶片恢复过程
  压力  TCPTM功率   偏压功率   BCl3   Cl2   CHF3
  步骤1   50mt  700瓦   0瓦   15sccm   37sccm
  步骤2   15mt  450瓦   0瓦   30sccm   30sccm
在考虑O2去除能力而选择BCl3的同时,例如CCl4和SiCl4的其它气体也适宜交替使用。通过加入Cl2提高了氯的浓度。同样地,可以容易地使用许多氯烃、氟烃和CFC气体取代CFH3作为聚合物源。能够加入例如氦气和氩气的稀释气体而保持有效加工。
无晶片恢复加工能够在不需要特殊晶片种类下进行,排除了对操作员介入的需要。恢复加工中不需要晶片的另一个好处是生产时间的损失最小,因为没有额外花时间用于清洗或调理步骤中在腔体内放置晶片。这样的直接结果是反应器对蚀刻昂贵产品的较高适应性。
在反应器湿洗后无晶片恢复步骤的使用还具有减少湿洗恢复时间的优点。例如,与其中花费大约90分钟使50个抗蚀剂晶片通过湿洗的腔体的调理步骤比较,本发明的调理方法能够在大约5分钟或更短的时间内完成。因此,本发明的调理方法能够将腔体清洗后的恢复时间减少超过50%,甚至80%或更多。另外,能够在更短的时间中调理腔体而不需要使用或最低限度地使用调理晶片。提高反应器对产品的适应性,和降低对无晶片产品的需求两者都对增加消费者的效益大为有益。
测试数据和结果,TCP TM 9600SE TM 系统的系统基准
这个研究是从9600SETM系统的基准开始的。湿洗腔体,运行覆盖光刻胶晶片以调理腔体。对调理后的腔体连续运行铝蚀刻速率晶片来建立刻蚀速率标靶用于无晶片恢复加工的开发工作。由于制定了执行长时间O2无晶片自动清洗(WAC),加工蚀刻速率发生变化。在表3中表示由基准测试得到的蚀刻速率结果。
                              表3
         O2无晶片自动清洗之前和之后8分钟的铝蚀刻速率基准数据
  晶片编号   平均晶片高度   由于清洗变化的百分比%   压力控制阀角度(打开%)
  预清洗#1   4602   36.8
  预清洗#2   4659   36.1
  WAC后   5254   13.5%   35.5
腔体/恢复过程的解释
已经提出一些机理来说明无晶片自动清洗后蚀刻速率增加。一种蚀刻速率恢复的建议是使用Cl2流动控制而不是压力控制阀位置来控制压力,因为铝蚀刻速率是以Cl2流动来衡量。Cl2与清洗和调理腔体壁的相互作用会有差异(吸收,重新结合,等等),而且如果这样影响了纯净C12的浓度,就能够反映到固定压力控制阀位置的腔体压力上。
已经报导在一些铝蚀刻方法中少量O2的加入增加铝蚀刻速率。腔体中残留的O2被认为是无晶片自动清洗后蚀刻速率增加的一个可能的原因。一种清除残留O2的调理过程能够证明这个观点。
循环抗蚀剂晶片对于腔体调理是一种非常有效的方法,而且对湿洗后的恢复过程是受欢迎的。这说明蚀刻副产品中碳的角色在腔体调理中是重要因素。另外,O2无晶片自动清洗对腔体清洗的有效性表明可用有机沉积物调理腔体内壁。对腔体调理使用有机沉积化学物能够证明这个观点。
考虑提出的那些机理并且进行一系列的实验来确定明显的效果。
对于在操作时Cl2流动控制的选择来说,在无晶片清洗之前和之后在固定压力控制阀表示的压力下必须有可测量的差异。同样地,如果Cl2流动控制能够是有效的,在无晶片自动清洗后我们也希望看到压力控制阀开得更大来保持设定的压力。在WAC之前(2个晶片)和之后测量压力控制阀位置。在位置上的变化是很小的而且,如果明显,对于蚀刻速率恢复在错误方向的Cl2流动控制是有效的。
基于这些,调查腔体恢复的手段是盯着无晶片恢复步骤(WRS)的可行性。考虑到提出的机理,研究3种化学物,称为Cl2/BCl3(O2清除),Cl2/CHF3(有机沉积),BCl3/CHF3(清除和沉积的联合)。
为了测试可能的WRS加工,采用基准铝蚀刻方法,每个晶片之间循环运行WAC(12秒)和WRS加工将系统设置为循环覆盖抗蚀剂晶片。测试的3个WRS步骤在表4中表示。对每一个测试来说,在进行铝蚀刻速率测试之前循环30-40个覆盖抗蚀剂晶片。表5表示每一个速率结果。对调理的腔体来说,铝蚀刻深度是4630埃。BCl3/CHF3过程表现出在WAC后使用WRS能够恢复所需的铝蚀刻速率。假设蚀刻速率是过程变化的一个初级指标,在WAC后使用WRS来恢复所需的加工稳定性的可行性看起来非常好。
                          表4
                    测试WRS工艺条件
  参数   Cl2/BCl3   Cl2/CHF3   BCl3/CHF3
  压力   20mt   20mt   50mt
  TCPTM   700W   700W   700W
  Cl2   162sccm   30sccm
  BCl3   54sccm   15sccm
  CHF3   37sccm   37sccm
  步骤时间   8秒   15秒   20秒
                      表5
             对于WRS过程测试的蚀刻深度结果
  WRS过程   铝蚀刻深度   由调理的腔体的变化
  Cl2/BCl3   5445埃   17.6%
  Cl2/CHF3   5300埃   14.5%
  BCl3/CHF3   4671埃   0.9%
无晶片清洗频率
WAC实施的一个重要部分将是选择WAC频率,在保持清洗腔体使效力最大时它使得对产量的影响减至最小。判定适宜的WAC终点指标是在703纳米的光学发射。当已经充分地清洗腔体时该信号在整个WAC过程中退化和平坦化。
进行一系列的测试来确定每次WACs之间所需的WAC时间尺度与晶片数量(“N”)是多少。用扩大的O2等离子体清洗腔体以达到基准条件。接着进行测试,其中在进行每次WAC之间变化晶片的数量同时在WAC步骤中监测703纳米发射以确定需要清洗腔体的时间。图1表示这种测试的终点轨迹。当RF开始时终点信号快速增加。随着“N”增加,终点信号降低至基准所消耗的时间长度增加,表示清洗时间是“N”的函数。
表6表示WAC的终点时间对“N”的关系以及每个晶片的清洗时间。终点信号表示的时间降低到基准也就是降低到基准上100个计数点。对于这些加工调理,在“N”从1-5的增加时,单位清洗时间减少,然而在“N”=10时,单位清洗时间增加。这说明最佳的清洗频率应该是在5-20个晶片之间。
                                    表6
                  WAC终点和单位清洗时间(秒)对WAC频率的关系
WAC时间   10个晶片   5个晶片   3个晶片   1个晶片  1个晶片
完整WAC   265   71   56   37  38
发射1=100   143   45   40   23  24
                             单位清洗时间
完整WAC   26.5   14.2   18.66667   37  38
发射1=100   14.3   11.4   13.33333   23  24
WRS蚀刻速率恢复
使用表7所示铝蚀刻,WAC和WRS等步骤的加工调理在9600PTXTM上测试BCl3/CHF3。通过用铝蚀刻加工调理循环57个覆盖抗蚀剂晶片初始调理系统。测量调理过腔体的铝蚀刻速率。在这之后,用7分钟的清洗时间使用WAC加工调理完全清洗腔体。使用703纳米终点信号来验证清洗时间是充足的。其次,使用铝蚀刻过程将另外29个覆盖抗蚀剂晶片循环通过系统,但是在每一个晶片之间使用WAC和WRS步骤。接着在WAC和WRS步骤后再检查铝蚀刻速率。蚀刻深度结果在表8中表示。在WAC和WRS后的蚀刻速率与干燥腔体的蚀刻速率没有明显的差异(1.6%或更低)。
                                           表7
                              铝蚀刻,WAC,和WRS工艺条件
  过程   压力   TCPTM(W)  偏压(W)   流速(sccm)   氦气冷却   时间(秒)
  循环   12mt   350  78   74Cl2   30BCl3   5CHF3   10T   65
  铝蚀刻深度   12mt   350  78   74Cl2   30BCl3   5CHF3   10T   35
  WAC   32mt   700  0   500 O2   12
  WRS   50mt   700  0   15BCl3   37CHF3   20
                     表8
    调理的腔体和在WAC+WRS过程后的铝蚀刻深度
  测试条件   铝蚀刻深度   差值
  调理的腔体   3835
  后WAC+WRS   3773   -1.6%
图案蚀刻测试
进行蚀刻测试以确定WAC和WRS对蚀刻图案的影响。图2描述了在蚀刻前图案测试晶片的结构。
排列小矩阵评估恢复步骤中步骤时间和BCl3∶Cl2比率对蚀刻图案的重要性。表9表示在1/2阶乘的矩阵中进行的4个加工。图3表示在两步的恢复加工后蚀刻的晶片的终点轨迹。该终点轨迹与抗蚀刻调理腔体中蚀刻的晶片的终点轨迹非常相匹配。另外,通过BARC、Ti和TiN层的蚀刻速率与抗蚀刻调理腔体中的这些层的蚀刻速率相匹配。在两步恢复后蚀刻的所有晶片具有相近的轨迹。
                                      表9
                                      基准加工:步骤1:50mt/700W TCPTM/37sccm CHF3/15sccm BCl3/“X”秒步骤2:15mt/450W TCPTM/“Y”sccm BCl3/(60-“Y”)sccm Cl2/“Z”秒
  矩阵  晶片16   晶片17   晶片18   晶片19
  步骤1时间(“X”)  30秒   20秒   20秒   30秒
  步骤2时间(“Z”)  15秒   7秒   15秒   7秒
  BCl3/Cl2流动(“Y”)/(60-“Y”)  15sccm BCl345sccm Cl2   15sccm BCl345sccm Cl2   30sccm BCl330sccm Cl2   20sccm BCl330sccm Cl2
图4a-e和5a-e表示由作为WAC和WRS矩阵的一部分蚀刻的晶片的蚀刻图案与抗蚀刻调理腔体中蚀刻的结果的对比。图4a,4b,4c和4d分别是取自晶片16,18,17和19中心位置的显微照片,其中步骤1分别进行30,20,20和30秒,步骤2分别进行15,15,7和7秒,BCl3流速分别为15,30,15和30sccm,Cl2流速分别为45,30,45和30sccm以及ROx分别为7154,7227,7576和7593埃。图4e是取自在调理腔室中蚀刻的晶片13中心位置的显微照片,其中ROx为7506埃。图5a,5b,5c和5d分别是取自晶片16,18,17和19边缘位置的显微照片,其中步骤1分别进行30,20,20和30秒,步骤2分别进行15,15,7和7秒,BCl3流速分别为15,30,15和30sccm,Cl2流速分别为45,30,45和30sccm以及ROx分别为7154,7227,7576和7593埃。图5e是取自在调理腔室中蚀刻的晶片13的边缘位置的显微照片,其中ROx是7506埃。晶片之间在蚀刻图案中的差异在许多方面是微妙的,表现出两步恢复加工具有合理的加工窗。由矩阵得到的显著的趋势包括:
——氯基第二恢复步骤改善了蚀刻图案恢复。
——与对照晶片相比,在第二恢复步骤中较高百分比Cl2的使用表现出导致特征性顶部内降低的CD(临界尺寸)生长。对于短的第一恢复步骤时间(见晶片17)运一影响更强烈。
——较长的第一恢复步骤的使用改善了侧壁粗糙度的加工范围。
——用更短第二步时间蚀刻的晶片与在参考晶片上残留的氧化物更加相似。
图6a-f表示另外进行SEMs时晶片19与调理腔体的结果对比。图6a显示中心位置,图6b显示边缘位置,图6c显示边缘位置,图6d显示中心位置,图6e显示边缘位置,以及图6f显示边缘位置。注意到在这些SEMs中也重现了孤立性特征图案,而且抗蚀刻图案和侧壁沉积通过两步恢复加工也相匹配。
很明显进行足够长时间的第一恢复步骤在腔体中产生了一些有机膜,随后通过进行简短的氯化学反应足以使得在WAC后能够恢复加工。对加工来说氯化学反应不是必须的,保护蚀刻侧壁有赖于厚的有机沉积物和高轰击能量。
在WAC后蚀刻铝的恢复加工需要在腔体中的有机沉积物和腔体壁的氯化作用达到适当的平衡。已经示范了CHF3加入蚀刻加工的加工恢复,其中蚀刻图案对化学平衡更敏感。WRS矩阵表明两步恢复加工能够将腔体有机物氯化的组分的平衡转移WAC后的调理状态。
引用具体实施方案详述本发明的同时,显而易见,本领域技术人员可进行各种修改和变化,以及采用等效物而并不超出所附权利要求的范围。

Claims (19)

1.一种清洗和调理其中加工基片的等离子体反应腔体的方法,包括以下步骤:
(a)清洗等离子腔体以去除在腔体内表面上积累的沉积物;
(b)将包含含氟气体和含碳气体的调理气体通入到腔体中,将调理气体激发成等离子体,和利用等离子体在腔体的内表面沉积一聚合物层,由此调理腔体,所述调理步骤在腔体没有基片时进行;和
(c)在沉积步骤后在腔体中加工基片。
2.如权利要求1所述的方法,其中的激发步骤是通过将调理气体暴露在感应电场中来进行的,该感应电场由在射频天线线圈中共振射频电流而产生,该射频天线线圈放置在腔体的外部,靠近形成腔体外壳一部分的绝缘屏蔽件。
3.如权利要求1所述的方法,其中的调理气体进一步包括含氯气体,而且在沉积步骤中沉积的聚合物中包括氯。
4.如权利要求1所述的方法,其中通过开腔并进行湿洗而进行清洗步骤。
5.如权利要求1所述的方法,其中通过将清洗气体通入腔体中,将清洗气体激发成等离子体,用等离子体接触内表面以去除沉积而进行清洗步骤。
6.如权利要求1所述的方法,其中的基片包括晶片产品,而且在加工晶片产品之前腔体内没有加工调理晶片的加工步骤。
7.如权利要求1所述的方法,其中的加工步骤包括在晶片产品上蚀刻一种铝膜堆积。
8.如权利要求1所述的方法,其中进行调理步骤不需要对基片支撑体的射频偏压电极施加电源,该支撑体在加工步骤中支撑基片。
9.如权利要求1所述的方法,其中的调理气体进一步包含Cl2、BCl3、CCl4、SiCl4或它们的混合物。
10.如权利要求1所述的方法,其中的调理气体包含CHF3并且进一步包含BCl3和/或Cl2
11.如权利要求1所述的方法,其中在调理步骤中腔体的压力是在5至80毫托的范围内。
12.如权利要求2所述的方法,其中在调理步骤中在射频天线上施加200至1000瓦功率。
13.如权利要求5所述的方法,其中等离子体清洗气体将内表面上的沉积物转换为气体副产品。
14.如权利要求1所述的方法,其中的腔体是等离子体蚀刻腔体。
15.如权利要求14所述的方法,进一步包括在清洗步骤之前在腔体中的一个或多个半导体基片上蚀刻铝的步骤,该蚀刻步骤在腔体的内表面上产生沉积。
16.如权利要求14所述的方法,其中在调理步骤后将一个或多个半导体基片放入腔体中并在一个或多个基片上蚀刻铝。
17.如权利要求1所述的方法,其中进行调理步骤直至达到利用光学发射或干涉量度分析法确定的终点。
18.如权利要求1所述的方法,其中进行调理步骤分为第一和第二步骤,调理气体在第一步骤中进一步包括含氯气体而在第二步骤中调理气体不含有氟。
19.如权利要求18所述的方法,其中在第一步骤中调理气体包含1-30sccm的BCl3和10-60sccm的CHF3,而在第二步骤中调理气体包含20-60sccm的BCl3和20-60sccm的Cl2
CNB008174482A 1999-12-22 2000-12-08 清洗和调理等离子体反应腔体的方法 Expired - Lifetime CN1252313C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/469,286 1999-12-22
US09/469,286 US6350697B1 (en) 1999-12-22 1999-12-22 Method of cleaning and conditioning plasma reaction chamber

Publications (2)

Publication Number Publication Date
CN1411514A CN1411514A (zh) 2003-04-16
CN1252313C true CN1252313C (zh) 2006-04-19

Family

ID=23863210

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB008174482A Expired - Lifetime CN1252313C (zh) 1999-12-22 2000-12-08 清洗和调理等离子体反应腔体的方法

Country Status (9)

Country Link
US (1) US6350697B1 (zh)
EP (1) EP1252361B1 (zh)
JP (1) JP4995390B2 (zh)
KR (1) KR100789684B1 (zh)
CN (1) CN1252313C (zh)
AU (1) AU2049901A (zh)
DE (1) DE60042892D1 (zh)
TW (1) TW487988B (zh)
WO (1) WO2001046490A1 (zh)

Families Citing this family (195)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6564810B1 (en) * 2000-03-28 2003-05-20 Asm America Cleaning of semiconductor processing chambers
US7294563B2 (en) * 2000-08-10 2007-11-13 Applied Materials, Inc. Semiconductor on insulator vertical transistor fabrication and doping process
US7166524B2 (en) * 2000-08-11 2007-01-23 Applied Materials, Inc. Method for ion implanting insulator material to reduce dielectric constant
US20070042580A1 (en) * 2000-08-10 2007-02-22 Amir Al-Bayati Ion implanted insulator material with reduced dielectric constant
US6939434B2 (en) * 2000-08-11 2005-09-06 Applied Materials, Inc. Externally excited torroidal plasma source with magnetic control of ion distribution
US7223676B2 (en) * 2002-06-05 2007-05-29 Applied Materials, Inc. Very low temperature CVD process with independently variable conformality, stress and composition of the CVD layer
US20050230047A1 (en) * 2000-08-11 2005-10-20 Applied Materials, Inc. Plasma immersion ion implantation apparatus
US7303982B2 (en) * 2000-08-11 2007-12-04 Applied Materials, Inc. Plasma immersion ion implantation process using an inductively coupled plasma source having low dissociation and low minimum plasma voltage
US7320734B2 (en) * 2000-08-11 2008-01-22 Applied Materials, Inc. Plasma immersion ion implantation system including a plasma source having low dissociation and low minimum plasma voltage
US7037813B2 (en) * 2000-08-11 2006-05-02 Applied Materials, Inc. Plasma immersion ion implantation process using a capacitively coupled plasma source having low dissociation and low minimum plasma voltage
US7430984B2 (en) * 2000-08-11 2008-10-07 Applied Materials, Inc. Method to drive spatially separate resonant structure with spatially distinct plasma secondaries using a single generator and switching elements
US7465478B2 (en) * 2000-08-11 2008-12-16 Applied Materials, Inc. Plasma immersion ion implantation process
US7288491B2 (en) * 2000-08-11 2007-10-30 Applied Materials, Inc. Plasma immersion ion implantation process
US7137354B2 (en) * 2000-08-11 2006-11-21 Applied Materials, Inc. Plasma immersion ion implantation apparatus including a plasma source having low dissociation and low minimum plasma voltage
JP2002319571A (ja) 2001-04-20 2002-10-31 Kawasaki Microelectronics Kk エッチング槽の前処理方法及び半導体装置の製造方法
US6776851B1 (en) * 2001-07-11 2004-08-17 Lam Research Corporation In-situ cleaning of a polymer coated plasma processing chamber
US7060234B2 (en) * 2001-07-18 2006-06-13 Applied Materials Process and apparatus for abatement of by products generated from deposition processes and cleaning of deposition chambers
US20030062064A1 (en) * 2001-09-28 2003-04-03 Infineon Technologies North America Corp. Method of removing PECVD residues of fluorinated plasma using in-situ H2 plasma
KR20030078550A (ko) * 2002-03-30 2003-10-08 주식회사 하이닉스반도체 반응기의 세정 방법
US7204913B1 (en) * 2002-06-28 2007-04-17 Lam Research Corporation In-situ pre-coating of plasma etch chamber for improved productivity and chamber condition control
US6919279B1 (en) 2002-10-08 2005-07-19 Novellus Systems, Inc. Endpoint detection for high density plasma (HDP) processes
US20040134427A1 (en) * 2003-01-09 2004-07-15 Derderian Garo J. Deposition chamber surface enhancement and resulting deposition chambers
US20050087297A1 (en) * 2003-08-06 2005-04-28 Hiroyuki Kitsunai Plasma processing apparatus and method for stabilizing inner wall of processing chamber
CN1332064C (zh) * 2003-09-03 2007-08-15 统宝光电股份有限公司 降低沉积反应室腔体内氟残留的方法
US7022620B2 (en) * 2003-11-18 2006-04-04 Micron Technology, Inc. Conditioning of a reaction chamber
US7258892B2 (en) 2003-12-10 2007-08-21 Micron Technology, Inc. Methods and systems for controlling temperature during microfeature workpiece processing, e.g., CVD deposition
US7906393B2 (en) 2004-01-28 2011-03-15 Micron Technology, Inc. Methods for forming small-scale capacitor structures
JP4490704B2 (ja) 2004-02-27 2010-06-30 株式会社日立ハイテクノロジーズ プラズマ処理方法
US20050211171A1 (en) * 2004-03-26 2005-09-29 Applied Materials, Inc. Chemical vapor deposition plasma reactor having an ion shower grid
US7244474B2 (en) * 2004-03-26 2007-07-17 Applied Materials, Inc. Chemical vapor deposition plasma process using an ion shower grid
US7695590B2 (en) * 2004-03-26 2010-04-13 Applied Materials, Inc. Chemical vapor deposition plasma reactor having plural ion shower grids
US20050211546A1 (en) * 2004-03-26 2005-09-29 Applied Materials, Inc. Reactive sputter deposition plasma process using an ion shower grid
US20050211547A1 (en) * 2004-03-26 2005-09-29 Applied Materials, Inc. Reactive sputter deposition plasma reactor and process using plural ion shower grids
US7291360B2 (en) * 2004-03-26 2007-11-06 Applied Materials, Inc. Chemical vapor deposition plasma process using plural ion shower grids
US8133554B2 (en) 2004-05-06 2012-03-13 Micron Technology, Inc. Methods for depositing material onto microfeature workpieces in reaction chambers and systems for depositing materials onto microfeature workpieces
US20050260354A1 (en) * 2004-05-20 2005-11-24 Varian Semiconductor Equipment Associates, Inc. In-situ process chamber preparation methods for plasma ion implantation systems
US8058156B2 (en) * 2004-07-20 2011-11-15 Applied Materials, Inc. Plasma immersion ion implantation reactor having multiple ion shower grids
US7767561B2 (en) * 2004-07-20 2010-08-03 Applied Materials, Inc. Plasma immersion ion implantation reactor having an ion shower grid
US20060054183A1 (en) * 2004-08-27 2006-03-16 Thomas Nowak Method to reduce plasma damage during cleaning of semiconductor wafer processing chamber
US7531469B2 (en) * 2004-10-23 2009-05-12 Applied Materials, Inc. Dosimetry using optical emission spectroscopy/residual gas analyzer in conjunction with ion current
US7666464B2 (en) * 2004-10-23 2010-02-23 Applied Materials, Inc. RF measurement feedback control and diagnostics for a plasma immersion ion implantation reactor
US20060090773A1 (en) * 2004-11-04 2006-05-04 Applied Materials, Inc. Sulfur hexafluoride remote plasma source clean
US20060154494A1 (en) * 2005-01-08 2006-07-13 Applied Materials, Inc., A Delaware Corporation High-throughput HDP-CVD processes for advanced gapfill applications
US20060260545A1 (en) * 2005-05-17 2006-11-23 Kartik Ramaswamy Low temperature absorption layer deposition and high speed optical annealing system
US7312162B2 (en) * 2005-05-17 2007-12-25 Applied Materials, Inc. Low temperature plasma deposition process for carbon layer deposition
US7422775B2 (en) * 2005-05-17 2008-09-09 Applied Materials, Inc. Process for low temperature plasma deposition of an optical absorption layer and high speed optical annealing
US7429532B2 (en) * 2005-08-08 2008-09-30 Applied Materials, Inc. Semiconductor substrate process using an optically writable carbon-containing mask
US7335611B2 (en) * 2005-08-08 2008-02-26 Applied Materials, Inc. Copper conductor annealing process employing high speed optical annealing with a low temperature-deposited optical absorber layer
US7323401B2 (en) * 2005-08-08 2008-01-29 Applied Materials, Inc. Semiconductor substrate process using a low temperature deposited carbon-containing hard mask
US7312148B2 (en) * 2005-08-08 2007-12-25 Applied Materials, Inc. Copper barrier reflow process employing high speed optical annealing
KR100731124B1 (ko) * 2005-12-28 2007-06-22 동부일렉트로닉스 주식회사 증착 챔버의 세정 방법
US20070235058A1 (en) * 2006-04-10 2007-10-11 Daniel Harrington System and method for removing residue from a wafer processing chamber using sound waves
CN101583736A (zh) * 2007-01-19 2009-11-18 应用材料股份有限公司 浸没式等离子体室
US7871828B2 (en) * 2007-02-06 2011-01-18 Applied Materials, Inc. In-situ dose monitoring using optical emission spectroscopy
US7713757B2 (en) * 2008-03-14 2010-05-11 Applied Materials, Inc. Method for measuring dopant concentration during plasma ion implantation
JP5089513B2 (ja) * 2008-07-11 2012-12-05 東京エレクトロン株式会社 プラズマ処理装置システムの制御装置、プラズマ処理システムの制御方法および制御プログラムを記憶した記憶媒体
JP2010153508A (ja) 2008-12-24 2010-07-08 Hitachi High-Technologies Corp 試料のエッチング処理方法
KR101794069B1 (ko) * 2010-05-26 2017-12-04 삼성전자주식회사 반도체 제조설비 및 그의 시즈닝 공정 최적화 방법
US9324576B2 (en) 2010-05-27 2016-04-26 Applied Materials, Inc. Selective etch for silicon films
US10283321B2 (en) 2011-01-18 2019-05-07 Applied Materials, Inc. Semiconductor processing system and methods using capacitively coupled plasma
US9064815B2 (en) 2011-03-14 2015-06-23 Applied Materials, Inc. Methods for etch of metal and metal-oxide films
US8999856B2 (en) 2011-03-14 2015-04-07 Applied Materials, Inc. Methods for etch of sin films
US8808563B2 (en) 2011-10-07 2014-08-19 Applied Materials, Inc. Selective etch of silicon by way of metastable hydrogen termination
US9267739B2 (en) 2012-07-18 2016-02-23 Applied Materials, Inc. Pedestal with multi-zone temperature control and multiple purge capabilities
US9373517B2 (en) 2012-08-02 2016-06-21 Applied Materials, Inc. Semiconductor processing with DC assisted RF power for improved control
US9034770B2 (en) 2012-09-17 2015-05-19 Applied Materials, Inc. Differential silicon oxide etch
US9023734B2 (en) 2012-09-18 2015-05-05 Applied Materials, Inc. Radical-component oxide etch
US9390937B2 (en) 2012-09-20 2016-07-12 Applied Materials, Inc. Silicon-carbon-nitride selective etch
US9132436B2 (en) 2012-09-21 2015-09-15 Applied Materials, Inc. Chemical control features in wafer process equipment
US8969212B2 (en) 2012-11-20 2015-03-03 Applied Materials, Inc. Dry-etch selectivity
US8980763B2 (en) 2012-11-30 2015-03-17 Applied Materials, Inc. Dry-etch for selective tungsten removal
US9111877B2 (en) 2012-12-18 2015-08-18 Applied Materials, Inc. Non-local plasma oxide etch
US8921234B2 (en) 2012-12-21 2014-12-30 Applied Materials, Inc. Selective titanium nitride etching
US10256079B2 (en) 2013-02-08 2019-04-09 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
US9362130B2 (en) 2013-03-01 2016-06-07 Applied Materials, Inc. Enhanced etching processes using remote plasma sources
US9040422B2 (en) 2013-03-05 2015-05-26 Applied Materials, Inc. Selective titanium nitride removal
US20140271097A1 (en) 2013-03-15 2014-09-18 Applied Materials, Inc. Processing systems and methods for halide scavenging
US9493879B2 (en) 2013-07-12 2016-11-15 Applied Materials, Inc. Selective sputtering for pattern transfer
CN104282518B (zh) * 2013-07-12 2016-12-28 中微半导体设备(上海)有限公司 等离子体处理装置的清洁方法
CN104282519B (zh) * 2013-07-12 2016-12-28 中微半导体设备(上海)有限公司 等离子体处理装置的清洁方法
US9773648B2 (en) 2013-08-30 2017-09-26 Applied Materials, Inc. Dual discharge modes operation for remote plasma
US9576809B2 (en) 2013-11-04 2017-02-21 Applied Materials, Inc. Etch suppression with germanium
US9520303B2 (en) 2013-11-12 2016-12-13 Applied Materials, Inc. Aluminum selective etch
US9245762B2 (en) 2013-12-02 2016-01-26 Applied Materials, Inc. Procedure for etch rate consistency
US9287095B2 (en) 2013-12-17 2016-03-15 Applied Materials, Inc. Semiconductor system assemblies and methods of operation
US9190293B2 (en) * 2013-12-18 2015-11-17 Applied Materials, Inc. Even tungsten etch for high aspect ratio trenches
US9287134B2 (en) 2014-01-17 2016-03-15 Applied Materials, Inc. Titanium oxide etch
US9293568B2 (en) 2014-01-27 2016-03-22 Applied Materials, Inc. Method of fin patterning
US9396989B2 (en) 2014-01-27 2016-07-19 Applied Materials, Inc. Air gaps between copper lines
US9385028B2 (en) 2014-02-03 2016-07-05 Applied Materials, Inc. Air gap process
US9499898B2 (en) 2014-03-03 2016-11-22 Applied Materials, Inc. Layered thin film heater and method of fabrication
US9299575B2 (en) 2014-03-17 2016-03-29 Applied Materials, Inc. Gas-phase tungsten etch
US9299537B2 (en) 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9299538B2 (en) 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9903020B2 (en) 2014-03-31 2018-02-27 Applied Materials, Inc. Generation of compact alumina passivation layers on aluminum plasma equipment components
US9269590B2 (en) 2014-04-07 2016-02-23 Applied Materials, Inc. Spacer formation
US9309598B2 (en) 2014-05-28 2016-04-12 Applied Materials, Inc. Oxide and metal removal
US9613819B2 (en) * 2014-06-06 2017-04-04 Taiwan Semiconductor Manufacturing Company, Ltd. Process chamber, method of preparing a process chamber, and method of operating a process chamber
US9378969B2 (en) 2014-06-19 2016-06-28 Applied Materials, Inc. Low temperature gas-phase carbon removal
US9406523B2 (en) 2014-06-19 2016-08-02 Applied Materials, Inc. Highly selective doped oxide removal method
US9425058B2 (en) 2014-07-24 2016-08-23 Applied Materials, Inc. Simplified litho-etch-litho-etch process
US9496167B2 (en) 2014-07-31 2016-11-15 Applied Materials, Inc. Integrated bit-line airgap formation and gate stack post clean
US9378978B2 (en) 2014-07-31 2016-06-28 Applied Materials, Inc. Integrated oxide recess and floating gate fin trimming
US9659753B2 (en) 2014-08-07 2017-05-23 Applied Materials, Inc. Grooved insulator to reduce leakage current
US9553102B2 (en) 2014-08-19 2017-01-24 Applied Materials, Inc. Tungsten separation
US9355856B2 (en) 2014-09-12 2016-05-31 Applied Materials, Inc. V trench dry etch
US9478434B2 (en) 2014-09-24 2016-10-25 Applied Materials, Inc. Chlorine-based hardmask removal
US9368364B2 (en) 2014-09-24 2016-06-14 Applied Materials, Inc. Silicon etch process with tunable selectivity to SiO2 and other materials
US9613822B2 (en) 2014-09-25 2017-04-04 Applied Materials, Inc. Oxide etch selectivity enhancement
US9624578B2 (en) * 2014-09-30 2017-04-18 Lam Research Corporation Method for RF compensation in plasma assisted atomic layer deposition
US9355922B2 (en) 2014-10-14 2016-05-31 Applied Materials, Inc. Systems and methods for internal surface conditioning in plasma processing equipment
US9966240B2 (en) 2014-10-14 2018-05-08 Applied Materials, Inc. Systems and methods for internal surface conditioning assessment in plasma processing equipment
US11637002B2 (en) 2014-11-26 2023-04-25 Applied Materials, Inc. Methods and systems to enhance process uniformity
US9299583B1 (en) 2014-12-05 2016-03-29 Applied Materials, Inc. Aluminum oxide selective etch
US10573496B2 (en) 2014-12-09 2020-02-25 Applied Materials, Inc. Direct outlet toroidal plasma source
US10224210B2 (en) 2014-12-09 2019-03-05 Applied Materials, Inc. Plasma processing system with direct outlet toroidal plasma source
US9502258B2 (en) 2014-12-23 2016-11-22 Applied Materials, Inc. Anisotropic gap etch
US9343272B1 (en) 2015-01-08 2016-05-17 Applied Materials, Inc. Self-aligned process
US11257693B2 (en) 2015-01-09 2022-02-22 Applied Materials, Inc. Methods and systems to improve pedestal temperature control
US9373522B1 (en) 2015-01-22 2016-06-21 Applied Mateials, Inc. Titanium nitride removal
US9449846B2 (en) 2015-01-28 2016-09-20 Applied Materials, Inc. Vertical gate separation
US20160225652A1 (en) 2015-02-03 2016-08-04 Applied Materials, Inc. Low temperature chuck for plasma processing systems
US9728437B2 (en) 2015-02-03 2017-08-08 Applied Materials, Inc. High temperature chuck for plasma processing systems
US9881805B2 (en) 2015-03-02 2018-01-30 Applied Materials, Inc. Silicon selective removal
US9691645B2 (en) 2015-08-06 2017-06-27 Applied Materials, Inc. Bolted wafer chuck thermal management systems and methods for wafer processing systems
US9741593B2 (en) 2015-08-06 2017-08-22 Applied Materials, Inc. Thermal management systems and methods for wafer processing systems
US9349605B1 (en) 2015-08-07 2016-05-24 Applied Materials, Inc. Oxide etch selectivity systems and methods
US10504700B2 (en) 2015-08-27 2019-12-10 Applied Materials, Inc. Plasma etching systems and methods with secondary plasma injection
US10504754B2 (en) 2016-05-19 2019-12-10 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US10522371B2 (en) 2016-05-19 2019-12-31 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US9865484B1 (en) 2016-06-29 2018-01-09 Applied Materials, Inc. Selective etch using material modification and RF pulsing
US10062575B2 (en) 2016-09-09 2018-08-28 Applied Materials, Inc. Poly directional etch by oxidation
US10629473B2 (en) 2016-09-09 2020-04-21 Applied Materials, Inc. Footing removal for nitride spacer
US9934942B1 (en) 2016-10-04 2018-04-03 Applied Materials, Inc. Chamber with flow-through source
US9721789B1 (en) 2016-10-04 2017-08-01 Applied Materials, Inc. Saving ion-damaged spacers
US10546729B2 (en) 2016-10-04 2020-01-28 Applied Materials, Inc. Dual-channel showerhead with improved profile
US10062585B2 (en) 2016-10-04 2018-08-28 Applied Materials, Inc. Oxygen compatible plasma source
US10062579B2 (en) 2016-10-07 2018-08-28 Applied Materials, Inc. Selective SiN lateral recess
US9947549B1 (en) 2016-10-10 2018-04-17 Applied Materials, Inc. Cobalt-containing material removal
US9768034B1 (en) 2016-11-11 2017-09-19 Applied Materials, Inc. Removal methods for high aspect ratio structures
US10163696B2 (en) 2016-11-11 2018-12-25 Applied Materials, Inc. Selective cobalt removal for bottom up gapfill
US10026621B2 (en) 2016-11-14 2018-07-17 Applied Materials, Inc. SiN spacer profile patterning
US10242908B2 (en) 2016-11-14 2019-03-26 Applied Materials, Inc. Airgap formation with damage-free copper
US10566206B2 (en) 2016-12-27 2020-02-18 Applied Materials, Inc. Systems and methods for anisotropic material breakthrough
US10431429B2 (en) 2017-02-03 2019-10-01 Applied Materials, Inc. Systems and methods for radial and azimuthal control of plasma uniformity
US10403507B2 (en) 2017-02-03 2019-09-03 Applied Materials, Inc. Shaped etch profile with oxidation
US10043684B1 (en) 2017-02-06 2018-08-07 Applied Materials, Inc. Self-limiting atomic thermal etching systems and methods
US10319739B2 (en) 2017-02-08 2019-06-11 Applied Materials, Inc. Accommodating imperfectly aligned memory holes
US10943834B2 (en) 2017-03-13 2021-03-09 Applied Materials, Inc. Replacement contact process
US10319649B2 (en) 2017-04-11 2019-06-11 Applied Materials, Inc. Optical emission spectroscopy (OES) for remote plasma monitoring
US11276590B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Multi-zone semiconductor substrate supports
US11276559B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Semiconductor processing chamber for multiple precursor flow
US10049891B1 (en) 2017-05-31 2018-08-14 Applied Materials, Inc. Selective in situ cobalt residue removal
US10497579B2 (en) 2017-05-31 2019-12-03 Applied Materials, Inc. Water-free etching methods
US10920320B2 (en) 2017-06-16 2021-02-16 Applied Materials, Inc. Plasma health determination in semiconductor substrate processing reactors
US10541246B2 (en) 2017-06-26 2020-01-21 Applied Materials, Inc. 3D flash memory cells which discourage cross-cell electrical tunneling
US10128133B1 (en) 2017-06-30 2018-11-13 Infineon Technologies Austria Ag Method of conditioning an etch chamber for contaminant free etching of a semiconductor device
US10727080B2 (en) 2017-07-07 2020-07-28 Applied Materials, Inc. Tantalum-containing material removal
US10541184B2 (en) 2017-07-11 2020-01-21 Applied Materials, Inc. Optical emission spectroscopic techniques for monitoring etching
US10354889B2 (en) 2017-07-17 2019-07-16 Applied Materials, Inc. Non-halogen etching of silicon-containing materials
US10043674B1 (en) 2017-08-04 2018-08-07 Applied Materials, Inc. Germanium etching systems and methods
US10170336B1 (en) 2017-08-04 2019-01-01 Applied Materials, Inc. Methods for anisotropic control of selective silicon removal
US10297458B2 (en) 2017-08-07 2019-05-21 Applied Materials, Inc. Process window widening using coated parts in plasma etch processes
US10128086B1 (en) 2017-10-24 2018-11-13 Applied Materials, Inc. Silicon pretreatment for nitride removal
US10283324B1 (en) 2017-10-24 2019-05-07 Applied Materials, Inc. Oxygen treatment for nitride etching
US10256112B1 (en) 2017-12-08 2019-04-09 Applied Materials, Inc. Selective tungsten removal
US10903054B2 (en) 2017-12-19 2021-01-26 Applied Materials, Inc. Multi-zone gas distribution systems and methods
US11328909B2 (en) 2017-12-22 2022-05-10 Applied Materials, Inc. Chamber conditioning and removal processes
US10854426B2 (en) 2018-01-08 2020-12-01 Applied Materials, Inc. Metal recess for semiconductor structures
US10679870B2 (en) 2018-02-15 2020-06-09 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus
US10964512B2 (en) 2018-02-15 2021-03-30 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus and methods
TWI766433B (zh) 2018-02-28 2022-06-01 美商應用材料股份有限公司 形成氣隙的系統及方法
US10593560B2 (en) 2018-03-01 2020-03-17 Applied Materials, Inc. Magnetic induction plasma source for semiconductor processes and equipment
KR20200117052A (ko) * 2018-03-01 2020-10-13 어플라이드 머티어리얼스, 인코포레이티드 디바이스 제작에서의 금속 하드마스크 형성 시스템들 및 방법들
US10319600B1 (en) 2018-03-12 2019-06-11 Applied Materials, Inc. Thermal silicon etch
US10497573B2 (en) 2018-03-13 2019-12-03 Applied Materials, Inc. Selective atomic layer etching of semiconductor materials
US10573527B2 (en) 2018-04-06 2020-02-25 Applied Materials, Inc. Gas-phase selective etching systems and methods
US10490406B2 (en) 2018-04-10 2019-11-26 Appled Materials, Inc. Systems and methods for material breakthrough
US10699879B2 (en) 2018-04-17 2020-06-30 Applied Materials, Inc. Two piece electrode assembly with gap for plasma control
US10886137B2 (en) 2018-04-30 2021-01-05 Applied Materials, Inc. Selective nitride removal
US10755941B2 (en) 2018-07-06 2020-08-25 Applied Materials, Inc. Self-limiting selective etching systems and methods
US10872778B2 (en) 2018-07-06 2020-12-22 Applied Materials, Inc. Systems and methods utilizing solid-phase etchants
US10672642B2 (en) 2018-07-24 2020-06-02 Applied Materials, Inc. Systems and methods for pedestal configuration
US11049755B2 (en) 2018-09-14 2021-06-29 Applied Materials, Inc. Semiconductor substrate supports with embedded RF shield
US10892198B2 (en) 2018-09-14 2021-01-12 Applied Materials, Inc. Systems and methods for improved performance in semiconductor processing
US11062887B2 (en) 2018-09-17 2021-07-13 Applied Materials, Inc. High temperature RF heater pedestals
US11417534B2 (en) 2018-09-21 2022-08-16 Applied Materials, Inc. Selective material removal
US11682560B2 (en) 2018-10-11 2023-06-20 Applied Materials, Inc. Systems and methods for hafnium-containing film removal
US11121002B2 (en) 2018-10-24 2021-09-14 Applied Materials, Inc. Systems and methods for etching metals and metal derivatives
US11437242B2 (en) 2018-11-27 2022-09-06 Applied Materials, Inc. Selective removal of silicon-containing materials
US11721527B2 (en) 2019-01-07 2023-08-08 Applied Materials, Inc. Processing chamber mixing systems
US10920319B2 (en) 2019-01-11 2021-02-16 Applied Materials, Inc. Ceramic showerheads with conductive electrodes
US20220189749A1 (en) * 2020-12-14 2022-06-16 Applied Materials, Inc. Process Kit Conditioning Chamber
CN116171483A (zh) * 2021-07-14 2023-05-26 株式会社日立高新技术 等离子体处理方法
KR20230043457A (ko) * 2021-09-24 2023-03-31 주성엔지니어링(주) 기판 처리 장치의 세정 방법

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57201016A (en) 1981-06-05 1982-12-09 Oki Electric Ind Co Ltd Cleaning method for semiconductor manufacturing apparatus
US4811684A (en) 1984-11-26 1989-03-14 Semiconductor Energy Laboratory Co., Ltd. Photo CVD apparatus, with deposition prevention in light source chamber
JPS61250185A (ja) 1985-04-25 1986-11-07 Anelva Corp 真空処理装置のクリ−ニング方法
US4657616A (en) 1985-05-17 1987-04-14 Benzing Technologies, Inc. In-situ CVD chamber cleaner
US4786352A (en) 1986-09-12 1988-11-22 Benzing Technologies, Inc. Apparatus for in-situ chamber cleaning
US4842683A (en) 1986-12-19 1989-06-27 Applied Materials, Inc. Magnetic field-enhanced plasma etch reactor
US5158644A (en) 1986-12-19 1992-10-27 Applied Materials, Inc. Reactor chamber self-cleaning process
JPS63210275A (ja) 1987-02-24 1988-08-31 Semiconductor Energy Lab Co Ltd プラズマ反応装置内を清浄にする方法
JPH029115A (ja) 1988-06-28 1990-01-12 Mitsubishi Electric Corp 半導体製造装置
JP2892694B2 (ja) 1989-07-31 1999-05-17 株式会社日立製作所 プラズマクリーニング方法
US5207836A (en) 1989-08-25 1993-05-04 Applied Materials, Inc. Cleaning process for removal of deposits from the susceptor of a chemical vapor deposition apparatus
JPH03130368A (ja) 1989-09-22 1991-06-04 Applied Materials Inc 半導体ウェーハプロセス装置の洗浄方法
JPH0487329A (ja) * 1990-07-31 1992-03-19 Oki Electric Ind Co Ltd ドライエッチング方法
US5877032A (en) * 1995-10-12 1999-03-02 Lucent Technologies Inc. Process for device fabrication in which the plasma etch is controlled by monitoring optical emission
KR100293830B1 (ko) 1992-06-22 2001-09-17 리차드 에이치. 로브그렌 플라즈마 처리 쳄버내의 잔류물 제거를 위한 플라즈마 정결방법
EP0648858A1 (en) 1993-10-15 1995-04-19 Applied Materials, Inc. Methods of coating plasma etch chambers and apparatus for plasma etching workpieces
US5817574A (en) * 1993-12-29 1998-10-06 Intel Corporation Method of forming a high surface area interconnection structure
JPH07335626A (ja) * 1994-06-10 1995-12-22 Hitachi Ltd プラズマ処理装置およびプラズマ処理方法
JP2962181B2 (ja) * 1995-02-01 1999-10-12 ヤマハ株式会社 ドライエッチング方法及び装置
US6156663A (en) * 1995-10-03 2000-12-05 Hitachi, Ltd. Method and apparatus for plasma processing
US5756400A (en) * 1995-12-08 1998-05-26 Applied Materials, Inc. Method and apparatus for cleaning by-products from plasma chamber surfaces
US5647953A (en) 1995-12-22 1997-07-15 Lam Research Corporation Plasma cleaning method for removing residues in a plasma process chamber
US6136211A (en) * 1997-11-12 2000-10-24 Applied Materials, Inc. Self-cleaning etch process
JP3238137B2 (ja) * 1999-03-23 2001-12-10 株式会社日立製作所 プラズマ処理室のクリーニング方法

Also Published As

Publication number Publication date
KR100789684B1 (ko) 2008-01-02
JP4995390B2 (ja) 2012-08-08
CN1411514A (zh) 2003-04-16
WO2001046490A1 (en) 2001-06-28
EP1252361A1 (en) 2002-10-30
JP2003518328A (ja) 2003-06-03
US6350697B1 (en) 2002-02-26
AU2049901A (en) 2001-07-03
TW487988B (en) 2002-05-21
KR20020062367A (ko) 2002-07-25
DE60042892D1 (de) 2009-10-15
EP1252361B1 (en) 2009-09-02

Similar Documents

Publication Publication Date Title
CN1252313C (zh) 清洗和调理等离子体反应腔体的方法
US5756400A (en) Method and apparatus for cleaning by-products from plasma chamber surfaces
CN1119385C (zh) 去除沉积物的气体和使用该气体的去除方法
US6770567B2 (en) Method of reducing particulates in a plasma etch chamber during a metal etch process
US5883060A (en) Cleaning compositions for wafers used in semiconductor devices
US20030037802A1 (en) Semiconductor treating apparatus and cleaning method of the same
US8545639B2 (en) Method of cleaning aluminum plasma chamber parts
JPH1096082A (ja) 基板処理システム構成部材の寿命を延ばす炭素ベース膜の使用
US8679286B2 (en) Catalyst-aided chemical processing method
KR20090085049A (ko) 내식성 부재 및 그의 제조 방법
JP2001284317A (ja) 固体表面及び半導体製造装置の処理方法並びにそれを用いた半導体装置の製造方法
US20050066994A1 (en) Methods for cleaning processing chambers
CN101044262A (zh) 用于去除表面沉积物的远距腔室法
EP0605785A2 (en) Cleaning agents for removing metal-containing contaminants from integrated circuit assemblies and process for using the same
US20010010228A1 (en) Method of protecting quartz hardware from etching during plasma-enhanced cleaning of a semiconductor processing chamber
JP5214316B2 (ja) プラズマ成膜装置のクリーニング方法
CN116092922B (zh) 碳化硅晶圆沟槽刻蚀方法
CN100521109C (zh) 一种低介电常数电介质的金属单镶嵌结构制作方法
US20010051232A1 (en) Plasma processing method
CN1906753A (zh) 铜表面的表面还原、钝化、防止腐蚀及活化用的系统与方法
US6770214B2 (en) Method of reducing aluminum fluoride deposits in plasma etch reactor
CN111129223B (zh) 一种新型的超晶格红外探测器制备方法
US6626187B2 (en) Method of reconditioning reaction chamber
TW541358B (en) Method for dry cleaning metal etching chamber
EP1198822A2 (en) New methodologies to reduce process sensitivity to the chamber condition

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20060419

CX01 Expiry of patent term