CN1133900A - 改善含碳和氧的氮化钛层质量的方法 - Google Patents

改善含碳和氧的氮化钛层质量的方法 Download PDF

Info

Publication number
CN1133900A
CN1133900A CN96101302A CN96101302A CN1133900A CN 1133900 A CN1133900 A CN 1133900A CN 96101302 A CN96101302 A CN 96101302A CN 96101302 A CN96101302 A CN 96101302A CN 1133900 A CN1133900 A CN 1133900A
Authority
CN
China
Prior art keywords
tin layer
nitrogen
exposed
tin
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN96101302A
Other languages
English (en)
Other versions
CN1057799C (zh
Inventor
金鼎泰
黄成辅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SK Hynix Inc
Original Assignee
Hyundai Electronics Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=19410708&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN1133900(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hyundai Electronics Industries Co Ltd filed Critical Hyundai Electronics Industries Co Ltd
Publication of CN1133900A publication Critical patent/CN1133900A/zh
Application granted granted Critical
Publication of CN1057799C publication Critical patent/CN1057799C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

一种制备氮化钛(TiN)层的方法,包括的步骤为:用原材料形成TiN层;将TiN层置于氢气和氮气的等离子体中。本发明通过消除TiN层中的杂质和减少TiN层中的气孔率,降低了TiN层的电阻率,从而提高了TiN层的电学稳定性。

Description

改善含碳和氧的氮化 钛层质量的方法
本发明涉及一种改善氮化钛(TiN)层质量的方法,TiN层通常用作钨的粘结层和敷铝过程中的扩散阻挡层,特别是涉及一种去除存在于TiN层中的碳和氧原子的方法。
通常,在半导体制造工艺中,TiN层广泛地用作扩散阻挡层和粘结层。制备TiN层的方法一般有两种,一种是物理气相沉积技术(以下简称PVD法),另一种是化学气相沉积技术(以下简称CVD法)。然而,人们通常采用CVD法来形成TiN层,因为该方法具有优良的台阶覆盖效果。
TiN层是通过热解诸如四二甲胺基钛(TDMAT)和四二乙胺基钛(TDEAT)等原材料得到的,所沉积的TiN层为多孔结构。
但是,由于采用热解方法得到的TiN层含有碳化物和氧化物,因此TiN层具有104μohm-cm或者更大的电阻率。同时,由于其多孔性,当TiN层暴露于空气中时,TiN层会吸收水份和氧气。在暴露约24小时的条件下,TiN层的电阻率是未经暴露的TiN层电阻率的3.5倍。TiN层的质量因此而恶化。
本发明的目的是提供一种采用等离子气体消除暴露于空气中的TiN层中的杂质,从而降低其电阻率的方法。
根据本发明的一个方面,提供一种制备TiN层的方法,其包括的步骤为:以原材料形成TiN层;将TiN层暴露于氢和氮等离子气体中。
根据本发明的另一个方面,提供一种制备TiN层的方法,其包括的步骤为:以原材料形成TiN层;将TiN层暴露于氢等离子气体中。
下文将描述本发明的一个实施例。
首先,采用CVD方法,通过热解TDMAT和TDEAT沉积TiN层。然后,利用氮气和氢气对TiN层进行初次等离子处理。也就是说,TiN层暴露于氮气和氢气中。
在优选实施例中,初次等离子处理的条件如下:
1)氮气量:100-500标准立方厘米
2)氢气量:100-500标准立方厘米
3)温度:200-500℃
4)压力:0.5-5乇
5)射频(RF)功率:200-700瓦
6)处理时间:10-60秒
对于TiN层的初次等离子处理是在合成TiN层的工作室中或者紧随TiN层暴露于空气中而放入另一工作室中完成的,没有时间上的延迟。
对TiN层进行初次处理后,采用氮气进行第二次等离子处理。
在优选实施例中,第二次等离子处理的条件如下:
1)氮气量:100-500标准立方厘米
3)温度:200-500℃
4)压力:0.5-5乇
5)射频(RF)功率:200-700瓦
6)处理时间:10-60秒
在初次等离子处理中,激活的氢离子渗透进入TiN层,使TiN层中的-C≡N,=C=N-和=C=O根的键断裂,从而与分裂出来的碳和氧原子发生化合。另一方面,由化合形成的副产物包括CH4和H2O,这些副产物将逸出TiN层。
此外,被激发的氮离子阻止了TiN层对存在于工作室中的氧离子的吸收,并占据逸出的CH4和H2O所形成的空位。
在进行了初次等离子处理的TiN层上再进行第二次等离子处理,使氮原子最大限度地占据TiN层。
等离子处理的结果使钛和氮相结合。因此,经过等离子处理的TiN层的密度要高于未经过等离处理的TiN层,并且能够获得具有较低的电阻率的TiN层。
表1描述了TiN层的电阻率随其形成后暴露于空气的时间的变化。
表(1)TiN层的电阻率
暴露于空气的时间            电阻率(μohm-cm)
   未经等离子处理 经过等离子处理
   0小时     19706     2714
   22小时     70044     3922
   47小时     93376     4249
   73小时     112009     4444
初次等离子处理:           第二次等离子处理:
1)温度:450℃               1)温度:450℃
2)压力:2乇                 2)压力:2乇
3)射频功率:350瓦           3)射频功率:350瓦
4)氢气:200标准立方厘米     4)氮气:300标准立方厘米
5)氮气:300标准立方厘米     5)时间:30秒
6)时间:30秒
在表1中,第二次等离子处理除了只采用300标准立方厘米的氮气等离子体外,与初次等离子处理的条件相同。
从表1中可以看出TiN层的电阻率有相当显著的下降。
此外,表2列出了TiN层的应力变化,表3列出了TiN层中氧原子和碳原子的减少情况。
表(2)TiN层的应力情况
    未经等离子处理     经过等离子处理
延迟时间   0小时         24小时   0小时            24小时
应力(达因/平方厘米) -9.00E+08     -1.30E+09 -6.70E+09        -7.70E+09
应力变化比率(%)           44%             15%
表(3)TiN层的成份
 未经等离子处理(原子百分数)   经过等离子处理(原子百分数)
 Ti       37       45
 C       29       18
 N       21       27
 O       13       10
下文将描述本发明的另一实施例。
对通过热解TDMAT和TDEAT沉积而成的TiN层进行只包含氮气和氢气中的一种等离子气体的等离子处理。在此,所有处理条件与上文所述实施例相同。
当然,根据TiN层的特点,可以只采用两步等离子处理中的一步。
如上所述,本发明通过消除TiN层中的杂质和减少TiN层中的孔隙,获得了降低TiN层的电阻率的效果。因此,本发明可以提高TiN层的电学稳定性。
虽然为了说明的目的公开了本发明的优选实施例,但是,本专业技术领域的人员应当理解,在不偏离本发明权利要求书的范围和精神的前提下,可以作出各种改进、添加和替代。

Claims (16)

1、一种制备氮化钛(TiN)层的方法,包括以下步骤:
用原材料形成TiN层;
将该TiN层暴露于氢气和氮气的等离子体中。
2、根据权利要求1所述的方法,其中,TiN层的暴露步骤是在温度为200~500℃,压力为0.5~5乇,射频功率为200~700瓦的工作室中进行的。
3、根据权利要求2所述的方法,其中,氢和氮等离子气体的量分别为100-500标准立方厘米。
4、根据权利要求2所述的方法,其中,TiN层的暴露步骤持续10~60秒。
5、根据权利要求1所述的方法,其中,TiN层的暴露步骤还包括将其再暴露于氮等离子气体中的步骤。
6、根据权利要求5所述的方法,其中,将TiN层再暴露于氮等离子气体中的步骤是在温度为200~500℃,压力为0.5~5乇,射频功率为200~700瓦的工作室中进行的。
7、根据权利要求5所述的方法,其中,再暴露步骤中的氮等离子气体的量为100-500标准立方厘米。
8、根据权利要求5所述的方法,其中,再暴露TiN层的步骤持续10~60秒。
9、一种制备TiN层的方法,包括以下步骤:
用原材料形成TiN层;
将TiN层暴露于氢气等离子体中。
10、根据权利要求9所述的方法,其中,将TiN层暴露的步骤是在温度为200~500℃,压力为0.5~5乇,射频功率为200~700瓦的工作室中进行的。
11、根据权利要求10所述的方法,其中,氢气等离子体的量为100-500标准立方厘米。
12、根据权利要求10所述的方法,其中,暴露TiN层的步骤持续10~60秒。
13、根据权利要求9所述的方法,其中,暴露TiN层的步骤还包括将该TiN层再暴露于氮气等离子体中的步骤。
14、根据权利要求13所述的方法,其中,将TiN层再暴露于氮气等离子体中的步骤是在温度为200~500℃,压力为0.5~5乇,射频功率为200~700瓦的工作室中进行的。
15、根据权利要求13所述的方法,其中,再暴露步骤中的氮气等离子体的量为100-500标准立方厘米。
16、根据权利要求13所述的方法,其中,再暴露TiN层的步骤持续10~60秒。
CN96101302A 1995-03-28 1996-01-19 制备氮化钛层的方法 Expired - Fee Related CN1057799C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR6706/1995 1995-03-28
KR1019950006706A KR0164149B1 (ko) 1995-03-28 1995-03-28 타이타늄 카보 나이트라이드층의 개질 방법
KR6706/95 1995-03-28

Publications (2)

Publication Number Publication Date
CN1133900A true CN1133900A (zh) 1996-10-23
CN1057799C CN1057799C (zh) 2000-10-25

Family

ID=19410708

Family Applications (1)

Application Number Title Priority Date Filing Date
CN96101302A Expired - Fee Related CN1057799C (zh) 1995-03-28 1996-01-19 制备氮化钛层的方法

Country Status (7)

Country Link
US (1) US6086960A (zh)
JP (1) JP2820915B2 (zh)
KR (1) KR0164149B1 (zh)
CN (1) CN1057799C (zh)
DE (1) DE19600946B4 (zh)
GB (1) GB2299345B (zh)
TW (1) TW363223B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102345114A (zh) * 2010-07-30 2012-02-08 中芯国际集成电路制造(上海)有限公司 一种mocvd加热装置、其形成方法和一种mocvd形成薄膜的方法
CN101734920B (zh) * 2009-12-04 2012-07-04 西安交通大学 一种氮化钛多孔陶瓷及其制备方法
CN102719691A (zh) * 2012-02-21 2012-10-10 山东科技大学 一种具有TiN涂层的多孔膜及其制备方法
CN107615888A (zh) * 2014-12-05 2018-01-19 北美Agc平板玻璃公司 利用宏粒子减少涂层的等离子体源和将等离子体源用于沉积薄膜涂层和表面改性的方法
CN109103139A (zh) * 2018-08-14 2018-12-28 上海华虹宏力半导体制造有限公司 半导体通孔的制造方法
CN113136562A (zh) * 2021-04-19 2021-07-20 东北大学 一种可涂覆于深孔零件的高硬度TiN保护性涂层及其制备方法

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6365495B2 (en) 1994-11-14 2002-04-02 Applied Materials, Inc. Method for performing metallo-organic chemical vapor deposition of titanium nitride at reduced temperature
US6251758B1 (en) 1994-11-14 2001-06-26 Applied Materials, Inc. Construction of a film on a semiconductor wafer
US6291343B1 (en) * 1994-11-14 2001-09-18 Applied Materials, Inc. Plasma annealing of substrates to improve adhesion
US6699530B2 (en) 1995-07-06 2004-03-02 Applied Materials, Inc. Method for constructing a film on a semiconductor wafer
US6933021B2 (en) * 1995-07-06 2005-08-23 Applied Materials, Inc. Method of TiSiN deposition using a chemical vapor deposition (CVD) process
KR100226763B1 (ko) * 1996-07-31 1999-10-15 김영환 화학기상증착 장치를 이용한 박막 형성방법
KR100226764B1 (ko) * 1996-08-21 1999-10-15 김영환 화학기상증착 장치를 이용한 박막 형성방법
US6537621B1 (en) 1996-10-01 2003-03-25 Tokyo Electron Limited Method of forming a titanium film and a barrier film on a surface of a substrate through lamination
JP3374322B2 (ja) * 1996-10-01 2003-02-04 東京エレクトロン株式会社 チタン膜及びチタンナイトライド膜の連続成膜方法
KR19980060642A (ko) * 1996-12-31 1998-10-07 김영환 타이타늄질화막 형성방법
US6211065B1 (en) * 1997-10-10 2001-04-03 Applied Materials, Inc. Method of depositing and amorphous fluorocarbon film using HDP-CVD
US6323119B1 (en) * 1997-10-10 2001-11-27 Applied Materials, Inc. CVD deposition method to improve adhesion of F-containing dielectric metal lines for VLSI application
US6624064B1 (en) * 1997-10-10 2003-09-23 Applied Materials, Inc. Chamber seasoning method to improve adhesion of F-containing dielectric film to metal for VLSI application
KR100477840B1 (ko) * 1997-12-27 2005-06-29 주식회사 하이닉스반도체 반도체장치의장벽금속막형성방법
US20030015496A1 (en) * 1999-07-22 2003-01-23 Sujit Sharan Plasma etching process
US6656831B1 (en) * 2000-01-26 2003-12-02 Applied Materials, Inc. Plasma-enhanced chemical vapor deposition of a metal nitride layer
US6573030B1 (en) 2000-02-17 2003-06-03 Applied Materials, Inc. Method for depositing an amorphous carbon layer
JP3449960B2 (ja) * 2000-02-25 2003-09-22 沖電気工業株式会社 半導体装置の製造方法
US6285038B1 (en) * 2000-03-01 2001-09-04 Micron Technology, Inc. Integrated circuitry and DRAM integrated circuitry
US6465348B1 (en) * 2001-06-06 2002-10-15 United Microelectronics Corp. Method of fabricating an MOCVD titanium nitride layer utilizing a pulsed plasma treatment to remove impurities
US20060014384A1 (en) * 2002-06-05 2006-01-19 Jong-Cheol Lee Method of forming a layer and forming a capacitor of a semiconductor device having the same layer
JP2008041977A (ja) * 2006-08-08 2008-02-21 Nec Electronics Corp 半導体回路装置の製造方法
JP2012193457A (ja) * 2009-06-10 2012-10-11 Hitachi Kokusai Electric Inc 半導体装置の製造方法及び半導体装置の製造装置
US8178445B2 (en) 2009-06-10 2012-05-15 Hitachi Kokusai Electric Inc. Substrate processing apparatus and manufacturing method of semiconductor device using plasma generation
CN103173731B (zh) * 2011-12-23 2015-03-18 中国科学院兰州化学物理研究所 一种改善TiN/TiCN多层复合薄膜材料性能的方法
US8623468B2 (en) * 2012-01-05 2014-01-07 Taiwan Semiconductor Manufacturing Company, Ltd. Methods of fabricating metal hard masks
US10276648B1 (en) * 2017-12-27 2019-04-30 Texas Instruments Incorporated Plasma treatment for thin film resistors on integrated circuits

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS581067A (ja) * 1981-06-26 1983-01-06 Toshiba Corp 装飾用金属窒化物皮膜の形成法
JPH02310918A (ja) * 1989-05-25 1990-12-26 Fujitsu Ltd 半導体装置の製造方法
JPH03135018A (ja) * 1989-10-20 1991-06-10 Hitachi Ltd 半導体装置の製造方法およびその装置
JPH03153018A (ja) * 1989-11-10 1991-07-01 Seiko Epson Corp 半導体装置の製造方法
IT1241922B (it) * 1990-03-09 1994-02-01 Eniricerche Spa Procedimento per realizzare rivestimenti di carburo di silicio
KR920002708B1 (ko) * 1990-03-22 1992-03-31 한국과학기술원 TiN의 플라즈마 화학증착방법
JP3243722B2 (ja) * 1990-10-24 2002-01-07 住友金属工業株式会社 薄膜の形成方法および半導体装置
US5175126A (en) * 1990-12-27 1992-12-29 Intel Corporation Process of making titanium nitride barrier layer
US5173327A (en) * 1991-06-18 1992-12-22 Micron Technology, Inc. LPCVD process for depositing titanium films for semiconductor devices
US5308655A (en) * 1991-08-16 1994-05-03 Materials Research Corporation Processing for forming low resistivity titanium nitride films
US5192589A (en) * 1991-09-05 1993-03-09 Micron Technology, Inc. Low-pressure chemical vapor deposition process for depositing thin titanium nitride films having low and stable resistivity
US5376590A (en) * 1992-01-20 1994-12-27 Nippon Telegraph And Telephone Corporation Semiconductor device and method of fabricating the same
US5334264A (en) * 1992-06-30 1994-08-02 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Titanium plasma nitriding intensified by thermionic emission source
WO1994004716A1 (en) * 1992-08-14 1994-03-03 Hughes Aircraft Company Surface preparation and deposition method for titanium nitride onto carbonaceous materials
US5382809A (en) * 1992-09-14 1995-01-17 Sumitomo Electric Industries, Ltd. Semiconductor device including semiconductor diamond
US5364522A (en) * 1993-03-22 1994-11-15 Liang Wang Boride, carbide, nitride, oxynitride, and silicide infiltrated electrochemical ceramic films and coatings and the method of forming such
US5273783A (en) * 1993-03-24 1993-12-28 Micron Semiconductor, Inc. Chemical vapor deposition of titanium and titanium containing films using bis (2,4-dimethylpentadienyl) titanium as a precursor
US5246881A (en) * 1993-04-14 1993-09-21 Micron Semiconductor, Inc. Low-pressure chemical vapor deposition process for depositing high-density, highly-conformal, titanium nitride films of low bulk resistivity
US5380566A (en) * 1993-06-21 1995-01-10 Applied Materials, Inc. Method of limiting sticking of body to susceptor in a deposition treatment
JPH0722339A (ja) * 1993-07-05 1995-01-24 Toshiba Corp 薄膜形成方法
US5480684A (en) * 1994-09-01 1996-01-02 Micron Technology, Inc. Method of reducing carbon incorporation into films produced by chemical vapor deposition involving organometallic precursor compounds
US5747116A (en) * 1994-11-08 1998-05-05 Micron Technology, Inc. Method of forming an electrical contact to a silicon substrate
US5576071A (en) * 1994-11-08 1996-11-19 Micron Technology, Inc. Method of reducing carbon incorporation into films produced by chemical vapor deposition involving organic precursor compounds
US5834068A (en) * 1996-07-12 1998-11-10 Applied Materials, Inc. Wafer surface temperature control for deposition of thin films
US5989652A (en) * 1997-01-31 1999-11-23 Tokyo Electron Limited Method of low temperature plasma enhanced chemical vapor deposition of tin film over titanium for use in via level applications
US5906866A (en) * 1997-02-10 1999-05-25 Tokyo Electron Limited Process for chemical vapor deposition of tungsten onto a titanium nitride substrate surface
US5972179A (en) * 1997-09-30 1999-10-26 Lucent Technologies Inc. Silicon IC contacts using composite TiN barrier layer

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101734920B (zh) * 2009-12-04 2012-07-04 西安交通大学 一种氮化钛多孔陶瓷及其制备方法
CN102345114A (zh) * 2010-07-30 2012-02-08 中芯国际集成电路制造(上海)有限公司 一种mocvd加热装置、其形成方法和一种mocvd形成薄膜的方法
CN102345114B (zh) * 2010-07-30 2013-06-19 中芯国际集成电路制造(上海)有限公司 一种mocvd加热装置、其形成方法和一种mocvd形成薄膜的方法
CN102719691A (zh) * 2012-02-21 2012-10-10 山东科技大学 一种具有TiN涂层的多孔膜及其制备方法
CN107615888A (zh) * 2014-12-05 2018-01-19 北美Agc平板玻璃公司 利用宏粒子减少涂层的等离子体源和将等离子体源用于沉积薄膜涂层和表面改性的方法
CN107615888B (zh) * 2014-12-05 2022-01-04 北美Agc平板玻璃公司 利用宏粒子减少涂层的等离子体源和将等离子体源用于沉积薄膜涂层和表面改性的方法
US11875976B2 (en) 2014-12-05 2024-01-16 Agc Flat Glass North America, Inc. Plasma source utilizing a macro-particle reduction coating and method of using a plasma source utilizing a macro-particle reduction coating for deposition of thin film coatings and modification of surfaces
CN109103139A (zh) * 2018-08-14 2018-12-28 上海华虹宏力半导体制造有限公司 半导体通孔的制造方法
CN113136562A (zh) * 2021-04-19 2021-07-20 东北大学 一种可涂覆于深孔零件的高硬度TiN保护性涂层及其制备方法

Also Published As

Publication number Publication date
CN1057799C (zh) 2000-10-25
DE19600946B4 (de) 2005-02-10
JP2820915B2 (ja) 1998-11-05
KR0164149B1 (ko) 1999-02-01
KR960035890A (ko) 1996-10-28
GB9605507D0 (en) 1996-05-15
GB2299345A (en) 1996-10-02
DE19600946A1 (de) 1996-10-02
GB2299345B (en) 1998-10-14
JPH08337875A (ja) 1996-12-24
US6086960A (en) 2000-07-11
TW363223B (en) 1999-07-01

Similar Documents

Publication Publication Date Title
CN1057799C (zh) 制备氮化钛层的方法
US5576071A (en) Method of reducing carbon incorporation into films produced by chemical vapor deposition involving organic precursor compounds
USRE35785E (en) Low-pressure chemical vapor deposition process for depositing high-density highly-conformal, titanium nitride films of low bulk resistivity
US20100227476A1 (en) Atomic layer deposition processes
US20010041441A1 (en) Method of reducing carbon incorporation into films produced by chemical vapor deposition involving organic precursor compounds
WO1987004470A1 (en) Cubic boron nitride preparation
EP0711846A1 (en) Titanium nitride deposited by chemical vapor deposition
JP2002526651A (ja) 銅をベースとするフィルムの化学蒸着方法及びその銅源前駆体
US5510297A (en) Process for uniform deposition of tungsten silicide on semiconductor wafers by treatment of susceptor having aluminum nitride surface thereon with tungsten silicide after cleaning of susceptor
JP2002026005A (ja) 半導体素子のアルミニウム酸化膜形成方法
JPS61295371A (ja) 窒化アルミニウム層を有するアルミニウム材の製法
EP1180553A1 (en) CVD process for depositing copper on a barrier layer
KR101793233B1 (ko) 접착력이 향상된 bdd 전극체의 제조방법 및 이에 의해 제조된 bdd 전극체
TWI826568B (zh) 以原子層沈積法製造釕金屬薄膜之方法
CN1150461A (zh) 具有增加了四面体等同碳浓度的镀碳阻挡膜
JP6797068B2 (ja) 原子層堆積法による炭化チタン含有薄膜の製造方法
US20230175118A1 (en) Methods of forming low resistivity titanium nitride thin film in horizontal vias and related devices
JPH08158040A (ja) 窒化炭素薄膜及びその形成方法
JP2002016064A (ja) 低誘電率六方晶窒化ホウ素膜、層間絶縁膜及びその製造方法
JPH11350110A (ja) 炭窒化ホウ素膜の製造方法
KR100539963B1 (ko) 반도체 소자의 유전체막 형성 방법
CN117721441A (zh) 一种高应力氮化硅薄膜的形成方法
JPH08158039A (ja) 窒化炭素薄膜の形成方法
JPH0657408A (ja) 窒化ホウ素膜の形成方法
EP0458596A1 (en) Dielectric thin film and its preparation method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20001025

Termination date: 20140119