CN1150461A - 具有增加了四面体等同碳浓度的镀碳阻挡膜 - Google Patents
具有增加了四面体等同碳浓度的镀碳阻挡膜 Download PDFInfo
- Publication number
- CN1150461A CN1150461A CN95193360A CN95193360A CN1150461A CN 1150461 A CN1150461 A CN 1150461A CN 95193360 A CN95193360 A CN 95193360A CN 95193360 A CN95193360 A CN 95193360A CN 1150461 A CN1150461 A CN 1150461A
- Authority
- CN
- China
- Prior art keywords
- carbon
- substrate
- carbon coating
- equal
- tetrahedron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/505—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/26—Deposition of carbon only
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/046—Forming abrasion-resistant coatings; Forming surface-hardening coatings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/048—Forming gas barrier coatings
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/458—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
- C23C16/4582—Rigid and flat substrates, e.g. plates or discs
- C23C16/4583—Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
- C23C16/4586—Elements in the interior of the support, e.g. electrodes, heating or cooling devices
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/505—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
- C23C16/509—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Metallurgy (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Inorganic Chemistry (AREA)
- Chemical Vapour Deposition (AREA)
- Carbon And Carbon Compounds (AREA)
- Laminated Bodies (AREA)
Abstract
采用等离子体增强化学气相淀积法将碳淀积在衬底上,该方法所用的可分解前体中含有种子材料添加物。该种子材料是具有高浓度sp3四面体等同碳的烃。该种子材料为复制淀积的无定形碳镀层中的sp3四面体等同碳原子提供了样板。
Description
本发明涉及镀碳阻挡膜,具体而言,涉及具有增加了四面体等同碳浓度的镀碳阻挡膜,这种四面体等同碳将一些类似金刚石的特性赋予该碳镀层。
已知碳镀层可提供某些阻挡特性。例如碳镀层可抑制一些成分例如水和氧的透过。因此,通常将碳镀层镀在原来不具有阻挡特性的衬底(例如聚合薄膜)上。具有这种碳镀层的膜通常称之为阻挡膜。
可采用多种不同的技术将碳镀层淀积在衬底上。优选的一种技术是等离子体增强化学气相淀积法(PECVD),该方法可使碳淀积在例如聚合薄膜的低温衬底上。这种技术与其他淀积方法相比,可在更低的反应室温度下使碳淀积。其结果可在较低的反应室温度下将碳淀积在低温衬底上。
淀积的碳可使聚合薄膜具有阻挡特性。然而,不同的商业应用场合对不透过性的要求超出单独使用传统碳淀积法所能达到的程度。因此,在本领域中还需要有一种采用PECVD技术生产的改进和/或增强碳镀层阻挡特性的方法。
本发明提供了一种生产具有增强阻挡特性的薄膜的方法。该方法的步骤包括,采用可分解前体的气相淀积法在等离子体存在下将无定形碳镀层淀积在衬底上。该可分解前体包含可促进淀积的碳镀层中生成四面体等同碳,或增加碳镀层中的四面体等同碳浓度的种子材料。优选的种子材料是具有高浓度的四面体等同碳的有机化合物。
在优选的实施方案中,这种薄膜是在双频条件下生产的。具体而言,该方法的步骤包括在位于反应室中的第一电极上施加例如约13.5MHz的主射频以产生等离子体,在位于反应室中的第二电极上施加10kHz至1MHz的辅射频以促进在衬底上淀积碳镀层。
本发明还提供了一种具有增强阻挡性的薄膜。该薄膜是采用可分解前体气相淀积法在等离子体存在下将无定形碳镀层淀积在衬底上而制得的。该可分解前体包含可促进在淀积的碳镀层中生成四面体等同碳,或增加碳镀层中四面体等同碳浓度的种子材料。优选的种子材料是具有高浓度四面体等同碳的有机化合物。
无定形碳镀层中的四面体等同碳将一些类似金刚石的特性供给上述碳镀层。该镀层的耐用性和硬度都显示出明显的改善,同时,对水和氧的不透过性也明显提高。因此,本发明提供了具有增强阻挡性的镀碳膜。
本发明的阻挡膜是采用在衬底表面上淀积无定形碳镀层而生产的。这种碳镀层是采用将含种子材料的气态前体分解以形成镀层而产生的。优选采用等离子体增强化学气相淀积法实现上述分解。
杂化为sp3分子轨道的碳原子是以类似于金刚石立方结构的四面体等同方式与其他四个原子共价连接。因此,含有高浓度sp3杂化碳的碳镀层显出类似金刚石的特性。这些特性包括耐用性、更高的对氧和水的不透过性和更高的硬度。
相反,杂化为sp2分子轨道的碳原子是以三角形等同方式与其他三个原子共价连接。未杂化的p原子轨道与第四个原子形成弱的范德瓦尔斯键。以这种等同方式排列的碳原子形成类似石墨的层状结构。结果是含有高浓度sp2杂化碳的碳镀层所显出的对氧和水的不透过性较差。此外,含有高浓度sp2杂化碳的镀层所显出的耐用性和硬度也较低。
无定形碳镀层通常含有sp3和sp2这两种杂化碳原子。因此,碳镀层的阻挡特性取决于其中所含sp3与sp2碳原子之比。可以认为,增加碳镀层中sp3碳原子的总数将提高该镀层的不透过性。
根据本发明,将含有高浓度sp3碳原子的种子材料加到可分解前体中。可以认为,在复制淀积的无定形碳镀层中的sp3四面体等同碳时,该种子材料可起样板作用。这样,该无定形碳镀层中sp3碳原子的总数得以增加,从而产生具有上述增强性能的碳镀层。
本发明优选的种子材料是具有高比例sp3四面体等同碳原子的烃。可以认为,种子材料化合物至少需要有一个叔或季键合的碳原子(即一个分别与其他三个或四个碳原子键合的sp3碳原子)结合在碳环体系或杂环体系中;优选至少有一个这样的碳原子结合在桥环体系中;例如结合在降冰片烷或奎宁环中。优选种子材料中的碳,在气态前体分解过程中应保持其四面体等同状态。金刚石形的化合物,例如美国专利5,019,660和5,053,434中公开的化合物是特别优选的。优选的这样一种金刚石形化合物是金刚烷。
优选的种子材料应能在标准状况下呈气态存在,以便易于将其加到气态前体中。或该种子材料应能容易地转变为气态。例如,在环境条件下以固态存在的材料优选能进行升华。同样,在环境条件下以液态存在的材料优选能进行蒸发。
可以预期,本发明的无定形碳镀层可淀积在各种衬底上。例如本公开的碳镀层可淀积在由聚烯烃、聚酯和耐纶制得的聚合薄膜上。聚烯烃、尤其是聚丙烯和聚乙烯是特别优选的衬底。
优选用于本发明的可分解前体是烃气。它可以包括但不限于具有约1-20个碳原子的烃类气体。乙炔是一种特别优选的可分解前体气。
优选将种子材料在反应室外与前体气混合。具体而言,前体气可包含0.001%-10%的种子材料。
当将可分解前体引到等离子体区时,该前体气即分解并随后淀积在衬底上成为无定形碳层。该碳镀层的厚度为10-5000埃。这种无定形碳镀层的厚度主要取决于淀积时间的长短。
本发明的等离子体是在第一电极上施加主射频而产生的。该射频激发流过反应室的气体混合物,从而形成等离子体。该气体混合物优选的是上述的前体气(例如乙炔)和惰性气体(例如氩)的混合物。该前体气还可以包含另一种气体例如氢。
适用于PECVD的装置可从市场上购得。这种装置一般包括其尺寸可容纳衬底的反应室。该装置还包括将反应室抽空的真空泵、在控制条件下将气体混合物引入反应室的装置和在反应室中产生等离子体的装置。
在一个特别优选的实施方案中,产生等离子体的装置包括相互远隔的第一和第二电极,它们共同用于将独立的双能源引入反应室。在第一电极上施加约13.56MHz的主射频,而在第二电极则施加10kHz至1MHz的辅射频。反应室体优选作为这两种射频的接地。
该主射频产生等离子体(通过激发气体混合物),而辅射频可以认为是激发正被淀积的碳分子以促进在衬底上淀积碳。此原理已得到以下事实的支持,在施加辅射频时可观察到等离子体的明显变化。
还可以考虑其他产生等离子体的装置。例如,可在两电极间施加约2.45GHz的主射频。此外,也可用激光或磁场来激发气体混合物。
该反应室优选包括用于支承待镀衬底的衬底托板。此衬底托板优选与第二电极组合为一体。在本发明的优选实施方案中,该衬底托板的背面(即背向第一电极的面)是绝缘的。通过将第二电极的背面绝缘,可使施加在第二电极上的能量集中在第一和第二电极之间的区域。此外,还将施加在第二电极上的能量直接传递通过置于衬底托板上的膜。
另外,该衬底托板可包括一平面或拱形的支撑面。可以预期,采用拱形支撑面将有利于工业生产本文所公开的阻挡膜。
以下实施例将详细说明根据本发明生产的薄膜的增强阻挡特性。
实施例I
制备了对照样1。取一块约1密耳厚的无镀层定向聚丙烯膜,测量其透氧率(TO2)。透氧率是用Ox-tran100twin型双位透氧率测量装置(two station oxygen transmission measuring unit,由Modern Controls,Inc.,of Minneapolis,Minnesota按商品名Mocon注册销售)测量的。该对照样于30℃和0%相对湿度时的透氧率为106cc/100m2-atm-24hr。
实施例II
制备了对照样2和3。将约1密耳厚的定向聚丙烯(OPP)试样切成11”长、15.5”宽的薄片,并安装在与第二电极相接的10”长、15.5”宽的衬底托板上。该衬底托板具有曲率半径为40”的拱形表面。该聚合薄膜试样沿着其本身长度悬垂于衬底托板上,并使试样固定在托板上。
将该反应室抽真空至约1mTorr。然后将乙炔/氩混合气以100sccm的流速输入反应室中,该混合气中的70%为乙炔。采用位于真空泵入口的闸阀进行调节,使反应室中的压力增加至约为100mTorr的反应压力。在第一电极上施加功率电平为100watts的13.5MHz的主射频,并在第二电极上施加功率电平为25-100watts的95kHz的辅射频。
将试样淀积约300秒。此后,将混合气切断,再将反应室抽真空至约1mTorr。通入氮气以消除反应室的真空,取出试样。然后测量对照样2和3的透氧率。
实施例III
采用在乙炔/氩混合气中添加约0.1-1%的金刚烷,此后重复上述实施例II的操作步骤制备试样4和5。
实施例IV
在将衬底托板背面绝缘后,再按实施例II的操作步骤制备对照样6和7。具体而言,该衬底托板背面是采取粘贴聚丙烯的方法绝缘的。
实施例V
采用在前体混合气中添加约0.1-1%的金刚烷,其后重复上述实施例IV的操作步骤制备试样8和9。
实施例I-V的结果归纳在下列表中:
试样 辅射频功率 金刚烷气流 TO2
(watts)
对照样1 -- -- 106
对照样2 25 否 57
对照样3 100 否 2.4
试样 4 25 是 29
试样 5 100 是 1.5
对照样6 25 否 7.5
对照样7 100 否 1.2
试样 8 25 是 6.8
试样 9 100 是 0.8
TO2:在30℃和0%相对湿度时,cc/100in2-atm-24hr
从上表中列出的测试数据可明显看出,采用在前体气中添加种子材料的方法可显著地提高镀碳膜的阻挡特性。具体而言,当施加功率电平为25watts的辅射频时,被测试的镀碳膜的透氧率从57cc(无种子材料时)降至29cc(有种子材料时)。与此类似,当施加功率电平为100watts的辅射频时,该透氧率从2.4cc(无种子材料时)降至1.5cc(有种子材料时)。
此外,从上表中所列的测试数据可明显看出,当将第二电极背面绝缘时,该淀积的镀层的不透过性可进一步提高。具体而言,在功率电平为25watts时,该透氧率从7.5cc(无种子材料时)降至6.8cc(有种子材料时)。与此类似,在功率电平为100watts时,该透氧率从1.2cc(无种子材料时)降至0.8cc(有种子材料时)。
Claims (14)
1.一种生产具有增强阻挡特性的薄膜的方法。该方法包括采用可分解前体的气相淀积法在等离子体存在下将碳镀层淀积在衬底上,其中该可分解前体包含可促进淀积的碳镀层中生成四面体等同碳,或增加碳镀层中的四面体等同碳浓度的种子材料。
2.根据权利要求1的方法,其中该种子材料包括具有高浓度的四面体等同碳的有机化合物。
3.根据权利要求2的方法,其中该有机化合物包括金刚石形化合物。
4.根据权利要求3的方法,其中该金刚石形化合物包括金刚烷。
5.根据前述权利要求中任一项的方法,其中该可分解前体包括0.001%-10%的种子材料。
6.根据前述权利要求中任一项的方法,其中该可分解前体是具有1-20个碳原子的有机化合物。
7.根据权利要求6的方法,其中该有机化合物包括乙炔。
8.根据前述权利要求中任一项的方法,其中该衬底是用一种选自聚烯烃、聚酯和耐纶的材料制得的。
9.根据前述权利要求中任一项的方法,其中该淀积步骤是在双频条件下完成的。
10.根据前述权利要求中任一项的方法,其中该淀积步骤包括在位于反应室中的第一电极上施加主射频以产生等离子体,在位于反应室中的第二电极上施加10kHz-1MHz的辅射频以促进在衬底上淀积碳镀层。
11.根据权利要求10的方法,其中该第二电极包括衬底托板;还包括将衬底安置在衬底托板上以便接受碳镀层的步骤。
12.一种具有增强阻挡特性的薄膜,该薄膜包括一种衬底,在该衬底上淀积了具有增加了四面体等同碳浓度的碳镀层。
13.一种具有增强阻挡特性的薄膜,该薄膜是采用可分解前体的气相淀积法在等离子体存在下将碳镀层淀积在衬底上的方法制得的,其中该可分解前体包含可促进淀积的碳镀层中生成四面体等同碳,或增加碳镀层中的四面体等同碳浓度的种子材料。
14.根据权利要求13的薄膜,其中该衬底是用一种选自聚烯烃、聚酯和耐纶的材料制得的。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US25399194A | 1994-06-03 | 1994-06-03 | |
US08/253,991 | 1994-06-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN1150461A true CN1150461A (zh) | 1997-05-21 |
Family
ID=22962504
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN95193360A Pending CN1150461A (zh) | 1994-06-03 | 1995-06-02 | 具有增加了四面体等同碳浓度的镀碳阻挡膜 |
Country Status (11)
Country | Link |
---|---|
EP (1) | EP0763144B1 (zh) |
JP (1) | JPH10501302A (zh) |
KR (1) | KR970702388A (zh) |
CN (1) | CN1150461A (zh) |
AU (1) | AU2661595A (zh) |
DE (1) | DE69522107T2 (zh) |
ES (1) | ES2161294T3 (zh) |
NZ (1) | NZ287784A (zh) |
TW (1) | TW335415B (zh) |
WO (1) | WO1995033864A1 (zh) |
ZA (1) | ZA954295B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101480110B (zh) * | 2006-06-28 | 2012-12-05 | 应用材料公司 | 具有改进的密度和阶梯覆盖率的无定形碳膜的沉积方法 |
CN105839071A (zh) * | 2016-04-19 | 2016-08-10 | 中国科学院大学 | 双频电感耦合射频等离子体喷射沉积金刚石的方法 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002058139A2 (en) * | 2001-01-19 | 2002-07-25 | Chevron U.S.A. Inc. | Diamondoid-containing materials in microelectronics |
JP2008056955A (ja) * | 2006-08-29 | 2008-03-13 | Masayoshi Umeno | 炭素膜形成方法 |
JP2008201982A (ja) * | 2007-02-22 | 2008-09-04 | Idemitsu Kosan Co Ltd | 多環脂環式化合物を前駆体物質とする薄膜、及びその製造方法 |
US8105660B2 (en) | 2007-06-28 | 2012-01-31 | Andrew W Tudhope | Method for producing diamond-like carbon coatings using PECVD and diamondoid precursors on internal surfaces of a hollow component |
CN118339633A (zh) * | 2021-12-05 | 2024-07-12 | 应用材料公司 | 用于金刚石膜沉积的气相前驱物种晶 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62103367A (ja) * | 1985-10-28 | 1987-05-13 | Nippon Telegr & Teleph Corp <Ntt> | 炭素膜の合成方法 |
US4756964A (en) * | 1986-09-29 | 1988-07-12 | The Dow Chemical Company | Barrier films having an amorphous carbon coating and methods of making |
US5041201A (en) * | 1988-09-16 | 1991-08-20 | Semiconductor Energy Laboratory Co., Ltd. | Plasma processing method and apparatus |
US4919974A (en) * | 1989-01-12 | 1990-04-24 | Ford Motor Company | Making diamond composite coated cutting tools |
US5132105A (en) * | 1990-02-02 | 1992-07-21 | Quantametrics, Inc. | Materials with diamond-like properties and method and means for manufacturing them |
-
1995
- 1995-05-25 ZA ZA954295A patent/ZA954295B/xx unknown
- 1995-06-02 EP EP95921587A patent/EP0763144B1/en not_active Expired - Lifetime
- 1995-06-02 KR KR1019960705414A patent/KR970702388A/ko not_active Application Discontinuation
- 1995-06-02 DE DE69522107T patent/DE69522107T2/de not_active Expired - Fee Related
- 1995-06-02 ES ES95921587T patent/ES2161294T3/es not_active Expired - Lifetime
- 1995-06-02 AU AU26615/95A patent/AU2661595A/en not_active Abandoned
- 1995-06-02 WO PCT/US1995/007022 patent/WO1995033864A1/en active IP Right Grant
- 1995-06-02 JP JP8501227A patent/JPH10501302A/ja not_active Ceased
- 1995-06-02 NZ NZ287784A patent/NZ287784A/en unknown
- 1995-06-02 CN CN95193360A patent/CN1150461A/zh active Pending
- 1995-07-11 TW TW084107151A patent/TW335415B/zh active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101480110B (zh) * | 2006-06-28 | 2012-12-05 | 应用材料公司 | 具有改进的密度和阶梯覆盖率的无定形碳膜的沉积方法 |
CN105839071A (zh) * | 2016-04-19 | 2016-08-10 | 中国科学院大学 | 双频电感耦合射频等离子体喷射沉积金刚石的方法 |
Also Published As
Publication number | Publication date |
---|---|
ES2161294T3 (es) | 2001-12-01 |
JPH10501302A (ja) | 1998-02-03 |
AU2661595A (en) | 1996-01-04 |
EP0763144B1 (en) | 2001-08-08 |
DE69522107D1 (de) | 2001-09-13 |
WO1995033864A1 (en) | 1995-12-14 |
NZ287784A (en) | 1997-05-26 |
EP0763144A4 (en) | 1998-05-20 |
EP0763144A1 (en) | 1997-03-19 |
TW335415B (en) | 1998-07-01 |
DE69522107T2 (de) | 2001-11-22 |
ZA954295B (en) | 1996-11-25 |
KR970702388A (ko) | 1997-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1057799C (zh) | 制备氮化钛层的方法 | |
US5185179A (en) | Plasma processing method and products thereof | |
EP0713927A1 (en) | Fluorine doped silicon oxide coating process | |
CN1061387C (zh) | 制备类金刚石碳膜(dlc)的方法、由此制备的dlc膜、该膜的用途、场致发射体阵列以及场致发射体阴极 | |
CN1023329C (zh) | 在制品上形成保护层的化学气相沉积方法 | |
CN1340733A (zh) | 用于液晶装置的离子枪淀积及排列 | |
JP2012519777A (ja) | 原子層堆積プロセス | |
US5041201A (en) | Plasma processing method and apparatus | |
KR20080111511A (ko) | 플라즈마 cvd 장치, 박막형성 방법 및 반도체 장치 | |
CN1150461A (zh) | 具有增加了四面体等同碳浓度的镀碳阻挡膜 | |
KR20070065443A (ko) | 플라즈마 cvd 장치 | |
JPS62228468A (ja) | 強固に接合しているic−層を製造する方法 | |
CN1944308A (zh) | 一种在玻璃基板上沉积氢化非晶硅碳合金薄膜的方法 | |
US7238822B2 (en) | Ruthenium compound and process for producing a metal ruthenium film | |
WO1997047789A1 (fr) | Film de diamants et procede de fabrication | |
TWI709658B (zh) | 氧化石墨烯沉積源及利用其的氧化石墨烯薄膜形成方法 | |
JP4012620B2 (ja) | ガスバリア性フィルムの製造方法 | |
EP3922750A2 (en) | Method of deposition | |
JP3431914B2 (ja) | 炭素または炭素を主成分とする膜の作製方法 | |
JP3197008B2 (ja) | 半導体基板上のシリコン重合体絶縁膜及びその膜を形成する方法 | |
WO1995026879A1 (en) | Barrier films having carbon-coated surfaces | |
CN86106364A (zh) | 等离子体沉积保护膜的方法和装置 | |
WO1998059355A3 (fr) | Cathode froide et procedes de fabrication | |
US12131899B2 (en) | Method of deposition | |
Morales et al. | Growth of diamond films from tequila |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C01 | Deemed withdrawal of patent application (patent law 1993) | ||
WD01 | Invention patent application deemed withdrawn after publication |