CN110800144A - 包括纳米纤维纺丝层的燃料电池用电解质膜 - Google Patents

包括纳米纤维纺丝层的燃料电池用电解质膜 Download PDF

Info

Publication number
CN110800144A
CN110800144A CN201880043203.5A CN201880043203A CN110800144A CN 110800144 A CN110800144 A CN 110800144A CN 201880043203 A CN201880043203 A CN 201880043203A CN 110800144 A CN110800144 A CN 110800144A
Authority
CN
China
Prior art keywords
electrolyte membrane
fuel cell
membrane
fuel
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201880043203.5A
Other languages
English (en)
Inventor
朴基镐
金夫坤
朴宗洙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guardnec Co ltd
Original Assignee
Guardnec Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guardnec Co ltd filed Critical Guardnec Co ltd
Publication of CN110800144A publication Critical patent/CN110800144A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0234Carbonaceous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04126Humidifying
    • H01M8/04149Humidifying by diffusion, e.g. making use of membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)
  • Nonwoven Fabrics (AREA)
  • Inorganic Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

本发明涉及一种包括碳纳米纤维纺丝层的燃料电池用电解质膜、包括该电解质膜的燃料电池用膜电极组件和包括该膜电极组件的燃料电池。

Description

包括纳米纤维纺丝层的燃料电池用电解质膜
技术领域
本发明涉及一种包括纳米纤维纺丝层的燃料电池用电解质膜、包括该电解质膜的膜电极组件和包括该膜电极组件的燃料电池。
本申请要求2017年6月26日向韩国知识产权局提交的韩国专利申请第10-2017-0080431号的优先权,其全部内容包括在本说明书中。
背景技术
燃料电池(Fuel Cell)是一种将通过燃料的氧化产生的化学能直接转变为电能的电池,近年来,为了克服化石燃料的枯竭问题、二氧化碳的产生导致的温室效应和全球变暖等问题,对燃料电池和太阳能电池等进行了大量的研究。
通常,燃料电池利用氢与氧的氧化反应和还原反应,将化学能转变为电能。在阳极(anode)中,氢被氧化而分离成氢离子和电子,氢离子通过电解质(electrolyte)向阴极(cathode)移动。此时,电子通过电路向阴极移动。阴极发生氢离子、电子及氧反应生成水的还原反应。
电解质膜位于阴极与阳极之间,起到氢离子的递送体作用的同时起到防止氧气和氢气接触的作用。因此,燃料电池的电解质膜需要具有高氢离子传导性,并且需要高的机械稳定性和化学稳定性。
现有技术中使用的电解质膜是在砜类高分子膜或烃类高分子膜上涂覆氟类离聚物的电解质膜。
但是,如上所述的现有的电解质膜的导热性差,从而具有发电效率降低的问题,并且砜类高分子膜或烃类高分子膜的机械稳定性和化学稳定性还未达到令人满意的水平。
发明内容
要解决的技术问题
本发明的目的在于,提供一种燃料电池用电解质膜、包括该电解质膜的膜电极组件和包括该膜电极组件的燃料电池,其中,所述燃料电池用电解质膜具有均匀的气孔分布和高气孔率并且具有优异的传热效率,从而表现出优异的发电效率。
技术方案
本发明提供一种燃料电池用电解质膜。
此外,本发明提供一种燃料电池用膜电极组件,包括:所述电解质膜;以及阳极电极和阴极电极,夹着所述电解质膜彼此相对设置,其中,所述阳极电极和所述阴极电极包括气体扩散层和催化剂层。
此外,本发明提供一种燃料电池,包括:堆叠体,包括一个或两个以上的所述膜电极组件和介于所述膜电极组件之间的隔膜;燃料供应部,向所述堆叠体供应燃料;以及氧化剂供应部,向所述堆叠体供应氧化剂。
有益效果
本发明的电解质膜具有高气孔率和均匀的气孔分布,因此传热效率优异,使电解质膜的含水率保持在适当的水平,并且包括该电解质膜的膜电极组件和燃料电池表现出优异的发电效率。
此外,本发明的电解质膜没有经过热处理等碳化工艺,因此由于没有传导性的纳米纤维纺丝层,具有优异的机械稳定性和化学稳定性。
附图说明
图1是示出在试验例1中用场发射扫描电子显微镜装置拍摄制造例1中制造的纳米纤维纺丝层的微细结构的图像,其倍率为10k。
图2是示出在试验例1中用场发射扫描电子显微镜装置拍摄比较例1-1中制造的电解质膜的微细结构的图像,其倍率为10k。
图3是示出在试验例2中测量实施例1-2至实施例4-2的各单位电池的电流-电压值并表示为电流-电压曲线的图。
具体实施方式
下面,对本发明的燃料电池用电解质膜进行说明。
本发明的燃料电池用电解质膜包括纳米纤维纺丝层。
本发明的纳米纤维纺丝层通过将高分子组合物进行电纺丝来形成。
本发明的一个实施方案中,所述电纺丝中,将所述高分子组合物进行纺丝时,施加30~70kV的电压,更优选地,施加40~60kV的电压。当所述电压小于30kV时,无法实现活跃的纤维的分裂(Split),并且溶剂的挥发度降低,当所述电压超过70kV时,高分子组合物被纺丝的喷嘴的尖端发生堵塞现象(尖端故障)。
本发明的一个实施方案中,所述电纺丝在40~80℃的温度,优选在50~80℃的温度下进行。当进行所述电纺丝的温度低于40℃时,所述高分子溶液的粘度变高,不能顺利地进行纺丝,这会导致无法确保批量生产性。另一方面,当进行所述电纺丝的温度超过80℃时,所述高分子溶液中的溶剂会挥发,使得高分子溶液的组成发生变化,并且由于溶剂的挥发,溶液箱内部压力增加,因此还存在引起爆炸的危险。
本发明的一个实施方案中,经过电纺丝的所述纳米纤维纺丝层的纤维平均直径为0.01~2μm,更优选为0.02~1μm。当所述纤维平均直径小于0.01μm时,纤维与纤维之间的空隙大小减小,导致气体透过率降低,当所述纤维平均直径超过2μm时,纤维之间的空隙大小增加,使得气体中存在的异物通过空隙之间并积累在电池堆叠体内,因此在评价燃料电池的特性时,作为燃料电池的电解质膜的性能降低。
本发明的一个实施方案中,所述电纺丝是指在向作为储存所述高分子组合物的容器的开放部的尖端与从所述尖端沿重力方向隔开的集电板之间施加电压的状态下,向所述容器施加压力以进行喷射。
本发明的一个实施方案中,所述尖端与所述集电板之间的隔开距离为10~20cm,优选为12~16cm。当所述隔开距离小于10cm时,会剩下残余溶剂,由于这种残余溶剂,发生纳米纤维的融化(melting)现象,导致期望的纳米纤维发生变形,当所述隔开距离超过20cm时,集电板之间的磁场形成不稳定,无法形成纳米纤维层。
本发明的一个实施方案中,所述高分子组合物是选自聚甲基丙烯酸甲酯(Polymethylmethacrylate,PMMA)、聚苯乙烯(Polystyrene,PS)、聚丙烯酸(Polyacrilic acid,PAA)、聚丙烯腈(Polyacrylonitrile,PAN)等聚丙烯酸树脂;聚氯乙烯(Polyvinylchloride,PVC)、聚乙烯醇(Polyvinyl alcohol,PVA)、聚乙酸乙烯酯(Polyvinyl acetate,PVAc)等聚乙烯树脂;聚对苯二甲酸乙二醇酯(Poly ethylene terephthalate,PET)、聚对苯二甲酸丙二醇酯(Polytrimethylene Terephthalate,PTT)、聚对苯二甲酸丁二醇酯(Polybutylene terephthalate,PBT)等聚酯树脂;聚酰胺纤维(Nylon);聚碳酸酯(Polycarbonate),聚氧化乙烯(Polyethylene oxide,PEO);聚氨酯(Polyurethane,PU),聚偏二氟乙烯(Polyvinylidene fluoride,PVdF);聚偏二氟乙烯-六氟丙烯共聚物[poly(vinylidene fluoride)-co-(hexafluoropropylene),P(VDF-HFP)];聚偏二氟乙烯-三氟氯乙烯共聚物[poly(vinylidene fluoride)-co-(chlorotrifluoroethylene),P(VDF-CTFE)],聚四氟乙烯-六氟丙烯-偏二氟乙烯共聚物(Poly tetrafluoro ethylene-co-hexafluoro propyrene-co-vinylidene fluoride,THV);聚醚醚酮(Poly ether etherketone),聚苯醚(Poly phenylene oxide,PPO);聚亚苯基砜(Poly phenylene sulfone,PPS);聚砜(Poly sulfone,PS);聚醚砜(Poly ether sulfone,PES);聚酰亚胺(Polyimide,PI);聚醚酰亚胺(Polyether imide,PEI);聚酰胺酰亚胺(Polyamide imide,PAI);聚苯并咪唑(Polybenzimidazole,PBI);聚苯并噁唑(Polybenzoxazole,PBO);以及聚芳酰胺(Poly aramide)中的一种以上。
本发明的一个实施方案中,所述纳米纤维纺丝层的厚度为20~200μm,更优选为50~150μm。当所述纳米纤维纺丝层的厚度小于20μm时,热处理时会发生物理性能的降低,当所述纳米纤维纺丝层的厚度超过200μm时,会限制热处理后气体分离层的膜电极组件的数量。
下面,对本发明的燃料电池用电解质膜的制造方法进行说明。若无特别的说明,上述对于燃料电池用电解质膜的说明可以适用于下述燃料电池用电解质膜的制造方法。
本发明的燃料电池用电解质膜的制造方法包括:将高分子组合物进行电纺丝来形成纳米纤维纺丝层的步骤。
所述形成纳米纤维纺丝层的步骤包括:将高分子组合物进行纺丝时,施加30~70kV的电压,更优选地,施加40~60kV的电压的步骤。
本发明的一个实施方案中,所述电纺丝步骤包括:在向作为储存所述高分子组合物的容器的开放部的尖端与从所述尖端沿重力方向隔开的集电板之间施加电压的状态下,向所述容器施加压力以进行喷射的步骤。
下面,对本发明的燃料电池用膜电极组件进行说明。
本发明的燃料电池用膜电极组件包括:所述燃料电池用电解质膜;以及阳极电极和阴极电极,夹着所述电解质膜彼此相对设置。
本发明的一个实施方案中,所述电解质膜可以是全氟磺酸聚合物、烃类聚合物、聚酰亚胺、聚偏二氟乙烯、聚醚砜、聚苯硫醚、聚苯醚、聚磷腈、聚萘二甲酸乙二醇酯、聚酯、掺杂的聚苯并咪唑、聚醚酮、聚砜、它们的酸或碱。
本发明的阳极电极和阴极电极分别包括气体扩散层和催化剂层。
本发明的一个实施方案中,所述阳极电极的催化剂层包括选自铂、钌、锇、铂-钌合金、铂-锇合金、铂-钯合金及铂-过渡金属合金中的一种以上的催化剂。
本发明的一个实施方案中,所述阴极电极的催化剂层包括铂。
本发明的一个实施方案中,所述阳极电极或所述阴极电极的催化剂负载在碳系载体上。
下面,对本发明的燃料电池进行说明。
本发明的燃料电池包括:堆叠体,包括所述膜电极组件和介于所述膜电极组件之间的隔膜;燃料供应部,向所述堆叠体供应燃料;以及氧化剂供应部,向所述堆叠体供应氧化剂。
本发明的隔膜起到防止膜电极组件之间的电连接并向膜电极组件输送从外部供应的燃料和氧化剂的作用,并且起到以串联方式连接阳极电极和阴极电极的导体作用。
本发明的燃料供应部起到向所述堆叠体供应燃料的作用,燃料供应部可以包括:燃料箱,用于储存燃料;以及泵,向堆叠体供应储存在所述燃料箱中的燃料。
本发明的一个实施方案中,所述燃料为气态或液态的氢或烃燃料。
本发明的一个实施方案中,所述烃燃料为甲醇、乙醇、丙醇、丁醇或天然气。
本发明的氧化剂供应部起到向所述堆叠体供应氧化剂的作用。
本发明的一个实施方案中,所述氧化剂为氧气或空气。
本发明的一个实施方案中,通过泵注入所述氧化剂。
本发明的一个实施方案中,所述燃料电池为高分子电解质型燃料电池或直接甲醇型燃料电池。
下面,通过实施例更加详细地说明本发明。但是,以下实施例仅用于具体地说明本发明,本发明的权利范围并不受限于以下实施例。
<制造例1>纳米纤维纺丝层的制造
在200g的聚偏二氟乙烯(PVDF)中加入800g的二甲基乙酰胺(DMAc)进行溶解,制得高分子纺丝溶液(浓度:20重量%)。
之后,在OSUNG TECH公司制造的电纺丝装置的高分子组合物供应容器中注入6ml的制得的高分子纺丝溶液,然后将作为所述供应容器的开放部的尖端与从所述尖端沿重力方向隔开的集电板之间的距离保持在15cm,在将所述供应容器内的温度控制在70℃的恒温的状态下,向所述尖端与所述集电板之间施加30kV的电压,加压喷射所述供应容器中的高分子纺丝溶液8小时,制得宽度为25cm、长度为4cm、厚度为100μm的纳米纤维纺丝层。
<制造例2>纳米纤维纺丝层的制造
除了将电纺丝装置的高分子纺丝溶液的供应容器内的温度控制在45℃的恒温之外,通过与所述制造例1相同的过程制造电解质膜。
<制造例3>纳米纤维纺丝层的制造
除了将电纺丝装置的高分子纺丝溶液的供应容器内的温度控制在35℃的恒温之外,通过与所述制造例1相同的过程制造电解质膜。
<制造例4>纳米纤维纺丝层的制造
除了将电纺丝装置的高分子纺丝溶液的供应容器内的温度控制在25℃的恒温之外,通过与所述制造例1相同的过程制造电解质膜。
<实施例1-1>电解质膜的制造
将所述制造例1中制造的纳米纤维纺丝层浸渍在离子导体中,即,将PFSA类高分子浸渍在分散于溶剂中的离子导体中,制得电解质膜,其中所述溶剂是以1:1的比例混合水和乙醇的溶剂。
<实施例2-1>电解质膜的制造
除了使用所述制造例2中制造的纳米纤维纺丝层作为纳米纤维纺丝层之外,通过与所述实施例1-1相同的过程制造电解质膜。
<实施例3-1>电解质膜的制造
除了使用所述制造例3中制造的纳米纤维纺丝层作为纳米纤维纺丝层之外,通过与所述实施例1-1相同的过程制造电解质膜。
<实施例4-1>电解质膜的制造
除了使用所述制造例4中制造的纳米纤维纺丝层作为纳米纤维纺丝层之外,通过与所述实施例1-1相同的过程制造电解质膜。
<实施例1-2>单位电池的制造
在所述实施例1-1中制造的电解质膜的两面层叠作为气体扩散层的碳纸,然后以膜电极组件为中心,在除了电极部分之外的高分子电解质部分粘附用于保持气体气密性的210μm的垫片,并在膜电极组件粘附阳极用板和阴极用板,制得单位电池,其中所述阳极用板具有用于加入氢和施加均匀的压力的流路,所述阴极用板用于加入空气并向膜电极组件施加均匀的压力。
<实施例2-2>单位电池的制造
除了使用所述实施例2-1中制造的电解质膜作为电解质膜之外,通过与所述实施例1-2相同的过程制造单位电池。
<实施例3-2>单位电池的制造
除了使用所述实施例3-1中制造的电解质膜作为电解质膜之外,通过与所述实施例1-2相同的过程制造单位电池。
<实施例4-2>单位电池的制造
除了使用所述实施例4-1中制造的电解质膜作为电解质膜之外,通过与所述实施例1-2相同的过程制造单位电池。
<试验例1>通过FE-SEM观察微细结构
使用日立公司制造的产品名为SU-70的场发射扫描电子显微镜装置(FE-SEM;Field Emission Scanning Electron Microscopy)拍摄所述制造例1中制造的纳米纤维纺丝层和所述制造例4中制造的纳米纤维纺丝层的微细结构,并分别示于图1和图2中。
观察本发明的纳米纤维的微细结构的结果,在制造纳米纤维纺丝层时,根据高分子纺丝液的温度是否控制在一定范围,纤维的线径存在差异,可以确认在进行电纺丝时没有保持一定的温度时,残余溶剂的挥发不足,导致产生一部分纳米纤维溶解在溶剂中的现象。
<试验例2>单位电池的性能的测量
为了对本发明的燃料电池的性能进行比较,在下述条件下测量单位电池的性能。
相对湿度:80%
电池温度:65℃
气体供应:阳极-氢气/阴极-空气
测量装置:CNL公司的燃料电池性能测试台(TEST STATION)
电解质膜的表面积:25cm2
首先,测量所述实施例1-2至实施例4-2的各单位电池的电流-电压值,并在图3中示出电流-电压曲线。具体地,在0.6V下的各单位电池的电流密度如下表1所示。
[表1]
单位电池 )
实施例1-2 900
实施例2-2 800
实施例3-2 740
实施例4-2 710
如图3所示,可以知道实施例1-2和实施例2-2的燃料电池的发电性能相比实施例3-2和实施例4-2的燃料电池尤其优异,所述实施例1-2和实施例2-2的燃料电池中使用在制造电解质膜时通过将供应容器中的高分子纺丝溶液的温度分别保持在45℃、70℃并施加电压来制造的电解质膜,所述实施例3-2和实施例4-2的燃料电池中使用通过将供应容器中的高分子纺丝溶液的温度分别保持在35℃、25℃并施加电压来制造的电解质膜,而且可以确认实施例1-2的燃料电池相比实施例2-2的燃料电池具有更优异的发电性能。尤其,可以确认在0.6V下,实施例1-2的燃料电池的电流密度为900mA/cm2,与具有710mA/cm2的电流密度的实施例4-2的燃料电池相比,发电性能优异27%。

Claims (5)

1.一种燃料电池用电解质膜,包括纳米纤维纺丝层,其中,所述纳米纤维纺丝层通过将高分子组合物进行电纺丝来形成。
2.根据权利要求1所述的燃料电池用电解质膜,其中,所述电纺丝施加30~70kV的电压。
3.根据权利要求1所述的燃料电池用电解质膜,其中,所述电纺丝在40~80℃的温度下进行。
4.一种燃料电池用膜电极组件,包括:
电解质膜;以及
阳极电极和阴极电极,夹着所述电解质膜彼此相对设置,
其中,所述阳极电极和所述阴极电极包括气体扩散层和催化剂层,
所述电解质膜为权利要求1至3中任一项所述的燃料电池用气体扩散层。
5.一种燃料电池,包括:
堆叠体,包括一个或两个以上的权利要求4所述的膜电极组件和介于所述膜电极组件之间的隔膜;
燃料供应部,向所述堆叠体供应燃料;以及
氧化剂供应部,向所述堆叠体供应氧化剂。
CN201880043203.5A 2016-09-27 2018-06-26 包括纳米纤维纺丝层的燃料电池用电解质膜 Pending CN110800144A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20160124179 2016-09-27
KR10-2017-0080431 2017-06-26
KR1020170080431A KR20180034198A (ko) 2016-09-27 2017-06-26 탄소 나노 섬유 방사층을 포함하는 연료전지용 기체확산층
PCT/KR2018/007248 WO2019004712A1 (ko) 2016-09-27 2018-06-26 나노 섬유 방사층을 포함하는 연료전지용 전해질막

Publications (1)

Publication Number Publication Date
CN110800144A true CN110800144A (zh) 2020-02-14

Family

ID=61760684

Family Applications (3)

Application Number Title Priority Date Filing Date
CN201680089620.4A Pending CN110050371A (zh) 2016-09-27 2016-11-28 包括多孔碳质薄膜层的燃料电池用气体扩散层
CN201880043361.0A Pending CN110800145A (zh) 2016-09-27 2018-06-26 包括碳纳米纤维纺丝层的燃料电池用气体扩散层
CN201880043203.5A Pending CN110800144A (zh) 2016-09-27 2018-06-26 包括纳米纤维纺丝层的燃料电池用电解质膜

Family Applications Before (2)

Application Number Title Priority Date Filing Date
CN201680089620.4A Pending CN110050371A (zh) 2016-09-27 2016-11-28 包括多孔碳质薄膜层的燃料电池用气体扩散层
CN201880043361.0A Pending CN110800145A (zh) 2016-09-27 2018-06-26 包括碳纳米纤维纺丝层的燃料电池用气体扩散层

Country Status (5)

Country Link
US (3) US11289721B2 (zh)
JP (4) JP6942377B2 (zh)
KR (4) KR101984472B1 (zh)
CN (3) CN110050371A (zh)
WO (3) WO2018062622A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110050371A (zh) * 2016-09-27 2019-07-23 凯得内株式会社 包括多孔碳质薄膜层的燃料电池用气体扩散层
US11355687B2 (en) 2017-08-21 2022-06-07 Hag Mo Kim Graphite-laminated chip-on-film-type semiconductor package having improved heat dissipation and electromagnetic wave shielding functions
US11153678B1 (en) * 2019-01-16 2021-10-19 Amazon Technologies, Inc. Two-way wireless headphones
KR102262168B1 (ko) * 2019-07-30 2021-06-08 연세대학교 산학협력단 다공성 섬유상 전기화학 소자용 전극
CN111584909B (zh) * 2019-12-31 2022-04-05 上海嘉资新材料科技有限公司 气体扩散层、其制备方法,对应的膜电极组件以及燃料电池
CN111509252A (zh) * 2020-05-06 2020-08-07 一汽解放汽车有限公司 一种气体扩散层及其制备方法和应用
CN115101771A (zh) * 2022-06-28 2022-09-23 广东德氢氢能科技有限责任公司 燃料电池气体扩散层及其制备方法、燃料电池膜电极

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1724583A (zh) * 2004-06-30 2006-01-25 三星Sdi株式会社 聚合物电解液膜、膜电极组件、燃料电池系统及膜电极组件的制备方法
KR20070019868A (ko) * 2005-08-11 2007-02-15 삼성에스디아이 주식회사 연료전지용 고분자 전해질막, 이를 포함하는 막-전극어셈블리, 이를 포함하는 연료전지 시스템, 및 이의제조방법
CN102427141A (zh) * 2011-12-01 2012-04-25 中山大学 一种复合质子交换膜及其制备方法
CN103004001A (zh) * 2010-05-25 2013-03-27 3M创新有限公司 强化的电解质膜
CN103718360A (zh) * 2011-07-29 2014-04-09 可隆工业株式会社 用于燃料电池的聚合物电解质膜和制备该聚合物电解质膜的方法
CN104871354A (zh) * 2012-12-28 2015-08-26 可隆工业株式会社 用于燃料电池的增强复合膜和包括该增强复合膜的膜电极组件
CN105580180A (zh) * 2013-09-30 2016-05-11 可隆工业株式会社 聚合物电解质膜及其制造方法以及包括该膜的膜电极组件
JP2016207514A (ja) * 2015-04-24 2016-12-08 パナソニックIpマネジメント株式会社 燃料電池用電解質膜とそれを用いた燃料電池

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4475743B2 (ja) * 2000-05-31 2010-06-09 パナソニック株式会社 ガス拡散層
JP2002170574A (ja) * 2000-09-21 2002-06-14 Ube Ind Ltd 燃料電池用電極基材
JP4876318B2 (ja) * 2001-03-08 2012-02-15 パナソニック株式会社 高分子電解質型燃料電池とその製造方法
JP4880131B2 (ja) * 2001-04-23 2012-02-22 パナソニック株式会社 ガス拡散電極およびこれを用いた燃料電池
EP1244165A3 (en) 2001-03-19 2006-03-29 Ube Industries, Ltd. Electrode base material for fuel cell
US20040265676A1 (en) * 2001-10-25 2004-12-30 Jun Takagi Polymer electrolyte solution for manufacturing electrode for fuel cell
JP3878512B2 (ja) * 2002-05-23 2007-02-07 本田技研工業株式会社 燃料電池スタック
US7468340B2 (en) * 2003-04-18 2008-12-23 Ube Industries, Ltd. Metal-supported porous carbon film, fuel cell electrode and fuel cell employing the electrode
JP2005293976A (ja) * 2004-03-31 2005-10-20 Nissan Motor Co Ltd ガス拡散層及び燃料電池
JP5182908B2 (ja) * 2005-09-08 2013-04-17 日東電工株式会社 膜電極接合体および燃料電池
KR101082810B1 (ko) * 2005-11-01 2011-11-11 가부시키가이샤 도모에가와 세이시쇼 가스 확산 전극, 막-전극 접합체, 고체 고분자형 연료 전지및 이들의 제조 방법
JP2007149565A (ja) * 2005-11-29 2007-06-14 Toshiba Corp 燃料電池
KR100763548B1 (ko) * 2006-01-16 2007-10-04 주식회사 아모메디 연료전지용 가스 확산층의 형성방법
JP2007234359A (ja) * 2006-02-28 2007-09-13 Honda Motor Co Ltd 固体高分子型燃料電池用膜電極構造体
JP5151063B2 (ja) * 2006-04-19 2013-02-27 トヨタ自動車株式会社 燃料電池用電解質膜用多孔質材料、その製造方法、固体高分子型燃料電池用電解質膜、膜−電極接合体(mea)、及び燃料電池
JP2008201106A (ja) * 2007-02-22 2008-09-04 Shinano Kenshi Co Ltd 複合材、これを用いた燃料電池、および複合材の製造方法
JP5213499B2 (ja) * 2008-04-01 2013-06-19 新日鐵住金株式会社 燃料電池
KR20100011644A (ko) * 2008-07-25 2010-02-03 주식회사 아모메디 탄소나노섬유웹을 이용하여 촉매층과 가스확산층을일체화시킨 연료전지 전극, 그의 제조방법, 및 그를 사용한연료전지
WO2011070893A1 (ja) * 2009-12-09 2011-06-16 日清紡ホールディングス株式会社 フレキシブル炭素繊維不織布
JP2011246695A (ja) * 2010-04-27 2011-12-08 Toray Ind Inc 複合化高分子電解質膜およびその製造方法
CN102356494A (zh) * 2010-05-25 2012-02-15 丰田自动车株式会社 燃料电池系统
JP5552904B2 (ja) * 2010-05-28 2014-07-16 三菱レイヨン株式会社 ナノ炭素含有繊維及びナノ炭素構造体繊維の製造方法並びにそれらの方法で得られたナノ炭素含有繊維及びナノ炭素構造体繊維
JP5648785B2 (ja) * 2010-07-29 2015-01-07 日清紡ホールディングス株式会社 燃料電池用電極
EP2677579A4 (en) * 2011-02-18 2015-12-16 Dainippon Printing Co Ltd MEMBRANE ELECTRODE ARRANGEMENT FOR A FUEL CELL, MANUFACTURING METHOD AND FESTPOLYMER FUEL CELL WITH THE MEMBRANE ELECTRODE ASSEMBLY
WO2014061280A1 (ja) * 2012-10-19 2014-04-24 パナソニック株式会社 燃料電池用ガス拡散層およびその製造方法
JP5777595B2 (ja) * 2012-11-14 2015-09-09 財團法人工業技術研究院Industrial Technology Research Institute 燃料電池、炭素複合構造、およびその作製方法
CN102936764A (zh) * 2012-11-27 2013-02-20 天津工业大学 一种聚丙烯腈基纳米碳纤维的制备方法
CA2892918C (en) * 2013-02-13 2023-03-14 Yasutaka Okano Fuel-cell gas diffusion layer, and method for producing same
KR101419772B1 (ko) * 2013-03-14 2014-07-17 (주)에프티이앤이 내열성이 향상된 이차전지용 내열성/무기 고분자 2층 분리막 및 이의 제조방법
US9461311B2 (en) * 2013-03-15 2016-10-04 Ford Global Technologies, Llc Microporous layer for a fuel cell
KR101392227B1 (ko) * 2013-03-21 2014-05-27 한국에너지기술연구원 고분자 나노섬유를 포함하는 탄소섬유 웹
JP6131696B2 (ja) * 2013-04-26 2017-05-24 日産自動車株式会社 ガス拡散層、その製造方法ならびにこれを用いる燃料電池用膜電極接合体および燃料電池
DE102015014433A1 (de) * 2014-11-07 2016-05-12 Daimler Ag Katalysatorschicht mit Durchtrittsöffnung für Brennstoffzellen
JP6027187B2 (ja) * 2015-05-25 2016-11-16 財團法人工業技術研究院Industrial Technology Research Institute 燃料電池および炭素複合構造
KR102042463B1 (ko) * 2015-07-29 2019-12-02 주식회사 엘지화학 다공성 박막에 전기방사법으로 섬유상 코팅층을 도입한 분리막의 제조 방법 및 이로부터 제조되는 분리막
CN105261767A (zh) * 2015-09-07 2016-01-20 武汉理工大学 纳米碳掺杂多孔纤维单电极、膜电极及制备方法
JP2017066540A (ja) * 2015-09-29 2017-04-06 日本製紙株式会社 炭素繊維及び炭素繊維シートの製造方法
JP6657712B2 (ja) * 2015-09-29 2020-03-04 日本製紙株式会社 炭素繊維及び炭素繊維シートの製造方法
EP3396752B1 (en) * 2015-12-24 2022-11-16 Toray Industries, Inc. Gas diffusion electrode
CN106299429B (zh) * 2016-08-24 2019-11-01 合肥国轩高科动力能源有限公司 一种燃料电池用碱性阴离子交换复合膜及制备方法
CN110050371A (zh) * 2016-09-27 2019-07-23 凯得内株式会社 包括多孔碳质薄膜层的燃料电池用气体扩散层

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1724583A (zh) * 2004-06-30 2006-01-25 三星Sdi株式会社 聚合物电解液膜、膜电极组件、燃料电池系统及膜电极组件的制备方法
KR20070019868A (ko) * 2005-08-11 2007-02-15 삼성에스디아이 주식회사 연료전지용 고분자 전해질막, 이를 포함하는 막-전극어셈블리, 이를 포함하는 연료전지 시스템, 및 이의제조방법
CN103004001A (zh) * 2010-05-25 2013-03-27 3M创新有限公司 强化的电解质膜
CN103718360A (zh) * 2011-07-29 2014-04-09 可隆工业株式会社 用于燃料电池的聚合物电解质膜和制备该聚合物电解质膜的方法
CN102427141A (zh) * 2011-12-01 2012-04-25 中山大学 一种复合质子交换膜及其制备方法
CN104871354A (zh) * 2012-12-28 2015-08-26 可隆工业株式会社 用于燃料电池的增强复合膜和包括该增强复合膜的膜电极组件
CN105580180A (zh) * 2013-09-30 2016-05-11 可隆工业株式会社 聚合物电解质膜及其制造方法以及包括该膜的膜电极组件
JP2016207514A (ja) * 2015-04-24 2016-12-08 パナソニックIpマネジメント株式会社 燃料電池用電解質膜とそれを用いた燃料電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHIKAI ZHANG等: "Electrospun nanofiber enhanced sulfonated poly(phthalazinone ether sulfone ketone)composite proton exchange membranes", 《JOURNAL OF MEMBRANE SCIENCE》 *

Also Published As

Publication number Publication date
JP2020526001A (ja) 2020-08-27
JP2019533298A (ja) 2019-11-14
CN110800145A (zh) 2020-02-14
WO2018062622A1 (ko) 2018-04-05
US20200127306A1 (en) 2020-04-23
KR20190001558A (ko) 2019-01-04
US20200119381A1 (en) 2020-04-16
KR101984472B1 (ko) 2019-05-31
US20190237778A1 (en) 2019-08-01
KR20180034165A (ko) 2018-04-04
JP6942377B2 (ja) 2021-09-29
WO2019004712A1 (ko) 2019-01-03
KR102018913B1 (ko) 2019-11-04
JP2022068246A (ja) 2022-05-09
CN110050371A (zh) 2019-07-23
JP2020526002A (ja) 2020-08-27
WO2019004711A1 (ko) 2019-01-03
KR20190001557A (ko) 2019-01-04
KR102018914B1 (ko) 2019-09-05
KR20180034198A (ko) 2018-04-04
US11289721B2 (en) 2022-03-29

Similar Documents

Publication Publication Date Title
KR102018914B1 (ko) 나노 섬유 방사층을 포함하는 연료전지용 전해질막
US10381672B2 (en) Reinforced composite membrane for fuel cell and membrane-electrode assembly for fuel cell comprising the same
US8617751B2 (en) Water control sheet, gas diffusion sheet, membrane-electrode assembly and polymer electrolyte fuel cell
KR101178644B1 (ko) 이온전도성 복합막, 막-전극 접합체 및 연료전지
US8617764B2 (en) Ion conductive resin fiber, ion conductive hybrid membrane, membrane electrode assembly and fuel cell
KR101833600B1 (ko) 연료 전지용의 전해질막 및 그 제조 방법, 및 막전극 접합체 및 연료 전지
US20170250431A1 (en) Polymer solution, fiber mat, and nanofiber membrane-electrode-assembly therewith, and method of fabricating same
US9876246B2 (en) Nanofiber membrane-electrode-assembly and method of fabricating same
WO2017059413A1 (en) Nanofiber mats, making methods and applications of same
CA2962426A1 (en) Polymer solution, fiber mat, and nanofiber membrane-electrode-assembly therewith, and method of fabricating same
US10916783B2 (en) Separator for fuel cell, method of fabricating the same, and fuel cell electrode assembly
KR20190085288A (ko) 강화 분리막 제조방법, 이에 의하여 제조된 강화 분리막 및 레독스 흐름 전지
JP2010192361A (ja) 水分管理シート、ガス拡散シート、膜−電極接合体及び固体高分子形燃料電池
JP5430486B2 (ja) 水分管理シート、ガス拡散シート、膜−電極接合体及び固体高分子形燃料電池
US20230006232A1 (en) Method for manufacturing polymer electrolyte membrane, and electrolyte membrane manufactured by same
US20220393211A1 (en) Membrane-electrode assembly capable of improving reverse voltage durability of fuel cell, method for manufacturing same, and fuel cell including same
KR20240001501A (ko) 강화복합막, 막-전극 어셈블리 및 이를 포함하는 연료전지
KR20230081646A (ko) 연료전지용 강화복합막, 이의 제조방법, 및 이를 포함하는 연료전지용 막-전극 어셈블리
KR20220151512A (ko) 강화복합막, 이를 포함하는 막-전극 어셈블리 및 연료전지
KR20230070598A (ko) 고분자 전해질막, 이의 제조 방법 및 이를 포함하는 막-전극 어셈블리
KR20230143051A (ko) 고분자 전해질막, 이의 제조 방법 및 이를 포함하는 전기 화학 장치
KR20230152467A (ko) 강화복합막, 막-전극 어셈블리 및 이를 포함하는 연료전지
KR20230081410A (ko) 다공성 지지체 형성용 조성물, 이로부터 제조된 다공성 지지체, 강화복합막, 막-전극 어셈블리 및 연료전지
KR20230080961A (ko) 강화복합막, 이를 포함하는 막-전극 어셈블리 및 연료전지

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200214

WD01 Invention patent application deemed withdrawn after publication