气相外延生长方法及带有外延层的基板的制备方法
技术领域
本发明主要涉及一种在衬底基板上气相生长单晶SiC的外延层的方法。
背景技术
近年来,碳化硅(SiC)作为一种半导体芯片的材料,备受瞩目。SiCSiC具有优异的机械强度和耐辐射性。另外,SiC具有下面的特征:通过添加杂质也能容易控制电子和空穴的价电子,并具有宽的禁带宽度(例如,对于3C型的单晶SiC为2.2eV)、高击穿电场、电子的饱和漂移速率。由于这些因素,SiC有望成为利用于下一代功率器件的材料,其能够实现所述现有的半导体材料中无法实现的高温、高频、耐电压和耐环境性。另外,作为用于LED(发光二极管)的基板,也已引起关注。
过往,在使用SiC的半导体芯片的制备方法中,已知形成外延层的方法。专利文献1及2公开了一种形成SiC的外延层的方法。
专利文献1中,通过CVD(Chemical Vapor Deposition、化学气相沉积)方法形成SiC的外延层。在生长外延层的工艺中,通过引入生长速率被控制在1μm/h以下的缺陷产生抑制层,能够形成缺陷更少的外延层。
另外,作为生长外延层的其他技术,已知以下的方法。也就是说,该外延层的形成方法,包括使用种晶添加升华技术来生长SiC的块状晶体(bulk crystal)的工艺、和在块状晶体表面液相生长外延层的工艺。在生长外延层的工艺中,通过进行液相生长,能阻挡从所述种晶传播到块状晶体基板的微管缺陷,进而能够形成微管缺陷少的SiC的外延层。
[现有技术文献]
[专利文献]
专利文献1:日本专利特开2007-284298号公报
发明内容
发明所要解决的技术问题
然而,由于专利文献1的CVD方法的生长速率慢,特别是在形成相对较厚的外延层时,会增加处理时间。因此,不仅制造成本上升并且不适合大规模生产。另外,在使用CVD方法的情况下,由于原料气体的供给量根据配置基板的高度、场所等而变化,因此在一些情况下有可能造成生长速率不均匀。
另外,在使用种晶添加升华技术的所述方法中,由于在生长外延层的工艺中,硅融液中会混入用于提高熔融SiC的熔融物的溶解度的元素,因而会担心所述元素无意中混入外延晶体、和起因于硅融液中的高溶剂(碳)浓度的异质多晶形的混入。因此,存在不能形成高纯度外延层的可能性。
本发明是鉴于以上的情状而完成,其主要目的,在于提供一种在短时间内形成高纯度SiC的外延层的方法。
解决问题所使用的技术方案及效果
本发明所要解决的问题,诚如上面的说明,下面对用以解决此问题的手段及其功效进行说明。
根据本发明的第一观点,提供一种下面的气相外延生长方法。也就是说,在由包含TaC的材料组成的TaC容器的内部收容由包含多晶SiC的材料组成的SiC容器,且在该SiC容器的内部收容衬底基板的状态下,以该TaC容器内成为Si蒸气压力的方式且设置温度梯度来加热所述TaC容器。其结果,通过因所述SiC容器的内表面被蚀刻而升华的C原子与环境中的Si原子键合,进行在所述衬底基板上生长单晶SiC的外延层的外延层生长工艺。
并且,由于SiC的耐热性优异,因而能够将加热时的处理温度加热至2000℃左右,因此能够在短时间内形成高纯度的SiC外延层。另外,由于外延层的原料是SiC容器,因而与导入原料气体的CVD等相比,能够使外延层更均匀地生长。
在所述气相外延生长方法中,优选所述衬底基板的材料是Al化合物或N化合物。
由此,通过利用本发明的方法,衬底基板不局限于SiC,因而能够实现高通用性的外延生长方法。
在所述气相外延生长方法中,所述衬底基板的材料可以是SiC,且相对于<11-20>方向或<1-100>方向的偏角可以是1°以下。
由此,在衬底基板是SiC且偏角小的情况下,平台变宽,并且无论衬底基板的多晶形现象如何,皆能够容易形成高质量的SiC外延层。
在所述气相外延生长方法中,优选在外延层生长工艺中,温度梯度是2℃/mm以下。
由此,通过使用本发明的方法,SiC容器内的C原子的压力增高,因而即使在如上所述的低温度梯度下也能充分地生长外延层。因此,可以简化加热装置或加热控制。
在所述气相外延生长方法中,优选在外延层生长工艺中,在所述SiC容器内配置多片所述衬底基板,且分别在该多片所述衬底基板上生长所述外延层。
由此,由于能在多片衬底基板上同时形成外延层,因而可以使处理更有效率化。特别是通过利用本发明的方法,无论SiC容器内的位置如何,皆能均匀地形成外延层,因此质量不会降低。
在所述气相外延生长方法中,优选将所述TaC容器的内表面设为Si或Si化合物,且通过所述外延层的生长时的加热,使Si原子从该TaC容器的内表面升华,从而将该TaC容器内设定为Si蒸气压力。
由此,与将固体的Si等投入TaC容器内的方法相比较,能够减轻操作者的负担。另外,通过在TaC的内表面的宽区域上形成Si等,能够实现均匀的Si环境。
在所述气相外延生长方法中,优选所述外延层的多晶形是3C-SiC。
或者,在所述气相外延生长方法中,所述外延层的多晶形也可以是4H-SiC或6H-SiC。
由此,能一边发挥本发明的效果,一边生长各种各样的多晶形的外延层。
根据本发明的第二观点,提供一种带有外延层的基板的制备方法,在该制备方法中使用所述气相外延生长方法。
由此,能高效率地制备高纯度的带有外延层的基板。
在所述带有外延层的基板的制备方法中,优选下面的方式。也就是说,所述衬底基板的材料是SiC。并且,不透过SiC容器将所述衬底基板收容在所述TaC容器内,且在Si蒸气压力下进行加热来蚀刻该衬底基板。
由此,不仅在形成外延层时,而且在蚀刻时也能使用TaC容器。
附图说明
图1是示出加热处理中使用的高温真空炉的示意图;
图2是具体地示出高温真空炉的主加热室及预加热室的剖面构造图;
图3是示出使用TaC容器及SiC容器而使外延层生长的处理的剖面示意图;
图4是用于说明3C-SiC单晶和4H-SiC单晶的原子排列与叠层周期的剖面示意图;
图5是说明SiC基板的偏角的图;
图6是示出在TaC容器的内侧和外侧配置SiC容器而使外延层生长时的状况的图;
图7是示出在TaC容器的内侧和外侧配置SiC容器且生长后的外延层的Si面与C面的显微镜照片;
图8是示出处理条件(特别是从衬底基板到原料的距离)不同的4种情形的加热处理的剖面示意图;
图9是示出衬底基板的位置和生长速率的关系的曲线图;
图10是示出使用TaC进行蚀刻的处理的剖面示意图;和
图11是示出在多片衬底基板上同时形成3C-SiC的外延层的状况的剖面示意图。
具体实施方式
下面,参照附图对本发明的实施方式进行说明。
首先,参照图1至图3,说明加热处理中使用的高温真空炉11、TaC容器2和SiC容器3。图1是示出加热处理中使用的高温真空炉11的示意图。图2是具体地示出高温真空炉11的主加热室及预加热室的剖面图。图3是示出使用TaC容器2及SiC容器3而使外延层生长的处理的剖面示意图。
如图1及图2所示,高温真空炉11包括:主加热室21,其能将被处理物(衬底基板等)加热为1000℃以上且2300℃以下的温度;及预加热室22,其能将被处理物预加热至500℃以上的温度。预加热室22被配置在主加热室21的下方,且在上下方向上与主加热室21相邻。另外,高温真空炉11具有配置在预加热室22下方的隔热室23。该隔热室23在上下方向上与预加热室22相邻。
高温真空炉11具有真空室19,所述主加热室21与预加热室22配置在该真空室19的内部。在真空室19上连接有作为真空形成装置的涡轮分子泵34,在真空室19内能够获得例如10-2Pa以下、优选10-7Pa以下的真空。在涡轮分子泵34与真空室19之间隔着闸阀25。另外,在涡轮分子泵34上连接有辅助用的旋转泵26。
高温真空炉11具有移动机构27,该移动机构27能使被处理物在上下方向上移动于预加热室22与主加热室21之间。该移动机构27包括能支持被处理物的支撑体28、和能使该支撑体28上下运动的气缸部29。气缸部29具有缸杆30,该缸杆30的一端连接在所述支撑体28上。另外,在高温真空炉11上设有用于测量真空度的真空计31、和用于进行质量分析法的质量分析装置32。
所述真空室19经由传送路径65与用于预先保管被处理物的省略图示的储藏室连接。该传送路径65可通过闸阀66进行开闭。
所述主加热室21在平面剖视图中被形成为等边六边形,并且配置在真空室19的内部空间的上部。如图2所示,在主加热室21的内部设置有作为加热器的网状加热器33。另外,第1多层热反射金属板71固定在主加热室21的侧壁或顶板上,网状加热器33的热量通过该第1多层热反射金属板71朝主加热室21的中心部反射。
由此,在主加热室21内实现了下面的布局:以包围作为加热处理对象的被处理物的方式配置网状加热器33,并在其外侧配置有多层热反射金属板71。另外,网状加热器33例如是以随着朝向上侧而宽度增大的方式构成、或者随着朝向上侧而能增加供给的电力。由此,能够在主加热室21内设置温度梯度。再者,主加热室21可以被加热到例如1000℃以上且2300℃以下的温度。
主加热室21的顶板侧是由第1多层热反射金属板71封闭,另一方面,在底面的第1多层热反射金属板71上形成有通孔55。被处理物能够经由此通孔55在主加热室21和与该主加热室21的下侧相邻的预加热室22之间移动。
移动机构27的支撑体28的一部分被插入所述通孔55内。该支撑体28被构成为下面的结构:第2多层热反射金属板72、第3多层热反射金属板73和第4多层热反射金属板74,以从上方开始的顺序互相间隔地配置。
三个多层热反射金属板72~74皆被水平配置,并且通过设置在垂直方向的柱部35而彼此连接。并且,在由第2多层热反射金属板72和第3多层热反射金属板73间的空间内配置有支承台36,在该支承台36上能够载置收容有被处理物的TaC容器2。本实施方式中,该支承台36是由碳化钽组成。
在所述气缸部29的缸杆30的端部形成有凸缘,该凸缘固定在第4多层热反射金属板74的下面。根据该结构,通过使所述气缸部29伸缩,能够使支承台36上的被处理物与所述三个多层热反射金属板72~74一起上下运动。
所述预加热室22是通过以多层热反射金属板76包围主加热室21下侧的空间而构成。该预加热室22在平面剖视图中被构成为园形。再者,在预加热室22内不具备诸如所述网状加热器33的加热机构。
如图2所示,在预加热室22的底面部上,且在所述多层热反射金属板76上形成有通孔56。另外,在形成预加热室22的侧壁的多层热反射金属板76上,且在与所述传送路径65相对面的部位形成有通道孔50。并且,所述高温真空炉11具有能够封闭所述通道孔50的开闭部件51。
与预加热室22下侧相邻的所述隔热室23,其上侧是由所述多层热反射金属板76所区划,下侧及侧部是由多层热反射金属板77所区划。在覆盖隔热室23的下侧的多层热反射金属板77上形成有通孔57,其能够供所述缸杆30插通。
在相当于所述通孔57的上端部的位置上,且在多层热反射金属板77上形成有收纳凹部58。该收纳凹部58内可以收纳所述支撑体28具有的第4多层热反射金属板74。
多层热反射金属板71~74、76、77,皆是空开预定的间隔叠层金属板(钨制)的结构。在所述开闭部件51中,封闭通道孔50的部分也使用同样结构的多层热反射金属板。
多层热反射金属板71~74、76、77的材料,只要是对网状加热器33的热辐射具有充分的加热特性并且熔点高于环境温度的物质,可选用任意的材料。例如,作为多层热反射金属板71~74、76、77,除了所述钨之外,也能够选用钽、铌、钼等的高熔点金属材料。另外,也能够选用碳化钨、碳化锆、碳化钽、碳化铪、碳化钼等的碳化物,作为多层热反射金属板71~74、76、77。而且,还能在其反射面上进一步形成由金或碳化钨等组成的红外线反射膜。
并且,设在支撑体28上的多层热反射金属板72~74具有下面的结构:一边错开通孔的位置一边空开预定的间隔叠层具有多个小通孔的冲孔金属结构的钨板。
另外,配置在支撑体28的最上层的第2多层热反射金属板72的叠层片数,少于主加热室21的第1多层热反射金属板71的叠层片数。
在这种状态下被处理物从传送路径65导入真空室19的内部,并放置在预加热室22中的所述支承台36上。当在该状态下驱动所述网状加热器33时,主加热室21被加热至1000℃以上且2300℃以下的预定温度(例如约1900℃)。此时,通过所述涡轮分子泵34的驱动,将真空室19内的压力调节为10-3Pa以下、优选10-5Pa以下。
如上所述,支撑体28的第2多层热反射金属板72的叠层片数少于所述第1多层热反射金属板71的叠层片数。因此,网状加热器33产生的一部分热,经由第2多层热反射金属板72被适当地供给(分配)到预加热室22,从而能够将预加热室22内的被处理物预加热至500℃以上的预定温度(例如800℃)。也就是说,即使不在预加热室22设置加热器也能实现预加热,从而能实现预加热室22的简易结构。
进行了预定时间所述预加热处理之后,驱动气缸部29使支撑体28上升。其结果,被处理物从下侧通过通孔55移动到主加热室21内。由此,立即开始主加热处理,从而能使主加热室21内的被处理物快速地加高至预定的温度(约1900℃)。
如图3所示,TaC容器2是包括上部容器2a和下部容器2b的嵌合容器,上部容器2a和下部容器2b能够彼此嵌合。利用这种结构,尽管TaC容器2的内部空间被密封,但少许的气体原子仍能从TaC容器2的内部移动到外部(反之亦然)。另外,该TaC容器2是以能在真空下进行高温处理的情况下发挥后述的C原子吸附离子泵功能的方式构成,具体地说,由钽金属构成并使碳化钽层暴露在内部空间。
更具体地说明如下:在TaC容器2中,在最内侧的层(最靠近被处理物的一侧的层)的一部分上形成有TaC层,在该TaC层的外侧形成Ta2C层,并且再于其外侧形成有作为基材的钽金属。因此,只要如上所述在真空下继续高温处理,TaC容器2就具有从碳化钽层的表面连续地吸附和捕获碳原子的功能。从这个意义上讲,本实施方式的TaC容器2具有C原子吸附离子泵功能(离子吸气剂功能)。另外,对最内侧层的TaC层供给Si。由此,加热处理时该Si升华而产生Si蒸气。并且,TaC容器2中的环境内含有的Si蒸气和C蒸气中的C蒸气被选择性地吸附于TaC容器2,因而能将TaC容器2内保持为高纯度的Si环境。
再者,Si的供给源不限于对TaC容器2的内壁供给Si的结构,例如,也可由TaxSiy(例如,TaSi2或Ta5Si3)组成TaC容器2的内壁,或者也可由其他的Si化合物构成。并且,也可在TaC容器2的内部配置固体的Si(Si颗粒)。
SiC容器3包括3C-SiC等多晶SiC。本实施方式中,SiC容器3整体由SiC构成。但只要SiC容器3是在加热处理时使内部空间产生Si蒸气和C蒸气的结构,SiC容器3的一部分(例如内表面)也可由多晶SiC制成。
与TaC容器2同样,SiC容器3也是包括上部容器3a和下部容器3b的嵌合容器,上部容器3a和下部容器3b能够彼此嵌合。利用这种结构,尽管SiC容器3的内部空间被密封,但少许的气体原子仍能从SiC容器3的内部移动到外部(反之亦然)。由此,在TaC容器2内部产生的Si蒸气,从SiC容器3的外部向内部移动,从而能对SiC容器3的内部空间供给Si蒸气。另外,如图3所示,由于SiC容器3配置在TaC容器2内部,因而比TaC容器2小型。另外,在SiC容器3内收容有至少1片衬底基板40。
衬底基板40是用于形成外延层41的底层或衬底的基板。衬底基板40可为SiC基板,也可为由SiC以外的材料(例如Al化合物或N化合物)组成的基板。另外,在SiC基板的情况,多晶形可以是任意的,例如,能够由3C-SiC、4H-SiC、或6H-SiC组成。再者,在衬底基板40是SiC基板的情况,相对于<11-20>方向或<1-100>方向的偏角(参照图5)可以是1°以下,也可大于1°。另外,也可在衬底基板40的Si面或C面的任一面形成外延层41。
其次,说明外延生长工艺。本实施方式中,通过气相外延生长方法,在衬底基板40上形成单晶3C-SiC的外延层41。具体地说,如图3所示,在SiC容器3内收容衬底基板40,再将此SiC容器3收容在TaC容器2内。另外,以TaC容器2的上侧(形成外延层41的一侧)成为高温的方式设置温度梯度。温度梯度优选为2℃/mm以下,更优选1℃/mm左右。在这种状态下,以1600℃以上且2300℃以下的高温加热TaC容器2。
通过该加热处理,供给于TaC容器2的内表面的Si升华,TaC容器2的内部成为Si的平衡蒸气压力。即使在使用其他Si源的情况下,通过Si的升华,TaC容器2的内部也变成Si的平衡蒸气压力。因此,由于SiC容器3是在Si蒸气压力下被高温加热,因而SiC容器3被蚀刻(Si蒸气压力蚀刻)。具体地说,进行以下所示的反应。简单地说明如下:通过在Si蒸气压力下加热SiC,SiC热分解并与Si化学反应而变成为Si2C或SiC2等后升华。另外,在SiC容器3的内部产生高的C分压,并且以2℃/mm以下的温度梯度作为驱动力,将C成分输送到衬底基板40的表面,由此使得3C-SiC晶体化。
通过对SiC容器3进行Si蒸气压力蚀刻,能防止SiC容器3的碳化,进而能使C原子(或C化合物)从SiC容器3升华。其中,如上所述,由于TaC容器2具有C原子吸附离子泵功能,因而TaC容器2的内部且SiC容器3的外部成为高纯度的Si环境。另一方面,因为SiC容器3的内部不吸收C原子,因而成为C环境。并且,由TaC容器2的Si源产生的Si蒸气,也通过SiC容器3的上部容器3a与下部容器3b的间隙进入SiC容器3的内部。因此,SiC容器3的内部处于Si+C环境中。因此,通过一边设置温度梯度一边进行加热处理,能在衬底基板40的表面形成单晶3C-SiC的外延层41(外延层生长工艺)。另外,由此能制备带有外延层的基板。
在此,参照图4,简要地说明4H-SiC和3C-SiC的分子排列。如图4(a)所示,3C-SiC是以Si原子和C原子堆叠的方式构成,由C及Si组成的单分子层的高度是0.25nm。另外,如图4(b)所示,尽管4H-SiC的排列方向每按二个分子层而反转,但3C-SiC的排列方向不反转且恒定。
在此,通过如上所述以TaC容器2和SiC容器3覆盖衬底基板40,能提高SiC容器3内部的C蒸气的分压。因此,即使温度梯度是1℃/mm左右,也能充分地生长外延层41。再者,在过往已知的升华法等中,为了实现有效的生长速率,需要更大高低差的温度梯度。然而,为了增大温度梯度的高低差,需要精密的加热装置及细微的控制,进而有可能造成制造成本的增加。这点在本实施方式中,由于温度梯度可以是2℃/mm以下、1℃/mm左右、或1℃/mm以下,因而能够降低制造成本。
另外,通过利用本实施方式的方法来生长外延层41,即使衬底基板40不是SiC,也能形成单晶3C-SiC的外延层41。另外,即使衬底基板40不是3C-SiC,也能形成单晶3C-SiC的外延层41。通过进行MBE法(分子束外延法)和CVD方法(化学气相沉积法),也能在4H-SiC上生长SiC。然而,由于MBE法和CVD方法,不适合在例如1600℃以上的高温下的加热处理,因此在生长速率上存在上限。另一方面,尽管接近升华法能够期待生长温度的高温化或高生长速率,但基板表面内的均匀性仍是问题。对此,在本实施方式的方法中,由于适合在1600℃以上的高温下进行加热处理,并且在称为Poly-SiC容器的准封闭系统中进行SiC的外延生长,因而均匀性高。
再者,在SiC基板的偏角大的情况(例如大于1°的情况),由于产生阶梯流动生长,因而容易继续衬底基板40的多晶形现象,从而会在衬底基板40即4H-SiC上生长作为外延层41的4H-SiC。因此,在需要3C-SiC的外延层41的情况下,优选偏角小的SiC基板(例如1°以下)。
其次,参照图6及图7,说明确认将SiC容器3收容在TaC容器2中的效果的实验。如图6所示,该实验是在TaC容器2的内侧及外侧配置SiC容器3,且在各自的SiC容器3的内部的衬底基板40上生长外延层41。
该实验结果被示出于图7。图7(a)是在TaC容器2的外侧配置SiC容器3且外延生长时的外延层41的Si面与C面的显微镜照片。图7(b)是在TaC容器2的内侧配置SiC容器3且外延生长时的外延层41的Si面与C面的显微镜照片。如此,通过在TaC容器2的内侧配置SiC容器3,外延层41的表面变得平坦,能够形成高质量的外延层41。另外,在TaC容器2的内侧配置SiC容器3,生长速率上也会变快5倍左右。由此,通过利用SiC容器3及TaC容器2覆盖衬底基板40,能够高速地形成高质量的外延层41。
其次,参照图8及图9,说明确认无论SiC容器3内部的位置如何,皆能均匀地形成外延层41的实验。如图8所示,该实验是在各种各样的环境下配置衬底基板40,并且以1800℃且温度梯度约1℃/mm进行加热后,比较外延层41的生长量。尤其是,改变从衬底基板40的表面到原料(SiC容器3或多晶SiC板45)的距离L,进行了实验。另外,在图8(a)及图8(b)中,虽然在1个SiC容器3内收容有1片衬底基板40,但在图8(c)及图8(d)中,在1个SiC容器3内收容有2片衬底基板40。再者,图8中尽管省略了TaC容器2,但是各个SiC容器3被收容在TaC容器2内。
该实验结果被示出于图9。图9是对于图8(a)至图8(d)中使用的衬底基板40,使从衬底基板40的表面到原料的距离L和形成在衬底基板40的外延层41的生长速率建立对应的曲线图。如图9所示,所有衬底基板40具有大致相同的生长速率。因此,确认了只要温度梯度相同,便与SiC容器3内部的位置无关而能均匀地形成外延层41。再者,如图8(c)及图8(d),通过在1个SiC容器3内收容多片衬底基板40,能高效率地形成外延层41。
如图9所示,外延层41的生长速率,在1800℃下是6~8μm/h,是专利文献1的CVD方法的6至8倍。再者,在本实施方式的方法中,由于能将加热温度设定在1800℃以上,因而能实现更快速的生长速率。另外,通过将温度梯度设定为远大于1℃/mm,也能实现更快速的生长速率。
本实施方式的TaC容器2,不只是能在形成外延层41的工艺中,而且在蚀刻衬底基板40(SiC基板)的工艺中也能使用。如上所述,TaC容器2能将内部保持为高纯度的Si环境,因此如图10所示,通过直接(不透过SiC容器3)在TaC容器2内配置SiC基板,且以1600℃以上的温度进行加热,能够蚀刻(所述Si蒸气压力蚀刻)SiC基板。
进行蚀刻工艺的时间可以任意,例如为了将从晶锭切割且进行了机械抛光之后的SiC基板加工平坦(即在外延层41的形成前)也可进行蚀刻,为了将因注入离子(杂质)而变粗化的外延层41加工平坦(即在外延层41的形成后)也可进行蚀刻。
所述说明中,尽管通过在TaC容器2的内部收容SiC容器3,且在SiC容器3的内部收容衬底基板40而进行气相外延生长,使单晶3C-SiC作为外延层41在衬底基板40上生长,但使用同样的方法,也能够使单晶4H-SiC和单晶6H-SiC等作为外延层41在衬底基板40上生长。另外,例如,也可通过改变衬底基板40的偏角及温度等,选择生长的外延层41的多晶形。
另外,图11示出了在1个SiC容器3内收容多片衬底基板40,且将这些收容在TaC容器2内的实施方式。如上所述,使用本发明的方法,无论SiC容器3的位置如何,皆能形成具有相同的生长速率和质量的单晶3C-SiC的外延层41,因此能高效率地形成带有外延层41的基板。
如以上说明,本实施方式中,在由包含TaC的材料组成的TaC容器2的内部收容由包含多晶SiC的材料组成的SiC容器3,且在将衬底基板40收容于该SiC容器3内部的状态下,以该TaC容器2内成为Si蒸气压力的方式且设置温度梯度来加热TaC容器2。其结果,通过因SiC容器3的内表面被蚀刻而升华的C原子与SiC容器3内部的环境中的Si原子键合,在衬底基板40上生长单晶SiC(3C-SiC、4H-SiC、6H-SiC等)的外延层41。
由此,能以高速形成高纯度的单晶SiC的外延层41。另外,由于外延层41的原料是SiC容器3,因此与导入原料气体的CVD等相比,能使外延层41更均匀地生长。
另外,在本实施方式的气相外延生长方法中,衬底基板40的材料,也可以是Al化合物或N化合物,外延层41的材料也可以是SiC,且相对于<11-20>方向或<1-100>方向的偏角也可以是1°以下。
由此,通过利用本发明的方法,衬底基板40不局限于SiC,因而能够实现高通用性的外延生长方法。由此,在衬底基板40是SiC且偏角小的情况,平台变宽,并且无论衬底基板40的多晶形现象如何,皆能容易形成高质量的单晶SiC的外延层。
另外,在本实施方式的气相外延生长方法中,优选温度梯度是2℃/mm以下。
由此,通过利用本发明的方法,SiC容器3内的C原子的压力变高,因而即使在如上所述的低温度差中也能充分地生长外延层。因此,能够简化加热装置或加热控制。
另外,在本实施方式的气相外延生长方法中,在SiC容器3内配置多片衬底基板40,且分别在该多片衬底基板40生长外延层41。
由此,由于能够在多片衬底基板40上同时形成外延层41,因而能使处理效率化。特别是通过利用本发明的方法,无论SiC容器3内的位置如何,皆能均匀地形成外延层41,因此质量不会降低。
另外,在本实施方式的气相外延生长方法中,将TaC容器2的内表面设为Si或Si化合物,且通过外延层41的生长时的加热,使Si原子从该TaC容器2的内表面升华,从而将该TaC容器2内设定为Si蒸气压力。
由此,与将固体的Si等投入TaC容器2内的方法相比较,能够减轻操作者的负担。另外,通过在TaC的内表面的宽区域内形成Si等,能够实现均匀的Si环境。
以上,尽管上面已经说明了本发明的较适实施方式,但是所述结构例如能够变更如下。
所述TaC容器2及SiC容器3的形状是任意的,可以适宜地变更。例如,TaC容器2和SiC容器3也可是不同的形状,也可是相同(相似)的形状。另外,如图8(d)所示,TaC容器2或SiC容器3也可具有多个空间。另外,也可在1个TaC容器2内收容多个SiC容器3,且在此SiC容器3内再收容多片衬底基板40而形成外延层41。
例如,在想要正确地控制外延层41的生长量的情况下,也可在形成外延层41时导入惰性气体(Ar气体等),使外延层41的生长速率降低。
TaC容器2的内部空间和SiC容器3的内部空间的环境(特别是Si和C的分压),根据Si源的量、TaC的碳吸附功能的程度、TaC容器2的容积、SiC容器3的容积等而改变,因此通过改变这些条件,能够控制外延层41的生长速率和质量等。
附图标记说明
2 TaC容器
2a 上部容器
2b 下部容器
3 SiC容器
3a 上部容器
3b 下部容器
11 高温真空炉
40 SiC基板
41 外延层
45 多晶SiC板