CN107904201A - 人胚胎干细胞向胰腺内分泌谱系的分化 - Google Patents

人胚胎干细胞向胰腺内分泌谱系的分化 Download PDF

Info

Publication number
CN107904201A
CN107904201A CN201711327734.0A CN201711327734A CN107904201A CN 107904201 A CN107904201 A CN 107904201A CN 201711327734 A CN201711327734 A CN 201711327734A CN 107904201 A CN107904201 A CN 107904201A
Authority
CN
China
Prior art keywords
cell
expression
characteristic markers
amino
pedigree characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711327734.0A
Other languages
English (en)
Other versions
CN107904201B (zh
Inventor
A.雷扎尼亚
B.弗赖尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Janssen Biotech Inc
Original Assignee
Centocor Ortho Biotech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centocor Ortho Biotech Inc filed Critical Centocor Ortho Biotech Inc
Publication of CN107904201A publication Critical patent/CN107904201A/zh
Application granted granted Critical
Publication of CN107904201B publication Critical patent/CN107904201B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0603Embryonic cells ; Embryoid bodies
    • C12N5/0606Pluripotent embryonic cells, e.g. embryonic stem cells [ES]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0676Pancreatic cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0018Culture media for cell or tissue culture
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0601Invertebrate cells or tissues, e.g. insect cells; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/25Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving enzymes not classifiable in groups C12Q1/26 - C12Q1/66
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/115Basic fibroblast growth factor (bFGF, FGF-2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/117Keratinocyte growth factors (KGF-1, i.e. FGF-7; KGF-2, i.e. FGF-12)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/155Bone morphogenic proteins [BMP]; Osteogenins; Osteogenic factor; Bone inducing factor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/16Activin; Inhibin; Mullerian inhibiting substance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/30Hormones
    • C12N2501/38Hormones with nuclear receptors
    • C12N2501/39Steroid hormones
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/40Regulators of development
    • C12N2501/405Cell cycle regulated proteins, e.g. cyclins, cyclin-dependant kinases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/40Regulators of development
    • C12N2501/41Hedgehog proteins; Cyclopamine (inhibitor)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/70Enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/998Proteins not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/02Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from embryonic cells

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Developmental Biology & Embryology (AREA)
  • Gynecology & Obstetrics (AREA)
  • Reproductive Health (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

本发明涉及人胚胎干细胞向胰腺内分泌谱系的分化。本发明提供了用于增加表达胰腺内分泌谱系特征性标记物的细胞中MAFA的表达的方法,所述方法包括在含有足以引起MAFA表达增加的量的细胞周期蛋白依赖性激酶抑制剂的培养基中培养表达胰腺内分泌谱系特征性标记物的细胞的步骤。

Description

人胚胎干细胞向胰腺内分泌谱系的分化
本申请为分案申请,原申请的申请日为2009年10月23日,申请号为200980153865.9(PCT/US2009/061774),发明名称为“人胚胎干细胞向胰腺内分泌谱系的分化”。
本发明要求在2008年10月31日提交的专利申请No.61/110,287的优先权。
技术领域
本发明提供了促进多能干细胞分化的方法。具体地讲,本发明提供一种提高表达胰腺内分泌谱系特征性标记物的细胞中的MAFA的表达的方法。
背景技术
用于I型糖尿病的细胞替代疗法的进展以及可移植胰岛的缺乏已使得注意力集中在开发适于移植物移入的胰岛素生成细胞或β细胞的来源上。一种方法是从多能干细胞,例如胚胎干细胞产生功能性β细胞。
在脊椎动物的胚胎发育中,多能细胞可在称为原肠胚形成的过程中产生包括三个胚层(外胚层、中胚层和内胚层)的一组细胞。诸如例如甲状腺、胸腺、胰腺、肠和肝脏之类的组织将从内胚层经由中间阶段发育而来。该过程中的中间阶段是形成定形内胚层。定形内胚层细胞可表达多种标记物,例如HNF-3β、GATA4、MIXL1、CXCR4和SOX17。
定形内胚层分化成胰腺内胚层导致形成胰腺。胰腺内胚层细胞表达胰-十二指肠同源盒基因PDX1。在不存在PDX1时,胰腺形成腹胰芽和背胰芽后不再发育。因而,PDX1表达标志着胰腺器官发生中的一个关键步骤。除了其他细胞类型,成熟的胰腺还包括外分泌组织和内分泌组织。外分泌和内分泌组织来自胰腺内胚层的分化。
据报道,从小鼠的胚胎细胞衍生了带有胰岛细胞特征的细胞。例如,Lumelsky等人(Science 292:1389,2001)报道了小鼠胚胎干细胞向类似胰岛的胰岛素分泌结构的分化。Soria等人(Diabetes 49:157,2000)报道,衍生自小鼠胚胎干细胞的胰岛素分泌细胞使链脲佐菌素诱导的糖尿病小鼠中的血糖变正常。
在一个例子中,Hori等人(PNAS 99:16105,2002)揭示,用磷酸肌醇3-激酶(LY294002)的抑制剂处理小鼠胚胎干细胞,产生了类似β细胞的细胞。
在另一例子中,Blyszczuk等人(PNAS 100:998,2003)报道,从组成型表达Pax4的小鼠胚胎干细胞产生了胰岛素生成细胞。
Micallef等人报道说,视黄酸可调节胚胎干细胞定向形成Pdx1阳性胰腺内胚层。在对应于胚胎的原肠胚形成末的期间,加入胚胎干细胞分化第4天的培养物中时视黄酸是诱导Pdx1最有效的(Diabetes 54:301,2005)。
Miyazaki等人报道了过表达Pdx1的小鼠胚胎干细胞系。他们的结果显示,外源Pdx1表达在所得的分化细胞中明显增强了胰岛素、生长抑素、葡萄糖激酶、神经元素3、P48、Pax6和HNF6基因的表达(Diabetes 53:1030,2004)。
Skoudy等人报道说,激活素A(TGF-β超级族的成员)能上调小鼠胚胎干细胞中的胰腺外分泌基因(p48和淀粉酶)和内分泌基因(Pdx1、胰岛素和胰高血糖素)的表达。使用1nM激活素A时观察到最大的效果。他们还观察到,胰岛素和Pdx1 mRNA的表达水平不受视黄酸的影响;然而,3nM FGF7处理导致Pdx1的转录水平升高(Biochem.J.379:749,2004)。
Shiraki等人研究了能特征性增强胚胎干细胞分化成Pdx1阳性细胞的生长因子的效果。他们观察到,TGF-β2可再现地产生更高比例的Pdx1阳性细胞(Genes Cells.2005年6月;10(6):503-16)。
Gordon等人阐明了在不存在血清的情况下和在存在激活素连同Wnt信号转导抑制剂的情况下从小鼠胚胎干细胞诱导brachyury+/HNF-3β+内胚层细胞(US 2006/0003446A1)。
Gordon等人(PNAS,第103卷,第16806页,2006年)声称:“Wnt和TGF-β/nodal/激活素信号转导同时为前原条的产生所必需”。
然而,胚胎干细胞发育的小鼠模型可能不会完全模拟高等哺乳动物(例如人)中的发育程序。
Thomson等人从人胚泡分离了胚胎干细胞(Science 282:114,1998)。同时,Gearhart和其同事从胎儿生殖腺组织衍生了人胚胎生殖(hEG)细胞系(Shamblott等人,Proc.Natl.Acad.Sci.USA 95:13726,1998)。与可简单通过与白血病抑制因子(LIF)一起培养来防止分化的小鼠胚胎干细胞不一样,人胚胎干细胞必须维持在非常特殊的条件下(美国专利No.6,200,806、WO 99/20741、WO 01/51616)。
D’Amour等人描述了在高浓度激活素和低血清的存在下产生人胚胎干细胞衍生的定形内胚层的富集培养物(Nature Biotechnology 2005)。将这些细胞移植到小鼠的肾囊下,导致分化成具有某些内胚层器官的特性的更成熟细胞。在加入FGF-10之后,人胚胎干细胞衍生的定形内胚层细胞可进一步分化成Pdx1阳性细胞(US 2005/0266554A1)。
D’Amour等人(Nature Biotechnology-24,1392-1401(2006))声称:“我们已开发出一种将人胚胎干(hES)细胞转化成能够合成胰腺激素即胰岛素、胰高血糖素、生长抑素、胰多肽和生长素释放素(ghrelin)的内分泌细胞的分化方法。该方法通过引导细胞经过通向能表达内分泌激素的细胞的类似定形内胚层、肠管内胚层、胰腺内胚层和内分泌前体的各阶段,来模拟体内胰腺器官发生。”
在另一个例子中,Fisk等人报道了用于从人胚胎干细胞产生胰岛细胞的系统(US2006/0040387A1)。在这个情况中,分化途径分成三个阶段。首先用丁酸钠和激活素A的组合使人胚胎干细胞分化成内胚层。然后将细胞与TGF-β拮抗剂(例如成头蛋白(Noggin))结合EGF或β细胞素一起进行培养,以产生Pdx1阳性细胞。通过烟酰胺诱导终末分化。
在一个例子中,Benvenistry等人声称:“我们得出结论认为,Pdx1的过表达增强了胰腺富集基因(pancreatic enriched genes)的表达,胰岛素表达的诱导可能需要另外的仅存在于体内的信号(Benvenistry等人,Stem Cells 2006;24:1923–1930)。”
细胞周期蛋白和β细胞功能有关系。例如,Lilja等人报道Cdk5存在于胰岛素分泌胰腺β-细胞中(J.Biol.Chem.,276卷,36期,34199-34205,2001年9月7日)。Lilja等人称“Cdk5存在于β-细胞中并充当胰岛素胞外分泌的正调节因子。”
在另一实例中,Marzo等人声称“Cdk4基因敲入小鼠具有显著增加的β-细胞群并具有生理功能,从而表明Cdk4是1型糖尿病中胰腺β细胞群再生的潜在靶点”(Diabetalogia,47卷第4期,686-694页,2004年4月1日)。
在另一个实施例中,Ubeda等人报道抑制细胞周期蛋白依赖性激酶5活性可保护胰腺β细胞不受糖毒性的影响(J.Biol.Chem.,281卷,39期,28858-28864页,2006年9月29日)。
在另一个实例中,Wei等人报道了葡萄糖刺激的胰岛素分泌的Cdk5依赖性调控(Nature Medicine 11,第1104-1108页,(2005年10月1日))。
在另一个实例中,Vanderford等人声称“MafA”是在胰腺的β细胞内表达的碱性亮氨酸拉链转录因子,并因其涉及β细胞生物学的多个方面而需要其来维持正常葡萄糖内稳态。已知MafA蛋白水平通过尚未完全表征的机制响应高葡萄糖而增加。我们调查了分立的细胞内信号转导事件是否会控制mafA表达。我们发现通用激酶抑制剂星孢菌素在不会改变蛋白质稳定性的情况下诱导mafA表达。MAP激酶JNK的抑制模拟了星孢菌素对mafA表达的影响。钙调蛋白激酶和钙信号转导在高葡萄糖刺激mafA表达方面也是重要的。然而,星孢菌素、JNK和钙调蛋白激酶对胰岛素表达的诱导具有不同影响。这些数据反映MafA水平由多条激酶通路的协同作用紧密控制(Archives of Biochemistry and Biophysics(2008),doi:10.1016/j.abb.2008.10.001)。
因此,仍非常需要研究出用于使多能干细胞分化为胰腺内分泌细胞、胰腺激素表达细胞或胰腺激素分泌细胞的方法。本发明提供增加表达胰腺内分泌谱系特征性标记物的细胞中MAFA的表达的方法。
发明内容
在一个实施例中,本发明提供了用于增加表达胰腺内分泌谱系特征性标记物的细胞中MAFA的表达的方法,所述方法包括在含有足以引起MAFA表达增加的量的细胞周期蛋白依赖性激酶抑制剂的培养基中培养表达胰腺内分泌谱系特征性标记物的细胞的步骤。
附图说明
图1中分图a示出来自EMD Calbiochem激酶抑制剂库的化合物对由实时PCR确定的表达胰腺内分泌谱系特征性标记物的细胞中胰岛素与胰高血糖素表达之比的影响。数字字母混合标记对应于表1所示的化合物种类。分图b示出来自EMD Calbiochem激酶抑制剂库的化合物对由实时PCR确定的表达胰腺内分泌谱系特征性标记物的细胞中MAFA与ARX4比的影响。数字字母混合标记对应于表1所示的化合物种类。
图2A)示出在第6阶段处理的第4天,根据实例1所述的方法处理的细胞的4倍显微图。B)示出在处理的第4天,用0.5μM的化合物PubChemID#5330812处理的细胞的4倍显微图。C)示出在处理的第4天用1μM的化合物PubChemID#5330812处理的细胞的4倍显微图。D)示出在第6阶段处理的第6天,根据实例1所述的方法处理的细胞的20倍显微图。E)示出在处理的第6天,用0.5μM的化合物PubChemID#5330812处理的细胞的20倍显微图。F)示出在处理的第6天,用1μM的化合物PubChemID#5330812处理的细胞的20显微图。
图3示出在0.5μM(暗色柱条)或1.0μM(浅色柱条)的化合物PubChem ID#5330812的五天处理之后表达胰腺内分泌谱系特征性标记物的细胞中所标示的23种基因的表达。在第0天、第2天和第5天确定表达水平。
图4示出CDK抑制剂III处理对用实例4所述分化方案的第7阶段处理的细胞中胰腺内分泌谱系特征性标记物的表达的影响。
图5示出CDK抑制剂III处理对胰岛样细胞簇的双硫腙染色的影响。
图6示出根据实例5所述的方法产生的产胰岛素细胞中胰岛素、突触素和胰高血糖素的表达。通过FACS来确定所示蛋白质的表达。
图7示出根据实例5所述的方法产生的产胰岛素细胞中胰岛素、突触素和胰高血糖素的表达。通过FACS来确定所标示的蛋白质的表达。
图8示出由本发明的方法产生的产胰岛素细胞中MAFA的表达(分图a)和胰岛素的表达(分图b)。在第1天、第2天、第3天和第4天获取用于PCR分析的细胞样本。在用CDK抑制剂处理4天之后,从培养基去除CDK抑制剂,并且细胞在DMEM-F12+1%B27+20ng/ml的激活素A中培养额外的4天。在四天结束时,收集三份用于PCR分析的样本。
图9示出来自EMD Calbiochem激酶抑制剂库I的化合物对由实时PCR确定的表达胰腺内分泌谱系特征性标记物的细胞中MAFA的表达的影响。
图10示出染料木素对由实时PCR确定的表达胰腺内分泌谱系特征性标记物的细胞中胰岛素、胰高血糖素、生长抑素和MAFA的mRNA表达的影响。
具体实施方式
将本发明的具体实施方式部分分成以下几个分部分,来描述或说明本发明的某些特征、实施例或应用,这是为了使公开内容清楚起见,并非限制本发明。
定义
干细胞是由它们在单细胞水平上既自我更新又分化产生子代细胞的能力来定义的未分化细胞,包括自我更新祖细胞、非更新祖细胞和末端分化细胞。干细胞的特征还在于它们能够在体外分化成多种胚层(内胚层、中胚层和外胚层)的多种细胞谱系的功能细胞,以及在移植后产生多种胚层组织,并在注射进囊胚后形成基本上大部分(如果不是全部)组织。
干细胞根据其发育潜能分为:(1)全能,指能够产生所有的胚胎和胚胎外细胞类型;(2)多能,指能够产生所有的胚胎细胞类型;(3)专能,指能够产生细胞谱系的亚群,但在特定组织、器官或生理系统内能产生所有的细胞(例如造血干细胞(HSC)可产生的后代细胞包括:HSC(自我更新)、局限于血细胞的寡能祖细胞以及作为血液正常组分的所有细胞类型和成分(如血小板));(4)寡能,指能够产生比多能干细胞更有限的细胞谱系亚群;以及(5)单能,指能够产生单一细胞谱系(如生精干细胞)。
分化是未特化的(“未定向的”)或特化不足的细胞获得特化细胞(如神经细胞或肌肉细胞)的特征的过程。分化的或分化诱导的细胞是在细胞的谱系当中具有较为特化的(“定向的”)地位的细胞。术语“定向的”当应用到分化的过程时,指在分化途径中已经进行到这么一种程度的细胞:在正常环境下,它会继续分化成特定的细胞类型或细胞类型子集,且在正常环境下不能分化成另一细胞类型或回复到分化不足的细胞类型。去分化指细胞回复到细胞的谱系当中特化(或定向)不足的地位的过程。本文所用的“细胞的谱系”限定细胞的遗传关系,即它来自哪些细胞和它能产生什么细胞。细胞的谱系将该细胞置于发育和分化的遗传安排(hereditary scheme)当中。谱系特征性标志指与目的谱系的细胞的表型明确相关的特征,可用来评估未定向细胞向目的谱系的分化。
“β-细胞谱系”是指对于转录因子PDX-1和下列转录因子中的至少一种具有阳性基因表达的细胞:NGN3、NKX2.2、NKX6.1、NEUROD、ISL1、HNF3 β、MAFA、PAX4或PAX6。表达β细胞谱系特征性标记物的细胞包括β细胞。
本文所用的“表达定形内胚层谱系特征性标记物的细胞”指表达至少一种如下标记物的细胞:SOX17、GATA4、HNF3β、GSC、CER1、Nodal、FGF8、Brachyury、Mix样同源盒蛋白、FGF4CD48、脱中胚蛋白(eomesodermin,EOMES)、DKK4、FGF17、GATA6、CXCR4、C-Kit、CD99或OTX2。表达定形内胚层谱系特征性标记物的细胞包括原条前体细胞、原条细胞、中内胚层细胞和定形内胚层细胞。
本文所用的“表达胰腺内胚层谱系特征性标记物的细胞”是指表达至少一种下列标记物的细胞:PDX1、HNF-1β、PTF1α、HNF-或HB9。表达胰腺内胚层谱系特征性标记物的细胞包括胰腺内胚层细胞、原肠管细胞和后前肠细胞。
本文所用的“表达胰腺内分泌谱系特征性标记物的细胞”指表达至少一种下列标记物的细胞:NGN3、NEUROD、ISL1、PDX1、NKX6.1、PAX4或PTF1α。表达胰腺内分泌谱系特征性标记物的细胞包括胰腺内分泌细胞、胰腺激素表达细胞和胰腺激素分泌细胞以及β-细胞谱系的细胞。
本文所用的“定形内胚层”指具有在原肠胚形成过程中从上胚层产生的细胞的特性并形成胃肠道及其衍生物的细胞。定形内胚层细胞表达下列标记物:HNF3β、GATA4、SOX17、Cerberus、OTX2、goosecoid、C-Kit、CD99或MIXL1。
本文所用的“胚胎外内胚层”指表达至少一种下列标记物的细胞群体:SOX7、AFP或SPARC。
本文所用的“标记物”是在所关注细胞中差异表达的核酸或多肽分子。在这个情形中,差异表达意思是阳性标记物的水平增加,而阴性标记物的水平降低。标记物核酸或多肽的可检测水平,在目的细胞中充分地高于或低于在其他细胞中,使得可使用多种本领域公知的方法中的任何一种将目的细胞与其他细胞鉴别和区分开来。
本文所用的“中内胚层细胞”指表达至少一种下列标记物的细胞:CD48、脱中胚蛋白(EOMES)、SOX17、DKK4、HNF3β、GSC、FGF17或GATA6。
本文所用的“胰腺内分泌细胞”或“胰腺激素表达细胞”指能够表达至少一种下列激素的细胞:胰岛素、胰高血糖素、生长抑素和胰多肽。
本文所用的“胰腺内胚层细胞”指能够表达至少一种下列标记物的细胞:NGN3、NEUROD、ISL1、PDX1、PAX4或NKX2.2。
本文所用的“产胰腺激素细胞”指能够分泌至少一种下列激素的细胞:胰岛素、胰高血糖素、生长抑素或胰多肽。
本文所用的“胰腺激素分泌细胞”指能够分泌至少一种下列激素的细胞:胰岛素、胰高血糖素、生长抑素和胰多肽。
本文所用的“后前肠细胞”指能够分泌至少一种下列标记物的细胞:PDX1、HNF1、PTF1α、HNF6、HB9或PROX1。
本文所用的“前原条细胞”指表达至少一种下列标记物的细胞:Nodal或FGF8。
本文所用的“原肠管细胞”指能够分泌至少一种下列标记物的细胞:HNF1或HNF4A。
本文所用的“原条细胞”指表达至少一种下列标记物的细胞:Brachyury、Mix样同源盒蛋白或FGF4。
多能干细胞的分离、扩增和培养
多能干细胞的表征
多能干细胞可表达阶段特征性胚胎抗原(SSEA)3和4以及可用称为Tra-1-60和Tra-1-81的抗体检测的标记物中的一种或多种(Thomson等人,Science 282:1145,1998)。多能干细胞体外分化导致丧失SSEA-4、Tra-1-60和Tra-1-81的表达(如果存在的话),并增加SSEA-1的表达。未分化的多能干细胞通常具有碱性磷酸酶活性,该酶可通过用4%多聚甲醛固定细胞,然后用Vector Red作为底物显影来检测,如生产商所描述的(VectorLaboratories,Burlingame Calif)。未分化的多能干细胞还通常表达Oct-4和TERT,这可通过RT-PCR检测。
增殖的多能干细胞的另一理想表型是分化成所有三个胚层即内胚层、中胚层和外胚层组织的细胞的潜能。多能干细胞的多能性可例如通过这样来证实:将细胞注射进重症联合免疫缺陷(SCID)小鼠中,用4%多聚甲醛固定所形成的畸胎瘤,然后对它们进行组织学检验以确定是否存在来自三个胚层的细胞类型。作为另一种选择,多能性可通过这样来确定:产生胚状体并评价该胚状体是否存在与三个胚层相关的标记物。
增殖的多能干细胞系可以用标准G-显带技术进行核型分析并与所公开的相应灵长类物种的核型相比较。理想的是获得具有“正常核型”的细胞,“正常核型”的细胞意指该细胞是整倍体,其中所有人染色体都存在并且没有显著改变。
多能干细胞的来源
可使用的多能干细胞选自人胚胎干细胞系H1、H7和H9(WiCell)以及突变型人胚胎干细胞系BG01v(BresaGen,Athens,GA)。
多能干细胞的培养
在一个实施例中,通常在饲养细胞层上培养多能干细胞,饲养细胞可以多种方式支持多能干细胞。或者,在培养系统中培养多能干细胞,所述培养系统基本上不含饲养细胞,但同样支持多能干细胞的增殖而不会进行显著的分化。使用通过此前培养另一细胞类型而调理过的培养基来支持多能干细胞在无饲养细胞的培养物中生长而不分化。作为另一种选择,用化学成分确定的培养基来支持多能干细胞在无饲养细胞的培养物中生长而不分化。
例如,Reubinoff等人(Nature Biotechnology 18:399-404(2000))和Thompson等人(Science,1998年11月6日:第282卷,第5391期,第1145–1147页)公开了用小鼠胚胎成纤维细胞饲养细胞层来培养来自人胚泡的多能干细胞系。
Richards等人(Stem Cells 21:546-556,2003)对一组11种不同的成人、胎儿和新生儿饲养细胞层支持人多能干细胞培养的能力进行了评价。Richards等人声称:“在成人皮肤成纤维细胞饲养层上培养的人胚胎干细胞系保持了人胚胎干细胞形态并保持了多能性”。
US20020072117公开了可产生支持灵长类多能干细胞在无饲养细胞的培养物中生长的培养基的细胞系。所采用的细胞系是从胚胎组织获得或从胚胎干细胞分化而来的间质细胞系和成纤维细胞样细胞系。US20020072117还公开了所述细胞系作为原代饲养细胞层的用途。
又如,Wang等人(Stem Cells 23:1221-1227,2005)公开了用于人多能干细胞在衍生自人胚胎干细胞的饲养细胞层上长期生长的方法。
又如,Stojkovic等人(Stem Cells 2005 23:306-314,2005)公开了一种衍生自人胚胎干细胞的自发分化的饲养细胞系统。
在另一例子中,Miyamoto等人(Stem Cells 22:433-440,2004)公开了从人胎盘获得的饲养细胞的来源。
Amit等人(Biol.Reprod 68:2150-2156,2003)公开了衍生自人包皮的饲养细胞层。
又如,Inzunza等人(Stem Cells 23:544-549,2005)公开了来自人出生后包皮成纤维细胞的饲养细胞层。
US6642048公开了可支持灵长类多能干(pPS)细胞在无饲养细胞的培养物中生长的培养基以及可用于产生这种培养基的细胞系。US6642048声称:“本发明包括从胚胎组织获得或从胚胎干细胞分化而来的间质细胞系和成纤维细胞样细胞系。在本公开中描述并阐明了用于衍生这种细胞系、处理培养基以及用该调理培养基培育干细胞的方法”。
又如,WO2005014799公开了一种用于哺乳动物细胞的维持、增殖和分化的调理培养基。WO2005014799声称:“通过鼠细胞(特别是分化并永生化的转基因肝细胞,称为MMH(Met鼠肝细胞))的细胞分泌活性对根据本发明制备的培养基进行调理”。
又如,Xu等人(Stem Cells 22:972-980,2004)公开了一种从人胚胎干细胞衍生物获得的调理培养基,所述干细胞衍生物已经过遗传修饰而过表达人端粒酶逆转录酶。
又如,US20070010011公开了一种用于维持多能干细胞的化学成分确定的培养基。
一种可供选择的培养系统采用补充有能促进胚胎干细胞增殖的生长因子的无血清培养基。例如,Cheon等人(BioReprod DOI:10.1095/biolreprod.105.046870,2005年10月19日)公开了一种无饲养细胞的无血清培养系统,其中胚胎干细胞维持在补充有能引发胚胎干细胞自我更新的不同生长因子的未经调理的血清替代(SR)培养基中。
又如,Levenstein等人(Stem Cells 24:568-574,2006)公开了使用补充有bFGF的培养基,在不存在成纤维细胞或调理培养基的情况下长期培养人胚胎干细胞的方法。
又如,US20050148070公开了一种在无血清且无成纤维细胞饲养细胞的成分确定的培养基中培养人胚胎干细胞的方法,该方法包括:在含有白蛋白、氨基酸、维生素、矿物质、至少一种转铁蛋白或转铁蛋白替代品、至少一种胰岛素或胰岛素替代品的培养基中培养干细胞,该培养基基本上无哺乳动物胎儿血清且含有至少约100ng/ml能激活成纤维细胞生长因子信号转导受体的成纤维细胞生长因子,其中该生长因子的供给来源不是仅为成纤细胞饲养层,该培养基支持干细胞在无饲养细胞或调理培养基的情况下以未分化状态增殖。
又如,US20050233446公开了一种可用于培养干细胞的化学成分确定的培养基,所述干细胞包括未分化的灵长类原始干细胞。在溶液中,该培养基与被培养的干细胞基本上等渗。在给定的培养物中,特定的培养基包含基础培养基和各为一定量的bFGF、胰岛素和抗坏血酸,所述bFGF、胰岛素和抗坏血酸为支持原始干细胞进行基本上非分化性生长所必需。
又如,US6800480声称“在一个实施例中,提供了用于培养处于基本上未分化状态的衍生自灵长类的原始干细胞的细胞培养基,其包括可有效支持衍生自灵长类的原始干细胞生长的低渗透压、低内毒素的基础培养基。该基础培养基与可有效支持衍生自灵长类的原始干细胞生长的营养血清和选自饲养细胞和衍生自饲养细胞的胞外基质组分的基质物质相混合。该培养基还包括非必需氨基酸、抗氧化剂和选自核苷和丙酮酸盐的第一生长因子”。
又如,US20050244962声称:“在一个方面,本发明提供了培养灵长类胚胎干细胞的方法。可在基本上无哺乳动物胎儿血清(优选还基本上无任何动物血清)的培养物中且在存在成纤维细胞生长因子的情况下培养所述干细胞,该成纤维细胞生长因子的供给来源不是仅为成纤维细胞饲养层。在优选的形式中,通过添加足量的成纤维细胞生长因子,使得之前为维持干细胞培养物所需的成纤维细胞饲养层变得非必需”。
在又一个例子中,WO2005065354公开了一种基本上无饲养细胞和无血清的成分确定的等渗培养基,包含:a.基础培养基;b.bFGF,其量足以支持基本上未分化的哺乳动物干细胞生长;c.胰岛素,其量足以支持基本上未分化的哺乳动物干细胞生长;和d.抗坏血酸,其量足以支持基本上未分化的哺乳动物干细胞生长。
又如,WO2005086845公开了一种维持未分化的干细胞的方法,所述方法包括使干细胞暴露于转化生长因子-β(TGF-β)蛋白家族的成员、成纤维细胞生长因子(FGF)蛋白家族的成员或烟酰胺(NIC),所述成员或烟酰胺的量足以维持细胞处于未分化状态达足以实现所需结果的一段时间。
可将多能干细胞接种至合适的培养基质上。在一个实施例中,合适的培养基质是胞外基质成分,例如衍自基底膜的成分,或者可形成黏着分子受体-配体偶联物的一部分的成分。在一个实施例中,合适的培养基质是(Becton Dickenson)。是得自Engelbreth-Holm Swarm肿瘤细胞的可溶性制品,其在室温下胶凝而形成重构的基底膜。
其他的胞外基质组分和组分混合物适合作为替代物。取决于所扩增的细胞类型,这可包括单独的层粘连蛋白、纤连蛋白、蛋白聚糖、巢蛋白、硫酸乙酰肝素等或者它们的各种组合。
可在存在可促进细胞存活、增殖和保持理想特性的培养基存在的情况下,以合适的分布将多能干细胞接种于所述基质上。所有这些特性可得益于对接种分布的认真考虑并可容易地由本领域技术人员确定。
合适的培养基可用如下组分制备,例如达尔伯克氏改良伊格尔培养基(DMEM),Gibco#11965-092;Knockout达尔伯克氏改良伊格尔培养基(KO DMEM),Gibco#10829-018;Ham's F12/50%DMEM基础培养基;200mM L-谷氨酰胺,Gibco#15039-027;非必需氨基酸溶液,Gibco 11140-050;β-巯基乙醇,Sigma#M7522;人重组碱性成纤维细胞生长因子(bFGF),Gibco#13256-029。
由多能干细胞形成产胰腺激素细胞
在一个实施例中,本发明提供一种从多能干细胞产生产胰腺激素细胞的方法,该方法包括如下步骤:
a.培养多能干细胞,
b.使所述多能干细胞分化成表达定形内胚层谱系特征性标记物的细胞,
c.使所述表达定形内胚层谱系特征性标记物的细胞分化成表达胰腺内胚层谱系特征性标记物的细胞,以及
d.使所述表达胰腺内胚层谱系特征性标记物的细胞分化成表达胰腺内分泌谱系特征性标记物的细胞。
适用于本发明的多能干细胞包括例如人胚胎干细胞系H9(NIH编码:WA09)、人胚胎干细胞系H1(NIH编码:WA01)、人胚胎干细胞系H7(NIH编码:WA07)和人胚胎干细胞系SA002(Cellartis,瑞典)。同样适用于本发明的是表达至少一种下列多能细胞特征性标记物的细胞:ABCG2、cripto、CD9、FOXD3、连接蛋白43、连接蛋白45、OCT4、SOX2、NANOG、hTERT、UTF1、ZFP42、SSEA3、SSEA4、Tra1-60或Tra1-81。
定形内胚层谱系特征性标记物选自SOX17、GATA4、HNF3β、GSC、CER1、NODAL、FGF8、Brachyury、Mix样同源盒蛋白、FGF4CD48、脱中胚蛋白(EOMES)、DKK4、FGF17、GATA6、CXCR4、C-Kit、CD99和OTX2。适用于本发明的是表达至少一种定形内胚层谱系特征性标记物的细胞。在本发明的一个方面,表达定形内胚层谱系特征性标记物的细胞是原条前体细胞。在另一方面,表达定形内胚层谱系特征性标记物的细胞是中内胚层细胞。在另一方面,表达定形内胚层谱系特征性标记物的细胞是定形内胚层细胞。
胰腺内胚层谱系特征性标记物选自PDX1、HNF1β、PTF1α、HNF6、HB9和PROX1。适用于本发明的是表达至少一种胰腺内胚层谱系特征性标记物的细胞。在本发明的一个方面,表达胰腺内胚层谱系特征性标记物的细胞是胰腺内胚层细胞。
胰腺内分泌谱系特征性标记物选自NGN3、NEUROD、ISL1、PDX1、NKX6.1、PAX4、NGN3和PTF1α。在一个实施例中,胰腺内分泌细胞能够表达以下激素中的至少一种:胰岛素、胰高血糖素、生长抑素和胰多肽。适用于本发明的是表达至少一种胰腺内分泌谱系特征性标记物的细胞。在本发明的一个方面,表达胰腺内分泌谱系特征性标记物的细胞是胰腺内分泌细胞。胰腺内分泌细胞可以是胰腺激素表达细胞。或者,胰腺内分泌细胞可以是胰腺激素分泌细胞。
在本发明的一个方面,胰腺内分泌细胞是表达β细胞谱系特征性标记物的细胞。表达β细胞谱系特征性标记物的细胞可表达Pdx1和至少一种下列转录因子:NGN3、NKX2.2、NKX6.1、NEUROD、ISL1、HNF3β、MAFA、PAX4或PAX6。在本发明的一个方面,表达β细胞谱系特征性标记物的细胞是β细胞。
表达定形内胚层谱系特征性标记物的细胞的形成
可通过本领域的任何方法或通过本发明提出的任何方法,使多能干细胞分化成表达定形内胚层谱系特征性标记物的细胞。
例如,可根据D’Amour等人在Nature Biotechnology 23,1534-1541(2005)中公开的方法,使多能干细胞可分化成表达定形内胚层谱系特征性标记物的细胞。
例如,可根据Shinozaki等人,在Development 131,1651-1662(2004)中公开的方法,使多能干细胞可分化成表达定形内胚层谱系特征性标记物的细胞。
例如,可根据McLean等人,在Stem Cells 25,29-38(2007)中公开的方法,使多能干细胞可分化成表达定形内胚层谱系特征性标记物的细胞。
例如,可根据D’Amour等人,在Nature Biotechnology 24,1392-1401(2006)中公开的方法,使多能干细胞可分化成表达定形内胚层谱系特征性标记物的细胞。
例如,可通过将多能干细胞在含有激活素A的培养基中在血清不存在下进行培养,然后将所述细胞与激活素A和血清一起培养,再然后将所述细胞与激活素A和另一浓度的血清一起培养,使多能干细胞分化成表达定形内胚层谱系特征性标记物的细胞。这个方法的一个例子在Nature Biotechnology 23,1534-1541(2005)中公开。
例如,可通过将多能干细胞在含有激活素A的培养基中在血清不存在下进行培养,然后将所述细胞与激活素A和另一浓度的血清一起培养,使多能干细胞分化成表达定形内胚层谱系特征性标记物的细胞。这个方法的一个例子在D’Amour等人,NatureBiotechnology,2005中公开。
例如,可通过将多能干细胞在含有激活素A和Wnt配体的培养基中在血清不存在下进行培养,然后去除Wnt配体并将所述细胞与激活素A和血清一起培养,使多能干细胞分化成表达定形内胚层谱系特征性标记物的细胞。这个方法的一个实例在NatureBiotechnology 24,1392-1401(2006)中公开。
例如,根据转让给LifeScan,Inc.的美国专利申请系列号No.11/736,908中公开的方法,通过处理多能干细胞来使多能干细胞分化为表达定形内胚层谱系特征性标记物的细胞。
例如,根据转让给LifeScan,Inc.的美国专利申请系列号No.11/779,311中公开的方法,通过处理多能干细胞来使多能干细胞分化为表达定形内胚层谱系特征性标记物的细胞。
例如,根据美国专利申请系列号No.60/990,529中公开的方法,通过处理多能干细胞来使多能干细胞分化为表达定形内胚层谱系特征性标记物的细胞。
例如,根据美国专利申请系列号No.61/076,889中公开的方法,通过处理多能干细胞来使多能干细胞分化为表达定形内胚层谱系特征性标记物的细胞。
例如,根据美国专利申请系列号No.61/076,900中公开的方法,通过处理多能干细胞来使多能干细胞分化为表达定形内胚层谱系特征性标记物的细胞。
例如,根据美国专利申请系列号No.61/076,908中公开的方法,通过处理多能干细胞来使多能干细胞分化为表达定形内胚层谱系特征性标记物的细胞。
例如,根据美国专利申请系列号No.61/076,915中公开的方法,通过处理多能干细胞来使多能干细胞分化为表达定形内胚层谱系特征性标记物的细胞。
表达定形内胚层谱系特征性标记物的细胞的分化
表达定形内胚层谱系特征性标记物的细胞的形成可通过在进行特定方案之前或之后检测该标记物的存在来确定。多能干细胞通常不表达这类标记物。因而,当细胞开始表达它们时即检测到多能干细胞的分化。
可通过将处理过的细胞群体暴露于可特异性识别由表达定形内胚层谱系特征性标记物的细胞表达的蛋白质标记物的试剂(例如抗体)来确定分化效率。
用于评估蛋白质标记物和核酸标记物在培养的或分离的细胞中的表达的方法是本领域的标准方法。这些包括定量反转录聚合酶链式反应(RT-PCR)、Northern印迹、原位杂交(参见(例如)Current Protocols in Molecular Biology(Ausubel等人(编辑),2001增刊)),以及免疫测定法,例如切开材料的免疫组织化学分析、Western印迹、易在完整细胞中触及的标记物的流式细胞分析(FACS)(参见(例如)Harlow和Lane,Using Antibodies:ALaboratory Manual,New York:Cold Spring Harbor Laboratory Press(1998))。
多能干细胞的特征是本领域技术人员熟知的,并且其他特征有待继续辨别。多能干细胞标记物包括(例如)一种或多种如下物质的表达:ABCG2、cripto、FOXD3、连结素43、连结素45、OCT4、SOX2、NANOG、hTERT、UTF1、ZFP42、SSEA3、SSEA4、Tra1-60或Tra1-81。
在用本发明方法处理多能干细胞后,可通过将处理过的细胞群体暴露于特异性识别由表达定形内胚层谱系特征性标记物的细胞表达的蛋白质标记物(例如CXCR4)的试剂(例如抗体)来进行纯化。
表达胰腺内胚层谱系特征性标记物的细胞的形成
可通过本领域的任何方法或通过本发明提出的任何方法,使表达定形内胚层谱系特征性标记物的细胞分化成表达胰腺内胚层谱系特征性标记物的细胞。
例如,可根据D’Amour等人,在Nature Biotechnology 24,1392-1401(2006)中公开的方法,使表达定形内胚层谱系特征性标记物的细胞分化成表达胰腺内胚层谱系特征性标记物的细胞。
可通过用成纤维细胞生长因子和hedgehog信号转导途径抑制剂KAAD-环巴胺处理表达定形内胚层谱系特征性标记物的细胞,然后去除含有纤维细胞生长因子和KAAD-环巴胺的培养基,并随后将所述细胞在含有视黄酸、成纤维细胞生长因子和KAAD-环巴胺的培养基中进行培养,来使表达定形内胚层谱系特征性标记物的细胞进一步分化成表达胰腺内胚层谱系特征性标记物的细胞。这个方法的一个例子在Nature Biotechnology 24,1392-1401(2006)中公开。
在本发明的一个方面,根据转让给LifeScan,Inc.的美国专利申请系列号No.11/736,908中公开的方法,通过用视黄酸和至少一种成纤维细胞生长因子处理表达定形内胚层谱系特征性标记物的细胞一段时间,来使表达定形内胚层谱系特征性标记物的细胞进一步分化成表达胰腺内胚层谱系特征性标记物的细胞。
在本发明的一个方面,根据转让给LifeScan,Inc.的美国专利申请系列号No.11/779,311中公开的方法,通过用视黄酸和至少一种成纤维细胞生长因子处理表达定形内胚层谱系特征性标记物的细胞一段时间,来使表达定形内胚层谱系特征性标记物的细胞进一步分化成表达胰腺内胚层谱系特征性标记物的细胞。
在本发明的一个方面,根据序列号为No.60/990,529的美国专利申请中公开的方法,通过处理表达定形内胚层谱系特征性标记物的细胞,来使表达定形内胚层谱系特征性标记物的细胞进一步分化成表达胰腺内胚层谱系特征性标记物的细胞。
表达胰腺内胚层谱系特征性标记物的细胞的检测
胰腺内胚层谱系特征性标记物是本领域技术人员所熟知的,并且其他胰腺内胚层谱系特征性标记物不断被鉴别。这些标记物可用于确定根据本发明处理过的细胞是否已分化而获得胰腺内胚层谱系特征性特性。胰腺内胚层谱系的特异性标记物包括一种或多种转录因子,例如:HLXB9、PTF1α、PDX1、HNF6或HNF1β的表达。
可通过将处理过的细胞群体暴露于可特异性识别由表达胰腺内胚层谱系特征性标记物的细胞表达的蛋白质标记物的试剂(例如抗体)来确定分化效率。
用于评估蛋白质标记物和核酸标记物在培养的或分离的细胞中的表达的方法是本领域的标准方法。这些包括定量反转录聚合酶链式反应(RT-PCR)、Northern印迹、原位杂交(参见(例如)Current Protocols in Molecular Biology(Ausubel等人(编辑),2001增刊)),以及免疫测定法,例如切开材料的免疫组织化学分析、Western印迹、易在完整细胞中触及的标记物的流式细胞分析(FACS)(参见,例如,Harlow和Lane,Using Antibodies:ALaboratory Manual,New York:Cold Spring Harbor Laboratory Press(1998))。
表达胰腺内分泌谱系特征性标记物的细胞的形成
可通过本领域的任何方法或通过本发明公开的任何方法,使表达胰腺内胚层谱系特征性标记物的细胞分化成表达胰腺内分泌谱系特征性标记物的细胞。
例如,可根据D’Amour等人,在Nature Biotechnology 24,1392-1401(2006)中公开的方法,使表达胰腺内胚层谱系特征性标记物的细胞分化成表达胰腺内分泌谱系特征性标记物的细胞。
例如,可通过将表达胰腺内胚层谱系特征性标记物的细胞在含有DAPT和毒蜥外泌肽-4的培养基中进行培养,然后去除含有DAPT和毒蜥外泌肽-4的培养基,并随后将所述细胞在含有毒蜥外泌肽1、IGF-1和HGF的培养基中进行培养,来使表达胰腺内胚层谱系特征性标记物的细胞进一步分化成表达胰腺内分泌谱系特征性标记物的细胞。这个方法的一个实例在Nature Biotechnology 24,1392-1401(2006)中公开。
例如,可通过将表达胰腺内胚层谱系特征性标记物的细胞在含有毒蜥外泌肽4的培养基中进行培养,然后去除该含有毒蜥外泌肽4的培养基,并随后将所述细胞在含有毒蜥外泌肽1、IGF-1和HGF的培养基中进行培养,来使表达胰腺内胚层谱系特征性标记物的细胞进一步分化成表达胰腺内分泌谱系特征性标记物的细胞。该方法的一个例子在D’Amour等人,Nature Biotechnology,2006中公开。
例如,可通过将表达胰腺内胚层谱系特征性标记物的细胞在含有DAPT和毒蜥外泌肽4的培养基中进行培养,来使表达胰腺内胚层谱系特征性标记物的细胞进一步分化成表达胰腺内分泌谱系特征性标记物的细胞。该方法的一个例子在D’Amour等人,NatureBiotechnology,2006中公开。
例如,可通过将表达胰腺内胚层谱系特征性标记物的细胞在含有毒蜥外泌肽4的培养基中进行培养,来使表达胰腺内胚层谱系特征性标记物的细胞进一步分化成表达胰腺内分泌谱系特征性标记物的细胞。该方法的一个例子在D’Amour等人,NatureBiotechnology,2006中公开。
在本发明的一个方面,根据转让给LifeScan,Inc.的美国专利申请系列号11/736,908中公开的方法,通过用抑制Notch信号转导通路的因子处理表达胰腺内胚层谱系特征性标记物的细胞,来使表达胰腺内胚层谱系特征性标记物的细胞进一步分化成表达胰腺内分泌谱系特征性标记物的细胞。
在本发明的一个方面,根据转让给LifeScan,Inc.的美国专利申请系列号11/779,311中公开的方法,通过用抑制Notch信号转导通路的因子处理表达胰腺内胚层谱系特征性标记物的细胞,来使表达胰腺内胚层谱系特征性标记物的细胞进一步分化成表达胰腺内分泌谱系特征性标记物的细胞。
在本发明的一个方面,根据转让给LifeScan,Inc.的美国专利申请系列号60/953,178中公开的方法,通过用抑制Notch信号转导通路的因子处理表达胰腺内胚层谱系特征性标记物的细胞,来使表达胰腺内胚层谱系特征性标记物的细胞进一步分化成表达胰腺内分泌谱系特征性标记物的细胞。
在本发明的一个方面,通过根据序列号为60/990,529的美国专利申请中公开的方法处理表达胰腺内胚层谱系特征性标记物的细胞,来使表达胰腺内胚层谱系特征性标记物的细胞进一步分化成表达胰腺内分泌谱系特征性标记物的细胞。
在本发明的一个方面,本发明提供了用于增加与胰腺内分泌谱系相关的标记物的表达的方法,所述方法包括:根据美国专利申请序列号61/110,278中公开的方法,用包含足量的TGF-β受体激动剂的培养基处理表达胰腺内分泌谱系特征性标记物的细胞,以引起与胰腺内分泌谱系相关的标记物的表达增加。
表达胰腺内分泌谱系特征性标记物的细胞的检测
胰腺内分泌谱系特征性标记物是本领域技术人员所熟知的,并且其他胰腺内分泌谱系特征性标记物不断被鉴别。这些标记物可用于确定根据本发明处理过的细胞是否已分化而获得胰腺内分泌谱系特征性特性。胰腺内分泌谱系特异性标记物包括一种或多种转录因子例如NGN3、NEUROD或ISL1的表达。
这些标记物可用于确认根据本发明处理的细胞已分化而获得β-细胞谱系特征性的性质。除了别的以外,β细胞谱系特异性特征包括一种或多种转录因子的表达,这些因子例如为PDX1、NKX2.2、NKX6.1、ISL1、PAX6、PAX4、NEUROD、HNF1β、HNF6、HNF3β或MAFA。这些转录因子在内分泌细胞鉴别领域中已得到公认。参见例如Edlund(Nature Reviews Genetics3:524-632(2002))。
可通过将处理过的细胞群体暴露于可特异性识别由表达胰腺内分泌谱系特征性标记物的细胞表达的蛋白质标记物的试剂(例如抗体)来确定分化效率。作为另一种选择,可通过将处理过的细胞群体暴露于可特异性识别由表达β细胞谱系特征性标记物的细胞表达的蛋白质标记物的试剂(例如抗体)来确定分化效率。
用于评估蛋白质标记物和核酸标记物在培养的或分离的细胞中的表达的方法是本领域的标准方法。这些包括定量反转录聚合酶链式反应(RT-PCR)、Northern印迹、原位杂交(参见(例如)CurrentProtocols in Molecular Biology(Ausubel等人(编辑),2001增刊)),以及免疫测定法,例如切开材料的免疫组织化学分析、Western印迹、易在完整细胞中触及的标记物的流式细胞分析(FACS)(参见(例如)Harlow和Lane,Using Antibodies:ALaboratory Manual,New York:Cold Spring Harbor Laboratory Press(1998))。
在本发明的一个方面,通过在处理后测定给定细胞培养物中胰岛素阳性细胞的百分比来确定分化的效率。在一个实施例中,本发明方法在给定培养物中产生约100%的胰岛素阳性细胞。在一个替代实施例中,本发明方法在给定培养物中产生约90%的胰岛素阳性细胞。在一个替代实施例中,本发明方法在给定培养物中产生约80%的胰岛素阳性细胞。在一个替代实施例中,本发明方法在给定培养物中产生约70%的胰岛素阳性细胞。在一个替代实施例中,本发明方法在给定培养物中产生约60%的胰岛素阳性细胞。在一个替代实施例中,本发明方法在给定培养物中产生约50%的胰岛素阳性细胞。在一个替代实施例中,本发明方法在给定培养物中产生约40%的胰岛素阳性细胞。在一个替代实施例中,本发明方法在给定培养物中产生约30%的胰岛素阳性细胞。在一个替代实施例中,本发明方法在给定培养物中产生约20%的胰岛素阳性细胞。在一个替代实施例中,本发明方法在给定培养物中产生约10%的胰岛素阳性细胞。在一个替代实施例中,本发明方法在给定培养物中产生约5%的胰岛素阳性细胞。
在本发明的一个方面,通过测定葡萄糖刺激的胰岛素分泌来确定分化的效率,胰岛素分泌可通过测量由细胞释放的C-肽的量测定。在一个实施例中,由本发明方法产生的细胞可产生约1000ng C-肽/pg DNA。在一个替代实施例中,由本发明方法产生的细胞可产生约900ng C-肽/pg DNA。在一个替代实施例中,由本发明方法产生的细胞可产生约800ngC-肽/pg DNA。在一个替代实施例中,由本发明方法产生的细胞可产生约700ng C-肽/pgDNA。在一个替代实施例中,由本发明方法产生的细胞可产生约600ng C-肽/pg DNA。在一个替代实施例中,由本发明方法产生的细胞可产生约500ng C-肽/pg DNA。在一个替代实施例中,由本发明方法产生的细胞可产生约400ng C-肽/pg DNA。在一个替代实施例中,由本发明方法产生的细胞可产生约500ng C-肽/pg DNA。在一个替代实施例中,由本发明方法产生的细胞可产生约400ng C-肽/pg DNA。在一个替代实施例中,由本发明方法产生的细胞可产生约300ng C-肽/pg DNA。在一个替代实施例中,由本发明方法产生的细胞可产生约200ngC-肽/pg DNA。在一个替代实施例中,由本发明方法产生的细胞可产生约100ng C-肽/pgDNA。在一个替代实施例中,由本发明方法产生的细胞可产生约90ng C-肽/pg DNA。在一个替代实施例中,由本发明方法产生的细胞可产生约80ng C-肽/pg DNA。在一个替代实施例中,由本发明方法产生的细胞可产生约70ng C-肽/pg DNA。在一个替代实施例中,由本发明方法产生的细胞可产生约60ng C-肽/pg DNA。在一个替代实施例中,由本发明方法产生的细胞可产生约50ng C-肽/pg DNA。在一个替代实施例中,由本发明方法产生的细胞可产生约40ng C-肽/pg DNA。在一个替代实施例中,由本发明方法产生的细胞可产生约30ng C-肽/pg DNA。在一个替代实施例中,由本发明方法产生的细胞可产生约20ng C-肽/pg DNA。在一个替代实施例中,由本发明方法产生的细胞可产生约10ng C-肽/pg DNA。
增加表达胰腺内分泌谱系特征性标记物的细胞中MAFA的表达
在一个实施例中,本发明提供了用于增加表达胰腺内分泌谱系特征性标记物的细胞中MAFA的表达的方法,所述方法包括在含有足以引起MAFA表达增加的量的细胞周期蛋白依赖性激酶抑制剂的培养基中培养表达胰腺内分泌谱系特征性标记物的细胞的步骤。
细胞周期蛋白依赖性激酶抑制剂可抑制细胞周期蛋白依赖性激酶1。或者,细胞周期蛋白依赖性激酶抑制剂可抑制细胞周期蛋白依赖性激酶2。或者,细胞周期蛋白依赖性激酶抑制剂可抑制细胞周期蛋白依赖性激酶4。或者,细胞周期蛋白依赖性激酶抑制剂可抑制细胞周期蛋白依赖性激酶5。或者,细胞周期蛋白依赖性激酶抑制剂可抑制细胞周期蛋白依赖性激酶9。或者,细胞周期蛋白依赖性激酶抑制剂可以其任意组合抑制周期素依赖性激酶的多种同种型。
细胞周期蛋白依赖性激酶抑制剂可以是蛋白质。或者,细胞周期蛋白依赖性激酶抑制剂可以是肽。或者,细胞周期蛋白激酶抑制剂可以是小分子。在一个实施例中,小分子细胞周期蛋白依赖性激酶抑制剂选自:7-正丁基-6-(4-羟苯基)[5H]吡咯并[2,3-b]吡嗪、9-硝基-7,12-二氢吲哚并[3,2-d][1]苯并氮杂卓-6(5H)-酮、3-(6-氧代-9-硝基-5,6,7,12-四氢吲哚并[3,2-d][1]苯并氮杂卓-2-基)丙腈、(2R)-2-((6-((3-氨基-5-氯苯基)氨基)-9-(1-甲基乙基)-9H-嘌呤-2-基)氨基)-3-甲基-1-丁醇、团网菌黄素A(ArcyriaflavinA)、[6-苄基氨-2-(3-羟基丙氨基)-9-异丙基嘌呤、丁内酯I、(Z)-1-(3-乙基-5-甲氧基-2,3-二氢苯并噻唑-2-亚基)丙-2-酮、2-(3-羟基丙基氨基)-6-(邻羟苄基氨)-9-异丙基嘌呤、1-(2,6-二氯苯基)-1,5-二氢-6-((4-(2-羟基乙氧基)苯基)甲基)-3-(1-甲基乙基)-4H-吡唑并[3,4-d]嘧啶-4-酮、Cdk/细胞周期蛋白抑制肽III、3-(2-氯代-3-吲哚亚甲基)-1,3-二氢吲哚-2-酮、(6-羟基-4-苯基苯并[4,5]呋喃并[2,3-b])吡啶-3-羧酸乙酯、RO-3306、N-(顺式-2-氨基环己基)-N-(3-氯苯基)-9-乙基-9H-嘌呤-2,6-二胺、6-环己基甲氧基-2-(4’-氨磺酰苯胺基)嘌呤、5-氨基-3-((4-(氨基磺酰基)苯基)氨基)-N-(2,6-二氟苯基)-1H-1,2,4-三唑-1-硫代甲酰胺、3-氨基-1H-吡唑并[3,4-b]喹喔啉、Cdk2抑制剂I、Cdk2抑制剂II、2(双-(羟乙基)氨基)-6-(4-甲氧基苄氨基)-9-异丙基嘌呤、4-(6-环己基甲氧基-9H-嘌呤-2-基氨基)-N,N-二乙基苯甲酰胺、N4-(6-氨基嘧啶-4-基)-对氨基苯磺胺、(4-(2-氨基-4-甲基噻唑-5-基)嘧啶-2-基)-(3-硝基苯基)胺、2-溴代-12,13-二氢-5H-吲哚并[2,3-a]吡咯并[3,4-c]咔唑-5,7(6H)-二酮、1,4-二甲氧基吖啶-9(10H)-硫酮、5-(N-(4-甲苯基)氨基)-2-甲基-4,7-二氧代苯并噻唑、4-(3,5-二氨基-1H吡唑-4-基偶氮)-酚、2-(2-羟基乙氨基)-6-(3-氯苯胺基)-9-异丙基嘌呤、Fascaplysin、靛玉红-3’-单肟、靛玉红-3’-单肟、5-碘代-,靛玉红-3’-单肟-5-磺酸、Isogranulatimide、2-(2-羟基乙氨基)-6-苄氨基-9-甲基嘌呤、6-(2-羟基苄氨基)-2-((1R)-(羟甲基)丙基)氨基)-9-异丙基嘌呤、5-溴代-3-(2-(4-氟苯基)-2-氧代乙叉基)-1,3-二氢吲哚-2-酮、N6,N6-二甲基腺嘌呤、2-(1R-异丙基-2-羟基乙氨基)-6-(3-氯苯胺基)-9-异丙基-嘌呤、雷帕霉素、2-(R)-(1-乙基-2-羟基乙氨基)-6-苄氨基-9-异丙基嘌呤、伪枝藻素、3-[1-(3H-咪唑-4-基)-甲-(Z)-亚基]-5-甲氧基-1,3-二氢吲哚-2-酮和4-(3'-羟苯基)氨基-6,7-二甲氧基喹唑啉。
在一个实施例中,细胞周期蛋白依赖性激酶是(6-羟基-4-苯基苯并[4,5]呋喃并[2,3-b])吡啶-3-羧酸乙酯。在一个实施例中,将(6-羟基-4-苯基苯并[4,5]呋喃并[2,3-b])吡啶-3-羧酸乙酯以约0.1μM至约10μM的浓度添加至表达内分泌谱系特征性标记物的细胞,保持约一至七天。
在一个实施例中,将表达内分泌谱系特征性标记物的细胞用(6-羟基-4-苯基苯并[4,5]呋喃并[2,3-b])吡啶-3-羧酸甲酯处理约一至约七天。
本发明进一步通过如下实例举例说明,但不受限于如下实例。
实例
实例1
细胞系H1的人胚胎干细胞在不存在胎牛血清的情况下向胰腺内分泌细胞的分化
将第52代人胚胎干细胞系H1的细胞在涂覆有的培养皿(1:30稀释物)上培养,并暴露于下面的分化方案,以便使细胞向表达胰腺内分泌谱系特征性标记物的细胞分化。
a.暴露于补充有2%BSA(目录号152401,MP Biomedical,Ohio)和100ng/ml激活素A(R&D Systems,MN)加20ng/ml WNT-3a(目录号1324-WN-002,R&D Systems,MN)加8ng/mlbFGF(目录号100-18B,PeproTech,NJ)的RPMI培养基一天,然后用补充有2%BSA和100ng/ml激活素A加8ng/ml bFGF的RPMI培养基另外处理两天(第1阶段),然后
b.暴露于DMEM/F12+2%BSA+50ng/ml FGF7+0.25μM环巴胺-KAAD(#239804,Calbiochem,CA)两天(第2阶段),然后
c.暴露于DMEM/F12+1%B27(Invitrogen,CA)+50ng/ml FGF7+0.25μM环巴胺-KAAD+2μM视黄酸(RA)(Sigma,MO)+100ng/ml成头蛋白(R&D Systems,MN)四天(第3阶段),然后
d.暴露于DMEM/F12+1%B27(Invitrogen,CA)+100ng/ml成头蛋白+1μM DAPT(一种γ-分泌酶抑制剂)(目录号565784,Calbiochem,CA)+1μM ALK5抑制剂II(目录号616452,Calbiochem,Ca)+100ng/ml导蛋白-4(R&D Systems,MN)三天(第4阶段),然后
e.暴露于DMEM/F12+1%B27(Invitrogen,CA)+1μM ALK5抑制剂II(Calbiochem,Ca)七天(第5阶段)。
每天更换培养基。在每个阶段,用血球计计算细胞数目并收集RNA用于PCR分析。所有样品均一式三份进行收集。
实例2
筛选来自EMD激酶抑制剂库II的化合物对已根据实例1所述分化方案处理的细胞 的影响
将第44代的人胚胎干细胞系H1细胞接种至涂覆有MATRIGELTM的24板孔培养皿中(1:30稀释物)并根据实例1所述的方法(最多至第5阶段)使其分化。在此之后,将细胞在含有1μM最终浓度的来自EMD Calbiochem化合物库的化合物(目录号539745,Calbiochem,SanDiego,Ca)的DMEM/F12+1%B27中处理四天。将含有溶媒的板孔包括在内作为对照。在整个方案中每天更换培养基。将所有样本一式两份进行处理。在此处理完成时,收集用于PCR分析的RNA。通过实时PCR分析样本的胰岛素、胰高血糖素、MAFA和Arx4的表达。将结果表示为由实时PCR测得的相对于未处理对照处理样本的胰岛素/胰高血糖素比(图1,分图a)或MAFA/ARX4比(图1,分图b)。各个板孔号的对应PubChem化合物识别号列于表1中。
用1μM浓度的化合物A6、B7、B8或C2处理表达胰腺内分泌谱系特征性标记物的细胞得到大约3.0或更高的胰岛素/胰高血糖素表达比(参见图1,分图a)。
我们然后检查这些化合物对MAFA/ARX4比的影响,我们发现用若干化合物处理表达胰腺内分泌谱系特征性标记物的细胞导致MAFA与ARX4之比的变化比库中所测试的其他化合物大得多:用化合物C2处理的细胞显示出大约1000的MAFA/ARX4比。用化合物C2处理表达胰腺内分泌谱系特征性标记物的细胞得到大约100的MAFA/ARX4比(参见图1,分图b)。
实例3
细胞周期蛋白依赖性激酶抑制剂处理对已根据实例1所述分化方案处理的细胞中 胰岛素和MAFA表达的影响
增加实例2中胰岛素与胰高血糖素表达或MAFA与ARX4表达比的若干化合物是细胞周期蛋白依赖性激酶抑制剂。一种这类化合物是PubChem化合物识别号为5330797的(5-氨基-3-((4-(氨基磺酰基)苯基)氨基)-N-(2,6-二氟苯基)-1H-1,2,4-三唑-1-硫代酰胺)(目录号217714;Calbiochem,San Diego,Ca)。为了证实这些观察结果,根据实例1所述的方法(最多至第5阶段),将第42代人胚胎干细胞系H1的细胞在10cm2涂覆有的培养皿中培养。在第5阶段之后,将细胞用包含1μM PubChem化合物识别号为5330797的化合物的含1%B27的DMEM/F12处理六天。每隔一天更换培养基。在用化合物处理之前以及在化合物处理的第二天和第五天,取细胞的样本用于实时PCR。
在化合物处理的第4天或第6天的细胞与未处理对照相比的特征性显微图示于图2。未处理细胞是高度堆积的(图3,分图a和b),并且难以辨别个体细胞。然而,在用0.5μM或1μM的PubChem化合物识别号5330797处理六天之后,与未处理对照(图2,分图d)相比,个体细胞核开始可见(图2,分图e和f),表明在细胞群体中发生分化。这也伴随一些细胞死亡,这可通过图2的分图b和c所示的细胞层中的间隙看到。
用PubChem化合物识别号为5330797的化合物处理引起胰岛素、胰高血糖素、MAFA、MAFB和抑生长素的表达不同程度增加。图3的分图a-v示出了与第0天(处理前)培养物相比较的每种处理的基因表达的相对诱导。用1μM PubChem化合物识别号为5330797的化合物处理的表达胰腺内分泌谱系特征性标记物的细胞在48小时处理时引起胰高血糖素表达增加大约1.5倍。这种表达在5天处理后下降至处理前水平之下。用0.5μM PubChem化合物识别号为5330797的化合物处理没有观察到胰高血糖素表达增加(参见图3,分图a)。
用1μM PubChem化合物识别号为5330797的化合物处理五天的表达胰腺内分泌谱系特征性标记物的细胞导致胰岛素表达增加大约1.5倍(参见图3,分图b)。
用1μM PubChem化合物识别号为5330797的化合物处理五天的表达胰腺内分泌谱系特征性标记物的细胞导致MAFA表达增加大约200倍(参见图3,分图d)。
用0.5μMPubChem化合物识别号为5330797的化合物处理五天的表达胰腺内分泌谱系特征性标记物的细胞导致MAFB表达增加大约1.5倍(参见图3,分图c)。观察到抑生长素表达的剂量依赖性增加(图3,分图e)。
在用PubChem化合物识别号5330797处理五天的表达胰腺内分泌谱系特征性标记物的细胞中没有观察到淀粉酶表达的变化(参见图3,分图f)。然而,观察到PAX4(图3,分图h)、NKX6.1(图3,分图k)、PDX1(图3,分图l)、NEUROD(图3,分图o)和BRN4(图3,分图q)表达水平降低。
实例4
细胞周期蛋白依赖性激酶抑制剂处理增加了胰岛样细胞簇中MAFA的表达
将第52代的人胚胎干细胞系H1细胞在涂覆有的培养皿上(1:30稀释物)培养并根据实例1所述的方法使其分化。增加额外的阶段(第6阶段),以便使表达胰腺内分泌谱系特征性标记物的细胞进一步成熟。在此实例中第6阶段由在DMEM/F12+1%B27(Invitrogen,CA)中的处理七天组成。每天更换培养基。
在第6阶段之后,将细胞用1X accutase(Sigma,MO)在室温下处理5分钟。去除accutase,并将DMEM/12+1%B27加至细胞。将附着细胞用细胞刮刀移出并轻轻地再悬浮,并通过40μm细胞过滤网。将留在过滤网上的细胞通过在基础培养基中冲洗而移出,并在Ultra-Low培养平板(目录号3471,Corning,Ma)上的悬浮液中进行培养。将细胞进行如下处理:将细胞在含有20ng/ml的激活素A(AA)、1μm的CDK抑制剂III(目录号217714,Calbiochem,Ca)的DMEM/F12+1%B27中培养10天(第7阶段)。将用溶媒处理的细胞包括在内作为对照。在第7天至第10天收集用于PCR分析和双硫腙染色的样本。根据此实例所述的方法在悬浮液中培养的细胞呈现类似于胰腺胰岛细胞簇的形态。用CDK抑制剂III处理看起来不会影响胰岛样细胞簇的形态。
图4(分图a-i)示出了CDK抑制剂III处理对细胞簇的基因表达谱的影响。用CDK抑制剂III处理增加了与胰腺内分泌谱系相关的标记物的表达,尤其增加了胰岛素原转录因子MAFA的表达。
图5(分图a-分图b)示出了CDK抑制剂III对细胞簇的双硫腙(DTZ)染色的影响。与未用CDK抑制剂III处理的细胞簇相比,用CDK抑制剂处理并用DTZ染色的细胞簇表现出更红艳的染色图案。
实例5
由本发明的方法产生的产胰岛素细胞的FACS分析
将第42代人胚胎干细胞系H1的细胞在涂覆有的培养皿上培养,并用下面的方案使其分化为产胰岛素细胞:
a.补充有2%BSA(目录号152401,MP Biomedical,Ohio)和100ng/ml激活素A(R&DSystems,MN)加20ng/ml WNT-3a(目录号1324-WN-002,R&D Systems,MN)加8ng/ml的bFGF(目录号100-18B,PeproTech,NJ)的RPMI培养基处理一天,然后用补充有2%BSA和100ng/ml激活素A加8ng/ml的bFGF的RPMI培养基另外处理两天(第1阶段),然后
b.DMEM/F12+2%BSA+50ng/ml FGF7+0.25μM环巴胺-KAAD(#239804,Calbiochem,CA)处理两天(第2阶段),然后
c.DMEM/F12+1%B27(Invitrogen,CA)+50ng/ml FGF7+0.25μM环巴胺-KAAD+2μM视黄酸(RA)(Sigma,MO)+100ng/ml的成头蛋白(R&D Systems,MN)处理四天(第3阶段),然后
d.DMEM/F12+1%B27(Invitrogen,CA)+100ng/ml成头蛋白+1μM DAPT(一种γ-分泌酶抑制剂)(目录号565784,Calbiochem,CA)+1μM ALK5抑制剂II(目录号616452,Calbiochem,Ca)+100ng/ml的导蛋白-4(R&D Systems,MN)处理三天(第4阶段),然后
e.DMEM/F12+1%B27(Invitrogen,CA)+1μM ALK5抑制剂II(Calbiochem,Ca)处理七天(第5阶段),然后
f.DMEM/F12+1%B27处理七天(第6阶段),然后
g.用Accutase处理5分钟,然后刮擦以移出任何剩余的附着细胞。然后使细胞悬浮液穿过40μm细胞过滤网。将留在过滤网上的细胞通过在基础培养基中冲洗而移出,并在有高糖DMEM(目录号11995-073,Invitrogen,Ca)+1%B27+20ng/ml的激活素A(AA)+1μm的CDK抑制剂III(目录号217714,Calbiochem,Ca)的Ultra-Low培养平板上的悬浮液中培养5天(第7阶段)。
将胰岛样细胞簇用TrypLE Express(Invitrogen,Carlsbad,CA)分散为单细胞并在冷PBS中洗涤。为了固定,将细胞再悬浮于200-300μl Cytofix/Cytoperm缓冲液(BD554722,BD,Ca)中并在4℃下温育30分钟。将细胞在1ml Perm/Wash缓冲溶液(BD 554723)中洗涤两次并再悬浮于100μl含有Perm/Wash缓冲液中的2%正常山羊血清的染色/封闭溶液中。为了进行流式细胞分析,将细胞用下面的一抗体染色:抗胰岛素(兔单抗,CellSignaling No.C27C9;1:100稀释);抗胰高血糖素(小鼠单抗,SigmaNo.G2654,1:100);抗突触素(兔多克隆抗体,DakoCytomation No A0010,1:50)。将细胞在4℃下温育30分钟,然后在Perm/Wash缓冲液洗涤两次,在如下适当的二抗中温育30分钟:山羊抗兔Alexa 647(InvitrogenNo.A21246)或山羊抗小鼠647(InvitrogenNo.A21235);山羊抗兔R-PE(BioSource No.ALI4407)。所有的二抗均以1:200稀释度使用。将细胞在Perm/Wash缓冲液中至少洗涤一次并用BD FACSArray进行分析。获取至少10,000个事件用于分析。对照包括未分化H1细胞和β-TC(CRL-11506TM ATCC,VA)细胞系。
图6(分图a-c)示出了在含有溶媒的培养基中按照第7阶段处理的细胞中胰岛素阳性、突触素阳性和胰高血糖素阳性细胞的百分比。图7(分图a-c)示出了在含有1μM CDK抑制剂II的培养基中按照第7阶段处理5天的胰岛素阳性、突触素阳性和胰高血糖素阳性细胞的百分比。单激素胰岛素阳性细胞的数量在用CDK抑制剂处理之后从3%增加到8%。另外,多激素(胰岛素和胰高血糖素阳性)细胞的百分比在用CDK抑制剂处理之后下降。
实例6
CDK抑制剂诱导的MAFA表达的动态
将第42代人胚胎干细胞系H1的细胞在涂覆有的培养皿上培养,并用下面的方案使其分化为产胰岛素细胞:
a.补充有2%BSA(目录号152401,MP Biomedical,Ohio)和100ng/ml激活素A(R&DSystems,MN)加20ng/ml WNT-3a(目录号1324-WN-002,R&D Systems,MN)加8ng/ml的bFGF(目录号100-18B,PeproTech,NJ)的RPMI培养基一天,然后用补充有2%BSA和100ng/ml激活素A加8ng/ml的bFGF的RPMI培养基另外处理两天(第1阶段),然后
b.DMEM/F12+2%BSA+50ng/ml FGF7+0.25μM环巴胺-KAAD(#239804,Calbiochem,CA)处理两天(第二阶段),然后
c.DMEM/F12+1%B27(Invitrogen,CA)+50ng/ml FGF7+0.25μM环巴胺-KAAD+2μM视黄酸(RA)(Sigma,MO)+100ng/ml的成头蛋白(R&D Systems,MN)处理四天(第3阶段),然后
d.DMEM/F12+1%B27(Invitrogen,CA)+100ng/ml成头蛋白+1μM DAPT(一种γ-分泌酶抑制剂)(目录号565784,Calbiochem,CA)+1μM ALK5抑制剂II(目录号616452,Calbiochem,Ca)+100ng/ml的导蛋白-4(R&D Systems,MN)处理三天(第4阶段),然后
e.DMEM/F12+1%B27(Invitrogen,CA)+1μM ALK5抑制剂II(Calbiochem,Ca)处理七天(第5阶段),然后
f.DMEM/F12+1%B27处理七天(第6阶段),然后
g.用Accutase处理5分钟,然后刮擦以移出任何剩余的附着细胞。然后使细胞悬浮液通过40μm细胞过滤网。将留在过滤网上的细胞通过在基础培养基中冲洗而移出,并在有高糖DMEM(目录号11995-073,Invitrogen,Ca)+1%B27+20ng/ml的激活素A(AA)+2μm的CDK抑制剂III(目录号217714,Calbiochem,Ca)的Ultra-Low培养平板上的悬浮液中培养1-8天(第7阶段)。
在第1天、第2天、第3天和第4天收集用于PCR分析的样本。在用CDK抑制剂处理4天之后,从培养基去除CDK抑制剂,并且细胞在DMEM-F12+1%B27+20ng/ml的激活素A中培养额外的4天。在四天结束时,收集三份用于PCR分析的样本。
图8(分图a-b)示出在第7阶段的不同时间点MAFA和胰岛素的表达模式。CDK抑制剂处理引起随时间推移增加的MAFA和胰岛素表达的显著增加。然而,去除CDK抑制剂导致在去除化合物之后四天获得的样本中,MAFA和胰岛素两者表达显著下降。
实例7
筛选来自BIOMOLTM激酶抑制剂库的化合物对已根据实例1所述分化方案处理的细 胞的影响
将第51代的人胚胎干细胞系H1细胞接种至涂覆有的24板孔培养皿中(1:30稀释物)并根据实例1所述的方法(最多至第5阶段)使其分化。在此之后,使细胞在DMEM/F12+1%B27中生长一天,然后在含有终浓度为4μM的来自BIOMOLTM化合物库的化合物(目录号2832,BIOMOL,Plymouth Meeting,Pa)的DMEM/F12+1%B27中处理六天。将含有溶媒的板孔包括在内作为对照。在整个处理中,每隔一天更换含有溶媒或化合物的处理方案所用的培养基。将所有样本一式两份进行处理。在此处理完成时,收集用于PCR分析的RNA。通过实时PCR分析样本的胰岛素、胰高血糖素、MAFA和ARX4的表达。将结果表示为由实时PCR测得的相对于未处理对照处理样本的胰岛素/胰高血糖素比(图2)或MAFA/Arx4比(表2)。各个字母数字板孔号的对应产品目录号、CAS号和化合物名或识别号在表3中列出。
用4μM浓度的化合物C8或F1处理表达胰腺内分泌谱系特征性标记物的细胞得到大约10.0或更高的胰岛素/胰高血糖素表达比。用D9处理的细胞具有大约1840.0的胰岛素/胰高血糖素比(表2)。
我们然后检查这些化合物对MAFA/ARX4比的影响,并且我们发现用若干化合物处理表达胰腺内分泌谱系特征性标记物的细胞引起比库中测试的其他化合物大得多的MAFA/ARX4比的变化:用化合物B6或F1处理的细胞显示出大约大于10的MAFA/ARX4比。用化合物C8处理胰腺内分泌谱系特征性标记物的细胞得到大约84的MAFA/ARX4比,而用D9处理的细胞具有大约212的MAFA/ARX4比(表2)。
实例8
细胞周期蛋白依赖性激酶抑制剂对已根据实例1所述分化方案处理的细胞中胰岛 素和MAFA表达的影响
将第51代的人胚胎干细胞系H1细胞接种至涂覆有MATRIGELTM的24板孔培养皿中(1:30稀释物)并根据实例1所述的方法(最多至第5阶段)使其分化。在此之后,使细胞在DMEM/F12+1%B27中生长八天,然后在含有0.6125、1.25或终浓度为5.0μM的细胞周期蛋白依赖性激酶抑制剂的DMEM/F12+1%B27中处理四天。我们测试了6种抑制剂:PubChem识别号5330812(EMD目录号217714)、PubChem识别号4566(EMD目录号217713)、PubChem识别号5330797(EMD目录号219476)、PubChem识别号73292(EMD目录号341251)、PubChem识别号4592(EMD目录号495620)和PubChem识别号160355(EMD目录号557360)。将含有溶媒的板孔包括在内作为对照。在整个处理中,每隔一天更换含有溶媒或化合物的处理方案所用的培养基。将所有样本一式两份进行处理。在此处理完成时,收集用于PCR分析的RNA。通过实时PCR分析样本的胰岛素、胰高血糖素、MAFA和ARX4的表达。将结果表示为由实时PCR测得的相对于溶媒处理对照的倍数变化。
我们观察到化合物PubChem识别号5330812、PubChem识别号4566、PubChem识别号5330797和PubChem识别号73292在所测试的浓度下均刺激MAFA表达(表4)。PubChem识别号4592和PubChem识别号160355在所测试的浓度下不刺激MAFA(表4)。化合物PubChem识别号5330812、PubChem识别号4566、PubChem识别号5330797、PubChem识别号4592和PubChem识别号160355看起来都刺激胰岛素表达(表4)。化合物PubChem识别号5330797减少了胰高血糖素和Arx4两者的表达(表4),但刺激MAFA表达。
实例9
使用缺少胎牛血清的含25mM葡萄糖的DMEM(DMEM-HG)细胞系H1的人胚胎干细胞向 胰腺内分泌细胞分化
将人胚胎干细胞细胞系H1的细胞在涂覆有的培养皿(1:30稀释物),并使用下面的方案让其分化为表达胰腺内分泌谱系特征性标记物的细胞:
a.补充有2%BSA(目录号152401,MP Biomedical,Ohio)和100ng/ml激活素A(R&DSystems,MN)加20ng/ml WNT-3a(目录号1324-WN-002,R&D Systems,MN)加8ng/ml的bFGF(目录号100-18B,PeproTech,NJ)的RPMI培养基处理一天,然后用补充有2%BSA和100ng/ml激活素A加8ng/ml的RPMI培养基另外处理两天(第1阶段),然后
b.RPMI培养基用2%BSA+50ng/ml FGF7+0.25μM环巴胺-KAAD(#239804,Calbiochem,CA)处理两天(第二阶段),然后
c.DMEM-HG+1%B27(Invitrogen,CA)+50ng/ml FGF7+0.25μM环巴胺-KAAD+2μM视黄酸(RA)(Sigma,MO)+100ng/ml的成头蛋白(R&D Systems,MN)处理六天(第3阶段),然后
d.DMEM-HG+1%B27(Invitrogen,CA)+100ng/ml成头蛋白+1μM ALK5抑制剂II(目录号616452,Calbiochem,Ca)处理三天(第4阶段),然后
e.DMEM-HG+1%B27(Invitrogen,CA)+1μM ALK5抑制剂II(Calbiochem,Ca)处理七天(第5阶段)。
每天更换培养基。在每个阶段,用血球计计算细胞数目并收集RNA用于PCR分析。所有样品均一式三份进行收集。
实例10
筛选来自EMD激酶抑制剂库I的化合物对已根据实例9所述分化方案处理的细胞的 影响
将第45代的人胚胎干细胞系H1细胞接种于涂覆有的24板孔的培养皿上(1:30稀释物),并根据实例9所述方法(最多至第5阶段)使其分化。在此之后,饲养细胞,并在第5阶段的第1天、第3天和第5天用培养基处理,该培养基包含DMEM-HG、1%B27(Invitrogen,CA)、1μM ALK5抑制剂II(Calbiochem,Ca)和溶于DMSO(目录号539744,Calbiochem,San Diego,Ca)并以2.5μM的最终浓度处理的来自EMD Calbiochem化合物库I的化合物。将含有溶媒的板孔包括在内作为对照。在整个方案中,除了在第5阶段每隔一天更换培养基,其它每天更换培养基。将所有样本一式两份进行处理。
在此处理完成时,收集用于PCR分析的RNA。通过实时PCR分析样本的MAFA的表达。将结果表示为由实时PCR测得的MAFA表达对未处理H1人胚胎干细胞(表5)的倍数增加。
用2.5μM浓度的化合物A4(目录号124001,Akt抑制剂IV)、E8(目录号527450,PKR抑制剂)和F9(目录号539648,Staurosporine,N-苯甲酰-)处理表达胰腺内分泌谱系特征性标记物的细胞导致MAFA表达增加比溶媒处理对照高至少4倍(表5)。用2.5μM浓度的化合物E6(目录号521233,PDGF受体酪氨酸激酶抑制剂IV)处理导致MAFA表达增加比溶媒处理对照高至少2.5倍(表5)。
实例11
筛选来自EMD激酶抑制剂库II的化合物对已根据实例9所述分化方案处理的细胞 的影响
将第46代的人胚胎干细胞系H1细胞接种于涂覆有的24板孔的培养皿上(1:30稀释物),并根据实例9所述方法(最多至第5阶段)使其分化。在此之后,饲养细胞,并在第5阶段的第1天、第3天和第5天用培养基处理,该培养基包含DMEM-HG、1%B27(Invitrogen,CA)、1μM ALK5抑制剂II(Calbiochem,Ca)(第5阶段)和溶于DMSO(表1和表6,Calbiochem,San Diego,Ca)并以2.5μM的最终浓度处理的来自EMD Calbiochem化合物库II的化合物。将含有溶媒的板孔包括在内作为对照。在整个方案中,除了在第5阶段每隔一天更换培养基,其它每天更换培养基。将所有样本一式两份进行处理。
在此处理完成时,收集用于PCR分析的RNA。通过实时PCR分析样本的MAFA的表达。刺激MAFA表达的化合物的结果示出并表达为由实时PCR测得的MAFA表达对对照样本的倍数增加(图9)。
用2.5μM浓度的2-氰乙基Alsterpaullone、SU9516、Alsterpaullone、Cdk1/2抑制剂III、酪蛋白激酶I抑制剂、D4476或MEK1/2抑制剂中的任一者处理表达胰腺内分泌谱系特征性标记物的细胞导致MAFA表达相对于未处理对照4.5倍增加(表7)。
实例12
用小分子抑制剂抑制表达胰腺内分泌谱系特征性标记物的细胞中的细胞周期进 程可促进表达胰腺内分泌谱系特征性标记物的细胞中的MAFA表达
可通过用胞外生长因子刺激细胞来激活和维持由细胞周期进程引起的细胞生长。生长因子结合至生长因子受体的胞外结构域,从而诱导受体胞内结构域的构象转换。这种转变引发了位于受体胞内结构域上的酪氨酸激酶的受体二聚化和活化,从而导致下游的多个丝氨酸/苏氨酸激酶的磷酸化和活化,最终引起细胞周期进程和细胞增殖。
在正常生理状况下,表征为胰岛素和转录因子MAFA表达的成熟胰腺β细胞处于静息状态,并往往保持在细胞周期的G0中。然而,为了产生足够的细胞来形成机能器官并满足成熟动物的需要,表达本发明的胰腺内分泌谱系特征性标记物的细胞必须具有细胞周期。因此,在胚胎发育的某一点,表达本发明的胰腺内分泌谱系特征性标记物的细胞向β细胞分化,并从活动细胞周期增殖细胞转变为静息细胞。
我们的数据表明,通过用小分子激酶抑制剂阻断信号转导级联反应来抑制细胞周期进程,我们可诱导表达胰腺内分泌谱系特征性标记物的细胞来表达MAFA(一种成熟胰腺β细胞的标记物)。靶向生长因子受体的激酶抑制剂(PDGF受体酪氨酸激酶抑制剂IV)或干扰酪氨酸激酶受体下游激酶的抑制剂(MEK1/2抑制剂、PKR抑制剂或Akt抑制剂IV)会干扰基于增殖生长因子/激酶的信号转导,从而引起细胞周期停止和MAFA表达的诱导。使用像星孢菌素的广谱抑制剂可有效地诱导MAFA,然而其在有效浓度下也具有细胞毒性。像细胞周期蛋白依赖性激酶抑制剂的更具针对性的化合物(2-氰乙基Alsterpaullone、SU9516、Alsterpaullone或Cdk1/2抑制剂III)可诱导MAFA,具有比像星孢菌素的广谱抑制剂更小的毒性。
为了确定广谱激酶抑制剂是否可以在表达本发明的胰腺内分泌谱系特征性标记物的细胞中诱导MAFA表达和更成熟的显型,我们根据实例9所述的方法来分化H1人ES细胞,并在第5阶段的第1天、第3天和第5天用已显示可在人和鼠类细胞系中诱导G2阶段停止并抑制多种激酶的蛋白质-酪氨酸激酶抑制剂染料木素(Genistein)来处理它们。在10和30ng/ml的剂量下,与未处理对照相比,内分泌激素胰岛素、生长抑素和转录因子MAFA均表现出表达增加,但在10ng/ml下,内分泌激素胰高血糖素具有增加表达(图10)。我们在100ng/ml剂量的高金雀花碱下观察到与胰岛素、胰高血糖素和生长抑素表达降低相关联的显著毒性。
这些数据表明,通过用小分子激酶抑制剂阻断信号转导级联反应来抑制细胞周期进程(所述小分子激酶抑制剂靶向抑制信号从生长因子受体酪氨酸激酶通过胞内信号转导激酶传导至核和细胞周期蛋白依赖性激酶),我们可以诱导表达本发明的胰腺内分泌谱系特征性标记物的细胞来表达MAFA(一种成熟胰腺β细胞的标记物)。
将本文通篇中所引用的出版物的全文以引用的方式并入本文。尽管已通过参考实例和优选的实施例对本发明的多个方面进行了阐述,但应当理解,本发明的范围不由前面的描述限定,而是由根据专利法的原理正确解释的权利要求书所限定。
表2.BIOMOL抑制剂化合物库的化合物对表达胰腺内分泌谱系特征性标记物的细 胞中由实时PCR确定的胰岛素/胰高血糖素和MAFA/Arx4表达的比率的影响。数字字母混合 板孔号对应于表3中的化合物种类
相对于对照的比率
表3.数字字母混合板孔标签和对应的BIOMOL激酶抑制剂化合物库的产品目录号、 CAS号和化合物名称或ID号
表4.BIOMOL抑制剂化合物库的化合物对在表达胰腺内分泌谱系特征性标记物的 细胞中胰岛素、胰高血糖素、MAFA和Arx4的表达的影响
表5.数字字母混合板孔标记和对应的EMD Calbiochem激酶抑制剂化合物库I的产 品目录号和化合物名称或ID号
表6.数字字母混合的板孔标记和对应的EMD 激酶抑制剂II化合物 库的产品目录号和化合物编号
表7.来自EMD激酶抑制剂库II的若干化合物对已根据实例9所述分化方案处理的 细胞的MAFA表达的诱导倍数

Claims (14)

1.一种用于产生MAFA表达细胞的群体的方法,所述方法包括:
(a) 使人多能干细胞分化成表达定形内胚层谱系特征性标记物的细胞,
(b) 使所述表达定形内胚层谱系特征性标记物的人细胞分化成表达胰腺内胚层谱系特征性标记物的人细胞,
(c) 使所述表达胰腺内胚层谱系特征性标记物的人细胞分化成表达胰腺内分泌谱系特征性标记物的人细胞,其表达下列中的至少一种:NGN3、NEUROD、ISL1、PDX1、NKX6.1、PAX4和PTF1α;以及
(d) 用细胞周期蛋白依赖性激酶抑制剂处理所述表达胰腺内分泌谱系特征性标记物的人细胞,所述细胞周期蛋白依赖性激酶抑制剂选自:7-正丁基-6-(4-羟苯基)[5H]吡咯并[2,3-b]吡嗪、9-硝基-7,12-二氢吲哚并[3,2-d][1]苯并氮杂-6(5H)-酮、3-(6-氧代-9-硝基-5,6,7,12-四氢吲哚并[3,2d][1]苯并氮杂-2-基)丙腈、(2R)-2-((6-((3-氨基-5-氯苯基)氨基)-9-(1-甲基乙基)-9H-嘌呤-2-基)氨基)-3-甲基-1-丁醇、团网菌黄素A、[6-苄基氨基-2-(3-羟基丙氨基)-9-异丙基嘌呤、丁内酯I、(Z)-1-(3-乙基-5-甲氧基-2,3-二氢苯并噻唑-2-亚基)丙-2-酮、2-(3-羟基丙基氨基)-6-(邻羟基苄基氨基)-9-异丙基嘌呤、1-(2,6-二氯苯基)-1,5-二氢-6-((4-(2-羟基乙氧基)苯基)甲基)-3-(1-甲基乙基)-4H-吡唑并[3,4-d]嘧啶-4-酮、Cdk/细胞周期蛋白抑制肽III、3-(2-氯-3-吲哚亚甲基)-1,3-二氢吲哚-2-酮、(6-羟基-4-苯基苯并[4,5]呋喃并[2,3-b])吡啶-3-羧酸乙酯、RO-3306、N-(顺式-2-氨基环己基)-N-(3-氯苯基)-9-乙基-9H-嘌呤-2,6-二胺、6-环己基甲氧基-2-(4’-氨磺酰苯胺基)嘌呤、5-氨基-3-((4-(氨基磺酰基)苯基)氨基)-N-(2,6-二氟苯基)-1H-1,2,4-三唑-1-硫代甲酰胺、3-氨基-1H-吡唑并[3,4-b]喹喔啉、Cdk2抑制剂I、Cdk2抑制剂II、2(双-(羟乙基)氨基)-6-(4-甲氧基苄氨基)-9-异丙基嘌呤、4-(6-环己基甲氧基-9H-嘌呤-2-基氨基)-N,N-二乙基苯甲酰胺、N4-(6-氨基嘧啶-4-基)-对氨基苯磺胺、(4-(2-氨基-4-甲基噻唑-5-基)嘧啶-2-基)-(3-硝基苯基)胺、2-溴代-12,13-二氢-5H-吲哚并[2,3-a]吡咯并[3,4-c]咔唑-5,7(6H)-二酮、1,4-二甲氧基吖啶-9(10H)-硫酮、5-(N-(4-甲苯基)氨基)-2-甲基-4,7-二氧代苯并噻唑、4-(3,5-二氨基-1H吡唑-4-基偶氮)-酚、2-(2-羟基乙氨基)-6-(3-氯苯胺基)-9-异丙基嘌呤、Fascaplysin、靛玉红-3’-单肟、5-碘代-靛玉红-3’-单肟-5-磺酸、Isogranulatimide、2-(2-羟基乙氨基)-6-苄氨基-9-甲基嘌呤、6-(2-羟基苄氨基)-2-((1R)-(羟甲基)丙基)氨基)-9-异丙基嘌呤、5-溴代-3-(2-(4-氟苯基)-2-氧代乙叉基)-1,3-二氢吲哚-2-酮、N6,N6-二甲基腺嘌呤、2-(1R-异丙基-2-羟基乙氨基)-6-(3-氯苯胺基)-9-异丙基-嘌呤、雷帕霉素、2-(R)-(1-乙基-2-羟基乙氨基)-6-苄氨基-9-异丙基嘌呤、伪枝藻素、3-[1-(3H-咪唑-4-基)-甲-(Z)-亚基]-5-甲氧基-1,3-二氢吲哚-2-酮和4-(3′-羟基苯基)氨基-6,7-二甲氧基喹唑啉。
2.权利要求1的方法,其中所述细胞周期蛋白依赖性激酶抑制剂是(6-羟基-4-苯基苯并[4,5]呋喃并[2,3-b])吡啶-3-羧酸乙酯。
3.权利要求1的方法,其中所述细胞周期蛋白依赖性激酶抑制剂是6-环己基甲氧基-2-(4’-氨磺酰苯胺基)嘌呤。
4.权利要求1的方法,其中所述细胞周期蛋白依赖性激酶抑制剂是5-氨基-3-((4-(氨基磺酰基)苯基)氨基)-N-(2,6-二氟苯基)-1H-1,2,4-三唑-1-硫代甲酰胺。
5.权利要求1的方法,其中所述细胞周期蛋白依赖性激酶抑制剂是2-溴代-12,13-二氢-5H-吲哚并[2,3-a]吡咯并[3,4-c]咔唑-5,7(6H)-二酮。
6.权利要求1-5中任一项的方法,其中以约0.1µM至约10µM的浓度,将所述细胞周期蛋白依赖性激酶抑制剂添加至表达内分泌谱系特征性标记物的细胞,保持约一至七天。
7.权利要求1的方法,其中所述人多能干细胞表达下列多能细胞特征性标记物中的至少一种:ABCG2、cripto、CD9、FOXD3、Connexin43、Connexin45、OCT4、SOX2、NANOG、hTERT、UTF1、ZFP42、SSEA3、SSEA4、Tra1-60或Tra1-81。
8.权利要求1的方法,其中所述定形内胚层谱系特征性标记物选自:SOX17、GATA4、HNF3β、GSC、CER1、NODAL、FGF8、Brachyury、Mix样同源盒蛋白、FGF4 CD48、脱中胚蛋白(EOMES)、DKK4、FGF17、GATA6、CXCR4、C-Kit、CD99和OTX2。
9.权利要求1的方法,其中所述胰腺内胚层谱系特征性标记物选自PDX1、HNF1β、PTF1α、HNF6、HB9和PROX1。
10.权利要求1的方法,其中所述表达定形内胚层谱系特征性标记物的人细胞是人定形内胚层细胞。
11.权利要求1的方法,其中所述表达胰腺内胚层谱系特征性标记物的人细胞是胰腺内胚层细胞。
12.权利要求1的方法,其中所述表达胰腺内分泌谱系特征性标记物的人细胞是人胰腺内分泌细胞。
13.权利要求1的方法,其中所述细胞表达MAFA和胰岛素。
14.权利要求1的方法,其中所述细胞周期蛋白依赖性激酶抑制剂是:
(a) (6-羟基-4-苯基苯并[4,5]呋喃并[2,3-b])吡啶-3-羧酸乙酯;
(b) 6-环己基甲氧基-2-(4’-氨磺酰苯胺基)嘌呤;
(c) 5-氨基-3-((4-(氨基磺酰基)苯基)氨基)-N-(2,6-二氟苯基)-1H-1,2,4-三唑-1-硫代甲酰胺;或
(d) 2-溴代-12,13-二氢-5H-吲哚并[2,3-a]吡咯并[3,4-c]咔唑-5,7(6H)-二酮。
CN201711327734.0A 2008-10-31 2009-10-23 人胚胎干细胞向胰腺内分泌谱系的分化 Active CN107904201B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11028708P 2008-10-31 2008-10-31
US61/110287 2008-10-31
CN200980153865.9A CN102272291B (zh) 2008-10-31 2009-10-23 人胚胎干细胞向胰腺内分泌谱系的分化

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN200980153865.9A Division CN102272291B (zh) 2008-10-31 2009-10-23 人胚胎干细胞向胰腺内分泌谱系的分化

Publications (2)

Publication Number Publication Date
CN107904201A true CN107904201A (zh) 2018-04-13
CN107904201B CN107904201B (zh) 2021-11-16

Family

ID=41404335

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201711327734.0A Active CN107904201B (zh) 2008-10-31 2009-10-23 人胚胎干细胞向胰腺内分泌谱系的分化
CN200980153865.9A Active CN102272291B (zh) 2008-10-31 2009-10-23 人胚胎干细胞向胰腺内分泌谱系的分化

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN200980153865.9A Active CN102272291B (zh) 2008-10-31 2009-10-23 人胚胎干细胞向胰腺内分泌谱系的分化

Country Status (14)

Country Link
US (3) US9234178B2 (zh)
EP (1) EP2346988B1 (zh)
JP (1) JP5785088B2 (zh)
KR (1) KR101712085B1 (zh)
CN (2) CN107904201B (zh)
AU (3) AU2009308967C1 (zh)
BR (1) BRPI0919885A2 (zh)
CA (1) CA2742268C (zh)
ES (1) ES2634445T3 (zh)
MX (1) MX2011004565A (zh)
PL (1) PL2346988T3 (zh)
RU (3) RU2522001C2 (zh)
WO (1) WO2010051223A1 (zh)
ZA (1) ZA201103985B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113234664A (zh) * 2021-05-11 2021-08-10 澳门大学 一种胰腺祖细胞的制备方法及其应用

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8017395B2 (en) 2004-12-17 2011-09-13 Lifescan, Inc. Seeding cells on porous supports
CA2613889A1 (en) 2005-06-08 2006-12-14 Centocor, Inc. A cellular therapy for ocular degeneration
US8741643B2 (en) 2006-04-28 2014-06-03 Lifescan, Inc. Differentiation of pluripotent stem cells to definitive endoderm lineage
US9080145B2 (en) 2007-07-01 2015-07-14 Lifescan Corporation Single pluripotent stem cell culture
KR101617243B1 (ko) 2007-07-31 2016-05-02 라이프스캔, 인코포레이티드 인간 배아 줄기 세포의 분화
KR101592182B1 (ko) 2007-11-27 2016-02-05 라이프스캔, 인코포레이티드 인간 배아 줄기 세포의 분화
KR101731474B1 (ko) 2008-02-21 2017-05-11 얀센 바이오테크 인코포레이티드 세포 부착, 배양 및 탈리를 위한 방법, 표면 개질 플레이트 및 조성물
PL2942392T3 (pl) 2008-06-30 2019-02-28 Janssen Biotech, Inc Różnicowanie pluripotencjalnych komórek macierzystych
US9234178B2 (en) 2008-10-31 2016-01-12 Janssen Biotech, Inc. Differentiation of human pluripotent stem cells
CN102333862B (zh) 2008-10-31 2018-04-27 詹森生物科技公司 人胚胎干细胞向胰腺内分泌谱系的分化
AU2009316580B2 (en) 2008-11-20 2016-04-14 Janssen Biotech, Inc. Pluripotent stem cell culture on micro-carriers
JP5719305B2 (ja) 2008-11-20 2015-05-13 ヤンセン バイオテツク,インコーポレーテツド 平面支持体上での細胞付着及び培養のための方法及び組成物
WO2011011300A2 (en) 2009-07-20 2011-01-27 Centocor Ortho Biotech Inc. Differentiation of human embryonic stem cells
RU2540016C2 (ru) 2009-07-20 2015-01-27 Янссен Байотек, Инк. Дифференцировка эмбриональных стволовых клеток человека
MX340952B (es) 2009-07-20 2016-07-29 Janssen Biotech Inc Diferenciacion de celulas madre embrionarias humanas.
SG181685A1 (en) 2009-12-23 2012-07-30 Centocor Ortho Biotech Inc Differentiation of human embryonic stem cells
US9150833B2 (en) 2009-12-23 2015-10-06 Janssen Biotech, Inc. Differentiation of human embryonic stem cells
RU2607380C2 (ru) 2010-03-01 2017-01-10 Янссен Байотек, Инк. Способы очистки клеток, производных от плюрипотентных стволовых клеток
WO2011143299A2 (en) 2010-05-12 2011-11-17 Centocor Ortho Biotech Inc. Differentiation of human embryonic stem cells
EP3211070A1 (en) 2010-08-31 2017-08-30 Janssen Biotech, Inc. Differentiation of human embryonic stem cells
US9506036B2 (en) 2010-08-31 2016-11-29 Janssen Biotech, Inc. Differentiation of human embryonic stem cells
MX348537B (es) 2010-08-31 2017-06-07 Janssen Biotech Inc Diferencia de celulas madre pluripotentes.
AT510456B1 (de) * 2010-09-27 2012-11-15 Univ Wien Tech Thiazolamin-derivate als zelldifferenzierungsbeschleuniger
US9376665B2 (en) 2010-11-02 2016-06-28 National University Corporation Kumamoto University Method for producing intestinal cells
PL2646557T3 (pl) * 2010-12-03 2017-12-29 Biontech Rna Pharmaceuticals Gmbh Sposób ekspresji RNA w komórce
HRP20240097T1 (hr) 2011-04-22 2024-03-29 Signal Pharmaceuticals, Llc Supstituirani diaminokarboksamid i diaminokarbonitril pirimidini, njihovi pripravci i postupci liječenja s njima
JP6051378B2 (ja) * 2011-05-02 2016-12-27 国立大学法人 熊本大学 幹細胞からインスリン産生細胞への分化誘導を促進する低分子化合物および該化合物を用いた幹細胞からインスリン産生細胞への分化誘導方法
CN108220224A (zh) 2011-06-21 2018-06-29 诺沃—诺迪斯克有限公司 自多潜能干细胞有效诱导定形内胚层
JP6019412B2 (ja) * 2011-07-15 2016-11-02 学校法人日本大学 悪性腫瘍に対する高選択的細胞毒性を有するインディルビン誘導体
RU2705001C2 (ru) 2011-12-22 2019-11-01 Янссен Байотек, Инк. Дифференцировка эмбриональных стволовых клеток человека в одногормональные инсулинположительные клетки
CN104160018A (zh) 2012-03-07 2014-11-19 詹森生物科技公司 用于扩增和维持多能干细胞的成分确定的培养基
WO2013169769A1 (en) * 2012-05-07 2013-11-14 Janssen Biotech, Inc. Differentiation of human embryonic stem cells into pancreatic endoderm
ES2690118T3 (es) * 2012-06-08 2018-11-19 Janssen Biotech, Inc. Diferenciación de células madre embrionarias humanas en células endocrinas pancreáticas
EP2893000B1 (en) * 2012-09-03 2019-04-10 Novo Nordisk A/S Generation of pancreatic endoderm from pluripotent stem cells using small molecules
GB201216796D0 (en) * 2012-09-20 2012-11-07 Cambridge Entpr Ltd In vitro pancreatic differentiation
US10370644B2 (en) 2012-12-31 2019-08-06 Janssen Biotech, Inc. Method for making human pluripotent suspension cultures and cells derived therefrom
CA2896750A1 (en) 2012-12-31 2014-07-03 Janssen Biotech, Inc. Suspension and clustering of human pluripotent cells for differentiation into pancreatic endocrine cells
BR112015015770A2 (pt) 2012-12-31 2017-07-11 Janssen Biotech Inc cultivo de células-tronco embrionárias humanas na interface ar-líquido para diferenciação em células pancreáticas endócrinas
KR101942769B1 (ko) 2012-12-31 2019-01-28 얀센 바이오테크 인코포레이티드 Hb9 조절제를 사용하는 인간 배아 줄기세포의 췌장 내분비 세포로의 분화
CN103194424A (zh) * 2013-03-28 2013-07-10 于涛 一种诱导胚胎干细胞为胰腺组织样细胞的方法
CN106414718A (zh) 2013-06-11 2017-02-15 哈佛学院校长同事会 SC-β细胞以及用于产生其的组合物和方法
CN105683361B (zh) * 2013-08-30 2021-04-02 诺和诺德股份有限公司 使用小分子从人多能干细胞产生内分泌祖细胞
NZ715903A (en) 2014-01-30 2017-06-30 Signal Pharm Llc Solid forms of 2-(tert-butylamino)-4-((1r,3r,4r)-3-hydroxy-4-methylcyclohexylamino)-pyrimidine-5-carboxamide, compositions thereof and methods of their use
WO2015175307A1 (en) * 2014-05-16 2015-11-19 Janssen Biotech, Inc. Use of small molecules to enhance mafa expression in pancreatic endocrine cells
US9513297B2 (en) 2014-12-16 2016-12-06 Signal Pharmaceuticals, Llc Methods for measurement of inhibition of c-Jun N-terminal kinase in skin
US9796685B2 (en) 2014-12-16 2017-10-24 Signal Pharmaceuticals, Llc Formulations of 2-(tert-butylamino)-4-((1R,3R,4R)-3-hydroxy-4-Methylcyclohexylamino)-pyrimidine-5-carboxamide
US10443042B2 (en) 2014-12-18 2019-10-15 President And Fellows Of Harvard College Serum-free in vitro directed differentiation protocol for generating stem cell-derived beta cells and uses thereof
CN107614678B (zh) 2014-12-18 2021-04-30 哈佛学院校长同事会 干细胞来源的β细胞的产生方法及其使用方法
US20180022710A1 (en) 2015-01-29 2018-01-25 Signal Pharmaceuticals, Llc Isotopologues of 2-(tert-butylamino)-4-((1r,3r,4r)-3-hydroxy-4-methylcyclohexylamino)-pyrimidine-5-carboxamide
WO2017019487A1 (en) 2015-07-24 2017-02-02 Celgene Corporation Methods of synthesis of (1r,2r,5r)-5-amino-2-methylcyclohexanol hydrochloride and intermediates useful therein
MA45479A (fr) 2016-04-14 2019-02-20 Janssen Biotech Inc Différenciation de cellules souches pluripotentes en cellules de l'endoderme de l'intestin moyen
MA45502A (fr) * 2016-06-21 2019-04-24 Janssen Biotech Inc Génération de cellules bêta fonctionnelles dérivées de cellules souches pluripotentes humaines ayant une respiration mitochondriale glucose-dépendante et une réponse en sécrétion d'insuline en deux phases
JP2018014972A (ja) * 2016-07-29 2018-02-01 国立大学法人大阪大学 未分化細胞が除去された分化誘導細胞集団の製造方法
JP7139951B2 (ja) * 2017-01-05 2022-09-21 味の素株式会社 インスリン産生細胞分化誘導促進剤
US20190390169A1 (en) * 2017-03-03 2019-12-26 Kyoto University Pancreatic progenitor cell production method
US10767164B2 (en) 2017-03-30 2020-09-08 The Research Foundation For The State University Of New York Microenvironments for self-assembly of islet organoids from stem cells differentiation
US10391156B2 (en) 2017-07-12 2019-08-27 Viacyte, Inc. University donor cells and related methods
CA3081762A1 (en) 2017-11-15 2019-05-23 Semma Therapeutics, Inc. Islet cell manufacturing compositions and methods of use
AU2019320072A1 (en) 2018-08-10 2021-02-25 Vertex Pharmaceuticals Incorporated Stem cell derived islet differentiation
US10724052B2 (en) 2018-09-07 2020-07-28 Crispr Therapeutics Ag Universal donor cells
CN114173837A (zh) 2019-05-31 2022-03-11 W.L.戈尔及同仁股份有限公司 生物相容性膜复合材料
JP7328362B2 (ja) 2019-05-31 2023-08-16 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティド 制御された酸素拡散距離を伴う細胞カプセル化デバイス
EP3976236A1 (en) 2019-05-31 2022-04-06 W.L. Gore & Associates Inc. A biocompatible membrane composite
CN114206407A (zh) 2019-05-31 2022-03-18 W.L.戈尔及同仁股份有限公司 生物相容性膜复合材料
US11118196B2 (en) 2019-09-05 2021-09-14 Crispr Therapeutics Ag Universal donor cells
KR20220058579A (ko) 2019-09-05 2022-05-09 크리스퍼 테라퓨틱스 아게 보편적 공여자 세포
US11566230B2 (en) 2020-12-31 2023-01-31 Crispr Therapeutics Ag Universal donor cells
WO2024008810A1 (en) * 2022-07-06 2024-01-11 Novo Nordisk A/S Differentiation of stem cells to pancreatic endocrine cells

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005086860A2 (en) * 2004-03-09 2005-09-22 Gang Xu Methods for generating insulin-producing cells
WO2006138432A2 (en) * 2005-06-17 2006-12-28 Lightningcast Llc Presenting advertising content
CN101193637A (zh) * 2005-01-19 2008-06-04 默克公司 作为有丝分裂驱动蛋白抑制剂的氟化氨基烷基-4-氧代-3,4-二氢吡啶并[3,4-d]嘧啶化合物

Family Cites Families (237)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3209652A (en) 1961-03-30 1965-10-05 Burgsmueller Karl Thread whirling method
AT326803B (de) 1968-08-26 1975-12-29 Binder Fa G Maschenware sowie verfahren zur herstellung derselben
US3935067A (en) * 1974-11-22 1976-01-27 Wyo-Ben Products, Inc. Inorganic support for culture media
CA1201400A (en) 1982-04-16 1986-03-04 Joel L. Williams Chemically specific surfaces for influencing cell activity during culture
US4499802A (en) 1982-09-29 1985-02-19 Container Graphics Corporation Rotary cutting die with scrap ejection
US4537773A (en) 1983-12-05 1985-08-27 E. I. Du Pont De Nemours And Company α-Aminoboronic acid derivatives
US4557264A (en) 1984-04-09 1985-12-10 Ethicon Inc. Surgical filament from polypropylene blended with polyethylene
US5089396A (en) * 1985-10-03 1992-02-18 Genentech, Inc. Nucleic acid encoding β chain prodomains of inhibin and method for synthesizing polypeptides using such nucleic acid
US5215893A (en) * 1985-10-03 1993-06-01 Genentech, Inc. Nucleic acid encoding the ba chain prodomains of inhibin and method for synthesizing polypeptides using such nucleic acid
US4737578A (en) * 1986-02-10 1988-04-12 The Salk Institute For Biological Studies Human inhibin
US5863531A (en) * 1986-04-18 1999-01-26 Advanced Tissue Sciences, Inc. In vitro preparation of tubular tissue structures by stromal cell culture on a three-dimensional framework
CA1340581C (en) * 1986-11-20 1999-06-08 Joseph P. Vacanti Chimeric neomorphogenesis of organs by controlled cellular implantation using artificial matrices
US5567612A (en) * 1986-11-20 1996-10-22 Massachusetts Institute Of Technology Genitourinary cell-matrix structure for implantation into a human and a method of making
US5804178A (en) * 1986-11-20 1998-09-08 Massachusetts Institute Of Technology Implantation of cell-matrix structure adjacent mesentery, omentum or peritoneum tissue
NZ229354A (en) 1988-07-01 1990-09-26 Becton Dickinson Co Treating polymer surfaces with a gas plasma and then applying a layer of endothelial cells to the surface
EP0363125A3 (en) 1988-10-03 1990-08-16 Hana Biologics Inc. Proliferated pancreatic endocrine cell product and process
US5837539A (en) * 1990-11-16 1998-11-17 Osiris Therapeutics, Inc. Monoclonal antibodies for human mesenchymal stem cells
DE69229482T2 (de) 1991-04-25 1999-11-18 Chugai Seiyaku K.K., Tokio/Tokyo Rekombinierte humane antikörper gegen den humanen interleukin 6-rezeptor
US5449383A (en) * 1992-03-18 1995-09-12 Chatelier; Ronald C. Cell growth substrates
GB9206861D0 (en) 1992-03-28 1992-05-13 Univ Manchester Wound healing and treatment of fibrotic disorders
CA2114282A1 (en) 1993-01-28 1994-07-29 Lothar Schilder Multi-layered implant
JP3525221B2 (ja) 1993-02-17 2004-05-10 味の素株式会社 免疫抑制剤
JP2813467B2 (ja) 1993-04-08 1998-10-22 ヒューマン・セル・カルチャーズ・インコーポレーテッド 細胞培養法および培地
US5523226A (en) * 1993-05-14 1996-06-04 Biotechnology Research And Development Corp. Transgenic swine compositions and methods
GB9310557D0 (en) * 1993-05-21 1993-07-07 Smithkline Beecham Plc Novel process and apparatus
TW257671B (zh) 1993-11-19 1995-09-21 Ciba Geigy
US6001647A (en) 1994-04-28 1999-12-14 Ixion Biotechnology, Inc. In vitro growth of functional islets of Langerhans and in vivo uses thereof
US6703017B1 (en) * 1994-04-28 2004-03-09 Ixion Biotechnology, Inc. Reversal of insulin-dependent diabetes by islet-producing stem cells, islet progenitor cells and islet-like structures
US5834308A (en) * 1994-04-28 1998-11-10 University Of Florida Research Foundation, Inc. In vitro growth of functional islets of Langerhans
US6083903A (en) 1994-10-28 2000-07-04 Leukosite, Inc. Boronic ester and acid compounds, synthesis and uses
EP0800829B2 (en) 1994-12-29 2012-07-25 Chugai Seiyaku Kabushiki Kaisha Use of a pm-1 antibody or of a mh 166 antibody for enhancing the anti-tumor effect of cisplatin or carboplatin
US5843780A (en) * 1995-01-20 1998-12-01 Wisconsin Alumni Research Foundation Primate embryonic stem cells
US5718922A (en) * 1995-05-31 1998-02-17 Schepens Eye Research Institute, Inc. Intravitreal microsphere drug delivery and method of preparation
US5908782A (en) * 1995-06-05 1999-06-01 Osiris Therapeutics, Inc. Chemically defined medium for human mesenchymal stem cells
EP1028954B1 (en) 1997-04-24 2003-07-02 Ortho-McNeil Pharmaceutical, Inc. Substituted imidazoles useful in the treatment of inflammatory diseases
CA2294944A1 (en) * 1997-07-03 1999-01-14 Osiris Therapeutics, Inc. Human mesenchymal stem cells from peripheral blood
PT1015576E (pt) * 1997-09-16 2005-09-30 Egea Biosciences Llc Metodo para a sintese quimica completa e montagem de genes e de genomas
US6670127B2 (en) 1997-09-16 2003-12-30 Egea Biosciences, Inc. Method for assembly of a polynucleotide encoding a target polypeptide
US6800480B1 (en) * 1997-10-23 2004-10-05 Geron Corporation Methods and materials for the growth of primate-derived primordial stem cells in feeder-free culture
CO4980885A1 (es) * 1997-12-29 2000-11-27 Ortho Mcneil Pharm Inc Compuestos de trifenilpropanamida utiles en el tratamiento de inflamaciones y metodos para preparar dicho compuesto
DK1066052T3 (da) 1998-03-18 2006-06-12 Osiris Therapeutics Inc Mesenchymstamceller til forebyggelse og behandling af immunreaktioner ved transplantationer
MY132496A (en) * 1998-05-11 2007-10-31 Vertex Pharma Inhibitors of p38
US6413773B1 (en) 1998-06-01 2002-07-02 The Regents Of The University Of California Phosphatidylinositol 3-kinase inhibitors as stimulators of endocrine differentiation
US7410798B2 (en) 2001-01-10 2008-08-12 Geron Corporation Culture system for rapid expansion of human embryonic stem cells
US6667176B1 (en) * 2000-01-11 2003-12-23 Geron Corporation cDNA libraries reflecting gene expression during growth and differentiation of human pluripotent stem cells
US6610540B1 (en) 1998-11-18 2003-08-26 California Institute Of Technology Low oxygen culturing of central nervous system progenitor cells
US6413556B1 (en) * 1999-01-08 2002-07-02 Sky High, Llc Aqueous anti-apoptotic compositions
IL144359A0 (en) * 1999-01-21 2002-05-23 Vitro Diagnostics Inc Immortalized cell lines and methods of making the same
US6815203B1 (en) * 1999-06-23 2004-11-09 Joslin Diabetes Center, Inc. Methods of making pancreatic islet cells
US6306424B1 (en) * 1999-06-30 2001-10-23 Ethicon, Inc. Foam composite for the repair or regeneration of tissue
US6333029B1 (en) * 1999-06-30 2001-12-25 Ethicon, Inc. Porous tissue scaffoldings for the repair of regeneration of tissue
EP1224259A4 (en) 1999-09-27 2005-04-27 Univ Florida INVERSION OF INSULIN DEPENDENT DIABETES BY ISOLATED STEM CELLS, PROGENITOR ISLANDIC CELLS, AND INSULAR TYPE STRUCTURES
US6685936B2 (en) * 1999-10-12 2004-02-03 Osiris Therapeutics, Inc. Suppressor cells induced by culture with mesenchymal stem cells for treatment of immune responses in transplantation
US20030082155A1 (en) 1999-12-06 2003-05-01 Habener Joel F. Stem cells of the islets of langerhans and their use in treating diabetes mellitus
AU778155B2 (en) 1999-12-13 2004-11-18 Scripps Research Institute, The Markers for identification and isolation of pancreatic islet alpha and beta cell progenitors
US7005252B1 (en) * 2000-03-09 2006-02-28 Wisconsin Alumni Research Foundation Serum free cultivation of primate embryonic stem cells
US7439064B2 (en) * 2000-03-09 2008-10-21 Wicell Research Institute, Inc. Cultivation of human embryonic stem cells in the absence of feeder cells or without conditioned medium
US6436704B1 (en) * 2000-04-10 2002-08-20 Raven Biotechnologies, Inc. Human pancreatic epithelial progenitor cells and methods of isolation and use thereof
US6458589B1 (en) 2000-04-27 2002-10-01 Geron Corporation Hepatocyte lineage cells derived from pluripotent stem cells
CA2413910A1 (en) * 2000-06-26 2002-12-27 Renomedix Institute Inc. Cell fractions containing cells capable of differentating into neural cells
MXPA03003612A (es) * 2000-10-23 2003-06-19 Smithkline Beecham Corp Compuestos novedosos.
MXPA03005140A (es) 2000-12-08 2004-10-15 Johnson & Johnson Compuestos de pirrolina sustituidos con indazolilo como inhibidores de cinasa.
AU2002227371B2 (en) 2000-12-08 2007-05-10 Ortho-Mcneil Pharmaceutical, Inc. Macroheterocylic compounds useful as kinase inhibitors
US6599323B2 (en) * 2000-12-21 2003-07-29 Ethicon, Inc. Reinforced tissue implants and methods of manufacture and use
JP2005503759A (ja) 2001-01-24 2005-02-10 アメリカ合衆国 幹細胞の膵臓内分泌細胞への分化方法
JP4162491B2 (ja) 2001-01-25 2008-10-08 アメリカ合衆国 ボロン酸化合物製剤
US6656488B2 (en) 2001-04-11 2003-12-02 Ethicon Endo-Surgery, Inc. Bioabsorbable bag containing bioabsorbable materials of different bioabsorption rates for tissue engineering
US20050054102A1 (en) * 2001-04-19 2005-03-10 Anna Wobus Method for differentiating stem cells into insulin-producing cells
WO2002088335A1 (fr) 2001-04-24 2002-11-07 Ajinomoto Co., Inc. Cellules souches et procede d'extraction de ces cellules
JP2004531262A (ja) 2001-05-15 2004-10-14 ラッパポート ファミリー インスチチュート フォア リサーチ イン ザ メディカル サイエンシズ ヒト胚性幹細胞由来インスリン産生細胞
US6626950B2 (en) * 2001-06-28 2003-09-30 Ethicon, Inc. Composite scaffold with post anchor for the repair and regeneration of tissue
KR100418195B1 (ko) 2001-07-05 2004-02-11 주식회사 우리기술 전력케이블의 다중절연진단장치 및 그 방법
GB0117583D0 (en) * 2001-07-19 2001-09-12 Astrazeneca Ab Novel compounds
WO2003014313A2 (en) * 2001-08-06 2003-02-20 Bresagen, Ltd. Alternative compositions and methods for the culture of stem cells
US6617152B2 (en) * 2001-09-04 2003-09-09 Corning Inc Method for creating a cell growth surface on a polymeric substrate
EP1298201A1 (en) 2001-09-27 2003-04-02 Cardion AG Process for the production of cells exhibiting an islet-beta-cell-like state
WO2003033697A1 (en) 2001-10-18 2003-04-24 Ixion Biotechnology, Inc. Conversion of liver stem and progenitor cells to pancreatic functional cells
EP1442115B9 (en) 2001-11-15 2009-12-16 Children's Medical Center Corporation Methods of isolation, expansion and differentiation of fetal stem cells from chorionic villus, amniotic fluid, and placenta and therapeutic uses thereof
CA2469370C (en) 2001-12-07 2014-07-08 Macropore Biosurgery, Inc. Adipose-derived cell processing unit
GB2415432B (en) * 2001-12-07 2006-09-06 Geron Corp Islet cells from human embryonic stem cells
AU2002218893A1 (en) 2001-12-21 2003-07-09 Thromb-X Nv Compositions for the in vitro derivation and culture of embryonic stem (es) cell lines with germline transmission capability
JP2005512593A (ja) 2001-12-28 2005-05-12 セルアーティス アーベー 多能性のヒト胚盤胞由来幹細胞株の樹立方法
US20030162290A1 (en) 2002-01-25 2003-08-28 Kazutomo Inoue Method for inducing differentiation of embryonic stem cells into functioning cells
DE10214095C1 (de) * 2002-03-28 2003-09-25 Bernd Karl Friedrich Kremer Dedifferenzierte, programmierbare Stammzellen monozytären Ursprungs, sowie deren Herstellung und Verwendung
EP1498478A1 (en) * 2002-04-17 2005-01-19 Otsuka Pharmaceutical Co., Ltd. Method of forming pancreatic beta cells from mesenchymal cells
US20040161419A1 (en) * 2002-04-19 2004-08-19 Strom Stephen C. Placental stem cells and uses thereof
WO2003095452A1 (en) 2002-05-08 2003-11-20 Janssen Pharmaceutica N.V. Substituted pyrroline kinase inhibitors
US20060003446A1 (en) * 2002-05-17 2006-01-05 Gordon Keller Mesoderm and definitive endoderm cell populations
CA2487094A1 (en) 2002-05-28 2003-12-11 Becton, Dickinson And Company Methods for in vitro expansion and transdifferentiation of human pancreatic acinar cells into insulin-producing cells
MXPA04012188A (es) * 2002-06-05 2005-07-25 Johnson & Johnson Derivados de bisindolil-maleimida como inhibidores de cinasa.
GB0212976D0 (en) 2002-06-06 2002-07-17 Tonejet Corp Pty Ltd Ejection method and apparatus
CN1171991C (zh) 2002-07-08 2004-10-20 徐如祥 人神经干细胞的培养方法
US6877147B2 (en) * 2002-07-22 2005-04-05 Broadcom Corporation Technique to assess timing delay by use of layout quality analyzer comparison
US7838290B2 (en) * 2002-07-25 2010-11-23 The Scripps Research Institute Hematopoietic stem cells and methods of treatment of neovascular eye diseases therewith
US20040110287A1 (en) 2002-07-29 2004-06-10 Es Cell International Pte Ltd. Multi-step method for the differentiation of insulin positive, glucose responsive cells
WO2004016747A2 (en) 2002-08-14 2004-02-26 University Of Florida Bone marrow cell differentiation
EP1539928A4 (en) * 2002-09-06 2006-09-06 Amcyte Inc POSIOTIVE PANCREATIC ENDOCRINE PROGENITOR CELLS CD56 IN ADULT HUMAN BEINGS
US9969977B2 (en) * 2002-09-20 2018-05-15 Garnet Biotherapeutics Cell populations which co-express CD49c and CD90
US20040062753A1 (en) * 2002-09-27 2004-04-01 Alireza Rezania Composite scaffolds seeded with mammalian cells
US20060252150A1 (en) 2002-11-08 2006-11-09 Linzhao Cheng Human embryonic stem cell cultures, and compositions and methods for growing same
US7144999B2 (en) * 2002-11-23 2006-12-05 Isis Pharmaceuticals, Inc. Modulation of hypoxia-inducible factor 1 alpha expression
EP1567639A4 (en) 2002-12-05 2005-12-21 Technion Res & Dev Foundation CULTURE OF HUMAN PANCREATIC ISLANDS AND USES THEREOF
ES2705683T3 (es) 2002-12-16 2019-03-26 Technion Res & Dev Foundation Medio de cultivo de células madre pluripotentes
US20050118148A1 (en) * 2002-12-20 2005-06-02 Roland Stein Compositions and methods related to mammalian Maf-A
RU2359671C2 (ru) * 2003-01-29 2009-06-27 Такеда Фармасьютикал Компани Лимитед Способ получения препарата с покрытием
EP1588708A4 (en) 2003-01-29 2006-03-01 Takeda Pharmaceutical METHOD FOR PRODUCING COATED PREPARATION
WO2004073633A2 (en) 2003-02-14 2004-09-02 The Board Of Trustees Of The Leland Stanford Junior University Methods and compositions for modulating the development of stem cells
WO2005045001A2 (en) * 2003-02-14 2005-05-19 The Board Of Trustees Of The Leland Stanford Junior University Insulin-producing cells derived from stem cells
WO2004087885A2 (en) 2003-03-27 2004-10-14 Ixion Biotechnology, Inc. Method for transdifferentiation of non-pancreatic stem cells to the pancreatic pathway
US20060194315A1 (en) * 2003-03-31 2006-08-31 Condie Brian G Compositions and methods for the control, differentiaton and/or manipulation of pluripotent cells through a gamma-secretase signaling pathway
US20090203141A1 (en) * 2003-05-15 2009-08-13 Shi-Lung Lin Generation of tumor-free embryonic stem-like pluripotent cells using inducible recombinant RNA agents
EP1641913B1 (en) * 2003-06-27 2016-01-06 DePuy Synthes Products, Inc. Postpartum cells derived from umbilical cord tissue, and methods of making and using the same
IL161903A0 (en) * 2003-07-17 2005-11-20 Gamida Cell Ltd Ex vivo progenitor and stem cell expansion for usein the treatment of disease of endodermally- deri ved organs
ITRM20030395A1 (it) 2003-08-12 2005-02-13 Istituto Naz Per Le Malattie Infettive Lazz Terreno di coltura per il mantenimento, la proliferazione e il differenziamento di cellule di mammifero.
US20050042595A1 (en) 2003-08-14 2005-02-24 Martin Haas Banking of multipotent amniotic fetal stem cells
US7157275B2 (en) * 2003-08-15 2007-01-02 Becton, Dickinson And Company Peptides for enhanced cell attachment and growth
CA2536067A1 (en) * 2003-08-27 2005-03-10 Stemcells California, Inc. Enriched pancreatic stem cell and progenitor cell populations, and methods for identifying, isolating and enriching for these populations
US7468391B2 (en) * 2003-12-17 2008-12-23 Allergan, Inc. Methods for treating retinoid responsive disorders using selective inhibitors of CYP26A and CYP26B
US20060030042A1 (en) * 2003-12-19 2006-02-09 Ali Brivanlou Maintenance of embryonic stem cells by the GSK-3 inhibitor 6-bromoindirubin-3'-oxime
US20050266554A1 (en) 2004-04-27 2005-12-01 D Amour Kevin A PDX1 expressing endoderm
US7625753B2 (en) 2003-12-23 2009-12-01 Cythera, Inc. Expansion of definitive endoderm cells
US7510876B2 (en) 2003-12-23 2009-03-31 Cythera, Inc. Definitive endoderm
CN112813019A (zh) 2003-12-23 2021-05-18 维亚希特公司 定形内胚层
US20050233446A1 (en) * 2003-12-31 2005-10-20 Parsons Xuejun H Defined media for stem cell culture
TWI334443B (en) * 2003-12-31 2010-12-11 Ind Tech Res Inst Method of single cell culture of undifferentiated human embryonic stem cells
US7794704B2 (en) 2004-01-23 2010-09-14 Advanced Cell Technology, Inc. Methods for producing enriched populations of human retinal pigment epithelium cells for treatment of retinal degeneration
US20080241107A1 (en) * 2004-01-23 2008-10-02 Copland Iii John A Methods and Compositions For Preparing Pancreatic Insulin Secreting Cells
WO2005080551A2 (en) 2004-02-12 2005-09-01 University Of Newcastle Upon Tyne Stem cells
WO2005080598A1 (ja) 2004-02-19 2005-09-01 Dainippon Sumitomo Pharma Co., Ltd. 体細胞核初期化物質のスクリーニング方法
AU2005221079B2 (en) 2004-03-10 2010-07-22 Regents Of The University Of California Compositions and methods for growth of embryonic stem cells
WO2005097980A2 (en) 2004-03-26 2005-10-20 Geron Corporation New protocols for making hepatocytes from embryonic stem cells
JP4491014B2 (ja) 2004-04-01 2010-06-30 ウイスコンシン アラムニ リサーチ ファンデーション 幹細胞の内胚葉および膵臓系統への分化
CN103103158B (zh) 2004-04-27 2016-08-03 韦尔赛特公司 细胞培养基
CA2966883A1 (en) 2004-07-09 2006-02-16 Cythera, Inc. Methods for identifying factors for differentiating definitive endoderm
JP5102030B2 (ja) 2004-08-13 2012-12-19 ユニバーシティ・オブ・ジョージア・リサーチ・ファウンデイション・インコーポレイテッド ヒト胚性幹細胞における自己再生および分化のための組成物および方法
US20080268533A1 (en) * 2004-08-25 2008-10-30 University Of Georgia Research Foundation, Inc. Methods and Compositions Utilizing Myc and Gsk3Beta to Manipulate the Pluripotency of Embryonic Stem Cells
DE102004043256B4 (de) 2004-09-07 2013-09-19 Rheinische Friedrich-Wilhelms-Universität Bonn Skalierbarer Prozess zur Kultivierung undifferenzierter Stammzellen in Suspension
AU2005282414C1 (en) * 2004-09-08 2011-04-07 Wisconsin Alumni Research Foundation Culturing human embryonic stem cells
MX2007002390A (es) 2004-09-08 2007-04-23 Wisconsin Alumni Res Found Medio y cultivo de celulas progenitoras embrionarias.
AU2006210955A1 (en) * 2005-01-31 2006-08-10 Es Cell International Pte Ltd. Directed differentiation of embryonic stem cells and uses thereof
AU2006218359A1 (en) 2005-03-04 2006-09-08 John O'neil Adult pancreatic derived stromal cells
GB0505970D0 (en) 2005-03-23 2005-04-27 Univ Edinburgh Culture medium containing kinase inhibitor, and uses thereof
WO2006113470A2 (en) 2005-04-15 2006-10-26 Geron Corporation Cancer treatment by combined inhibition of proteasome and telomerase activities
CN100425694C (zh) 2005-04-15 2008-10-15 北京大学 诱导胚胎干细胞向胰腺细胞分化的方法
WO2006114097A2 (en) 2005-04-26 2006-11-02 Aarhus Universitet Biosurface structure array
US20100234400A1 (en) 2005-06-10 2010-09-16 Irm Llc Compounds that maintain pluripotency of embryonic stem cells
WO2006138433A2 (en) 2005-06-14 2006-12-28 The Regents Of The University Of California Induction of cell differentiation by class i bhlh polypeptides
WO2006137787A1 (en) 2005-06-21 2006-12-28 Ge Healthcare Bio-Sciences Ab Method for cell culture
CN107189980B (zh) 2005-06-22 2021-07-09 阿斯特利亚斯生物治疗股份公司 人胚胎干细胞的悬浮培养物
ATE439349T1 (de) 2005-06-30 2009-08-15 Janssen Pharmaceutica Nv Cyclische anilinopyridinotriazine als gsk-3- inhibitoren
WO2007016485A2 (en) 2005-07-29 2007-02-08 Athersys, Inc. Use of a gsk-3 inhibitor to maintain potency of cultured cells
WO2007012144A1 (en) 2005-07-29 2007-02-01 Australian Stem Cell Centre Limited Compositions and methods for growth of pluripotent cells
WO2007025234A2 (en) 2005-08-26 2007-03-01 The Trustees Of Columbia University In The City Of New York Generation of pancreatic endocrine cells from primary duct cell cultures and methods of use for treatment of diabetes
CN101341244A (zh) 2005-09-02 2009-01-07 新加坡科技研究局 获取间质干细胞的方法
US9422521B2 (en) 2005-09-12 2016-08-23 Es Cell International Pte Ltd. Differentiation of pluripotent stem cells with a kinase inhibitor or PGI2
NZ567082A (en) 2005-10-14 2012-08-31 Univ Minnesota Differentiation of non-embryonic stem cells to cells having a pancreatic phenotype
DK1957636T3 (en) 2005-10-27 2018-10-01 Viacyte Inc PDX1-EXPRESSING DORSAL AND VENTRAL FORTARM ENDODERM
BRPI0619794B8 (pt) 2005-12-13 2022-06-14 Univ Kyoto Uso de um fator de reprogramação, agente para a preparação de uma célula-tronco pluripotente induzida a partir de uma célula somática e métodos para preparar uma célula- tronco pluripotente induzida método e para preparar uma célula somática e uso de células-tronco pluripotentes induzidas
WO2007082963A1 (es) 2006-01-18 2007-07-26 Fundación Instituto Valenciano De Infertilidad Líneas de células madre embrionarias humanas y métodos para usar las mismas
SG10201405107YA (en) 2006-02-23 2014-10-30 Viacyte Inc Compositions and methods useful for culturing differentiable cells
US7695965B2 (en) 2006-03-02 2010-04-13 Cythera, Inc. Methods of producing pancreatic hormones
EP1999253B1 (en) 2006-03-02 2019-05-22 Viacyte, Inc. Endocrine precursor cells, pancreatic hormone-expressing cells and methods of production
WO2007127927A2 (en) 2006-04-28 2007-11-08 Lifescan, Inc. Differentiation of human embryonic stem cells
US8741643B2 (en) * 2006-04-28 2014-06-03 Lifescan, Inc. Differentiation of pluripotent stem cells to definitive endoderm lineage
JP5288209B6 (ja) * 2006-05-02 2018-06-27 ウイスコンシン アラムニ リサーチ ファンデーション 幹細胞の内胚葉細胞および膵臓系列細胞への分化方法
US8685730B2 (en) 2006-05-02 2014-04-01 Wisconsin Alumni Research Foundation Methods and devices for differentiating pluripotent stem cells into cells of the pancreatic lineage
US7964402B2 (en) 2006-05-25 2011-06-21 Sanford-Burnham Medical Research Institute Methods for culture and production of single cell populations of human embryonic stem cells
CA2654196A1 (en) 2006-06-02 2007-12-13 University Of Georgia Research Foundation, Inc. Pancreatic and liver endoderm cells and tissue by differentiation of definitive endoderm cells obtained from human embryonic stems
CN101541953A (zh) 2006-06-02 2009-09-23 佐治亚大学研究基金会 通过从人胚胎干细胞获得的定形内胚层细胞的分化得到胰和肝内胚层细胞及组织
WO2007149182A2 (en) 2006-06-19 2007-12-27 Geron Corporation Differentiation and enrichment of islet-like cells from human pluripotent stem cells
CN100494359C (zh) 2006-06-23 2009-06-03 中日友好医院 神经干细胞三维立体培养体外扩增的方法
PL2046946T3 (pl) 2006-06-26 2017-04-28 Lifescan, Inc. Hodowla pluripotencjalnych komórek macierzystych
US20080003676A1 (en) 2006-06-26 2008-01-03 Millipore Corporation Growth of embryonic stem cells
US8968994B2 (en) 2006-07-06 2015-03-03 Jeremy Micah Crook Method for stem cell culture and cells derived therefrom
WO2008013664A2 (en) * 2006-07-26 2008-01-31 Cythera, Inc. Methods of producing pancreatic hormones
TW200824678A (en) * 2006-08-11 2008-06-16 Combinatorx Inc Methods and compositions for the treatment of neurodegenerative disorders
KR101331510B1 (ko) 2006-08-30 2013-11-20 재단법인서울대학교산학협력재단 저농도의 포도당을 함유하는 인간 배아줄기세포용 배지조성물 및 이를 이용한 인간 배아 줄기세포로부터 인슐린생산 세포 또는 세포괴로 분화시키는 방법, 그리고그로부터 유도된 인슐린 생산 세포 또는 세포괴
JP2008099662A (ja) 2006-09-22 2008-05-01 Institute Of Physical & Chemical Research 幹細胞の培養方法
WO2008039521A2 (en) * 2006-09-26 2008-04-03 Nmt Medical, Inc. Method for modifying a medical implant surface for promoting tissue growth
JP5343267B2 (ja) 2006-10-17 2013-11-13 スティーフェル・ラボラトリーズ・インコーポレーテッド タラロゾール代謝物
WO2008048647A1 (en) 2006-10-17 2008-04-24 Cythera, Inc. Modulation of the phosphatidylinositol-3-kinase pathway in the differentiation of human embryonic stem cells
US8835163B2 (en) 2006-10-18 2014-09-16 The Board Of Trustees Of The University Of Illinois Embryonic-like stem cells derived from adult human peripheral blood and methods of use
WO2008056779A1 (fr) 2006-11-09 2008-05-15 Japan As Represented By The President Of International Medical Center Of Japan Procédé destiné à la culture et au passage d'une cellule souche embryonnaire de primate, et procédé destiné à induire la différenciation de la cellule souche embryonnaire
WO2008086005A1 (en) 2007-01-09 2008-07-17 University Of South Florida Compositions including triciribine and bortezomib and derivatives thereof and methods of use thereof
WO2008094597A2 (en) 2007-01-30 2008-08-07 University Of Georgia Research Foundation, Inc. Early mesoderm cells, a stable population of mesendoderm cells that has utility for generation of endoderm and mesoderm lineages and multipotent migratory cells (mmc)
GB0703188D0 (en) 2007-02-19 2007-03-28 Roger Land Building Large scale production of stem cells
US20090053182A1 (en) 2007-05-25 2009-02-26 Medistem Laboratories, Inc. Endometrial stem cells and methods of making and using same
MX2010000746A (es) 2007-07-18 2010-07-05 Lifescan Inc Diferenciacion de celulas madre embrionarias humanas.
JP6087043B2 (ja) 2007-07-31 2017-03-01 ライフスキャン・インコーポレイテッドLifescan,Inc. ヒトフィーダー細胞を用いた多能性幹細胞の分化
KR101617243B1 (ko) 2007-07-31 2016-05-02 라이프스캔, 인코포레이티드 인간 배아 줄기 세포의 분화
EP2190413B1 (en) 2007-08-24 2015-01-28 Stichting Het Nederlands Kanker Instituut Compositions for the treatment of neoplastic diseases
US20110151447A1 (en) 2007-11-06 2011-06-23 Children's Medical Center Corporation Method to produce induced pluripotent stem (ips) cells from non-embryonic human cells
KR101592182B1 (ko) 2007-11-27 2016-02-05 라이프스캔, 인코포레이티드 인간 배아 줄기 세포의 분화
SG154367A1 (en) 2008-01-31 2009-08-28 Es Cell Int Pte Ltd Method of differentiating stem cells
WO2009096049A1 (ja) 2008-02-01 2009-08-06 Kyoto University 人工多能性幹細胞由来分化細胞
US20100330677A1 (en) 2008-02-11 2010-12-30 Cambridge Enterprise Limited Improved Reprogramming of Mammalian Cells, and Cells Obtained
KR101731474B1 (ko) 2008-02-21 2017-05-11 얀센 바이오테크 인코포레이티드 세포 부착, 배양 및 탈리를 위한 방법, 표면 개질 플레이트 및 조성물
JPWO2009110215A1 (ja) 2008-03-03 2011-07-14 独立行政法人科学技術振興機構 繊毛細胞の分化誘導方法
US8716018B2 (en) 2008-03-17 2014-05-06 Agency For Science, Technology And Research Microcarriers for stem cell culture
EP2283117B1 (en) 2008-04-21 2013-10-23 Viacyte, Inc. Methods for purifying pancreatic endoderm cells derived from human embryonic stem cells
US8338170B2 (en) 2008-04-21 2012-12-25 Viacyte, Inc. Methods for purifying endoderm and pancreatic endoderm cells derived from human embryonic stem cells
US8728812B2 (en) 2008-04-22 2014-05-20 President And Fellows Of Harvard College Compositions and methods for promoting the generation of PDX1+ pancreatic cells
US8623648B2 (en) 2008-04-24 2014-01-07 Janssen Biotech, Inc. Treatment of pluripotent cells
US7939322B2 (en) 2008-04-24 2011-05-10 Centocor Ortho Biotech Inc. Cells expressing pluripotency markers and expressing markers characteristic of the definitive endoderm
DK2993226T3 (da) 2008-06-03 2021-02-22 Viacyte Inc Vækstfaktorer til fremstilling af en definitiv endoderm
US20090298178A1 (en) 2008-06-03 2009-12-03 D Amour Kevin Allen Growth factors for production of definitive endoderm
PL2942392T3 (pl) * 2008-06-30 2019-02-28 Janssen Biotech, Inc Różnicowanie pluripotencjalnych komórek macierzystych
DE102008032236A1 (de) 2008-06-30 2010-04-01 Eberhard-Karls-Universität Tübingen Isolierung und/oder Identifizierung von Stammzellen mit adipozytärem, chondrozytärem und pankreatischem Differenzierungspotential
US20100028307A1 (en) 2008-07-31 2010-02-04 O'neil John J Pluripotent stem cell differentiation
AU2009310352A1 (en) * 2008-10-01 2010-05-06 The University Of North Carolina At Chapel Hill Hematopoietic protection against ionizing radiation using selective cyclin-dependent kinase 4/6 inhibitors
WO2010048273A2 (en) * 2008-10-21 2010-04-29 President And Fellows Of Harvard College Methods and compounds for treatment of neurodegenerative disorders
CN102333862B (zh) 2008-10-31 2018-04-27 詹森生物科技公司 人胚胎干细胞向胰腺内分泌谱系的分化
US9234178B2 (en) 2008-10-31 2016-01-12 Janssen Biotech, Inc. Differentiation of human pluripotent stem cells
JP5390624B2 (ja) 2008-11-04 2014-01-15 バイアサイト インク 幹細胞集合体懸濁液組成物、その分化方法
US8008075B2 (en) 2008-11-04 2011-08-30 Viacyte, Inc. Stem cell aggregate suspension compositions and methods of differentiation thereof
EP2356227B1 (en) 2008-11-14 2018-03-28 Viacyte, Inc. Encapsulation of pancreatic cells derived from human pluripotent stem cells
AU2009316580B2 (en) 2008-11-20 2016-04-14 Janssen Biotech, Inc. Pluripotent stem cell culture on micro-carriers
US20110229441A1 (en) 2008-12-05 2011-09-22 Association Francaise Contre Les Myopathies Method and Medium for Neural Differentiation of Pluripotent Cells
WO2011011300A2 (en) 2009-07-20 2011-01-27 Centocor Ortho Biotech Inc. Differentiation of human embryonic stem cells
RU2540016C2 (ru) 2009-07-20 2015-01-27 Янссен Байотек, Инк. Дифференцировка эмбриональных стволовых клеток человека
FI20096288A0 (fi) 2009-12-04 2009-12-04 Kristiina Rajala Formulations and methods for culturing stem cells
US9150833B2 (en) 2009-12-23 2015-10-06 Janssen Biotech, Inc. Differentiation of human embryonic stem cells
CA2785966C (en) 2009-12-29 2020-10-27 Takeda Pharmaceutical Company Limited Method for manufacturing pancreatic-hormone-producing cells
WO2011108993A1 (en) 2010-03-02 2011-09-09 National University Of Singapore Culture additives to boost stem cell proliferation and differentiation response
WO2011123572A1 (en) 2010-03-31 2011-10-06 The Scripps Research Institute Reprogramming cells
WO2011139628A1 (en) 2010-04-25 2011-11-10 Mount Sinai School Of Medicine Generation of anterior foregut endoderm from pluripotent cells
WO2011143299A2 (en) 2010-05-12 2011-11-17 Centocor Ortho Biotech Inc. Differentiation of human embryonic stem cells
US9085757B2 (en) 2010-06-17 2015-07-21 Regents Of The University Of Minnesota Production of insulin producing cells
JP6043999B2 (ja) 2010-08-05 2016-12-14 ウィスコンシン アラムニ リサーチ ファンデーション ヒト多能性細胞培養のための簡易基本培地
MX348537B (es) 2010-08-31 2017-06-07 Janssen Biotech Inc Diferencia de celulas madre pluripotentes.
MY177150A (en) 2011-02-28 2020-09-08 Stempeutics Res Malaysia Sdn Bhd Isolation and expansion of adult stem cells, their therapeutic composition and uses thereof
WO2013055834A2 (en) 2011-10-11 2013-04-18 The New York Stem Cell Foundation Er stress relievers in beta cell protection
RU2705001C2 (ru) 2011-12-22 2019-11-01 Янссен Байотек, Инк. Дифференцировка эмбриональных стволовых клеток человека в одногормональные инсулинположительные клетки
US10519422B2 (en) 2012-02-29 2019-12-31 Riken Method of producing human retinal pigment epithelial cells
ES2690118T3 (es) 2012-06-08 2018-11-19 Janssen Biotech, Inc. Diferenciación de células madre embrionarias humanas en células endocrinas pancreáticas
US8859286B2 (en) 2013-03-14 2014-10-14 Viacyte, Inc. In vitro differentiation of pluripotent stem cells to pancreatic endoderm cells (PEC) and endocrine cells
CA2906643A1 (en) 2013-03-15 2014-09-25 The Jackson Laboratory Isolation of non-embryonic stem cells and uses thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005086860A2 (en) * 2004-03-09 2005-09-22 Gang Xu Methods for generating insulin-producing cells
CN101193637A (zh) * 2005-01-19 2008-06-04 默克公司 作为有丝分裂驱动蛋白抑制剂的氟化氨基烷基-4-氧代-3,4-二氢吡啶并[3,4-d]嘧啶化合物
WO2006138432A2 (en) * 2005-06-17 2006-12-28 Lightningcast Llc Presenting advertising content

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113234664A (zh) * 2021-05-11 2021-08-10 澳门大学 一种胰腺祖细胞的制备方法及其应用
CN113234664B (zh) * 2021-05-11 2024-05-10 澳门大学 一种胰腺祖细胞的制备方法及其应用

Also Published As

Publication number Publication date
CN107904201B (zh) 2021-11-16
BRPI0919885A2 (pt) 2015-08-11
US9752126B2 (en) 2017-09-05
ZA201103985B (en) 2018-11-28
RU2664226C2 (ru) 2018-08-15
JP5785088B2 (ja) 2015-09-24
AU2016204685A1 (en) 2016-07-21
AU2009308967A1 (en) 2010-05-06
AU2009308967B2 (en) 2016-04-07
KR101712085B1 (ko) 2017-03-03
RU2522001C2 (ru) 2014-07-10
RU2014114039A (ru) 2015-10-20
RU2687378C1 (ru) 2019-05-13
AU2016204685B2 (en) 2017-10-19
CN102272291B (zh) 2018-01-16
ES2634445T3 (es) 2017-09-27
RU2011121842A (ru) 2012-12-10
US20160160182A1 (en) 2016-06-09
EP2346988A1 (en) 2011-07-27
PL2346988T3 (pl) 2017-10-31
EP2346988B1 (en) 2017-05-31
US9234178B2 (en) 2016-01-12
AU2009308967C1 (en) 2017-04-20
AU2018200452A1 (en) 2018-02-08
US20170355963A1 (en) 2017-12-14
CN102272291A (zh) 2011-12-07
CA2742268C (en) 2020-02-18
WO2010051223A1 (en) 2010-05-06
US20100112693A1 (en) 2010-05-06
JP2012507292A (ja) 2012-03-29
MX2011004565A (es) 2011-07-28
US10421948B2 (en) 2019-09-24
KR20110077016A (ko) 2011-07-06
CA2742268A1 (en) 2010-05-06

Similar Documents

Publication Publication Date Title
CN102272291B (zh) 人胚胎干细胞向胰腺内分泌谱系的分化
CN103154239B (zh) 人胚胎干细胞的分化
RU2586506C2 (ru) Дифференцировка человеческих эмбриональных стволовых клеток
CN103221536B (zh) 人胚胎干细胞的分化
CN101878298B (zh) 人胚胎干细胞的分化
RU2587634C2 (ru) Дифференцирование эмбриональных стволовых клеток человека

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant