CN106443006A - 包括非天然氨基酸的方法和组合物 - Google Patents

包括非天然氨基酸的方法和组合物 Download PDF

Info

Publication number
CN106443006A
CN106443006A CN201610666505.0A CN201610666505A CN106443006A CN 106443006 A CN106443006 A CN 106443006A CN 201610666505 A CN201610666505 A CN 201610666505A CN 106443006 A CN106443006 A CN 106443006A
Authority
CN
China
Prior art keywords
polypeptide
amino acid
natural amino
amino acids
naturally encoded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610666505.0A
Other languages
English (en)
Inventor
苗振伟
田锋
安娜·玛莉亚·A·海斯·蒲楠
英·布彻勒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ambrx Inc
Original Assignee
Ambrx Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ambrx Inc filed Critical Ambrx Inc
Publication of CN106443006A publication Critical patent/CN106443006A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6806Determination of free amino acids
    • G01N33/6812Assays for specific amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/24Extraction; Separation; Purification by electrochemical means
    • C07K1/26Electrophoresis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/30Extraction; Separation; Purification by precipitation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/34Extraction; Separation; Purification by filtration, ultrafiltration or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/06Preparation of peptides or proteins produced by the hydrolysis of a peptide bond, e.g. hydrolysate products
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/04Libraries containing only organic compounds
    • C40B40/10Libraries containing peptides or polypeptides, or derivatives thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Food Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Cell Biology (AREA)
  • Genetics & Genomics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

本发明公开了检测非天然氨基酸和包含至少一个非天然氨基酸的多肽的方法。自身或作为多肽的一部分的非天然氨基酸可包含多种官能团,包含(但不限于)肟基、羰基和/或羟胺基。本发明也揭示了经进一步翻译后修饰的非天然氨基酸多肽和检测所述多肽的方法。

Description

包括非天然氨基酸的方法和组合物
相关申请案的交叉参考
本申请案主张2005年11月16日申请的标题为“Methods of Detecting Non-Natural Amino Acid Polypeptides in vivo and in vitro”的美国临时申请案第60/737,855号的权利。
相关分案申请
本专利申请是申请号为200680043001.8的名称为“包括非天然氨基酸的方法和组合物”的发明专利申请的分案申请,原申请的申请日是2006年11日16日。
技术领域
背景技术
将非遗传编码的氨基酸(即,“非天然氨基酸”)并入蛋白质中的能力允许引入化学官能团,其可提供天然存在官能团(诸如赖氨酸的ε-NH2、半胱氨酸的巯基-SH、组氨酸的亚氨基等)的有价值替代物。已知某些化学官能团对20种常见遗传编码氨基酸中存在的官能团为惰性的,但与可结合于非天然氨基酸上的官能团明确且有效地反应以形成稳定键联。
如今可用方法来选择性地引入蛋白质中不存在的对20种常见遗传编码氨基酸中所存在的所有官能团呈化学惰性且可用于与包括某些官能团的试剂有效且选择性地反应以形成稳定共价连接的化学官能团。
发明内容
本文中描述且以引用的方式并入用于制造、纯化、检测、表征以及使用非天然氨基酸、非天然氨基酸多肽以及经修饰非天然氨基酸多肽的方法、组合物、技术以及策略。
本发明提供检测多肽的方法,其包括检测多肽中的非天然编码氨基酸侧链。在一些实施例中,多肽是由核糖体合成的。本发明也提供检测多肽的方法,其包括检测已经翻译后修饰的多肽中的非天然编码氨基酸侧链。也提供检测所述多肽中非天然编码氨基酸侧链的方法,其包括使非天然编码氨基酸侧链与包括与非天然编码氨基酸侧链特异性相互作用的官能团的分子接触。也提供纯化多肽链中具有非天然编码氨基酸的多肽的方法。在一些实施例中,所述方法包括使多肽和与多肽中的非天然编码氨基酸侧链相互作用的物质接触。在其它实施例中,所述纯化多肽链中具有非天然编码氨基酸的多肽的方法包括使多肽沉淀,其中当与多肽链中无非天然编码氨基酸的多肽的溶解性相比时,非天然编码氨基酸改变多肽的溶解性。也提供纯化核糖体制造的多肽侧链中具有非天然编码氨基酸的多肽的方法,其包括使多肽电泳,其中当与多肽侧链中无非天然编码氨基酸的多肽的电泳迁移率相比时,非天然编码氨基酸改变多肽的电泳迁移率。在其它实施例中,纯化核糖体制造的多肽侧链中具有非天然编码氨基酸的多肽的方法包括使多肽透析,其中当与多肽链中无非天然编码氨基酸的多肽的扩散速率相比时,非天然编码氨基酸改变多肽的扩散速率。
本发明也提供筛检分子文库的方法,其包括:a)在允许分子文库与包括非天然编码氨基酸的多肽相互作用的条件下使包括非天然编码氨基酸的多肽与分子文库组合,和b)鉴别与包括非天然编码氨基酸的多肽相互作用的分子文库。在一些实施例中,筛检包括多个具有不同氨基酸序列的多肽的核糖体制造的多肽的文库,其中各多肽都包括非天然氨基酸。
本发明也提供包括以下步骤的方法:a)在具有至少一种已知生物活性的预选定多肽中的单个预选定位点处用非天然编码氨基酸取代天然编码氨基酸;和b)测量包括非天然编码氨基酸的预选定多肽的生物活性;以及c)比较步骤b)的预选定多肽与已在预选定多肽链的不同位置处用非天然编码氨基酸取代天然编码氨基酸的预选定多肽或多肽链中无取代非天然编码氨基酸的预选定多肽的生物活性。在一些实施例中,选择预选定多肽的供翻译后修饰的位置的方法包括:a)在具有至少一种已知生物活性的预选定多肽中的单个预选定位点处用非天然编码氨基酸取代天然编码氨基酸;和b)测量包括非天然编码氨基酸的预选定多肽的生物活性;以及c)比较步骤b)的预选定多肽与已在预选定多肽链的不同位置处用非天然编码氨基酸取代天然编码氨基酸的预选定多肽或多肽链中无取代非天然编码氨基酸的预选定多肽的生物活性。
应了解,本文中所述且以引用的方式并入的方法和组合物不限于本文中所述的特定方法、方案、细胞株、构筑体以及试剂且同样可改变。同样应了解,本文中所使用的术语仅出于描述特定实施例的目的,且并非意欲限制本文中所述的方法和组合物的范畴,所述范畴应仅由随附权利要求书来限制。
定义
除非上下文另外明确指出,否则如本文中和随附权利要求中所使用的单数形式“一”和“所述”包含复数提及。
除非另外定义,否则本文中使用的所有技术术语和科学术语具有如本文中所述的本发明所属领域的技术人员通常所了解相同的含义。尽管与本文中所述的那些类似或等效的任何方法、装置以及材料可用于本文中所述的本发明的实施或测试中,但现在描述优选方法、装置以及材料。
本文中提及的所有公开案和专利是为了描述和揭示(例如)公开案中所述的构筑体和方法的目的以引用的方式全部并入本文中,其可结合本文中所述的本发明使用。仅提供本文所讨论的公开案在本发明申请日期之前的揭示内容。本文中的任何内容不应被解释为承认本文所述的发明者因先前发明或任何其它原因而无权提前公开本发明。
术语“烷氧基”、“烷基氨基”以及“烷硫基”(或硫代烷氧基)是以其常规意义使用,且指的是分别通过氧原子、氨基或硫原子与分子其余部分连接的那些烷基。
除非另外指出,否则自身或作为另一取代基的部分的术语“烷基”意谓直链或支链或环状烃基,或其组合,其可为完全饱和、单不饱和或多不饱和的且可包含具有指定碳原子数目(即C1-C10意谓1至10个碳)的二价基团和多价基团。饱和烃基的实例包含(但不限于)以下基团,诸如甲基、乙基、正丙基、异丙基、正丁基、叔丁基、异丁基、仲丁基、环己基、(环己基)甲基、环丙基甲基、(例如)正戊基、正己基、正庚基、正辛基以及其类似基团的同系物和异构体。不饱和烷基为具有一个或一个以上双键或三键的烷基。不饱和烷基的实例包含(但不限于)乙烯基、2-丙烯基、巴豆基、2-异戊烯基、2-(丁二烯基)、2,4-戊二烯基、3-(1,4-戊二烯基)、乙炔基、1-丙炔基和3-丙炔基、3-丁炔基以及更高级的同系物和异构体。除非另外指出,否则术语“烷基”也意谓包含下文中更详细定义的烷基的那些衍生物,诸如“杂烷基”。限于烃基的烷基称为“均烷基”。
自身或作为另一取代基的部分的术语“亚烷基”意谓衍生自烷烃的二价基团,例如(但不限于)结构-CH2CH2-和-CH2CH2CH2CH2-且进一步包含下文中描述为“亚杂烷基”的那些基团。烷基(或亚烷基)通常将具有1至24个碳原子,其中具有10个或10个以下碳原子的那些基团是本文中所述的方法和组合物的特定实施例。“低碳烷基”或“低碳亚烷基”是通常具有8个或8个以下碳原子的较短链烷基或亚烷基。
术语“氨基酸”指的是天然存在和非天然氨基酸,以及以类似于天然存在氨基酸的方式起作用的氨基酸类似物和氨基酸模拟物。天然编码氨基酸为20种常见氨基酸(丙氨酸、精氨酸、天冬酰胺、天冬氨酸、半胱氨酸、谷氨酰胺、谷氨酸、甘氨酸、组氨酸、异亮氨酸、亮氨酸、赖氨酸、甲硫氨酸、苯丙氨酸、脯氨酸、丝氨酸、苏氨酸、色氨酸、酪氨酸以及缬氨酸)以及焦赖氨酸和硒半胱氨酸。氨基酸类似物指的是具有与天然存在氨基酸相同的基本化学结构(即,与氢、羧基、氨基以及R基团结合的α-碳)的化合物,诸如高丝氨酸、正亮氨酸、甲硫氨酸亚砜、甲硫氨酸甲基锍。所述类似物可具有经修饰R基团(诸如,正亮氨酸)或经修饰肽主链,但仍保留与天然存在氨基酸相同的基本化学结构。
氨基酸在本文中可由其通常已知的三字母符号或由IUPAC-IUB生物化学命名委员会(IUPAC-IUB Biochemical Nomenclature Commission)推荐的单字母符号称呼。同样地,核苷酸可由其通常接受的单字母代码称呼。
“氨基末端修饰基团”指的是可连接至多肽的氨基末端的任何分子。类似地,“羧基末端修饰基团”指的是可连接至多肽的羧基末端的任何分子。末端修饰基团包含(但不限于)各种水溶性聚合物、肽或蛋白质,诸如血清白蛋白或增加肽的血清半衰期的其它部分。
除非另有说明,否则术语“芳基”意谓可为单环或稠合在一起或共价连接的多环(包含(但不限于)1至3个环)的多不饱和芳族烃取代基。术语“杂芳基”指的是含有1至4个选自N、O以及S的杂原子的芳基(或环),其中氮原子和硫原子可视情况经氧化,且氮原子可视情况经季铵化。杂芳基可通过杂原子连接至分子的其余部分。芳基和杂芳基的非限定性实例包含苯基、1-萘基、2-萘基、4-联苯基、1-吡咯基、2-吡咯基、3-吡咯基、3-吡唑基、2-咪唑基、4-咪唑基、吡嗪基、2-恶唑基、4-恶唑基、2-苯基-4-恶唑基、5-恶唑基、3-异恶唑基、4-异恶唑基、5-异恶唑基、2-噻唑基、4-噻唑基、5-噻唑基、2-呋喃基、3-呋喃基、2-噻吩基、3-噻吩基、2-吡啶基、3-吡啶基、4-吡啶基、2-嘧啶基、4-嘧啶基、5-苯并噻唑基、嘌呤基、2-苯并咪唑基、5-吲哚基、1-异喹啉基、5-异喹啉基、2-喹喔啉基、5-喹喔啉基、3-喹啉基以及6-喹啉基。上述芳基和杂芳基环系统中的每一者的取代基是选自下文中所述的可接受的取代基的群组。
为了简便起见,当与其它术语组合使用(包含(但不限于)芳氧基、芳基硫氧基、芳烷基)时,术语“芳基”包含如上所定义的芳基环与杂芳基环。因此,术语“芳烷基”或“烷芳基”意谓包含芳基是连接至烷基的那些基团(其包含(但不限于)苄基、苯乙基、吡啶基甲基以及其类似基团),其中所述烷基包含碳原子(包含(但不限于)亚甲基)已由(例如)氧原子代替的那些烷基(包含(但不限于)苯氧基甲基、2-吡啶基氧基甲基、3-(1-萘基氧基)丙基以及其类似基团)。
“双官能聚合物”指的是包括两个能够与其它部分(包含(但不限于)氨基酸侧基团)特异性反应以形成共价键或非共价键的离散官能团的聚合物。具有一个与特定生物活性组分上的基团有反应性的官能团和与第二生物组分上的基团有反应性的另一基团的双官能连接子可用于形成包含生物活性组分、双官能连接子以及第二生物活性组分的接合物。已知多种用于将各种化合物与肽连接的程序和连接子分子。例如参看欧洲专利申请案第188,256号、美国专利第4,671,958号、第4,659,839号、第4,414,148号、第4,699,784号、第4,680,338号以及第4,569,789号,其是以引用的方式并入本文中。“多官能聚合物”指的是包括两个或两个以上能够与其它部分(包含(但不限于)氨基酸侧基团)特异性反应以形成共价键或非共价键的离散官能团的聚合物。双官能聚合物或多官能聚合物可具有任何所需长度或分子量,且可经选定以在连接至多肽的一个或一个以上分子与其结合搭配物或多肽之间提供特定所需间隔或构象。
当在本文中使用时,术语“生物活性分子”、“生物活性部分”或“生物活性剂”意谓可影响与有机体(包含(但不限于)病毒、细菌、噬菌体、转座子、朊病毒、昆虫、真菌、植物、动物以及人类)有关的生物系统、路径、分子或相互作用的任何物理或生物化学性质的任何物质。具体来说,如本文中所使用的生物活性分子包含(但不限于)意欲用于诊断、治愈、缓解、治疗或预防人类或其它动物的疾病,或以其他方式增强人类或动物的身体或精神健康的任何物质。生物活性分子的实例包含(但不限于)肽、蛋白质、酶、小分子药物、硬药(harddrug)、软药(soft drug)、碳水化合物、无机原子或分子、染料、脂质、核苷、放射性核素、寡核苷酸、毒素、细胞、病毒、脂质体、微粒以及胶团。适用于本文中所述的方法和组合物的生物活性剂的种类包含(但不限于)药物、前药、放射性核素、显像剂、聚合物、抗生素、杀真菌剂、抗病毒剂、消炎药、抗肿瘤剂、心血管药物、抗焦虑剂、激素、生长因子、类固醇药物、微生物来源的毒素以及其类似物。
如本文中所使用,“共折叠”特定地指使用至少两种彼此相互作用的多肽且使得未折叠或不当折叠的多肽转变为天然的适当折叠的多肽的再折叠过程、反应或方法。
如本文中所使用,“比较窗”包含提及选自由20至600、通常约50至约200、更通常约100至约150组成的群组的连续位置数目中的任一者的区段,其中可将序列与具有相同数目的连续位置的参考序列在将两个序列最佳比对后进行比较。用于比较的序列的比对方法在所属领域中为熟知的。可由以下方法进行用于比较的序列的最佳比对,其包含(但不限于)Smith和Waterman(1970)Adv.Appl.Math.2:482c的局部同源性算法;Needleman和Wunsch(1970)J.Mol.Biol.48:443的同源性比对算法;Pearson和Lipman(1988)Proc.Nat'l.Acad.Sci.USA 85:2444的相似性搜索方法;所述算法的计算机化实施(WisconsinGenetics Software Package,Genetics Computer Group,575Science Dr.,Madison,WI中的GAP、BESTFIT、FASTA以及TFASTA);或手工比对和目测检查(例如参看Ausubel等人,Current Protocols in Molecular Biology(1995增刊))。
适于测定序列一致性百分比和序列相似性的算法的一个实例为BLAST和BLAST2.0算法,其分别描述于Altschul等人,(1997)Nuc.Acids Res.25:3389-3402和Altschul等人,(1990)J.Mol.Biol.215:403-410中。执行BLAST分析的软件可通过国家生物技术信息中心(National Center for Biotechnology Information)公开获得。BLAST算法参数W、T以及X确定比对的灵敏度和速度。BLASTN程序(对于核苷酸序列)使用字长(W)为11、期望值(E)为10、M=5、N=-4以及两条链的比较作为默认值。对于氨基酸序列,BLASTP程序使用字长为3、期望值(E)为10和BLOSUM62计分矩阵(参看Henikoff和Henikoff(1992)Proc.Natl.Acad.Sci.USA 89:10915)比对(B)为50、期望值(E)为10、M=5、N=-4以及两条链的比较作为默认值。BLAST算法通常在“低复杂性”过滤器关闭的情况下执行。
BLAST算法也执行两个序列之间相似性的统计分析(例如参看Karlin和Altschul(1993)Proc.Natl.Acad.Sci.USA 90:5873-5787)。由BLAST算法提供的相似性的一个量度为最小和概率(P(N)),其提供两个核苷酸或氨基酸序列之间偶然会发生匹配的概率的指示。举例来说,如果在测试核酸与参考核酸的比较中,最小和概率小于约0.2,小于约0.01,或小于约0.001,那么就认为所述核酸与参考序列相似。
术语“保守性修饰变体”适用于氨基酸与核酸序列。对于特定核酸序列来说,“保守性修饰变体”指的是编码一致或基本上一致的氨基酸序列的核酸,或其中所述核酸不将氨基酸序列编码成基本上一致的序列。由于遗传密码的简并性,大量功能上相同的核酸编码任何给定蛋白质。举例来说,密码子GCA、GCC、GCG以及GCU都编码氨基酸丙氨酸。因此,在丙氨酸由密码子指定的每一位置处,密码子可改变为所述相应密码子中的任一者而不改变所编码的多肽。所述核酸变异为“沉默变异”,其为保守性修饰变异中的一种。编码多肽的本文中的每一核酸序列也描述核酸的每一可能沉默变异。所属领域的技术人员应认识到,核酸中的各密码子(除通常仅为甲硫氨酸的密码子的AUG和通常仅为色氨酸的密码子的TGG之外)可经修饰以产生功能上相同的分子。因此,编码多肽的核酸的各沉默变异在各所述序列中为隐含的。
至于氨基酸序列,所属领域的技术人员应认识到,改变、添加或缺失所编码序列中单一氨基酸或小百分比的氨基酸的对核酸、肽、多肽或蛋白质序列的个别取代、缺失或添加为变异使得氨基酸经化学上类似的氨基酸取代的“保守性修饰变体”。所属领域的一般技术人员已知提供功能上类似的氨基酸的保守性取代列表。所述保守性修饰变体是在本文所述方法和组合物的多态变体、种间同源物以及等位基因的范围之外且不将其排除在外。
以下八组各自含有关于彼此为保守性取代的氨基酸:
1)丙氨酸(A)、甘氨酸(G);
2)天冬氨酸(D)、谷氨酸(E);
3)天冬酰胺(N)、谷氨酰胺(Q);
4)精氨酸(R)、赖氨酸(K);
5)异亮氨酸(I)、亮氨酸(L)、甲硫氨酸(M)、缬氨酸(V);
6)苯丙氨酸(F)、酪氨酸(Y)、色氨酸(W);
7)丝氨酸(S)、苏氨酸(T);以及
8)半胱氨酸(C)、甲硫氨酸(M)
(例如参看Creighton,Proteins:Structures and Molecular Properties(W HFreeman&Co.;第2版(1993年12月))。
除非另外说明,否则自身或与其它术语组合的术语“环烷基”和“杂环烷基”分别表示“烷基”和“杂烷基”的环状形式。因此,环烷基或杂环烷基包含饱和、部分不饱和以及完全不饱和的环键。另外,对于杂环烷基,杂原子可占据杂环连接至分子的其余部分的位置。环烷基的实例包含(但不限于)环戊基、环己基、1-环己烯基、3-环己烯基、环庚基以及其类似基团。杂环烷基的实例包含(但不限于)1-(1,2,5,6-四氢吡啶基)、1-哌啶基、2-哌啶基、3-哌啶基、4-吗啉基、3-吗啉基、四氢呋喃-2-基、四氢呋喃-3-基、四氢噻吩-2-基、四氢噻吩-3-基、1-哌嗪基、2-哌嗪基以及其类似基团。另外,所述术语涵盖双环和多环结构。类似地,自身或作为另一取代基的部分的术语“亚杂环烷基”意谓衍生自杂环烷基的二价基团,且自身或作为另一取代基的部分的术语“亚环烷基”意谓衍生自环烷基的二价基团。
如本文中所使用,“变性剂”经定义为会造成蛋白质可逆性展开的任何化合物或物质。变性剂的强度将由特定变性剂的性质与浓度来决定。合适的变性剂可为离液剂、清洁剂、水可混溶有机溶剂、磷脂或两种或两种以上所述试剂的组合。合适的离液剂包含(但不限于)尿素、胍以及硫氰酸钠。适用的清洁剂可包含(但不限于)强清洁剂,诸如十二烷基硫酸钠或聚氧乙烯醚(例如Tween或Triton清洁剂)、十二烷基肌氨酸钠(Sarkosyl);温和非离子型清洁剂(例如,毛地黄皂苷(digitonin));温和阳离子型清洁剂,诸如N->2,3-(二油烯氧基)-丙基-N,N,N-三甲基铵;温和离子型清洁剂(例如胆酸钠或脱氧胆酸钠);或两性离子型清洁剂,其包含(但不限于)磺酸甜菜碱(Zwiftergent)、3-(3-氯酰胺基丙基)二甲基铵基-1-丙烷硫酸盐(CHAPS)以及3-(3-氯酰胺基丙基)二甲基铵基-2-羟基-1-丙烷磺酸盐(CHAPSO)。水可混溶有机溶剂,诸如乙腈、低碳烷醇(尤其C2-C4烷醇,诸如乙醇或异丙醇),或低碳烷二醇(尤其C2-C4烷二醇,诸如乙二醇)可用作变性剂。适用于本文中所述的方法和组合物中的磷脂可为天然存在的磷脂,诸如磷脂酰乙醇胺、磷脂酰胆碱、磷脂酰丝氨酸以及磷脂酰肌醇;或合成磷脂衍生物或变体,诸如二己酰基磷脂酰胆碱或二庚酰基磷脂酰胆碱。
如本文中所使用,术语“有效量”指的是会在一定程度上减轻一种或一种以上所治疗的疾病、病状或病症的症状的所投与的(经修饰)非天然氨基酸多肽的量。可投与含有本文中所述的(经修饰)非天然氨基酸多肽的组合物用于预防性、增强性和/或治疗性治疗。
术语“增强”意谓增加或延长所要效应的效力或持续时间。因此,对于增强治疗剂的效应来说,术语“增强”指的是在效力或持续时间方面增加或延长其它治疗剂对系统的效应的能力。如本文中所使用,“增强有效量”指的是足以增强另一治疗剂在所要系统中的效应的量。当用于患者中时,对于此用途有效的量应视以下因素而定:疾病、病症或病状的严重性和病程、先前的治疗、患者的健康状态和对药物的反应以及主治医师的判断。
如本文中所使用,术语“真核细胞”指的是属于种系发生域真核生物域的有机体,诸如动物(包含(但不限于)哺乳动物、昆虫、爬行动物、鸟类等)、纤毛虫、植物(包含(但不限于)单子叶植物、双子叶植物、藻类等)、真菌、酵母、鞭毛虫、微孢子虫、原生生物等。
术语“官能团”、“活性部分”、“活化基团”、“离去基团”、“反应性位点”、“化学反应性基团”以及“化学反应性部分”在所属领域和本文中用来指分子的独特的可定义部分或单元。所述术语在化学领域中在一定程度上同义且在本文中用于指示执行一些功能或活性且可与其它分子反应的分子的部分。
术语“卤素”包含氟、氯、碘以及溴。
除非另有说明,否则自身或与另一术语组合的术语“杂烷基”意谓稳定的直链或支链或环状烃基,或其组合,其由规定数目的碳原子和至少一个选自由O、N、Si和S组成的群组的杂原子组成,且其中氮原子和硫原子可视情况经氧化且氮杂原子可视情况经季铵化。杂原子O、N和S以及Si可位于杂烷基的任何内部位置或位于烷基连接至分子的其余部分的位置处。实例包含(但不限于)-CH2-CH2-O-CH3、-CH2-CH2-NH-CH3、-CH2-CH2-N(CH3)-CH3、-CH2-S-CH2-CH3、-CH2-CH2,-S(O)-CH3、-CH2-CH2-S(O)2-CH3、-CH=CH-O-CH3、-Si(CH3)3、-CH2-CH=N-OCH3以及-CH=CH-N(CH3)-CH3。至多两个杂原子可相邻,诸如,-CH2-NH-OCH3和-CH2-O-Si(CH3)3。类似地,自身或作为另一取代基的部分的术语“亚杂烷基”意谓衍生自杂烷基的二价基团,例如(但不限于)-CH2-CH2-S-CH2CH2-和-CH2-S-CH2-CH2-NH-CH2-。对于亚杂烷基来说,相同或不同的杂原子也可占据链的一端或两端(包含(但不限于)亚烷基氧基、亚烷基二氧基、亚烷基氨基、亚烷基二氨基、氨基氧基亚烷基以及其类似基团)。此外,对于亚烷基和亚杂烷基键联基团来说,由键联基团的化学式书写的方向来暗示键联基团的无方向性。举例来说,式-C(O)2R'-表示-C(O)2R'-与-R'C(O)2-。
术语“一致”或“一致性”百分比在两个或两个以上核酸或多肽序列的情况下,指的是相同的两个或两个以上的序列或子序列。当经比较窗比较且比对最大符合率或使用以下序列比较算法中的一种或通过手工比对且目测检查测量指定区域时,如果序列具有相同(即,在指定区域上具有约60%的一致性,视情况约65%、约70%、约75%、约80%、约85%、约90%或约95%的一致性)的氨基酸残基或核苷酸百分比,那么序列为“实质上一致”。这一定义也指测试序列的互补序列。一致性可存在于长度为至少约50个氨基酸或核苷酸的区域中,或长度为75-100个氨基酸或核苷酸的区域中,或(在未指定时)在聚核苷酸或多肽的整个序列中。
对于序列比较来说,通常一个序列充当测试序列与其进行比较的参考序列。当使用序列比较算法时,将测试序列与参考序列输入电脑中,必要时指定子序列坐标,且指定序列算法程序参数。可使用默认程序参数,或可指定替代参数。随后序列比较算法基于程序参数计算测试序列相对于参考序列的序列一致性百分比。
当术语“经分离”是应用于核酸或蛋白质时,其表示核酸或蛋白质不含至少一些在天然状态下与其结合的细胞组分,或核酸或蛋白质已浓缩到大于其活体内或活体外产生的浓度的含量。其可呈均质状态。经分离物质可为干燥或半干燥状态,或为溶液(包含(但不限于)水溶液)形式。其可为包括其它医药学上可接受的载剂和/或赋形剂的医药组合物的组分。纯度和均质性通常使用分析化学技术测定,所述技术诸如聚丙烯酰胺凝胶电泳或高效液相色谱。为制剂中所存在的主要物质的蛋白质实质上经纯化。具体来说,经分离基因是自侧接基因且编码蛋白质而非所关注基因的开放阅读框分离。术语“经纯化”表示核酸或蛋白质在电泳凝胶中产生实质上一个条带。其尤其可意谓核酸或蛋白质至少85%纯、至少90%纯、至少95%纯、至少99%或更纯。
术语“键”或“连接子”本文中用来指通常因化学反应的结果而形成且通常为共价键的基团或键。水解稳定键意谓所述键在水中实质上稳定且在适用pH值下(包含(但不限于)在生理条件下)长期、或许甚至无限期不与水反应。水解不稳定或可降解键意谓所述键可在水中或水溶液(包含例如血液)中降解。酶促不稳定或可降解键意谓所述键可由一种或一种以上酶降解。如在所属领域中所了解,PEG和相关聚合物可在聚合物主链中或在聚合物主链与聚合物分子的一个或一个以上末端官能团之间的连接子基团中包含可降解键。举例来说,由PEG羧酸或活化PEG羧酸与生物活性剂上的醇基反应所形成的酯键通常在生理条件下水解以释放生物活性剂。其它水解可降解键包含(但不限于)碳酸酯键;由胺与醛反应形成的亚胺键;由醇与磷酸酯基反应形成的磷酸酯键;作为酰肼与醛的反应产物的腙键;作为醛与醇的反应产物的缩醛键;作为甲酸盐与醇的反应产物的原酸酯键;由胺基(包含(但不限于)在诸如PEG的聚合物末端处的胺基)与肽的羧基形成的肽键;以及由亚磷酰胺基(包含(但不限于)在聚合物末端处的亚磷酰胺基)与寡核苷酸的5'羟基形成的寡核苷酸键。
如本文中所使用,术语“培养基”包含可支撑或容纳任何宿主细胞的任何培养基、溶液、固体、半固体或刚性支撑物,所述宿主细胞包含细菌宿主细胞、酵母宿主细胞、昆虫宿主细胞、植物宿主细胞、真核宿主细胞、哺乳动物宿主细胞、CHO细胞、原核宿主细胞、大肠杆菌(E.coli)或假单胞菌(Pseudomonas)宿主细胞以及细胞内含物。因此,这一术语涵盖宿主细胞已生长于其中的培养基,例如多肽已分泌于其中的培养基,包含增殖步骤之前或之后的培养基。这一术语也可涵盖含有宿主细胞溶解产物的缓冲液或试剂,诸如在细胞内产生多肽且宿主细胞经溶解或破裂以释放多肽的情况下。
本文中所揭示的(经修饰)非天然氨基酸多肽的“代谢物”是在(经修饰)非天然氨基酸多肽经代谢时形成的(经修饰)非天然氨基酸多肽的衍生物。术语“活性代谢物”指的是在(经修饰)非天然氨基酸多肽经代谢时形成的(经修饰)非天然氨基酸多肽的生物活性衍生物。术语“经代谢”指的是特定物质由有机体改变的过程的总和(包含(但不限于)水解反应和由酶催化的反应)。关于新陈代谢的其它信息可获自The Pharmacological Basis ofTherapeutics,第9版,McGraw-Hill(1996)。本文中所揭示的(经修饰)非天然氨基酸多肽的代谢物可通过将(经修饰)非天然氨基酸多肽投与宿主且分析来自宿主的组织样品来鉴别,或通过将(经修饰)非天然氨基酸多肽与肝细胞一起活体外培育且分析所得化合物来鉴别。
如本文中所使用,术语“经修饰”指的是存在对多肽的翻译后修饰。形式“(经修饰)”术语意谓所讨论的多肽视情况经修饰,即所讨论的多肽可经修饰或未经修饰。
如本文中所使用,术语“经调节的血清半衰期”意谓(经修饰)多肽相对于其非未经修饰形式的循环半衰期的正改变或负改变。血清半衰期是通过在投与多肽后的各个时间点取血液样品且测定每一样品中那种分子的浓度来测量。血清浓度与时间的相关性使得可以计算血清半衰期。血清半衰期理想地增加至少约两倍,但较小的增加可能适用,例如当其使得能够得到令人满意的给药方案或避免毒性效应时。在一些实施例中,增加为至少约3倍、至少约5倍或至少约10倍。
如本文中所使用,术语“经调节的治疗半衰期”意谓治疗有效量的(经修饰)多肽相对于其未经修饰形式的半衰期的正改变或负改变。治疗半衰期是通过在投药后的各个时间点测量分子的药物动力学和/或药效学性质来测量。增加的治疗半衰期理想地使得能够得到尤其有益的给药方案、尤其有益的总剂量,或避免不当效应。在一些实施例中,治疗半衰期的增加由效力增加、经修饰分子与其标靶的结合增加或降低、酶(诸如蛋白酶)对分子的分解增加或降低或未经修饰分子的另一参数或作用机制的增加或降低而产生。
如本文中所使用,术语“非真核生物”指的是非真核有机体。举例来说,非真核有机体可属于真细菌(Eubacteria)(其包含(但不限于)大肠杆菌(Escherichia coli)、嗜热栖热菌(Thermus thermophilus)、嗜热脂肪芽孢杆菌(Bacillus stearothermophilus)、荧光假单胞菌(Pseudomonas fluorescens)、铜绿假单胞菌(Pseudomonas aeruginosa)、恶臭假单胞菌(Pseudomonas putida)等)种系发生域,或古细菌(Archaea)(其包含(但不限于)詹氏甲烷球菌(Methanococcus jannaschii)、热自养甲烷杆菌(Methanobacteriumthermoautotrophicum)、诸如沃氏嗜盐富饶菌(Haloferax volcanii)和嗜盐杆菌(Halobacterium)物种NRC-1的嗜盐杆菌,闪烁古生球菌(Archaeoglobus fulgidus)、强烈炽热球菌(Pyrococcus furiosus)、掘越氏热球菌(Pyrococcus horikoshii)、敏捷气热菌(Aeuropyrum pernix)等)种系发生域。
“非天然氨基酸”指的是不为20种常见氨基酸或焦赖氨酸或硒半胱氨酸中的一种的氨基酸;可与术语“非天然氨基酸”同义使用的其它术语为“非天然编码氨基酸”、“非天然氨基酸”、“非天然存在氨基酸”以及其各种带有连字符和不带连字符的形式。术语“非天然氨基酸”包含(但不限于)通过修饰天然编码氨基酸(包含(但不限于)20种常见氨基酸或焦赖氨酸和硒半胱氨酸)天然存在但并不通过翻译复合物自身并入生长中的多肽链中的氨基酸。不为天然编码的天然存在氨基酸的实例包含(但不限于)N-乙酰葡糖氨基-L-丝氨酸、N-乙酰葡糖氨基-L-苏氨酸以及O-磷酰基酪氨酸。
术语“核酸”指的是脱氧核苷酸、脱氧核苷、核苷或核苷酸以及其单链或双链形式的聚合物。除非特定限制,否则所述术语涵盖含有具有与参考核酸类似的结合性质且以类似于天然存在核苷酸的方式代谢的天然核苷酸的已知类似物的核酸。除非特定限制,否则所述术语也指包含PNA(肽基核酸)、反义技术中使用的DNA的类似物(硫代磷酸酯、氨基磷酸酯以及其类似物)的寡核苷酸类似物。除非特定限制,否则特定核酸序列也暗示性涵盖其保守性修饰变体(包含(但不限于)简并密码子取代)和互补序列以及明确指定的序列。具体来说,可通过产生一个或一个以上所选(或全部)密码子的第三位置经混合碱基和/或脱氧肌苷残基取代的序列来实现简并密码子取代(Batzer等人,Nucleic Acid Res.19:5081(1991);Ohtsuka等人,J.Biol.Chem.260:2605-2608(1985);以及Rossolini等人,Mol.Cell.Probes 8:91-98(1994))。
如本文中所使用,术语“氧化剂”在蛋白质再折叠方面定义为能够从被氧化的化合物中移除电子的任何化合物或物质。合适的氧化剂包含(但不限于)氧化型谷胱甘肽、胱氨酸、胱胺、氧化型二硫苏糖醇、氧化型赤藓糖醇(oxidized erythreitol)以及氧。多种氧化剂适用于本文中所述的方法和组合物中。
如本文中所使用,术语“聚亚烷基二醇”指的是聚乙二醇、聚丙二醇、聚丁二醇以及其衍生物。术语“聚亚烷基二醇”涵盖线性与分枝聚合物且平均分子量介于1kDa与100kDa之间。其它例示性实施例列出于(例如)商业供应商目录中,诸如Shearwater Corporation的目录“用于生物医学应用的聚乙二醇和衍生物”(“Polyethylene Glycol and Derivativesfor Biomedical Applications”)(2001)。
术语“多肽”、“肽”以及“蛋白质”在本文中可互换使用,且指氨基酸残基的聚合物。即,针对于多肽的描述同样适用于对肽的描述和对蛋白质的描述,且反之亦然。所述术语适用于天然存在氨基酸聚合物以及一个或一个以上氨基酸残基为非天然氨基酸的氨基酸聚合物。如本文中所使用,所述术语涵盖具有任何长度的氨基酸链,包含全长蛋白质,其中氨基酸残基通过共价肽键连接。
术语“经翻译后修饰”指的是在天然或非天然氨基酸已并入多肽链中之后对所述氨基酸进行的任何修饰。仅举例来说,所述术语涵盖共翻译活体内修饰、共翻译活体外修饰(诸如在无细胞翻译系统中)、翻译后活体内修饰以及翻译后活体外修饰。
“前药”指的是活体内转变为母体药物的药剂。前药通常适用,因为在一些情形中,其比母体药物易于投药。举例来说,其可通过经口投药生物利用,而母体药物不可以。前药也可具有优于母体药物的改良的于医药组合物中的溶解性。
在预防性应用中,将含有(经修饰)非天然氨基酸多肽的组合物投与易患特定疾病、病症或病状或处于特定疾病、病症或病状风险中的患者。所述量定义为“预防有效量”。在这一用途中,精确量也视患者的健康状况、体重以及其类似因素而定。认为通过常规实验(例如,剂量递增临床试验)确定所述预防有效量完全是在所属领域的技能范围内。
术语“经保护”指的是存在防止化学反应性官能团在某些反应条件下反应的“保护基”或部分。保护基会根据所保护的化学反应性基团的类型而改变。举例来说,如果化学反应性基团为胺或酰肼,那么保护基可选自叔丁氧羰基(t-Boc)和9-芴基甲氧基羰基(Fmoc)的群组。如果化学反应性基团为硫醇,那么保护基可为邻吡啶基二硫化物。如果化学反应性基团为羧酸(诸如丁酸或丙酸)或羟基,那么保护基可为苄基或烷基,诸如甲基、乙基或叔丁基。本文中所述的方法和组合物中也可使用所属领域中已知的其它保护基,包含对光不稳定的基团,诸如Nvoc和MeNvoc。
仅举例来说,阻断/保护基可选自:
其它保护基描述于Greene和Wuts,Protective Groups in Organic Synthesis,第3版,John Wiley&Sons,New York,NY,1999中,其是以引用的方式全部并入本文中。
术语“重组宿主细胞”或“宿主细胞”指的是包含外源聚核苷酸的细胞,与插入所使用的方法无关,所述方法例如直接吸收、转导、f配对或产生重组宿主细胞所属领域中已知的其它方法。外源聚核苷酸可维持为非整合型载体(例如,质粒)或可整合入宿主基因组中。
如本文中所使用,术语“还原剂”在蛋白质再折叠方面定义为将巯基维持为还原状态且还原分子内或分子间双硫键的任何化合物或物质。合适的还原剂包含(但不限于)二硫苏糖醇(DTT)、2-巯基乙醇、二硫赤藓糖醇、半胱氨酸、半胱胺(2-氨基乙硫醇)以及还原型谷胱甘肽。多种还原剂适用于本文中所述的方法和组合物中。
如本文中所使用的“再折叠”描述将含有二硫键的多肽由不当折叠或未折叠状态转变为关于二硫键的天然或适当折叠构象的任何过程、反应或方法。
如本文中所使用,短语“与……选择性(或特异性)杂交”指的是当复杂混合物(包含(但不限于)总细胞或文库DNA或RNA)中存在特定核苷酸序列时,在严格杂交条件下分子仅与所述序列结合、二联或杂交。
短语“严格杂交条件”指的是如所属领域中已知的低离子浓度和高温度条件。通常,在严格条件下,探针会与核酸的复杂混合物(包含(但不限于)总细胞或文库DNA或RNA)中的其目标子序列杂交,但不与复杂混合物中的其它序列杂交。严格条件具有序列依赖性且在不同环境下会不同。较长序列在较高温度下特异性杂交。对核酸杂交的详细指南可见于Tijssen,Laboratory Techniques in Biochemistry and Molecular Biology-Hybridization with Nucleic Probes,"Overview of principles of hybridizationand the strategy of nucleic acid assays"(1993)中。严格杂交条件通常经选择为在确定离子浓度、pH值下比特异性序列的热解链点(Tm)低约5℃-10℃。Tm是与标靶互补的探针的50%与标靶序列杂交处于平衡(当标靶序列过量存在时,在Tm下,平衡时50%的探针被占据)时的温度(在确定离子强度、pH值以及核酸浓度下)。严格条件可为在pH值为7.0至8.3下盐浓度小于约1.0M钠离子、通常约0.01M至1.0M钠离子浓度(或其它盐)且温度对于短探针(包含(但不限于)10至50个核苷酸)来说为至少约30℃且对于长探针(包含(但不限于)大于50个核苷酸)来说为至少约60℃的那些条件。严格条件也可通过添加去稳定剂(诸如,甲酰胺)来实现。对选择性或特异性杂交来说,阳性信号可为至少两倍背景、视情况10倍背景杂交。例示性严格杂交条件可如下:50%甲酰胺,5×SSC和1%SDS,在42℃下培育,或5×SSC,1%SDS,在65℃下培育,其中在65℃下以0.2×SSC和0.1%SDS洗涤。所述洗涤可进行5分钟、15分钟、30分钟、60分钟、120分钟或更长时间。
如本文中所使用,术语“个体”指的是动物,在一些实施例中,指的是哺乳动物,且在其它实施例中,指的是人类,其是治疗、观察或实验的对象。
如本文中所使用,术语“实质上经纯化”指的是可实质上或基本上不含与其天然存在环境中可见的蛋白质通常相伴或相互作用的组分的多肽,在重组产生的多肽的情况下,所述环境即天然细胞或宿主细胞。可实质上不含细胞物质的多肽包含具有少于约30%、少于约25%、少于约20%、少于约15%、少于约10%、少于约5%、少于约4%、少于约3%、少于约2%或少于约1%(以干重计)的污染蛋白质的蛋白质制剂。当多肽或其变体由宿主细胞重组产生时,蛋白质可占细胞干重的约30%、约25%、约20%、约15%、约10%、约5%、约4%、约3%、约2%或约1%或更少。当多肽或其变休由宿主细胞重组产生时,蛋白质可以细胞干重计以约5g/L、约4g/L、约3g/L、约2g/L、约1g/L、约750mg/L、约500mg/L、约250mg/L、约100mg/L、约50mg/L、约10mg/L或约1mg/L或更低浓度存在于培养基中。因此,如由本文中所述的方法所产生的“实质上经纯化”的多肽可具有如由适当方法(诸如SDS/PAGE分析、RP-HPLC、SEC以及毛细管电泳)所测定至少约30%、至少约35%、至少约40%、至少约45%、至少约50%、至少约55%、至少约60%、至少约65%、至少约70%的纯度,尤其至少约75%、80%、85%的纯度,且更尤其至少约90%的纯度、至少约95%的纯度、至少约99%或更高的纯度。
术语“取代基”包含(但不限于)“无干扰取代基”。“无干扰取代基”是那些产生稳定化合物的基团。合适的无干扰取代基或基团包含(但不限于)卤基、C1-C10烷基、C2-C10烯基、C2-C10炔基、C1-C10烷氧基、C5-C12芳烷基、C3-C12环烷基、C4-C12环烯基、苯基、经取代苯基、甲苯基、二甲苯基、联苯基、C2-C12烷氧基烷基、C5-C12烷氧基芳基、C5-C12芳氧基烷基、C7-C12氧基芳基、C1-C6烷基亚磺酰基、C1-C10烷基磺酰基、-(CH2)m-O-(C1-C10烷基)(其中m为1至8)、芳基、经取代芳基、经取代烷氧基、氟烷基、杂环基、经取代杂环基、硝基烷基、-NO2、-CN、-NRC(O)-(C1-C10烷基)、-C(O)-(C1-C10烷基)、C2-C10烷硫基烷基、-C(O)O-(C1-C10烷基)、-OH、-SO2、=S、-COOH、-NR2、羰基、-C(O)-(C1-C10烷基)-CF3、-C(O)-CF3、-C(O)NR2、-(C1-C10芳基)-S-(C6-C10芳基)、-C(O)-(C6-C10芳基)、-(CH2)m-O-(CH2)m-O-(C1-C10烷基)(其中m各自为1至8)、-C(O)NR2、-C(S)NR2、-SO2NR2、-NRC(O)NR2、-NRC(S)NR2、其盐以及其类似基团。前述列表中的每一R基团独立地选自由H、烷基或经取代烷基、芳基或经取代芳基,或烷芳基组成的群组。当取代基由其从左向右书写的常规化学式指定时,其同样涵盖可由从右向左书写结构产生的化学上相同的取代基,例如,-CH2O-等于-OCH2-。
烷基和杂烷基(包含通常称作亚烷基、烯基、亚杂烷基、杂烯基、炔基、环烷基、杂环烷基、环烯基以及杂环烯基的那些基团)的取代基可为选自(但不限于)以下各基团的多个基团中的一个或一个以上基团:-OR、=O、=NR、=N-OR、-NR2、-SR、-卤素、-SiR3、-OC(O)R、-C(O)R、-CO2R、-CONR2、-OC(O)NR2、-NRC(O)R、-NRC(O)NR2、-NR(O)2R、-NR-C(NR2)=NR、-S(O)R、-S(O)2R、-S(O)2NR2、-NRSO2R、-CN以及-NO2,其个数在0到(2m'+1)(其中m'为所述基团中的碳原子的总数目)的范围内。前述列表中的每一R基团独立地选自由以下各基团组成的群组:氢、经取代或未经取代的杂烷基、经取代或未经取代的芳基(包含(但不限于)经1-3个卤素取代的芳基)、经取代或未经取代的烷基、烷氧基或硫烷氧基或芳烷基。当两个R基团连接至同一氮原子时,其可与氮原子组合以形成5元环、6元环或7元环。举例来说,-NR2意谓包含(但不限于)1-吡咯烷基和4-吗啉基。由取代基的上述讨论,所属领域的技术人员应了解,术语“烷基”意欲包含包括与不为氢的基团结合的碳原子的基团,诸如卤烷基(包含(但不限于)-CF3和-CH2CF3)和酰基(包含(但不限于)-C(O)CH3,、-C(O)CF3、-C(O)CH2OCH3以及其类似基团)。
类似于关于烷基所述的取代基,芳基和杂芳基的取代基可变化且选自(但不限于)-OR、=O、=NR、=N-OR、-NR2、-SR、-卤素、-SiR3、-OC(O)R、-C(O)R、-CO2R、-CONR2、-OC(O)NR2、-NRC(O)R、-NRC(O)NR2、-NR(O)2R、-NR-C(NR2)=NR、-S(O)R、-S(O)2R、-S(O)2NR2、-NRSO2R、-CN、-NO2、-R、-N3、-CH(Ph)2、氟(C1-C4)烷氧基以及氟(C1-C4)烷基,数目在零到芳族环系统上的开放价态的总数的范围内;且其中前述列表中的每一R基团独立地选自氢、烷基、杂烷基、芳基以及杂芳基。
在治疗性应用中,可将含有(经修饰)非天然氨基酸多肽的组合物以足以治愈或至少部分减轻所述疾病、病症或病状的症状的量投与已患所述疾病、病症或病状的患者。所述量定义为“治疗有效量”且将视以下因素而定:疾病、病症或病状的严重性和病程、先前的治疗、患者的健康状态和对药物的反应以及主治医师的判断。认为通过常规实验(例如,剂量递增临床试验)确定所述预防有效量完全在所属领域的技能范围内。
如本文所使用,术语“测试配位体”指的是可为化合物、分子或复合物的试剂,其正被测试与非天然氨基酸多肽结合的能力,诸如已知呈天然形式的蛋白质或蛋白质复合物与活有机体(诸如脊椎动物,尤其哺乳动物且甚至更尤其人类)的疾病或病状相关或是其病因。因为配位体与其非天然氨基酸多肽的结合须当配位体对非天然氨基酸多肽产生直接效应时才发生,所以通过本发明检定方法指示的结合是如本文中所述鉴别的配位体的治疗潜能的强有力指示。
可通过本发明方法评估的测试配位体可为几乎任何试剂,包含(但不限于)金属、多肽、蛋白质、脂质、多糖、聚核苷酸以及有机小分子。展示结合非天然氨基酸多肽的测试配位体被称为配位体。可测试包含超过一种测试配位体的物质的复杂混合物(包含(但不限于)天然产物提取物)且如果存在阳性反应(即,如果存在与非天然氨基酸多肽的结合),那么可从所述混合物中纯化结合非天然氨基酸多肽的配位体,之后进一步评估其治疗潜能。
术语“治疗”用于指预防性和/或治疗性治疗。
如本文中所使用,术语“水溶性聚合物”指的是可溶于水性溶剂中的任何聚合物。水溶性聚合物与多肽的键联可产生改变,其包含(但不限于)相对于未经修饰形式,血清半衰期增加或得到调节、治疗半衰期增加或得到调节、免疫原性得到调节、物理缔合特征(诸如聚集和多聚体形成)得到调节、受体结合改变、与一种或一种以上结合搭配物的结合改变以及受体二聚化或多聚化作用改变。水溶性聚合物可具有或可不具有其自身的生物活性且可用作使多肽与其它物质(包含(但不限于)一种或一种以上多肽或一种或一种以上生物活性分子)连接的连接子。合适的聚合物包含(但不限于)聚乙二醇、聚乙二醇丙醛、其单C1-C10烷氧基或芳氧基衍生物(描述于美国专利第5,252,714号中,其是以引用的方式并入本文中)、单甲氧基-聚乙二醇、聚乙烯吡咯烷酮、聚乙烯醇、聚氨基酸、二乙烯基醚马来酸酐、N-(2-羟丙基)-甲基丙烯酰胺、葡聚糖、葡聚糖衍生物(包含硫酸葡聚糖)、聚丙二醇、聚氧化丙烯/氧化乙烯共聚物、聚氧乙烯化多元醇、肝素、肝素片段、多糖、寡糖、聚糖、纤维素和纤维素衍生物(包含(但不限于)甲基纤维素和羧甲基纤维素)、淀粉和淀粉衍生物、多肽、聚烷二醇和其衍生物、聚烷二醇和其衍生物的共聚物、聚乙烯基乙基醚,和α-β-聚[(2-羟乙基)-DL-天冬酰胺以及其类似物或其混合物。所述水溶性聚合物的实例包含(但不限于)聚乙二醇和血清白蛋白。
除非另外指示,否则使用所属领域内的质谱、NMR、HPLC、蛋白质化学、生物化学、重组DNA技术以及药理学的常规方法。
本文中提出的化合物(包含(但不限于)非天然氨基酸、(经修饰)非天然氨基酸多肽以及用于制备任一种前述化合物的试剂)包含经同位素标记的化合物,其与本文中提出的各种式和结构中叙述的那些化合物相同,但一个或一个以上原子由具有与自然界中通常存在的原子质量或质量数不同的原子质量或质量数的原子代替。可并入本发明的化合物中的同位素的实例包含氢、碳、氮、氧、氟以及氯的同位素,分别诸如2H、3H、13C、14C、15N、18O、17O、35S、15F、36Cl。本文中所述的某些经同位素标记的化合物(例如并有诸如3H和14C的放射性同位素的那些化合物)适用于药物和/或底物组织分布检定。此外,用诸如氘(即2H)的同位素取代可提供某些由较高代谢稳定性产生的治疗优点,例如活体内半衰期增加或剂量需求降低。
本文中的一些化合物(包含(但不限于)非天然氨基酸、(经修饰)非天然氨基酸多肽以及用于制备任一种前述化合物的试剂)具有不对称碳原子且可因此以对映异构体或非对映异构体形式存在。基于其物理化学差异,由已知方法(例如,色谱和/或分级结晶)可将非对映异构混合物分离为其个别非对映异构体。可通过由与适当光学活性化合物(例如,醇)的反应将对映异构混合物转变为非对映异构混合物,分离非对映异构体且将个别非对映异构体转变(例如,水解)为相应纯对映异构体而将对映异构体分离。包含非对映异构体、对映异构体以及其混合物的所有所述异构体均被视作本文中所述的组合物的部分。
在另外或其它实施例中,本文中所述的化合物(包含(但不限于)非天然氨基酸、(经修饰)非天然氨基酸多肽以及用于制备任一种前述化合物的试剂)是以前药的形式使用。在另外或其它实施例中,本文中所述的化合物(包含(但不限于)非天然氨基酸、(经修饰)非天然氨基酸多肽以及用于制备任一种前述化合物的试剂)在投与需要产生代谢物的有机体之后代谢,所述代谢物随后用于产生所需效应,包含所需治疗效应。在其它或另外实施例中为非天然氨基酸和(经修饰)非天然氨基酸多肽的活性代谢物。
本文中所述的方法和调配物包含使用非天然氨基酸和(经修饰)非天然氨基酸多肽的N-氧化物、结晶形式(也称作多晶型物)或医药学上可接受的盐。在某些情形中,非天然氨基酸和(经修饰)非天然氨基酸多肽可以互变异构体形式存在。所有互变异构体均包含于本文中提出的非天然氨基酸和(经修饰)非天然氨基酸多肽的范畴内。另外,本文中所述的非天然氨基酸和(经修饰)非天然氨基酸多肽可以非溶剂化形式形式以及与医药学上可接受的溶剂(诸如水、乙醇以及其类似物)形成的溶剂化形式存在。本文中提供的非天然氨基酸和(经修饰)非天然氨基酸多肽的溶剂化形式也视为揭示于本文中。
所属领域的技术人员应认识到本文中的一些化合物(包含(但不限于)非天然氨基酸、(经修饰)非天然氨基酸多肽以及用于制备任一种前述化合物的试剂)可以若干互变异构形式存在。所有所述互变异构形式均被视作本文中所述的组合物的部分。同样,例如本文中的任何化合物(包含(但不限于)非天然氨基酸、(经修饰)非天然氨基酸多肽以及用于制备任一种前述化合物的试剂)的所有烯醇-酮形式均被视作本文中所述的组合物的部分。
本文中的一些化合物(包含(但不限于)非天然氨基酸、(经修饰)非天然氨基酸多肽以及用于制备任一种前述化合物的试剂)具有酸性且可与医药学上可接受的阳离子形成盐。本文中的一些化合物(包含(但不限于)非天然氨基酸、(经修饰)非天然氨基酸多肽以及用于制备任一种前述化合物的试剂)可具有碱性且因此可与医药学上可接受的阴离子形成盐。包含二盐的所有所述盐在本文中所述的组合物的范畴内且其可通过常规方法来制备。举例来说,盐可通过在水性、非水性或部分水性介质中使酸性实体与碱性实体接触来制备。通过使用以下技术中的至少一种来回收盐:过滤;以非溶剂沉淀,接着过滤;蒸发溶剂;或(在水溶液的情况下)冻干。
盐(例如)包含:(1)与无机酸或有机酸形成的酸加成盐,其中所述无机酸诸如盐酸、氢溴酸、硫酸、硝酸、磷酸以及其类似酸;所述有机酸诸如乙酸、丙酸、己酸、环戊烷丙酸、乙醇酸、丙酮酸、乳酸、丙二酸、琥珀酸、苹果酸、马来酸、富马酸、酒石酸、柠檬酸、苯甲酸、3-(4-羟基苯甲酰基)苯甲酸、肉桂酸、扁桃酸、甲烷磺酸、乙烷磺酸、1,2-乙烷二磺酸、2-羟基乙磺酸、苯磺酸、2-萘磺酸、4-甲基双环-[2.2.2]辛-2-烯-1-羧酸、葡庚糖酸、4,4'-亚甲基双-(3-羟基-2-烯-1-羧酸)、3-苯基丙酸、三甲基乙酸、叔丁基乙酸、月桂基硫酸、葡萄糖酸、谷氨酸、羟基萘酸、水杨酸、硬脂酸、粘糠酸以及其类似酸;(2)当母体化合物中存在的酸性质子由金属离子(例如碱金属离子、碱土金属离子或铝离子)代替;或与有机碱配位时形成的盐。可接受的有机碱包含乙醇胺、二乙醇胺、三乙醇胺、缓血酸胺、N-甲基葡糖胺以及其类似物。可接受的无机碱包含氢氧化铝、氢氧化钙、氢氧化钾、碳酸钠、氢氧化钠以及其类似物。
应了解,对盐的提及包含其溶剂加成形式或晶体形式,尤其溶剂合物或多晶型物。溶剂合物含有化学计量或非化学计量之量的溶剂,且通常在结晶过程中形成。当溶剂为水时形成水合物,或当溶剂为醇时形成醇化物。多晶型物包含化合物的相同元素组成的不同晶体组合排列。多晶型物通常具有不同X射线衍射图案、红外光谱、熔点、密度、硬度、晶体形状、光学性质和电学性质、稳定性以及溶解性。诸如再结晶溶剂、结晶速率以及储存温度的各种因素可使得单一晶体形式占优势。
以引用的方式并入
本说明书中所提及的所有公开案、专利以及专利申请案是出于所有目的以引用的方式全部并入本文中,引用的程度就如同已特定地且个别地将各个别公开案、专利或专利申请案出于所有目的以引用的方式并入的本文中。
附图说明
本发明的新颖特征详细陈述于随附权利要求书中。通过参考下列陈述利用本发明的原理的说明性实施例的详细描述和以下附图将获得对本发明的特征和优点的更充分理解。
图1a示出本文所述的方法、组合物、策略以及技术的某些方面的关系的示意图。
图1b示出多种蛋白质检测技术。
图2示出使经翻译并入(或以其他方式并入)多肽中的氨基酸官能团(A)与反应物(B)反应以得到修饰多肽的反应的说明性非限定性实例。
图3示出通过使含羰基非天然氨基酸组分与含羟胺试剂反应形成含肟非天然氨基酸组分的说明性非限定性实例。
图4示出通过使含羟胺非天然氨基酸组分与含羰基试剂反应形成含肟非天然氨基酸组分的说明性非限定性实例。
图5示出通过使含肟非天然氨基酸组分与含羰基试剂反应形成含肟非天然氨基酸组分的说明性非限定性实例。
图6示出通过使含二羰基非天然氨基酸组分与含羟胺试剂反应形成含肟非天然氨基酸组分的说明性非限定性实例。
图7示出通过使含羟胺非天然氨基酸组分与含二羰基试剂反应形成含肟非天然氨基酸组分的说明性非限定性实例。
图8示出通过使含肟非天然氨基酸组分与含羰基或二羰基试剂发生肟交换反应形成含肟非天然氨基酸组分的说明性非限定性实例。
图9示出通过在并入多肽中的非天然氨基酸的羰基与分子的羟胺之间形成肟来位点特异性地连接至蛋白质的分子的非限定性实例。
图10展示利用与非天然氨基酸反应的树脂的非天然氨基酸多肽的纯化方法的实例。
图11展示以“一锅式”进行非天然氨基酸多肽的纯化和多肽的接合的方法的实例。
图12展示树脂选择和官能化的实例。
图13展示使用羟胺树脂亲和力纯化非天然氨基酸多肽的实例。
图14展示使用醛树脂纯化非天然氨基酸多肽的实例。
图15展示从裂解后转化为酪胺酸的非天然氨基酸前驱体纯化天然蛋白质的实例。
图16展示非天然氨基酸的非限定性实例。
图17展示hGH-单链DNA接合物的SDS-PAGE分析:1)接合反应的反应混合物;2)通过HIC管柱纯化的hGH-ssDNA接合物。
图18展示蛋白质-ssDNA接合物杂交。
图19展示hGH-ssDNA接合物杂交的天然14%甘氨酸凝胶分析;hGH-ssDNA接合物(5μL)具有1)0μl、2)2μl、3)4μl、4)6μl、5)8μl、6)10μl的1μM FTam28d3;和7)2μl、8)4μl、9)8μl的10μM FTam28-d3。
图20展示5μl与1)0μl、2)1μl、3)4μl的100μM FTam28d3混合的hGH-ssDNA和与4)1μl、5)0μl的100μM FTam28-d3混合的hGH的天然凝胶分析。
图21展示使用DNA作为模板的一维hGH结构的装配。
具体实施方式
本发明提供一种检测多肽的方法,其包括检测所述多肽中的非天然编码氨基酸侧链。在一些实施例中,所述多肽是使用选自由以下方法组成的群组的技术检测:免疫检定、微阵列、显微术、荧光显微术、电子显微术、电泳、光谱学、显色反应、放射性检测、无线电发射、亚原子粒子检测、金属结合、螯合、结构或构象变化、酶活性、特异性结合、摄影术、磁场测量、传感器、电磁能检测、基因表达、可见或不可见光检测、温度检测以及化学检测。所述免疫检定选自由以下检定组成的群组:放射性免疫检定、酶联免疫吸附检定、酶倍增免疫检定、微粒酶免疫检定、发光免疫检定以及荧光免疫检定;所述光谱学选自由以下方法组成的群组:SELDI、MALDI、荧光光谱学、NMR、UV-Vis以及X射线结晶学;所述电泳选自由以下方法组成的群组:凝胶电泳、区带电泳、等电点聚焦电泳、毛细管电泳、毛细管区带电泳、毛细管凝胶电泳、毛细管等速电泳、毛细管等电点聚焦电泳以及毛细管电色谱法。在一些实施例中,所述多肽是由核糖体合成;或所述非天然氨基酸多肽经翻译后修饰。
本发明另提供一种检测多肽的方法,其包括检测所述已经翻译后修饰的多肽中的非天然编码氨基酸侧链。在一些实施例中,所述多肽使用选自由以下方法组成的群组的技术检测:免疫检定、微阵列、显微术、荧光显微术、电子显微术、电泳、光谱学、显色反应、放射性检测、无线电发射、亚原子粒子检测、金属结合、螯合、结构或构象变化、酶活性、特异性结合、摄影术、磁场测量、传感器、电磁能检测、基因表达、可见或不可见光检测、温度检测以及化学检测。所述免疫检定选自由以下方法组成的群组:放射性免疫检定、酶联免疫吸附检定、酶倍增免疫检定、微粒酶免疫检定、发光免疫检定以及荧光免疫检定;所述光谱学选自由以下方法组成的群组:SELDI、MALDI、荧光光谱学、NMR、UV-Vis以及X射线结晶学;所述电泳选自由以下方法组成的群组:凝胶电泳、区带电泳、等电点聚焦电泳、毛细管电泳、毛细管区带电泳、毛细管凝胶电泳、毛细管等速电泳、毛细管等电点聚焦电泳以及毛细管电色谱法。在一些实施例中,所述多肽是由核糖体合成。
本发明另提供一种检测所述多肽中非天然编码氨基酸侧链的方法,其包括使所述非天然编码氨基酸侧链与包括与所述非天然编码氨基酸侧链特异性相互作用的官能团的分子接触。
本发明另提供一种筛检分子文库的方法,其包括:a)使包括非天然编码氨基酸的多肽与所述分子文库在允许所述分子文库与所述包括非天然编码氨基酸的多肽相互作用的条件下组合,b)鉴别所述与所述包括非天然编码氨基酸的多肽相互作用的分子文库。在一些实施例中,所述非天然氨基酸多肽是由核糖体合成;所述非天然编码氨基酸的侧链经翻译后修饰;或所述非天然编码氨基酸的侧链经翻译后修饰,且所述非天然氨基酸多肽是由核糖体合成。在一些实施例中,所述文库为化学文库或生物文库;所述化学文库为有机文库或无机文库;所述生物分子文库选自由以下各物组成的群组:蛋白质、肽、多肽、DNA、RNA、病毒、核糖体、翻译复合物、噬菌体、细菌以及酵母。在一些实施例中,所述分子文库与所述多肽的所述相互作用为所述分子文库与所述多肽的特异性结合;或所述分子文库与所述多肽的所述相互作用为所述分子文库与所述多肽的共价键形成或复合物形成。在一些实施例中,所述方法进一步包括以下步骤:c)回收与所述非天然氨基酸多肽相互作用的分子文库;以及d)从所述分子文库分离所述非天然氨基酸多肽,从而获得经分离分子文库。
本发明另提供一种核糖体制造的多肽的文库,其包括多个具有不同氨基酸序列的多肽,其中各多肽包括非天然氨基酸。在一些实施例中,各多肽包括相同非天然氨基酸;各多肽包括不同非天然氨基酸;至少一种多肽经翻译后修饰;各多肽包括不同非天然氨基酸,且所述多肽除所述非天然编码氨基酸外为一致的;各多肽与包括天然氨基酸的多肽同源;或各多肽包括相同非天然氨基酸,且各多肽除所述非天然氨基酸的位置外为一致的。
本发明另提供一种纯化多肽链中具有非天然编码氨基酸的多肽的方法,其包括使所述多肽和与所述多肽中的非天然编码氨基酸相互作用的物质接触。在一些实施例中,所述物质为选自由液相色谱法、气相色谱法以及超临界流体色谱法组成的群组的色谱基质;所述液相色谱法选自由分配色谱法、吸附色谱法、离子交换色谱法、尺寸排阻色谱法、薄层色谱法以及亲和力色谱法组成的群组;所述液相色谱法选自由HPLC、管柱色谱法以及批处理法组成的群组。在一些实施例中,所述多肽与所述物质的所述接触在微流体装置中发生,或所述多肽与所述物质的所述接触在纳米流体装置中发生。在一些实施例中,所述分配色谱法选自由正相色谱法、反相色谱法以及离子对色谱法组成的群组;所述薄层色谱法选自由纸色谱法、薄层色谱法以及电色谱法组成的群组;所述亲和力色谱法选自由配位体色谱法、染料色谱法、金属螯合物色谱法、免疫亲和力色谱法以及疏水性相互作用色谱法组成的群组。在一些实施例中,所述物质是磁性物质。在一些实施例中,所述多肽是在微生物中表达。在一些实施例中,所述多肽是在选自由大肠杆菌(Escherichia coli)、荧光假单胞菌(Pseudomonas fluorescens)、枯草杆菌(Bacillus subtilis)、酵母、哺乳动物细胞以及昆虫细胞组成的群组的微生物中产生;其中,所述非天然氨基酸多肽为含有亲和性标签的杂交肽。在一些实施例中,所述非天然氨基酸多肽经翻译后修饰;其中,所述翻译后修饰是通过肟交换反应达成。在一些实施例中,非天然氨基酸经翻译后修饰以包括肟基团。
本发明另提供一种纯化多肽链中具有非天然编码氨基酸的多肽的方法,其包括使所述多肽沉淀,其中当与多肽链中无非天然编码氨基酸的所述多肽的溶解性相比时,所述非天然编码氨基酸改变所述多肽的溶解性。在一些实施例中,所述沉淀通过选自由盐、酸、碱以及聚合物组成的群组的化合物进行;或所述纯化是通过免疫沉淀法达成。在一些实施例中,所述多肽是在微生物中表达。在一些实施例中,所述多肽是在选自由大肠杆菌(Escherichia coli)、荧光假单胞菌(Pseudomonas fluorescens)、枯草杆菌(Bacillussubtilis)、酵母、哺乳动物细胞以及昆虫细胞组成的群组的微生物中产生;其中,所述非天然氨基酸多肽为含有亲和性标签的杂交肽。在一些实施例中,所述非天然氨基酸多肽经翻译后修饰;其中,所述翻译后修饰是通过肟交换反应达成。在一些实施例中,非天然氨基酸经翻译后修饰以包括肟基团。
本发明另提供一种纯化多肽侧链中具有非天然编码氨基酸的核糖体制造的多肽的方法,其包括使所述多肽电泳,其中当与多肽侧链中无非天然编码氨基酸的所述多肽的电泳迁移率相比时,所述非天然编码氨基酸改变所述多肽的电泳迁移率。在一些实施例中,所述电泳选自由凝胶电泳和毛细管电泳组成的群组。所述凝胶电泳选自由区带电泳和等电点聚焦电泳组成的群组;所述毛细管电泳选自由以下方法组成的群组:毛细管区带电泳、毛细管凝胶电泳、毛细管等速电泳、毛细管等电点聚焦电泳、毛细管电色谱法、胶束电动毛细管色谱法、等速电泳以及瞬时等速电泳。在一些实施例中,所述多肽是在微生物中表达。在一些实施例中,所述多肽是在选自由大肠杆菌(Escherichia coli)、荧光假单胞菌(Pseudomonas fluorescens)、枯草杆菌(Bacillus subtilis)、酵母、哺乳动物细胞以及昆虫细胞组成的群组的微生物中产生;其中,所述非天然氨基酸多肽为含有亲和性标签的杂交肽。在一些实施例中,所述非天然氨基酸多肽经翻译后修饰;其中,所述翻译后修饰是通过肟交换反应达成。在一些实施例中,非天然氨基酸经翻译后修饰以包括肟基团。
本发明另提供一种纯化多肽侧链中具有非天然编码氨基酸的核糖体制造的多肽的方法,其包括使所述多肽透析,其中当与多肽侧链中无非天然编码氨基酸的所述多肽的扩散速率相比时,所述非天然编码氨基酸改变所述多肽的扩散速率。在一些实施例中,所述透析是电透析。在一些实施例中,所述多肽是在微生物中表达。在一些实施例中,所述多肽是在选自由大肠杆菌(Escherichia coli)、荧光假单胞菌(Pseudomonas fluorescens)、枯草杆菌(Bacillus subtilis)、酵母、哺乳动物细胞以及昆虫细胞组成的群组的微生物中产生;其中,所述非天然氨基酸多肽为含有亲和性标签的杂交肽。在一些实施例中,所述非天然氨基酸多肽经翻译后修饰;其中,所述翻译后修饰是通过肟交换反应达成。在一些实施例中,非天然氨基酸经翻译后修饰以包括肟基团。
本发明另提供一种纯化非天然氨基酸多肽的方法,其包括通过超滤纯化所述多肽。
本发明另提供一种方法,其包括:a)在具有至少一种已知生物活性的预选定多肽中的单个预选定位点处用非天然编码氨基酸取代天然编码氨基酸;和b)测量所述包括所述非天然编码氨基酸的预选定多肽的生物活性;以及c)比较步骤b)的所述预选定多肽与已在所述预选定多肽链的不同位置处用非天然编码氨基酸取代天然编码氨基酸的预选定多肽或多肽链中无取代非天然编码氨基酸的预选定多肽的生物活性。在一些实施例中,所述多肽链中的用于以非天然编码氨基酸取代的所述预选定位置为连续的;对于所述多肽链中的每一个别位置重复在所述预选定多肽链的单个位点处用所述非天然编码氨基酸取代天然编码氨基酸;用相同非天然编码氨基酸取代;用不同非天然编码氨基酸取代;或所述预选定多肽链中一个以上的位置经非天然编码氨基酸取代。
本发明另提供一种选择用于翻译后修饰预选定多肽的位置的方法,其包括:a)在具有至少一种已知生物活性的预选定多肽中的单个预选定位点处用非天然编码氨基酸取代天然编码氨基酸;和b)测量所述包括所述非天然编码氨基酸的预选定多肽的生物活性;以及c)比较步骤b)的所述预选定多肽与已在所述预选定多肽链的不同位置处用非天然编码氨基酸取代天然编码氨基酸的预选定多肽或多肽链中无取代非天然编码氨基酸的预选定多肽的生物活性。在一些实施例中,所述翻译后修饰为与水溶性聚合物偶合。
本发明另提供一种包括一种多肽的组合物,所述多肽在所述多肽的一个或一个以上特定氨基酸位置处与核酸分子共价连接,其中所述多肽和核酸分子共价连接至所述多肽的一个或一个以上非天然编码氨基酸的氨基酸侧链。
I.引言
近年来,已报导一种誓将克服多种与蛋白质的位点特异性修饰相关的限制的全新蛋白质科学技术。具体来说,已将新的组分添加到原核生物大肠杆菌(例如,L.Wang等人,(2001),Science 292:498-500)和真核细胞酿酒酵母(Sacchromyces cerevisiae;S.cerevisiae)(例如,J.Chin等人,Science 301:964-7(2003))的蛋白质生物合成机构中,此使得能够在活体内将非天然氨基酸并入蛋白质中。使用此方法,具有新颖化学、物理或生物性质的许多新氨基酸(包含光亲和性标记和可光异构化氨基酸、酮基氨基酸以及糖基化氨基酸)已回应琥珀密码子TAG有效且高保真性地并入大肠杆菌和酵母中的蛋白质中。例如参看J.W.Chin等人,(2002),Journal of the American Chemical Society 124:9026-9027(以引用的方式全部并入);J.W.Chin和P.G.Schultz,(2002),ChemBioChem 3(11):1135-1137(以引用的方式全部并入);J.W.Chin,等人,(2002),PNAS United States of America 99:11020-11024(以引用的方式全部并入);以及L.Wang和P.G.Schultz,(2002),Chem.Comm.,1:1-11(以引用的方式全部并入)。所述研究已证实有可能选择性且常规地引入蛋白质中不存在的化学官能团,其对20种常见遗传编码氨基酸中存在的所有官能团呈化学惰性,且可用于有效且选择性地反应以形成稳定共价键。
II.概述
图I是对本文中所述的组合物、方法以及技术的概述。在某种程度上,从美国专利申请案第60/638,418号、第60/638,527号、第60/639,195号、第60/696,210号、第60/696,302号以及第60/696,068号中以引用的方式全部并入用于产生和使用包括至少一个非天然氨基酸或经修饰非天然氨基酸的多肽的手段(方法、组合物、技术)。所述非天然氨基酸多肽可含有其它官能团,包含(但不限于):标记;染料;聚合物;水溶性聚合物;聚乙二醇的衍生物;光交联剂;细胞毒性化合物;药物;亲和性标记;光亲和性标记;反应性化合物;树脂;第二蛋白质或多肽或多肽类似物;抗体或抗体片段;金属螯合剂;辅因子;脂肪酸;碳水化合物;聚核苷酸;DNA;RNA;反义聚核苷酸;糖、水溶性树枝状聚合物、环糊精、抑制性核糖核酸;生物材料;纳米粒子;自旋标记;荧光团;含金属部分;放射性部分;新颖官能团;与其它分子共价或非共价相互作用的基团;光笼蔽部分;可光化辐射激发的部分;可光异构化部分;生物素;生物素衍生物;生物素类似物;结合有重原子的部分;可化学裂解的基团;可光裂解的基团;延长的侧链;碳键联糖;氧化还原活性剂;氨基硫代酸;毒性部分;经同位素标记的部分;生物物理探针;磷光基团;化学发光基团;电子致密基团;磁性基团;插入基团;发色团;能量转移剂;生物活性剂;可检测标记;小分子;量子点;纳米传递素;以及上述各者的任何组合。
如图1a中所示,一方面为使用美国专利申请案第60/638,418号、第60/638,527号、第60/639,195号、第60/696,210号、第60/696,302号以及第60/696,068号(其是以引用的方式全部并入本文中)中进一步描述的方法、组合物以及技术来选择和设计欲修饰的多肽的方法。新颖多肽可从头设计,其包含(仅举例来说)作为高通量筛检方法(在此情况下,可设计、合成、表征和/或测试众多多肽)的部分或根据研究者的兴趣设计。新颖多肽也可根据已知或部分表征的多肽的结构进行设计。仅举例来说,生长激素基因超家族(Growth HormoneGene Superfamily)(见下文)已成为科学团体广泛研究的主题;新颖多肽可根据这一基因超家族的成员的结构进行设计。选择哪个氨基酸来取代和/或修饰的原则单独描述于本文中。使用哪种修饰的选择也描述于本文中,且可用于满足实验人员或最终使用者的需求。修饰包含(仅举例来说)操纵多肽的治疗功效;改良多肽的安全性概况;调节多肽的药物动力学;向多肽提供其它官能团;向多肽中并入标签、标记或可检测信号;易化多肽的分离性质以及前述修饰的任何组合。
因此,美国专利申请案第60/638,418号、第60/638,527号、第60/639,195号、第60/696,210号、第60/696,302号以及第60/696,068号(其是以引用的方式全部并入本文中)中进一步提供和描述包括至少一个非天然氨基酸或经修饰非天然氨基酸的多肽。多种非天然编码氨基酸适用于本发明。可在多肽中引入任何数目的非天然编码氨基酸。所引入的非天然编码氨基酸通常对20种常见遗传编码氨基酸(即,丙氨酸、精氨酸、天冬酰胺、天冬氨酸、半胱氨酸、谷氨酰胺、谷氨酸、甘氨酸、组氨酸、异亮氨酸、亮氨酸、赖氨酸、甲硫氨酸、苯丙氨酸、脯氨酸、丝氨酸、苏氨酸、色氨酸、酪氨酸以及缬氨酸)实质上呈化学惰性。在一些实施例中,非天然编码氨基酸包含与20种常见氨基酸中不存在的官能团(包含(但不限于)叠氮基、酮基、醛基以及氨基氧基(aminooxy))有效且选择性地反应以形成稳定接合物的侧链官能团。因为本发明的非天然编码氨基酸通常仅在侧链结构方面与天然氨基酸不同,所以非天然编码氨基酸以与天然存在多肽中形成酰胺键相同的方式与其它氨基酸(包含(但不限于)天然或非天然编码氨基酸)形成酰胺键。然而,非天然编码氨基酸具有使其区别于天然氨基酸的侧链基团。举例来说,侧链(R基团)视情况包括烷基-、芳基-、酰基-、酮基-、叠氮基-、羟基-、肼、氰基-、卤基-、酰肼、烯基、炔基、醚、硫醇、硒基-、磺酰基-、硼酸酯基(borate)、酉朋酸酯基(boronate)、磷酰基、膦酰基、膦、杂环、烯酮、亚胺、醛、酯、硫代酸、羟胺、氨基或其类似基团或其任何组合。
可适于在本发明中使用的所关注的其它非天然存在的氨基酸包含(但不限于)包括可光活化交联剂的氨基酸、经自旋标记的氨基酸、荧光氨基酸、金属结合氨基酸、含金属氨基酸、放射性氨基酸、具有新颖官能团的氨基酸、与其它分子共价或非共价相互作用的氨基酸、光笼蔽和/或可光异构化氨基酸、包括生物素或生物素类似物的氨基酸、糖基化氨基酸(诸如糖取代丝氨酸)、经其它碳水化合物修饰的氨基酸、含酮基氨基酸、包括聚乙二醇或聚醚的氨基酸、经重原子取代氨基酸、可化学裂解和/或可光裂解氨基酸、与天然氨基酸相比具有延长的侧链的氨基酸(包含(但不限于)聚醚或长链烃,包含(但不限于)超过约5个碳或超过约10个碳)、碳键联含糖氨基酸、氧化还原活性氨基酸、含氨基硫代酸的氨基酸以及含有一个或一个以上毒性部分的氨基酸。
多种用于并入多肽中的非天然氨基酸可见于标题为“In vivo incorporation ofunnatural amino acids”的WO 2002/085923中,其是以引用的方式全部并入本文中。活体内合并非天然编码氨基酸的方法和组合物描述于美国专利申请公开案2003/0082575(第10/126,927号)中,其是以引用的方式全部并入本文中。选择在有机体的活体内翻译系统中使用的正交tRNA-tRNA合成酶对的方法也描述于美国专利申请公开案2003/0082575(第10/126,927号)和2003/0108885(第10/126,931)中,其是以引用的方式全部并入本文中。以引用的方式全部并入本文中的标题为“Site Specific Incorporation of Keto AminoAcids into Proteins”的PCT公开案第WO 04/035743号描述用于合并酮基氨基酸的正交RS和tRNA对。以引用的方式全部并入本文中的标题为“Expanding the Eukaryotic GeneticCode”的PCT公开案第WO 04/094593号描述用于在真核宿主细胞中并入非天然编码氨基酸的正交RS和tRNA对。非天然编码氨基酸具有使其区别于天然氨基酸的侧链基团。所述侧链可包括烷基-、芳基-、酰基-、酮基-、叠氮基-、羟基-、肼、氰基-、卤基-、酰肼、烯基、炔基、醚、硫醇、硒基-、磺酰基、硼酸酯基、酉朋酸酯基、磷酰基、膦酰基、膦、杂环、烯酮、亚胺、醛、酯、硫代酸、羟胺、氨基或其类似基团或其任何组合。
在某些实施例中,具有至少一个非天然氨基酸或经修饰非天然氨基酸基团的多肽在多肽上的一些位置上包含至少一次翻译后修饰。在一些实施例中,翻译后修饰是通过细胞机构(例如,糖基化、乙酰化、酰化、脂质修饰、棕榈酰化、棕榈酸盐加成、磷酸化、糖脂键修饰以及其类似机构)发生,在许多情况下,所述基于细胞机构的翻译后修饰发生在多肽上的天然存在氨基酸位点上,然而,在某些实施例中,基于细胞机构的翻译后修饰发生在多肽上的非天然氨基酸位点上。
在其它实施例中,翻译后修饰不利用细胞机构,而是通过利用所属领域的一般技术人员已知的适于特定反应性基团的化学方法使包括第二反应性基团的分子(包含(但不限于)标记;染料;聚合物;水溶性聚合物;聚乙二醇的衍生物;光交联剂;细胞毒性化合物;药物;亲和性标记;光亲和性标记;反应性化合物;树脂;第二蛋白质或多肽或多肽类似物;抗体或抗体片段;金属螯合剂;辅因子;脂肪酸;碳水化合物;聚核苷酸;DNA;RNA;反义聚核苷酸;糖、水溶性树枝状聚合物、环糊精、抑制性核糖核酸;生物材料;纳米粒子;自旋标记;荧光团、含金属部分;放射性部分;新颖官能团;与其它分子共价或非共价相互作用的基团;光笼蔽部分;可光化辐射激发的部分;可光异构化部分;生物素;生物素衍生物;生物素类似物;结合有重原子的部分;可化学裂解的基团;可光裂解的基团;延长的侧链;碳键联糖;氧化还原活性剂;氨基硫代酸;毒性部分;经同位素标记的部分;生物物理探针;磷光基团;化学发光基团;电子致密基团;磁性基团;插入基团;发色团;能量转移剂;生物活性剂;可检测标记;小分子、量子点;纳米传递素以及上述各者的任何组合)连接至至少一种包括第一反应性基团(包含(但不限于)含有酮、醛、缩醛、半缩醛、肟或羟胺官能团的非天然氨基酸)的非天然氨基酸来提供。在某些实施例中,翻译后修饰是在真核细胞或非真核细胞中活体内进行。在某些实施例中,翻译后修饰是在活体外进行。这一方面同样包含用于制备、纯化、表征以及使用含有至少一个所述经翻译后修饰的非天然氨基酸的所述多肽的方法。
美国专利申请案第60/638,418号、第60/638,527号、第60/639,195号、第60/696,210号、第60/696,302号以及第60/696,068号(其是以引用的方式全部并入本文中)中进一步描述的方法、组合物、策略以及技术的范畴内也包含能够与作为多肽的部分的非天然氨基酸反应以产生任何前述翻译后修饰的试剂。一般来说,所得经翻译后修饰的非天然氨基酸应含有至少一个可经受后续修饰反应的非天然氨基酸。这一方面也包含用于制备、纯化、表征以及使用能够进行所述非天然氨基酸的任何所述翻译后修饰的所述试剂的方法。
在某些实施例中,蛋白质包含至少一种由一种宿主细胞在活体内产生的翻译后修饰,其中翻译后修饰通常不由另一种宿主细胞类型产生。在某些实施例中,蛋白质包含至少一种由真核细胞在活体内产生的翻译后修饰,其中翻译后修饰通常不由非真核细胞产生。所述翻译后修饰的实例包含(但不限于)糖基化、乙酰化、酰化、脂质修饰、棕榈酰化、棕榈酸盐加成、磷酸化、糖脂键修饰以及其类似修饰。在一实施例中,翻译后修饰包括通过GlcNAc-天冬酰胺键将寡糖连接至天冬酰胺(包含(但不限于),其中寡糖包括(GlcNAc-Man)2-Man-GlcNAc-GlcNAc和其类似物)。在另一实施例中,翻译后修饰包括通过GalNAc-丝氨酸、GalNAc-苏氨酸、GlcNAc-丝氨酸或GlcNAc-苏氨酸键将寡糖(包含(但不限于)Gal-GalNAc、Gal-GlcNAc等)连接至丝氨酸或苏氨酸。在某些实施例中,蛋白质或多肽可包括分泌或定位序列、抗原决定基标签、FLAG标签、聚组氨酸标签、GST融合体和/或其类似物。分泌信号序列的实例包含(但不限于)原核分泌信号序列、真核分泌信号序列、5'经优化以供细菌表达的真核分泌信号序列、新颖分泌信号序列、果胶裂解酶分泌信号序列、Omp A分泌信号序列以及噬菌体分泌信号序列。分泌信号序列的实例包含(但不限于)STII(原核)、Fd GIII和M13(噬菌体)、Bgl2(酵母)以及来源于转座子的信号序列bla。这一方面也包括产生、纯化、表征以及使用所述含有至少一个所述翻译后修饰的多肽的方法。
所关注的蛋白质和多肽可含有至少1个、至少2个、至少3个、至少4个、至少5个、至少6个、至少7个、至少8个、至少9个或10个或10个以上非天然氨基酸。非天然氨基酸可相同或不同,例如,在包括1、2、3、4、5、6、7、8、9、10个或10个以上不同非天然氨基酸的蛋白质中可存在1、2、3、4、5、6、7、8、9、10个或10个以上不同位点。在某些实施例中,以蛋白质的天然存在形式存在的特定氨基酸中的至少一个(但少于全部)经非天然氨基酸取代。
本文中提供和所描述的方法和组合物包含包括至少一个非天然氨基酸的多肽。将至少一个非天然氨基酸引入多肽中可允许应用包括特定化学反应(包含(但不限于)与一种或一种以上非天然氨基酸反应,而不与通常存在的20种氨基酸反应)的接合化学。一旦并入,则所述氨基酸侧链可利用所属领域的一般技术人员已知适于天然编码氨基酸中存在的特定官能团或取代基的化学方法来修饰。
本文中所述的非天然氨基酸方法和组合物提供具有多种官能团、取代基或部分的物质与其它物质的接合物,所述其它物质包含(但不限于):标记;染料;聚合物;水溶性聚合物;聚乙二醇的衍生物;光交联剂;细胞毒性化合物;药物;亲和性标记;光亲和性标记;反应性化合物;树脂;第二蛋白质或多肽或多肽类似物;抗体或抗体片段;金属螯合剂;辅因子;脂肪酸;碳水化合物;聚核苷酸;DNA;RNA;反义聚核苷酸;糖、水溶性树枝状聚合物、环糊精、抑制性核糖核酸;生物材料;纳米粒子;自旋标记;荧光团;含金属部分;放射性部分;新颖官能团;与其它分子共价或非共价相互作用的基团;光笼蔽部分;可光化辐射激发的部分;配位体;可光异构化部分;生物素;生物素衍生物;生物素类似物;结合有重原子的部分;可化学裂解的基团;可光裂解的基团;延长的侧链;碳键联糖;氧化还原活性剂;氨基硫代酸;毒性部分;经同位素标记的部分;生物物理探针;磷光基团;化学发光基团;电子致密基团;磁性基团;插入基团;发色团;能量转移剂;生物活性剂;可检测标记;小分子;量子点;纳米传递素以及上述各者的任何组合。非天然氨基酸多肽与分子(包含(但不限于)生物素)的接合可使得能够纯化接合物。
美国专利申请案第60/638,418号、第60/638,527号、第60/639,195号、第60/696,210号、第60/696,302号以及第60/696,068号(其是以引用的方式全部并入本文中)中进一步描述的组合物、方法、技术以及策略的另一方面为研究或使用前述(经修饰)非天然氨基酸多肽中的任一者的方法。在这一方面中包含(仅举例来说)会受益于包括(经修饰)非天然氨基酸多肽或蛋白质的多肽的治疗、诊断、基于检定、工业、化妆品、植物生物学、环境、能量产生和/或军事用途。
本发明提供检测前述(经修饰)非天然氨基酸多肽或其片段的方法。所述非天然氨基酸多肽或其片段可通过在适于允许特异性相互作用的条件下使非天然氨基酸多肽或其片段与分子文库组合来获得。本发明也提供检测前述(经修饰)非天然氨基酸多肽或其片段的方法,其中非天然氨基酸多肽或其片段通过在适于允许特异性相互作用的条件下使非天然氨基酸多肽或其片段与蛋白质文库或其蛋白质组合获得。所述相互作用包含(但不限于)乙酰化、羧化、酰化、磷酸化、脱磷酸化、泛素化、糖基化、脂质修饰、ADP核糖基化、生物可用性以及半衰期。所述文库包含α-1抗胰蛋白酶、血管生成抑制素、抗溶血因子、抗体、载脂蛋白、脱辅基蛋白、心房利钠因子、心房利钠多肽、心房肽、C-X-C趋化因子、T39765、NAP-2、ENA-78、gro-a、gro-b、gro-c、IP-10、GCP-2、NAP-4、SDF-1、PF4、MIG、降血钙素、c-kit配位体、细胞因子、CC趋化因子、单核细胞趋化蛋白-1、单核细胞趋化蛋白-2、单核细胞趋化蛋白-3、单核细胞炎性蛋白-1α、单核细胞炎性蛋白-iβ、RANTES、1309、R83915、R91733、HCC1、T58847、D31065、T64262、CD40、CD40配位体、c-kit配位体、胶原蛋白、集落刺激因子(CSF)、补体因子5a、补体抑制剂、补体受体1、细胞因子、上皮中性粒细胞活化肽-78、MIP-16、MCP-1、表皮生长因子(EGF)、上皮中性粒细胞活化肽、红细胞生成素(EPO)、表皮剥脱毒素、因子IX、因子VII、因子VIII、因子X、成纤维细胞生长因子(FGF)、纤维蛋白原、纤维连接蛋白、四螺旋束蛋白、G-CSF、glp-1、GM-CSF、葡糖脑苷脂酶、促性腺激素、生长因子、生长因子受体、grf、刺猬蛋白、血色素、肝细胞生长因子(hGF)、水蛭素、人类生长激素(hGH)、人类血清白蛋白、ICAM-1、ICAM-1受体、LFA-1、LFA-1受体、胰岛素、类胰岛素生长因子(IGF)、IGF-I、IGF-II、干扰素(IFN)、IFN-α、IFN-β、IFN-γ、白细胞介素(IL)、IL-1、IL-2、IL-3、IL-4、IL-5、IL-6、IL-7、IL-8、IL-9、IL-10、IL-11、IL-12、角质细胞生长因子(KGF)、乳铁传递蛋白、白血病抑制因子、荧光素酶、神经素、中性粒细胞抑制因子(NIF)、制瘤素M、成骨蛋白、癌基因产物、旁降钙素(paracitonin)、甲状旁腺激素、PD-ECSF、PDGF、肽激素、多效素(pleiotropin)、蛋白A、蛋白G、pth、致热外毒素A、致热外毒素B、致热外毒素C、pyy、松弛素、肾素、SCF、小生物合成蛋白、可溶性补体受体I、可溶性I-CAM 1、可溶性白细胞介素受体、可溶性TNF受体、生长调节素、生长激素抑制素、生长激素、链激酶、超抗原、葡萄球菌肠毒素、SEA、SEB、SEC1、SEC2、SEC3、SED、SEE、类固醇激素受体、超氧化物歧化酶、中毒性休克综合症毒素、胸腺素α1、组织型纤溶酶原活化因子、肿瘤生长因子(TGF)、肿瘤坏死因子、肿瘤坏死因子α、肿瘤坏死因子β、肿瘤坏死因子受体(TNFR)、尾加压素-II、VLA-4蛋白、VCAM-1蛋白、血管内皮生长因子(VEGF)、尿激酶、mos、ras、raf、met、p53、tat、fos、myc、jun、myb、rel、雌激素受体、孕酮受体、睾丸激素受体、醛固酮受体、LDL受体以及皮质酮。
III.非天然氨基酸在多肽中的位置
本文中所揭示的非天然氨基酸多肽或其片段包含将一个或一个以上非天然氨基酸并入多肽中。一个或一个以上非天然氨基酸可在不破坏多肽活性的特定位置处并入。此举可通过进行“保守性”取代(包含(但不限于)用疏水性氨基酸取代疏水性氨基酸,大体积氨基酸取代大体积氨基酸,亲水性氨基酸取代亲水性氨基酸)和/或将非天然氨基酸插入不为活性所需的位置中来实现。
可使用多种生物化学和结构方法来选择用于在多肽内经非天然氨基酸取代的所需位点。多肽链的任何位置都适于选择以并入非天然氨基酸,且选择可基于合理设计或出于任何或无特定所需目的通过随机选择进行。所需位点的选择可用于产生具有任何所需性质或活性的非天然氨基酸多肽(其可经进一步修饰或保持未修饰,包含(但不限于)激动剂、超激动剂、反向激动剂、拮抗剂、受体结合调节剂、受体活性调节剂、与一个或一个以上结合搭配物的结合的调节剂、结合搭配物活性调节剂、结合搭配物构象调节剂)、二聚体或多聚体形成、与天然分子相比活性或性质无改变或操纵多肽的任何物理或化学性质,诸如溶解性、聚集或稳定性。举例来说,可使用所属技术领域中已知的点突变分析、丙氨酸扫描或同源物扫描方法来鉴别多肽的生物活性所需的多肽中的位置。类似于Cunningham,B.和Wells,J.,Science,244:1081-1085(1989)和Cunningham,B.等人,Science 243:1330-1336(1989)中所述的方法的方法可用于鉴别对生物活性关键的残基和/或可用于鉴别抗体和受体抗原决定基。美国专利第5,580,723号、第5,834,250号、第6,013,478号、第6,428,954号以及第6,451,561号(其是以引用的方式并入本文中)中描述通过用标靶物质鉴别影响多肽活性的活性域来系统分析多肽的结构和功能的方法。视所寻求的多肽的所需活性而定,不为由丙氨酸或同源物扫描突变诱发鉴别为对生物活性关键的那些残基的残基可为用非天然氨基酸取代的良好候选者。或者,仍然视所寻求的多肽的所需活性而定,经鉴别对生物活性关键的位点也可为用非天然氨基酸取代的良好候选者。另一替代方法为在多肽链上的各位置中用非天然氨基酸简单进行连续取代且观察对多肽活性的影响。所属领域的一般技术人员易于了解,用于选择用于经非天然氨基酸取代入任何多肽中的位置的任何方式、技术或方法适用于本发明中。
也可研究含有缺失的多肽的天然存在突变体的结构和活性以确定可能容许经非天然氨基酸取代的蛋白质区域。一旦消除可能不容许经非天然氨基酸取代的残基,就可从相关多肽和任何缔合配位体或结合蛋白质的三维结构来研究在每一剩余位置上的提议取代的影响。许多多肽的X射线结晶学和NMR结构也可获自蛋白质数据库(Protein DataBank)(PDB,www.rcsb.org),其为含有大分子蛋白质和核酸的三维结构数据的集中数据库。因此,所属领域的一般技术人员可容易地鉴别可经非天然氨基酸取代的氨基酸位置。
并入非天然氨基酸的例示性位点包含(但不限于)排除在潜在受体结合区(与一个或一个以上结合搭配物结合的区域)之外的那些位点,其可完全或部分暴露在溶剂中,与附近残基具有最小或无氢键相互作用,可最小程度地暴露于附近反应性残基中,可为多肽的一个或一个以上暴露面,可在如由与其缔合受体、配位体或结合蛋白质结合或未结合或与另一多肽或其它生物活性分子偶合或未偶合的多肽的三维、二级、三级或四级结构所预测的高度柔性或结构刚性的区域中,或可通过按需要改变完整结构的柔性或刚性调节多肽自身或包括一个或一个以上多肽的二聚体或多聚体的构象。
多种非天然氨基酸可经取代或并入多肽中的给定位置中。一般来说,可基于对多肽与其缔合配位体、受体和/或结合蛋白质的三维晶体结构、二级结构、三级结构或四级结构的研究来选择用于并入的特定非天然氨基酸,优选保守性取代(即,基于芳基的非天然氨基酸,诸如对酰基苯丙氨酸或O-炔丙基酪氨酸取代Phe、Tyr或Trp)以及希望引入多肽蛋白质中的特定接合化学。
所述方法进一步包含向蛋白质中并入非天然氨基酸,其中非天然氨基酸包括第一反应性基团;以及使蛋白质与包括第二反应性基团的分子(包含(但不限于)标记、染料、聚合物、水溶性聚合物、聚乙二醇的衍生物、光交联剂、细胞毒性化合物、药物、亲和性标记、光亲和性标记、反应性化合物、树脂、第二蛋白质或多肽或多肽类似物、抗体或抗体片段、金属螯合剂、辅因子、脂肪酸、碳水化合物、聚核苷酸、DNA、RNA、反义聚核苷酸、糖、水溶性树枝状聚合物、环糊精、抑制性核糖核酸、生物材料、纳米粒子、自旋标记、荧光团、含金属部分、放射性部分、新颖官能团、与其它分子共价或非共价相互作用的基团、光笼蔽部分、光化学辐射可激发部分、可光异构化部分、生物素、生物素衍生物、生物素类似物、合并有重原子的部分、可化学裂解的基团、可光裂解的基团、延长的侧链、碳键联糖、氧化还原活性剂、氨基硫代酸、毒性部分、经同位素标记的部分、生物物理探针、磷光基团、化学发光基团、电子致密基团、磁性基团、插入基团、发色团、能量转移剂、生物活性剂、可检测标记、小分子、量子点、纳米传递素以及上述各者的任何组合)接触。
在一些情况下,非天然氨基酸取代或并入将与多肽内的其它添加、取代或缺失组合以影响其它生物特性。在一些情况下,其它添加、取代或缺失可增加多肽的稳定性(包含(但不限于)对蛋白质水解降解具抗性)或增加多肽对其适当受体、配位体和/或结合蛋白质的亲和性。在一些情况下,其它添加、取代或缺失可增加多肽的溶解性(包含(但不限于)在表达于大肠杆菌或其它宿主细胞中时)。在一些情况下,为在大肠杆菌重组宿主细胞中表达后使多肽溶解性增加,除用于并入非天然氨基酸的另一位点之外,还选择用于经天然编码或非天然氨基酸取代的位点。在一些情况下,多肽包括另一添加、取代或缺失,其调节对缔合配位体、结合蛋白质和/或受体的亲和性、调节(包含(但不限于)增加或降低)受体二聚化、使受体二聚体稳定、调节循环半衰期、调节释放或生物可用性、利于纯化或改良或改变特定投药途径。类似地,多肽可包括改良多肽的检测(包含(但不限于)GFP)、纯化、通过组织或细胞膜转运、前药释放或活化、大小减小或其它特性的化学或酶裂解序列、蛋白酶裂解序列、反应性基团、抗体结合域(包含(但不限于)FLAG或poly-His)或其它以亲和性为基础的序列(包含(但不限于)FLAG、poly-His、GST等)或键联分子(包含(但不限于)生物素)。
IV.例示性生长激素超基因家族
本文中所述的方法、组合物、策略以及技术不限于多肽或蛋白质的特定类型、种类或家族。仅举例来说,多肽可与选自由以下各物组成的群组的治疗性蛋白质同源:α-1抗胰蛋白酶、血管生成抑制素、抗溶血因子、抗体、抗体片段、载脂蛋白、脱辅基蛋白、心房利钠因子、心房利钠多肽、心房肽、C-X-C趋化因子、T39765、NAP-2、ENA-78、gro-a、gro-b、gro-c、IP-10、GCP-2、NAP-4、SDF-1、PF4、MIG、降血钙素、c-kit配位体、细胞因子、CC趋化因子、单核细胞趋化蛋白-1、单核细胞趋化蛋白-2、单核细胞趋化蛋白-3、单核细胞炎性蛋白-1α、单核细胞炎性蛋白-iβ、RANTES、1309、R83915、R91733、HCC1、T58847、D31065、T64262、CD40、CD40配位体、c-kit配位体、胶原蛋白、集落刺激因子(CSF)、补体因子5a、补体抑制剂、补体受体1、细胞因子、上皮中性粒细胞活化肽-78、MIP-16、MCP-1、表皮生长因子(EGF)、上皮中性粒细胞活化肽、红细胞生成素(EPO)、表皮剥脱毒素、因子IX、因子VII、因子VIII、因子X、成纤维细胞生长因子(FGF)、纤维蛋白原、纤维连接蛋白、四螺旋束蛋白、G-CSF、glp-1、GM-CSF、葡糖脑苷脂酶、促性腺激素、生长因子、生长因子受体、grf、刺猬蛋白、血色素、肝细胞生长因子(hGF)、水蛭素、人类生长激素(hGH)、人类血清白蛋白、ICAM-1、ICAM-1受体、LFA-1、LFA-1受体、胰岛素、类胰岛素生长因子(IGF)、IGF-I、IGF-II、干扰素(IFN)、IFN-α、IFN-β、IFN-γ、白细胞介素(IL)、IL-1、IL-2、IL-3、IL-4、IL-5、IL-6、IL-7、IL-8、IL-9、IL-10、IL-11、IL-12、角质细胞生长因子(KGF)、乳铁传递蛋白、白血病抑制因子、荧光素酶、神经素、中性粒细胞抑制因子(NIF)、制瘤素M、成骨蛋白、癌基因产物、旁降钙素、甲状旁腺激素、PD-ECSF、PDGF、肽激素、多效素、蛋白A、蛋白G、pth、致热外毒素A、致热外毒素B、致热外毒素C、pyy、松弛素、肾素、SCF、小生物合成蛋白、可溶性补体受体I、可溶性I-CAM 1、可溶性白细胞介素受体、可溶性TNF受体、生长调节素、生长激素抑制素、生长激素、链激酶、超抗原、葡萄球菌肠毒素、SEA、SEB、SEC1、SEC2、SEC3、SED、SEE、类固醇激素受体、超氧化物歧化酶、中毒性休克综合症毒素、胸腺素α1、组织型纤溶酶原活化剂、肿瘤生长因子(TGF)、肿瘤坏死因子、肿瘤坏死因子α、肿瘤坏死因子β、肿瘤坏死因子受体(TNFR)、VLA-4蛋白、VCAM-1蛋白、血管内皮生长因子(VEGF)、尿激酶、mos、ras、raf、met、p53、tat、fos、myc、jun、myb、rel、雌激素受体、孕酮受体、睾丸激素受体、醛固酮受体、LDL受体以及皮质酮。
本文中抗体片段包含为存在于全长抗体内的较小组分的抗体和已经工程化的抗体。抗体片段包含(但不限于)Fv、Fc、Fab,以及(Fab')2、单链Fv(scFv)、双链抗体、三链抗体、四链抗体、双功能杂交抗体、CDR1、CDR2、CDR3、CDR的组合、可变区、构架区、恒定区以及其类似物(Maynard和Georgiou,2000,Annu.Rev.Biomed.Eng.2:339-76;Hudson,1998,Curr.Opin.Biotechnol.9:395-402)。另一功能亚结构为单链Fv(scFv),其包括由肽连接子共价连接的免疫球蛋白重链和轻链的可变区(S-z Hu等人,1996,Cancer Research,56,3055-3061)。所述小(Mr 25,000)蛋白质通常保持对单一多肽中的抗原的特异性和亲和性且可为较大的抗原特异性分子提供方便的构建组分。多肽也包含抗体重链、轻链、可变区、替代骨架非抗体分子以及双特异性抗体以及其它抗原结合多肽或其片段。
因此,仅出于说明性目的且仅以举例的方式且并不作为对本文中所述的方法、组合物、策略以及技术的范畴的限制提供对于生长激素超基因家族的以下描述。此外,在本申请案中提及GH多肽意欲使用一般术语作为GH超基因家族的任何成员的实例。因此,应了解在本文中提及GH多肽或蛋白质时所述的修饰和化学可同样适用于GH超基因家族的任何成员(包含在本文中特定列出或以引用的方式并入的那些成员)。
以下蛋白质包含由生长激素(GH)超基因家族的基因编码的那些蛋白质(Bazan,F.,Immunology Today 11:350-354(1990);Bazan,J.F.Science 257:410-413(1992);Mott,H.R.和Campbell,I.D.,Current Opinion in Structural Biology 5:114-121(1995);Silvennoinen,O.和Ihle,J.N.,SIGNALLING BY THE HEMATOPOIETIC CYTOKINERECEPTORS(1996)):生长激素、泌乳激素、胎盘催乳素、促红细胞生成素(EPO)、血小板生成素(TPO)、白细胞介素-2(IL-2)、IL-3、IL-4、IL-5、IL-6、IL-7、IL-9、IL-10、IL-11、IL-12(p35亚单位)、IL-13、IL-15、制瘤素M、睫状神经营养因子、白血病抑制因子、α干扰素、β干扰素、γ干扰素、ω干扰素、τ干扰素、粒细胞-集落刺激因子(G-CSF)、粒细胞-巨噬细胞集落刺激因子(GM-CSF)、巨噬细胞集落刺激因子(M-CSF)和心脏营养素-1(CT-1)(“GH超基因家族”)。预期在未来会通过基因克隆和测序来鉴别出这一基因家族的其它成员。GH超基因家族的成员具有类似的二级和三级结构,但其通常具有有限的氨基酸或DNA序列一致性。共有的结构特征使得基因家族的新成员易于鉴别且在本文中所描述且以引用的方式并入的非天然氨基酸方法和组合物类似地适用。
包含G-CSF(Zink等人,FEBS Lett.314:435(1992);Zink等人,Biochemistry 33:8453(1994);Hill等人,Proc.Natl.Acad.Sci.USA 90:5167(1993))、GM-CSF(Diederichs,K.等人,Science 154:1779-1782(1991);Walter等人,J.Mol.Biol,224:1075-1085(1992))、IL-2(Bazan,J.F.和McKay,D.B.Science 257:410-413(1992))、IL-4(Redfield等人,Biochemistry 30:11029-11035(1991);Powers等人,Science 256:1673-1677(1992))以及IL-5(Milburn等人,Nature 363:172-176(1993))的众多细胞因子的结构已由X射线衍射和NMR研究测定且展示具有GH结构的惊人保守性,但缺乏显着的一级序列同源性。根据建模和其它研究,认为IFN为这一家族的成员(Lee等人,J.Interferon Cytokine Res.15:341(1995);Murgolo等人,Proteins 17:62(1993);Radhakrishnan等人,Structure 4:1453(1996);Klaus等人,J.Mol.Biol.274:661(1997))。根据建模和突变诱发研究,认为EPO为这一家族的成员(Boissel等人,J.Biol.Chem.268:15983-15993(1993);Wen等人,J.Biol.Chem.269:22839-22846(1994))。包含睫状神经营养因子(CNTF)、白血病抑制因子(LIF)、血小板生成素(TPO)、制瘤素M、巨噬细胞集落刺激因子(M-CSF)、IL-3、IL-6、IL-7、IL-9、IL-12、IL-13、IL-15以及粒细胞-集落刺激因子(G-CSF)和IFN(诸如α、β、ω、τ、ε及γ干扰素)的大量其它细胞因子和生长因子属于这一家族(回顾于Mott和Campbell,CurrentOpinion in Structural Biology 5:114-121(1995);Silvennoinen和Ihle(1996)SIGNALLING BY THE HEMATOPOIETIC CYTOKINE RECEPTORS中)。如今认为所有上述细胞因子和生长因子构成一个大的基因家族。
除共有类似的二级和三级结构之外,这一家族的成员共有以下性质:其须使细胞表面受体寡聚以活化细胞内信号转导路径。一些GH家族成员(包含(但不限于)GH和EPO)与单一类型的受体结合且使其形成同二聚体。其它家族成员(包含(但不限于)IL-2、IL-4和IL-6)与超过一种类型的受体结合且使所述受体形成异二聚体或更高级聚集体(Davis等人,(1993),Science 260:1805-1808;Paonessa等人,(1995),EMBO J.14:1942-1951;Mott和Campbell,Current Opinion in Structural Biology 5:114-121(1995))。突变诱发研究已证明,如同GH一样,所述其它细胞因子和生长因子含有多个受体结合位点(通常两个)且依次与其同源受体结合(Mott和Campbell,Current Opinion in Structural Biology5:114-121(1995);Matthews等人,(1996)Proc.Natl.Acad.Sci.USA 93:9471-9476)。如同GH一样,所述其它家族成员的主要受体结合位点主要存在于四个α螺旋和A-B环中。不同家族成员中参与受体结合的螺旋束中的特定氨基酸不同。与GH超基因家族成员相互作用的大多数细胞表面受体在结构上相关且构成第二个大的多基因家族。例如参看美国专利第6,608,183号,其是以引用的方式并入本文中。
从GH超基因家族的各个成员的突变研究得到的一般结论为连接α螺旋的环通常倾向于不参与受体结合。具体来说,对于大多数(如果不是全部)家族成员中的受体结合来说,短B-C环似乎是非必需的。出于这一原因,在GH超基因家族成员中,B-C环可经如本文中所述的非天然氨基酸取代。A-B环、C-D环(以及干扰素/GH超家族的类IL-10成员的D-E环)也可经非天然氨基酸取代。最接近螺旋A且远离最后一个螺旋的氨基酸也倾向于不参与受体结合中且也可为用于引入非天然氨基酸的位点。在一些实施例中,非天然氨基酸在环结构内的任何位置(包含(但不限于)A-B、B-C、C-D或D-E环的前1、2、3、4、5、6、7或7个以上氨基酸)处取代。在一些实施例中,一个或一个以上非天然氨基酸在A-B、B-C、C-D或D-E环的后1、2、3、4、5、6、7或7个以上氨基酸内取代。
GH家族的某些成员(包含(但不限于)EPO、IL-2、IL-3、IL-4、IL-6、IFN、GM-CSF、TPO、IL-10、IL-12p35、IL-13、IL-15和β干扰素)含有N键联和/或O键联的糖。蛋白质中的糖基化位点几乎仅存在于环区域中且不存在于α螺旋束中。因为环区域通常不参与受体结合中且因为其为用于共价连接糖基团的位点,所以其可为将非天然氨基酸取代引入蛋白质中的适用位点。在蛋白质中包括N键联和O键联糖基化位点的氨基酸可为非天然氨基酸取代的位点,因为所述氨基酸为表面暴露的。因此,天然蛋白质可容许在所述位点处与蛋白质连接的庞大糖基且糖基化位点倾向于远离受体结合位点。
未来可能发现GH基因家族的其它成员。可通过对所预测蛋白质序列的计算机辅助二级和三级结构分析来鉴别GH超基因家族的新成员。GH超基因家族的成员通常具有4个或5个由非螺旋氨基酸连接的两性螺旋(环区域)。蛋白质可在其N末端含有疏水性信号序列以促进自细胞分泌。所述后来发现的GH超基因家族成员也包含于本文所述的方法和组合物内。标题为"Modified Four Helical Bundle Polypeptides and Their Uses"的国际专利申请案(WO 05/07465,2005年8月18日)(其是以引用的方式全部并入本文中)提供位点选择和将非天然氨基酸并入多肽中的方法。
V.非天然氨基酸
多种非天然氨基酸适用于本文中所述的方法和组合物中,只要非天然氨基酸具有以下四种性质中的至少一种:(1)非天然氨基酸的侧链上的至少一个官能团具有至少一种与20种常见遗传编码氨基酸(即,丙氨酸、精氨酸、天冬酰胺、天冬氨酸、半胱氨酸、谷氨酰胺、谷氨酸、甘氨酸、组氨酸、异亮氨酸、亮氨酸、赖氨酸、甲硫氨酸、苯丙氨酸、脯氨酸、丝氨酸、苏氨酸、色氨酸、酪氨酸和缬氨酸)的化学反应性正交、或至少与包含非天然氨基酸的多肽中存在的天然存在氨基酸的化学反应性正交的特征和/或活性和/或反应性;(2)所引入的非天然氨基酸对20种常见遗传编码氨基酸实质上呈化学惰性;(3)非天然氨基酸可稳定地并入多肽中;所述稳定性可与天然存在氨基酸或典型生理条件下相当,且所述并入可经由活体内系统发生;以及(4)非天然氨基酸包含肟官能团或可通过与试剂反应转变为肟基的官能团,且可在不破坏包含非天然氨基酸的多肽的生物性质的条件下反应(当然除非所述生物性质的破坏是出于修饰/转变的目的),或优选其中转变可在介于约4与约10之间的pH值或介于约4与约8之间的pH值下在水性条件下发生,且非天然氨基酸上的反应性位点可为亲电子位点。可用于美国专利申请案第60/638,418号、第60/638,527号、第60/639,195号、第60/696,210号、第60/696,302号以及第60/696,068号(其是以引用的方式全部并入本文中)中进一步描述的组合物和方法的满足非天然氨基酸的所述四种性质的氨基酸的说明性非限定性实例。可将任意数目的非天然氨基酸引入到多肽中。非天然氨基酸也可包含经保护或掩蔽的肟或可在将受保护基团去保护或将受掩蔽基团去掩蔽之后转变为肟基的经保护或掩蔽基团。
可适用于本文中所述的方法和组合物中的所关注非天然氨基酸包含(但不限于)包括可光活化交联剂的氨基酸、经自旋标记的氨基酸、荧光氨基酸、金属结合氨基酸、含金属氨基酸、放射性氨基酸、具有新颖官能团的氨基酸、与其它分子共价或非共价相互作用的氨基酸、光笼蔽和/或可光异构化氨基酸、包括生物素或生物素类似物的氨基酸、经糖基化氨基酸(诸如糖取代丝氨酸)、其它经碳水化合物修饰的氨基酸、含酮氨基酸、包括聚乙二醇或聚醚的氨基酸、经重原子取代的氨基酸、可化学裂解和/或可光裂解的氨基酸、具有与天然氨基酸相比延长的侧链的氨基酸(包含(但不限于)聚醚或长链烃,包含(但不限于)大于约5个碳或大于约10个碳)、碳键联含糖氨基酸、氧化还原活性氨基酸、含氨基硫代酸的氨基酸,以及包括一个或一个以上毒性部分的氨基酸。
在一些实施例中,非天然氨基酸包括糖部分。所述氨基酸的实例包含N-乙酰基-L-葡糖胺基-L-丝氨酸、N-乙酰基-L-半乳糖胺基-L-丝氨酸、N-乙酰基-L-葡糖胺基-L-苏氨酸、N-乙酰基-L-葡糖胺基-L-天冬酰胺以及O-甘露糖胺基-L-丝氨酸。所述氨基酸的实例也包含氨基酸与糖之间的天然存在N-键联或O-键联由自然界中不常见的共价键(包含(但不限于)烯烃、肟、硫醚、酰胺以及其类似物)代替的实例。所述氨基酸的实例也包含天然存在蛋白质中不常见的糖类,诸如2-脱氧-葡萄糖、2-脱氧半乳糖以及其类似物。
经由非天然氨基酸可并入蛋白质中的化学部分提供多种优点和对蛋白质的操纵。举例来说,羰基官能团(包含酮基官能团)的独特反应性允许在活体外和活体内用众多含肼或含羟胺试剂中的任一种对蛋白质加以选择性修饰。重原子非天然氨基酸(例如)可适用于对X射线结构数据进行定相。使用非天然氨基酸进行重原子的位点特异性引入也在选择重原子的位置时提供选择性和灵活性。光反应性非天然氨基酸(包含(但不限于)具有二苯甲酮和芳基叠氮化物(包含(但不限于)叠氮基苯)侧链的氨基酸)(例如)允许蛋白质的有效活体内和活体外光交联。光反应性非天然氨基酸的实例包含(但不限于)对叠氮基-苯丙氨酸和对苯甲酰基-苯丙氨酸。随后可通过激发提供光反应性基团的时间控制使具有光反应性非天然氨基酸的蛋白质随意交联。在一实例中,非天然氨基的甲基可通过使用(包含(但不限于))核磁共振和振动光谱经作为局部结构和动力学的探针的同位素标记(包含(但不限于))甲基取代。
许多非天然编码氨基酸可购自(例如)Sigma-Aldrich(St.Louis,MO,USA)、Novabiochem(EMD Biosciences,Darmstadt,Germany的分公司)或Peptech(Burlington,MA,USA)。不可购得的那些非天然编码氨基酸视情况合成。关于有机合成技术,例如参看Fessendon和Fessendon的Organic Chemistry(1982,第2版,Willard Grant Press,BostonMass.);March的Advanced Organic Chemistry(第3版,1985,Wiley and Sons,New York);以及Carey和Sundberg的Advanced Organic Chemistry(第3版,A及B部分,1990,PlenumPress,New York)。许多非天然氨基酸是以诸如酪氨酸、谷氨酰胺、苯丙氨酸以及其类似物的天然氨基酸为基础。
A.非天然氨基酸的细胞吸收
真核细胞对非天然氨基酸的吸收为设计且选择(包含(但不限于))以供并入蛋白质中的非天然氨基酸时通常考虑的一个问题。举例来说,α-氨基酸的高电荷密度表明所述化合物不太可能可通过细胞。通过以蛋白质为基础的输送系统的集合将天然氨基酸吸收入真核细胞中。可进行评估哪种非天然氨基酸(如果存在)是由细胞吸收的快速筛检。例如参看标题为"Protein Arrays"的美国专利公开案第US 2004/0198637号(其是以引用的方式并入本文中);以及Liu,D.R.和Schultz,P.G.(1999)Progress toward the evolution ofan organism with an expanded genetic code.PNAS United States 96:4780-4785中的毒性检定。尽管通过各种检定可容易地分析吸收,但设计适于细胞吸收路径的非天然氨基酸的替代方案为提供在活体内产生氨基酸的生物合成路径。
B.非天然氨基酸的生物合成
许多生物合成路径已存在于细胞中以用于产生氨基酸和其它化合物。尽管用于特定非天然氨基酸的生物合成方法在自然界中(包含(但不限于)在真核细胞中)可能不存在,但本文中所述的方法和组合物包含所述方法。举例来说,非天然氨基酸的生物合成路径是通过添加新的酶或改变现有宿主细胞路径视情况在宿主细胞中产生。其它新酶视情况为天然存在的酶或人工演化的酶。举例来说,对氨基苯丙氨酸的生物合成(如在标题为"In vivoincorporation of unnatural amino acids"的WO 2002/085923中的实例中所呈现)依赖于添加来自其它有机体的已知酶的组合。所述酶的基因可通过用包括所述基因的质粒转化细胞而引入真核细胞中。当在细胞中表达时,所述基因提供合成所需化合物的酶促路径。视情况添加的酶的类型的实例提供于下文实例中。其它酶序列见于(例如)Genbank中。人工演化的酶也视情况以相同方式添加到细胞中。以此方式操纵细胞的细胞机构和资源以产生非天然氨基酸。
多种方法可用于产生用于生物合成路径中或用于演化现有路径的新颖酶。举例来说,如由(包含(但不限于))Maxygen,Inc.开发的递归重组(可通过万维网在www.maxygen.com上获得)视情况用于开发新颖酶和路径。例如参看Stemmer(1994),Rapidevolution of a protein in vitro by DNA shuffling,Nature 370(4):389-391;以及Stemmer,(1994),DNA shuffling by random fragmentation and reassembly:In vitrorecombination for molecular evolution,Proc.Natl.Acad.Sci.USA.,91:10747-10751。类似地,由Genencor开发的DesignPathTM(可通过万维网在genencor.com上获得)视情况用于代谢路径工程化,其包含(但不限于)工程化细胞中产生O-甲基-L-酪氨酸的路径。此技术使用(包含(但不限于))经由功能基因组学以及分子演化和设计鉴别的新基因的组合在宿主有机体中重建现有路径。Diversa Corporation(可通过万维网在diversa.com上获得)也提供用于快速筛检基因文库和基因路径的技术(包含(但不限于))以产生新路径。
通常,利用工程化生物合成路径产生的非天然氨基酸是以足以进行有效蛋白质生物合成(包含(但不限于)天然细胞量),但未达到影响其它氨基酸的浓度或耗尽细胞资源的程度的浓度产生。以此方式在活体内产生的典型浓度为约10mM至约0.05mM。一旦细胞用包括用于产生特定路径所需的酶的基因的质粒转化且产生非天然氨基酸,那么视情况使用活体内选择以进一步优化用于核糖体蛋白质合成与细胞生长的非天然氨基酸的产生。
VI.具有非天然氨基酸的多肽
美国专利申请案第60/638,418号、第60/638,527号、第60/639,195号、第60/696,210号、第60/696,302号以及第60/696,068号;美国专利申请公开案2003/0082575(第10/126,927号)和2003/0108885(第10/126,931号);标题为"Site Specific Incorporationof Keto Amino Acids into Proteins"的WO 04/035743和标题为"Expanding theEukaryotic Genetic Code"的PCT公开案第WO 04/094593号(其是以引用的方式全部并入本文中)中进一步描述的组合物和方法提供将至少一个非天然氨基酸并入多肽中。非天然氨基酸可存在于多肽的任何位置,包含多肽的任何末端位置或任何内部位置。本文中所述的非天然氨基酸多肽可以生物合成或非生物合成方式产生。生物合成意谓利用翻译系统(细胞或非细胞)的任何方法,包含使用以下组分中的至少一种:聚核苷酸、密码子、tRNA以及核糖体。非生物合成意谓不利用翻译系统的任何方法:这种方法可进一步分成利用固态肽合成方法的方法、固相肽合成方法、利用至少一种酶的方法以及不利用至少一种酶的方法;当然任何所述亚类可重叠且许多方法可利用所述亚类的组合。
本文中所述的方法、组合物、策略以及技术不限于多肽或蛋白质的特定类型、种类或家族。实际上,几乎任何多肽可包含(但不限于)美国专利申请案第60/638,418号、第60/638,527号、第60/639,195号、第60/696,210号、第60/696,302号以及第60/696,068号;美国专利申请公开案2003/0082575(第10/126,927号)和2003/0108885(第10/126,931号);标题为"Site Specific Incorporation of Keto Amino Acids into Proteins"的WO 04/035743、标题为"Expanding the Eukaryotic Genetic Code"的PCT公开案第WO 04/094593号以及标题为"Modified Four Helical Bundle Polypeptides and Their Uses"的PCT公开案第WO 05/074650号(其是以引用的方式全部并入本文中)中进一步描述的至少一种非天然氨基酸。所述非天然氨基酸多肽可如美国专利申请案第60/638,418号、第60/638,527号、第60/639,195号、第60/696,210号、第60/696,302号以及第60/696,068号;美国专利申请公开案2003/0082575(第10/126,927号)和2003/0108885(第10/126,931号);标题为“Site Specific Incorporation of Keto Amino Acids into Proteins”的WO 04/035743、标题为“Expanding the Eukaryotic Genetic Code”的PCT公开案第WO 04/094593号以及标题为"Modified Four Helical Bundle Polypeptides and Their Uses"的PCT公开案第WO 05/074650号(其是以引用的方式全部并入本文中)中所述进一步修饰或所述非天然氨基酸多肽可不经进一步修饰即使用。一方面,组合物包含至少一种具有至少一个(包含(但不限于)至少两个、至少三个、至少四个、至少五个、至少六个、至少七个、至少八个、至少九个或至少十个或十个以上)非天然氨基酸的蛋白质。多肽可包括一个或一个以上天然氨基酸取代。
虽然美国专利申请案第60/638,418号、第60/638,527号、第60/639,195号、第60/696,210号、第60/696,302号以及第60/696,068号(其是以引用的方式全部并入本文中)中进一步描述的非天然氨基酸多肽的实施例可通过固相肽合成方法(例如,在固体树脂上)、液相肽合成方法和/或无需酶辅助化学合成,但本文所述的非天然氨基酸多肽的其它实施例允许通过细胞膜、细胞提取物或溶胞物系统或通过活体内系统(即,使用原核或真核细胞的细胞机构)合成。
VII.包括核酸和寡核苷酸的组合物和方法
A.所用通用重组核酸方法
美国专利申请案第60/638,418号、第60/638,527号、第60/639,195号、第60/696,210号、第60/696,302号以及第60/696,068号;和标题为"Modified Four Helical BundlePolypeptides and Their Uses"的PCT公开案WO 05/074650(其是以引用的方式全部并入本文中)讨论编码所关注的多肽(例如包括GH多肽)的核酸以及可如何使用重组方法将其加以分离、克隆且通常改造。所述实施例用于(包含(但不限于))蛋白质表达或在产生来源于多肽的变体、衍生物、表达序列盒或其它序列的期间使用。在一些实施例中,编码多肽的序列与异源启动子可操作性连接。
可以母体多肽的氨基酸序列为基础来合成编码包括非天然编码氨基酸的多肽的核苷酸序列,且随后改变核苷酸序列以实现相关氨基酸残基的引入(即,并入或取代)或移除(即,缺失或取代)。可根据常规方法通过定点突变诱发来方便地修饰核苷酸序列。或者,核苷酸序列可由化学合成(包含(但不限于)通过使用寡核苷酸合成器,其中寡核苷酸是根据所需多肽的氨基酸序列来设计)来制备,且优先选择在将产生重组多肽的宿主细胞中偏好的那些密码子。举例来说,可通过PCR、连接或连接链式反应来合成且组装编码所需多肽的部分的若干小寡核苷酸。例如参看Barany等人,Proc.Natl.Acad.Sci.88:189-193(1991);U.S.6,521,427,其是以引用的方式并入本文中。
B.选择密码子
美国专利申请案第60/638,418号、第60/638,527号、第60/639,195号、第60/696,210号、第60/696,302号以及第60/696,068号;和标题为“Modified Four Helical BundlePolypeptides and Their Uses”的PCT公开案WO 05/074650(其是以引用的方式全部并入本文中)中进一步描述的方法和组合物内所涵盖的选择密码子扩展蛋白质生物合成机构的遗传密码子框架。举例来说,选择密码子包含(但不限于)独特三碱基密码子、无义密码子(诸如终止密码子,包含(但不限于)琥珀密码子(UAG)或蛋白石密码子(UGA)、赭石密码子)、非天然密码子、四个或四个以上碱基的密码子、稀有密码子或其类似密码子。可引入所需基因中的选择密码子的数目范围很广,其包含(但不限于)在编码所关注多肽的至少一部分的单一聚核苷酸中存在一个或一个以上、两个或两个以上、三个或三个以上、4个、5个、6个、7个、8个、9个、10个或10个以上。
在一些情况下,所述方法涉及使用作为用于在活体内并入一个或一个以上非天然氨基酸的终止密码子的选择密码子。可在真核宿主细胞无显着扰动的情况下在活体内进行非天然氨基酸的并入。选择密码子也包括延长密码子,包含(但不限于)四个或四个以上碱基的密码子,诸如,四个、五个、六个或六个以上碱基的密码子。对于给定系统来说,选择密码子也可包含天然三碱基密码子中的一种,其中内源系统不使用(或很少使用)所述天然碱基密码子。选择密码子视情况包含非天然碱基对。所述非天然碱基对进一步扩展现有遗传代码。对于活体内使用来说,非天然核苷可通过膜且经磷酸化以形成相应三磷酸酯。另外,增加的遗传信息是稳定的且不被细胞酶破坏。翻译旁路系统(translational bypassingsystem)也可用于将非天然氨基酸并入所需多肽中。在某些实施例中,所关注蛋白质或多肽(或其部分)是由核酸编码。通常,核酸包括至少一个选择密码子、至少两个选择密码子、至少三个选择密码子、至少四个选择密码子、至少五个选择密码子、至少六个选择密码子、至少七个选择密码子、至少八个选择密码子、至少九个选择密码子、十个或十个以上选择密码子。
VIII.包括非天然氨基酸的多肽的活体内产生
可使用经修饰tRNA和tRNA合成酶在活体内产生多肽以加成到在天然存在系统中未编码的氨基酸上或将其取代。用于在活体内产生包括非天然氨基酸的多肽的所有产生方法、筛检方法和有机体进一步描述于美国专利申请案第60/638,418号、第60/638,527号、第60/639,195号、第60/696,210号、第60/696,302号以及第60/696,068号;美国专利申请公开案2003/0082575(第10/126,927号)和2003/0108885(第10/126,931号);标题为“Expandingthe Eukaryotic Genetic Code”的PCT公开案第WO 04/094593号和标题为“Modified FourHelical Bundle Polypeptides and Their Uses”的PCT公开案第WO 05/074650号(其是以引用的方式全部并入本文中)中。
产生使用在天然存在系统中未编码的氨基酸的tRNA和tRNA合成酶的方法描述于(例如)美国专利申请公开案2003/0082575(第10/126,927号)和2003/0108885(第10/126,931号)(其是以引用的方式全部并入本文中)中。所述方法涉及产生独立于翻译系统(且因此有时被称作“正交”)的内源性合成酶和tRNA起作用的翻译机构。在其它或另外实施例中,翻译系统包括正交tRNA(O-tRNA)和正交氨酰基tRNA合成酶(O-RS)。在所属技术领域中已描述用于将特定合成氨基酸插入多肽中的多种正交tRNA和氨酰基tRNA合成酶,且其通常适用于产生非天然氨基酸多肽的方法中。
使用O-tRNA/氨酰基-tRNA合成酶涉及选择编码非天然氨基酸的特定密码子。尽管可使用任何密码子,但通常希望选择在O-tRNA/氨酰基-tRNA合成酶表达于其中的细胞中很少或从未使用的密码子。可使用所属技术领域中已知的突变诱发方法(包含(但不限于)位点特异性突变诱发、序列盒式突变诱发、限制选择突变诱发等)将特定选择密码子引入聚核苷酸编码序列中的适当位置中。
A.在非真核细胞和真核细胞中的表达
为获得所克隆聚核苷酸的高水平表达,通常将编码所需多肽的聚核苷酸亚克隆至含有指导转录的强启动子、转录/翻译终止子以及(对于编码蛋白质的核酸来说)用于翻译启始的核糖体结合位点的表达载体中。所属领域中熟知合适的细菌启动子且其描述于(例如)Sambrook等人和Ausubel等人中。可使用进一步描述于美国专利申请案第60/638,418号、第60/638,527号、第60/639,195号、第60/696,210号、第60/696,302号以及第60/696,068号;美国专利申请公开案2003/0082575(第10/126,927号)和2003/0108885(第10/126,931号);标题为"Expanding the Eukaryotic Genetic Code"的PCT公开案第WO 04/094593号和标题为"Modified Four Helical Bundle Polypeptides and Their Uses"的PCT公开案第WO 05/074650号(其是以引用的方式全部并入本文中)中的细菌表达系统和真核宿主细胞或非真核宿主细胞系统来以较大适用量生物合成包括非天然氨基酸的蛋白质。
1.表达系统、培养以及分离
所需多肽可表达于任何数目的合适表达系统(包含(例如)酵母、昆虫细胞、哺乳动物细胞、假单胞菌细胞以及细菌)中。例示性表达系统的描述进一步描述于美国专利申请案第60/638,418号、第60/638,527号、第60/639,195号、第60/696,210号、第60/696,302号以及第60/696,068号;美国专利申请公开案2003/0082575(第10/126,927号)和2003/0108885(第10/126,931号);标题为"Expanding the Eukaryotic Genetic Code"的PCT公开案第WO04/094593号和标题为"Modified Four Helical Bundle Polypeptides and Their Uses"的PCT公开案第WO 05/074650号(其是以引用的方式全部并入本文中)中。
2.非天然氨基酸多肽的纯化
通用纯化方法可对包括所需多肽的细胞溶胞物、提取物、培养基、包涵体、宿主细胞的周质空间、宿主细胞的细胞质或其它材料或由任何分离步骤得到的混合物执行多种分离步骤中的任一种,所述任何分离步骤包含(但不限于)亲和力色谱、离子交换色谱、疏水相互作用色谱、凝胶过滤色谱、高效液相色谱(“HPLC”)、反相-HPLC(“RP-HPLC”)、膨胀床吸附或其任何组合和/或重复且以任何适当顺序执行。通用纯化方法、设备、优选实施例以及其它纯化技术进一步描述于美国专利申请案第60/638,418号、第60/638,527号、第60/639,195号、第60/696,210号、第60/696,302号以及第60/696,068号;标题为"Modified FourHelical Bundle Polypeptides and Their Uses"的WO 05/074650(其是以引用的方式全部并入本文中)中。
B.活体内翻译后修饰
通过在真核细胞中产生具有至少一个非天然氨基酸的所关注的蛋白质或多肽,蛋白质或多肽包含真核翻译后修饰。在某些实施例中,蛋白质包含至少一个非天然氨基酸和至少一个由真核细胞在活体内产生的翻译后修饰,其中翻译后修饰不是由原核细胞产生。举例来说,翻译后修饰进一步描述于美国专利申请案第60/638,418号、第60/638,527号、第60/639,195号、第60/696,210号、第60/696,302号以及第60/696,068号;和标题为"Modified Four Helical Bundle Polypeptides and Their Uses"的WO 05/074650(其是以引用的方式全部并入本文中)中。
非天然氨基酸的一个优点在于其存在可用于添加其它分子的其它化学部分。所述修饰可在真核或非真核细胞中活体内产生或在活体外产生。因此,在某些实施例中,翻译后修饰是通过非天然氨基酸进行。
IX.在替代系统中的表达
已使用若干种策略以在非重组宿主细胞、突变宿主细胞或无细胞系统中将非天然氨基酸引入蛋白质中。所述系统也适用于制造非天然氨基酸多肽。氨基酸经诸如Lys、Cys和Tyr的反应性侧链衍生化使得赖氨酸转化为N2-乙酰基-赖氨酸。化学合成也提供并入非天然氨基酸的直接方法。通过肽片段的酶促连接和天然化学连接的新近发展,有可能制造较大蛋白质。例如参看P.E.Dawson和S.B.H.Kent,Annu.Rev.Biochem,69:923(2000)。化学肽连接和天然化学连接描述于美国专利第6,184,344号、美国专利公开案第2004/0138412号、美国专利公开案第2003/0208046号、WO 02/098902以及WO 03/042235中,其是以引用的方式并入本文中。已使用能够支持蛋白质生物合成的将经所需非天然氨基酸以化学方式酰化的抑制tRNA添加到活体外提取物中的通用活体外生物合成方法将100个以上非天然氨基酸位点特异性地并入几乎任何大小的多种蛋白质中。例如参看V.W.Cornish,D.Mendel以及P.G.Schultz,Angew.Chem.Int.Ed.Engl.1995,34:621(1995);C.J.Noren,S.J.Anthony-Cahill,M.C.Griffith,P.G.Schultz,A general method for site-specificincorporation of unnatural amino acids into proteins,Science 244:182-188(1989);以及J.D.Bain,C.G.Glabe,T.A.Dix,A.R.Chamberlin,E.S.Diala,Biosyntheticsite-specific incorporation of a unnatural amino acid into a polypeptide,J.Am.Chem.Soc.111:8013-8014(1989)。已将多种官能团引入用于研究蛋白质稳定性、蛋白质折叠、酶机制以及信号转导的蛋白质中。
已开发被称作选择性压力并入的活体内方法以使用野生型合成酶的杂乱性。例如参看N.Budisa,C.Minks,S.Alefelder,W.Wenger,F.M.Dong,L.Moroder以及R.Huber,FASEBJ.,13:41(1999)。使向细胞供应特定天然氨基酸的相关代谢路径已关闭的营养缺陷型菌株生长于含有有限浓度的天然氨基酸的基本培养基中,而标靶基因的转录受到抑制。在稳定生长期开始时,天然氨基酸耗尽且由非天然氨基酸类似物代替。重组蛋白质表达的诱导使得含有非天然类似物的蛋白质累积。举例来说,使用这种策略将邻氟苯丙氨酸、间氟苯丙氨酸以及对氟苯丙氨酸并入蛋白质中,且其在紫外光谱中显示两个可容易地鉴别的特征性肩,例如参看C.Minks,R.Huber,L.Moroder以及N.Budisa,Anal.Biochem.,284:29(2000);三氟甲硫氨酸已用于代替噬菌体T4溶菌酶中的甲硫氨酸以通过19F NMR研究其与壳寡糖配位体的相互作用,例如参看H.Duewel,E.Daub,V.Robinson以及J.F.Honek,Biochemistry,36:3404(1997);且三氟亮氨酸已代替亮氨酸并入,使得亮氨酸拉链蛋白质的热和化学稳定性增加。例如参看Y.Tang,G.Ghirlanda,W.A.Petka,T.Nakajima,W.F.DeGrado以及D.A.Tirrell,Angew.Chem.Int.Ed.Engl.,40:1494(2001)。此外,已将硒代甲硫氨酸和碲代甲硫氨酸并入各种重组蛋白质中以促进X射线结晶学中相的解析。例如参看W.A.Hendrickson,J.R.Horton以及D.M.Lemaster,EMBO J.,9:1665(1990);J.O.Boles,K.Lewinski,M.Kunkle,J.D.Odom,B.Dunlap,L.Lebioda以及M.Hatada,Nat.Struct.Biol.,1:283(1994);N.Budisa,B.Steipe,P.Demange,C.Eckerskorn,J.Kellermann以及R.Huber,Eur.J.Biochem.,230:788(1995);以及N.Budisa,W.Karnbrock,S.Steinbacher,A.Humm,L.Prade,T.Neuefeind,L.Moroder以及R.Huber,J.Mol.Biol.,270:616(1997)。具有烯或炔官能团的甲硫氨酸类似物也已有效并入,其允许通过化学方式对蛋白质进行其它修饰。例如参看J.C.M.vanHest和D.A.Tirrell,FEBS Lett.,428:68(1998);J.C.M.van Hest,K.L.Kiick和D.A.Tirrell,J.Am.Chem.Soc.122:1282(2000);以及K.L.Kiick和D.A.Tirrell,Tetrahedron,56:9487(2000);美国专利第6,586,207号;美国专利公开案第2002/0042097号,其是以引用的方式并入本文中。
这种方法的成功取决于氨酰基-tRNA合成酶对非天然氨基酸类似物的识别,所述合成酶通常需要高选择性以确保蛋白质翻译的保真度。扩展这种方法的范畴的一种方式在于放宽氨酰基-tRNA合成酶的底物特异性,此已在有限数目的情况下达成。举例来说,在大肠杆菌苯丙氨酰基-tRNA合成酶(PheRS)中由Gly置换Ala294可增加底物结合位点的大小,且导致对-Cl-苯丙氨酸(p-Cl-Phe)对tRNAPhe的酰化。参看,M.Ibba,P.Kast和H.Hennecke,Biochemistry,33:7107(1994)。含有这种突变型PheRS的大肠杆菌菌株允许对-Cl-苯丙氨酸或对-Br-苯丙氨酸代替苯丙氨酸并入。例如参看M.Ibba和H.Hennecke,FEBS Lett.,364:272(1995);以及N.Sharma,R.Furter,P.Kast以及D.A.Tirrell,FEBS Lett.,467:37(2000)。类似地,证明大肠杆菌酪氨酰基-tRNA合成酶的氨基酸结合位点附近的点突变Phe130Ser允许重氮酪氨酸比酪氨酸更有效地并入。参看F.Hamano-Takaku,T.Iwama,S.Saito-Yano,K.Takaku,Y.Monden,M.Kitabatake,D.Soil以及S.Nishimura,J.Biol.Chem.,275:40324(2000)。
在活体内将非天然氨基酸并入蛋白质中的另一种策略为修饰具有校对机制的合成酶。所述合成酶不能区分在结构上与同源天然氨基酸类似的氨基酸且因此将其活化。此错误在单独位点上得到修正,使来自tRNA的错装配氨基酸去酰基化以保持蛋白质翻译的保真度。如果合成酶失去校对活性,那么错活化的结构类似物可避开编辑功能且被并入。目前已用缬氨酰基-tRNA合成酶(ValRS)证实这种方法。参看V.Doring,H.D.Mootz,L.A.Nangle,T.L.Hendrickson,V.de Crecy-Lagard,P.Schimmel以及P.Marliere,Science,292:501(2001)。ValRS可以Cys、Thr或氨基丁酸(Abu)错氨酰基化tRNAVal;随后通过编辑域来水解所述非同源氨基酸。在大肠杆菌染色体的随机突变诱发之后,选择在ValRS的编辑位点中具有突变的突变型大肠杆菌菌株。这种编辑缺陷型ValRS错误地用Cys装配tRNAVal。因为Abu与Cys在空间上类似(Cys的-SH基团由Abu中的-CH3代替),所以当这种突变型大肠杆菌菌株在Abu存在的情况下生长时,突变型ValRS也将Abu并入蛋白质中。质谱分析证明在天然蛋白质中的各缬氨酸位置处约24%的缬氨酸由Abu代替。
固相合成和半合成方法也已允许合成含有新颖氨基酸的多种蛋白质。举例来说,参看以下公开案和其中引用的参考文献,其为如下:Crick,F.H.C.,Barrett,L.Brenner,S.Watts-Tobin,R.General nature of the genetic code for proteins.Nature,192:1227-1232(1961);Hofmann,K.,Bohn,H.Studies on polypeptides.XXXVI,The effect ofpyrazole-imidazole replacements on the S-protein activating potency of an S-peptide fragment,J.Am Chem,88(24):5914-5919(1966);Kaiser,E.T.Syntheticapproaches to biologically active peptides and proteins including enyzmes,Ace Chem Res,22:47-54(1989);Nakatsuka,T.,Sasaki,T.,Kaiser,E.T.Peptide segmentcoupling catalyzed by the semisynthetic enzyme thiosubtilisin,J Am Chem Soc,109:3808-3810(1987);Schnolzer,M.,Kent,S B H.Constructing proteins bydovetailing unprotected synthetic peptides:backbone-engineered HIV protease,Science,256(5054):221-225(1992);Chaiken,I.M.Semisynthetic peptides andproteins,CRC Crit Rev Biochem,11(3):255-301(1981);Offord,R.E.Proteinengineering by chemical means?Protein Eng.,1(3):151-157(1987);以及Jackson,D.Y.,Burnier,J.,Quan,C,Stanley,M.,Tom,J.,Wells,J.A.A Designed PeptideLigasefor Total Synthesis of Ribonuclease A with Unnatural CatalyticResidues,Science,266(5183):243(1994)。
化学修饰已用于在活体外向蛋白质中引入多种包含辅因子、自旋标记以及寡核苷酸的非天然侧链。例如参看Corey,D.R.,Schultz,P.G.Generation of a hybridsequence-specific single-stranded deoxyribonuclease,Science,238(4832):1401-1403(1987);Kaiser,E.T.,Lawrence D.S.,Rokita,S.E.The chemical modification ofenzymatic specificity,Annu Rev Biochem,54:565-595(1985);Kaiser,E.T.,Lawrence,D.S.Chemical mutation of enyzme active sites,Science,226(4674):505-511(1984);Neet,K.E.,Nanci A,Koshland,D.E.Properties of thiol-subtilisin,J Biol.Chem,243(24):6392-6401(1968);Polgar,L.et M.L.Bender,A new enzyme containing asynthetically formed active site.Thiol-subtilisin.J.Am Chem Soc,88:3153-3154(1966);以及Pollack,S.J.,Nakayama,G.Schultz,P.G.Introduction ofnucleophilesand spectroscopic probes into antibody combining sites,Science,242(4881):1038-1040(1988)。
或者,使用经化学修饰氨酰基-tRNA的生物合成方法已用于将若干种生物物理探针并入在活体外合成的蛋白质中。参看以下公开案和其中所引用的参考文献:Brunner,J.New Photolabeling and crosslinking methods,Annu.Rev Biochem,62:483-514(1993);以及Krieg,U.C.,Walter,P.,Hohnson,A.E.Photocrosslinking of the signalsequence of nascent preprolactin of the 54-kilodalton polypeptide of thesignal recognition particle,Proc.Natl.Acad.Sci,83(22):8604-8608(1986)。
先前已证明可通过向由含有所需琥珀无义突变的基因编程的蛋白质合成反应中添加化学氨酰基化的抑制tRNA而在活体外将非天然氨基酸位点特异性地并入蛋白质中。使用所述方法,可使用对特定氨基酸来说为营养缺陷型的菌株,用接近的结构同源物取代20种常见氨基酸中多种氨基酸,例如,用氟苯丙氨酸取代苯丙氨酸。例如参看Noren,C.J.,Anthony-Cahill,Griffith,M.C.,Schultz,P.G.A general method for site-specificincorporation of unnatural amino acids into proteins,Science,244:182-188(1989);M.W.Nowak等人,Science 268:439-42(1995);Bain,J.D.,Glabe,C.G.,Dix,T.A.,Chamberlin,A.R.,Diala,E.S.Biosynthetic site-specific Incorporation of a non-natural amino acid into a polypeptide,J.Am Chem Soc,111:8013-8014(1989);N.Budisa等人,FASEB J.13:41-51(1999);Ellman,J.A.,Mendel,D.,Anthony-Cahill,S.,Noren,C.J.,Schultz,P.G.Biosynthetic method for introducing unnatural aminoacids site-specifically into proteins,Methods in Enz.,301-336(1992);以及Mendel,D.,Cornish,V.W.以及Schultz,P.G.Site-Directed Mutagenesis with anExpanded Genetic Code,Annu Rev Biophvs.Biomol Struct.24,435-62(1995)。
举例来说,制备识别终止密码子UAG的抑制tRNA且用非天然氨基酸使其化学氨酰基化。常规定点突变诱发用于在蛋白质基因中的所关注位点处引入终止密码子TAG。例如参看Sayers,J.R.,Schmidt,W.Eckstein,F.5'-3'Exonuclease in phosphorothioate-basedolignoucleotide-directed mutagensis,Nucleic Acids Res,16(3):791-802(1988)。当将酰基化抑制tRNA和突变型基因组合于活体外转录/翻译系统中时,回应UAG密码子而并入非天然氨基酸,此举得到在指定位置处含有所述氨基酸的蛋白质。使用[3H]-Phe的实验以及使用α-羟基酸的实验证实所需氨基酸仅在由UAG密码子指定的位置处并入且此氨基酸未在蛋白质中的任何其它位点处并入。例如参看Noren等人,同上文;Kobayashi等人,(2003)Nature Structural Biology 10(6):425-432;以及Ellman,J.A.,Mendel,D.,Schultz,P.G.Site-specific incorporation of novel backbone structures into proteins,Science,255(5041):197-200(1992)。
tRNA可通过任何方法或技术(包含(但不限于)化学或酶促氨酰基化)经所需氨基酸氨酰基化。
可由氨酰基tRNA合成酶或其它酶促分子(包含(但不限于)核糖核酸酶(ribozyme))来实现氨酰基化。术语“核糖核酸酶”可与“催化性RNA”互换。Cech和同事(Cech,1987,Science,236:1532-1539;McCorkle等人,1987,Concepts Biochem.64:221-226)证实可充当催化剂(核糖核酸酶)的天然存在RNA的存在。然而,尽管仅已展示所述天然RNA催化剂作用于核糖核酸底物上以进行裂解和剪接,但关于核糖核酸酶的人工演化的新近发展已扩展对各种化学反应的催化作用的清单。研究已鉴别出可在其自身(2')3'-末端上催化氨酰基-RNA键的RNA分子(Illangakekare等人,1995Science 267:643-647),以及可将氨基酸自一个RNA分子转移到另一个RNA分子的RNA分子(Lohse等人,1996,Nature 381:442-444)。
美国专利申请公开案2003/0228593(其是以引用的方式并入本文中)描述建构核糖核酸酶的方法和其在以天然编码和非天然编码氨基酸氨酰基化tRNA中的用途。可氨酰基化tRNA的底物固定形式的酶性分子(包含(但不限于)核糖核酸酶)可使得能够进行氨酰基化产物的有效亲和力纯化。合适底物的实例包含琼脂糖、琼脂糖凝胶以及磁性珠粒。用于氨酰基化的底物固定形式的核糖核酸酶的制备和使用描述于Chemistry and Biology 2003,10:1077-1084以及美国专利申请公开案2003/0228593中,其是以引用的方式并入本文中。
化学氨酰基化方法包含(但不限于)由Hecht和同事(Hecht,S.M.Ace.Chem.Res.1992,25,545;Heckler,T.G.;Roesser,J.R.;Xu,C;Chang,P.;Hecht,S.M.Biochemistry 1988,27,7254;Hecht,S.M.;Alford,B.L.;Kuroda,Y.;Kitano,S.J.Biol.Chem.1978,253,4517)以及由Schultz、Chamberlin、Dougherty以及其它人(Cornish,V.W.;Mendel,D.;Schultz,P.G.Angew.Chem.Int.Ed.Engl.1995,34,621;Robertson,S.A.;Ellman,J.A.;Schultz,P.G.J.Am.Chem.Soc.1991,113,2722;Noren,C.J.;Anthony-Cahill,S.J.;Griffith,M.C;Schultz,P.G.Science 1989,244,182;Bain,J.D.;Glabe,C.G.;Dix,T.A.;Chamberlin,A.R.J.Am.Chem.Soc.1989,111,8013;Bain,J.D.等人,Nature 1992,356,537;Gallivan,J.P.;Lester,H.A.;Dougherty,D.A.Chem.Biol.1997,4,740;Turcatti等人,J.Biol.Chem.1996,271,19991;Nowak,M.W.等人,Science,1995,268,439;Saks,M.E.等人,J.Biol.Chem.1996,271,23169;Hohsaka,T.等人,J.Am.Chem.Soc.1999,121,34)介绍的那些方法,以避免在氨酰基化中使用合成酶。所述方法或其它化学氨酰基化方法可用于氨酰基化本发明的tRNA分子。
用于产生催化性RNA的方法可涉及产生随机化核糖核酸酶序列的单独集合,对集合执行定向演化,就所需氨酰基化活性筛检集合,且选择展现所需氨酰基化活性的那些核糖核酸酶的序列。
核糖核酸酶可包括有利于酰化活性的基元和/或区域,诸如GGU基元和富含U的区域。举例来说,已报导富含U的区域可有利于氨基酸底物的识别,且GGU基元可与tRNA的3'末端形成碱基对。GGU基元和富含U的区域组合起来同时促进氨基酸与tRNA的同时识别,且从而促进tRNA的3'末端的氨酰基化。
可通过使用与tRNAAsn CCCG接合的部分随机化r24mini进行活体外选择,接着系统性工程化在活性克隆中发现的一致序列来产生核糖核酸酶。由这种方法获得的例示性核糖核酸酶被称作“Fx3核糖核酸酶”且描述于美国公开申请案第2003/0228593号(其内容是以引用的方式并入本文中)中,其充当用于合成各种装配有同源非天然氨基酸的氨酰基-tRNA的通用催化剂。
可将氨酰基化tRNA核糖核酸酶固定于底物上以使得能够有效亲和力纯化氨酰基化tRNA。合适底物的实例包含(但不限于)琼脂糖、琼脂糖凝胶以及磁性珠粒。可利用RNA的化学结构将核糖核酸酶固定于树脂上,诸如RNA的核糖上的3'-顺式二醇可经高碘酸盐氧化以产生相应二醛以促进RNA在树脂上的固定。可使用各种类型的树脂(包含廉价酰肼树脂),其中还原性胺化使树脂与核糖核酸酶之间的相互作用产生不可逆键联。可通过此柱上氨酰基化技术显着促进氨酰基-tRNA的合成。Kourouklis等人,Methods 2005;36:239-4描述以管柱为基础的氨酰基化系统。
可以多种方式实现氨酰基化tRNA的分离。一种合适方法为以缓冲液从管柱洗提氨酰基化tRNA,其中所述缓冲液诸如具有10mM EDTA的乙酸钠溶液、含有50mM N-(2-羟基乙基)哌嗪-N'-(3-丙烷磺酸)、12.5mM KCl(pH 7.0)、10mM EDTA的缓冲液或简单经EDTA缓冲的水(pH 7.0)。
可将氨酰基化tRNA添加到翻译反应中以在由翻译反应产生的多肽中的所选位置中并入用以氨酰基化tRNA的氨基酸。可使用本发明的氨酰基化tRNA的翻译系统的实例包含(但不限于)细胞溶胞物。细胞溶胞物提供自所输入mRNA活体外翻译多肽所必需的反应组分。所述反应组分的实例包含(但不限于)核糖体蛋白质、rRNA、氨基酸、tRNA、GTP、ATP、翻译起始和延伸因子以及与翻译相关的其它因子。另外,翻译系统可为分批翻译或区隔式翻译。分批翻译系统将反应组分组合于单一隔室中,而区隔式翻译系统将翻译反应组分与可抑制翻译效率的反应产物隔开。所述翻译系统在市面上有售。
此外,可使用偶合转录/翻译系统。偶合转录/翻译系统允许将所输入DNA转录为相应mRNA,其转而由反应组分进行翻译。市售偶合转录/翻译的实例为快速翻译系统(RapidTranslation System;RTS,Roche Inc.)。所述系统包含含有大肠杆菌溶菌液以提供诸如核糖体和翻译因子的翻译组分的混合物。另外,包含RNA聚合酶以将所输入DNA转录为用于翻译的mRNA模板。RTS可经由反应隔室(包含供应/废料隔室和转录/翻译隔室)之间插入的膜使用反应组分的区隔化。
可由其它试剂(包含(但不限于)转移酶、聚合酶、催化性抗体、多官能蛋白质以及其类似物)进行tRNA的氨酰基化。
Stephan于Scientist 2005年10月;第30-33页中描述将非天然编码氨基酸并入蛋白质中的其它方法。Lu等人在Mol Cell.2001年10月;8(4);759-69中描述将蛋白质与含有非天然氨基酸的合成肽化学连接(所表达蛋白质连接)的方法。
微注射技术也已用于将非天然氨基酸并入蛋白质中。例如参看M.W.Nowak,P.C.Kearney,J.R.Sampson,M.E.Saks,C.G.Labarca,S.K.Silverman,W.G.Zhong,J.Thorson,J.N.Abelson,N.Davidson,P.G.Schultz,D.A.Dougherty以及H.A.Lester,Science,268:439(1995);以及D.A.Dougherty,Curr.Opin.Chem.Biol.,4:645(2000)。向爪蟾(Xenopus)卵母细胞中共注射在活体外产生的以下两种RNA物质:在所关注氨基酸位置处具有UAG终止密码子的编码标靶蛋白质的mRNA和经所需非天然氨基酸氨酰基化的琥珀抑制tRNA。卵母细胞的翻译机构随后在由UAG指定的位置处插入非天然氨基酸。这种方法已允许通常不适用于活体外表达系统的整合膜蛋白质的活体内结构-功能研究。实例包含将荧光氨基酸并入速激肽神经激肽-2受体中以通过荧光共振能量转移测量距离,例如参看G.Turcatti,K.Nemeth,M.D.Edgerton,U.Meseth,F.Talabot,M.Peitsch,J.Knowles,H.Vogel以及A.Chollet,J.Biol.Chem.,271:19991(1996);并入生物素化氨基酸以鉴别离子通道中的表面暴露残基,例如参看J.P.Gallivan,H.A.Lester以及D.A.Dougherty,Chem.Biol.,4:739(1997);使用笼蔽酪胺酸类似物以实时监控离子通道中的构象变化,例如参看J.C.Miller,S.K.Silverman,P.M.England,D.A.Dougherty以及H.A.Lester,Neuron,20:619(1998);以及使用α羟基氨基酸以改变用于探测其选通机制的离子通道主干。例如参看P.M.England,Y.Zhang,D.A.Dougherty以及H.A.Lester,Cell,96:89(1999);以及T.Lu,A.Y.Ting,J.Mainland,L.Y.Jan,P.G.Schultz和J.Yang,Nat.Neurosci.,4:239(2001)。
在活体内直接将非天然氨基酸并入蛋白质中的能力提供以下优点:突变型蛋白质的产率高、技术简便、在细胞中或可能在活有机体中研究突变型蛋白质的可能性以及在治疗性治疗中使用所述突变型蛋白质。将具有各种大小、酸度、亲核性、疏水性以及其它性质的非天然氨基酸包含入蛋白质中的能力可极大地扩展我们合理且系统性地操纵蛋白质结构的能力,以探测蛋白质功能且产生具有新颖性质的新蛋白质或有机体。然而,这一过程很困难,因为需要tRNA合成酶的复杂性质以在蛋白质翻译中实现高保真度。
在位点特异性地并入对-F-Phe的一次尝试中,在对-F-Phe抗性、Phe营养缺陷型大肠杆菌菌株中使用酵母琥珀抑制tRNAPheCUA/苯丙氨酰基-tRNA合成酶对。例如参看R.Furter,Protein Sci.,7:419(1998)。使用无细胞(活体外)翻译系统获得聚核苷酸的表达也是可能的。翻译系统可为细胞或无细胞翻译系统,且可为原核或真核翻译系统。细胞翻译系统包含(但不限于)所需核酸序列可转录为mRNA且mRNA可翻译的全细胞制剂,诸如渗透细胞或细胞培养物。无细胞翻译系统在市面上有售且熟知许多不同类型和系统。无细胞系统的实例包含(但不限于)原核溶胞物,诸如大肠杆菌溶菌液;以及真核溶胞物,诸如麦芽提取物、昆虫细胞溶胞物、兔网状细胞溶胞物、兔卵母细胞溶胞物和人类细胞溶胞物。当所得蛋白质经糖基化、磷酸化或以其它方式修饰时,可优选真核提取物或溶胞物,因为许多所述修饰仅可能在真核系统中发生。一些所述提取物和溶胞物在市面上有售(Promega;Madison,Wis.;Stratagene;La Jolla,Calif.;Amersham;Arlington Heights,Ill.;GIBCO/BRL;Grand Island,N.Y.)。也可用膜提取物(诸如含有微粒体膜的犬胰腺提取物),其适于翻译分泌型蛋白质。在可包含mRNA作为模板(活体外翻译)或DNA作为模板(组合型活体外转录和翻译)的所述系统中,由核糖体指导活体外合成。对于开发无细胞蛋白质表达系统已作出相当大的努力。例如参看Kim,D.M.和J.R.Swartz,Biotechnology andBioengineering,74:309-316(2001);Kim,D.M.和J.R.Swartz,Biotechnology Letters,22,1537-1542,(2000);Kim,D.M.和J.R.Swartz,Biotechnology Progress,16,385-390,(2000);Kim,D.M.和J.R.Swartz,Biotechnology and Bioengineering,66,180-188,(1999);以及Patnaik,R.和J.R.Swartz,Biotechniques 24,862-868,(1998);美国专利第6,337,191号;美国专利公开案第2002/0081660号;WO 00/55353;WO 90/05785,其是以引用的方式并入本文中。可应用于非天然氨基酸多肽的表达的另一种方法包含mRNA-肽融合技术。例如参看R.Roberts和J.Szostak,Proc.Natl Acad.Sci.(USA)94:12297-12302(1997);A.Frankel等人,Chemistry&Biology 10:1043-1050(2003)。在这种方法中,在核糖体上将与嘌呤霉素(puromycin)键联的mRNA模板翻译为肽。如果一种或一种以上tRNA分子已经修饰,那么非天然氨基酸也可并入肽中。在已读取最后一个mRNA密码子之后,嘌呤霉素捕获肽的C末端。如果发现所得mRNA-肽接合物在活体外检定中具有引人关注的性质,那么易于自mRNA序列揭示其特性。用这种方式,可筛检非天然氨基酸多肽的文库以鉴别具有所需性质的多肽。最近,已报导利用经纯化组分的活体外核糖体翻译,其允许合成经非天然编码氨基酸取代的肽。例如参看A.Forster等人,Proc.Natl Acad.Sci.(USA)100:6353(2003)。
也可使用重构翻译系统。经纯化翻译因子的混合物也已成功地用于将mRNA翻译为蛋白质以及溶胞物或补充有经纯化翻译因子(诸如起始因子-1(IF-1)、IF-2、IF-3(α或β)、延伸因子T(EF-Tu)或终止因子)的溶胞物的组合。无细胞系统也可为偶合转录/翻译系统,其中将DNA引入系统中,转录为mRNA且翻译mRNA,如Current Protocols in MolecularBiology(F.M.Ausubel等人编辑,Wiley Interscience,1993)中所述,其是以引用的方式特定地并入本文中。于真核转录系统中转录的RNA可为异核RNA(hnRNA)或5'-端帽(7-甲基鸟苷)和3'-端poly A尾成熟mRNA的形式,此在某些翻译系统中可为优点。举例来说,在网状细胞溶胞物系统中加帽mRNA以高效率翻译。
多肽的非天然氨基酸组分的翻译后修饰
已开发在蛋白质的活体内翻译期间位点特异性地并入非天然氨基酸的方法、组合物、技术以及策略。这一技术通过并入具有与天然存在的氨基酸的侧链化学正交的侧链化学的非天然氨基酸,使得重组蛋白质的位点特异性衍生化成为可能。结果,方法、组合物、技术以及策略的主要优点在于现在可以确定的均质产物形式制备衍生蛋白质。
上述非天然氨基酸多肽适用于(包含(但不限于))新颖疗法、诊断学、催化性酶、工业酶、结合蛋白质以及(包含(但不限于))蛋白质结构和功能的研究。例如参看Dougherty,(2000)Unnatural Amino Acids as Probes of Protein Structure and Function,Current Opinion in ChemicalBiology,4:645-652。上述非天然氨基酸多肽的其它用途包含(仅举例来说)基于检定、化妆品、植物生物学、环境、能量产生和/或军事的用途。然而,上述非天然氨基酸多肽可经受进一步修饰以并入新的或经修饰的官能团,包含操纵多肽的治疗功效、改良多肽的安全性概况、调节多肽的药物动力学、药理学和/或药效学(例如,增加水溶性、生物可用性、增加血清半衰期、增加治疗半衰期、调节免疫原性、调节生物活性或延长循环时间)、向多肽提供其它官能团、在多肽中并入标签、标记或可检测信号、易化多肽的分离性质以及前述修饰的任何组合。
本文中所述的方法、组合物、策略以及技术不限于多肽或蛋白质的特定类型、种类或家族。实际上,几乎任何多肽可包含至少一个非天然氨基酸。组合物可包含至少一种具有至少一个(包含(但不限于)至少两个、至少三个、至少四个、至少五个、至少六个、至少七个、至少八个、至少九个或至少十个或十个以上)已经翻译后修饰的非天然氨基酸的蛋白质。经翻译后修饰的非天然氨基酸可相同或不同,包含(但不限于)在蛋白质中可存在包括1、2、3、4、5、6、7、8、9或10或10个以上不同经翻译后修饰非天然氨基酸的1、2、3、4、5、6、7、8、9或10或10个以上不同位点。组合物可包含蛋白质中存在的特定氨基酸中的至少一个(但少于全部)经翻译后修饰非天然氨基酸取代的蛋白质。对于具有超过一个翻译后修饰非天然氨基酸的给定蛋白质来说,翻译后修饰非天然氨基酸可相同或不同(包含(但不限于)所述蛋白质可包含两个或两个以上不同类型的翻译后修饰非天然氨基酸,或可包含两个相同的翻译后修饰非天然氨基酸)。对于具有两个以上翻译后修饰非天然氨基酸的给定蛋白质来说,翻译后修饰非天然氨基酸可相同、不同或为相同种类的多个翻译后修饰非天然氨基酸与至少一个不同的翻译后修饰非天然氨基酸的组合。
举例来说,翻译后修饰可通过亲核-亲电子反应进行。目前用于选择性修饰蛋白质的大多数反应涉及亲核与亲电子反应搭配物之间的共价键形成,其包含(但不限于)α-卤代酮与组氨酸或半胱氨酸侧链的反应。在所述情况下通过蛋白质中亲核残基的数目和可接近性来确定选择性。在本发明的蛋白质中,可使用其它选择性更大的反应,诸如在活体外和活体内的非天然酮基氨基酸与酰肼或氨基氧基化合物的反应。例如参看Cornish等人,(1996)J.Am.Chem.Soc,118:8150-8151;Mahal等人,(1997)Science,276:1125-1128;Wang等人,(2001)Science 292:498-500;Chin等人,(2002)J.Am.Chem.Soc.124:9026-9027;Chin等人,(2002)Proc.Natl.Acad.Sci..99:11020-11024;Wang等人,(2003)Proc.Natl.Acad.Sci.,100:56-61;Zhang等人,(2003)Biochemistry,42:6735-6746;以及Chin等人,(2003)Science,301:964-7。此允许用包含荧光团、交联剂、糖衍生物以及细胞毒性分子的大量试剂选择性标记几乎任何蛋白质。也参看标题为"Glycoprotein synthesis"的美国专利第6,927,042号,其是以引用的方式并入本文中。
A.非天然氨基酸组分的修饰
非天然氨基酸组分(其包含非天然氨基酸以及多肽或其它聚合物的非天然氨基酸部分)的各种修饰包含(但不限于):
(i)使含羰基非天然氨基酸组分与含羟胺试剂反应以形成含肟非天然氨基酸组分;
(ii)使含羟胺非天然氨基酸组分与含羰基试剂反应以形成含肟非天然氨基酸组分;
(iii)通过肟交换反应,使由如(i)和(ii)中的羰基与羟胺的反应形成的含肟非天然氨基酸组分与不同含羰基试剂反应以形成新的含肟非天然氨基酸组分;
(iv)使含二羰基非天然氨基酸组分与含羟胺试剂反应以形成含肟非天然氨基酸组分;
(v)使含羟胺非天然氨基酸组分与含二羰基试剂反应以形成含肟非天然氨基酸组分;
(vi)通过肟交换反应,使由如(iv)和(v)中的二羰基与羟胺的反应形成的含肟非天然氨基酸组分与不同含二羰基试剂反应以形成新的含肟非天然氨基酸组分;
所述反应描绘于图2中,其中经翻译并入(或以其他方式并入)多肽中的氨基酸官能团(A)与反应物(B)反应以产生经修饰多肽。所述反应可进一步与聚合物(包含(例如)聚核苷酸、聚核苷、多糖或其组合)上的氨基酸官能团(A)发生,其中与反应物(B)的反应产生经修饰聚合物。为方便起见,本部分和本文中其它部分中所述的修饰使用(例如)“多肽”来说明各种修饰。然而,本文中所述的修饰同样适用于并入其它分子(包含(但不限于)聚核苷酸、聚核苷、多糖、合成聚合物或其组合)中的非天然氨基酸。
如本文所使用,术语“组分”指的是非天然氨基酸、非天然氨基酸多肽、含有非天然氨基酸的聚合物、含有选择密码子的核酸序列、与聚合物连接的非天然氨基酸多肽、与含有非天然氨基酸的聚合物连接的非天然氨基酸多肽、与核酸序列连接的非天然氨基酸多肽、与核酸序列连接的非天然氨基酸多肽;其各自可独立地为多肽、非天然氨基酸多肽、核酸序列或聚合物的一部分或并入多肽、非天然氨基酸多肽、核酸序列或聚合物中。
所述各个反应流程的描述已揭示于美国临时专利申请案第60/638,418号、第60/638,527号、第60/639,195号、第60/696,210号、第60/696,302号和第60/696,068号中,其各以引用的方式全部并入本文中。各以上临时专利申请案中所提供的揭示内容全部适用于本文中所述的制备、检测、纯化、表征以及使用非天然氨基酸、非天然氨基酸多肽以及经修饰非天然氨基酸多肽的方法、组合物、技术以及策略中,适用的程度就如同所述揭示案完全示出于本文中。
使含羰基非天然氨基酸组分与含羟胺试剂反应以形成含肟非天然氨基酸组分
可将具有含亲电子剂侧链(包含(但不限于)羰基,诸如醛、酯、硫代酯以及酮)的非天然氨基酸并入多肽中。将具有所述亲电子侧链的所述非天然氨基酸并入多肽中使得通过亲核攻击羰基使这一侧链位点特异性衍生化成为可能。当攻击亲核试剂为羟胺时,将产生肟衍生多肽。用于衍生化和/或进一步修饰的方法可用在衍生化步骤之前或衍生化步骤之后纯化的多肽进行。另外,衍生化步骤可在适度酸性到弱碱性的条件(包含(例如)介于约2到约10的pH值之间,或介于约2到约8的pH值之间,或介于约4到约8的pH值之间)下进行。
用含羟胺试剂或具有类似化学反应性的其它官能团修饰并入多肽中的非天然氨基酸的羰基侧链产生含肟键的经修饰多肽。所述反应和所述经修饰多肽的所得结构展示于图3中。
本文中所述的某些实施例为含有具有包括肟基团的侧链的非天然氨基酸的多肽。在其它实施例中,所述肟基团可经进一步修饰,仅举例来说,诸如形成经掩蔽肟基团(其可容易地转化为肟基团)、经保护肟基团(其在去保护之后,可容易地转化为可用于其它化学反应的肟基团)或通过肟交换反应形成新的肟基团。
所述经修饰多肽肟键的非限定性实例展示如下:
使含羟胺非天然氨基酸组分与含羰基试剂反应以形成含肟非天然氨基酸组分
将含羟胺基团的非天然氨基酸并入多肽中允许与多种亲电子基团(包含(但不限于)羰基,诸如酮、酯、硫代酯以及醛)反应。羟胺基团的亲核性准许其在温和条件下在水性溶液中与含有羰基官能团或具有类似化学反应性的其它官能团的多种分子有效且选择性地反应以形成相应肟键。这一通过亲核攻击羰基进行的所述侧链的位点特异性衍生化和/或进一步修饰可用在衍生化步骤之前或衍生化步骤之后纯化的多肽进行。另外,衍生化步骤可在适度酸性到弱碱性的条件(包含(例如)介于约2到约10的pH值之间,或介于约2到约8的pH值之间,或介于约4到约8的pH值之间)下发生。
用含羰基试剂修饰并入多肽中的非天然氨基酸的羟胺基团得到含肟键的经修饰多肽。所述反应和所述经修饰多肽的所得结构展示于图4中。
本文中所述的某些实施例为含有具有包括肟基团的侧链的非天然氨基酸的多肽。在其它实施例中,所述肟基团可经进一步修饰,仅举例来说,诸如形成经掩蔽肟基团(其可容易地转化为肟基团)、经保护肟基团(其在去保护之后,可容易地转化为可用于其它化学反应的肟基团)或通过肟交换反应形成新的肟基团。
所述经修饰多肽肟键的非限定性实例展示如下:
通过肟交换反应,使由羰基与羟胺的反应形成的含肟非天然氨基酸组分与不同含 羰基试剂反应以形成新的含肟非天然氨基酸组分
含肟基团的非天然氨基酸允许与含有某些反应性羰基(包含(但不限于)醛、酯、硫代酯以及酮)的多种试剂反应以形成包括新肟基团的新的非天然氨基酸(其可并入多肽中)。所述肟交换反应允许使非天然氨基酸多肽进一步官能化。
用含羰基试剂或具有类似化学反应性的其它官能团修饰并入多肽中的非天然氨基酸的肟侧链产生含新肟键的经修饰多肽。所述反应和所述经修饰多肽的所得结构展示于图5中。
本文中所述的某些实施例为含有具有包括肟基团的侧链的非天然氨基酸的多肽。在其它实施例中,所述肟基团可经进一步修饰,仅举例来说,诸如形成经掩蔽肟基团(其可容易地转化为肟基团)、经保护肟基团(其在去保护之后,可容易地转化为可用于其它化学反应的肟基团)或通过肟交换反应形成新的肟基团。
使含二羰基非天然氨基酸组分与含羟胺试剂反应以形成肟
可将具有含亲电子剂侧链的非天然氨基酸并入多肽中,所述含亲电子剂侧链包含(但不限于)二羰基(诸如二酮基、酮醛基、酮酸基、酮酯基以及酮硫代酯基)、类二羰基(其具有类似于二羰基的反应性且在结构上类似于羰基)、经掩蔽二羰基(其可容易地转化为二羰基)或经保护二羰基(其在去保护后具有类似于二羰基的反应性)。将具有所述亲电子侧链的所述非天然氨基酸并入多肽中使得通过亲核攻击羰基使这一侧链位点特异性衍生化成为可能。当攻击亲核试剂为羟胺时,将产生肟衍生多肽。用于衍生化和/或进一步修饰的方法可用在衍生化步骤之前或衍生化步骤之后纯化的多肽进行。另外,衍生化步骤可在适度酸性到弱碱性的条件(包含(例如)介于约2到约10的pH值之间,或介于约2到约8的pH值之间,或介于约4与约8的pH值之间)下发生。
用含羟胺试剂或具有类似化学反应性的其它官能团修饰并入多肽中的非天然氨基酸的二羰基侧链产生含新肟键的经修饰多肽。所述反应和所述经修饰多肽的所得结构展示于图6中。
本文中所述的某些实施例为含有具有包括肟基团的侧链的非天然氨基酸的多肽。在其它实施例中,所述肟基团可经进一步修饰,仅举例来说,诸如形成经掩蔽肟基团(其可容易地转化为肟基团)、经保护肟基团(其在去保护之后,可容易地转化为可用于其它化学反应的肟基团)或通过肟交换反应形成新的肟基团。
所述经修饰多肽肟键的非限定性实例展示如下:
使含羟胺非天然氨基酸组分与含二羰基试剂反应以形成肟
将含羟胺基团的非天然氨基酸并入多肽中允许与多种亲电子基团反应,所述亲电子基团包含(但不限于)二羰基(诸如二酮基、酮醛基、酮酸基、酮酯基以及酮硫代酯基)、类二羰基(其具有类似于二羰基的反应性且在结构上类似于羰基)、经掩蔽二羰基(其可容易地转化为二羰基)或经保护二羰基(其在去保护后具有类似于二羰基的反应性)。羟胺基团的亲核性准许其在温和条件下在水性溶液中与含有所述二羰基官能团或具有类似化学反应性的其它官能团的多种分子有效且选择性地反应以形成相应肟键。这一通过亲核攻击二羰基进行的所述侧链的位点特异性衍生化和/或进一步修饰可用在衍生化步骤之前或衍生化步骤之后纯化的多肽进行。另外,衍生化步骤可在适度酸性到弱碱性的条件(包含(例如)介于约2到约10的pH值之间,或介于约2到约8的pH值之间,或介于约4到约8的pH值之间)下发生。
用含二羰基试剂修饰并入多肽中的非天然氨基酸的羟胺基团得到含肟键的经修饰多肽。所述反应和所述经修饰多肽的所得结构展示于图7中。
本文中所述的某些实施例为含有具有包括肟基团的侧链的非天然氨基酸的多肽。在其它实施例中,所述肟基团可经进一步修饰,仅举例来说,诸如形成经掩蔽肟基团(其可容易地转化为肟基团)、经保护肟基团(其在去保护之后,可容易地转化为可用于其它化学反应的肟基团)或通过肟交换反应形成新的肟基团。
所述经修饰多肽肟键的非限定性实例展示如下:
通过肟交换反应,使由二羰基与羟胺的反应形成的含肟非天然氨基酸组分与含羰 基或不同含二羰基的试剂反应以形成新肟
含肟基团的非天然氨基酸允许与含有某些反应性二羰基的多种试剂反应,所述反应性二羰基包含(但不限于)二酮基、酮醛基、酮酸基、酮酯基以及酮硫代酯基、类二羰基(其具有类似于二羰基的反应性且在结构上类似于羰基)、经掩蔽二羰基(其可容易地转化为二羰基)或经保护二羰基(其在去保护后具有类似于二羰基的反应性),从而形成包括新肟基团的新非天然氨基酸(其可并入多肽中)。所述肟交换反应允许使非天然氨基酸多肽进一步官能化。
用含二羰基试剂或具有类似化学反应性的其它官能团修饰并入多肽中的非天然氨基酸的肟侧链产生含新肟键的经修饰多肽。所述反应和所述经修饰多肽的所得结构展示于图8中。
本文中所述的某些实施例为含有具有包括肟基团的侧链的非天然氨基酸的多肽。在其它实施例中,所述肟基团可经进一步修饰,仅举例来说,诸如形成经掩蔽肟基团(其可容易地转化为肟基团)、经保护肟基团(其在去保护之后,可容易地转化为可用于其它化学反应的肟基团)或通过肟交换反应形成新肟基团。
B.增强对血清白蛋白的亲和性
各种分子也可与本文中所述的非天然氨基酸多肽融合以调节在血清中的半衰期。在一些情况下,使分子与本文中所述的(经修饰)非天然氨基酸多肽连接或融合以增强对动物中内源血清白蛋白的亲和性。
举例来说,在一些情况下,制造多肽与白蛋白结合序列的重组融合体。在其它情况下,使本文中所述的(经修饰)非天然氨基酸多肽经脂肪酸酰化。在其它情况下,使本文中所述的(经修饰)非天然氨基酸多肽直接与血清白蛋白(包含(但不限于)人类血清白蛋白)融合。所属领域的技术人员应认识到多种其它分子也可与如本文中所述的经修饰或未经修饰的非天然氨基酸多肽连接以调节与血清白蛋白或其它血清组分的结合。关于增强对血清白蛋白的亲和性的其它讨论描述于美国专利申请案第60/638,418号、第60/638,527号、第60/639,195号、第60/696,210号、第60/696,302号以及第60/696,068号;标题为"ModifiedFour Helical Bundle Polypeptides and Their Uses"的PCT公开案WO 05/074650中,其是以引用的方式全部并入本文中。
C.本文中所述的非天然氨基酸多肽的糖基化
本文中所述的方法和组合物包含并有一个或一个以上带有糖残基的非天然氨基酸的多肽。糖残基可为天然(包含(但不限于)N-乙酰基葡糖胺)或非天然(包含(但不限于)3-氟半乳糖)糖残基。糖可通过N或O键联糖苷键(包含(但不限于)N-乙酰基半乳糖-L-丝氨酸)或非天然键(包含(但不限于)肟或相应C或S键联糖苷)与非天然氨基酸连接。
可在活体内或活体外将糖(包含(但不限于)糖基)部分添加到非天然氨基酸多肽上。在一些情况下,使包括含羰基非天然氨基酸的多肽经以氨基氧基衍生化的糖修饰以产生通过肟键键联的相应糖基化多肽。一旦糖连接于非天然氨基酸,则其可通过用糖基转移酶和其它酶处理而进一步修饰以产生与非天然氨基酸多肽结合的寡糖。例如参看H.Liu等人,J.Am.Chem.Soc.125:1702-1703(2003)。
D.键联基团和应用(包含多肽二聚体和多聚体)的用途
除将官能团直接添加到非天然氨基酸多肽上外,可首先用多官能(例如,双、三、四)连接子分子修饰多肽的非天然氨基酸部分,然后接着进一步修饰多官能连接子分子。即,使多官能连接子分子的至少一个末端与多肽中的至少一个非天然氨基酸反应且多官能连接子的至少一个其它末端可用于进一步官能化。如果多官能连接子的所有末端相同,那么(视化学计量条件而定)可形成非天然氨基酸多肽的均多聚体。如果多官能连接子的各末端具有不同化学反应性,那么使多官能性连接子基的至少一个末端与非天然氨基酸多肽结合且另一末端可接着与不同官能团反应,所述不同官能团包含(仅举例来说):标记;染料;聚合物;水溶性聚合物;聚乙二醇的衍生物;光交联剂;细胞毒性化合物;药物;亲和性标记;光亲和性标记;反应性化合物;树脂;第二蛋白质或多肽或多肽类似物;抗体或抗体片段;金属螯合剂;辅因子;脂肪酸;碳水化合物;聚核苷酸;DNA;RNA;反义聚核苷酸;糖;水溶性树枝状聚合物;环糊精;抑制性核糖核酸;生物材料;纳米粒子;自旋标记;荧光团;含金属部分;放射性部分;新颖官能团;与其它分子共价或非共价相互作用的基团;光笼蔽部分;可光化辐射激发的部分;可光异构化部分;生物素;生物素类似物;结合有重原子的部分;可化学裂解的基团;可光裂解的基团;延长侧链;碳键联糖;氧化还原活性剂;氨基硫代酸;毒性部分;经同位素标记的部分;生物物理探针;磷光基团;化学发光基团;电子致密基团;磁性基团;插入基团;发色团;能量转移剂;生物活性剂;可检测标记;小分子;量子点;纳米传递素;以及上述各者的任何组合。
键联基团和应用(包含多肽二聚体和多聚体)的其它用途进一步描述于美国专利申请案第60/638,418号、第60/638,527号、第60/639,195号、第60/696,210号、第60/696,302号以及第60/696,068号;标题为"Modified Four Helical Bundle Polypeptides andTheir Uses"的PCT公开案WO 05/074650中,其是以引用的方式全部并入本文中。
E.添加官能团的实例:易化多肽的分离性质
出于多种原因,包含(但不限于)多肽的溶解性或结合特征,可能难以从样品中分离出天然存在的或非天然氨基酸多肽。举例来说,在制备用于治疗用途的多肽中,可从已工程化以过量产生多肽的重组系统中分离所述多肽。然而,由于多肽的溶解性或结合特征,因此通常证明难以达成所需纯度通常。进一步描述于美国专利申请案第60/638,418号、第60/638,527号、第60/639,195号、第60/696,210号、第60/696,302号以及第60/696,068号;标题为"Modified Four Helical Bundle Polypeptides and Their Uses"的PCT公开案WO 05/074650(其是以引用的方式全部并入本文中)中的方法、组合物、技术以及策略提供这一情形的解决方案。
F.添加官能团的实例:检测多肽的存在
出于多种原因,包含(但不限于)缺乏可容易地与多肽结合的试剂或标记,可能检测样品(包含活体内样品和活体外样品)中天然存在的或非天然氨基酸多肽。进一步描述于美国专利申请案第60/638,418号、第60/638,527号、第60/639,195号、第60/696,210号、第60/696,302号以及第60/696,068号;标题为"Modified Four Helical BundlePolypeptides and Their Uses"的PCT公开案WO 05/074650(其是以引用的方式全部并入本文中)中的方法、组合物、技术以及策略提供这一情形的解决方案。
G.添加官能团的实例:改良多肽的治疗性质
天然存在的或非天然氨基酸多肽将能够向患有特定病症、疾病或病状的患者提供某种治疗益处。所述治疗益处将视许多因素而定,包含(仅举例来说):多肽的安全性概况和多肽的药物动力学、药理学和/或药效学(例如,水溶性、生物可用性、血清半衰期、治疗半衰期、免疫原性、生物活性或循环时间)。另外,向多肽提供其它官能团可为有利的,所述其它官能团诸如连接的细胞毒性化合物或药物,或可能希望连接其它多肽以形成本文中所述的均多聚体和杂多聚体。所述修饰优选不破坏原始多肽的活性和/或三级结构。进一步描述于美国专利申请案第60/638,418号、第60/638,527号、第60/639,195号、第60/696,210号、第60/696,302号以及第60/696,068号;标题为"Modified Four Helical BundlePolypeptides and Their Uses"的PCT公开案WO 05/074650(其是以引用的方式全部并入本文中)中的方法、组合物、技术以及策略提供所述问题的解决方案。
X.经修饰多肽的治疗用途
发现本文中所述的(经修饰)非天然氨基酸多肽(包含其均多聚体和杂多聚体)具有多种用途,包含(但不限于):治疗、诊断、基于检定、工业、化妆品、植物生物学、环境、能量产生和/或军事的用途。以非限定性说明形式,提供(经修饰)非天然氨基酸多肽的下列治疗用途。
本文中所述的(经修饰)非天然氨基酸多肽适用于治疗多种病症。投与本文中所述的(经修饰)非天然氨基酸多肽产品在人类中产生市售多肽制剂所显示的任何活性。(经修饰)非天然氨基酸多肽产品的平均量可变化且尤其应以合格医师的推荐和处方为基础。(经修饰)非天然氨基酸多肽的确切量和与诸如所治疗的病状的确切类型、所治疗患者的状况以及组合物中的其它成分的因素一致的顺序有关。所欲给予的量可由基于利用(经修饰)非天然氨基酸多肽的疗法的领域内的技术人员容易地确定。
A.投药和医药组合物
如本文中所述的经修饰或未经修饰非天然氨基酸多肽(包含(但不限于)包括一个或一个以上非天然氨基酸的合成酶、蛋白质等)视情况(包含(但不限于))与合适医药载剂组合用于治疗用途。所述组合物(例如)包括治疗有效量的如本文中所述的经修饰或未经修饰非天然氨基酸多肽和医药学上可接受的载剂或赋形剂。所述载剂或赋形剂包含(但不限于)盐水、缓冲盐水、右旋糖、水、甘油、乙醇和/或其组合。制备适用于投药模式的调配物。一般来说,所属领域中熟知投与蛋白质的方法且其可应用于投与如本文中所述的经修饰或未经修饰非天然氨基酸多肽。
根据所属领域的一般技术人员已知的方法,包括一种或一种以上如本文中所述的经修饰或未经修饰非天然氨基酸多肽的治疗组合物视情况在一种或一种以上适当活体外和/或活体内动物疾病模型中进行测试以确认功效、组织代谢且估算剂量。具体来说,剂量初始可通过非天然氨基酸与天然氨基酸同源物相比(包含(但不限于)比较包含一个或一个以上非天然氨基酸的(经修饰)多肽与天然氨基酸多肽)(即,在相关检定中)的活性、稳定性或其它合适量度来确定。
通过通常用于引入分子以最终与血液或组织细胞接触的任何途径进行投药。如本文中所述的经修饰或未经修饰非天然氨基酸多肽是视情况与一种或一种以上医药学上可接受的载剂以任何合适方式一起投与。可使用向患者投与如本文中所述的经修饰或未经修饰非天然氨基酸多肽的合适方法,且尽管可使用一种以上途径来投与特定组合物,但特定途径通常可提供比另一种途径更直接且更有效的作用或反应。
医药学上可接受的载剂部分由欲投与的特定组合物以及由用于投与组合物的特定方法决定。因此,存在多种本文中所述的医药组合物的合适调配物。
可由适用于蛋白质或肽的任何常规途径(包含(但不限于)非经肠,例如包含(但不限于)皮下或静脉内注射或任何其它形式的注射或输液)来投与非天然氨基酸多肽。可由包含(但不限于)口服、静脉内、腹膜内、肌肉内、经皮、皮下、局部、舌下或经直肠方式的多种途径投与多肽组合物(包含本文中所述的各种多肽)。包括如本文中所述的经修饰或未经修饰非天然氨基酸多肽的组合物也可通过脂质体投与。所属领域的技术人员通常已知所述投药途径以及适当调配物。非天然氨基酸多肽可单独使用或与其它合适组分(诸如医药载剂)组合使用。
单独或与其它合适组分组合的如本文中所述的经修饰或未经修饰非天然氨基酸多肽也可制成通过吸入投与的气溶胶调配物(即,其可“雾化”)。气溶胶调配物可置于加压的可接受推进剂(诸如二氯二氟甲烷、丙烷、氮气以及其类似物)中。
适用于非经肠投药(诸如,通过关节内(在关节中)、静脉内、肌肉内、皮内、腹膜内和皮下途径)的调配物包含水性和非水性等张无菌注射溶液,其可含有抗氧化剂、缓冲剂、抑菌剂和使调配物与预期接受者的血液等张的溶质;以及水性和非水性无菌悬浮液,其可包含悬浮剂、增溶剂、增稠剂、稳定剂和防腐剂。经包装核酸的调配物可于单位剂量或多剂量密封容器(诸如安瓿和小瓶)中提供。
非经肠投药和静脉内投药为优选投药方法。具体来说,已用于天然氨基酸同源物治疗剂的投药途径(包含(但不限于)通常用于EPO、IFN、GM-CSF、IFN、白细胞介素、抗体和/或任何其它医药递送蛋白质的那些投药途径)以及目前使用的调配物一起提供优选投药途径和如本文中所述的经修饰或未经修饰非天然氨基酸多肽的调配物。
在本文中所述的组合物和方法的情况下,投与患者的剂量足以随时间在患者中产生有益治疗反应。剂量是由以下因素决定:特定调配物的功效和所使用的经修饰或未经修饰非天然氨基酸多肽的活性、稳定性或血清半衰期以及患者的状况,以及欲治疗的患者的体重或表面积。剂量大小也由特定患者中伴随特定调配物或其类似物的投药产生的任何有害副作用的存在、性质以及程度决定。
在确定在治疗或预防疾病(包含(但不限于)癌症、遗传性疾病、糖尿病、AIDS以及其类似疾病)中欲投与的调配物的有效量时,医师评估循环血浆含量、调配物毒性、疾病进程和/或(相关时)抗非天然氨基酸多肽抗体的产生。
(例如)向70千克患者投与的剂量通常在相当于目前使用的治疗性蛋白质的剂量的范围内,其是根据相关组合物的改变的活性或血清半衰期加以调节。本文中所述的医药调配物可通过任何已知的常规疗法来补充治疗条件,所述常规疗法包含抗体投药、疫苗投药、投与细胞毒性剂、天然氨基酸多肽、核酸、核苷酸类似物、生物反应调节剂以及其类似物质。
对于投药来说,本文中所述的医药调配物是以由相关调配物的LD-50或ED-50和/或各种浓度下经修饰或未经修饰非天然氨基酸多肽的任何副反应(包含(但不限于)当关系到患者的体重和整体健康时)的观测结果所确定的速率投与。可通过单一剂量或分次剂量实现投药。
如果经历调配物输液的患者出现发热、发冷或肌痛,那么他/她接受适当剂量的阿司匹林(aspirin)、布洛芬(ibuprofen)、醋氨酚(acetaminophen)或其它疼痛/发热控制药物。在即将输液前30分钟,用阿司匹林、醋氨酚或(包含(但不限于))苯海拉明(diphenhydramine)对经历输液反应(诸如发热、肌痛和发冷)的患者进行前驱用药。度冷丁(meperidine)用于不能对退热剂和抗组胺剂迅速作出反应的更严重的发冷和肌痛。视反应的严重性而定减缓或中断细胞输液。
如本文中所述的经修饰或未经修饰非天然氨基酸多肽可直接投与哺乳动物个体。通过通常用于向个体引入多肽的任何途径进行投药。如本文中所述的经修饰或未经修饰非天然氨基酸多肽包含适于口服、经直肠、局部、吸入(包含(但不限于)通过气溶胶)、经颊(包含(但不限于)舌下)、经阴道、非经肠(包含(但不限于)皮下、肌肉内、皮内、关节内、胸膜内、腹膜内、脑内、动脉内或静脉内)、局部(即,皮肤与粘膜表面,包含气管表面)以及经皮投药者,但在任何给定情况下最合适途径将视所治疗的病状的性质和严重性而定。投药可为局部或全身性投药。调配物可于单位剂量或多剂量密封容器(诸如安瓿和小瓶)中提供。如本文中所述的经修饰或未经修饰非天然氨基酸多肽可制备为单位剂量可注射形式(包含(但不限于)溶液、悬浮液或乳液)与医药学上可接受的载剂的混合物。也可通过连续输液(使用(包含(但不限于))微型泵,诸如渗透泵)、单次快速注射或缓释储槽调配物来投与如本文中所述的经修饰或未经修饰非天然氨基酸多肽。
适于投药的调配物包含水性和非水性溶液(等张无菌溶液),其可含有抗氧化剂、缓冲剂、抑菌剂和使调配物等张的溶质;以及水性和非水性无菌悬浮液,其可包含悬浮剂、增溶剂、增稠剂、稳定剂和防腐剂。可由先前所述类型的无菌粉末、颗粒和片剂来制备溶液和悬浮液。
冷冻干燥为用于自所关注蛋白质制剂移除水的用于提供蛋白质的常用技术。冷冻干燥或冻干为使欲干燥材料首先冷冻且随后通过在真空环境中升华来移除冰或冷冻溶剂的方法。在预冻干调配物中可包含赋形剂以增强在冷冻干燥过程中的稳定性和/或改良冻干产品在储存时的稳定性。Pikal,M.Biopharm.3(9)26-30(1990)和Arakawa等人,Pharm.Res.8(3):285-291(1991)。
所属领域的一般技术人员也已知药物的喷雾干燥。举例来说,参看Broadhead,J.等人,"The Spray Drying of Pharmaceuticals,"Drug Dev.Ind.Pharm,18(11和12),1169-1206(1992)。除小分子药物之外,多种生物材料也已经喷雾干燥且所述生物材料包含:酶、血清、血浆、微生物和酵母。喷雾干燥为适用技术,因为其可将液体药物制剂在一步工艺中转化为精细、无尘或聚集的粉末。基本技术包括以下四个步骤:a)将进料溶液雾化成喷雾;b)喷雾-空气接触;c)使喷雾干燥;和d)自干燥空气分离经干燥的产物。美国专利第6,235,710号和第6,001,800号(其是以引用的方式并入本文中)描述通过喷雾干燥来制备重组促红细胞生成素。
本文中所述的医药组合物可包括医药学上可接受的载剂。医药学上可接受的载剂部分是由所投与的特定组合物以及由用于投与组合物的特定方法决定。因此,存在多种如本文中所述的经修饰或未经修饰非天然氨基酸多肽的医药组合物(包含可选的医药学上可接受的载剂、赋形剂或稳定剂)的合适调配物。(例如参看Remington's PharmaceuticalSciences,第17版,1985))。合适载剂包含:缓冲剂,含有琥珀酸盐、磷酸盐、硼酸盐、HEPES、柠檬酸盐、咪唑、乙酸盐、碳酸氢盐和其它有机酸;抗氧化剂,包含(但不限于)抗坏血酸;低分子量多肽,包含(但不限于)少于约10个残基的那些多肽;蛋白质,包含(但不限于)血清白蛋白、明胶或免疫球蛋白;亲水性聚合物,包含(但不限于)聚乙烯吡咯烷酮;氨基酸,包含(但不限于)甘氨酸、谷氨酰胺、天冬酰胺、精氨酸、组氨酸或组氨酸衍生物、甲硫氨酸、谷氨酸或赖氨酸;单糖、二糖和其它碳水化合物,包含(但不限于)海藻糖、蔗糖、葡萄糖、甘露糖或糊精;螯合剂,包含(但不限于)EDTA;二价金属离子,包含(但不限于)锌、钴或铜;糖醇,包含(但不限于)甘露糖醇或山梨糖醇;成盐抗衡离子,包含(但不限于)钠;和/或非离子型表面活性剂,包含(但不限于)TweenTM(包含(但不限于)Tween 80(聚山梨醇酯80)和Tween 20(聚山梨醇酯20))、PluronicsTM和其它泊洛尼克酸(pluronic acid)(包含(但不限于)泊洛尼克酸F68(poloxamer 188))或PEG。合适表面活性剂(例如)包含(但不限于)以聚(氧化乙烯)-聚(氧化丙烯)-聚(氧化乙烯)(即,(PEO-PPO-PEO))或聚(氧化丙烯)-聚(氧化乙烯)-聚(氧化丙烯)(即,(PPO-PEO-PPO))或其组合为基础的聚醚。PEO-PPO-PEO和PPO-PEO-PPO以商品名PluronicsTM、R-PluronicsTM、TetronicsTM和R-TetronicsTM(BASF Wyandotte Corp.,Wyandotte,Mich.)在市面上有售且进一步描述于美国专利第4,820,352号中,其是以引用的方式全部并入本文中。其它乙烯/聚丙烯嵌段聚合物可为合适的表面活性剂。表面活性剂或表面活性剂的组合可用于使(经修饰)非天然氨基酸多肽稳定以抵抗一种或一种以上应力(包含(但不限于)由搅拌产生的应力)。一些上述物质可被称作“膨胀剂”。一些也可被称作“张力调节剂”。
如本文中所述的经修饰或未经修饰非天然氨基酸多肽(包含与诸如PEG的水溶性聚合物键联的所述多肽)也可通过持续释放系统或作为其部分来投与。持续释放组合物包含(包含(但不限于))呈定形物品(包含(但不限于)薄膜或微胶囊)形式的半渗透性聚合物基质。持续释放基质包含生物相容性材料,诸如聚(甲基丙烯酸2-羟基乙酯)(Langer等人,J.Biomed.Mater.Res.,15:167-277(1981);Langer,Chem.Tech.,12:98-105(1982))、乙烯乙酸乙烯酯(Langer等人,同上文)或聚-D-(-)-3-羟基丁酸(EP 133,988)、聚乳酸(polylactide;polylactic acid)(美国专利第3,773,919号;EP 58,481)、聚乙醇酸(乙醇酸的聚合物)、聚乳酸-共-乙醇酸(乳酸与乙醇酸的共聚物)、聚酐、L-谷氨酸与γ-乙基-L-谷氨酸酯的共聚物(Sidman等人,Biopolymers,22,547-556(1983))、聚(原酸)酯、多肽、透明质酸、胶原蛋白、硫酸软骨素、羧酸、脂肪酸、磷脂、多糖、核酸、聚氨基酸、氨基酸(诸如苯丙氨酸、酪氨酸、异亮氨酸)、聚核苷酸、聚乙烯丙烯、聚乙烯吡咯烷酮以及硅酮。持续释放组合物也包含脂质体截留的化合物。含有化合物的脂质体是由本身已知的方法来制备:DE 3,218,121;Epstein等人,Proc.Natl.Acad,Sci U.S.A.,82:3688-3692(1985);Hwang等人,Proc.Natl Acad.Sci U.S.A.,77:4030-4034(1980);EP 52,322;EP 36,676;美国专利第4,619,794号;EP 143,949;美国专利第5,021,234号;日本专利申请案83-118008;美国专利第4,485,045号和第4,544,545号;以及EP 102,324。所引用的所有参考文献和专利都是以引用的方式并入本文中。
脂质体截留的多肽可由描述于以下文献中的来制备,(例如)DE 3,218,121;Epstein等人,Proc.Natl Acad.Sci.U.S.A.,82:3688-3692(1985);Hwang等人,Proc.Natl.Acad.Sci.U.S.A.,77:4030-4034(1980);EP 52,322;EP 36,676;美国专利第4,619,794号;EP 143,949;美国专利第5,021,234号;日本专利申请案83-118008;美国专利第4,485,045号和第4,544,545号;以及EP 102,324中。脂质体的组成和大小为众所周知的或能够由所属领域的一般技术人员根据经验容易地确定。脂质体的一些实例描述于(例如)Park JW等人,Proc.Natl.Acad.Sci.USA 92:1327-1331(1995);Lasic D和Papahadjopoulos D(编):MEDICAL APPLICATIONS OF LIPOSOMES(1998);Drummond DC等人,Liposomal drug delivery Systems for cancer therapy,在Teicher B(编):CANCERDRUG DISCOVERY AND DEVELOPMENT(2002)中;Park JW等人,Clin.Cancer Res.8:1172-1181(2002);Nielsen UB等人,Biochim.Biophys.Acta 1591(1-3):109-118(2002);MamotC等人,Cancer Res.63:3154-3161(2003)中。所引用的所有参考文献和专利都是以引用的方式并入本文中。
在如本文中所述的组合物、调配物和方法的情况下,向患者投与的剂量应足以随时间在个体中产生有益反应。通常,每剂量非经肠投与的如本文中所述的经修饰或未经修饰非天然氨基酸多肽的总医药学有效量在每天每千克患者体重约0.01μg至约100μg或约0.05mg至约1mg的范围内,但此服从于治疗判断。给药频率也服从于治疗判断,且可比获准用于人类的市售产品的频率大或小。通常,聚合物:多肽接合物(包含(仅举例来说)如本文中所述的聚乙二醇化多肽)可通过上述任何投药途径投与。
XI.分离和纯化
A.色谱法
在本文中的任何实施例中,肽、(经修饰)非天然氨基酸多肽、多肽的结合搭配物或受体的分离可通过色谱法进行。色谱法是以多肽的差异吸附和洗脱为基础。将样品溶解于可为气体、液体或超临界流体的流动相中。然后迫使这一流动相通过固定于管柱中或固体表面上的不混溶固定相。固定相的实例包含吸附于固体上的液体、键结于固体表面的有机物质、固体、离子交换树脂以及聚合固体间隙中的液体。多肽由不同色谱法或其它分离/纯化法纯化的能力可通过添加非天然氨基酸或用非天然氨基酸取代一个或一个以上非天然氨基酸视情况以及一个或一个以上天然氨基酸取代来调节。因此,多肽的性质可通过改变氨基酸组成来改变,从而使得能够增加或减小其与已知基质的相互作用。氨基酸组成的改变包含(但不限于)疏水性氨基酸含量、亲水性氨基酸含量以及多肽的电荷、pI或其它特征的改变。所述修饰可适用于分离难以分离的膜蛋白质,因为其在性质上是疏水性的且保持其天然构象。
气相色谱法
在一实施例中,多肽的分离可通过气相色谱法(GC)进行。将样品气化且注入到色谱柱的头部上。流动气相的实例包含(但不限于)氦气、氩气、氮气、二氧化碳以及氢气。在一实施例中,样品是通过气固色谱法分离,其中固定相是固体。固体固定相的实例为分子筛和多孔聚合物。在另一实施例中,多肽是通过气液色谱法分离,其中固定相是固定于惰性固体表面上的液体。液体固定相的实例包含聚二甲基硅氧烷、聚(苯基甲基二甲基)硅氧烷(10%苯基)、聚(苯基甲基)硅氧烷(50%苯基)、聚(三氟丙基二甲基)硅氧烷、聚乙二醇以及聚(二氰基烯丙基二甲基)硅氧烷。
常规GC管柱是呈填塞且开口的管状或毛细管状。GC色谱柱的长度为小于2米到50米或50米以上不等。用于其构造的物质的实例包含不锈钢、金属、玻璃、熔融硅石以及特氟纶(Teflon)。GC管柱通常具有约2毫米至4毫米的内径。微GC具有约1毫米的内径。毛细管GC利用内径约100微米至750微米的毛细管。纳米GC可以50微米-1毫米的内径使用。
液相色谱法
在一实施例中,多肽的分离可通过液相色谱法(LC)进行。LC涉及使用于固定相上的流体载剂。大部分LC管柱的长度在10厘米至30厘米范围内。LC管柱通常由滑腔不锈钢管构造,但偶尔会遇到重玻璃管。常规LC管柱具有约4.6毫米的内径和约1毫升/分钟的流速。微LC具有约1.0毫米的内径和约40微升/分钟的流速。毛细管LC利用内径约300微米且流速约5微升/分钟的毛细管。纳米LC可以50微米-1毫米的内径和200纳升/分钟的流速使用。纳米LC的长度可不同,例如,5厘米、15厘米或25厘米。纳米LC固定相也可为整块材料,诸如聚合整料或溶胶-凝胶整料。液相色谱法中已使用两种基本类型的填充材料,无孔粒子和多孔粒子。珠粒或粒子的特征通常在于粒径和孔径。粒径通常在3微米与50微米之间的范围内。较大粒子将产生较小系统压力,且较小粒子将产生较大压力。较小粒子通常产生较高分离效率。粒子孔径以埃(angstrom)量度且通常在100埃-1000埃范围内。其可覆盖有二氧化硅、氧化铝、离子交换树脂、有机表面层、聚合物、配位体、碳水化合物或特定辅助物质的多孔层。
在本发明的一实施例中,多肽可使用HPLC技术分离。在本发明的另一实施例中,多肽可使用管柱色谱法分离。在管柱色谱法中,将固体介质填塞至色谱管柱上,且使含有多肽的初始混合物穿过管柱以允许结合。然后使洗涤缓冲液穿过管柱,且接着向管柱施加洗脱缓冲液以收集样品。所述步骤可在周围压力下进行。在另一实施例中,多肽与固相的结合可使用以下步骤实现:批处理,通过将初始混合物添加到容器中的固相中,将两者混合在一起,分离固相(即,通过离心),移除液相,洗涤,再离心,添加洗脱缓冲液,再离心以及移除洗脱液。在本发明的另一实施例中,使用混合方法,其中通过批处理法进行结合,然后将结合有标靶分子的固相填塞至管柱上,且在管柱上进行洗涤和洗脱。在本发明的又一实施例中,肽的分离在微流体装置中进行。在本发明的另一实施例中,肽的分离在纳米流体装置中进行。
分配色谱法
在一实施例中,多肽的分离是通过分配色谱法进行。在一实施例中,多肽的分离是通过液-液分配色谱法进行。对液-液分配色谱法来说,液体固定相通过物理吸附保留在填料的表面上。在另一实施例中,多肽的分离可通过键结相分配色谱法进行。对键结相分配色谱法来说,固定相化学键结于支撑表面上。
在另一实施例中,使用正相色谱法分离多肽。在正相色谱法中,使用极性固定相以及非极性溶剂。正相色谱法的固定相的实例包含(但不限于)水、醇以及三乙二醇。正相色谱法的非极性溶剂的实例包含(但不限于)乙基、醚、氯仿、四氢呋喃、氟烷、环己烷、1-氯丁烷、四氯化碳、甲苯、乙醚、己烷以及异丙醚。在一实施例中,分配色谱法使用反相填料;此称为反相分配色谱法。在反相色谱法中,使用非极性固定相以及极性流动相。反相分配色谱法的固定相的实例包含(但不限于)烃、醚、酯、酮、醛、酰胺以及胺。反相分配色谱法的流动固定相的实例包含水、甲醇、乙醇、乙酸乙酯、二恶烷、硝基甲烷、乙二醇、四氢呋喃以及乙腈。
在一实施例中,可用于分离多肽的反向色谱法的类型为离子对色谱法。离子对色谱法中的流动相由含有有机溶剂(诸如甲醇或乙腈)的水性缓冲液和含有具有多肽的相反电荷的抗衡离子的离子型化合物组成。抗衡离子与多肽结合形成离子对,所述离子对为由反相填料保留的中性物质。然后用甲醇或另一水溶性有机溶剂(如以上所述的溶剂)的水溶液实现离子对的洗脱。抗衡离子的实例为C1O4 -、C12H25SO3 -、(C4H9)4N+、(C16H33)(CH3)3N+、(C4H9)4N+、双-(2-乙基已基)磷酸根以及(C4H9)4N+
在一实施例中,多肽可使用具有手性固定相的分配色谱法分离。手性固定相的类型的实例包含(但不限于)基于蛋白质的固定相、纤维素与直链淀粉的小分子量手性聚合物、大环糖肽以及基于环糊精的物质。
吸附色谱法
在一实施例中,多肽的分离可通过吸附色谱法进行。吸附是物质(流动相中所含的物质)通过物理力(分散、极性或离子)与固定相相互作用的过程,从而使得物质层(或各层)粘附于固定相上。在大多数情况下,固定相将为固体(例如硅胶、氧化铝、炭等)或有时为液体(例如,水表面上的表面活性剂)。表面层可为单层、双层或多层。可用于吸附色谱法中的溶剂的实例包含水、甲醇、乙醇、乙酸乙酯、二恶烷、硝基甲烷、乙二醇、四氢呋喃、乙腈、乙基、醚、氯仿、四氢呋喃、氟烷、环己烷、1-氯丁烷、四氯化碳、甲苯、乙醚、己烷以及异丙醚。
离子交换色谱法
在一实施例中,多肽的分离可通过离子交换色谱法进行。在离子交换色谱法中,多肽的分离是以离子交换树脂为基础。离子交换树脂可为阴离子交换树脂或阳离子交换树脂。离子交换树脂可由天然离子交换剂(诸如粘土和沸石)或合成离子交换剂制成。阳离子交换树脂的常见活性位点的实例为磺酸基-SO3 -H+、羧酸基-COO-H+以及磷酸-PO32 +H2。阴离子交换树脂的常见活性位点的实例为季胺基-N(CH3)+OH-或伯胺基-NH3 +OH-。离子交换色谱法中的流动相通常为可含有中等量甲醇或其它水混溶性有机溶剂的水溶液;所述流动相也含有呈缓冲剂形式的离子物质。
在一实施例中,离子交换柱是用盐浓度梯度洗脱。在一实例中,在缓冲液流经管柱时泵将递增量的盐添加到缓冲液中,以便流经管柱的离子浓度存在连续稳定的增加。当缓冲液的离子强度中和蛋白质电荷时,蛋白质“洗脱”或离开管柱固定相。带电最小的分子首先离开,而带电最高的最后离开。在另一实例中,用具有递增离子强度的缓冲液充分清洗管柱直到所需蛋白质洗脱;每次用相同量的缓冲液重复这一完全相同的顺序以得到蛋白质的可重现的产率和纯化。
在一实施例中,通过离子交换色谱法分离所关注的多肽后,将使样品经受高盐浓度移除。在一实施例中,高盐浓度的移除将通过透析进行。透析利用半透性膜。透析膜的主要特征在于其是多孔的。然而,孔径使得当小盐离子可自由通过膜时,较大蛋白质分子不能通过(即,其被保留)。因此,透析膜由将其保留的最小的典型球状蛋白质的分子质量表征。高盐浓度的移除可以单个或多个透析步骤实现。在另一实施例中,高盐浓度的移除通过电透析进行。电透析是在电势梯度的影响下离子穿过离子可透膜从一种溶液运输到另一溶液中的电隔膜过程。因为用于电透析中的膜具有选择性运输具有正电荷或负电荷的离子且排除具有相反电荷的离子的能力,所以电透析适用于电解质的浓缩、移除或分离。
在另一实施例中,高浓度盐的移除是通过使用脱盐管柱在重力流动凝胶过滤中实现。重力流动凝胶过滤涉及具有不同尺寸的分子基于其透入合适固定相中的相对能力的色谱分离。向脱盐管柱中填塞小的多孔纤维素珠粒。所述管柱含有具有特定直径的湿珠粒。所使用的珠粒的直径将视所关注的肽的分子量而定。分离的不同程度可基于填塞至管柱中的介质的孔径实现。可选择介质以完全排除蛋白质或大分子,同时仍包含小溶质。大分子被从凝胶的内孔中排除出且首先从管柱中排出。较小分子能够通过微孔,且然后以较低速率通过管柱前进。所述较小分子接着用另外的缓冲体积冲洗通过管柱。
尺寸排除色谱法
在一实施例中,多肽的分离可通过尺寸排阻色谱法(也称为凝胶渗透或凝胶过滤色谱法)进行。大于填料的平均孔径的分子被排除且因此不经受保留。尺寸排阻色谱法的填料的实例包含硅石、纤维素珠粒以及聚合物粒子。多孔玻璃和硅石粒子通常具有40埃至2500埃范围内的平均孔径。在一些实施例中,具有102埃的平均孔径的聚合物填料的分子量排阻极限是700。在另一实施例中,具有103埃的平均孔径的聚合物填料的分子量排阻极限是(0.1至20)×104。在另一实施例中,具有104埃的平均孔径的聚合物填料的分子量排阻极限是(1至20)×104。在另一实施例中,具有105埃的平均孔径的聚合物填料的分子量排阻极限是(1至20)×105。在又一实施例中,具有106埃的平均孔径的聚合物填料的分子量排阻极限是(5至10)×106。在一些实施例中,具有125埃的平均孔径的聚合物填料的分子量排阻极限是(0.2至5)×104。在另一实施例中,具有300埃的平均孔径的聚合物填料的分子量排阻极限是(0.03至1)×105。在另一实施例中,具有500埃的平均孔径的聚合物填料的分子量排阻极限是(0.05至5)×105。在又一实施例中,具有1000埃的平均孔径的聚合物填料的分子量排阻极限是(5至20)×105
薄层色谱法
在一实施例中,多肽的分离可通过薄层色谱法进行。薄层色层法包含纸色谱法、薄层色谱法以及电色谱法。各利用自撑式或涂布于玻璃、塑料或金属表面上的平坦的薄层材料。流动相通过毛细管作用、有时借助于重力或电势辅助移动通过固定相。在一实施例中,平面分离是在涂布有薄且粘附的细粒层的平坦玻璃或塑料板上进行;这一层构成固定相。固定相和流动相类似于吸附色谱法、正相和反相分配色谱法、离子交换色谱法以及尺寸排阻色谱法中所讨论的那些。在一实施例中,通过喷洒与有机化合物反应以产生深色产物的溶液将多肽置于板中。这类溶液的实例包含茚三酮、碘溶液以及硫酸溶液。在另一实施例中,通过将荧光物质并入固定相中来放置多肽。在紫外光下检测板。样品组分猝灭荧光物质,从而除放置非发荧光样品组分以外的所有板均发荧光。
亲和力色谱法
在一实施例中,多肽的分离可通过亲和力色谱法进行。亲和力色谱法依赖于设计与分子已知子集可逆结合的固定相的能力。亲和力纯化通常包括以下步骤:1)将粗样品与经固定的配位体支撑物质一起培育以使样品中的标靶分子与经固定的配位体结合,2)从固体支撑物洗除未结合的样品组分,以及3)通过改变缓冲条件以使结合相互作用不再发生,从固定配位体洗脱(解离且回收)标靶分子。用于亲和力色谱法的洗脱缓冲液的实例包含(但不限于)100mM盐酸甘氨酸、100mM柠檬酸、50-100mM三乙胺或三乙醇胺、150mM氢氧化铵、于10mM Tris中的3.5-4.0M氯化镁、于10mM磷酸盐缓冲液中的5M氯化锂、2.5M碘化钠、0.2-3.0硫氰酸钠、2-6M盐酸胍、2-8M脲、1%脱氧胆酸盐、1%SDS、10%二恶烷、50%乙二醇、0.1M甘氨酸-NaOH、具有50%乙二醇的0.1M甘氨酸-NaOH、3.0M氯化钾、具有2.0M NaCl的0.1MTris-乙酸盐、5.0M碘化钾、1%SDS、1%脱氧胆酸钠、2.0M脲、6.0M脲、2.0M盐酸胍、1.0M硫氰酸铵以及>0.1M抗衡配位体或类似物。
在一实施例中,固定相包含配位体,所述配位体包含(但不限于)特定碳水化合物或辅助物质。在一实施例中,可随后用高浓度碳水化合物或特定辅助物质洗脱多肽。有时可使用结合位点的模拟物作为亲和性固定相。用于固定相中的特定糖、抑制剂或辅助物质将根据多肽的性质而变化。本发明的实施例包含所属领域中已知的任何配位体、碳水化合物或辅助物质。
在另一实施例中,所固定的固定相包含染料。常用于染料-配位体色谱法的染料的实例包含活性蓝2(Blue 3GA)、活性红120(Red HE3B)、活性蓝4(ReactiveBlue MRB)TC、活性绿5(Reactive Green H4G)TC、活性绿19(Reactive Green HE4BD)TC、绿色19A(Reactive Green HE4BD)TC、活性黄86(Reactive Yellow M8G)TC以及活性棕10(Reactive Brown M4R)TC
在另一实施例中,固定相包含金属螯合树脂。在金属螯合物色谱法中,金属离子(诸如Zn2+、Cu2+以及Ni2+)通过螯合物键结参与与位于多肽表面中的电子供体基团可逆地相互作用固定于色谱固定相上。在电子基团供体至少部分以非质子化形式存在的pH值下,多肽键结于固定相且接着可借助于具有使电子基团质子化的较低pH值的缓冲液洗脱。螯合树脂的实例包含8-羟基喹啉、水杨酸、二亚乙基三胺、二亚乙基三胺四乙酸、乙二胺四乙酸(EDTA)、亚氨基二乙酸以及次氮基三乙酸。
在另一实施例中,多肽的分离可通过免疫亲和力色谱法进行。免疫亲和力或免疫吸附色谱法的原理是以抗原与其抗体的高度特异性相互作用为基础。免疫亲和力色谱法利用抗体或抗体片段作为配位体,所述配位体以保留其结合能力的方式固定于固定相上。通过改变削弱抗体-抗原相互作用的流动相的条件实现所保留多肽的洗脱。洗脱条件意欲破坏将抗原与抗体保持在一起的离子键、疏水键以及氢键。成功的洗脱条件将视所发生的特异性抗原-抗体相互作用而定。
可产生识别多肽中所存在的非天然氨基酸的抗体。所述抗体可用于亲和力色谱法中以在检测非天然氨基酸多肽的存在的免疫检定中和使用抗体的其它检定中从复杂混合物中纯化非天然氨基酸多肽或能够使多肽与支撑物(诸如树脂)上的其它分子接合。可产生识别多肽N末端或C末端或多肽的其它部分中所存在的一个或一个以上非天然氨基酸的抗体。
非天然氨基酸多肽可为抗体、抗体片段或抗原结合多肽或其片段,且通过亲和力色谱法用于分离抗原。
在一实施例中,多肽的分离可通过疏水性相互作用色谱法进行。多肽可含有亲水性与疏水性天然氨基酸和亲水性与疏水性非天然氨基酸。根据多肽的相对疏水性通过其与疏水性化合物可逆性结合的能力分离多肽。用于缓冲液中的递减浓度的盐从管柱洗脱多肽。疏水性化合物的实例包含(但不限于)疏水性脂肪酸链、具有正丁基官能团的化合物、具有正辛基官能团的化合物以及具有苯基官能团的化合物。
超临界流体色谱法
在一实施例中,多肽的分离可通过超临界色谱法(SFC)进行。在SFC中,通过超临界流体使样品流经分离柱,其中基于个别分析物与管柱中的固定相之间的相互作用的量将混合物分成独特带。常规SFC管柱呈填塞且开口的管状或毛细管状。开口管柱的长度为10米到20米或20米以上不等。开口管柱通常具有约0.05毫米至4毫米的内径。填塞管柱的直径从0.5毫米或0.5毫米以下到4.6毫米不等,其中粒径在3微米至10微米范围内。填塞管柱含有固定相粘附于其上的小的去活化粒子。管柱通常为不锈钢。毛细管柱是由熔融硅石制成的具有狭窄内径的开口管柱,其中固定相键结于管柱壁。涂层类似于分配色谱法中所使用的涂层。用于SFC中的超临界流体的实例包含(但不限于)二氧化碳、乙烷、戊烷、氧化亚氮、二氯二氟甲烷、乙醚、氨以及四氢呋喃。在一些应用中,以低浓度(1-5%)引入极性有机调节剂(诸如甲醇)。
B.沉淀法
在一实施例中,肽、(经修饰)非天然氨基酸多肽、多肽的结合搭配物或受体的分离可通过沉淀法进行。多肽的溶解性与溶液的离子强度和pH值相关。多肽具有等电点,在该点时其氨基酸侧基的电荷彼此平衡。如果溶液的离子强度极高或极低,那么蛋白质将倾向于在其等电点下沉淀。在一实施例中,溶液的离子强度将通过添加盐而得以增加。沉淀法中所使用的盐的实例包含(但不限于)硫酸铵和硫酸钠。在本发明的任何实施例中,可使用蛋白质沉淀的所属领域中已知的任何盐。在另一实施例中,将用聚合物迫使多肽离开溶液。通常用于沉淀多肽的聚合物的一个实例为聚乙二醇。在本发明的任何实施例中,可使用蛋白质沉淀的所属领域中已知的任何聚合物。在一实施例中,通过离心或过滤移除所沉淀的多肽。
在一实施例中,通过向溶液中添加盐使所关注的肽沉淀后,将使样品经受高盐浓度的移除。脱盐方法讨论于离子交换色谱法部分中。
免疫沉淀
在本发明的一实施例中,多肽的分离可通过免疫沉淀法(immunoprecipitation,IP)进行。IP指的是使用特异性抗体的抗原的小规模亲和力纯化。经典的免疫沉淀法包括以下步骤:1)将特异性抗体与含有抗原的样品一起培育,2)用固定的蛋白质A或G琼脂糖凝胶(蛋白质A或G结合与其抗原结合的抗体)捕获抗体-抗原复合物,3)用缓冲液洗涤凝胶以移除未结合样品组分,4)洗脱抗原(和抗体)。
在本发明的一实施例中,使用固定的蛋白质A或G凝胶在微离心管中进行含多肽样品的经典IP。各步骤(洗涤和洗脱)后,通过离心使凝胶成团,且移除上清液。所洗脱的样品通常总会含有抗原与抗体两者,且所洗脱样品的还原凝胶电泳会产生抗原带与重链和轻链抗体片段带。从分离的电泳凝胶获得多肽的方法为所属领域的一般技术人员所知。
在本发明的另一实施例中,为避免洗脱抗原被抗体污染,可对经典IP方法进行修改,以便使抗体永久地固定且不会与抗原一起洗脱。在一实例中,首先使抗体结合于蛋白质A或G凝胶,且然后使抗体共价交联于蛋白质A或G。在另一实例中,使抗体与经活化亲和性支撑物直接偶合。非天然氨基酸多肽可为抗原结合多肽且可用于免疫沉淀法中。
在一实施例中,支撑物质为多孔凝胶,诸如交联珠粒琼脂糖或交联双丙烯酰胺与吖内酯的共聚物。在本发明的一实施例中,多肽可通过磁性亲和力分离来分离。将含有所关注分子的样品与用抗体或其它结合搭配物衍生化的磁性珠粒一起培育。使用磁场将磁性珠粒牵引出溶液且位于表面上。可小心地移除含有任何未结合分子的缓冲液。在此项技术中熟知使用用于分离所关注分子的磁性珠粒的方案。磁性珠粒可经衍生化以含有活性基团,所述活性基团包含(但不限于)羧酸或伯胺或特异性亲和性分子,诸如抗生蛋白链菌素或山羊抗小鼠、抗兔或抗大鼠IgG或蛋白质A或G。在另一实施例中,支撑物为微板。
C.电泳
在本文中的任何实施例中,多肽的分离可通过电泳进行。电泳是在电场中基于分子的大小和离子电荷通过经由凝胶的差异迁移模式的离子型分子(诸如多肽)的分离。电泳可在凝胶、毛细管中或芯片上进行。用于电泳的凝胶的实例包含淀粉、丙烯酰胺、琼脂糖或其组合。凝胶可通过其交联、添加洗涤剂、固定酶或抗体(亲和力电泳)或底物(酶谱法(zymography))以及pH梯度来修饰。从电泳凝胶获得多肽的方法为所属领域的一般技术人员所已知。
毛细管电泳
在一实施例中,肽、(经修饰)非天然氨基酸多肽、多肽的结合搭配物或受体的分离可通过毛细管电泳法(CE)进行。CE可用于分离复杂亲水性分子和高度带电溶质。CE的优点包含其使用小样品(规模在0.001微升到10微升范围内)、快速分离、易于重现、效率极高,此意谓可同时分离数百个组分,容易自动化,可定量使用且消耗有限量的试剂。CE技术通常涉及使用窄膛融合硅石毛细管来分离大分子和小分子的复杂阵列的分离技术。使用高电压来基于电荷、大小以及疏水性的差异分离分子。视所使用的毛细管的类型和缓冲液而定,CE可进一步分成以下分离技术:诸如毛细管区带电泳(capillary zone electrophoresis,CZE)、毛细管等电点聚焦(capillary isoelectric focusing,CIEF)和毛细管电色谱法(capillary electrochromatography,CEC)。
毛细管区带电泳(CZE)(也称为无溶液CE(FSCE))为CE的最简单形式。CZE的分离机理是基于分析物荷质比的差异。CZE的基本要求为毛细管整个长度上缓冲溶液的均一性和恒定的磁场强度。分离主要依赖于溶质上酸性基团的pH控制解离或溶质上碱性官能团的质子化。
毛细管等电点聚焦(CIEF)允许两性分子(诸如,多肽)通过电泳在阴极与阳极之间产生的pH梯度下分离。溶质会迁移到溶质净电荷为零的点。在此等电点(溶质的pI)下,迁移停止且样品聚焦于致密区带中。在CIEF中,一旦溶质在其pI下聚焦,则通过压力或化学措施使区带移动穿过检测器。
CEC为传统液相色谱法(HPLC)与CE之间的混合技术。本质上,向CE毛细管中填塞HPLC填料且在整个填塞毛细管上施加电压,其产生电渗流(electro-osmotic flow,EOF)。EOF将溶质沿毛细管朝向检测器运输。在溶质朝向检测器运输期间,发生溶质的差异分配与电泳迁移,此产生CEC分离。因此,与HPLC与CE相比,使用CEC有可能获得独特的分离选择性。EOF的有利流动分布减小与流动相关的带增宽且CEC中通常获得每米数十万块板的分离效率。CEC也使得有可能使用小直径填料和实现极高效率。
胶束电动毛细管色谱法(Micellar electrokinetic capillarychromatography,MECC)为允许分离不带电溶质的毛细管电泳法。在这一技术中,以超过形成胶束的临界胶束浓度的量将表面活性剂(诸如,十二烷基硫酸钠)添加至操作缓冲液中。这一类型的阴离子胶束的表面具有大的负电荷,此赋予其大的朝向阳电极的电泳迁移率。然而,大多数缓冲液展现朝向阴电极的高电渗速率,致使阴离子胶束被带向阴电极,但以小得多的速率。此形成快速移动的水相和较慢移动的胶束相。当将样品引入到系统中时,组分自身在胶束的内部于水相与烃相之间分布。
或者,等速电泳(isotachophoresis,ITP)为通过使用不连续缓冲液的电泳分离来浓缩样品的方法。在等速电泳中,使用两种不同的缓冲液系统以产生分析物分离至其中的区带。等速电泳实验期间,有可能分离阳离子或阴离子,而不是两者。在ITP中,将大体积的样品放置在前导电解质与末端电解质之间。样品中的分析物根据其移动性依次堆积于窄的带中。所述技术可与毛细管电泳组合使用,其中在样品注射到毛细管中的位点处使用不连续电解质系统。
此外,瞬时等速电泳(transient isotachophoresis,tITP)为通常与毛细管电泳(CE)组合使用的这一技术的变体。Foret,F.等人在"Trace Analysis of Proteins byCapillary Zone Electrophoresis with On-Column Transient IsotachophoreticPreconcentration".Electrophoresis 1993,14,417-428(1993)中描述两种用于执行tITP的电解质配置。
一种配置使用通过毛细管连接的两个贮液器。向毛细管和一个贮液器中填充前导电解质(leading electrolyte,LE),而向另一存储器中填充终端电解质(terminatingelectrolyte,TE)。首先将用于分析的样品注入至填充有LE的毛细管中,且将毛细管的注入端插入含有TE的贮液器中。施加电压且具有介于LE与TE的移动性中间的移动性的那些样品组分堆积于尖锐的ITP区带中且获得稳定态浓度。所述区带的浓度与LE共离子的浓度相关,但不与TE的浓度相关。一旦达到稳定状态,就用含有LE的贮液器代替含有TE的存储器。这使得尖锐ITP区带去堆积,此允许个别物质以区带电泳模式移动。
Foret,F.等人所讨论的另一配置使用类似方法,但在各贮液器中使用单一本底电解液(background electrolyte,BGE)。BGE共离子的移动性较低,使得其可充当终端离子。用于分析的样品含有另外的具有高电泳迁移率的共离子,使得其在tITP迁移期间可充当前导区带。将样品注入至毛细管中且施加电压后,样品中具有较高移动性的前导离子形成不对称的前导且尖锐的后置边界。正好在后置边界后方,形成传导不连续性,且此产生不均匀电场,且因此样品离子堆积。当迁移前进时,前导区带将因电迁移分散而增宽,且较高移动性盐的浓度将降低。结果是沿迁移区带的电场递减不同。在前导区带的某一浓度下,样品带将去堆积且在独立的速度下以区带电泳模式移动。肽的分离可涉及所属领域中已知的任何程序,诸如毛细管电泳(例如,在毛细管中或芯片上)或色谱法(例如,在毛细管、管柱中或在芯片上)。
D.移除污染物的程序
在本发明的一些实施例中,在获得所关注的多肽的一级纯化程序后,可能需要二级纯化步骤来移除污染物。污染物可为抑制剂、干扰物质或不适当缓冲剂。在本发明的一实施例中,污染物的移除将通过从生物分子的复杂混合物中特定纯化出其所关注的蛋白质来实现。在本发明的另一实施例中,污染物的移除将通过从含有所关注的蛋白质的样品中特定移除污染物来实现。举例来说,可使用固定的蛋白质A从样品中选择性移除免疫球蛋白,在所述样品中免疫球蛋白视为污染物。在又一实施例中,可使用过滤器从样品中移除不想要的组分。实例包含(但不限于)尺寸排阻色谱法和超滤膜,其基于大小和分子量分离分子。在又一实施例中,可使用超离心法从样品中移除不想要的组分。超离心法可涉及离心样品,同时用光学系统监测粒子的沉积(或无沉积)。在本发明的另一实施例中,使用电透析从样品中移除不想要的组分。电透析为在电势梯度的影响下将离子从一种溶液运输穿过离子可透膜到另一溶液中的电隔膜过程。因为用于电透析中的膜具有选择性运输具有正电荷或负电荷的离子且排斥具有相反电荷的离子的能力,所以电透析适用于电解质的浓缩、移除或分离。
移除内毒素
在本发明的一些实施例中,可能有必要从样品中移除内毒素。内毒素为革兰氏阴性菌(Gram-negative bacteria)的致热脂多糖(lipopolysaccharide,LPS)组分。因为所述细菌是普遍存在的,所以内毒素为生物化学制剂的常见污染物并不惊奇。内毒素污染通常以内毒素单位(endotoxin unit,EU)量度,其中1EU对应于足以产生致热反应的内毒素的浓度(通常每千克体重约0.1纳克)。在一实施例中,内毒素的移除通过超离心法进行。在另一实施例中,内毒素的移除通过使用经固定的多粘菌素B(polymixin B)进行。降低内毒素含量的方法为所属领域的一般技术人员所已知且包含(但不限于)使用硅石支撑物、玻璃粉或羟基磷灰石的纯化技术、反相色谱法、亲和力色谱法、尺寸排阻色谱法、阴离子交换色谱、疏水性相互作用色谱法,所述方法的组合,以及其类似方法。测量内毒素含量的方法为所属领域的一般技术人员所已知且包含(但不限于)鲎阿米巴细胞溶胞物(Limulus AmebocyteLysate,LAL)检定。
移除清洁剂
在本发明的一些实施例中,可能有必要移除样品中的一些或所有洗涤剂。举例来说,虽然许多水溶性多肽在洗涤剂增溶形式下起作用,但其它多肽可能被洗涤剂增溶作用改性和失活。在一实施例中,洗涤剂移除可通过透析进行。透析有效移除具有高临界胶束浓度(critical micelle concentrations,CMC)和/或小聚集数的洗涤剂,诸如N-辛基糖苷。在另一实施例中,从样品中移除洗涤剂可通过蔗糖密度梯度分离进行。在又一实施例中,洗涤剂可通过尺寸排阻色谱法从样品中移除。
E.重组多肽
在本发明的一实施例中,多肽的分离可使用遗传工程化技术来合成杂交蛋白质。通过融合所关注的多肽的编码序列与对配位体具有高亲和性的多肽的编码序列,可由微生物直接产生具有亲和性标签的杂交蛋白质。表达系统的实例为大肠杆菌(Escherichiacoli)、枯草杆菌(Bacillus subtilis)、荧光假单胞菌(Pseudomonas fluorescens)、铜绿假单胞菌(Pseudomonas aeruginosa)、恶臭假单胞菌(Pseudomonas putida)、酵母、哺乳动物细胞以及昆虫细胞中的杆状病毒系统。然后可使用亲和性标签通过亲和力色谱法从培养基、细胞溶胞物、提取物、包涵体、宿主细胞的周质间隙、宿主细胞的细胞质或其它材料回收产物。
在本发明的一实施例中,可通过离心或过滤获得分泌至介质中的非天然氨基酸多肽。所述溶液可适于直接施加至色谱管柱。在本发明的另一实施例中,提取细胞内累积的多肽,之后通过色谱纯化。在一实施例中,通过细胞破坏提取多肽。细胞破坏技术的实例包含机械粉碎机,诸如玻璃珠粒研磨机和高压均质机。在本发明的另一实施例中,通过细胞渗透提取多肽。渗透剂的实例包含(但不限于)盐酸胍和曲拉通X-100(Triton X-100)。除化学渗透外,可通过酶促溶解渗透细胞。细胞渗透后所获得的细胞均匀混合物或粗提取物的澄清可通过离心或不同过滤法(诸如微过滤或超滤)进行。
已开发出适用于离子交换色谱法、疏水性相互作用色谱法、亲和力色谱法、免疫亲和力色谱法以及金属-螯合物色谱法的纯化标签。举例来说,具有聚精氨酸标签的杂交多肽可通过离子交换色谱法纯化,具有聚苯丙氨酸标签的杂交多肽可通过疏水性色谱法分离,具有β-半乳糖苷酶标签的杂交多肽可通过亲和力色谱法分离,具有蛋白质A标签的杂交多肽可通过IgG亲和力色谱法分离,具有抗原标签的杂交多肽可通过免疫亲和力色谱法分离且具有聚组氨酸的杂交多肽可通过金属螯合物色谱法分离。标签可通过化学或酶促手段移除。在一些实施例中,通过分子内反应移除标签。连接子分子可被释放或可不被释放。
类似地,可使用非天然氨基酸产生纯化标签,且可使用色谱法或其它技术纯化具有所述标签的杂交多肽。在一实施例中,多肽的末端处包含多个非天然氨基酸。这种具有多个非天然氨基酸的多肽的纯化可根据非天然氨基酸的性质通过亲和力色谱法或其它方式纯化。
为使具有多个非天然氨基酸标签的多肽与另一分子接合,可进行以下程序。使多肽与与非天然氨基酸标签结合的树脂结合后,进行反应以使多肽与另一分子(诸如PEG)接合。作为接合的结果或在接合完成后,可从树脂释放接合产物。可在变性条件下进行接合且可在树脂上进行多肽的再折叠。可使第二分子与多肽在多肽中所存在的天然或非天然氨基酸处接合。可使第二分子与多肽在非天然氨基酸标签中所存在的天然或非天然氨基酸处接合。
在另一实施例中,多肽末端所包含的多个非天然氨基酸为金属结合氨基酸。这种多肽的纯化可使用类似于用于以His标签标记的蛋白质的方法进行。在另一实施例中,多肽包括两个或两个以上非天然氨基酸,其中一个或一个以上非天然氨基酸用于使多肽与树脂结合且第二个非天然氨基酸用于使多肽与另一分子(包含(但不限于)PEG)接合。可使用适用于纯化技术的其它物质代替树脂。标签可通过化学或酶促手段移除。在一些实施例中,通过分子内反应移除标签。连接子可被释放或可不被释放。
在另一实施例中,杂交多肽可在多肽与标签接合处具有非天然氨基酸。可使用这一非天然氨基酸通过化学裂解使多肽与标签分离,例如在使标签与管柱结合期间或之后。可使用这一非天然氨基酸通过酶促裂解或通过分子内化学反应使多肽与标签分离。
在另一实施例中,使用“前药”型方法。使非天然氨基酸多肽结合于纯化基质,且在包含(但不限于)分子内反应、曝露于紫外光(对释放来说为光活化分子)、化学裂解或酶促裂解的事件后部分或整个多肽得以释放。
在另一实施例中,可在多肽部分之间的接合处引入特异性裂解位点。这使得能够(例如)裂解杂交分子以产生不含亲和性标签的所关注蛋白质。融合序列的移除可通过酶促裂解或化学裂解实现。为使亲和性标签从所关注的多肽分裂,可将特异性化学裂解或酶促裂解位点工程化于融合蛋白质中。融合序列的酶促移除可使用所属领域的一般技术人员所已知的方法实现。如对于所属领域的一般技术人员将显而易见,用于移除融合序列的酶的选择将由融合体的特性决定,而反应条件将由酶的选择指定。化学裂解可使用所属领域的一般技术人员已知的试剂(包含(但不限于)溴化氰、TEV蛋白酶以及其它试剂)实现。裂解试剂的实例包含(但不限于)甲酸、羟胺、胶原酶、因子Xa、肠激酶、肾素、羧基肽酶A以及羧基肽酶B。经裂解的hGH多肽可通过所属领域的一般技术人员已知的方法从经裂解的融合序列和裂解试剂中纯化。如对于所属领域的一般技术人员将显而易见,所述方法将由融合序列和多肽的特性和性质决定。用于纯化的方法可包含(但不限于)尺寸排阻色谱法、疏水性相互作用色谱法、离子交换色谱法或透析或其任何组合。
随着发展中蛋白质和肽治疗剂的数目的增加,对成本不高且不难扩大规模的高效、经济且大规模的蛋白质纯化法存在需求。可使用树脂或所属领域的技术人员已知的其它物质分离多肽。图10展示利用与非天然氨基酸反应的树脂的非天然氨基酸多肽的纯化方法的实例。在树脂上的化学特异性亲和性标签与蛋白质中存在的非天然氨基酸之间形成共价键。所述键在宽范围的pH值和纯化条件下为稳定的。分离步骤可以交替模式进行,所述交替模式包含(但不限于)能够进行大规模纯化的浴模式。树脂与亲和性标签在物理上和化学上都为稳定的,且因此可再使用以降低规模扩大后的蛋白质纯化的成本。分离可与多肽与分子(包含(但不限于)PEG)的接合组合进行。这种“一锅式”方法进一步简化接合过程且降低蛋白质(包含(但不限于)标靶治疗蛋白质)的制造成本(图11)。可根据多肽中所存在的非天然氨基酸选择且使树脂官能化。图12展示树脂选择和官能化的实例。视多肽中的非天然氨基酸而定,用于纯化的树脂或其它基质可用不同官能团官能化。举例来说,图13展示使用羟胺树脂的非天然氨基酸多肽的亲和力纯化的实例。图14展示使用醛树脂的非天然氨基酸多肽的纯化的实例。再生纯化方法中所使用的基质的能力也提供大规模生产的优点。
在一些实施例中,纯化过程将多肽中所存在的一个或一个以上非天然氨基酸改为一个或一个以上天然氨基酸。图15展示从非天然氨基酸前驱体纯化天然蛋白质的实例。在非天然氨基酸从纯化过程中所使用的树脂中释放后,其转化为酪胺酸。图16展示非天然氨基酸的非限定性实例。
可使用两种或两种以上蛋白质的组中所存在的非天然氨基酸纯化多肽复合物。非天然氨基酸可彼此键结或通过连接子、聚合物或使得能够纯化多肽复合物的另一分子接合。可以这种方式分离的多肽包含(但不限于)多亚单元受体或酶。用于分离复合物的技术可使用一种或一种以上多肽中所存在的一个或一个以上另外的非天然氨基酸。用于分离大蛋白质的技术为所属领域的一般技术人员所已知。多肽复合物的解离可使用一种或一种以上多肽中所存在的一个或一个以上非天然氨基酸进行。可使一个或一个以上非天然氨基酸与另一具有使得复合物中的多肽分离的官能团的分子反应。
在一些实施例中,多肽可因涉及多肽中所存在的一个或一个以上非天然氨基酸的非共价相互作用而形成复合物。
在一些实施例中,归因于多肽中所存在的一个或一个以上非天然氨基酸,可使用电/化学相互作用(诸如电场或磁场)纯化多肽。在其它实施例中,可使用非天然氨基酸多肽实现单细胞纯化或分离。
XII.文库筛检
1.高通量筛检
用于本文中所揭示的非天然氨基酸、非天然氨基酸多肽、经修饰非天然氨基酸多肽以及其片段的筛检过程的技术方法包含(但不限于)基于多孔板的筛检系统、基于细胞的筛检系统、基于微流体的筛检系统以及以固相合成药物组分筛检可溶性标靶。
自动多孔格式为成熟的高通量筛检系统。广泛使用自动96孔板基筛检系统。可制备基于板的筛检系统以进一步减小反应孔的体积,从而增加每板的孔密度。本发明中也可使用其它类型的高通量检定,诸如微型化细胞基检定。微型化细胞基检定归因于其活体内性质具有产生高质量和准确性的筛检数据的潜能。在活体外反应中在溶液中测量的微流体基筛检系统使用十微米到数百微米宽的通道。微泵、电渗流、整合式阀门以及混合装置控制液体通过通道网络的运动。
用于筛检的文库可分为(仅举例来说):基于通用筛检或模板的文库,诸如具有常见杂环晶格的组;目标选择,诸如基于机制的选择,例如激酶调节剂、GPCR配位体、抗感染剂、钾通道调节剂以及蛋白酶抑制剂;优先结构,诸如含有化学基元的化合物,与其它结构相比,其更通常与较高生物活性相关;多样性,诸如预先选自具有最大化学多样性的可用库存的化合物;植物提取物;天然产物/天然产物来源的产物等。
A.化学文库
组合化学文库为参与新化合物先导物的产生的方式。组合化学文库为由化学合成或生物合成通过组合大量化学“基本组分(building block)”(诸如试剂)产生的多样性化合物的集合。通过化学基本组分的所述组合混合可合成数百万种化合物。如Lipinski“5规则(rule of five)”需求中所述,H键供体和接受体的LogP、分子量、数目有助于确定类药特征的强有力候选物。Lipinski“5规则”要求化合物具有以下性质:氢键供体为5个或5个以下;分子量小于或等于500Da;所计算出的LogP小于或等于5;以及氢键接受体为10个或10个以下。与通过组合化学和/或高通量合成法获得的化合物文库联合的高通量筛检技术可用于快速鉴别且优化如本文中所揭示的非天然氨基酸、非天然氨基酸多肽、经修饰非天然氨基酸多肽以及其片段的配位体。
有机化合物的化学多样性文库包含(但不限于):苯并二氮呯;多变体(diversomer),诸如乙内酰脲、苯并二氮呯以及小化合物文库的类似有机合成;寡聚文库,诸如肽、N-烷基甘氨酸、聚氨基甲酸酯以及聚脲;寡聚氨基甲酸酯和/或膦酸二肽酯;碳水化合物文库;手性化合物文库以及小有机分子文库。已通过固相法合成多种杂环化合物文库。所述化合物包含(仅举例来说)苯并二氮呯、吡咯烷、乙内酰脲、1,4-二氢吡啶、异喹啉酮、二酮哌嗪、苯甲基哌嗪、喹诺酮、二氢和四氢异喹啉酮、4-噻唑烷酮、β-内酰胺、苯并异噻唑酮、吡咯以及咪唑。
无机化合物的组合文库包含(但不限于)(a)金属和主族元素的氧化物,包含过渡金属氧化物,诸如氧化锆、二氧化钛、氧化锰,稀土氧化物,诸如二氧化铈和氧化镧;二元、三元和三元以上复合固态氧化物以及陶瓷相;氧化铝、二氧化硅、铝硅酸盐以及铝磷酸盐的各种形式;(b)铝硅酸盐和硅酸盐沸石的天然和合成形式,诸如ZSM-5、β、沸石Y以及镁碱沸石,分子筛的各种形式,诸如铝磷酸盐和钛硅酸盐;天然或合成粘土以及相关矿物质,诸如高岭土、硅镁土、滑石、蒙脱石以及(c)非氧化物陶瓷,诸如金属碳化物和氮化物;(d)碳的各种形式,诸如活性碳、碳分子筛、石墨、富勒烯(fullerene)、纳米碳管以及碳黑;(e)各种有机聚合物、寡聚物或树脂,诸如聚乙烯、聚丙烯、聚苯乙烯、聚酰胺、卤代烃聚合物、聚酯等;(f)金属,诸如沉积、混合或交换于任何支撑物(诸如以上(a)-(e)中所述的任何物质)中的贵金属和/或过渡金属。所述相的实例包含Pt/氧化铝、Pd/氧化铝以及Cu-ZSM-5。
B.生物文库
使用微生物的肽文库:免疫系统的抗体和免疫细胞受体为代表性生物文库。在免疫系统中,所有文库设计、合成以及优化的过程都是由有机体自身控制的。仅抗原和形成胚胎因子的遗传信息的结构为外部条件,但其余由内在因素自发控制。因为免疫系统使用蛋白质结构文库,所以其是使用氨基酸作为基本因子的文库。因为由氨基酸形成的肽或蛋白质是通过翻译遗传信息所合成的第一产物,通过遗传工程技术,可通过将经修饰遗传信息插入如细菌或病毒的微生物中容易地获得所需序列的蛋白质。微生物文库合成具有数个优点。有可能克隆微生物以每种微生物仅产生一种蛋白质,且即使仅获得一个细胞,但克隆的数目可通过细胞增殖容易地增加。使用微生物的另一优点在于当存在足够供应时,其可自我繁殖。合成产生所需蛋白质序列的DNA链后,需要时通过酶来合成其互补链。对用于在微生物中适当复制且翻译的所合成的DNA来说,需要用载体包装且插入微生物中。下一步是使蛋白质表达于微生物表面上且寻找所需蛋白质。
为制造文库,需要各种遗传信息。可使用特定有机体的随机DNA合成或切割cDNA或整个基因组DNA。可修饰产生特定蛋白质的DNA序列的部分以制造突变型蛋白质文库。考虑到微生物培育的体积限制和表达速率,可制造109(十亿)种文库。与106至107种合成文库相比,此为一个巨大的数目。5单元肽的数目是205(320万),6单元肽的数目是6400万,且7单元肽的数目超过十亿。因此,如果改变超过7个氨基酸,那么制造出并非含有所有可能的组合的不完整文库。对长蛋白质来说,可独立选择7个不同氨基酸并替换。当随机合成DNA时,DNA代码可重复且指定同一氨基酸,且产生频率改变。因此,为产生所有可能的组合,需要更多数量的克隆。
线性组合生物文库(诸如多肽文库)是通过以任何可能的方式组合一组化学基本组分(称为氨基酸)达给定的化合物长度(即,多肽化合物中的氨基酸的数目)来形成。蛋白质可为蛋白质家族的成员,所述蛋白质家族诸如受体家族(实例:生长因子受体、儿茶酚胺受体、氨基酸衍生物受体、细胞激素受体、凝集素)、配位体家族(实例:细胞激素、丝氨酸蛋白酶抑制剂(serpin))、酶家族(实例:蛋白酶、激酶、磷酸酶、类ras GTP酶、水解酶)、转录因子(实例:类固醇激素受体、热休克转录因子、锌指、白胺酸拉链、同源异型结构域)、HIV蛋白酶或丙型肝炎病毒(HCV)蛋白酶以及抗体或抗体片段(例如,Fab)。其它实例诸如类肽、所编码的肽、随机生物寡聚物、二肽、插烯多肽、具有βD葡萄糖支架的非肽拟肽、抗体文库以及肽核酸文库。
噬菌体文库:其为许多蛋白质文库法中的一种。噬菌体生活在细菌宿主中且为一种具有遗传物质和衣壳的病毒。M13和λ病毒最著名。
M13为细长病毒,且因其具有小的基因组大小而可容易地制造出众多文库。与其它病毒不同,其可来到宿主细胞外部而不对宿主细胞产生损伤或抑制宿主细胞生长。已知M13在宿主细胞中扩增其遗传信息且当排出时穿戴上衣壳。其产生10种蛋白质且其中pVIII和pIII衣壳常用于文库合成。pVIII蛋白质包裹周身且具有约50个氨基酸。通常每个病毒表达2700个。因为其氨基端伸出衣壳外部,所以其可经修饰以在其上表达不同肽。虽然通常不能表达长肽,但有可能表达6单元肽。因为同时表达大量相同分子文库,所以尽管其尺寸相对较短,但其适于与各种配位体的反应。pIII蛋白质表达于病毒末端,且通常表达3至5个具有406个氨基酸的蛋白质。其可表达非常大的蛋白质,从而其用于整个蛋白质或抗体分子文库。正常抗体使用Fab、抗原识别区或Fvs链。噬菌体文库和融合瘤为制造抗体的最著名的方法。M13对于制造随机肽文库为理想的,且所述病毒足够稳定来沉淀且浓缩,从而可能以1-10微升的体积筛检109个文库。
与M13不同,λ病毒在细胞质中使其自身包覆衣壳且当存在足够数目时从其宿主细胞释放出来,而不是在排出时穿戴衣壳。换句话说,如果表达不同蛋白质,那么其将很可能以具有适当功能的折叠形状排出。pV和D蛋白质常用于文库合成。对可表达于噬菌体表面上的蛋白质来说,存在随机肽、天然蛋白质片段、突变型特定蛋白质文库以及部分抗体片段,且其用于色谱物质、蛋白质-蛋白质相互反应、受体结合位点搜寻以及药物发现。
噬菌体呈现为广泛使用的制造肽文库的技术。所述肽文库适用于筛检以鉴别具有特定所需活性(诸如与另一多肽或其它分子结合)的肽。在噬菌体呈现中,使肽文库与噬菌体蛋白质(通常呈现于噬菌体表面上的鞘蛋白)融合。使带有肽的噬菌体的文库与经固定结合搭配物(诸如细胞表面或纯化蛋白质)接触,且随后分离特定结合物。噬菌体呈现技术和文库描述于美国专利第5580717号、第5702892号、第5750344号、第5821047号、第5962255号、第6140471号、第6475806号、第5427908号、第5667988号、第5733743号、第5750373号、第5824520号、第6096551号、第6225447号、第6492160号中,其是以引用的方式全部并入本文中。美国专利第5,750,373号(其是以引用的方式全部并入本文中)描述选择新颖蛋白质(诸如生长激素)和对各自受体分子具有改变的结合性质的抗体片段变异体的方法。所述方法包括使编码所关注蛋白质的基因与丝状噬菌体M13的基因III鞘蛋白的羧基未端域融合。
细菌和酵母文库:不仅具有衣壳的病毒,而且具有细胞壁和细胞膜的细菌也可用于文库表达。可使用革兰氏阳性菌(gram-positive bacteria)与革兰氏阴性菌将蛋白质表达于细胞表面上,且通常使用革兰氏阴性菌大肠杆菌。细菌文库可寻找与某种抗体强有力结合的抗原且将其用作疫苗,或其可表达用于分析特定物质的诊断抗体或受体文库。
此称为翻译修饰,其是在蛋白质合成后,通过磷酸化或糖添加来修饰高等动物的蛋白质。但原核生物细菌不具有这种功能,且即使合成蛋白质时,在大多数情况下,其因其不良溶解性而沉淀,或失活。因此,使用真核生物酿酒酵母(S.cerevisiae)。尽管酿酒酵母像细菌一样为单细胞,但其具有翻译修饰功能,且可制造极类似于原始物质的蛋白质。
与病毒不同,其具有微米尺寸细胞,从而可使用荧光活化细胞分选术(fluorescence-activated cell sorting,FACS)。可将经荧光标记的标靶分子添加到表达于细胞表面上的蛋白质的文库中且流经FACS机器的薄壁管。FACS通过荧光色和强度分选处于生活状态下的各细胞。有可能筛检具有不同颜色的不同靶分子,且也有可能分选具有不同强度和选择性的细胞。另一优点为液相筛检。没必要分离强烈粘附的分子。使所分选的细胞再次增殖且对其进行再筛检。
酵母表面呈现技术也广泛用于产生和呈现肽文库。酵母表面呈现可与荧光活化细胞分选组合用于选择呈现所需肽的细胞。酵母表面呈现技术和文库描述于美国专利第6083693号、第6406863号、第6410271号、第6232074号、第6410246号、第6610472号中,其是以引用的方式全部并入本文中。
细菌表面呈现已以多种形式用于将肽呈现于细胞表面上或周质中。多种细菌宿主可用于这一系统中,如多种将所呈现的肽锚定于细胞表面上的多肽锚定域。细菌表面呈现技术和文库描述于美国专利第5348867号、第5866344号、第6277588号、第5635182号、第6180341号中,其是以引用的方式全部并入本文中。
使用其它活体内系统制造多肽文库且鉴别由氨基酸序列的变化产生的活性的变化,诸如标靶蛋白质结合调节。活体内系统的实例包含(但不限于)酵母双杂交系统(Schneider,S等人,Nat.Biotechnol.,17,170-175(1990))和二氢叶酸还原酶蛋白质片段互补检定(Pellitier,N.J.等人,Nat.Biotechnol.,17,683-690,(1990)),其是以引用的方式并入本文中。
生物淘选:可使用所合成的微生物文库寻找以高亲和力与特定分子结合的肽。
可将标靶分子(诸如如本文中所揭示的非天然氨基酸、非天然氨基酸多肽、经修饰非天然氨基酸多肽以及其片段)均匀地放置在测试板上。可将所制备的微生物文库添加到板上。仅与标靶分子强有力结合的微生物将保留且其余将留在溶液中。不久,可舍弃未结合的微生物,且随后可用适当溶液洗涤弱或偶然结合的微生物。标靶分子的结合亲和力决定洗涤方法。仍保留的微生物可通过添加低pH值或高浓缩标靶分子分开,且通过再培育扩增数量。有时,当亲和力太强时,可能难以在不杀死细菌的情况下将其分离。如果其为噬菌体,则可直接感染其宿主细胞,而不是分离。因为仍会存在一些偶然结合的不想要的微生物,所以第一扩增微生物可经历重复筛检和扩增过程以增加含有活性蛋白质的克隆的数目。最后,在其以低浓度培育后,可分离各克隆,且通常可选择数十个克隆且将其用于DNA序列分析。如果来自DNA信息的肽结构可识别且大部分克隆展示一致肽序列,那么此为成功的。然而,因为蛋白质的数种克隆可具有毒性且DNA表达速率可变化,所以可能存在选择比所需筛检结果更快的增殖和充分表达的克隆的可能性。因此,通过测量肽合成和结合亲和力的证实步骤是必要的。
微生物蛋白质文库技术根本上使用生活有机体的自我繁殖能力。即,通过扩增(馈给)少量所获得的候选分子,可增加纯度和数量。
核糖体呈现:核糖体呈现和mRNA呈现技术也广泛用于制造肽文库。核糖体呈现和mRNA呈现为在核糖体上或通过使用嘌呤霉素(puromycin)使编码肽的mRNA与所编码的肽偶合的活体外技术。核糖体呈现和mRNA呈现技术和文库描述于美国专利第6416950号、第6436665号、第6602685号、第6660473号、第6429300号、第6489116号、第6623926号、第6589741号、第6348315号、第6207446号、第6258558号、第6416950号、第6440695号、第6228994号、第6281344号、第6429300号、第6660473号、第5580717号、第5688670号、第6238865号、第6261804号、第6518018号、第6281344号、第6258558号、第6214553号中,其是以引用的方式全部并入本文中。
DNA、RNA–文库:DNA扩增技术PCR的发展已使得能够使用核酸作为文库。因为DNA和RNA由4种单元构成,所以10寡聚物具有410(约106=一百万)种,且20寡聚物文库可具有约1012种。通过使用自动固相DNA合成器,固定序列中的5'端和3'端且随机放置A、T、C以及G,各占序列的约25%。当已制成一条链时,可将其通过使用酶复制或通过PCR扩增。虽然通常制造且使用约1014-15个分子,但偶尔存在约40个位置(1024种)以供随机引入,有时其以不完整组的文库开始。对DNA文库来说,简单地使用DNA自身,但对RNA文库来说,需要T7RNA聚合酶来转录。
所制备的文库通过标靶分子结合筛检加以分选;对DNA来说,通过PCR扩增,且对RNA来说,通过RT-PCR扩增。可使用如本文中所揭示的非天然氨基酸、非天然氨基酸多肽、经修饰非天然氨基酸多肽以及其片段作为标靶分子。重复所扩增文库的筛检和扩增直到开始数目1014-15范围变窄到数百个,且随后分析所获得的候选分子的序列,且测量各自的结合亲和力。所述所获得的DNA和RNA称为适体(aptamer),且其对蛋白质标靶分子展示强亲和力。适体在活体内抑制标靶分子的功能,但其被活体内核酸酶快速破坏。为解决这一问题,文库的一些部分经人工核酸取代以增加对核酸酶的抗性。
生物文库的数个实例包含(但不限于)生物活性脂质文库;内源性大麻素文库:在大麻素(cannabinoid,CB)和辣椒素(vanniloid,VR)受体处具有活性的化合物,其包含各类配位体,例如酰胺、乙醇酰胺、脂氨基酸、酰基-γ-氨基丁酸(Acyl-GABA)以及酰基多巴胺(Acyl-dopamine)等;已知生物活性文库,诸如GPCR配位体、第二信使调节剂、细胞核受体配位体、肌动蛋白和微管蛋白调节剂、激酶抑制剂、蛋白酶抑制剂、离子通道阻断剂、基因调控剂、脂质生物合成抑制剂等;离子通道配位体文库;激酶/磷酸酶抑制剂文库;天然产物文库:天然产物为化学多样性的非常卓越的来源且为药理学活性小分子的任何筛检程序的理想起点;神经传递素文库:CNS受体配位体,诸如肾上腺素能药、多巴胺能药、血清素能药(Serotonergics)、鸦片样物质(和σ配位体)、胆碱能药、组织胺能药(和抑黑素配位体)、离子移变谷氨酸能药(Ionotropic Glutamatergics)、代谢移变谷氨酸能药(MetabotropicGlutamatergics)、γ-氨基丁酸能药(GABAergics)以及嘌呤能药(Purinergics)(和腺苷)等;细胞核受体配位体文库:细胞核受体配位体文库含有在细胞核受体处结合的化合物。可包含受体激动剂和拮抗剂;孤配位体文库:孤配位体文库含有具有生物活性的化合物,但其蛋白质结合搭配物尚未鉴别出。举例来说,痕量胺、神经传递素代谢物、内源性β-咔啉、尿中代谢物、烟碱同源物以及D-氨基酸等。
2.筛检方法
本发明提供鉴别与蛋白质结合或充当蛋白质的结合特征或生物活性的调节剂的候选药剂的方法。检定可以多种方式进行,所述方式包含用已知分子筛检非天然氨基酸多肽文库,或反之亦然。在一实施例中,在单个试管中或以小规模进行所述方法。在另一实施例中,同时多重执行所述方法。举例来说,可在多孔筛检板中同时对多个检定混合物执行所述方法。因此,在一方面中,本发明提供高通量筛检系统。在一实施例中,在检定相互作用方面,利用荧光或吸光度读数来确定活性。仅举例来说,检定的其它生物活性为乙酰化、羧化、酰化、磷酸化、脱磷酸化、泛素化、糖基化、脂质修饰、ADP核糖基化、生物可用性以及半衰期。
存在许多所属领域的技术人员已知的也可用于在筛检检定中检测非天然氨基酸多肽与另一分子之间的相互作用的方法。所述方法可包含(仅举例来说)荧光结合-结合检定、热转移检定、电泳迁移率转移检定、蛋白质-蛋白质结合检定、生物化学筛检检定、免疫检定(即,免疫沉淀法)和基于细胞的检定(即双或三杂交筛检、GST钓饵(GST pull down)、TAP-TAG系统)、表达检定、蛋白质-DNA结合检定、功能检定(磷酸化检定等)以及其类似方法。例如参看美国专利第6,495,337号,其是以引用的方式并入本文中。其它方法也可包含蛋白质芯片系统,所述系统可筛检有助于进行蛋白质-蛋白质相互作用研究、配位体结合研究或免疫检定的酶、受体蛋白质或抗体(MacBeath和Schreiber,Science 2000 289:1760-1763)。另一实施例可涉及通过对DNA和已知与非天然氨基酸多肽相互作用的其它蛋白质使用荧光染色且使用荧光显微术产生的图片来测量细胞特性的变化探测细胞生理学来示出可在引入功能性非天然氨基酸多肽的完整细胞中起作用的药物(Mayer,T.U.,Kapoor,T.M.,Haggarty,S.J.,King,R.W.,Schreiber,S.L.,Mitchison,T.J.(1999).Science.286,971-4)。
具体来说,存在众多可进行测试配位体与非天然氨基酸多肽结合的检测(且因此进行非天然氨基酸多肽的配位体的鉴别)的方法。适用的方法为可区别折叠非天然氨基酸多肽与展开的非天然氨基酸多肽的那些方法。仅举例来说,如下所述的方法为一些可进行此操作的方法。在各种情况下,在已度过足以使非天然氨基酸多肽与其配位体结合的时间后,对测试组合(测试配位体-非天然氨基酸多肽组合)执行所述检测方法,且对对照组合(其与测试组合相同,其中例外为不存在测试配位体)执行所述检测方法。
A.确定折叠非天然氨基酸多肽的存在的方法
在本发明方法中,可将测试配位体与非天然氨基酸多肽组合,其中所述多肽的配位体(即,结合非天然氨基酸多肽的因子)正待鉴别。所得组合为测试配位体-非天然氨基酸多肽组合或测试组合。测试配位体通常以相对于非天然氨基酸多肽过量的摩尔量存在。本发明方法可以溶液形式进行,或在所述方法的一些实施例中,非天然氨基酸多肽可存在于固相上(例如,通过连接子共价键联或以其他方式共价键联于珠粒)。在适于使非天然氨基酸多肽与配位体结合的条件(例如,温度、pH值、盐浓度、时间)下,使测试配位体与非天然氨基酸多肽组合。另外,对可逆展开的非天然氨基酸多肽来说,测试配位体与非天然氨基酸多肽组合的条件通常为使得在不存在测试配位体的情况下,实质比例的非天然氨基酸多肽以展开形式存在的条件,但所述比例可根据所使用的检测方法而变化。在不可逆展开的非天然氨基酸多肽的情况下,条件通常为使得在不存在配位体的情况下,非天然氨基酸多肽以实质速率展开的条件。所述条件经选择以确保非天然氨基酸多肽展开到适当程度;因此可方便地测量所观察到的信号(例如,通过蛋白酶消化;与抗体、伴侣蛋白(chaperonin)或表面的结合)。如果太少的非天然氨基酸多肽展开,那么所观察到的信号将以太低而不能方便地测量的程度或速率出现。对所评估的各测试配位体-非天然氨基酸多肽组合来说,将使用已知方法凭经验确定执行本发明方法的条件。所述条件包含反应温度和所使用的离液剂或变性剂。执行所述方法的温度由正使用的非天然氨基酸多肽确定且可使用已知方法凭经验确定。为调节或优化展开非天然氨基酸多肽的比例,对一些非天然氨基酸多肽来说,可能需要变性条件。所述变性条件可包含使用高温、向培育混合物中添加蛋白质变性剂(例如,脲、胍)或使用两者。另外,可通过工程化非天然氨基酸多肽中的不稳定或稳定氨基酸取代来调节一些非天然氨基酸多肽的稳定性。将测试配位体与非天然氨基酸多肽组合,维持在适当条件下且历时足以使非天然氨基酸多肽与配位体结合的时间。非天然氨基酸多肽与配位体结合所需的时间将视测试配位体、非天然氨基酸多肽以及所使用的其它条件而变化。在一些情况下,结合会即刻发生(例如,大体上与测试配位体与非天然氨基酸多肽的组合同时发生),而在其他情况下,将所得测试配位体-非天然氨基酸多肽组合在检测结合之前维持较长时间。在不可逆展开的非天然氨基酸多肽的情况下,展开速率也须考虑确定结合测试配位体的适当时间。以以下数种方式中的一种评估测试配位体与非天然氨基酸多肽的结合:通过确定折叠非天然氨基酸多肽存在于测试配位体-非天然氨基酸多肽组合中的程度;通过确定展开非天然氨基酸多肽存在于测试配位体-非天然氨基酸多肽组合中的程度或通过确定组合中折叠非天然氨基酸多肽与展开非天然氨基酸多肽的比率。即,在存在测试配位体的情况下和不存在测试配位体的情况下,测定折叠非天然氨基酸多肽的量、展开非天然氨基酸多肽的量之间的差异或折叠非天然氨基酸多肽与展开非天然氨基酸多肽的比率。如果测试配位体结合非天然氨基酸多肽(即,如果测试配位体为非天然氨基酸多肽的配位体),那么与不存在结合非天然氨基酸多肽的测试配位体的情况相比,会存在较多折叠非天然氨基酸多肽和较少展开非天然氨基酸多肽(且因此,较高的折叠与展开非天然氨基酸多肽的比率和较低的展开与折叠非天然氨基酸多肽的比率)。不必测定折叠和展开非天然氨基酸多肽的数量或比例。仅需知道,在存在和不存在配位体的情况下,折叠或展开蛋白质的量存在差异(两种形式平衡时的变化)或展开速率的变化。这一差异可通过比较折叠和/或展开非天然氨基酸多肽存在于测试组合(测试配位体-非天然氨基酸多肽组合)中的程度与其存在于对照组合中(不存在测试配位体情况下的非天然氨基酸多肽)的程度来确定。或者,对可逆展开来说,在不存在测试配位体的情况下,可通过测定其最初(例如,在向非天然氨基酸多肽溶液或固体支撑物结合测试蛋白质中添加测试配位体之前)和随后在适于发生非天然氨基酸多肽-配位体结合的条件下测试配位体与非天然氨基酸多肽组合后的出现率来评估两种形式出现的程度的差异。在任一种情况下,可使用多种如下所述的已知方法进行非天然氨基酸多肽的两种形式的测定。通过本发明方法展示结合非天然氨基酸多肽的测试配位体称为非天然氨基酸多肽的配位体。
1.使用蛋白质水解确定配位体结合
在本发明方法的一实施例中,通过使用蛋白质水解检测测试配位体与非天然氨基酸多肽的结合。在这一实施例中,使优先作用于展开非天然氨基酸多肽的蛋白酶与测试配位体-非天然氨基酸多肽组合(测试组合)加以组合,且在适当培育期后,使用下文详细描述的方法中的一种检定所得测试组合-蛋白酶混合物以测定在存在和不存在测试配位体的情况下,完整或降解非天然氨基酸多肽之间的差异。对测试配位体-非天然氨基酸多肽组合和对照组合执行相同检定且比较两个检定的结果。与对照组合相比,测试组合中的较多完整蛋白质或较少降解蛋白质表明测试配位体已结合非天然氨基酸多肽,且因此表明测试配位体为非天然氨基酸多肽的配位体。类似地,与对照相比,测试组合中较高的完整非天然氨基酸多肽与降解蛋白质的比率表明测试配位体为非天然氨基酸多肽的配位体。
在这一实施例中可使用多种蛋白酶,诸如胰蛋白酶、糜蛋白酶、V8蛋白酶、弹性蛋白酶、羧基肽酶、蛋白酶K、嗜热菌蛋白酶(thermolysin)以及枯草杆菌蛋白酶(subtilisin)。仅需在所选择的培育条件下,所使用的蛋白酶能够作用于所使用的非天然氨基酸多肽(水解其肽键)且这一作用优先针对蛋白质的展开形式。为避免被直接抑制蛋白酶的标靶配位体干扰,可同时或在并行检定中使用一种以上蛋白酶。
为有效消化肽键,肽底物(非天然氨基酸多肽)须到达所选蛋白酶的酶活性位点。因为折叠蛋白质分子中的原子紧密压实,所以当蛋白质处于折叠状态时,大部分易受影响的肽键在空间上被阻断进入蛋白酶活性位点。在展开状态时,肽键暴露较多且因此相对较易受蛋白酶作用。
因此,添加结合折叠非天然氨基酸多肽的测试配位体,从而使其稳定为蛋白酶抗性形式,这改变蛋白质水解的速率。因此,通过将测试配位体与非天然氨基酸多肽一起培育,添加蛋白酶以优先降解展开蛋白质,且随后使用检定以定量完整或降解非天然氨基酸多肽,有可能探知测试配位体是否结合非天然氨基酸多肽,且因此探知其是否为非天然氨基酸多肽的配位体,从而指示其在治疗上潜在适用。
或者,蛋白酶可为未纯化或部分纯化的非天然氨基酸多肽样品所内在的。
2.通过检测表面结合确定配位体结合
在本发明方法的另一实施例中,利用展开蛋白质粘附于表面的倾向。这一实施例依赖于折叠蛋白质以特定三维排列保持且因此不同于其展开对应物而结合表面的事实。如果测试配位体结合非天然氨基酸多肽(即,其为非天然氨基酸多肽的配位体),那么其将使非天然氨基酸多肽的折叠形式稳定。因此,测试配位体结合非天然氨基酸多肽的能力可通过评估在存在和不存在测试配位体的情况下非天然氨基酸多肽结合于适当固体表面的程度来测定。出于此目的,可使用下文详细描述的方法。
在这一实施例中,将非天然氨基酸多肽、测试配位体以及优先结合展开蛋白质的表面组合且维持在适于使非天然氨基酸多肽与配位体结合和使展开非天然氨基酸多肽与表面结合的条件下。出于此目的,存在众多合适的表面,包含由多种经处理或未经处理的塑料构造的微量滴定板、经处理用于组织培养或高蛋白质结合的板、硝化纤维素过滤器以及PVDF过滤器。
如果测试配位体结合非天然氨基酸多肽,那么与可比对照组合相比,测试配位体-非天然氨基酸多肽组合中存在较多折叠非天然氨基酸多肽和较少展开非天然氨基酸多肽。即,在存在为非天然氨基酸多肽的配位体的测试配位体的情况下,与不存在非天然氨基酸多肽的配位体的情况相比,较少展开蛋白质可用于结合优先结合展开蛋白质的表面。可使用如下所述的方法中的一种进行表面结合的非天然氨基酸多肽的量或保留在溶液中的非天然氨基酸多肽的量的测定。如果与不存在测试配位体的情况相比,在存在测试配位体的情况下,较多非天然氨基酸多肽未结合表面(即,如果较多非天然氨基酸多肽存在于溶液中),那么测试配位体为非天然氨基酸多肽的配位体。与测试配位体不为非天然氨基酸多肽的配位体的情况相比,在测试配位体为非天然氨基酸多肽的配位体的情况下,溶液中的非天然氨基酸多肽相比表面结合的非天然氨基酸多肽的比率较高。相反地,与测试配位体不为非天然氨基酸多肽的配位体的情况相比,在测试配位体为非天然氨基酸多肽的配位体的情况下,表面结合的非天然氨基酸多肽相比溶液中的非天然氨基酸多肽的比率较低。
3.使用抗体结合确定配位体结合
在第三实施例中,通过使用仅针对展开状态(“变性特异性抗体”或“DS抗体”)或仅折叠状态(“性质特异性抗体”或“NS抗体”)的特定抗体评估存在折叠与展开非天然氨基酸多肽的程度且因此评估测试配位体与非天然氨基酸多肽的结合。当非天然氨基酸多肽处于折叠状态且通过为非天然氨基酸多肽的配位体的测试配位体稳定于这一状态时,DS抗体的表观结合亲和力将降低(Breyer,(1989)"Production and Characterization of Mono-clonal Antibodies to the N-terminal Domain of the Lambda Repressor",J.Biol.Chem.,264(5):13348-13354)且NS抗体的表观结合亲和力将增强。如果与不存在测试配位体的情况相比,在存在测试配位体的情况下,与非天然氨基酸多肽结合的DS抗体较少或如果NS抗体结合较多,那么测试配位体为非天然氨基酸多肽的配位体。
存在众多所属领域中已知的制造与特定蛋白质结合的抗体的方法(Harlow,E.和D.Lane,ANTIBODIES:A LABORATORY MANUAL,Cold Spring Harbor Laboratory,1988,其是以引用的方式并入本文中)。为制备对变性状态具有特异性的抗体,可用来自在天然状态下受到掩蔽的蛋白质的区域的肽使动物免疫。如果蛋白质的结构未知,那么可制备针对数种肽的抗体,且随后可就与变性状态的优先结合筛检抗体。抗体产生是通过标准技术进行,诸如用于产生单克隆抗体的技术,其详细描述于Zola,Monoclonal Antibodies:A Manual ofTechniques,CRCPress,Inc.,Boca Raton,Fla.(1987)中,其是以引用的方式并入本文中。
存在至少三种可利用DS或NS抗体检测配位体诱导的折叠非天然氨基酸多肽的出现率、展开蛋白质的出现率或彼此间的比率的变化的基本方法。
在一方法中,诸如在涂布有变性非天然氨基酸多肽或其肽片段的微量滴定板中,在适于使非天然氨基酸多肽与其配位体结合和使DS抗体与展开非天然氨基酸多肽结合的条件下培育含有针对展开非天然氨基酸多肽的DS抗体、非天然氨基酸多肽以及测试配位体的测试溶液。以与测试溶液相同的方式处理与测试溶液相同但例外为不含测试配位体的对照溶液。通过比较测试溶液与对照溶液中的结合于板的抗体的量或保留在溶液中的量,检测非天然氨基酸多肽折叠的差异。可如下所述测量结合于板或保留在溶液中的抗体的量。
在第二种方法中,在涂布有称为固相抗体的第二抗体的板中培育含有DS抗体、测试配位体以及非天然氨基酸多肽的测试溶液,所述第二抗体不能与DS抗体同时与非天然氨基酸多肽结合且其对非天然氨基酸多肽具有特异性,但对折叠状态(“天然特异性”或“NS抗体”)具有特异性或不能区分天然状态与变性状态(“非区分”或“ND抗体”)。将所得测试组合或溶液维持在适于使非天然氨基酸多肽与非天然氨基酸多肽的配位体结合和使抗体与其识别(对其具有特异性)的蛋白质结合的条件下。以与测试溶液相同的方式处理与测试溶液相同但例外为不含测试配位体的对照溶液。在两种溶液中,变性(展开)非天然氨基酸多肽结合DS抗体且关于结合固相抗体受到抑制。可通过测定测试溶液中与固相抗体结合的非天然氨基酸多肽的量且将其与在不存在测试配位体的情况下非天然氨基酸多肽与固相抗体结合的程度(其转而反映呈折叠状态的非天然氨基酸多肽的量)比较来计量测试配位体结合非天然氨基酸多肽的能力。可通过如下所述的方法检测通过第二抗体结合于板或保留在溶液中的非天然氨基酸多肽的量。对溶液中的抗体和于固相上的DS或ND抗体来说,可以可比于NS抗体的方式使用这种方法。
在第三种方法中,在容器(诸如已涂布有DS或NS抗体的微量滴定孔)中培育含有非天然氨基酸多肽和测试配位体的测试溶液,且维持在适于使非天然氨基酸多肽与其配位体结合和使抗体与非天然氨基酸多肽结合的条件下。或者,抗体可存在于珠粒表面上。通过测定在存在和不存在测试配位体的情况下非天然氨基酸多肽保留在溶液(未结合于抗体)中或固体表面(结合于抗体)上的程度或两者的比率来计量测试配位体结合非天然氨基酸多肽的能力。如果测试配位体结合非天然氨基酸多肽(其为非天然氨基酸多肽的配位体),那么与对照溶液中结合于抗体的情况相比,会存在较少结合于DS抗体的非天然氨基酸多肽或较多结合于NS抗体的非天然氨基酸多肽(即,在DS抗体的情况下,溶液中会有较多非天然氨基酸多肽,而对NS抗体来说,溶液中会较少)。在另一实施例中,抗体可存在于溶液中,且可将非天然氨基酸多肽连接至固相,诸如板表面或珠粒表面。
4.使用分子伴侣确定配位体结合
在第四实施例中,使用分子伴侣确定测试配位体与非天然氨基酸多肽的结合。伴侣为多种结合展开蛋白质作为其正常生理功能的部分的蛋白质。其通常涉及装配寡聚蛋白质,确保某些蛋白质恰当折叠,促进蛋白质定位以及生理应力期间阻止蛋白质聚集体形成。Hardy,(1991)"A Kinetic Partitioning Model of Selective Binding of NormativeProteins by the Bacterial Chaperone SecB",Science 251:439-443。所述蛋白质具有在不特异性识别确定序列基元的情况下与许多展开或部分变性蛋白质相互作用的能力。
大肠杆菌中可见的一种分子伴侣为SecB。已证明SecB参与其它无关蛋白质的子集的输出。竞争实验已展示SecB与所有所测试的展开蛋白质(包含其特定输出子集外部的蛋白质)紧密结合,但似乎不与折叠蛋白质相互作用。
在这一实施例中,在涂布有分子伴侣的微量滴定板或其它合适表面上在适于使非天然氨基酸多肽与其配位体结合和使所使用的分子伴侣与展开非天然氨基酸多肽结合的条件下培育含有测试配位体和标靶的测试溶液。溶液中的展开非天然氨基酸多肽相对于经配位体稳定的折叠非天然氨基酸多肽将具有较大的结合分子伴侣覆盖表面的倾向。因此,可通过使用下文详述的方法测定保持未结合的非天然氨基酸多肽的量或结合于伴侣涂布表面的量确定测试配位体结合非天然氨基酸多肽的能力。
或者,可利用与分子伴侣结合的竞争检定。可在容器(诸如涂布有变性(展开)非天然氨基酸多肽的微量滴定孔)中在适于使非天然氨基酸多肽与其配位体结合和使分子伴侣与展开非天然氨基酸多肽结合的条件下培育含有经纯化非天然氨基酸多肽、测试配位体以及分子伴侣的测试溶液。以相同方式处理与测试溶液相同但例外为不含测试配位体的对照溶液。溶液中的变性非天然氨基酸多肽将与伴侣蛋白结合,且因此,抑制其与结合于容器表面(微量滴定孔表面)的变性非天然氨基酸多肽的结合。测试配位体与非天然氨基酸多肽的结合将产生较小量的展开非天然氨基酸多肽,且因此,与不存在测试配位体的结合的情况相比,较多伴侣将可用于与固相变性非天然氨基酸多肽结合。因此,测试配位体的结合可通过评估测试溶液和对照溶液中的结合于表面和在溶液中的伴侣且比较所述结果来确定。与对照溶液中相比,测试溶液中伴侣与固相变性非天然氨基酸多肽的结合的程度较大表明测试配位体与非天然氨基酸多肽结合(即,表明鉴别出非天然氨基酸多肽的配位体)。在这一检定中,通常不以过量提供分子伴侣,从而可测量其结合的竞争。
或者,可在容器(诸如,微量滴定孔)中培育含有非天然氨基酸多肽、测试配位体以及分子伴侣的测试溶液,所述容器表面涂布有抗血清或对折叠非天然氨基酸多肽具有特异性(NS抗体)且不能结合结合于伴侣的非天然氨基酸多肽的单株抗体。展开非天然氨基酸多肽将结合溶液中的伴侣且因此抑制结合固相抗体。通过检测溶液中或结合于孔壁的非天然氨基酸多肽且比较适当对照(无测试配位体的相同组合)中的所述任一者或两者的程度,可确定测试配位体结合非天然氨基酸多肽的能力。如果测试配位体为非天然氨基酸多肽的配位体,那么与对照溶液中相比,在测试溶液中将有较多非天然氨基酸多肽与结合于容器表面的抗血清或单株抗体结合。相反地,与对照溶液中相比,测试溶液中将存在较少未结合(溶液中)的非天然氨基酸多肽。测试溶液和对照溶液中的结合非天然氨基酸多肽、未结合非天然氨基酸多肽或两者的比率的检测和比较表明测试配位体是否为非天然氨基酸多肽的配位体。
5.通过测量蛋白质聚集确定配位体结合
呈折叠形式的蛋白质的比例越高,可用于与仅与折叠状态结合的配位体结合的蛋白质的量越大。因此,如果蛋白质具有已知配位体,那么有可能通过添加结合蛋白质上的另一位点的配位体来增加蛋白质与已知配位体的结合。在这一方法中,将已知与非天然氨基酸多肽结合的配位体固定于固体基板上。然后添加含有非天然氨基酸多肽的溶液以及测试配位体或配位体。在不存在测试配位体的情况下,相对于相同检定,与固定配位体结合的非天然氨基酸多肽的量的增加表明测试配位体结合非天然氨基酸多肽。可通过使用下文概述的检测方法对固体基板取样或对溶液取样来评估结合于固体基板的非天然氨基酸多肽的量。
6.通过测量蛋白质聚集确定配位体结合
对不可逆展开的蛋白质来说,展开蛋白质通常形成不可溶聚集体。蛋白质聚集的程度可通过下文概述的诸如光散射、离心以及过滤的技术测量。在这一方法中,培育非天然氨基酸多肽和测试配位体,且随时间或在固定培育时间后,测量蛋白质聚集的量。比较测试混合物中的蛋白质聚集的程度与不存在测试配位体的情况下对照检定的相同测量。如果测试配位体结合非天然氨基酸多肽,那么与不存在测试配位体的情况相比,非天然氨基酸多肽展开的速率将较低。对随时间的测量来说,与测试配位体不为非天然氨基酸多肽的配位体的情况相比,在测试配位体为非天然氨基酸多肽的配位体的情况下,展开蛋白质且因此聚集蛋白质的增长速率将较低。对固定时间的测量来说,与测试配位体不为非天然氨基酸多肽的配位体的情况相比,在测试配位体为非天然氨基酸多肽的配位体的情况下,会存在较少的展开蛋白质且因此存在较少聚集蛋白质。因此,测试配位体结合非天然氨基酸多肽的能力可通过评估在存在和不存在测试配位体的情况下蛋白质聚集的程度来确定。
XIV.蛋白质检测技术
在检测非天然氨基酸、非天然氨基酸多肽、经修饰非天然氨基酸多肽以及其片段的本发明方法中可使用所属领域中已知的检测蛋白质、小肽或游离氨基酸存在与否的方法。所使用的方法可由待检测的产物(蛋白质、肽、游离氨基酸)决定。举例来说,可使用检测蛋白质大小的技术测定非天然氨基酸多肽的蛋白质水解降解的程度。放射性标记、荧光标记以及酶键联标记可通过测量放射性、荧光或酶活性来检测在溶液中或基板上的存在与否。免疫学方法可检测已知非天然氨基酸多肽在溶液中或底物上的存在与否,诸如通过对所述蛋白质具有特异性的抗体的结合。图1b示出多种可用于检测非天然氨基酸、非天然氨基酸多肽、经修饰非天然氨基酸多肽以及其片段的蛋白质检测技术。
A.荧光显微术
本文中揭示的用于蛋白质检测的方法包含检测非天然氨基酸、非天然氨基酸多肽、经修饰非天然氨基酸多肽以及其片段的荧光显微术。荧光显微术为使得所观察的结构的分子组成能够通过使用具有高化学特异性的荧光标记探针得以鉴别的广泛使用的显微技术。所述探针可为包括非天然氨基酸的抗体、抗体片段或抗原结合多肽。荧光显微术可用于研究固定试样。对可以合理丰度提取和纯化的蛋白质来说,可使荧光团接合于蛋白质且将接合物引入细胞中。可使荧光团接合于多肽中的非天然氨基酸。假定荧光类似物具有类似天然蛋白质的特性且因此可用于揭示这一蛋白质在细胞中的分布和特性。蛋白质固有荧光衰减和其荧光各向异性、碰撞猝灭以及共振能量传递的相关观察结果连同NMR、红外光谱学、圆二色谱以及其它技术为蛋白质检测的重要技术。
测量荧光衰减使得能够直接观察蛋白质中的结构变化的动力学。此外,当使用外在荧光探针时,从氨基酸酪氨酸和色氨酸发射的蛋白质的天然荧光的激发消除局部环境扰动的可能性。
在使用荧光探针用于生物研究中的一个发展为使用天然荧光蛋白质作为荧光探针。二十世纪九十年代后期发现天然存在的染料,所谓的荧光蛋白质(GFP、YFP、CFP、TOPAS、GFT、RFP)(Clonetech,USA)。所述染料以其对试样的影响较低而著名。因此,其尤其适于在活制备物中标记细胞区域。
维多利亚多管水母(jellyfish Aequorea victoria)产生天然荧光蛋白质,称为绿色荧光蛋白质(green fluorescent protein,GFP)。所述荧光探针与标靶蛋白质的融合使得能够通过荧光显微术观测和通过流式细胞术定量。因为GFP标签为遗传编码的且不需要辅助因子,所以其可用于分析活细胞和完整有机体中的蛋白质表达和定位。这一蛋白质的基因已经克隆且可转染至其它有机体中。GFP标签可用于定位有机体中特定基因所表达的区域或用于鉴别特定蛋白质的位置。在许多情况下,所述嵌合蛋白质保持其原始功能。因此,通常有可能(例如)使用这一技术观测蛋白质(包含(但不限于)细胞骨架蛋白质)的细胞内分布。用GFP可观察到未染色或未固定的样品。目前存在数种GFP变异体,其提供光谱上可分离的发射颜色。使GFP突变已产生蓝色、青色和黄色荧光发射形式。可用于标记本发明非天然氨基酸肽、多肽、抗体以及抗体片段的荧光蛋白质包含(但不限于)绿色荧光蛋白质(GFP)、青色荧光蛋白质(cyan fluorescent protein,CFP)、红色荧光蛋白质(redfluorescent protein,RFP)、黄色荧光蛋白质(yellow fluorescent protein,YFF)、增强型GFP(EGFP)、增强型YFP(EYFP)以及其类似物。已通过突变开发GFP的新颖形式,包含“人类化”GFP DNA,其蛋白质产物已增加在哺乳动物细胞中的合成。(参看Cormack等人,(1996)Gene 173,33-38;Haas等人,(1996)Current Biology 6,315-324;以及Yang等人,(1996)Nucleic Acids Research 24,4592-4593)。一种所述人类化蛋白质为“增强型绿色荧光蛋白质(enhanced green fluorescent protein,EGFP)”。可使GFP、GFP的变异体或其它天然存在的染料与非天然氨基酸多肽偶合。
GFP可用作生物传感器,通过以特征方式发荧光报导离子含量或pH值的结果。一种可用于自动检测锌离子含量的分子为展示为蛋白质数据库(Protein Data Bank,PDB)登录号1kys的蓝色荧光蛋白质。一旦锌与经修饰发色团结合,则蛋白质就发射产生可容易检测的可见信号两倍亮的荧光。包括非天然氨基酸的其它肽和蛋白质生物传感器的构造可展现对其环境、寡聚状态、配位体结合后的构象、结构或直接配位体结合的变化响应的荧光性质改变。经适当标记的荧光生物分子允许空间上和时间上检测活细胞内部的生化反应。例如参看Giuliano,K.A.等人,Annu.Rev.Biophys.Biomol.Struct.1995,24:405-434;Day,R.N.Mol.Endocrinol.1998,12:1410-9;Adams,S.R.等人,Nature 1991,349:694;Miyawaski,A.等人,Nature 1997,388:882-7;Hahn,K.等人,Nature 1992,359:736;Hahn,K.M.等人,J.Biol.Chem.1990,265:20335;以及Richieri,G.V.等人,Mol.Cell.Biochem.1999,192:87-94。美国专利第6,951,947号(其是以引用的方式并入本文中)讨论检测环境变化的生物传感器和荧光团。
目前,所述技术是由现有探针的新应用和新的且具有创新性的探针的设计和合成驱动。在不限制本发明的范畴的情况下,一些探针如下:
标记:荧光的灵敏性和安全性(与放射方法相比)已越来越多地用于特异性标记核酸、蛋白质以及其它生物分子。除荧光素外,存在覆盖整个400纳米至820纳米范围的其它荧光标记。仅举例来说,一些标记包含(但不限于)荧光素和其衍生物、羧基荧光素、罗丹明(Rhodamine)和其衍生物、Atto标记、荧光红和荧光橙:Cy3/Cy5TM替代物、具有长寿命的镧系金属配合物、长波长标记(高达800纳米)、DY菁标记、藻胆素蛋白质。能够在一波长下吸收辐射而在较长波长下发射辐射的荧光分子包含(但不限于)Alexa-532、羟基香豆素、氨基香豆素、甲氧基香豆素、香豆素、级联蓝(Cascade Blue)、罗氏黄(Lucifer Yellow)、P-藻红素、R-藻红素、(PE)、PE-Cy5接合物、PE-Cy7接合物、红613、荧光素、BODIPY-FL、BODIPY TR、BODIPY TMR、Cy3、TRITC、X-罗丹明、丽丝胺罗丹明B(Lissamine Rhodamine B)、PerCP、得克萨斯红(Texas Red)、Cy5、Cy7、别藻蓝蛋白(APC)、TruRed、APC-Cy7接合物、俄勒冈绿(Oregon Green)、四甲基罗丹明、丹磺酰(Dansyl)、丹磺酰氮丙啶、Indo-1、Fura-2、FM 1-43、DilC18(3)、羧基-SNARF-1、NBD、Indo-1、Fluo-3、DCFH、DHR、SNARP、Monochlorobimane、钙黄绿素、N-(7-硝基苯并-2-氧杂-1,3-二唑-4-基)胺(NBD)、苯胺基萘、deproxyl、邻苯二甲酰胺、氨基pH邻苯二甲酰胺、二甲基氨基-萘磺酰胺、可比于氟硅酸钠(prodan)、洛丹(Lordan)或丙烯丹基(Acrylodan)以及其衍生物的探针。香豆素荧光染料包括(例如)氨基甲基香豆素、7-二乙基氨基-3-(4'-(1-马来酰亚胺基)苯基)-4-甲基香豆素(CPM)以及N-(2-(1-马来酰亚胺基)乙基)7-二乙基氨基香豆素-3-甲酰胺(MDCC)。其它适用的分子包含那些呈现荧光共振能量传递(fluorescence resonance energy transfer,FRET)的分子。已知许多所述供体-接受体对且其包含荧光素-罗丹明、香豆素-荧光素或罗丹明等。另一类适用的标记对包含荧光团-猝灭剂对,其中第二基团为减小荧光基团的荧光强度的猝灭剂。一些已知猝灭剂包含丙烯酰胺基团、重原子(诸如碘离子和溴酸根)、氮氧化物自旋标记(诸如TEMPO)等。可使诸如所述标记的标记与非天然氨基酸多肽接合。
接合于非天然氨基酸多肽的荧光团可在所有时间发荧光或仅当多肽结合于标靶时才发荧光。其它类型的荧光团包含:
接合物:仅举例来说,一些接合物包含(但不限于)异硫氰酸盐接合物、抗生蛋白链菌素接合物以及生物素接合物。抗体接合物已广泛用于追踪活细胞和整个有机体中的生物分子。其可经产生以对几乎任何抗原决定基具有特异性且因此原则上适用于使许多生物分子成像。包含(但不限于)抗体接合物的接合物可包括非天然氨基酸。
酶底物:酶底物包含(但不限于)发荧光底物和发色底物。
微米粒子和纳米粒子:多种技术允许制备在大小、基质化学、荧光染料类型、荧光强度以及表面官能团方面不同的多种荧光微球。仅举例来说,一些所使用的荧光染料为:FITC(绿色荧光,激发/发射=506/529纳米)、罗丹明B(橙色荧光,激发/发射=560/584纳米)、尼罗蓝A(Nile Blue A)(红色荧光,激发/发射=636/686纳米)。
在(例如)生物化学、生物分析以及医学领域中,荧光纳米粒子为光数据存储与其它技术应用的有前景的手段。
现行医学和生物荧光成像方法主要以染料标记物为基础,所述标记物在每分子光发射以及光学稳定性方面受到限制。纳米粒子克服那些问题,提供强且稳定的荧光。荧光纳米粒子已成功用于各种类型的免疫检定。荧光纳米粒子以诸如聚丙烯腈和聚苯乙烯等的不同材料为基础。
分子转子:荧光分子转子是只要转动受到限制即变得发荧光的微环境限制传感器。荧光强度的变化通过限制绕荧光团的供体-接受体键的分子内旋转弛豫引起。分子限制的实例包含(但不限于)染料增加(聚集)、与抗体结合或捕获于肌动蛋白聚合中。
IEF标记物:等电点聚焦(Isoelectric Focusing,IEF)为分离两性电解质(主要为蛋白质)的强有力分析手段。为确保分析的高效能,需要pI标准物(pI标记物)。利用荧光IEF-标记物的IEF-凝胶电泳的优点是直接观察梯度形成的可能性。荧光IEF-标记物也可在280纳米(20℃)下通过紫外线吸收检测。
任何或所有所述荧光探针可用于检测非天然氨基酸、非天然氨基酸多肽、经修饰非天然氨基酸多肽以及其片段。图9示出通过在并入多肽中的非天然氨基酸的羰基与分子的羟胺之间形成肟来位点特异性地连接至蛋白质的分子的非限定性实例。所展示的分子为荧光团、生物素以及螯合剂。
生物正交化学报导体:小分子具有通向细胞内和血管外区隔的较佳通过性。其作为成像剂的用途需要使小探针选择性靶向所需生物分子的方法。亲核官能团存在于大部分类型的生物聚合物中,此准许用生物素、荧光团以及众多其它小分子报导体轻易衍生化。已确立的生物接合方案已使所述操作对活体外经纯化生物聚合物来说价值不高。用标签标记生物分子的替代策略为掺合遗传编码标签的简单性与抗体标记的特异性和小分子探针的多功能性。这种方法涉及使用细胞自身的生物合成机构将独特的化学官能团(生物正交化学报导体)并入标靶生物分子中。生物正交化学报导体为可通过与外源传送探针的高选择性反应在活系统中经修饰的非天然的非扰动化学手柄。这种两步标记法根据探针的性质可用于装备用于检测或分离的标靶生物分子。
生物正交偶合反应的实例包含(但不限于)叠氮化合物与三芳基膦的施陶丁格连接(Staudinger ligation)、酮/醛-肼反应以及休斯根氏1,3-偶极叠氮化合物-炔烃环加成(Huisgen's 1,3-dipolar azide-alkyne cycloaddition)。用空间上不显着的叠氮基代替大体积荧光标签可提供更能以不偏方式分布在活细胞、组织或有机体中的探针。同样,也消除荧光标签对针对特异性蛋白质的探针结合亲和力的可变且通常对抗的效应。最后,使用叠氮化合物-炔烃环加成化学可通过移除对产生和纯化大量在结构上多样的荧光团标记试剂的需要使探针合成简单化。利用非天然氨基酸多肽的偶合反应可提供为荧光标记多肽的替代物的探针。可使用休斯根氏1,3-偶极叠氮化合物-炔烃环加成来连接其它分子或提供多肽纯化或检测的其它方法。
可在固体支撑物上合成肽文库,且通过使用着色受体,可逐个选择染色固体支撑物。如果受体不能指示任何颜色,那么可将其结合抗体染色。因为有可能在显微镜或甚至放大镜下通过镊子分离固体支撑物,所以所述方法不仅可用于蛋白质受体,而且也可用于筛检合成人工受体的结合配位体以及筛检新金属结合配位体。这一方法适用于搜寻新前导化合物,因为其使得能够筛检大量化合物。
然而,根据染料强度来测定活性可能不精确,且大量固体支撑物可能不能总是逐个处理。因此,需要高通量筛检(HTS)的自动方法且可使用荧光活化细胞分选器(Fluorescence Activated Cell Sorter,FACS)方法。这一机器最初使细胞穿过毛细管且通过检测其荧光强度分离细胞。可对固体支撑物而不是细胞使用相同方法。因为其为细胞而设计,所以可操作具有细胞大小的小树脂,但具有正常大小(50至200皮摩尔)的固体支撑物需要经特别改进的机器。也可进行化合物的部分或完全分离。对化合物的部分分离来说,使用时间控制感光分解或在不同条件下裂解数种官能团。同时,可将固体支撑物分散到软琼脂上且通过感光分解分离一些化合物。然后将经分离化合物散开在固体支撑物周围,从而可同时进行筛检和固体支撑物分离。
B.免疫检定
本文中揭示的用于蛋白质检测的方法包含检测非天然氨基酸、非天然氨基酸多肽、经修饰非天然氨基酸多肽以及其片段的免疫检定。免疫检定组合化学和免疫学原理以使得能够进行科学测试,例如特异性且灵敏检测所关注的分析物(非天然氨基酸、非天然氨基酸多肽、经修饰非天然氨基酸多肽以及其片段)的酶免疫检定和免疫印迹法。所述检定的基本原理为抗体-抗原反应的特异性。类似于西方印迹法(Western blot),对免疫印迹法来说,单一蛋白质可由其抗体鉴别。可进行竞争结合免疫检定,其中分析物与经标记抗原竞争抗体分子的有限池(例如,放射性免疫检定(radioimmunoassay,EMIT))。免疫检定可不具竞争性,以使得抗体以过量存在且经标记。当分析物抗原增加时,经标记抗体-抗原复合物的量也增加(例如,ELISA)。如果抗体通过将抗原注射到实验动物中产生,则其可为多克隆抗体,或如果抗体通过细胞融合和细胞培养技术产生,则其可为单克隆抗体。在免疫检定中,抗体充当分析物抗原的特异性试剂。抗原可为非天然氨基酸多肽、经修饰非天然氨基酸多肽以及其片段。另一方面,免疫检定中所使用的抗体或其片段可为非天然氨基酸多肽,且可用于检测可或可不包括非天然氨基酸的抗原。
在不限制本发明的范畴和内容的情况下,免疫检定的一些类型为(仅举例来说)放射性免疫检定(Radioimmunoassay,RIA)和酶免疫检定,如酶联免疫吸附检定(Enzyme-linked immunosorbent assay,ELISA)、酶倍增免疫检定(Enzyme MultipliedImmunoassay,EMIT)、微粒酶免疫检定(Microparticle Enzyme Immunoassay,MEIA)、发光免疫检定(luminescent immunoassay,LIA)以及荧光免疫检定(fluorescentimmunoassay,FIA)。所述技术可用于检测非天然氨基酸、非天然氨基酸多肽、经修饰非天然氨基酸多肽以及其片段。用作一次或二次抗体的抗体可经放射性同位素(例如,125I)、荧光染料(例如,FITC)或催化发荧光或发光反应的酶(例如,HRP或AP)标记。
1.酶倍增免疫检定技术(Enzyme Multiplied Immunoassay Technique,EMIT)
EMIT为无需分离步骤的竞争结合免疫检定。其为一种允许定量未标记蛋白质的免疫检定类型,其中蛋白质经酶标记且酶-蛋白质-抗体复合物经酶促失活。
2.酶联免疫吸附检定(Enzyme Linked Immunosorbent Assay,ELISA)
本文中揭示的用于蛋白质检测的方法包含检测非天然氨基酸、非天然氨基酸多肽、经修饰非天然氨基酸多肽以及其片段的ELISA。酶联免疫吸附检定是以连接于固体支撑物的选择性抗体以及产生能够检测低含量的蛋白质的系统的酶反应为基础。其也称为酶免疫检定或EIA。抗原(包含(但不限于)蛋白质)由针对其(即,对抗体来说,其为抗原)产生的抗体检测。通常使用单克隆抗体。
测试可要求抗体固定于固体表面,诸如试管的内表面;且制备与酶偶合的相同抗体。酶为由无色底物产生有色产物的酶(例如,β-半乳糖苷酶)。测试(例如)是通过用待检定的抗原溶液(例如,蛋白质)填充试管来进行。任何存在的抗原分子都可与固定抗体分子结合。将抗体-酶接合物添加至反应混合物中。接合物的抗体部分与先前结合的任何抗原分子结合,产生抗体-抗原-抗体“夹心”。洗除任何未结合接合物后,添加底物溶液。一组时间间隔后,使反应停止(例如,通过添加1N NaOH)且在分光光度计中测量由底物与接合于二次抗体的分子的反应形成的有色产物的浓度。颜色强度与所结合抗原的浓度成比例。
ELISA也可经改适以测量抗体的浓度,在此情况下,将孔涂布适当抗原。添加含有抗体的溶液(例如,血清)。历时与固定抗原结合的时间后,添加由针对正测试的抗体的抗体组成的酶接合抗免疫球蛋白。洗除未反应试剂后,添加底物。所产生的颜色的强度与所结合的经酶标记抗体的量成比例(且因此与正检定的抗体的浓度成比例)。
3.放射性检定
本文中揭示的用于蛋白质检测的方法包含检测非天然氨基酸、非天然氨基酸多肽、经修饰非天然氨基酸多肽以及其片段的放射性免疫检定。放射性免疫检定具有高灵敏度。使用具有高亲和力(例如,K0=108-1011M-1)的抗体,有可能检测试管中的几皮克(10-12克)的抗原。
可使用放射性同位素来研究少量化合物的活体内代谢、分布以及结合。使用1H、12C、31P、32S、127I的放射性同位素,诸如3H、14C、32P、35S、125I。放射性同位素与非放射性同位素具有几乎相同的化学性质,从而其可容易地转化。同时,因为其辐射能相对较大,所以仅需要极少的量。
受体固定法:对96孔板格式来说,通过使用抗体或化学方法将受体固定于各孔中,且将放射性标记配位体添加到各孔中以诱导结合。洗除未结合配位体,且随后通过结合配位体或洗除配位体的放射性的定量分析测定标准物。添加用于筛检的标靶化合物诱导与受体的竞争结合反应。如果与标准放射性配位体相比,标靶化合物对受体展示较高亲和力,那么大部分放射性配位体不与受体结合且留在溶液中。因此,通过分析结合放射性配位体(或洗除配位体)的数量,可容易地指示标靶化合物与受体的亲和力。
当受体不能固定于96孔板或配位体结合须在溶液相中进行时,可使用滤膜法。对这种方法来说,在溶液中进行配位体-受体结合反应后,经硝化纤维素滤纸过滤反应溶液。包含配位体的小分子将穿过滤纸,且仅蛋白质受体将留在滤纸上。仅与受体强有力结合的配位体将留在滤纸上,且所添加化合物的相对亲和力可通过标准放射性配位体的定量分析鉴别。这种方法也可用于筛检蛋白激酶抑制剂。在此情况下,可使用γ-32P-ATP作为磷酸基团供应者,且可通过检查放射性标记蛋白质底物来分析酶活性。不反应的放射性ATP将被过滤且移除。
仅举例来说,可通过制备放射性抗原与针对所述抗原的抗体的混合物来进行放射性免疫检定。可将碘原子引入到蛋白质中的酪氨酸残基中,通常使用放射性同位素125I或131I。可将已知量的未标记(“冷”)抗原添加到混合物的样品中。所述抗原竞争抗体的结合位点。在递增浓度的未标记抗原下,递增量的放射性抗原被从抗体分子上置换下来。将抗体结合抗原与上清液中的游离抗原分离,且测量各自的放射性。从所述数据可绘制标准结合曲线。平行操作待检定的样品(“未知物”)。确定各未知物中的结合抗原与游离抗原的比率后,可从标准曲线直接读取抗原浓度。
可用于检测非天然氨基酸、非天然氨基酸多肽、经修饰非天然氨基酸多肽以及其片段的放射性免疫检定的其它方法为(仅举例来说)通过添加针对第一抗体的“第二”抗体使抗原-抗体复合物沉淀。举例来说,如果使用兔IgG来结合抗原,那么可通过添加抗兔IgG抗血清(例如,通过用兔子IgG使山羊免疫来产生)使复合物沉淀。或者,可使抗原特异性抗体与试管内壁偶合。培育后,移除未结合内含物;洗涤试管,且测量未结合与结合物质的放射性。可使抗原特异性抗体与如葡聚糖凝胶(Sephadex)的颗粒偶合。离心反应混合物使结合计数(在球粒中)与上清液中的游离计数分离。
4.荧光免疫检定
本文中揭示的用于蛋白质检测的方法包含检测非天然氨基酸、非天然氨基酸多肽、经修饰非天然氨基酸多肽以及其片段的荧光免疫检定。基于荧光的免疫法是以标记配位体对未标记配位体对高特异性受体部位的竞争性结合为基础。其为蛋白质分析中非常重要的临床和分析生物化学手段。
这种技术可用于以荧光寿命随分析物浓度变化的变化为基础的免疫检定。这种技术利用具有短寿命的染料,所述染料如异硫氰酸荧光素(fluorescein isothiocyanate,FITC))(供体),其荧光通过能量转移到曙红(Eosin)(接受体)而猝灭。许多分子物质已用于使能量从供体分子转移到接受体分子。具体来说,夹心型免疫复合物形成可用于这一技术。
在本发明的方法中可使用许多光致发光化合物,且其包含以上荧光显微术中所列的化合物以及以下基团,诸如菁、恶嗪、噻嗪、卟啉、酞菁、荧光红外发射多核芳烃、藻胆蛋白、方酸(squaraine)和有机金属配合物、烃以及偶氮染料。
基于荧光的免疫学法可为(举例来说)异源或同源方法。异源免疫检定包括使所结合的分析物与游离标记分析物物理分离。可使分析物或抗体连接于固体表面。这一技术可为竞争性(较高选择性)或非竞争性技术(较高灵敏度)。检测可为直接检测(仅使用一种类型的抗体)或间接检测(使用第二类型的抗体)。同源免疫检定不包括物理分离。双抗体荧光团标记抗原参与与针对抗原与荧光团两者的抗体的平衡反应。标记和未标记抗原竞争有限数目的抗抗原抗体。
简单荧光标记法:通过使用相关荧光其可用于受体-配位体结合、酶活性,且其可用作多种活体内生理变化(诸如pH值、离子浓度以及电压)的荧光指示剂。氨基酸(诸如酪氨酸和色氨酸)的自发荧光产生背景辐射,且为克服所述弱点,通常使用吸收波长大于520纳米的紫外线的荧光化合物,诸如菁。
FRET:荧光共振能量传递:FRET可用于测量活体内两种蛋白质的相互作用且可测量纳米尺度的距离和距离(构象)变化。因此,其用于测量简单蛋白质-蛋白质相互作用和蛋白质折叠、构象以及稳定性的变化(参看Philipps,B.;Hennecke,J.;Glockshuber R.MolBiol.2003,327,239-249;Riven,I.;Kalmanzon,E.;Segev,L.;Reuveny E.Neuron.2003,38,225-235)。使两种不同荧光分子(荧光团)接合于两种所关注的蛋白质。在FRET中可使用与荧光团接合的非天然氨基酸多肽。当使用两种荧光化合物而不是单一荧光化合物时,存在非荧光能量转移。当荧光供体的发射波长类似于接受体的吸收波长时,处于激发态的供体会将其能量转移到接受体而不是发射荧光,且因此发射在接受体的发射波长下发生。FRET分析已使用许多不同荧光团对,包含与所关注蛋白质融合的绿色荧光蛋白质(greenfluorescent protein,GFP)变异体CFP(青色)和YFP(黄色)。
50%FRET效应的距离R0视供体发射范围与接受体吸收范围的重叠和接受体的量子产率和溶剂而定。如果两种荧光分子彼此相距短于R0的距离,那么当发射供体的吸收光时,理论上接受体的荧光将较强。如果距离变得比R0长,那么当发射相同光时,供体的荧光将检测为较强。因此,如果荧光分子键联于可用作激酶(诸如蛋白酶)的小肽的末端时,那么酶活性可容易地测量。Xu等人(Proc.Natl.Acad.Sci.U.S.A.1999,96,151-156)开发出生物发光共振能量传递(Bioluminescene resonance energy transfer,BRET)。其以类似于FRET的原理作用且以海肾(Renilla)荧光素酶的发射光谱类似于CFP的发射光谱的发现结果为基础。当利用细胞器靶向荧光蛋白质变异体时,所述技术允许研究特定亚细胞区隔内的相互作用,包含膜蛋白质-蛋白质相互作用。也可在哺乳动物细胞中研究翻译后修饰事件。
时间分辨荧光(Time Resolved Fluorescence,TRF):为减小荧光背景,开发出时间分辨荧光。常见荧光分子的激发态寿命通常仅几微秒,但镧系元素具有数毫秒的寿命。TRF为在其它荧光分子的发射完成后,选择性测量镧系荧光的方法。TRF也可与FRET一起使用,且镧系变成供体或接受体。
5.多种检定格式
多种检定格式可用于检测本文中所揭示的非天然氨基酸、非天然氨基酸多肽、经修饰非天然氨基酸多肽以及其片段,包含“夹心”免疫检定和探针检定。举例来说,在第一检定格式中,使已涂布于固相上的多克隆或单克隆抗体或其片段或所述抗体的组合与测试样品接触以形成第一混合物。将此第一混合物在足以形成抗原/抗体复合物的条件下培育足以形成所述复合物的时间。然后,使包括其上已连接信号产生化合物的单克隆或多克隆抗体或片段或所述抗体的组合的指示剂试剂与抗原/抗体复合物接触以形成第二混合物。然后将所述第二混合物在足以形成抗体/抗原/抗体复合物的条件下培育足以形成所述复合物的时间。通过检测信号产生化合物所产生的可测量的信号确定测试样品中和捕获于固相上的抗原(如果有)的存在。测试样品中所存在的抗原的量与所产生的信号成比例。
在替代检定格式中,通过使以下物质接触形成混合物:(1)结合于固体支撑物的与抗原特异性结合的多克隆抗体、单克隆抗体或其片段或所述抗体的组合;(2)测试样品;以及(3)包括其上连接信号产生化合物的与不同抗原决定基特异性结合的单克隆抗体、多克隆抗体或其片段(或所述抗体的组合)的指示剂试剂。然后将这一混合物在足以形成抗体/抗原/抗体复合物的条件下培育足以形成所述复合物的时间。通过检测信号产生化合物所产生的可测量的信号确定存在于测试样品中和捕获于固相上的抗原(如果有)的存在。测试样品中所存在的抗原的量与所产生的信号成比例。
在另一检定格式中,本发明的单克隆抗体中的一种或至少两种的组合可用作用于检测抗原的抗体的竞争探针。举例来说,将本文中所揭示的非天然氨基酸多肽单独或组合涂布于固相上。然后将怀疑含有抗原的抗体的测试样品与包括信号产生化合物和至少一种单克隆抗体的指示剂试剂在足以形成测试样品与指示剂试剂的结合于固相的抗原/抗体复合物或结合于固相的指示剂试剂的条件下一起培育足以形成所述复合物的时间。可定量测量单克隆抗体与固相的结合的减少。
在另一检测方法中,单克隆或多克隆抗体可通过免疫组织化学分析用于组织切片以及细胞中的抗原的检测中。组织切片可从冷冻或化学固定的组织样品切割。如果将在细胞中检测抗原,那么可从血液、尿、乳房抽吸液或其它体液中分离细胞。可通过手术活检或穿刺针活检获得细胞。细胞可在经磁性粒子或铁磁流体标记后通过离心或磁力吸引分离以富集细胞的特定部分以用于经抗体染色。所述抗体直接经标记(经(例如)荧光素、胶体金、辣根过氧化物酶、碱性磷酸酶等标记)或通过使用二次标记抗物质抗体标记(经多种本文中例示的标记标记)以追踪疾病的组织病理学的细胞化学分析也在本发明的范畴内。
单克隆抗体(和其片段)的组合也可一起用作连同与本文中所揭示的非天然氨基酸多肽的其它区域特异性结合的抗体的混合物中的组分,各抗体具有不同的结合特异性。检定中所使用的多克隆抗体可单独使用或以多克隆抗体的混合物形式使用。因为检定格式中所使用的混合物包括对本文中所揭示的非天然氨基酸多肽具有不同结合特异性的单克隆抗体或多克隆抗体,所以其适用于检测、诊断、分级、监测、预后、活体内成像、预防或治疗或确定多种疾病和病状的诱因。
本发明涵盖且在本发明的范畴内的是通过使用重组抗原以及通过使用合成多肽或纯化多肽(所述多肽包括本文中所揭示的非天然氨基酸多肽的氨基酸序列)可在检定中检测本文中所揭示的非天然氨基酸氨基酸。也在本发明的范畴内的是鉴别本文中所揭示的非天然氨基酸多肽的不同抗原决定基的不同的合成、重组或纯化多肽可组合用于检测、诊断、分级、监测、预后、活体内成像等的检定中。在此情况下,可将所有所述多肽涂布于一个固相上;或可将各独立的多肽涂布于独立的固相上,诸如微粒,且随后组合以形成随后可用于检定中的多肽混合物。随后使涂布于固相上或经可检测标记标记的多肽与样品中所存在的多肽竞争有限量的抗体。合成、重组或纯化肽与抗体的结合的减少为存在本文中所揭示的非天然氨基酸多肽的指示。所属领域的一般技术人员已知检定格式的变体。
6.用于免疫检定的扫描探针显微术(SPM)
本文中揭示的用于蛋白质检测的方法包含检测非天然氨基酸、非天然氨基酸多肽、经修饰非天然氨基酸多肽以及其片段的SPM。在扫描探针显微术中,在捕获相中,(例如)将至少一种单克隆抗体粘附于固相且利用扫描探针显微术检测可能存在于固相表面上的抗原/抗体复合物。使用扫描隧道显微术消除对许多免疫检定系统中通常须利用以检测抗原/抗体复合物的标记的需要。
可以许多方式进行使用SPM来监测特异性结合反应。在一实施例中,使特异性结合搭配物的一个成员(为单克隆抗体的分析物特异性物质)连接于适于扫描的表面。分析物特异性物质的连接可通过吸附于包括塑料或金属表面的固相的测试件实现。可利用特异性结合搭配物(分析物特异性物质)与测试件的共价连接,其中所述测试件包括经衍生化的塑料、金属、硅或玻璃的固相。共价连接方法为所属领域的技术人员所已知且包含多种使特异性结合搭配物与测试件不可逆键联的方法。如果测试件为硅或玻璃,那么在连接特异性结合搭配物之前,表面须活化。同时,可使用聚电解质相互作用将特异性结合搭配物通过使用技术和化学固定于测试件的表面上。优选连接方法是通过共价方式进行。特异性结合成员连接后,可将表面用诸如血清、蛋白质或其它阻断剂的物质进一步处理以使非特异性结合最小化。出于检定目的,也可在制造场所或使用时扫描表面以验证其适用性。不期望扫描过程改变测试件的特异性结合性质。
C.光谱学
1.核磁共振(NMR)
本文中揭示的用于蛋白质检测的方法包含检测非天然氨基酸、非天然氨基酸多肽、经修饰非天然氨基酸多肽以及其片段的NMR。
核磁共振光谱学能够在原子分辨水平上确定如蛋白质和核酸的生物巨分子的结构。另外,有可能用NMR研究时间依赖性现象,诸如巨分子中的分子内动力学、反应动力学、分子识别或蛋白质折叠。本文中揭示的用于蛋白质检测的方法包含检测非天然氨基酸多肽和经修饰非天然氨基酸多肽以及其片段的NMR。
NMR的理论和实施能力的进步使得NMR光谱的信息内容得到越来越有效地利用。生物化学方法(重组蛋白质表达)的平行发展允许可简单且快速地制备蛋白质样品。可通过均一或选择性同位素标记将如15N、13C以及2H的异核并入蛋白质中。可有力简化所述样品的光谱。另外,用所述方法可确定一些关于巨分子的结构和动力学的新信息。所有所述发展目前允许结构测定具有高达30千道尔顿或30千道尔顿以上的质量的蛋白质。
2.X-射线结晶学
本文中揭示的用于蛋白质检测的方法包含检测非天然氨基酸、非天然氨基酸多肽、经修饰非天然氨基酸多肽以及其片段的X-射线结晶学。
X射线结晶学为结晶学中的技术,其中记录通过X射线衍射穿过晶体中原子的紧密晶格产生的图案,且随后分析以揭示所述晶格的性质。这通常产生对物质的材料和分子结构的了解。可使用布拉格定律(Bragg's law)确定晶体晶格中的间隔。环绕原子的电子而不是原子核本身为与进入的X射线光子物理相互作用的实体。这一技术在化学和生物化学中广泛用于确定多种分子(包含无机化合物、DNA以及蛋白质)的结构。通常使用材料的单晶进行X射线衍射,但如果所述单晶不可得,那么也可使用微晶粉末样品,但这需要不同设备且很不直接。
对X射线结晶学来说,分子须经结晶。不能可靠地检测通过一个电子衍射的一个光子,然而,由于规则的结晶结构,在许多对称排列的分子中通过相应电子使光子衍射。因为峰匹配的具有相同频率的波相互增强,所以信号变得可检测。为确定结构,使用一些结晶方法使所关注的分子的晶体生长。收集晶体且通常将其用液氮冷冻。冷冻晶体降低数据收集期间发生的辐射损伤且减少晶体的热运动。将晶体放置在发射X射线束的机器衍射计上。X射线衍射出晶体中的电子,将衍射图案记录在膜上且扫描到计算机中。将所述衍射图像组合且最终用于构造结晶分子的电子密度的图,然后使原子配合电子密度图且改进各种参数(诸如位置)以最佳配合所观察到的衍射数据。
3.荧光光谱学
本文中揭示的用于蛋白质检测的方法包含检测非天然氨基酸、非天然氨基酸多肽、经修饰非天然氨基酸多肽以及其片段的荧光光谱学。
除标准荧光测量外,已开发出多种其它方法。常规荧光分析法涉及在确定波长下测量荧光团某一发射最大值的发射光强度。总荧光分析法涉及收集吸收连续区以及发射波长的数据。在荧光偏振中,使用偏振光激发且荧光染料标记抗原与特异性抗体的结合影响偏振程度。窄线光谱学(Line Narrowing Spectroscopy)涉及低温固体光谱学,其从其提供的窄线发射光谱中获得其选择性。
时间依赖性荧光光谱学包括与稳态测量相比含有较多信息的时间分辨测量,因为稳态值代表时间分辨测定的时间平均值。其为单光子计时技术,其中测量激发光脉冲与样品所发射的第一光子之间的时间。
频域荧光光谱学是时间分辨方法的替代方法。荧光的时间衰减通常在给定频率下使用具有正弦调制的强度的光源通过测定荧光信号相对于激发光的相位延迟和相对调制来测量。
4.基质辅助激光解吸电离飞行时间质谱(Matrix Assisted Laser Desorptionionization time-of-flight massspectrometry,MALDITOF-MS)
本文中揭示的用于蛋白质检测的方法包含检测非天然氨基酸、非天然氨基酸多肽、经修饰非天然氨基酸多肽以及其片段的MALDI TOF-MS。
线性TOF-MS:质谱已显现为分析和表征具有不同复杂性的大生物分子的重要手段。于1987年开发的基质辅助激光解吸/电离(MALDI)技术已将生物分子的质谱分析的质量上限增加到超过300,000Da且已使得通过质谱来分析大生物分子能够变得更容易且更灵敏。TOF质谱计基于以下原理操作:在使时间上和空间上明确的一组具有不同质量/电荷(m/z)比的离子经受同一施加电场(K.E.=[mv2]/2=zeEs,其中K.E.=动能;m=离子的质量;v=离子的速度;z=电荷数;e=电子电荷(库仑);E=电场梯度;以及s=离子源区的距离)且使其迁移恒定电场区中时,其将在视其m/z比而定的时间内横穿这一区。
反射TOF-MS:已通过利用单级或二级反射(RETOF-MS)获得MALDI TOF-MS中的改进的质量分辨率。使用位于飞行管末端的反射器利用离子反射器补偿具有略微不同的动能的相同m/z离子的飞行时间的差。这使得在空间和时间上将离子包聚焦于检测器。在反射质谱中,充分分辨同位素多重峰产生约3400的半最大宽度(full width half maximum,FWHM)质量分辨率。关于高达约3000Da的肽用RETOF-MS已获得高达6000的质量分辨率(FWHM)。当测定离子质量时,增强质量分辨率也可增加质量精确性。
历史上主要利用线性与反射MALDI-TOF-MS进行分子离子和酶促消化物的分子量测定,从而获得蛋白质的结构信息。通常在经纯化或不经纯化的情况下对所述消化物进行质量分析,之后测定分子量。已开发出多种方法以利用MALDI TOF-MS获得蛋白质和肽的主要序列信息。可采用两种不同方法。第一种方法称为蛋白质梯状测序且用于在插入TOF质谱计之前产生分析物的结构信息片段且接着分析。第二种方法利用TOF质谱计内部发生的亚稳离子衰减现象产生序列信息。
利用TOF-MS的梯状测序:可使用MALDI-TOF-MS以梯状测序技术对蛋白质或肽进行测序,所述技术由将蛋白质或肽的N-末端或C-末端时间依赖性或浓度依赖性化学降解为片段(各相差一个氨基酸残基)组成。在单一MALDI-TOF-MS实验中对混合物进行质量分析,其中相邻质谱峰之间的质量差对应于特定氨基酸残基。可认为这一类型的分析是简单地测定单一MALDI样品中所存在的一系列肽/蛋白质的质量。质谱中的出现顺序确定原始蛋白质或肽中的氨基酸序列。
利用RETOF-MS MALDI的源后衰减:历史上认为其为几乎仅产生完整质子化假分子离子物质的“软”电离技术。显着程度的亚稳离子衰减在离子加速后和检测之前发生。由肽和蛋白质的亚稳离子衰减产生的离子片段通常包含中性分子丢失(诸如水、氨以及氨基酸侧链的部分)与肽键处的随机裂解。MALDI质谱中的所述亚稳离子衰变产物的观察结果视TOF仪器配置而定。
MALDI TOF-MS在生物科学中已发展为用于获得精确质量测定与主要序列信息的重要手段。本文中揭示的用于蛋白质检测的方法包含检测非天然氨基酸多肽和经修饰非天然氨基酸多肽以及其片段的MALDI TOF-MS。从序列已推导获知的质谱获得的序列信息决不是暗指从亚稳离子衰减质谱推导出未知肽或蛋白质序列的直接流程。预想所述MALDI技术最适用于与常规生物化学技术(诸如,蛋白质消化)组合。其可适用于以此方式鉴别已知蛋白质中的经阻断氨基末端、翻译后修饰和突变位点。同时,对完全未知物来说,应可能对极小量(小于10pmol)的分析物进行大量初步结构测定。对梯状测序和源内破碎研究来说,重要的是使潜在肽杂质减到最少。
利用线性TOF-MS的源内衰减:用于研究产生离子的MALDI的亚稳离子衰减的RETOF-MS的替代方法是利用具有线性TOF-MS的DE。通过使用DE技术,也可获得肽和蛋白质的主要结构信息。对产生肽或蛋白质离子的MALDI来说,通常不存在解吸事件(即,离子形成)时所产生的迅速的离子破碎。通过在离子形成与离子提取之间并入时间延迟,允许源内离子在提取之前在相对较短的时间(<100纳秒)内破碎为较小离子和中性物质。然后施加抽出电势以提取破碎离子。连续质谱峰由所述亚稳衰减离子产生,从而产生肽和蛋白质的重要结构信息。
5.表面增强激光解吸电离飞行时间(SELDI-TOF)
蛋白质混合物的定量分析中涉及的另一蛋白质组技术称为表面增强激光解吸电离飞行时间(SELDI-TOF)。本文中揭示的用于蛋白质检测的方法包含检测非天然氨基酸、非天然氨基酸多肽、经修饰非天然氨基酸多肽以及其片段的SELDI-TOF。
这一技术利用经直径为1-2毫米的化学(亲水性、疏水性、预活化、正相、固定金属亲和力以及阳离子或阴离子)或生物(抗体、抗原结合片段(包含(但不限于)scFv)、DNA、酶或受体)饵表面工程化的不锈钢或铝基支撑物或芯片。所述改变的化学和生物化学表面允许基于蛋白质本身的固有性质来差异捕获蛋白质。将体积小至0.1微升的溶解组织或体液直接施加于所述表面,其中蛋白质将以各种亲和力与饵表面结合。一系列洗涤以移除非特异性或弱结合蛋白质后,将结合蛋白质激光解吸且电离以用于MS分析。基于飞行时间计算从小于1000道尔顿的小肽到大于300千道尔顿的蛋白质范围内的蛋白质的质量。当将在不同样品内分析蛋白质的混合物时,各测试样品将产生独特的样品指纹图谱或特征。因此,通过SELDI分析产生质量图案而不是实际蛋白质鉴别。使用所述质谱图案彼此区分患者样品,诸如区分患病的与正常患者的样品。虽然可就差异生物标记物表达来分析蛋白质指纹图谱,但这一技术目前不能使用MS特异性鉴别样品内的蛋白质。然而,这一情形正快速发展,因为正在测试使SELDI-TOF技术与串联质谱计联合的原型。所述类型的仪器的联合将使得能够进行氨基酸测序和后续蛋白质鉴别。
6.UV-Vis
本文中揭示的用于蛋白质检测的方法包含检测非天然氨基酸、非天然氨基酸多肽、经修饰非天然氨基酸多肽以及其片段的UV-Vis。
光学吸收光谱学(UV/VIS)对浓度(蛋白质、DNA、核苷酸等)测定起重要作用。可使用有机染料增强吸收且将其迁移至可见范围内(例如考马斯蓝色试剂(coomassie bluereagent))。理解控制蛋白质彼此间的相互作用的力有助于理解诸如大分子装配、伴侣辅助蛋白质折叠以及蛋白质易位的过程。
共振拉曼光谱学(Resonance Raman Spectroscopy,RRS)为可用于研究分子结构和动力学的手段。共振拉曼散射要求在电子吸收带内激发且使得散射大大增加。极少数分子具有可见吸收带;然而所有事物在深紫外中吸收。通过使用紫外光,有可能研究多种无色发色团,且具有避免荧光干扰的额外益处。此外,可选择性激发具有不同激发波长的不同官能团的电子。这种方法有助于通过使用不同激发波长研究巨分子的特定部分。
7.液相色谱法(LC)
液相色谱法已成为从复杂混合物中分离蛋白质、肽和其它分子的有效手段。本文中揭示的用于蛋白质检测的方法包含检测非天然氨基酸、非天然氨基酸多肽、经修饰非天然氨基酸多肽以及其片段的LC。液相色谱法可为亲和力色谱法、凝胶过滤色谱法、阴离子交换色谱法、阳离子交换色谱法、二极管阵列-液相色谱法以及高效液相色谱法(HPLC)。
凝胶过滤色谱法基于大小分离蛋白质、肽以及寡核苷酸。分子移动穿过多孔珠粒床,或多或少分散于珠粒中。较小分子进一步分散于珠粒的微孔中,且因此较缓慢地移动穿过床,而较大分子较少或根本不进入且因此较快速地移动穿过床。分子量与三维形状为保留度提供贡献。可使用凝胶过滤色谱法分析分子大小、分离混合物中的组分或从巨分子制剂移除盐或与之进行缓冲液交换。
亲和力色谱法为生物选择性吸附且随后从固定配位体回收化合物的过程。这一过程允许高度特异性且高效地纯化许多不同蛋白质和其它化合物。这一过程要求利用适当选择性配位体,所述配位体通常将以10-4至10-8范围内的解离常数结合所需化合物同时准许在温和条件下回收。通常将配位体固定在珠粒和可呈管柱填料或分批吸附介质形式的多孔基质上。
离子交换色谱法基于蛋白质总电荷之间的差异分离分子。其通常用于蛋白质纯化,但可用于寡核苷酸、肽或其它带电分子的纯化。所关注的蛋白质须具有与连接于树脂的官能团的电荷相反的电荷以便结合。举例来说,通常具有总正电荷的免疫球蛋白将与含有带负电的官能团的阳离子交换剂良好结合。因为这一相互作用为离子型,所以结合须在低离子条件下进行。通过增加离子强度来瓦解离子相互作用或通过改变蛋白质的pH值实现洗脱。
HPLC可用于分离、纯化以及检测本文中所揭示的非天然氨基酸、非天然氨基酸多肽、经修饰非天然氨基酸多肽以及其片段。肽:在合成肽制备中,使用反相色谱法(RPC)已变成普遍且重要的步骤。RPC也已用于纯化天然序列。虽然使用分析管柱进行这一过程,但归因于组织中有限量的“活性”蛋白质,所述程序在性质上可为制备型的。一些其它优点在于因肽大小缩短而有利于纯化后生物活性的恢复和暴露于RPC后二级或三级结构的重新形成。可将粗组织提取物直接负载于RPC系统上且通过梯度洗脱移动。如果准许或必需进一步纯化,在相同条件下再色谱分离为一种选择。RPC也可用于蛋白质结构确定过程中。这一过程的正常程序是:1)通过蛋白水解或化学裂解破碎;2)纯化;以及3)测序。肽的RPC的常见移动相为于水中的0.1%三氟乙酸(TFA)到于有机溶剂(诸如乙腈)中的0.1%TFA的梯度,因为所述有机溶剂1)溶解肽,2)允许在约230-240纳米下检测,以及3)可蒸发脱离样品。生物活性蛋白质:使用尺寸排阻色谱法(SEC)和离子交换色谱法(IEC))非常适合用于生物活性蛋白质(诸如酶、激素以及抗体),因为各蛋白质具有其自身独特的结构且所述技术可在生理条件下进行。可实现暴露于色谱法后的活性完全恢复,且目前,SEC管柱的可用性足够多,允许分级分离1万道尔顿到100万道尔顿。极具碱性或疏水性的蛋白质可能不展示真实的SEC特征,因为管柱倾向于具有轻微的疏水性和阴离子特征。对IEC管柱使用梯度洗脱是有利的,因为具有与聚丙烯酰胺凝胶电泳(PAGE)等效的分辨率和当与SEC相比时,具有增加的负载能力。在液体亲和力色谱法(liquid affinity chromatography,LAC)中,归因于模仿底物、受体等,相互作用是以蛋白质的结合为基础。通过引入竞争结合剂或改变蛋白质构象(有利于解离)洗脱蛋白质。膜蛋白质:膜蛋白为周围蛋白质(位于外表面)或整合蛋白质(部分横跨、完全横跨或完全位于膜内)。双层的亲脂性将蛋白质的亲脂性特征(即,疏水性氨基酸)传输到膜内。RPC将为所述蛋白质的分析和纯化的合理选择,但也使用IEC。膜蛋白的分离中所使用的另一程序是使用非离子型洗涤剂(诸如曲拉通X-100(Triton X-100))或对IEC来说,通过有机溶剂使蛋白质增溶。HPLC可与MS联合。
二极管阵列检测器-液相色谱法(DAD-LC)为各HPLC峰提供完整的多光谱,比较起来,其可提供峰纯度的指示。所述数据也可指定Tyr、Trp、Phe以及可能其他氨基酸(His、Met、Cys)的存在且可通过第二衍生物或多组分分析定量所述氨基酸。通过管柱后衍生化,DAD-LC也可鉴别且定量个别肽中的Cys、His以及Arg。因此,有可能在单一LC实验中分析各分离肽的20种氨基酸中的6种,且可在单一步骤中获得关于给定肽中所述氨基酸存在与否的信息。对此通过获知各肽中残基的数目加以辅助。同样,通过在205纳米下修正侧链发色团的吸光度,这一技术可给出对各肽的相对量的更佳估算。
D.电泳
本文中揭示的用于蛋白质检测的方法包含检测非天然氨基酸、非天然氨基酸多肽、经修饰非天然氨基酸多肽以及其片段的电泳。电泳可为凝胶电泳或毛细管电泳。
凝胶电泳:凝胶电泳为可用于分离蛋白质的技术。大(巨)分子的分离依赖于两种力:电荷和质量。当将生物样品(诸如蛋白质)混合于缓冲溶液中且施加于凝胶时,这两种力同时起作用。来自一个电极的电流排斥分子,而另一电极同时吸引分子。凝胶材料的摩擦力充当按大小分离分子的“分子筛”。电泳期间,当施加电流时,巨分子被迫移动穿过微孔。其穿过电场的迁移速率依赖于场强度、分子的大小和形状、样品的相对疏水性以及分子移动的缓冲液的离子强度和温度。染色后,在一系列从凝胶的一端到另一端展开的带中可见各泳道中的所分离的巨分子。使用这一技术,有可能分离和鉴别因少至单个氨基酸不同的蛋白质分子。其优点在于可观测分离的蛋白质,从而准许研究人员快速估算混合物中的蛋白质的数目或特定蛋白质制剂的纯度。同样,凝胶电泳允许确定蛋白质的关键性质,诸如其等电点以及近似分子量。
等电聚焦或等电点聚焦为通过电荷差异(如果其具有任何电荷)分离不同分子的技术。其最常用于蛋白质。其为区带电泳的一种,其利用分子的电荷随其环境的pH值的改变而改变的事实。分子分布于具有pH值梯度(通常由脂肪族两性电解质产生)的介质内。使电流通过介质,产生“正极”端和“负极”端。带负电粒子穿过pH值梯度向“正极”端迁移,而带正电粒子向“负极”端移动。当粒子移动到中和其电荷的pH值中时,其将停止跟随电流。具有相同初始电荷的粒子沉积(或聚焦)关于pH值梯度相同的地点周围。
毛细管电泳:毛细管电泳为大量分离技术的总称,其涉及对整个缓冲液填充的毛细管施加高电压来实现分离。变体包含基于分析物之间的大小和电荷差异的分离(称为毛细管区带电泳,CZE;或自由溶液毛细管电泳,FSCE)、使用表面活性剂胶束分离中性化合物(胶束电动毛细管色谱法,MECC,或有时称为MEKC)、通过凝胶网状物筛分溶质(毛细管凝胶电泳,GCE)、基于电泳迁移率分离阳离子(或阴离子)(毛细管等速电泳,CITP)以及在pH值梯度内分离两性离子溶质(毛细管等电点聚焦,CIEF)。毛细管电色谱法(CEC)为相关电动分离技术,其涉及对整个填充有硅胶固定相的毛细管施加电压。CEC中的分离选择性为电泳过程与色谱过程的组合。许多CE分离技术依赖于毛细管中将溶质泵送到检测器中的溶液电诱导流的存在(电渗流,EOF)。GCE和CIEF对生物分子(诸如蛋白质)的分离来说具有重要性。CE通常使用水性基电解质进行,然而在CE中逐渐使用非水性溶剂。
CE系统的操作涉及对整个窄膛(25-100毫米)毛细管施加高电压(通常10-30千伏)。向毛细管中填充在整个毛细管内部传导电流的电解质溶液。将毛细管的末端浸在填充有电解质的存储器中。也将由惰性材料(诸如铂)制成的电极插入电解质存储器中以完成电路。将小体积的样品注射到毛细管的一端。毛细管穿过位于毛细管另一端的检测器,通常为紫外吸收检测器。电压的施加引起样品离子向其适当的电极移动,通常穿过检测器。产生检测器响应随时间的曲线,称为电泳图谱。电解质流(称为电渗流,EOF)产生沿毛细管通常朝向检测器的溶液流。所述流可显着减少分析时间或迫使离子克服其向正因其电荷符号而被吸引到的电极的迁移倾向。
E.阵列
本文中揭示的用于蛋白质检测的方法包含检测非天然氨基酸、非天然氨基酸多肽、经修饰非天然氨基酸多肽以及其片段的阵列。
阵列涉及以已知蛋白质标靶进行多个样品的平行分析。各种微阵列平台的发展已显着使得能够且加速细胞或组织中蛋白质丰度、定位以及相互作用的测定。微阵列提供允许鉴别针对一组经表征蛋白质、抗体或肽的蛋白质相互作用或功能的平台。
蛋白质基芯片将蛋白质排列在小表面上且可使用荧光基成像直接测量组织中蛋白质的含量。蛋白质可排列在平坦固相上或毛细管系统中(微流阵列),且数种不同蛋白质可应用于所述阵列。目前,最流行的阵列依赖于抗体-抗原相互作用,其也可检测抗原-蛋白质相互作用。目前,抗体阵列的可能性受到对所关注的标靶具有高特异性(消除与样品中非特异性蛋白质的交叉反应)与高亲和力(允许检测样品内的小数量)的抗体的可用性所限制。蛋白质阵列技术的另一挑战是将蛋白质保持为其生物活性形状和形式的能力。除使用抗体作为阵列探针外,特异性通过活体外洗脱优化的单链寡核苷酸(适体)提供有前途的替代物。适体允许其与同源蛋白质通过光交联共价连接,从而减弱背景。随后,使用非特异性蛋白质染色检测结合蛋白质。标题为“Protein Arrays”的国际公开案第WO 04/58946号(其是以引用的方式并入本文中)描述非天然氨基酸多肽与固体支撑物的连接。
阵列包含(但不限于)珠粒阵列、珠粒基阵列、生物阵列、生物电子阵列、cDNA阵列、细胞阵列、DNA阵列、基因阵列、基因表达阵列、冷冻细胞阵列、基因组阵列、高密度寡核苷酸阵列、杂交阵列、微悬壁阵列、微电子阵列、多路DNA杂交阵列、纳米阵列、寡核苷酸阵列、寡糖阵列、平面阵列、蛋白质阵列、溶液阵列、点阵列、组织阵列、外显子阵列、过滤器阵列、宏阵列、小分子微阵列、悬浮液阵列、主题阵列、叠片阵列以及转录物阵列。
F.传感器
本文中揭示的用于蛋白质检测的方法包含检测非天然氨基酸、非天然氨基酸多肽、经修饰非天然氨基酸多肽以及其片段的传感器。传感器可用于活体内与活体外检测。传感器可用于检测诸如非天然氨基酸多肽与其标靶结合、非天然氨基酸多肽中构象变化的事件和/或测量非天然氨基酸多肽或其环境的其它相互作用、修饰或变化。
传感器可为化学传感器、光学传感器以及生物传感器。化学传感器为微型化分析装置,其传送关于复杂样品中特定化合物或离子的存在的实时和在线信息。光学传感器是以分析物的固有光学性质或连接于固体支撑物的指示剂染料或标记生物分子的光学性质的测量为基础。生物传感器可为基于酶使“底物”转化为产物的能力的亲和性生物传感器;或催化型生物传感器。
可测量非天然氨基酸多肽与其标靶(包含(但不限于)抗体、抗体片段或抗原结合多肽或其片段)的结合。使非天然氨基酸多肽接合于诸如纳米传递素的分子。当纳米传递素活体内结合于其标靶时,其发射信号,所述信号通过医学成像仪器离体读取。
G.鉴别来自文库筛检的蛋白质的方法
为鉴别与非天然氨基酸多肽相互作用的蛋白质,可使用许多方法。蛋白质分离有助于分离复杂混合物,从而个别蛋白质较易用其它技术处理。蛋白质鉴别方法包含(但不限于)通过Edman降解的低通量测序、质谱技术、肽质量指纹图谱、从头开始测序、基于抗体的检定以及蛋白质定量检定,诸如荧光染料凝胶染色、标记或化学改性方法(即,同位素标记亲和性标签(isotope-coded affinity tags,ICATS)、组合分级分离对角线色谱法(combined fractional diagonal chromatography,COFRADIC))。也可使用纯化蛋白质测定三维晶体结构,其可用于对分子间相互作用建模。测定三维晶体结构的常见方法包含X射线结晶学和核磁共振光谱学。下文详述几种鉴别蛋白质的方法。
蛋白质测序:N-末端测序和C-末端测序。N-末端测序有助于鉴别未知蛋白质;证实重组蛋白质一致性和保真度(阅读框架、翻译起始位点等);有助于解释NMR和结晶学数据;证明蛋白质之间的一致性程度;或提供用于设计用于抗体产生的合成肽的数据等。N-末端测序利用充分确立的Edman降解化学,依次从蛋白质的N-末端移除氨基酸残基且通过反相HPLC对其进行鉴别。灵敏度处于100s飞摩尔(femtomole)的水平且长序列读数(20-40残基)通常可从数10s皮摩尔起始物质获得。纯蛋白质(>90%)产生容易解释的数据,但不够纯的蛋白质混合物也可提供适用的数据,以供精确数据解释。N-末端修饰(尤其乙酰化)蛋白质不能直接测序,因为自由伯氨基的缺乏而不能发生Edman化学。然而,经阻断蛋白质的有限蛋白质水解(例如,使用溴化氰)可允许在仪器的各循环中产生氨基酸混合物,可使所述混合物经受数据库分析以解释有意义的序列信息。
认为C-末端测序是重要的翻译后修饰,有时关键性地影响蛋白质的结构和活性。多种疾病情形与蛋白质加工受损相关,且C-末端测序提供研究蛋白质结构和加工机制的另一手段。
蛋白质组分析:对蛋白质组来说,蛋白质可主要通过计算机检索算法鉴别,所述算法将序列指定到从对所关注的蛋白质进行电喷雾电离(electrospray ionization,ESI)、基质辅助激光解吸/电离(MALDI)、飞行时间(TOF)仪器或三维四极离子阱所产生的一组凭经验获得的质量/强度数据。
其它检测方法
其他检测方法涉及联吡啶;金属配位;纳米技术(金);生物素-抗生蛋白链菌素/抗生物素蛋白;UV/Vis;涉及结合事件和偶合事件的两步系统,归因于非天然氨基酸与标靶的接近,产生从荧光团、结合于多肽、脂质运载蛋白(β桶状)、脂肪酸结合蛋白中所存在的非天然氨基酸的小分子基荧光/发荧光分子以及由深到浅或由浅到深的荧光团的发射。
XV.成像和诊断
本文中揭示利用非天然氨基酸、非天然氨基酸多肽、经修饰非天然氨基酸多肽以及其片段的用于成像和诊断的方法。
分子成像为涉及鉴别分子成像标靶的分子和细胞生物学、开发合适成像探针的放射化学和生物接合化学、优化获得最佳靶向功效和有利活体内动力学的探针的药理学以及活体内非侵袭性监测分子成像探针历程的成像捕获技术的成果的多学科领域。除基本诊断应用外,分子成像也在治疗功效评估、药物发现以及活系统中的分子机制的理解中发挥作用。分子成像探针(单克隆抗体、微型抗体、蛋白质、肽以及拟肽)可用于观测和定量分子标靶。解剖学(微MRI和微CT)和分子成像技术(微PET、微SPECT以及NIR荧光成像)的组合可允许获得分子和功能信息且监测特异性分子治疗功效。生物成像方法可使用光透射、反射、散射以及荧光发射策略以高空间和光谱分辨率用于检测空间定向(即,分布)且定量细胞和组织天然成分、结构、细胞器以及所投与的组分,诸如经标签标记的探针(例如,荧光探针)和药物。
未经标记化合物与经标记探针对具有已知药理学特征和功效的药剂的活体内竞争检定可用于药物评估程序。药物靶向的非侵袭性特征、受体占位性、有效受体或酶抑制所需的浓度等可加速前导化合物的评估。当新颖药物候选物进行至药效和药物动力学研究时,成像分析可定量且重复地监测标靶可接近性、标靶位点处的保留持续时间和其与药物功效的相关性,以及从不相干组织的清除率。
在临床试验中,成像检定可有利于评估患者中的非天然氨基酸、非天然氨基酸多肽、经修饰非天然氨基酸多肽以及其片段的药理学性质与治疗功效。通过用合并结构和功能数据的多模态成像仪器组合成像探针,医师可同时进行多功能成像检定和解剖学分析。随后可使来源于结构研究和药物分布和浓度的非侵袭性重复监测的信息与关于信号转导路径、标靶酶活性、抗原含量、受体活化、细胞增殖、蛋白酶体活性等的生物效应相关联。所述非侵袭性检定可准许实时监测和修改靶向介入和治疗策略。分子成像技术可用于在临床前研究中研究小鼠模型。举例来说,用于癌症和其它病症的许多药物通过诱导细胞凋亡发挥其治疗效应。重复地使活动物中的细胞雕亡反应成像的能力可有利于所述药物的临床前评估。对研究转殖基因小鼠来说,通过非侵袭性成像鉴别可以适当空间和时间模式表达转殖基因的建立者小鼠可准许鉴别未经配种的建立者。
分子成像可提供治疗基因的表达的位置、量值以及持续时间以优化基因治疗方案。光学成像可与靶向基因转移联合。报导体基因的分子成像也可用于监测细胞基疗法的生物分布和功效。
成像探针
成像探针可为经放射性同位素标记的分子或光发射或近红外(nearinfrared,NIR)发射分子。在研究中,分子成像探针的浓度和/或光谱性质通过特定生物过程而改变。可用于功能成像研究的探针的两种类型为(仅举例来说)直接结合探针和间接探针。直接结合探针和间接探针可为非天然氨基酸多肽。直接结合探针的实例包含(但不限于)抗体、抗体片段、抗原结合多肽以及其片段和受体配位体。直接探针可用于检测其标靶的浓度,因为其结合为化学计量的。因此,直接探针适用于研究在病理学病状中(例如)在治疗之前和之后过表现的标靶。间接探针用于监测其大分子标靶的活性,包含催化活性。所述探针的实例由Herschman描述于Science 2003 302:605-608中。
探针可开发用于监测内源靶向分子和生物过程。所述探针可为(经修饰)非天然氨基酸多肽。可使用成像探针研究内源过程的重要调节剂和/或指示剂。酶(诸如激酶或蛋白酶)的底物可通过放射性核素或荧光分子标记,以使得通过分子成像检定检测诸如磷酸化或蛋白酶裂解的事件。所述在蛋白酶裂解后发射NIR荧光的荧光探针可称为“可活化”光学成像探针。
直接和间接探针可通过高产量筛检化学文库发现。直接探针也可通过筛检大重组抗体和噬菌体文库发现。所述文库可包括(经修饰)非天然氨基酸多肽。
量子点:利用本文中所揭示的非天然氨基酸、非天然氨基酸多肽、经修饰非天然氨基酸多肽以及其片段的用于成像和诊断的方法包含荧光半导体纳米晶体(也称为量子点(quantum dot或qdot))。量子点可用于研究单个分子水平上的细胞内过程、高分辨率细胞成像、细胞通行的长期活体内观察、肿瘤靶向以及诊断。
胶体半导体量子点是直径为数纳米的单晶,其尺寸和形状可通过合成中所使用的持续时间、温度以及配位体分子精确控制。这种方法可产生具有组成和尺寸依赖性吸收和发射的量子点。吸收具有大于半导体带隙能的能量的光子可使得产生电子-空穴对(或激发子)。与标准荧光团鲜明对照,吸收在较高能量(即,较短波长)下可具有增加的概率且产生宽带吸收谱。对小于所谓的玻尔激发子半径(Bohr exciton radius)(数纳米)的纳米晶体来说,能级可能是量子化的,其值直接与量子点的尺寸相关(称为量子限制的效应,由此得名“量子点”)。激发子(特征在于寿命长,>10纳秒)的辐射复合可使得发射窄的对称能带的光子。量子点的长荧光寿命可使得能够使用时间选通检测来从具有较短寿命的物质的信号(诸如细胞中遇到的背景自发荧光)中分离其信号。
可经延长时间用(例如)共焦显微术、全内反射显微术或基本视野表荧光显微术观察和追踪单个量子点。荧光相关光谱可允许测定每粒子的亮度以及提供平均量子点尺寸的测量。量子点也可用作双光子共焦显微术的探针,因其具有非常大的吸收截面。其可与标准染料同时使用。量子点具有作为荧光共振能量传递(FRET)对的可定制供体的潜能。
对诸如量子点标记靶分子(诸如非天然氨基酸多肽)的应用来说,可将单个识别部分移植到量子点中(例如,DNA寡核苷酸或适体、抗体、抗体片段、抗原结合多肽等)或用作量子点增溶配位体。含有(例如)胺或羧基的量子点配位体可利用标准生物接合反应提供含有硫醇基或N-羟基琥珀酰亚胺酯部分的交联分子的可能性。另一种方法可为使用量子点与带电接头分子之间或量子点与经修饰而并入带电域的蛋白质之间的静电作用。可重复所述官能化步骤以添加或改变官能团。举例来说,经抗生蛋白链菌素涂布的量子点可与经生物素标记蛋白质或抗体组合使用。诸如使用(i)针对特异性靶的抗体,(ii)针对第一抗体的经生物素标记的二次抗体,以及(iii)经抗生蛋白链菌素涂布的量子点的三层法可允许量子点标记如本文中所揭示的非天然氨基酸、非天然氨基酸多肽、经修饰非天然氨基酸多肽以及其片段。
许多潜在表面连接基团可用于将不同官能团“移植”到个别量子点中,从而产生多能探针。举例来说,除识别部分外,可使量子点具备膜交连或细胞内化能力和/或酶促功能。肽可经定制,且通过选择序列,单步表面活性剂交换可产生必要的功能:(i)保护核心/壳层结构且维持原始量子点光物理学,(ii)溶解量子点,(iii)提供生物界面,以及(iv)允许并入多种功能。所得粒子可具有胶体性质、光物理学以及生物适应性,且所述“肽工具包”可适合于提供其他官能团。所述官能团可通过分子演化来改进。
可使用活细胞实验(诸如全细胞标记、标记膜结合蛋白质以及细胞质或细胞核标靶标记)进行细胞或病原体检测、细胞追踪以及细胞谱系研究。此可通过量子点的微量注射、电穿孔或吞噬在不经任何官能化的情况下实现。可以使量子点靶向细胞表面蛋白质的方式探究不同类型的官能化。一些实例包含抗生蛋白链菌素、二次抗体或一次抗体、受体配位体(诸如表皮生长因子(epidermal growth factor,EGF)或血清素)、识别肽以及亲和性对,诸如使标靶蛋白质工程化后的生物素-抗生物素蛋白。另一策略可由使一次抗体与量子点交联组成。一些蛋白质可由肽识别,所以可使用肽以供量子点官能化。微量注射可允许将经适当靶向肽序列官能化的量子点传送到线粒体或细胞核中。量子点的长期稳定性和亮度使其成为活动物靶向和成像的候选者。
在合成中,新组成可使量子点必然具有以下性质,诸如(i)对电场或磁场的灵敏性;(ii)较窄的荧光发射和较长的寿命(使用镧系金属掺杂量子点);(iii)较小的尺寸和如三元混合物所证明的NIR光谱的扩展;(iv)纳米杆量子点的末端特异性官能化;(v)抑止闪烁和量子产率增加;以及(vi)内建式启闭开关或光电生物转换器。
生物转换器光激发量子点可将其电荷转移到充当电子或空穴接受体的结合酶,从而使得其控制能够通过光活化进行。相反地,量子点可通过电子或空穴供体酶经化学发光发亮。纳米材料的肽涂层可为赋予有机-无机界面新颖功能的手段。可使用半导体的能带隙(通过合理设计)与肽的氧化还原电势(通过分子演化)的同时工程化设计优化量子点组成和用于结合的肽序列以及所需光学、电子、磁性以及化学性质。总之,不同的形状、末端特异性以及组成可产生更复杂的生物无机结构,所述结构可用作细胞机构的光电子界面。
量子点可用作对比试剂与MRI、PET、计算机断层成像以及IR荧光成像(后者通过表皮直接成像或通过导管基共焦纤维显微镜)组合用于功能成像。活体内光学活检可证实病理学,且随后可通过将能量(用于k-壳层吸收的单色X射线或激光IR辐射)沉积于靶向量子点中来选择性、局部以及临时性地进行治疗。或者,有可能将治疗性酶移植到量子点表面且通过光将其活化或通过光学循环量子点产生自由基(诸如单重态氧)。
成像仪器
多种仪器可用于成像和诊断如本文中所揭示的非天然氨基酸、非天然氨基酸多肽、经修饰非天然氨基酸多肽以及其片段。
对探针的监测可由(1)测量系统和(2)分析软件组成。测量系统可包含所有光学器件、电子器件以及照明样品的方式(例如,光源选择)、测量模式(例如,荧光或透射)以及最适于由测量提取所需结果的校正。分析软件可包含以有意义的方式分析和呈现重要结果所必需的所有软件和数学算法。测量可使用与以下系统连接的几乎任何光学系统进行:例如垂直或倒置显微镜、荧光显微镜、微距透镜、内窥镜以及底部照相机。此外,可使用任何标准实验方法,包含光透射(明视场和暗视场)、所投与的探针的自发荧光和荧光等。荧光测量可用任何标准滤光片组(由屏障滤光片、激发滤光片以及二色镜组成)或用于专门应用的任何定制滤光片组进行,只要发射光谱属于系统灵敏度的光谱范围内。
光谱生物成像也可与任何标准空间滤光法(诸如暗视场和相差)且甚至与偏振光显微术组合使用。放射性核素标记探针可通过PET或单光子发射断层成像(single-photonemission tomography,SPECT)检测,探针发射光(荧光、生物发光或MR发射)可通过光学成像检测,且无线电波发射可通过MRI检测。小动物装置可用于放射性核素基成像(例如,微SPECT和微PET)、可见光光学成像(使用灵敏的冷却电荷耦合装置(charged-coupleddevice,CCD)照相机)和NIR发射。解剖学(微MRI和微CT)和分子成像技术(微PET、微SPECT以及NIR荧光成像)的组合可有助于获得分子和功能信息且监测特定分子治疗功效。
非侵袭性报导体基因检定可用于活动物的分子成像研究。使用直接结合FESP探针或单纯疱疹病毒1型胸苷激酶(herpes simplex virus type 1-thymidine kinase,HSV1-TK),经放射性核素标记的探针可用于监测活小鼠中报导体基因的表达。HSV1-TK可用经正电子标记的胸苷类似物监测。如同FDG,作为酶依赖性磷酸化的结果,己糖激酶的间接底物探针HSV1-TK的正电子标记底物可保留在细胞中。对光学成像检定来说,酶从其底物产生的光可用灵敏的CCD照相机监测。可用荧光、生物发光或放射性核素探针成像的编码融合蛋白质的新颖报导体基因可允许用许多不同成像探针和适于不同应用的仪器研究单个动物。
微PET仪器可提供对功能检定的较佳解剖学区分:例如精确定位器官中肿瘤的位置、更精确地确定细胞迁移的位置等。荧光介导的断层成像可改进光学成像程序的分辨率和定量。光谱成像技术可区分多个荧光探针的发射,从而准许同时分析不同光学探针且显着降低背景自发荧光。
多肽和文库的非天然氨基酸扫描
待经取代以调节多肽的活性或性质的氨基酸的鉴别可通过定点突变诱发来进行。调节功能的本发明的多肽和多肽文库中的氨基酸可通过在多肽的任何或所有位置用非天然编码氨基酸代替天然氨基酸来鉴别或调节。可通过所属领域中已知的方法将天然编码氨基酸取代到多肽的选定位置中,所述方法诸如定点突变诱发或丙胺酸扫描突变诱发(例如参看Cunningham等人,1989),所述揭示案是以引用的方式全部并入本文中。丙胺酸扫描突变诱发程序在分子中的选定或每个残基处引入单个丙胺酸突变。代替取代天然编码氨基酸丙胺酸,用非天然编码氨基酸取代多肽链中的天然编码氨基酸。随后就生物活性使用适于测量特定多肽或蛋白质的功能的检定测试所得包括非天然编码氨基酸的突变型多肽分子。尤其受关注的可为用非天然编码带电氨基酸或非天然编码中性氨基酸取代天然编码带电和/或中性氨基酸。所述取代可产生具有高度希望的经改进或调节特征的蛋白质,所述特征诸如经调节的受体结合、经调节的酶活性、经调节的抗原结合或经调节的聚集或溶解性。
实例
提供以下实例以说明而不是限制本发明。
实例1
本实例描述可与非天然氨基酸多肽一起形成的接合物。分子可直接键结至多肽中的一个或一个以上非天然氨基酸或可通过连接子、聚合物、水溶性聚合物或生物活性分子连接。
图9示出通过在并入多肽中的非天然氨基酸的羰基与分子的羟胺之间形成肟键的反应来位点特异性地连接至多肽的分子的非限制性实例。可将包含(但不限于)荧光团、生物素以及螯合剂的分子连接至非天然氨基酸多肽。
实例2
可使用树脂或所属领域的技术人员已知的其它物质分离多肽。图10展示利用与非天然氨基酸反应的树脂的非天然氨基酸的纯化方法的实例。共价键形成于树脂上的化学特异性亲和性标签与蛋白质中存在的非天然氨基酸之间。所述键联在宽范围的pH值和纯化条件下稳定。分离步骤可以交替模式进行,所交替模式包含(但不限于)能够进行大规模纯化的浴模式。树脂与亲和性标签在物理上和化学上都是稳定的,且因此可重复使用以降低规模扩大后的蛋白质纯化的成本。
分离可与多肽与分子(包含(但不限于)PEG)的接合组合进行。所述“一锅式”方法进一步简化接合过程且降低蛋白质(包含(但不限于)标靶治疗蛋白质)的制造成本(图11)。可接合的其它分子包含(但不限于)荧光团。
可根据多肽中所存在的非天然氨基酸选择且官能化用于纯化的树脂或其它物质。图12展示树脂选择和官能化的实例。
视多肽中所存在的非天然氨基酸而定,可不同地官能化用于纯化的树脂或其它物质。举例来说,图13展示使用羟胺树脂亲和力纯化非天然氨基酸多肽的实例。图14展示使用醛树脂纯化非天然氨基酸多肽的实例。展示羟胺树脂及醛树脂的非限定性实例。
在一些实施例中,纯化过程的一个或一个以上步骤将多肽中所存在的一个或一个以上非天然氨基酸修饰为一个或一个以上天然氨基酸。图15展示从非天然氨基酸前驱体纯化天然蛋白质的实例。在从纯化过程中所使用的树脂释放后,使非天然氨基酸转化为酪氨酸。图16展示非天然氨基酸的非限定性实例。
实例3
非天然氨基酸扫描突变诱发
这一实例详述包含非天然编码氨基酸的hGH多肽在大肠杆菌中的克隆和表达。这一实例也描述一种评估经修饰hGH多肽的生物活性的方法。
克隆hGH和其片段的方法详述于美国专利第4,601,980号、第4,604,359号、第4,634,677号、第4,658,021号、第4,898,830号、第5,424,199号以及第5,795,745号中,其是以引用的方式并入本文中。编码全长hGH和成熟形式的缺乏N末端信号序列的hGH的cDNA分别展示于SEQ ID NO:21和SEQ ID NO:22中。关于完整全全长天然存在GH氨基酸序列以及成熟天然存在GH氨基酸序列和天然存在突变体,参看SEQ ID NO:1、SEQ ID NO:2以及SEQ IDNO:3。
使用包括正交tRNA(O-tRNA)和正交氨酰基tRNA合成酶(O-RS)的所引入翻译系统来表达含有非天然编码氨基酸的hGH。O-RS优先用非天然编码氨基酸氨酰基化O-tRNA。转而翻译系统回应所编码的选择密码子将非天然编码氨基酸插入hGH中。
表1:O-RS和O-tRNA序列
用含有经修饰hGH基因和正交氨酰基tRNA合成酶/tRNA对(对所需非天然编码氨基酸具特异性)的质粒转化大肠杆菌允许将非天然编码氨基酸位点特异性地并入hGH多肽中。在37℃下在含有介于0.01-100mM之间的特定非天然编码氨基酸的培养基中生长的经转化大肠杆菌以高保真度和高效率表达经修饰hGH。含有非天然编码氨基酸的经His标签标记的hGH是由大肠杆菌宿主细胞以包涵体或聚集体形式产生。在6M盐酸胍中在变性条件下将聚集体溶解且进行亲和力纯化。在4℃下在50mM TRIS-HCl(pH 8.0)、40μM CuSO4和2%(w/v)Sarkosyl中通过透析进行再折叠过夜。随后将物质以20mM TRIS-HCl(pH 8.0)、100mMNaCl、2mM CaCl2透析,接着移除His标签。参看Boissel等人,(1993)268:15983-93。用于纯化hGH的方法在所属技术领域中众所周知且由SDS-PAGE、西方印迹分析(Western Blotanalysis)或电喷雾-电离离子阱质谱以及其类似方法证实。
使用ProBond镍螯合树脂(ProBond Nickel-Chelating Resin;Invitrogen,Carlsbad,CA)通过由制造商提供的标准经His标签标记的蛋白质纯化程序,接着通过阴离子交换管柱,之后负载于凝胶上来纯化经His标签标记的突变型hGH蛋白质。为进一步评估经修饰hGH多肽的生物活性,使用测量hGH与其受体的相互作用的下游标记物的检定。hGH与其内源产生的受体的相互作用使得人类IM-9淋巴细胞系中的信号转导因子和转录活化因子家族成员STAT5的酪氨酸磷酸化。从IM-9cDNA文库中鉴别出STAT5的两种形式STAT5A和STAT5B。例如参看Silva等人,Mol.Endocrinol.(1996)10(5):508-518。IM-9细胞上人类生长激素受体对人类生长激素具有选择性,而不对大鼠生长激素和人类催乳激素具选择性产生可检测的STAT5磷酸化。重要的是,大鼠GHR(L43R)胞外域与带有hGH的G120R高效竞争hGH刺激的pSTAT5磷酸化。
用本发明的hGH多肽刺激IM-9细胞。人类IM-9淋巴细胞是购自ATCC(Manassas,VA)且在补充有丙酮酸钠、青霉素、链霉素(Invitrogen,Carlsbad,San Diego)以及10%热灭活胎牛血清(Hyclone,Logan,UT)的RPMI 1640中培养。将MI-9细胞在检定培养基(无苯酚红的RPMI、10mM Hepes、1%热灭活木炭/葡聚糖处理的FBS、丙酮酸钠、青霉素以及链霉素)中饥饿过夜,之后在37℃下用12点剂量范围的hGH多肽刺激10分钟。将经刺激的细胞用1%甲醛固定,之后在冰上用90%冰冷甲醇渗透1小时。通过用初级磷酸基STAT5抗体(CellSignaling Technology,Beverly,MA)在室温下细胞内染色30分钟,接着用PE接合二次抗体染色来检测STAT5磷酸化程度。在FACS阵列上进行样品获取,其中所获取的数据是用Flowjo软件(Tree Star Inc.,Ashland,OR)分析。自利用SigmaPlot以平均荧光强度(MFI)对蛋白质浓度绘制的剂量反应曲线得到EC50值。
下表2概述由突变型hGH多肽产生的IM-9数据。如所述用人类IM-9细胞测试各种在不同位置处具有非天然氨基酸取代的hGH多肽。在所指示位置处用对乙酰基苯基丙氨酸进行所示取代。使用相同检定评估经聚乙二醇化的包括非天然氨基酸的hGH多肽的生物活性。由表中所示的数据,显然受体结合活性根据用非天然编码氨基酸取代天然编码氨基酸的位置而存在差异。
表2
GH EC50(nM) GH EC50(nM)
WHOWT 0.4+0.1(n=8) G120R >200,000
N-6His WT 0.6±0.3(n=3) G120pAF >200,000
大鼠GH WT >200,000 G131pAF 0.8±0.5(n=3)
Y35pAF 0.7±0.2(n=4) P133pAF 1.0
E88pAF 0.9 R134pAF 0.9±0.3(n=4)
Q91pAF 2.0±0.6(n=2) T135pAF 0.9
F92pAF 0.8±0.4(n=9) G136pAF 1.4
R94pAF 0.7 F139pAF 3.3
S95pAF 16.7±1.0(n=2) K140pAF 2.7±0.9(n=2)
N99pAF 8.5 Y143pAF 0.8±0.3(n=3)
Y103pAF 130,000 K145pAF 0.6±0.2(n=3)
Y111pAF 1.0 A155pAF 1.3
实例4
这一实例详述经修饰hIFN多肽在大肠杆菌中的克隆和表达。
这一实例演示包含非天然编码氨基酸的hIFN多肽可如何表达于大肠杆菌中。参看Nagata等人,Nature,第284卷,316-320(1980)和美国专利第4,364,863号。编码全长hIFN和成熟形式的缺乏N末端信号序列的hIFN的cDNA分别展示于SEQ ID NO:23和SEQ ID NO:24中。在不改变氨基酸序列的情况下优化用于克隆和表达的序列之后,将全长和成熟hIFN编码cDNA插入pBAD HISc、pET20b以及pET19b表达载体中。
使用包括正交tRNA(O-tRNA)和正交氨酰基tRNA合成酶(O-RS)的所引入的翻译系统来表达含有非天然编码氨基酸的hGH。O-RS优先用非天然编码氨基酸氨酰基化O-tRNA。转而翻译系统回应所编码的选择密码子将非天然编码氨基酸插入hGH中。
适用于干扰素表达的O-RS和O-tRNA序列包含实例3中的展示的那些序列。用含有经修饰hIFH基因和正交氨酰基tRNA合成酶/tRNA对(对所需非天然编码氨基酸具特异性)的质粒转化大肠杆菌允许将非天然编码氨基酸位点特异性地并入hIFN多肽中。在37℃下在含有介于0.01-100mM之间的特定非天然编码氨基酸的培养基中生长的经转化大肠杆菌以高保真度和高效率表达经修饰hIFN。含有非天然编码氨基酸的经His标签标记的hIFN是由大肠杆菌宿主细胞产生且经亲和力纯化。用于纯化hIFN的方法在所属领域中众所周知且由SDS-PAGE、西方印迹分析或电喷雾-电离离子阱质谱以及其类似方法证实。
结合检定
如美国专利第6,566,132号、第5,889,151号、第5,861,258号、第5,731,169号、第5,578,707号(其是以引用的方式并入本文中)中所述来制备hIFN受体。对于包括非天然氨基酸的非聚乙二醇化多肽来说,可通过使用所属技术领域中已知的BIAcoreTM生物传感器(Pharmacia)技术测量激素对其受体的亲和性。BIAcore生物传感器检定用于测量包括在表3中所示的位置处取代的非天然编码氨基酸的hIFN分子的结合特征以及受体结合数据。由表中所示的数据,显然受体结合活性根据用非天然编码氨基酸取代天然编码氨基酸的位置而存在差异。
表3
实例5
蛋白质与寡核苷酸之间的接合物和复合物在诊断和治疗(诸如免疫PCR、基因治疗以及最近RNAi的靶向传送)中具有广泛应用。位点特异性接合使得能够产生特异性设计的分子和具有新颖功能的纳米结构。目前位点特异性接合已主要通过马来酰亚胺化学实现,其中工程化蛋白质表面半胱氨酸选择性地与马来酰亚胺反应以形成硫醚。非天然氨基酸位点特异性地并入多肽中的发展已使得大量化学能够用于分子与蛋白质的接合。已将超过30个非天然编码氨基酸位点特异性地并入蛋白质中。在此实例中,使用如下所述的非天然氨基酸作为手柄,使寡核苷酸与蛋白质位点特异性地接合。此外,使用单链DNA作为模板,以确定方式在一维程度上装配接合蛋白质。
这一实验中所使用的蛋白质为人类生长激素Y35突变体,其中酪氨酸35由非天然编码氨基酸9.2代替(流程1)。在-80℃下,将单链DNA以25mM溶液形式存储于水中。ssDNAFTam27的序列为5'-CAG CCA GCG TGC ACG(SEQ ID NO:21)。用酰肼修饰FTam27的5'。模板序列为FTam28-d1:5'-CGT GCA CGC TGG CTG CGT GCA CGC TGG CTG(SEQ ID NO:21);FTam-d2:5'-CGT GCA CGC TGG CTG T CGT GCA CGC TGG CTG(SEQ ID NO:22);FTam28-d3:5'-CGT GCA CGC TGG CTG TT CGT GCA CGC TGG CTG;FTam28-t1(SEQ ID NO:23):5'-CGT GCA CGC TGG CTG CGT GCA CGC TGG CTG CGT GCA CGC TGG CTG(SEQ ID NO:24);FTam28-t2:5'-CGT GCA CGC TGG CTG T CGT GCA CGC TGG T CTGCGT GCA CGC TGG CTG(SEQ IDNO:25);FTam28-t3:5'-CGT GCA CGC TGG CTG TT CGT GCA CGC TGG TT CTG CGT GCA CGC TGG CTG(SEQ ID NO:26)。
蛋白质单链DNA接合:
使用PD 10凝胶过滤管柱将蛋白质(1mg)缓冲液交换至反应缓冲液(150mM NaCl,20mM NaOAc,400mM Arg,5mM EDTA,pH 4.0)中。使用10kD MWCO CENTROCON(Vivascience)将蛋白质溶液浓缩为90微升。将5微升25mM具有酰肼5'修饰的ssDNA FTam27的水溶液分配到40微升反应缓冲液中。将ssDNA溶液缓慢添加到蛋白质溶液中。最初出现沉淀,但又溶解。在28℃下培育20小时后,添加5mM氰基硼氢化钠。将反应混合物再培育20小时且使其经受分析和纯化。
接合物的纯化:
使用1毫升苯基HIC管柱进行接合物的FPLC纯化。缓冲液A:2M NaCl,10mM Tris·HCl,pH 7.0;缓冲液B:10mM Tris·HCl,pH 7.0。纯化中所使用的梯度为:10管柱体积(column volume,CV)0%B,5CV到50%B,在50%B下保持5CV,然后30CV到100%B。浓缩经纯化接合物,与存储缓冲液(200mM NaCl,50mM Tris·HCl,1mM EDTA,pH 8.0)进行缓冲液交换且在MES缓冲液中以200V使用4-12%SDS凝胶使其经受PAGE分析。
杂交:
将5微升蛋白质-ssDNA接合物添加到于存储缓冲液(200mM NaCl,50mM Tris·HCl,1mM EDTA,pH 8.0)中的互补ssDNA中。向混合物中补充存储缓冲液以产生20微升的最终体积且在42℃下加热30秒,随后冷却到室温。通过在125V,4℃下天然TRIS甘氨酸凝胶电泳3至5小时分析最终产物。
流程1:hGH突变体(Y35/非天然氨基酸9.2)与在5'末端处经酰肼修饰的单链DNA的接合流程
将具有1,3二酮部分的非天然编码氨基酸9.2并入人类生长激素(hGH)中的氨基酸位置35处,且用作与在5'处经酰肼官能团修饰的15mer单链DNA FTam27接合(流程1)的手柄。这一接合最初产生腙,所述腙进一步被氰基硼氢化钠还原以产生不可逆的共价键。在5倍过量的ssDNA的情况下,获得70%的产率(图17)。使用HIC管柱将接合物纯化到约90%纯且使其经受杂交。
接合物经设计以与具有两个(d)或三个(t)其间具有零个(1)、一个(2)以及两个(3)碱基T作为间隔基的串联互补序列(FTam28)重复的ssDNA杂交(图18)。为确定hGH-DNA接合物的相对浓度,将5微升hGH-ssDNA接合物与一系列浓度的FTam28-d3(具有两个与FTam27互补的重复序列和两个在其间作为间隔基的T碱基的单链DNA)混合。将结果用4℃下,125V3小时的14%天然甘氨酸凝胶电泳分析(图19)。最完全的杂交是与4微升10μM FTam28-d3混合的5微升hGH-ssDNA,其产生约16μM的接合物浓度。根据凝胶,具有FTam28-d3的hGH-ssDNA和hGH-ssDNA杂交单体比hGH自身更易移动,可能归因于DNA主链上的大量负电荷。
所述现象也在对照实验中得到证明(图20)。当将hGH与1微升100μM FTam28-d3混合时,未观察到杂交(泳道4)。另一方面,当将1微升100μM FTam28-d3与hGH-ssDNA接合物混合时,通过杂交形成hGH二聚体。hGH与DNA之间不存在非特异性相互作用。所接合hGH的二聚作用为特异性DNA杂交的结果。当添加大大过量的FTam28-d3时,形成较多杂交单体和较少杂交二聚体。当将80皮摩尔hGH-ssDNA接合物与10当量FTam28-d3混合时(泳道3),出现实质量的杂交二聚体。此指示杂交二聚体在热力学上比杂交单体更稳定。
为证明蛋白质-ssDNA以充分确定的方式装配(图21),使用单链DNA作为模板装配六个一维结构的hGH。所述结构因各hGH分子之间不同的价数和间隔基而不同。将hGH-ssDNA与1当量各DNA模板混合。将混合物在50℃下培育5分钟,冷却到室温且在天然甘氨酸凝胶上分析。所述一维结构被高度有效地装配。泳道1至泳道3展示DNA序列重复之间分别具有零、一和二个T碱基的间隔基的二聚体形成的结果。泳道4至泳道6展示具有零、一以及三个T碱基作为间隔基的间隔基的三聚体形成的装配结果。
使用非天然编码氨基酸作为化学手柄,使单链DNA位点特异性地与蛋白质表面接合。这一单链DNA-蛋白质接合物可用于使用DNA作为模板高度有效地装配蛋白质一维结构。位点特异性寡核苷酸接合也可用于装配产生具有新颖功能的新颖纳米结构的充分确定的三维结构。此外,蛋白质-寡核苷酸接合技术可适用于产生蛋白质药物“即插即用(plug andplay)”文库。在此情况下,寡核苷酸可用作编码个别小分子和/或蛋白质的键联与“名称标签”。蛋白质-寡核苷酸接合物可用于免疫PCR以供诊断应用。这一技术也可用于产生可用于靶向RNAi疗法中的蛋白质RNA或PNA接合物。
应了解本文中所述的实例和实施例仅出于说明性目的且所属领域的一般技术人员将提出根据其的各种修饰或更改且其包含在本申请案的精神和范围和随附权利要求书的范畴内。虽然本文中已展示和描述本发明的优选实施例,但对于所属领域的技术人员将显而易见所述实施例仅以举例的方式提供。在不悖离本发明的情况下,现在所属领域的技术人员将想到许多变化、更改和取代。应了解,本文中所述的本发明的实施例的各种替代形式可用于实施本发明。希望随附权利要求书界定本发明的范畴且从而涵盖权利要求书范畴内的方法和结构以及其等效物。

Claims (13)

1.一种检测多肽的方法,其包括检测所述多肽中的非天然编码氨基酸侧链。
2.一种检测多肽的方法,其包括检测已经翻译后修饰的多肽中的非天然编码氨基酸侧链。
3.一种检测多肽中非天然编码氨基酸侧链的方法,其包括使所述非天然编码氨基酸侧链与包括与所述非天然编码氨基酸侧链特异性相互作用的官能团的分子接触。
4.一种筛检分子文库的方法,其包括:
a)使包括非天然编码氨基酸的多肽与所述分子文库在允许所述分子文库与所述包括非天然编码氨基酸的多肽相互作用的条件下组合,
b)鉴别所述与所述包括非天然编码氨基酸的多肽相互作用的分子文库。
5.一种核糖体制造的多肽的文库,其包括多个具有不同氨基酸序列的多肽,其中各多肽包括非天然氨基酸。
6.一种纯化多肽链中具有非天然编码氨基酸的多肽的方法,其包括使所述多肽和与所述多肽中的非天然编码氨基酸相互作用的物质接触。
7.一种纯化多肽链中具有非天然编码氨基酸的多肽的方法,其包括使所述多肽沉淀,其中当与多肽链中无非天然编码氨基酸的所述多肽的溶解性相比时,所述非天然编码氨基酸改变所述多肽的溶解性。
8.一种纯化多肽侧链中具有非天然编码氨基酸的核糖体制造的多肽的方法,其包括使所述多肽电泳,其中当与多肽侧链中无非天然编码氨基酸的所述多肽的电泳迁移率相比时,所述非天然编码氨基酸改变所述多肽的电泳迁移率。
9.一种纯化多肽侧链中具有非天然编码氨基酸的核糖体制造的多肽的方法,其包括使所述多肽透析,其中当与多肽侧链中无非天然编码氨基酸的所述多肽的扩散速率相比时,所述非天然编码氨基酸改变所述多肽的扩散速率。
10.一种纯化非天然氨基酸多肽的方法,其包括通过超滤纯化所述多肽。
11.一种方法,其包括:
a)在具有至少一种已知生物活性的预选定多肽中的单个预选定位点处用非天然编码氨基酸取代天然编码氨基酸;和
b)测量所述包括所述非天然编码氨基酸的预选定多肽的生物活性;以及
c)比较步骤b)的所述预选定多肽与已在所述预选定多肽链的不同位置处用非天然编码氨基酸取代天然编码氨基酸的预选定多肽或多肽链中无取代非天然编码氨基酸的预选定多肽的生物活性。
12.一种选择用于翻译后修饰预选定多肽的位置的方法,其包括:
a)在具有至少一种已知生物活性的预选定多肽中的单个预选定位点处用非天然编码氨基酸取代天然编码氨基酸;和
b)测量所述包括所述非天然编码氨基酸的预选定多肽的生物活性;以及
c)比较步骤b)的所述预选定多肽与已在所述预选定多肽链的不同位置处用非天然编码氨基酸取代天然编码氨基酸的预选定多肽或多肽链中无取代非天然编码氨基酸的预选定多肽的生物活性。
13.一种包括一种多肽的组合物,所述多肽在所述多肽的一个或一个以上特定氨基酸位置处与核酸分子共价连接,其中所述多肽和核酸分子共价连接至所述多肽的一个或一个以上非天然编码氨基酸的氨基酸侧链。
CN201610666505.0A 2005-11-16 2006-11-16 包括非天然氨基酸的方法和组合物 Pending CN106443006A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US73785505P 2005-11-16 2005-11-16
US60/737,855 2005-11-16
CNA2006800430018A CN101454461A (zh) 2005-11-16 2006-11-16 包括非天然氨基酸的方法和组合物

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CNA2006800430018A Division CN101454461A (zh) 2005-11-16 2006-11-16 包括非天然氨基酸的方法和组合物

Publications (1)

Publication Number Publication Date
CN106443006A true CN106443006A (zh) 2017-02-22

Family

ID=38049316

Family Applications (2)

Application Number Title Priority Date Filing Date
CNA2006800430018A Pending CN101454461A (zh) 2005-11-16 2006-11-16 包括非天然氨基酸的方法和组合物
CN201610666505.0A Pending CN106443006A (zh) 2005-11-16 2006-11-16 包括非天然氨基酸的方法和组合物

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CNA2006800430018A Pending CN101454461A (zh) 2005-11-16 2006-11-16 包括非天然氨基酸的方法和组合物

Country Status (12)

Country Link
US (2) US20090018029A1 (zh)
EP (2) EP2339014B1 (zh)
JP (1) JP2009520949A (zh)
KR (1) KR20080079643A (zh)
CN (2) CN101454461A (zh)
AU (1) AU2006315347A1 (zh)
CA (1) CA2626522A1 (zh)
DK (1) DK2339014T3 (zh)
ES (1) ES2547554T3 (zh)
IL (3) IL225739A0 (zh)
PT (1) PT2339014E (zh)
WO (1) WO2007059312A2 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104697604A (zh) * 2015-03-13 2015-06-10 湖南菲尔斯特传感器有限公司 一种可现场校准的电容式液位传感器
CN115717130A (zh) * 2022-09-02 2023-02-28 凯莱英医药集团(天津)股份有限公司 氨酰-tRNA合酶突变体及烯基酪氨酰-tRNA的制备方法

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2701726A1 (en) * 2007-10-04 2009-04-09 Halcyon Molecular Sequencing nucleic acid polymers with electron microscopy
EP2217356B1 (en) * 2007-11-02 2018-10-17 Biocius Life Sciences, Inc. Devices and methods for coupling mass spectrometry devices with chromatography systems
JP5260976B2 (ja) * 2008-02-08 2013-08-14 東ソー株式会社 血液凝固第viii因子c2ドメインタンパク質の製造方法
US8940506B2 (en) 2008-03-21 2015-01-27 The Regents Of The University Of California High-sensitive fluorescent energy transfer assay using fluoresent amino acids and fluorescent proteins
WO2010081110A1 (en) * 2009-01-12 2010-07-15 Sutro Biopharma, Inc. Dual charging system for selectively introducing non-native amino acids into proteins using an in vitro synthesis method
US9238878B2 (en) 2009-02-17 2016-01-19 Redwood Bioscience, Inc. Aldehyde-tagged protein-based drug carriers and methods of use
CA2762277C (en) * 2009-05-31 2018-08-14 Dh Technologies Development Pte. Ltd. Specific analysis of ketone and aldehyde analytes using reagent compounds, labeling strategies, and mass spectrometry workflow
NZ600361A (en) * 2009-12-21 2014-06-27 Ambrx Inc Modified bovine somatotropin polypeptides and their uses
CN104017063A (zh) * 2009-12-21 2014-09-03 Ambrx公司 经过修饰的猪促生长素多肽和其用途
US20130078660A1 (en) * 2010-03-23 2013-03-28 Salk Institute For Biological Studies Methods and compositions for detecting protein modifications
US9567386B2 (en) 2010-08-17 2017-02-14 Ambrx, Inc. Therapeutic uses of modified relaxin polypeptides
MY162837A (en) 2010-08-17 2017-07-31 Ambrx Inc Modified relaxin polypeptides and their uses
DE102010064392A1 (de) * 2010-10-29 2012-05-03 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Verfahren zur Bestimmung eines Analytgehalts einer Flüssigkeitsprobe mittels eines Bioanalysators
CN103415621A (zh) 2011-01-14 2013-11-27 雷德伍德生物科技股份有限公司 醛标记免疫球蛋白多肽及其使用方法
JP5066615B2 (ja) 2011-01-31 2012-11-07 株式会社日立製作所 フェニルボロン酸基と特異的に結合するオリゴペプチド配列
US10278927B2 (en) 2012-04-23 2019-05-07 Massachusetts Institute Of Technology Stable layer-by-layer coated particles
JP6110611B2 (ja) * 2012-07-18 2017-04-05 株式会社東芝 アミンの回収方法および分析方法
US9610252B2 (en) * 2012-10-12 2017-04-04 Massachusetts Institute Of Technology Multilayer compositions, coated devices and use thereof
EP2932243B1 (en) * 2012-12-11 2020-05-13 Zamecnik, Colin R. Encapsulated dye coated noble metal nanoparticles with increased surface enhanced raman scattering properties as contrast agents
CN103933575B (zh) 2013-01-23 2017-09-29 上海新理念生物医药科技有限公司 一种三齿型连接子及其应用
US10351626B2 (en) 2013-03-14 2019-07-16 The Scripps Research Institute Targeting agent antibody conjugates and uses thereof
ES2845924T3 (es) 2013-10-15 2021-07-28 Scripps Research Inst Interruptores de células T con receptores de antígenos quiméricos peptídicos y usos de los mismos
CN104573297B (zh) * 2013-10-24 2017-11-24 中国石油化工股份有限公司 一种确定表面催化反应路径的方法
EP4086618A1 (en) * 2014-01-15 2022-11-09 Caliper Life Sciences, Inc. System of microfluidic immunoassay using magnetic beads
WO2016044328A1 (en) * 2014-09-18 2016-03-24 The Regents Of The University Of California Single-molecule phenotype analysis
US10800828B2 (en) 2015-03-26 2020-10-13 The Scripps Research Institute Switchable non-scFv chimeric receptors, switches, and methods of use thereof to treat cancer
US11091546B2 (en) 2015-04-15 2021-08-17 The Scripps Research Institute Optimized PNE-based chimeric receptor T cell switches and uses thereof
US10775322B2 (en) 2015-06-16 2020-09-15 Arizona Board Of Regents On Behalf Of Arizona State University Inert crystal delivery medium for serial femtosecond crystallography
NZ739830A (en) 2015-07-12 2021-12-24 Hangzhou Dac Biotech Co Ltd Bridge linkers for conjugation of cell-binding molecules
US9839687B2 (en) 2015-07-15 2017-12-12 Suzhou M-Conj Biotech Co., Ltd. Acetylenedicarboxyl linkers and their uses in specific conjugation of a cell-binding molecule
CN106932375A (zh) * 2015-12-31 2017-07-07 北京大学 蛋白质构象变化的生物正交拉曼原位检测方法
WO2017175523A1 (ja) * 2016-04-06 2017-10-12 コニカミノルタ株式会社 蛍光免疫染色法
JP2019515677A (ja) 2016-04-26 2019-06-13 アール.ピー.シェーラー テクノロジーズ エルエルシー 抗体複合体ならびにそれを作製および使用する方法
US11174306B2 (en) 2016-10-19 2021-11-16 The Scripps Research Institute Chimeric antigen receptor effector cell switches with humanized targeting moieties and/or optimized chimeric antigen receptor interacting domains and uses thereof
US20210308277A1 (en) 2016-11-14 2021-10-07 Hangzhou Dac Biotech Co., Ltd. Conjugation linkers, cell binding molecule-drug conjugates containing the linkers, methods of making and uses such conjugates with the linkers
US11129906B1 (en) 2016-12-07 2021-09-28 David Gordon Bermudes Chimeric protein toxins for expression by therapeutic bacteria
WO2018119003A1 (en) * 2016-12-19 2018-06-28 The Regents Of The University Of California Virus composite biosensor
ES2963839T3 (es) 2017-02-08 2024-04-02 Bristol Myers Squibb Co Polipéptidos de relaxina modificados que comprenden un potenciador farmacocinético y usos de los mismos
LT3630977T (lt) * 2017-06-02 2024-04-25 Ambrx, Inc. Baltymų, kurių sudėtyje yra negamtinių aminorūgščių, gamybos skatinimo būdai ir kompozicijos
WO2019089567A1 (en) 2017-10-30 2019-05-09 Massachusetts Institute Of Technology Layer-by-layer nanoparticles for cytokine therapy in cancer treatment
CN108519447A (zh) * 2018-04-02 2018-09-11 新疆出入境检验检疫局检验检疫技术中心 基于超高效液相色谱法测定干果中多种酸性染料的方法
WO2021002984A1 (en) 2019-05-30 2021-01-07 Massachusetts Institute Of Technology Peptide nucleic acid functionalized hydrogel microneedles for sampling and detection of interstitial fluid nucleic acids
KR20220029725A (ko) 2019-06-29 2022-03-08 항저우 디에이씨 바이오테크 씨오, 엘티디 세포-결합 분자-튜불리신 유도체 접합체 및 이의 제조 방법
CN110806448B (zh) * 2019-11-21 2022-03-22 北京市药品检验所 测定复方氨基酸注射液中游离氨的方法
CN114199844B (zh) * 2021-12-09 2024-02-09 吉林大学 一种金纳米簇及其在制备检测碱性磷酸酶荧光探针中的应用
WO2024077277A1 (en) 2022-10-07 2024-04-11 Ambrx, Inc. Drug linkers and antibody conjugates thereof
CN116272921B (zh) * 2023-02-15 2024-05-17 青岛盛瀚色谱技术有限公司 一种单分散弱酸性阳离子色谱填料及其制备方法和应用

Family Cites Families (276)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3773919A (en) 1969-10-23 1973-11-20 Du Pont Polylactide-drug mixtures
US4263428A (en) 1978-03-24 1981-04-21 The Regents Of The University Of California Bis-anthracycline nucleic acid function inhibitors and improved method for administering the same
US4289872A (en) 1979-04-06 1981-09-15 Allied Corporation Macromolecular highly branched homogeneous compound based on lysine units
US4898830A (en) 1979-07-05 1990-02-06 Genentech, Inc. Human growth hormone DNA
US4342832A (en) 1979-07-05 1982-08-03 Genentech, Inc. Method of constructing a replicable cloning vehicle having quasi-synthetic genes
ZA811368B (en) 1980-03-24 1982-04-28 Genentech Inc Bacterial polypedtide expression employing tryptophan promoter-operator
EP0052322B1 (de) 1980-11-10 1985-03-27 Gersonde, Klaus, Prof. Dr. Verfahren zur Herstellung von Lipid-Vesikeln durch Ultraschallbehandlung, Anwendung des Verfahrens und Vorrichtung zur Durchführung des Verfahrens
US4364863A (en) 1980-12-29 1982-12-21 Schering Corporation Extraction of interferon from bacteria
IE52535B1 (en) 1981-02-16 1987-12-09 Ici Plc Continuous release pharmaceutical compositions
FR2504010B1 (fr) 1981-04-15 1985-10-25 Sanofi Sa Medicaments anticancereux contenant la chaine a de la ricine associee a un anticorps antimelanome et procede pour leur preparation
US4551433A (en) 1981-05-18 1985-11-05 Genentech, Inc. Microbial hybrid promoters
JPS57206622A (en) 1981-06-10 1982-12-18 Ajinomoto Co Inc Blood substitute
US4485045A (en) 1981-07-06 1984-11-27 Research Corporation Synthetic phosphatidyl cholines useful in forming liposomes
NZ201705A (en) 1981-08-31 1986-03-14 Genentech Inc Recombinant dna method for production of hepatitis b surface antigen in yeast
JPS58118008A (ja) 1982-01-06 1983-07-13 Nec Corp デ−タ処理装置
EP0088046B1 (de) 1982-02-17 1987-12-09 Ciba-Geigy Ag Lipide in wässriger Phase
US4671958A (en) 1982-03-09 1987-06-09 Cytogen Corporation Antibody conjugates for the delivery of compounds to target sites
DE3218121A1 (de) 1982-05-14 1983-11-17 Leskovar, Peter, Dr.-Ing., 8000 München Arzneimittel zur tumorbehandlung
EP0102324A3 (de) 1982-07-29 1984-11-07 Ciba-Geigy Ag Lipide und Tenside in wässriger Phase
US4511503A (en) 1982-12-22 1985-04-16 Genentech, Inc. Purification and activity assurance of precipitated heterologous proteins
US4512922A (en) 1982-12-22 1985-04-23 Genentech, Inc. Purification and activity assurance of precipitated heterologous proteins
US4511502A (en) 1982-12-22 1985-04-16 Genentech, Inc. Purification and activity assurance of precipitated heterologous proteins
US4820352A (en) 1983-01-10 1989-04-11 Bausch & Lomb Incorporated Cleaning and conditioning solutions for contact lenses and methods of use
CA1341116C (en) 1983-02-22 2000-10-17 Rae Lyn Burke Yeast expression systems with vectors having gapdh or pyk promoters and synthesis or foreign protein
US4876197A (en) 1983-02-22 1989-10-24 Chiron Corporation Eukaryotic regulatable transcription
US5089398A (en) 1983-02-22 1992-02-18 Chiron Corporation Enhanced yeast transcription employing hybrid GAPDH promoter region constructs
JPS59166086A (ja) 1983-03-09 1984-09-19 Teruhiko Beppu 新規な発現型プラスミドとそれらを用いて仔牛プロキモシン遺伝子を大腸菌内で発現させる方法
US4859600A (en) 1983-04-25 1989-08-22 Genentech, Inc. Recombinant procaryotic cell containing correctly processed human growth hormone
US4755465A (en) 1983-04-25 1988-07-05 Genentech, Inc. Secretion of correctly processed human growth hormone in E. coli and Pseudomonas
DE3485810T2 (de) 1983-05-27 1992-12-10 Texas A & M University Syst Verfahren zur herstellung eines rekombinanten baculovirus-expressionsvektors.
US4544545A (en) 1983-06-20 1985-10-01 Trustees University Of Massachusetts Liposomes containing modified cholesterol for organ targeting
JPS607934A (ja) 1983-06-29 1985-01-16 Dai Ichi Seiyaku Co Ltd リポソ−ムの製造方法
HUT35524A (en) 1983-08-02 1985-07-29 Hoechst Ag Process for preparing pharmaceutical compositions containing regulatory /regulative/ peptides providing for the retarded release of the active substance
US4689406A (en) 1983-08-10 1987-08-25 Amgen Enhancement of microbial expression of polypeptides
DE3486459D1 (de) 1983-09-26 1997-12-11 Udo Dr Med Ehrenfeld Mittel und Erzeugnis für die Diagnose und Therapie von Tumoren sowie zur Behandlung von Schwächen der zelligen und humoralen Immunabwehr
EP0143949B1 (en) 1983-11-01 1988-10-12 TERUMO KABUSHIKI KAISHA trading as TERUMO CORPORATION Pharmaceutical composition containing urokinase
DK518384A (da) 1984-01-31 1985-07-01 Idaho Res Found Vektor til fremstilling af et gen-produkt i insektceller, fremgangsmaade til dens fremstilling samt dens anvendelse
EP0154316B1 (en) 1984-03-06 1989-09-13 Takeda Chemical Industries, Ltd. Chemically modified lymphokine and production thereof
EP0164556B1 (en) 1984-05-11 1994-03-02 Chiron Corporation Enhanced yeast transcription employing hybrid promoter region constructs
US4880734A (en) 1984-05-11 1989-11-14 Chiron Corporation Eukaryotic regulatable transcription
US4542225A (en) 1984-08-29 1985-09-17 Dana-Farber Cancer Institute, Inc. Acid-cleavable compound
US4738921A (en) 1984-09-27 1988-04-19 Eli Lilly And Company Derivative of the tryptophan operon for expression of fused gene products
US4659839A (en) 1984-10-10 1987-04-21 Mallinckrodt, Inc. Coupling agents for radiolabeled antibody fragments
US4837148A (en) 1984-10-30 1989-06-06 Phillips Petroleum Company Autonomous replication sequences for yeast strains of the genus pichia
GB8430252D0 (en) 1984-11-30 1985-01-09 Beecham Group Plc Compounds
EP0188256B1 (en) 1985-01-14 1991-08-21 NeoRx Metal radionuclide labeled proteins for diagnosis and therapy
EP0206448B1 (en) 1985-06-19 1990-11-14 Ajinomoto Co., Inc. Hemoglobin combined with a poly(alkylene oxide)
JP2524586B2 (ja) 1985-06-26 1996-08-14 シタス コーポレイション ポリマ−接合を利用する医薬組成物用蛋白質の可溶化
US4680338A (en) 1985-10-17 1987-07-14 Immunomedics, Inc. Bifunctional linker
US4699784A (en) 1986-02-25 1987-10-13 Center For Molecular Medicine & Immunology Tumoricidal methotrexate-antibody conjugate
GB8610600D0 (en) 1986-04-30 1986-06-04 Novo Industri As Transformation of trichoderma
JPS63123383A (ja) 1986-11-11 1988-05-27 Mitsubishi Kasei Corp ハイブリツドプロモ−タ−、発現調節dna配列および発現ベクタ−
US5186933A (en) 1986-12-30 1993-02-16 Baylor College Of Medicine Synthesis and immunogenicity of rotavirus genes using a baculovirus expression system
EP0349594A4 (en) 1987-03-16 1990-09-26 American Biogenetic Sciences, Inc. Recombinant baculovirus occlusion bodies in vaccines and biological insecticides
EP0284044B1 (en) 1987-03-23 1994-03-23 Zymogenetics, Inc. High level expression in yeast
US5229490A (en) 1987-05-06 1993-07-20 The Rockefeller University Multiple antigen peptide system
CA1317244C (en) 1987-07-24 1993-05-04 Ernest Seigo Kawasaki Production of biologically active forms of csf using a baculovirus (acnpv)-insect cell expression system
AU2136788A (en) 1987-07-24 1989-03-01 Cetus Corporation Production of ricin toxins in a baculovirus-insect cell expression system
US5080891A (en) 1987-08-03 1992-01-14 Ddi Pharmaceuticals, Inc. Conjugates of superoxide dismutase coupled to high molecular weight polyalkylene glycols
US4929555A (en) 1987-10-19 1990-05-29 Phillips Petroleum Company Pichia transformation
US4904584A (en) 1987-12-23 1990-02-27 Genetics Institute, Inc. Site-specific homogeneous modification of polypeptides
CA1340772C (en) 1987-12-30 1999-09-28 Patricia Tekamp-Olson Expression and secretion of heterologous protiens in yeast employing truncated alpha-factor leader sequences
US4847325A (en) 1988-01-20 1989-07-11 Cetus Corporation Conjugation of polymer to colony stimulating factor-1
US5674706A (en) 1988-05-06 1997-10-07 Chiron Corporation High level expression of proteins in yeast
CA1324969C (en) 1988-05-06 1993-12-07 Jeffrey R. Shuster High level expression of proteins in yeast
FR2631974B1 (fr) 1988-05-31 1992-12-11 Agronomique Inst Nat Rech Baculovirus modifie, son procede de preparation et son application en tant que vecteur d'expression de genes
WO1990001556A1 (en) 1988-08-05 1990-02-22 Mount Sinai School Of Medicine Of The City University Of New York In vivo infection of live insects with a recombinant baculovirus
GB8819453D0 (en) 1988-08-16 1988-09-21 Roy P Production of bluetongue virus non-structural proteins using baculovirus expression vector
NZ230425A (en) 1988-09-02 1992-07-28 Molecular Eng Ass Production of paramyxovirus fusion (f) protein using recombinant baculovirus expression vector
GB8824591D0 (en) 1988-10-20 1988-11-23 Royal Free Hosp School Med Fractionation process
CA2345497A1 (en) 1988-10-28 1990-04-28 Genentech, Inc. Growth hormone variants and method for forming growth hormone variants
US6780613B1 (en) 1988-10-28 2004-08-24 Genentech, Inc. Growth hormone variants
AU649217B2 (en) 1988-11-18 1994-05-19 Regents Of The University Of California, The Method for site-specifically incorporating unnatural amino acids into proteins
CA2006596C (en) 1988-12-22 2000-09-05 Rika Ishikawa Chemically-modified g-csf
US4902502A (en) 1989-01-23 1990-02-20 Cetus Corporation Preparation of a polymer/interleukin-2 conjugate
WO1990010078A1 (en) 1989-02-23 1990-09-07 University Of Ottawa Improved baculovirus expression system capable of producing foreign gene proteins at high levels
CA2045614C (en) 1989-02-24 1997-09-30 James W. Bacus Method and apparatus for determining a proliferation index of a cell sample
US5324844A (en) 1989-04-19 1994-06-28 Enzon, Inc. Active carbonates of polyalkylene oxides for modification of polypeptides
US5122614A (en) 1989-04-19 1992-06-16 Enzon, Inc. Active carbonates of polyalkylene oxides for modification of polypeptides
ATE300519T1 (de) 1989-04-19 2005-08-15 Enzon Inc Verfahren zum herstellen von modifizierten polypeptiden die eine polypeptid und ein polyalkylenoxid enthalten
CA2033070A1 (en) 1989-05-17 1990-11-18 Lois K. Miller Baculovirus expression vectors
ATE136315T1 (de) 1989-05-27 1996-04-15 Sumitomo Pharma Verfahren für die herstellung von polyethylenglykolderivate und modifizierte proteine.
FR2649120B1 (fr) 1989-06-30 1994-01-28 Cayla Nouvelle souche et ses mutants de champignons filamenteux, procede de production de proteines recombinantes a l'aide de ladite souche et souches et proteines obtenues selon ce procede
IL91562A0 (en) 1989-09-07 1990-04-29 Yeda Res & Dev Interferon-gamma receptor fragment and its production
US5889151A (en) 1989-10-20 1999-03-30 Societe Leb-Tech Purified human alpha interferon receptor
US5312808A (en) 1989-11-22 1994-05-17 Enzon, Inc. Fractionation of polyalkylene oxide-conjugated hemoglobin solutions
US5162601A (en) 1989-11-22 1992-11-10 The Upjohn Company Plant potyvirus expression vector with a gene for protease
US5427908A (en) 1990-05-01 1995-06-27 Affymax Technologies N.V. Recombinant library screening methods
US5219564A (en) 1990-07-06 1993-06-15 Enzon, Inc. Poly(alkylene oxide) amino acid copolymers and drug carriers and charged copolymers based thereon
GB9206318D0 (en) 1992-03-24 1992-05-06 Cambridge Antibody Tech Binding substances
FR2664905B1 (fr) 1990-07-18 1994-08-12 Agronomique Inst Nat Rech Baculovirus modifie, son procede d'obtention, et vecteurs d'expression obtenus a partir dudit baculovirus.
WO1992001800A1 (en) 1990-07-20 1992-02-06 Chiron Corporation Method for integrative transformation of yeast using dispersed repetitive elements
EP0541721A4 (en) 1990-08-02 1993-12-29 Chiron Corporation Expression of human cmv glycoprotein-h using the baculovirus-insect cell expression system
JPH06500470A (ja) 1990-09-04 1994-01-20 メルク エンド カンパニー インコーポレーテッド メチロトローフ酵母細胞におけるインスリン様成長因子の産生
WO1992008790A1 (en) 1990-11-14 1992-05-29 Cargill, Incorporated Conjugates of poly(vinylsaccharide) with proteins for the stabilization of proteins
US5252714A (en) 1990-11-28 1993-10-12 The University Of Alabama In Huntsville Preparation and use of polyethylene glycol propionaldehyde
CA2405246A1 (en) 1990-12-03 1992-06-11 Genentech, Inc. Enrichment method for variant proteins with alterred binding properties
US5231178A (en) 1991-01-16 1993-07-27 The Salk Institute Biotechnology/Industrial Associates, Inc. Method for the purification of intact, correctly-folded insulin-like growth factor-1
WO1992016555A1 (en) 1991-03-18 1992-10-01 Enzon, Inc. Hydrazine containing conjugates of polypeptides and glycopolypeptides with polymers
WO1992016619A1 (en) 1991-03-19 1992-10-01 Us Army Expression of influenza nucleoprotein antigens in baculovirus
US5595732A (en) 1991-03-25 1997-01-21 Hoffmann-La Roche Inc. Polyethylene-protein conjugates
US6126944A (en) 1991-04-26 2000-10-03 The United States Of America As Represented By The Department Of Health And Human Services Baculovirus expression vectors and recombinant antigens for detecting type-specific antibodies to herpes simplex virus
US6225447B1 (en) 1991-05-15 2001-05-01 Cambridge Antibody Technology Ltd. Methods for producing members of specific binding pairs
US6492160B1 (en) 1991-05-15 2002-12-10 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
US5962255A (en) 1992-03-24 1999-10-05 Cambridge Antibody Technology Limited Methods for producing recombinant vectors
US5281698A (en) 1991-07-23 1994-01-25 Cetus Oncology Corporation Preparation of an activated polymer ester for protein conjugation
US5290686A (en) 1991-07-31 1994-03-01 The United States Of America As Represented By The Department Of Health And Human Services Expression of influenza a M2 protein in baculovirus
US5866344A (en) 1991-11-15 1999-02-02 Board Of Regents, The University Of Texas System Antibody selection methods using cell surface expressed libraries
US5348867A (en) 1991-11-15 1994-09-20 George Georgiou Expression of proteins on bacterial surface
US5667988A (en) 1992-01-27 1997-09-16 The Scripps Research Institute Methods for producing antibody libraries using universal or randomized immunoglobulin light chains
IT1260468B (it) 1992-01-29 1996-04-09 Metodo per mantenere l'attivita' di enzimi proteolitici modificati con polietilenglicole
US5733743A (en) 1992-03-24 1998-03-31 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
WO1993021259A1 (en) 1992-04-14 1993-10-28 Cornell Research Foundation Inc. Dendritic based macromolecules and method of production
US5516657A (en) 1992-05-11 1996-05-14 Cambridge Biotech Corporation Baculovirus vectors for expression of secretory and membrane-bound proteins
ZA933926B (en) 1992-06-17 1994-01-03 Amgen Inc Polyoxymethylene-oxyethylene copolymers in conjuction with blomolecules
WO1994004193A1 (en) 1992-08-21 1994-03-03 Enzon, Inc. Novel attachment of polyalkylene oxides to bio-effecting substances
US5382657A (en) 1992-08-26 1995-01-17 Hoffmann-La Roche Inc. Peg-interferon conjugates
NZ250375A (en) 1992-12-09 1995-07-26 Ortho Pharma Corp Peg hydrazone and peg oxime linkage forming reagents and protein derivatives
US5298643A (en) 1992-12-22 1994-03-29 Enzon, Inc. Aryl imidate activated polyalkylene oxides
WO1994015625A1 (en) 1993-01-15 1994-07-21 Enzon, Inc. Factor viii - polymeric conjugates
US5349001A (en) 1993-01-19 1994-09-20 Enzon, Inc. Cyclic imide thione activated polyalkylene oxides
US5321095A (en) 1993-02-02 1994-06-14 Enzon, Inc. Azlactone activated polyalkylene oxides
US5532142A (en) 1993-02-12 1996-07-02 Board Of Regents, The University Of Texas System Method of isolation and purification of fusion polypeptides
IL104734A0 (en) 1993-02-15 1993-06-10 Univ Bar Ilan Bioactive conjugates of cellulose with amino compounds
AU684510B2 (en) 1993-05-28 1997-12-18 Chiron Corporation Method for selection of biologically active peptide sequences
WO1994028024A1 (en) 1993-06-01 1994-12-08 Enzon, Inc. Carbohydrate-modified polymer conjugates with erythropoietic activity
WO1995000162A1 (en) 1993-06-21 1995-01-05 Enzon, Inc. Site specific synthesis of conjugated peptides
GB9317618D0 (en) 1993-08-24 1993-10-06 Royal Free Hosp School Med Polymer modifications
US5762939A (en) 1993-09-13 1998-06-09 Mg-Pmc, Llc Method for producing influenza hemagglutinin multivalent vaccines using baculovirus
US5643575A (en) 1993-10-27 1997-07-01 Enzon, Inc. Non-antigenic branched polymer conjugates
US5919455A (en) 1993-10-27 1999-07-06 Enzon, Inc. Non-antigenic branched polymer conjugates
US5491076A (en) 1993-11-01 1996-02-13 The Texas A&M University System Expression of foreign genes using a replicating polyprotein producing virus vector
US5605792A (en) 1993-11-04 1997-02-25 The Ohio State University Research Foundation Infectious bursal disease virus VP2 fusion protein expressed by baculovirus, use as diagnostic
US5951974A (en) 1993-11-10 1999-09-14 Enzon, Inc. Interferon polymer conjugates
DK0730470T3 (da) 1993-11-10 2002-06-03 Enzon Inc Forbedrede interferonpolymerkonjugater
US5446090A (en) 1993-11-12 1995-08-29 Shearwater Polymers, Inc. Isolatable, water soluble, and hydrolytically stable active sulfones of poly(ethylene glycol) and related polymers for modification of surfaces and molecules
FR2715664B1 (fr) 1994-01-31 1996-04-12 Proteine Performance Sa Baculovirus recombinant et son utilisation pour la production d'anticorps monoclonaux.
JP3090586B2 (ja) 1994-03-15 2000-09-25 片倉工業株式会社 システインプロテアーゼ遺伝子欠損バキュロウイルスおよびその製造法並びにこれを利用する有用タンパク質の製造法
US5473034A (en) 1994-03-18 1995-12-05 Hyogo Prefectural Government Method for producing protein-synthetic polymer conjugate and said conjugate produced thereby
US5629384A (en) 1994-05-17 1997-05-13 Consiglio Nazionale Delle Ricerche Polymers of N-acryloylmorpholine activated at one end and conjugates with bioactive materials and surfaces
AU2826495A (en) 1994-06-02 1996-01-04 Enzon, Inc. Method of solubilizing substantially water insoluble materials
US5635182A (en) 1994-06-16 1997-06-03 Genetics Institute, Inc. Method of detecting ligand interactions
US5730990A (en) 1994-06-24 1998-03-24 Enzon, Inc. Non-antigenic amine derived polymers and polymer conjugates
US6403375B1 (en) 1994-08-24 2002-06-11 Boyce Thompson Institute For Plant Research, Inc. Establishment of Trichoplusia ni cell lines in serum-free medium for recombinant protein and baculovirus production
US5688670A (en) 1994-09-01 1997-11-18 The General Hospital Corporation Self-modifying RNA molecules and methods of making
US5650234A (en) 1994-09-09 1997-07-22 Surface Engineering Technologies, Division Of Innerdyne, Inc. Electrophilic polyethylene oxides for the modification of polysaccharides, polypeptides (proteins) and surfaces
US5871986A (en) 1994-09-23 1999-02-16 The General Hospital Corporation Use of a baculovirus to express and exogenous gene in a mammalian cell
US5824784A (en) 1994-10-12 1998-10-20 Amgen Inc. N-terminally chemically modified protein compositions and methods
EP0788375A2 (en) 1994-11-09 1997-08-13 Robin Ewart Offord Functionalized polymers for site-specific attachment
US5738846A (en) 1994-11-10 1998-04-14 Enzon, Inc. Interferon polymer conjugates and process for preparing the same
IL116085A (en) 1994-12-16 1999-12-31 Ortho Pharma Corp Spray dried erythropoietin
US5932462A (en) 1995-01-10 1999-08-03 Shearwater Polymers, Inc. Multiarmed, monofunctional, polymer for coupling to molecules and surfaces
EP0842275A1 (en) 1995-02-17 1998-05-20 Instituut Voor Dierhouderij En Diergezondheid (Id-Dlo) PRODUCTION OF BIOLOGICALLY ACTIVE RECOMBINANT BOVINE FOLLICLE STIMULATING HORMONE (REC bFSH) IN THE BACULOVIRUS EXPRESSION SYSTEM
FR2732035B1 (fr) 1995-03-23 1997-05-30 Agronomique Inst Nat Rech Procede de regulation de l'expression d'un gene dans un baculovirus, par un site de fixation d'un recepteur de l'acide retinoique, et vecteur pour la mise en oeuvre du dit procede
US6184344B1 (en) 1995-05-04 2001-02-06 The Scripps Research Institute Synthesis of proteins by native chemical ligation
US5702892A (en) 1995-05-09 1997-12-30 The United States Of America As Represented By The Department Of Health And Human Services Phage-display of immunoglobulin heavy chain libraries
NZ308772A (en) 1995-05-17 1999-04-29 Du Pont Recombinant baculovirus insecticides
US6475806B1 (en) 1995-06-07 2002-11-05 Praecis Pharmaceuticals, Inc. Anchor libraries and identification of peptide binding sequences
AU5893696A (en) 1995-06-07 1996-12-30 Novo Nordisk A/S Modification of polypeptides
US5672662A (en) 1995-07-07 1997-09-30 Shearwater Polymers, Inc. Poly(ethylene glycol) and related polymers monosubstituted with propionic or butanoic acids and functional derivatives thereof for biotechnical applications
US5861279A (en) 1996-01-17 1999-01-19 Schering Corporation Baculovirus expression system for human interleukin 5 receptor and method of screening for interleukin 5 antagonists
WO1997026332A1 (en) 1996-01-17 1997-07-24 Schering Corporation Baculovirus expression system for human interleukin 5 receptor and method of screening for interleukin 5 antagonists
US5747639A (en) 1996-03-06 1998-05-05 Amgen Boulder Inc. Use of hydrophobic interaction chromatography to purify polyethylene glycols
TW517067B (en) 1996-05-31 2003-01-11 Hoffmann La Roche Interferon conjugates
US6083693A (en) 1996-06-14 2000-07-04 Curagen Corporation Identification and comparison of protein-protein interactions that occur in populations
RU2199347C2 (ru) 1996-08-02 2003-02-27 Орто-Макнейл Фармасьютикал, Инк. Полипептиды, обладающие единственным ковалентно связанным n-концевым водорастворимым полимером
US5980948A (en) 1996-08-16 1999-11-09 Osteotech, Inc. Polyetherester copolymers as drug delivery matrices
US6214966B1 (en) 1996-09-26 2001-04-10 Shearwater Corporation Soluble, degradable poly(ethylene glycol) derivatives for controllable release of bound molecules into solution
WO1998025963A1 (en) 1996-12-13 1998-06-18 Chiron Corporation Analysis and separation of platelet-derived growth factor proteins
RU2233878C2 (ru) 1997-01-21 2004-08-10 Дзе Дженерал Хоспитал Корпорейшн Способ отбора желательного белка и нуклеиновой кислоты, средства для его осуществления
US6261804B1 (en) 1997-01-21 2001-07-17 The General Hospital Corporation Selection of proteins using RNA-protein fusions
JP2001508783A (ja) 1997-01-29 2001-07-03 ポリマスク・ファーマシューティカルズ・パブリック・リミテッド・カンパニー Peg化法
GB9703406D0 (en) 1997-02-19 1997-04-09 Chiron Spa Expression of heterologous proteins
JP4086325B2 (ja) 1997-04-23 2008-05-14 プリュックテュン,アンドレアス 標的分子と相互作用する(ポリ)ペプチドをコードする核酸分子の同定方法
WO1998049198A1 (en) 1997-04-30 1998-11-05 Enzon, Inc. Single-chain antigen-binding proteins capable of glycosylation, production and uses thereof
US6180341B1 (en) 1997-05-01 2001-01-30 Board Of Regents, The Universiry Of Texas System In vitro scanning saturation mutagenesis of proteins
US5990237A (en) 1997-05-21 1999-11-23 Shearwater Polymers, Inc. Poly(ethylene glycol) aldehyde hydrates and related polymers and applications in modifying amines
CA2263795C (en) 1997-06-06 2008-02-19 Kyowa Hakko Kogyo Co., Ltd. Chemically modified polypeptides
US5965393A (en) 1997-07-01 1999-10-12 National Institute Of Immunology Method for enhancing foreign gene expression in baculovirus expression vector system
ATE375363T1 (de) 1997-07-14 2007-10-15 Bolder Biotechnology Inc Derivate des wachstumshormons und verwandte proteine
GB9715660D0 (en) 1997-07-25 1997-10-01 Zeneca Ltd Proteins
WO1999007862A1 (en) 1997-08-05 1999-02-18 Chiron Corporation Novel pichia pastoris gene sequences and methods for their use
DE19735593C2 (de) 1997-08-15 1999-08-26 Hepavec Ag Fuer Gentherapie Hüllprotein-modifizierter Baculovirus-Vektor für die Gentherapie
US6090584A (en) 1997-08-21 2000-07-18 University Technologies International Inc. Baculovirus artificial chromosomes and methods of use
US5989868A (en) 1997-09-12 1999-11-23 The Board Of Regents Of The University Of Oklahoma Fusion protein systems designed to increase soluble cytoplasmic expression of heterologous proteins in esherichia coli
DK1538206T3 (da) 1997-09-16 2010-07-12 Centocor Ortho Biotech Inc Fremgangsmåde til fuldstændig kemisk syntese og samling af gener og genomer
CA2320156A1 (en) 1997-09-26 1999-04-08 Uab Research Foundation Reduced antigenic cells and uses therefor
US6201072B1 (en) 1997-10-03 2001-03-13 Macromed, Inc. Biodegradable low molecular weight triblock poly(lactide-co- glycolide) polyethylene glycol copolymers having reverse thermal gelation properties
US6004573A (en) 1997-10-03 1999-12-21 Macromed, Inc. Biodegradable low molecular weight triblock poly(lactide-co-glycolide) polyethylene glycol copolymers having reverse thermal gelation properties
US6238865B1 (en) 1997-10-17 2001-05-29 Guangtian Chen Simple and efficient method to label and modify 3′-termini of RNA using DNA polymerase and a synthetic template with defined overhang nucleotides
DE19748489A1 (de) 1997-11-03 1999-05-06 Roche Diagnostics Gmbh Polyethylenglykol-derivatisierte Biomoleküle und deren Verwendung in heterogenen Nachweisverfahren
US6448369B1 (en) 1997-11-06 2002-09-10 Shearwater Corporation Heterobifunctional poly(ethylene glycol) derivatives and methods for their preparation
EP0924298A1 (en) 1997-12-18 1999-06-23 Stichting Instituut voor Dierhouderij en Diergezondheid (ID-DLO) Protein expression in baculovirus vector expression systems
US5985263A (en) 1997-12-19 1999-11-16 Enzon, Inc. Substantially pure histidine-linked protein polymer conjugates
US5981709A (en) 1997-12-19 1999-11-09 Enzon, Inc. α-interferon-polymer-conjugates having enhanced biological activity and methods of preparing the same
CA2321261A1 (en) 1998-03-04 1999-09-10 Onyx Pharmaceuticals, Inc. Baculovirus expression system and method for high throughput expression of genetic material
WO1999045026A1 (en) 1998-03-05 1999-09-10 Chiron Corporation Method for increasing the serum half-life of a biologically active molecule
PT1411075E (pt) 1998-03-12 2008-08-05 Nektar Therapeutics Al Corp Método para a preparação de conjugados de polímeros
KR100264953B1 (ko) 1998-04-03 2001-03-02 박현우 재조합 베큘로바이러스, 이의 제조방법 및 이를 포함하는 미생물 살충제
US6440695B1 (en) 1998-04-17 2002-08-27 Whitehead Institute For Biomedical Research Method for producing diverse libraries of encoded polypeptides
US6277588B1 (en) 1998-05-01 2001-08-21 Tel Aviv University Screening of cell populations
JP4240574B2 (ja) 1998-05-15 2009-03-18 三菱化学株式会社 タンパク質のラベル化組成物およびタンパク質のラベル化方法
US6451986B1 (en) 1998-06-22 2002-09-17 Immunex Corporation Site specific protein modification
US6168932B1 (en) 1998-07-13 2001-01-02 Parker Hughes Institute Recombinant DTctGMCSF fusion toxin in a baculovirus expression vector system
US6245528B1 (en) 1998-07-28 2001-06-12 Academia Sinica Latent baculovirus expression system
US6368825B1 (en) 1998-08-10 2002-04-09 Academia Sinica Baculovirus containing minimal CMV promoter
US6602685B1 (en) 1998-08-17 2003-08-05 Phylos, Inc. Identification of compound-protein interactions using libraries of protein-nucleic acid fusion molecules
AU764144B2 (en) 1998-08-28 2003-08-14 Gryphon Therapeutics, Inc. Polyamide chains of precise length, methods to manufacture them and their conjugates
WO2000020032A1 (en) 1998-10-06 2000-04-13 Trustees Of Dartmouth College RECOMBINANT CAT ALLERGEN, Fel dI, EXPRESSED IN BACULOVIRUS FOR DIAGNOSIS AND TREATMENT OF CAT ALLERGY
US6420339B1 (en) 1998-10-14 2002-07-16 Amgen Inc. Site-directed dual pegylation of proteins for improved bioactivity and biocompatibility
EP1124946B1 (en) 1998-10-30 2007-06-20 Novozymes A/S Glycosylated proteins having reduced allergenicity
US6416950B1 (en) 1998-12-02 2002-07-09 Phylos, Inc. DNA-protein fusions and uses thereof
US6451346B1 (en) 1998-12-23 2002-09-17 Amgen Inc Biodegradable pH/thermosensitive hydrogels for sustained delivery of biologically active agents
US6281211B1 (en) 1999-02-04 2001-08-28 Euro-Celtique S.A. Substituted semicarbazides and the use thereof
EP1177311B1 (en) 1999-03-17 2014-11-12 The Board Of Trustees Of The Leland Stanford Junior University In vitro macromolecule biosynthesis methods using exogenous amino acids and a novel atp regeneration system
US6994986B2 (en) 1999-03-17 2006-02-07 The Board Of Trustees Of The Leland Stanford University In vitro synthesis of polypeptides by optimizing amino acid metabolism
US6342216B1 (en) 1999-03-17 2002-01-29 The Board Of Regents, The University Of Texas System Therapy of cancer by insect cells containing recombinant baculovirus encoding genes
US6337191B1 (en) 1999-03-22 2002-01-08 The Board Of Trustees Of The Leland Stanford Junior University Vitro protein synthesis using glycolytic intermediates as an energy source
KR100696408B1 (ko) 1999-04-16 2007-03-19 더블유엠. 마쉬 라이스 유니버시티 폴리(에틸렌글리콜)과 가교결합을 이룬 폴리(프로필렌푸마레이트)
US6818112B2 (en) * 1999-04-20 2004-11-16 Target Discovery, Inc. Protein separation via multidimensional electrophoresis
US6623926B1 (en) 1999-06-01 2003-09-23 Phylos, Inc. Methods for producing 5′-nucleic acid-protein conjugates
IL146451A0 (en) 1999-07-12 2002-07-25 Phylos Inc C-terminal protein tagging
US6261805B1 (en) 1999-07-15 2001-07-17 Boyce Thompson Institute For Plant Research, Inc. Sialyiation of N-linked glycoproteins in the baculovirus expression vector system
ES2383332T3 (es) 1999-07-27 2012-06-20 Bristol-Myers Squibb Company Procedimiento de ligación de aceptores de péptidos
EP1212452B1 (en) 1999-08-27 2013-07-17 Bristol-Myers Squibb Company Methods for encoding and sorting in vitro translated proteins
US20020019061A1 (en) * 1999-08-31 2002-02-14 Hung-Sen Lai Purification and analysis of cyclic peptide libraries, and compositions thereof
US6485937B1 (en) 1999-10-15 2002-11-26 The Rockefeller University System for rapid generation of recombinant baculovirus-based expression vectors for silkworm larvae
US6232074B1 (en) 1999-12-10 2001-05-15 Complegen, Inc. Functional gene array in yeast
US6348558B1 (en) 1999-12-10 2002-02-19 Shearwater Corporation Hydrolytically degradable polymers and hydrogels made therefrom
ES2321800T5 (es) 1999-12-22 2017-02-17 Nektar Therapeutics Procedimiento de preparación de ésteres de 1-benzotriazolil carbonato de polímeros solubles en agua
AU781839B2 (en) 1999-12-22 2005-06-16 Nektar Therapeutics Sterically hindered derivatives of water soluble polymers
US6413507B1 (en) 1999-12-23 2002-07-02 Shearwater Corporation Hydrolytically degradable carbamate derivatives of poly (ethylene glycol)
US6646110B2 (en) 2000-01-10 2003-11-11 Maxygen Holdings Ltd. G-CSF polypeptides and conjugates
EP1250463B1 (en) 2000-01-24 2006-04-05 Compound Therapeutics, Inc. Sensitive, multiplexed diagnostic assays for protein analysis
WO2001062827A2 (en) 2000-02-22 2001-08-30 Shearwater Corporation N-maleimidyl polymer derivatives
WO2001062299A2 (en) 2000-02-28 2001-08-30 Shearwater Corporation Water-soluble polymer conjugates of artelinic acid
US6495337B1 (en) 2000-03-29 2002-12-17 Cytokinetics, Inc. High throughput sarcomeric assay
US6586207B2 (en) 2000-05-26 2003-07-01 California Institute Of Technology Overexpression of aminoacyl-tRNA synthetases for efficient production of engineered proteins containing amino acid analogues
GB0012997D0 (en) 2000-05-26 2000-07-19 Eurogene Limited Gene delivery
US6410271B1 (en) 2000-06-23 2002-06-25 Genetastix Corporation Generation of highly diverse library of expression vectors via homologous recombination in yeast
US6410246B1 (en) 2000-06-23 2002-06-25 Genetastix Corporation Highly diverse library of yeast expression vectors
US6406863B1 (en) 2000-06-23 2002-06-18 Genetastix Corporation High throughput generation and screening of fully human antibody repertoire in yeast
US6951947B2 (en) 2000-07-13 2005-10-04 The Scripps Research Institute Labeled peptides, proteins and antibodies and processes and intermediates useful for their preparation
JP2002030098A (ja) 2000-07-17 2002-01-29 Institute Of Immunology Co Ltd バキュロウィルスの発芽ウイルスからウイルスエンベロープを回収する方法
HUP0303854A2 (hu) 2000-09-08 2004-03-01 Gryhon Therapeutics, Inc. Szintetikus erythropoiesis-stimuláló proteinek
US6610472B1 (en) 2000-10-31 2003-08-26 Genetastix Corporation Assembly and screening of highly complex and fully human antibody repertoire in yeast
US6436386B1 (en) 2000-11-14 2002-08-20 Shearwater Corporation Hydroxyapatite-targeting poly (ethylene glycol) and related polymers
TW593427B (en) 2000-12-18 2004-06-21 Nektar Therapeutics Al Corp Synthesis of high molecular weight non-peptidic polymer derivatives
TWI246524B (en) 2001-01-19 2006-01-01 Shearwater Corp Multi-arm block copolymers as drug delivery vehicles
DK2128246T3 (da) 2001-04-19 2014-05-12 Univ California Fremgangsmåder og sammensætninger til fremstilling af ortogonale tRNA-aminoacyl-tRNA-syntetasepar.
US20050053973A1 (en) * 2001-04-26 2005-03-10 Avidia Research Institute Novel proteins with targeted binding
US6566132B1 (en) 2001-04-26 2003-05-20 Isis Pharmaceuticals, Inc. Antisense modulation of Interferon gamma receptor 1 expression
GB0113657D0 (en) 2001-06-05 2001-07-25 Geneprot Inc Improved native chemical ligation with three or more components
US20040138412A1 (en) 2001-09-07 2004-07-15 Paolo Botti Extended native chemical ligation
US6908963B2 (en) 2001-10-09 2005-06-21 Nektar Therapeutics Al, Corporation Thioester polymer derivatives and method of modifying the N-terminus of a polypeptide therewith
KR100948532B1 (ko) 2001-11-07 2010-03-23 넥타르 테라퓨틱스 분지형 중합체 및 그의 공액체
CA2466746A1 (en) 2001-11-14 2003-05-22 Geneprot, Inc. Extended native chemical ligation of three or more peptide fragments
US6716821B2 (en) 2001-12-21 2004-04-06 Immunogen Inc. Cytotoxic agents bearing a reactive polyethylene glycol moiety, cytotoxic conjugates comprising polyethylene glycol linking groups, and methods of making and using the same
CA2476425C (en) 2002-02-15 2012-04-17 The Research Foundation Of State University Of New York At Buffalo Ribozymes with broad trna aminoacylation activity
EP1504111A4 (en) * 2002-04-19 2005-11-23 California Inst Of Techn PEPTIDES NUCLEIC ACID PEPTIDE DISPLAY LIBRARS CONTAINING UNNATURELY AMINO-ACID-RESISTANT AND METHOD FOR THE PRODUCTION THEREOF
EP2226316B1 (en) 2002-05-30 2016-01-13 The Scripps Research Institute Copper-catalysed ligation of azides and acetylenes
EP1396498A1 (en) * 2002-09-04 2004-03-10 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. A pair of polypeptides with specific and strong interaction
ATE445709T1 (de) * 2002-10-16 2009-10-15 Scripps Research Inst Glycoproteinsynthese
JP4444113B2 (ja) 2002-10-16 2010-03-31 ザ スクリップス リサーチ インスティテュート ケトアミノ酸の部位特異的蛋白質組込み方法
AU2003291730A1 (en) * 2002-11-04 2004-06-07 Irm Llc Methods and compositions for treating neurodegenerative diseases
US7642085B2 (en) * 2002-12-22 2010-01-05 The Scripps Research Institute Protein arrays
US20040146855A1 (en) * 2003-01-27 2004-07-29 Marchessault Robert H. Formation of superparamagnetic particles
KR101171397B1 (ko) 2003-04-17 2012-08-07 더 스크립스 리서치 인스티튜트 진핵 유전자 코드의 확장
EP1658366A4 (en) 2003-07-07 2006-08-09 Scripps Research Inst COMPOSITIONS OF ORTHOGONAL GLUTAMYL-TRNA AND AMINOACYL-TRNA-SYNTHETASEPAARES AND THEIR USES
WO2005019415A2 (en) 2003-07-07 2005-03-03 The Scripps Research Institute Compositions of orthogonal lysyl-trna and aminoacyl-trna synthetase pairs and uses thereof
US20060160175A1 (en) 2003-07-07 2006-07-20 The Scripps Research Institute Compositions of orthogonal leucyl-trna and aminoacyl-trna synthetase pairs and uses thereof
ES2737837T3 (es) 2003-10-09 2020-01-16 Ambrx Inc Derivados poliméricos
DE602004020570D1 (de) * 2003-12-18 2009-05-28 Biomethodes Verfahren zur ortspezifischen Massenmutagenese
CA2549830A1 (en) * 2003-12-18 2006-01-05 The Scripps Research Institute Selective incorporation of 5-hyroxytryptophan into proteins in mammalian cells
JP2007519422A (ja) 2004-02-02 2007-07-19 アンブレツクス・インコーポレイテツド 修飾されたヒト四螺旋バンドルポリペプチド及びそれらの使用
AU2005327906B2 (en) * 2004-07-21 2010-05-13 Ambrx, Inc. Biosynthetic polypeptides utilizing non-naturally encoded amino acids

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DANIEL H. DOHERTY ET AL: "Site-Specific PEGylation of Engineered Cysteine Analogues of Recombinant Human Granulocyte-Macrophage Colony-Stimulating Factor", 《BIOCONJUGATE CHEM.》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104697604A (zh) * 2015-03-13 2015-06-10 湖南菲尔斯特传感器有限公司 一种可现场校准的电容式液位传感器
CN115717130A (zh) * 2022-09-02 2023-02-28 凯莱英医药集团(天津)股份有限公司 氨酰-tRNA合酶突变体及烯基酪氨酰-tRNA的制备方法

Also Published As

Publication number Publication date
JP2009520949A (ja) 2009-05-28
CN101454461A (zh) 2009-06-10
IL225739A0 (en) 2013-06-27
EP2339014A1 (en) 2011-06-29
WO2007059312A2 (en) 2007-05-24
ES2547554T3 (es) 2015-10-07
AU2006315347A1 (en) 2007-05-24
CA2626522A1 (en) 2007-05-24
EP2339014B1 (en) 2015-05-27
US9488660B2 (en) 2016-11-08
EP1951890A4 (en) 2009-06-24
US20090018029A1 (en) 2009-01-15
IL225739A (en) 2017-10-31
US20110144307A1 (en) 2011-06-16
KR20080079643A (ko) 2008-09-01
PT2339014E (pt) 2015-10-13
WO2007059312A3 (en) 2008-04-03
EP1951890A2 (en) 2008-08-06
IL190748A0 (en) 2008-11-03
IL190748A (en) 2013-05-30
DK2339014T3 (en) 2015-07-20

Similar Documents

Publication Publication Date Title
CN106443006A (zh) 包括非天然氨基酸的方法和组合物
Debelouchina et al. Ubiquitin utilizes an acidic surface patch to alter chromatin structure
CN101448512B (zh) 含有非天然氨基酸和多肽的组合物、涉及非天然氨基酸和多肽的方法以及非天然氨基酸和多肽的用途
CN102702105A (zh) 含有非天然氨基酸和多肽的组合物、涉及非天然氨基酸和多肽的方法以及非天然氨基酸和多肽的用途
CN105949301A (zh) 结合IL-4受体α的泪脂质运载蛋白突变蛋白
Rothschild et al. tRNA-mediated protein engineering
JP5565989B2 (ja) 新生タンパク質の検出、分析、及び分離方法
CN108047086A (zh) 含有非天然氨基酸和多肽的组合物、涉及非天然氨基酸和多肽的方法以及其用途
US11154584B2 (en) Method and composition for a protein transduction technology and its applications
Hosseini et al. Understanding lipid recognition by protein-mimicking cyclic peptides
CN108823225A (zh) 蛋白质翻译过程中直接实现脂肪酸修饰的表达系统及应用
US20200317723A1 (en) Bioconjugation of Polypeptides
WO2001061351A1 (fr) Detection d&#39;antigene par voie quantitative
AU2018200468B2 (en) Method and composition for a protein transduction technology and its applications
Khayenko Functional peptide-based probes for the visualization of inhibitory synapses
EP1944367A1 (en) Method of measuring polymerization degree of protein
Waliczek et al. Visible Light-Induced Templated Metathesis of Peptide–Nucleic Acid Conjugates with a Diselenide Bridge
Johnson Method Optimization of a New Automated Platform for Proteome-Wide Structural Biology
Guaglianone Applying New Tools to Study Aβ-Derived Oligomers
Liu Interaction-driven Protein Reaction and Protein Assembly in Protein Phase Separation
Klammt Functional and structural analysis of cell free produced transporters and G-protein coupled receptors: development of new techniques for the fast and efficient production of integral membrane proteins

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170222