CN105749747A - 小孔分子筛负载铜催化剂 - Google Patents

小孔分子筛负载铜催化剂 Download PDF

Info

Publication number
CN105749747A
CN105749747A CN201610087631.0A CN201610087631A CN105749747A CN 105749747 A CN105749747 A CN 105749747A CN 201610087631 A CN201610087631 A CN 201610087631A CN 105749747 A CN105749747 A CN 105749747A
Authority
CN
China
Prior art keywords
catalyst
molecular sieve
scr
reducing atmosphere
small pore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610087631.0A
Other languages
English (en)
Inventor
P.J.安德森
H-Y.陈
J.M.费迪科
E.维格特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johnson Matthey PLC
Original Assignee
Johnson Matthey PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=42313699&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN105749747(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Johnson Matthey PLC filed Critical Johnson Matthey PLC
Publication of CN105749747A publication Critical patent/CN105749747A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/041Mesoporous materials having base exchange properties, e.g. Si/Al-MCM-41
    • B01J29/042Mesoporous materials having base exchange properties, e.g. Si/Al-MCM-41 containing iron group metals, noble metals or copper
    • B01J29/044Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • B01J29/072Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/56Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/90Injecting reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9422Processes characterised by a specific catalyst for removing nitrogen oxides by NOx storage or reduction by cyclic switching between lean and rich exhaust gases (LNT, NSC, NSR)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9431Processes characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9481Catalyst preceded by an adsorption device without catalytic function for temporary storage of contaminants, e.g. during cold start
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • B01J29/14Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • B01J29/20Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type containing iron group metals, noble metals or copper
    • B01J29/24Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/46Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/50Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the erionite or offretite type, e.g. zeolite T, as exemplified by patent document US2950952
    • B01J29/52Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the erionite or offretite type, e.g. zeolite T, as exemplified by patent document US2950952 containing iron group metals, noble metals or copper
    • B01J29/56Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/60Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the type L, as exemplified by patent document US3216789
    • B01J29/61Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the type L, as exemplified by patent document US3216789 containing iron group metals, noble metals or copper
    • B01J29/63Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/65Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively
    • B01J29/66Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively containing iron group metals, noble metals or copper
    • B01J29/68Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/7676MWW-type, e.g. MCM-22, ERB-1, ITQ-1, PSH-3 or SSZ-25
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/78Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J29/783CHA-type, e.g. Chabazite, LZ-218
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/83Aluminophosphates [APO compounds]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates [SAPO compounds]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/617500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0246Coatings comprising a zeolite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2062Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/208Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/112Metals or metal compounds not provided for in B01D2253/104 or B01D2253/106
    • B01D2253/1122Metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20738Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9202Linear dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/018Natural gas engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • B01D2258/0291Flue gases from waste incineration plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/7615Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/763CHA-type, e.g. Chabazite, LZ-218
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Dispersion Chemistry (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

一种使用催化剂的方法,包括在化学过程中使催化剂暴露于至少一种反应物。所述催化剂包含铜和最大环尺寸为8个四面体原子的小孔分子筛。所述化学过程至少有一段时间暴露于还原气氛。所述催化剂具有初始活性,且在所述暴露于所述还原气氛至少一段时间之后具有最终活性。在200?500℃之间的温度,所述最终活性在所述初始活性的30%以内。

Description

小孔分子筛负载铜催化剂
本申请是2010年4月19日提交的题为“用于还原氮氧化物、能耐受贫燃/富燃老化的小孔分子筛负载铜催化剂”的国家申请号为201080027683.X(PCT/US2010/031617)的发明专利申请的分案申请。
相关申请交叉参考
本申请要求美国临时申请第61/170358号和美国临时申请第61/312832号的优先权,它们的完整内容均通过参考合并入本文,用于所有目的。
技术领域
本发明涉及小孔分子筛负载的铜催化剂,它们在暴露于还原气氛之后,特别是在高温暴露之后仍经久耐用。
背景技术
人们开发出了用含氮化合物如氨或脲对NOx进行选择性催化还原(SCR)的技术,用于许多应用,包括处理工业固定式应用装置、热电厂装置、燃气涡轮、燃煤电厂装置,化学加工工业中的工厂和炼油厂加热器及锅炉,加热炉、焦炉,城市废物处理装置和焚烧炉,以及许多机动车(移动式)应用,例如处理柴油机废气。
NH3SCR系统中发生多个化学反应,它们均是将NOx还原成氮的所需反应。主反应可用反应式(1)表示。
4NO+4NH3+O2→4N2+6H2O(1)
与氧之间的非选择性竞争反应会产生次级排放物,或者白白消耗氨。一种这样的非选择性反应是氨的完全氧化,如反应式(2)所示。
4NH3+5O2→4NO+6H2O(2)
另外,副反应会产生不合需要的产物如N2O,如反应式(3)所示。
4NH3+4NO+3O2→4N2O+6H2O(3)
用NH3对NOx进行的SCR所用的催化剂可包括例如硅铝酸盐分子筛。一种应用是控制机动车柴油机发动机排放的NOx排放物,还原剂可以得自氨的前体如脲,或者将氨本身直接注入。为提高催化活性,可将过渡金属加入至硅铝酸盐分子筛。最常检测的过渡金属分子筛有Cu/ZSM-5、Cu/β、Fe/ZSM-5和Fe/β,因为它们具有相对较宽的温度活性窗口。然而,Cu基分子筛催化剂一般比Fe基分子筛催化剂表现出更好的低温NOx还原活性。
ZSM-5和β分子筛在应用中具有许多缺点。它们在高温水热老化过程中易脱铝,导致酸性降低,特别是Cu/β和Cu/ZSM-5催化剂。β和ZSM-5基催化剂还受烃影响,烃在较低温度下吸附在催化剂上,并随着催化体系温度的升高而被氧化,放出大量的热,对催化剂造成热损害。当应用于机动车柴油机时,这个问题尤其严重,因为在冷启动时,大量烃会吸附到催化剂上。β和ZSM-5分子筛还容易因为烃而结焦。
一般而言,与Fe基分子筛催化剂相比,Cu基分子筛催化剂耐热性较差,并且产生较高水平的N2O。不过,它们有一个有利的优点,就是它们在应用中与相应的Fe分子筛催化剂相比漏氨较少。
WO2008/132452揭示了一种将气体中的氮氧化物转化为氮气的方法,它是在包含至少一种过渡金属的沸石催化剂存在下,使氮氧化物接触含氮还原剂,其中所述至少一种过渡金属选自Cr、Mn、Fe、Co、Ce、Ni、Cu、Zn、Ga、Mo、Ru、Rh、Pd、Ag、In、Sn、Re、Ir和Pt。
WO2008/106518揭示了一种纤维基体壁流过滤器与疏水性菱沸石分子筛的组合,所述疏水性菱沸石分子筛作为所述纤维基体壁流过滤器上的SCR催化剂。据称该过滤器提高了系统构造的灵活性,并降低了主动再生的燃料成本。该主动再生可能包括暴露于稀薄空气条件。然而,该文献未想到将过滤器置于还原条件下。该文献也没有揭示或者意识到在催化剂暴露于这样的还原气氛之后,保持催化剂的耐久性。
发明内容
根据本发明的一个实施方式,使用催化剂的方法包括在化学过程中将催化剂暴露于至少一种反应物。所述催化剂包含铜和最大环尺寸为8个四面体原子的小孔分子筛。较佳的是,所述催化剂是铜促进的小孔分子筛,即负载铜的小孔分子筛。所述化学过程至少有一段时间暴露于还原气氛。所述催化剂具有初始活性,并且在至少一段时间内暴露于还原气氛之后,所述催化剂具有最终活性。在200-500℃之间的温度下,所述最终活性在所述初始活性的30%以内。
根据本发明的另一个实施方式,一种使用催化剂的方法包括在包含废气处理的化学过程中,使催化剂暴露于至少一种反应物。所述催化剂包含铜和小孔分子筛,所述小孔分子筛的最大环尺寸是8个四面体原子,选自骨架类型代码为CHA、LEV、ERI和DDR的小孔分子筛。所述化学过程至少有一段时间暴露于还原气氛。所述催化剂具有初始活性,并且在至少一段时间内暴露于还原气氛之后,所述催化剂具有最终活性。在250-350℃之间的温度下,所述最终活性在所述初始活性的10%以内。
附图说明
为了更完整地理解本发明,可以参考下面仅起说明作用的附图,其中:
图1显示了中孔和大孔分子筛负载铜催化剂在贫燃水热老化(leanhydrothermalaging)和贫燃/富燃循环老化(lean/richcycleaging)之后的NOx转化率;
图2显示了Fe/分子筛催化剂在贫燃水热老化和贫燃/富燃循环老化之后的NOx转化率;
图3显示了本发明实施方式中的小孔分子筛负载铜催化剂和Cu/β对比催化剂在贫燃水热老化和贫燃/富燃循环老化之后的NOx转化率;
图4显示了本发明实施方式中具有不同SCR催化剂的NAC和NAC+SCR组合体系以及对比例的NOx转化效率。
具体实施方式
一种处理贫燃内燃机废气中NOx的方法是先将来自贫燃气(leangas)的NOx存储在基本材料中,然后从基本材料中释放NOx,并利用富燃气(richgas)对其进行周期性还原。基本材料(如碱金属、碱土金属或稀土金属)和贵金属(如铂)以及可能还有的还原催化剂组分(如铑)的组合通常称作NOx吸附催化剂(NAC)、贫燃NOx捕集器(LNT)或者NOx储存/还原催化剂(NSRC)。本文所用NOx储存/还原催化剂、NOx捕集器和NOx吸附催化剂(或其首字母缩略词)可以互换使用。
在某些条件下,在周期性富燃再生(richregeneration)事件中,NH3可以在NOx吸附催化剂上产生。在NOx吸附催化剂下游加装SCR催化剂可提高整个体系的NOx还原效率。在组合体系中,SCR催化剂能储存富燃再生事件中从NAC催化剂释放的NH3,并利用储存的NH3选择性还原在正常贫燃操作条件下经NAC催化剂漏出的部分或全部NOx。在本文中使用的这种组合体系可用它们各自的首字母缩略词的组合表示,例如NAC+SCR或LNT+SCR。
NAC+SCR组合体系对SCR催化剂组分提出了额外的要求。也就是说,除了具有良好的活性和优异的热稳定性外,SCR催化剂必须对贫燃/富燃过程(excursion)稳定。这种贫燃/富燃过程不仅会发生在常规NAC再生事件中,而且会发生在NAC脱硫事件中。在NAC脱硫事件中,SCR催化剂可能暴露的温度远高于在常规NOx再生事件中其所暴露的温度。因此,适用于NAC+SCR体系的良好SCR催化剂需要在暴露于高温还原气氛之后保持耐久性。虽然本文在描述本发明时特别强调SCR实施方式,但本发明预期包括暴露于还原气氛会失去活性的任何催化剂。
催化剂暴露于还原气氛,特别是高温还原气氛时,往往不稳定。例如,铜催化剂在重复贫燃/富燃高温过程中不稳定,例如,就像在机动车废气或废气处理系统中常遇到的那样。还原气氛发生在贫燃/富燃过程循环的富燃阶段。不过,还原气氛条件可出现在许多环境中,包括但不限于NOx吸附催化剂再生或脱硫以及催化煤灰过滤器主动再生等的典型环境。因此,本文所用的“还原气氛”是净还原气氛,例如λ值小于1的废气(例如来自空气/燃料比小于化学计量比的废气)。反之,非还原气氛是净氧化气氛,例如λ值大于1的废气(例如来自空气/燃料比大于化学计量比的废气)。
虽然不希望受具体理论的限制,但据信在发现本发明之前,分子筛负载铜催化剂在暴露于还原气氛(特别是重复贫燃/富燃循环过程中遇到的还原气氛)时不能保持稳定性或活性,因为铜催化剂在暴露于还原气氛时会丧失活性。丧失活性的原因可能是由于铜发生迁移、烧结和/或铜的分散性下降。出人意料的是,我们发现在本发明中,尽管中孔和大孔分子筛负载铜催化剂不能保持催化活性,但小孔分子筛负载铜催化剂能保持其催化活性。据信,小孔分子筛限制铜迁出骨架、烧结、失去铜分散性,且有利地提高了催化剂的稳定性和活性。而中孔和大孔分子筛在暴露于还原气氛时不能保持稳定性和活性,其原因可能是铜的迁移、烧结和/铜分散性下降带来的影响。
根据本发明的一个实施方式,使用催化剂的方法包括在化学过程中将催化剂暴露于至少一种反应物。所述催化剂包含铜和最大环尺寸为8个四面体原子的小孔分子筛。所述化学过程至少有一段时间暴露于还原气氛。所述催化剂具有初始活性,并且在至少一段时间内暴露于还原气氛之后,所述催化剂具有最终活性。在150-650℃之间的温度下,优选在200-500℃之间的温度下,所述最终活性在所述初始活性的30%以内。
使用催化剂的方法包括在化学过程中将催化剂暴露于至少一种反应物。本文所用“化学过程”可包括任何合适的化学过程,所述化学过程使用包含含铜小孔分子筛的催化剂并经历还原条件。典型的化学过程包括但不限于废气处理,如使用含氮还原剂、贫燃NOx催化剂、催化烟灰过滤器或者它们中任意一者与NOx吸附催化剂或三效催化剂(TWC)的组合的选择性催化还原,例如NAC+(下游)SCR或者TWC+(下游)SCR。
根据本发明的另一方面,本发明提供了一种包含NAC+(下游)SCR或TWC+(下游)SCR的体系,其中SCR催化剂包含本文所述铜促进的小孔沸石分子筛。
根据本发明的另一方面,本发明提供了SCR催化烟灰过滤器,其中SCR催化剂包含本文所述铜促进的小孔沸石分子筛。
使用催化剂的方法包括将催化剂暴露于至少一种反应物。所述反应物可包括上述化学过程中任何常见的反应物。反应物可包括选择性催化还原剂,如氨。选择性催化还原可包括:(1)使用氨或含氮还原剂;或者(2)烃还原剂(后者也称作贫燃NOx催化)。其他反应物可包括氮氧化物和氧气。
催化剂包含过渡金属,优选铜,以及具有最大环尺寸为8个四面体原子的小孔分子筛。本文所用“分子筛”应理解为一种亚稳材料,它包含具有精确、均匀尺寸的小孔,可用作气体或液体的吸附剂。小到能通过孔的分子被吸附,而较大的分子则不能被吸附。分子筛骨架可按国际沸石协会骨架类型代码通常可接受的方式限定(见http://www.iza-online.org/)。下面将更详细地描述这些分子筛。
一般通过所含的成员环如下限定分子筛:大孔环是12元环或更大;中孔环是10元环;小孔环是8元环或更小。本发明的催化剂是最大环尺寸为8个四面体原子的小孔环。
多数催化剂负载在中孔(10元环,如ZSM-5)或大孔(12元环,如β)分子筛上。例如,分子筛负载铜SCR催化剂在仅有NO的条件下可展示宽温度窗口。然而,这些催化剂对重复贫燃/富燃高温老化不稳定,如图1所示。图1显示了水热老化条件下和贫燃/富燃老化条件下的Cu/β催化剂(大孔)和Cu/ZSM-5催化剂(中孔)。从代表贫燃/富燃老化条件的虚线可以证实,这些类型的催化剂不适合暴露于重复还原的条件。特别地,这些催化剂不适合NAC+SCR应用。
分子筛负载铁SCR催化剂虽然在低温(例如<350℃)下的活性不及分子筛负载铜催化剂,但它对重复贫燃/富燃高温老化稳定,如图2所示。图2显示了经历水热老化和贫燃/富燃老化条件之后的Fe/镁碱沸石、Fe/ZSM-5和Fe/β。因此,分子筛负载铁催化剂是优选的技术,因为它们对循环贫燃/富燃老化具有优异的稳定性,例如在NAC+SCR应用中所遇到的条件下。
已证明小孔分子筛负载Cu催化剂展示改进的NH3-SCR活性和优异的热稳定性。根据本发明的一个方面,研究发现这类催化剂还能经受重复贫燃/富燃高温老化。图3比较了一系列小孔分子筛负载Cu催化剂(分别是Cu/SAPO-34、Cu/Nu-3和Cu/SSZ-13)和大孔对比催化剂(Cu/β)分别经历700℃/2小时水热老化和600℃/12小时循环贫燃/富燃老化之后的情况。从图3可以看出,含小孔分子筛的催化剂对贫燃/富燃老化非常稳定。特别地,Cu/SAPO-34催化剂展示了格外好的低温活性,并且在循环贫燃/富燃老化,即重复暴露于还原气氛之后没有发生活性下降。
本发明实施方式中的催化剂显示在宽得多的温度窗口中获得高NOx转化率。提高转化效率的温度范围可以是约150-650℃,优选200-500℃,更优选200-450℃,或最显著优选约200-400℃。在这些温度范围内,暴露于还原气氛之后,甚至暴露于还原气氛和高温(例如高达850℃)之后的转化效率可以是大于55%至100%,更优选大于90%的效率,甚至更优选大于95%的效率。特别地,与单独的NAC催化剂或者使用Fe/分子筛SCR催化剂的NAC+SCR体系相比,组合的NAC+SCR体系显示在宽得多的温度窗口中获得高NOx转化率。参见图4。例如在约250℃和约300℃,经历贫燃/富燃老化的体系的NOx转化效率如下:
从这些结果可以看出,使用NAC+Cu/小孔分子筛催化剂显示在转化效率上的很大改进。这些改进是对最终NOx排放物的改进。因此,按残留的NOx百分率计算,从约87%的NOx转化率(约残留13%NOx)提高到约97%的NOx转化率(约残留3%NOx)相当于效率提高约433%。
所述催化剂具有初始活性,并且在暴露于还原气氛至少一段时间后具有最终活性。在某些实施方式中,催化剂活性表现为NOx的转化效率。因此,初始活性是催化剂尚未暴露于还原气氛时的NOx转化效率,而最终活性是催化剂暴露于还原气氛之后的NOx转化效率。初始活性可包括在水热条件下的基准老化。水热条件可包括在含5%H2O的空气中,在700℃老化2小时。
化学过程经历至少一段暴露于还原气氛的时间。还原气氛可包括任何合适的还原气氛,如在贫燃/富燃老化循环中的富燃条件下。例如,在催化烟灰过滤器再生期间也可能出现局部化还原气氛。所述至少一段时间的暴露可包括重复暴露于还原条件或者长期暴露于还原条件。例如,重复暴露可包括在600℃经历12小时的循环贫燃/富燃老化。贫燃循环可持续15秒至几十分钟,富燃循环可持续不到1秒至数分钟。在NAC-SCR系统或TWC-SCR系统中,富燃循环可以是例如连续的1-60秒,连续的1-15秒,或者连续的5-15秒。在经涂覆的烟灰过滤器应用[例如SCR/DPF(柴油机微粒过滤器)]中,富燃循环可以是例如30秒钟-60分钟的连续暴露,5分钟-30分钟的连续暴露,或者10分钟-30分钟的连续暴露。例如,循环的贫燃部分可由暴露于N2中的200ppmNO、10%O2、5%H2O、5%CO2组成,循环的富燃部分可由暴露于N2中的200ppmNO、5000ppmC3H6、1.3%H2、4%CO、1%O2、5%H2O、5%CO2组成。还原气氛可以是高温还原气氛。高温还原气氛可出现在约150-850℃或者更优选约450-850℃的温度下。
在催化工作温度下,最终活性在初始活性的约30%以内,更优选约10%以内,更优选约5%以内,甚至更优选约3%以内。催化工作温度优选在约150至约650℃之间,更优选在约200至约500℃之间。虽然催化剂活性优选在200-500℃之间的温度下测定,但化学过程的各个部分可在任何温度下运行,例如在包括更高温度的更宽温度范围内。例如,即使催化剂暴露于更高的温度,例如高达850℃之后,催化剂活性仍保持在200-500℃的温度范围内。在本文中,当最终活性用相对于初始活性的百分数表示时,它用相对于所提供的温度范围的平均百分数表示;换言之,如果说在200-500℃的温度之间的最终活性在初始活性的30%以内,它未必在该范围内的每个所检测的温度下都小于30%,而是仅仅在所有测定温度下平均起来小于30%。此外,尽管在本申请的实例中用NOx转化率表示活性,但如本领域所公知的,可根据化学过程用其他量度表示催化剂活性。从以下各表的数据可以看到催化剂活性和初始活性相对于最终活性的百分数(也可参见图3)。负数表示活性在暴露于还原条件之后,相比于初始活性实际得到改善(因此当然在初始活性的一定正百分数“之内”)。
对于使用Cu/Nu-3的实施方式,得到以下数据:
温度 HT老化 温度 LR老化
150 9 150 9 -2%
200 50 198 52 -2%
250 76 250 75 1%
350 72 350 69 4%
450 62 450 58 6%
550 45 550 43 3%
650 27 650 26 2%
因此,贫燃/富燃老化的NOx还原%在水热老化的NOx还原%的约6%之内。因此,在约150-650℃的整个温度范围内,催化剂重复暴露于还原条件之后保持稳定并具有良好的活性。
对于使用Cu/SSZ-13的实施方式,得到以下数据:
温度 HT老化 温度 LR老化
164 61 160 19 68%
218 100 216 71 29%
269 100 269 97 3%
373 97 372 86 12%
473 86 474 68 20%
572 64 573 41 36%
668 22 669 -7 134%
因此,在约200-500℃的整个温度范围内,贫燃/富燃老化的NOx还原%在水热老化的NOx还原%的约30%之内。
对于使用Cu/SAPO34的实施方式,得到以下数据:
因此,在约200-500℃的整个温度范围内,贫燃/富燃老化的NOx还原%在水热老化的NOx还原%的约3%之内,在约200-560℃的范围内,贫燃/富燃老化的NOx还原%在水热老化的NOx还原%的约10%之内。
作为比较例,比较了一种大孔分子筛催化剂Cu/β:
温度 HT老化 温度 LR老化
150 21 152 9 57%
200 72 199 24 67%
250 93 250 30 67%
350 93 351 26 72%
450 82 450 37 56%
550 82 550 54 35%
650 64 650 49 24%
Cu/β比较例在贫燃/富燃循环老化之后表现出较差的活性。因此,与发现本发明之前所预想的一样,铜分子筛催化剂暴露于还原气氛之后稳定性较差。
根据本发明的一个实施方式,使用催化剂的方法包括在包含废气处理的化学过程中,使催化剂暴露于至少一种包含氮氧化物的反应物。所述催化剂包含铜和最大环尺寸为8个四面体原子的小孔分子筛,所述小孔分子筛选自骨架类型代码由CHA、LEV、ERI和DDR组成的小孔分子筛。所述化学过程经历至少一段暴露于还原气氛的时间。所述催化剂具有初始活性,并且在暴露于还原气氛至少一段时间后具有最终活性。在250-350℃之间的温度下,最终活性在初始活性的10%以内。在优选的实施方式中,在250-350℃之间的温度下,催化剂的最终活性在初始活性的3%以内。
在本发明的一个实施方式中,催化剂与NAC(NOx吸附催化剂)组合,并作为NAC+SCR体系测定。图4比较了单独的NAC、NAC+SCR体系和Fe/β催化剂对比例上的NOx还原效率,其中NAC+SCR体系包含不同的SCR小孔分子筛催化剂(Cu/SAPO-34和Cu/SSZ-13)。与单独的NAC相比,Fe/分子筛SCR与NAC催化剂的组合已显示提高了体系的NOx转化率。不过,具有含铜小孔分子筛即Cu/SAPO-34或Cu/SSZ-13的其他两种体系也显示明显地进一步提高了NOx清除效率。这在低温(200-350℃)下尤其明显。这些结果清楚表明,小孔分子筛负载的Cu催化剂为进一步提高NAC+SCR体系的性能提供了新的潜力。
除NAC+SCR应用之外,小孔分子筛负载Cu催化剂为可能暴露于高温还原气氛的其它应用提供了显著的性能优点。例如,小孔分子筛负载Cu催化剂可用于SCR/DPF(柴油机微粒过滤器)主动再生过程中出现的还原气氛。对于还原条件,例如废气处理系统中发生的富燃老化,小孔分子筛负载Cu催化剂提供了优异的耐热性和异常的稳定性。
应当理解,按照“骨架类型代码”限定分子筛时,我们的本意是包括“类型材料”和任意且所有同型骨架材料。(“类型材料”是最先用来建立骨架类型的物质)。参见表1,表中列出了用于本发明的示例性分子筛材料。为避免歧义,除非另外说明,本文中提到分子筛的名称例如“菱沸石”时,所指的是该分子筛材料本身(在此例子中是天然存在的类型材料菱沸石),而不是该具体分子筛所属骨架类型代码标明的任何其他材料,例如某种其他的同型骨架材料。本文所用FTC是指该FTC所限定的类型材料以及所有的同型骨架材料。
分子筛类型材料如天然存在(即矿物)菱沸石与同一骨架类型代码内的同型材料之间的区别不是随意的,而是反映了材料之间的性质差异,这反过来可能导致它们在本发明方法中的活性差异。应当理解,例如在下表1中,“MeAPSO”和“MeAlPO”是指被一种或多种金属取代的沸石型材料。合适的取代金属包括但不限于As、B、Be、Co、Fe、Ga、Ge、Li、Mg、Mn、Zn和Zr中的一种或多种。
在一个具体的实施方式中,用于本发明的小孔分子筛催化剂可选自硅铝酸盐分子筛、金属取代的硅铝酸盐分子筛和磷铝酸盐分子筛。用于本发明的磷铝酸盐分子筛包括磷铝酸盐(AlPO)分子筛、金属取代的(MeAlPO)分子筛、硅磷铝酸盐(SAPO)分子筛和金属取代的硅磷铝酸盐分子筛(MeAPSO)。
在一个实施方式中,小孔分子筛选自以下骨架类型代码表示的分子筛:ACO、AEI、AEN、AFN、AFT、AFX、ANA、APC、APD、ATT、CDO、CHA、DDR、DFT、EAB、EDI、EPI、ERI、GIS、GOO、IHW、ITE、ITW、LEV、KFI、MER、MON、NSI、OWE、PAU、PHI、RHO、RTH、SAT、SAV、SIV、THO、TSC、UEI、UFI、VNI、YUG和ZON。
在一个实施方式中,含最大环尺寸为8个四面体原子的小孔分子筛选自以下骨架类型代码表示的分子筛:CHA、LEV、ERI和DDR。在一个优选的实施方式中,小孔分子筛包含骨架类型代码CHA表示的分子筛,其选自SAPO-34或SSZ-13。在另一个实施方式中,小孔分子筛包含骨架类型代码LEV表示的分子筛Nu-3。此外,小孔分子筛可包含骨架类型代码AEI表示的分子筛SAPO-18、骨架类型代码ERI表示的分子筛ZSM-34和/或骨架类型代码DDR表示的分子筛σ-1。小孔分子筛还可包括无序分子筛,如共生或混合相AEI/CHA、AEI/SAV等。
用于本发明的分子筛可包括为提高水热稳定性而经过处理的分子筛。提高水热稳定性的说明性方法包括:
(i)通过以下方法脱铝:用蒸汽处理和用酸或络合剂例如(EDTA-乙二胺四乙酸)进行酸提;用酸和/或络合剂处理;用SiCl4气流处理(用Si置换分子筛骨架中的Al);
(ii)阳离子交换一使用多价阳离子如La;以及
(iii)使用含磷化合物(参见美国专利第5958818号)。
表1列出了合适的小孔分子筛的说明性例子。
表1:小孔分子筛
表2列出了可具体用来暴露于还原条件的小孔分子筛。
表2:优选的小孔分子筛
用于本发明的分子筛包括天然和合成分子筛,优选合成分子筛,因为合成分子筛具有更均匀的硅铝比(SAR)、晶体尺寸、晶体形态,并且没有杂质(例如碱土金属)。小孔硅铝酸盐分子筛的硅铝比(SAR)可为2-300,任选4-200,且优选8-150。应当理解,为提高热稳定性,优选更高SAR比,但这会对过渡金属交换造成负面影响。
所述至少一种反应物可以5000小时-1-500000小时-1的气时空速接触催化剂,任选10000小时-1-200000小时-1
用于本发明的小孔分子筛可具有三个维度,即具有在全部三个晶体学维度上互连的孔结构,或者具有两个维度。在一个实施方式中,用于本发明的小孔分子筛由具有三个维度的分子筛组成。在另一个实施方式中,用于本发明的小孔分子筛由具有两个维度的分子筛组成。
在某些实施方式中,小孔分子筛包含选自下面的无序骨架、基本上由这些无序骨架组成或者由这些无序骨架组成:ABC-6、AEI/CHA、AEI/SAV、AEN/UEI、AFS/BPH、BEC/ISV、β、八面沸石、ITE/RTH、KFI/SAV、铍硅钠石、蒙特索马石、MTT/TON、五元环沸石(pentasil)、SBS/SBT、SSF/STF、SSZ-33和ZSM-48。在一个优选的实施方式中,一种或多种小孔分子筛可包含选自SAPO-34、AlPO-34、SAPO-47、ZYT-6、CAL-1、SAPO-40、SSZ-62或SSZ-13的骨架类型代码为CHA的分子筛和/或选自AlPO-18、SAPO-18、SIZ-8或SSZ-39的骨架类型代码为AEI的分子筛。在一个实施方式中,混合相组合物是AEI/CHA混合相组合物。分子筛中每种骨架类型的比例不受特别限制。例如,AEI/CHA之比可为约5/95至约95/5,优选约60/40-40/60。在一个示例性实施方式中,AEI/CHA之比可为约5/95至约40/60。可以想到,诸如AEI/CHA这样的无序分子筛可用作一种或多种过渡金属的载体,所述过渡金属是例如Cr、Mn、Fe、Co、Ce、Ni、Cu、Zn、Ga、Mo、Ru、Rh、Pd、Ag、In、Sn、Re、Ir、Pt及其混合物,优选Cr、Mn、Fe、Co、Ce、Ni、Cu、Rh、Pd、Pt及其混合物,更优选Fe和/或Cu,最优选铜。
基于催化剂总重,在分子筛中可包含的铜金属的总含量可以是0.01-20重量%。在一个实施方式中,分子筛中可包含的铜的总含量可以是0.1-10重量%。在一个具体的实施方式中,分子筛中可包含的铜的总含量可以是0.5-5重量%。铜可通过任何可行的方法加入分子筛。例如,可以在合成分子筛之后,通过例如初湿法或交换法将其加入;或者可以在合成分子筛的过程中将其加入。
用于本发明的优选二维小孔分子筛由Cu/LEV组成,如Cu/Nu-3,而用于本发明的优选三维含铜小孔分子筛/磷铝酸盐分子筛由Cu/CHA组成,如Cu/SAPO-34或Cu/SSZ-13。
用于本发明的分子筛催化剂可以涂覆在合适的基材整体件上,或者成形为挤出型催化剂,但优选用于催化剂涂层中。在一个实施方式中,将分子筛催化剂涂覆在流通整体型基材(即有许多平行的小通道沿轴向穿过整个部件的蜂窝状整体型催化剂载体结构)或整体型过滤器基材如壁流式过滤器等上。用于本发明的分子筛催化剂可以例如作为水洗涂层(washcoat)组分涂覆到合适的整体型基材上,如金属或陶瓷流通整体型基材或者过滤基材,如壁流式过滤器或烧结金属或部分过滤器(如WO01/80978或EP1057519所述,后一文件描述了一种包含弯曲流动路径的基材,所述弯曲流动路径至少减缓了烟灰从其中通过的速度)。或者,用于本发明的分子筛可以直接合成到基材上。或者,本发明的分子筛催化剂可以成形为挤出型流通式催化剂。
在制造挤出型基材整体件时,涂覆到整体型基材上的包含用于本发明的分子筛的水洗涂层组合物可包含选自下面的粘结剂:氧化铝、氧化硅、(非分子筛型)氧化硅-氧化铝、天然黏土、TiO2、ZrO2和SnO2
在一个实施方式中,所述至少一种反应物例如氮氧化物在至少100℃的温度下用还原剂还原。在另一个实施方式中,所述至少一种反应物在约150-750℃的温度下用还原剂还原。在一个具体的实施方式中,该温度范围是175-550℃,或者更具体地是175-400℃。
对于包含氮氧化物的反应物,氮氧化物的还原可在氧气存在或不存在的情况下进行。含氮还原剂的来源可以是氨本身、肼或任何合适的氨前体[如脲((NH2)2CO)]、碳酸铵、氨基甲酸铵、碳酸氢铵或甲酸铵。
所述方法可用于来自燃烧过程的气体,如内燃机(不管是移动的还是固定的)、燃气涡轮和燃煤或燃油电厂。所述方法也可用于处理来自诸如炼油的工业过程的气体,来自炼油加热器和锅炉、炉子、化学加工工业、焦炉、城市废物处理装置和焚烧炉、咖啡烘焙厂的气体。
在一个具体的实施方式中,所述方法可用于处理来自具有贫燃/富燃循环的机动车内燃机的废气,所述内燃机如柴油机、汽油机或者由液体石油气或天然气驱动的发动机。
对于包含氮氧化物的反应物,仅当确认分子筛催化剂能够以等于或高于所需效率,如在高于100℃、高于150℃或高于175℃的温度下催化NOx的还原反应时,才可以将含氮还原剂计量加入流动的废气中。由控制装置完成的上述确认操作可辅以一个或多个指示发动机状况的合适传感器输入信号,所述输入信号选自:废气温度、催化剂床温度、加速器位置、系统中废气的最大流量、歧管真空、点火定时、发动机速度、废气λ值、注入发动机的燃料量、废气再循环(EGR)阀位置以及由此产生的EGR量和增压压力。
计量加入操作可根据废气中氮氧化物的量控制,所述氮氧化物的量可直接(使用合适的NOx传感器)测定,也可间接测定,如利用存储在控制装置中的预先关联好的查阅表或图——将任一种或多种上述指示发动机状况的输入信息与废气中的预计NOx含量关联起来。
本文所引用的任何和全部专利和参考文献的整体内容均通过参考合并入本文。
实施例
尽管本文是结合具体的实施方式来描述和说明本发明的,但本发明不受所示细节的限制。相反,在权利要求的等效范围内,在不背离本发明的情况下,可以对细节作出各种改变。
1.稳态SCR评价
稳态选择性催化还原(SCR)活性测试在长24英寸的石英反应器中进行,反应器用两个长12英寸的管式炉装置均匀加热。实验在30000小时-1的气时空速下进行,所用催化剂尺寸为1英寸直径x1英寸长度。通过加热带将与反应器直接相连的所有气体管线保持在130℃,防止气体物质吸附在气体管线壁上。水蒸气通过始终保持在70℃的水弹(waterbomb)提供。
进料气到达催化剂床之前,在反应器上游通过惰性热质加热和混合。在催化剂进口、催化剂床中央和出口,用k型热电偶监控气流温度。在催化剂床下游用FTIR分析反应过的进料气,取样率为1.25秒-1。入口进料气的组成通过从反应器上游的旁通阀取样来测定。
稳态SCR实验先在已水热(HT)老化的催化剂样品上进行,老化温度为700℃,时间为2小时,在含4.5%H2O的空气存在下进行老化。所有稳态实验都用包含350ppmNO的NO和NH3进料气进行,其氨-NO(ANR)之比等于1(即350ppmNH3)。剩余进料气的组成如下:14%O2、4.6%H2O、5%CO2,余下为N2。在催化剂床温度为150℃、200℃、250℃、350℃、450℃、550℃和650℃下测定稳态NOx转化率。
然后在贫燃-富燃循环条件下,在600℃下使催化剂老化12小时。该循环的贫燃部分由暴露于N2中的200ppmNO、10%O2、5%H2O、5%CO2组成,时间为5秒,空速为300004、时-1。该循环的富燃部分由暴露于N2中的200ppmNO、5000ppmC3H6、1.3%H2、4%CO、1%O2、5%H2O、5%CO2组成,时间为15秒。老化之后,如上所述进行稳态SCR实验。
图3显示了本发明实施方式和对比实施例的NOx转化效率。图中显示了本发明实施方式中的小孔分子筛催化剂Cu/SAPO-34、Cu/Nu-3和Cu/SSZ-13在分别经历上述水热老化处理和贫燃/富燃老化处理之后的情况。图中还显示了作为对比实施例的大孔分子筛催化剂Cu/β在水热老化和贫燃/富燃老化之后的情况。可以看出,小孔分子筛催化剂表现出提高的NOx转化效率,特别是在200-500℃的温度窗口内。
2.NAC+SCR实验
NOx吸附催化剂(NAC)和SCR芯开始在含4.5%H2O的空气混合物中,在750℃水热老化16小时。然后,将样品安装在上述同样的反应器装置中,NAC催化剂直接安装在SCR催化剂前面。催化剂在上述贫燃-富燃老化条件下于600℃老化12小时(5秒贫燃/15秒富燃)。
然后,在贫燃-富燃循环(60秒贫燃/5秒富燃,相同气体组成)下,将催化剂冷却至450℃。在450℃,完成25次贫燃-富燃循环(60秒贫燃/5秒富燃),最后5次循环用来测定催化剂的平均循环NOx转化率。第25次循环之后,将该催化剂保持在贫燃气组成下5分钟。然后冷却催化剂,在400℃、350℃、300℃、250℃、200℃和175℃,经历上述循环程序之后对其进行评价。
图4显示了本发明的实施方式和两个对比实施例的NOx转化效率。图中显示了本发明实施方式中的小孔分子筛催化剂NAC+Cu/SAPO-34和NAC+Cu/SSZ-13在经历上述贫燃/富燃老化处理之后的情况。图中还显示了作为对比实施例的单独用NAC以及大孔分子筛催化剂NAC+Fe/β在贫燃/富燃老化之后的情况。可以看出,小孔分子筛催化剂表现出提高的NOx转化效率,其转化效率与单独用NAC或NAC+Fe/β相当或比它们更好,特别是在250-450℃的温度窗口内。
尽管已经展示和描述了本发明的优选实施方式,但应当理解,这些实施方式仅仅是举例。在不背离本发明精神的前提下,本领域的技术人员可以作出许多改变、变化和替换。因此,所附权利要求意在涵盖落在本发明精神和范围内的所有这些变化形式。

Claims (13)

1.一种处理废气的体系,其包含位于SCR催化剂上游的NOx吸附催化剂,其中所述SCR催化剂包含负载在分子筛上的铜或铁,其中所述分子筛(a)具有8个四面体原子的最大环尺寸;和(b)选自硅铝酸盐分子筛、金属取代的硅铝酸盐分子筛和磷铝酸盐分子筛,其中所述分子筛具有AEI的骨架代码。
2.如权利要求1所述的体系,其特征在于,所述分子筛的氧化硅与氧化铝之比为约8至约150。
3.如权利要求1所述的体系,其特征在于,所述铜在所述小孔分子筛中的含量为0.5-5重量%。
4.如权利要求1所述的体系,其特征在于,所述NOx吸附催化剂包含贵金属和选自碱金属、碱土金属和稀土金属的基本材料。
5.如权利要求1所述的体系,其特征在于,所述NOx吸附催化剂负载在第一基材上,所述SCR催化剂负载在第二基材上,并且就废气正常流过该体系的方向而言,所述第一基材位于所述第二基材前面。
6.如权利要求1所述的体系,其特征在于,它还包含氨组分,其中所述氨组分由所述NOx吸附催化剂产生。
7.如权利要求1所述的体系,其特征在于,它还包含交替的还原气氛和氧化气氛,其中所述SCR催化剂暴露于所述交替气氛。
8.如权利要求7所述的体系,其特征在于,所述还原气氛是富燃废气,所述氧化气氛是贫燃废气。
9.一种使用催化剂的方法,它包括:
使SCR催化剂暴露于包含在NOx吸附催化剂上产生的NH3的还原气氛,并在所述暴露步骤中利用所述SCR催化剂储存NH3,以及
使所述SCR催化剂接触非还原气氛中的NOx,利用储存的NH3实现对所述NOx的选择性还原;
其中所述SCR催化剂包含负载在分子筛上的铜或铁,其中所述分子筛(a)具有8个四面体原子的最大环尺寸;(b)选自硅铝酸盐分子筛、金属取代的硅铝酸盐分子筛和磷铝酸盐分子筛;以及(c)已经利用选自脱铝、阳离子交换或磷处理中的至少一种技术处理,以提高水热稳定性。
10.如权利要求9所述的方法,其还包括以下步骤:
使所述NOx吸附催化剂接触包含NOx的贫燃废气,以及
利用NOx吸附催化剂储存所述贫燃废气中的至少一部分NOx
11.如权利要求9所述的方法,其特征在于,所述分子筛具有选自AEI、LEV、ERI和DDR的骨架代码;其中所述铜在所述小孔分子筛中的含量为0.5-5重量%,且其中所述NOx吸附催化剂包含贵金属和选自碱金属、碱土金属和稀土金属的基本材料。
12.一种处理废气的方法,它包括:
a.使NOx吸附催化剂和SCR催化剂暴露于贫燃废气,其中相对于废气流动方向,所述SCR催化剂位于NOx吸附催化剂下游,且其中所述SCR催化剂包含负载在分子筛上的铜,其中所述分子筛(a)具有8个四面体原子的最大环尺寸;(b)选自硅铝酸盐分子筛、金属取代的硅铝酸盐分子筛和磷铝酸盐分子筛;以及(c)已经利用选自脱铝、阳离子交换或磷处理中的至少一种技术处理,以提高水热稳定性;
b.使所述NOx吸附催化剂和所述SCR催化剂暴露于还原气氛;以及
c.以循环方式重复步骤(a)和(b);
其中所述NOx吸附催化剂在步骤(a)中储存NOx,并在步骤(b)中释放NOx,产生NH3;且所述SCR催化剂储存由所述NOx吸附催化剂在步骤(b)中产生的NH3,并利用储存的NH3在步骤(a)中选择性还原NOx
13.如权利要求12所述的方法,其特征在于,所述还原气氛在选自下面的一个或多个事件中产生:烟灰微粒过滤器再生、NOx吸附催化剂再生和NOx吸附催化剂脱硫。
CN201610087631.0A 2009-04-17 2010-04-19 小孔分子筛负载铜催化剂 Pending CN105749747A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US17035809P 2009-04-17 2009-04-17
US61/170358 2009-04-17
US31283210P 2010-03-11 2010-03-11
US61/312832 2010-03-11

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201080027683XA Division CN102802791A (zh) 2009-04-17 2010-04-19 用于还原氮氧化物、能耐受贫燃/富燃老化的小孔分子筛负载铜催化剂

Publications (1)

Publication Number Publication Date
CN105749747A true CN105749747A (zh) 2016-07-13

Family

ID=42313699

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201080027683XA Pending CN102802791A (zh) 2009-04-17 2010-04-19 用于还原氮氧化物、能耐受贫燃/富燃老化的小孔分子筛负载铜催化剂
CN201610087631.0A Pending CN105749747A (zh) 2009-04-17 2010-04-19 小孔分子筛负载铜催化剂

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201080027683XA Pending CN102802791A (zh) 2009-04-17 2010-04-19 用于还原氮氧化物、能耐受贫燃/富燃老化的小孔分子筛负载铜催化剂

Country Status (10)

Country Link
US (8) US7998443B2 (zh)
EP (2) EP4112168A1 (zh)
JP (4) JP5767206B2 (zh)
KR (3) KR102180723B1 (zh)
CN (2) CN102802791A (zh)
BR (1) BRPI1015166A2 (zh)
DK (1) DK2995367T3 (zh)
GB (3) GB2507006B (zh)
RU (1) RU2546666C2 (zh)
WO (1) WO2010121257A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110876957A (zh) * 2019-10-31 2020-03-13 山东国瓷功能材料股份有限公司 分子筛Cu-SSZ-13、其合成方法、催化剂和用途

Families Citing this family (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7998423B2 (en) 2007-02-27 2011-08-16 Basf Corporation SCR on low thermal mass filter substrates
DK3300791T3 (da) 2007-04-26 2019-06-11 Johnson Matthey Plc Overgangsmetal/zeolit-scr-katalysatorer
US8512657B2 (en) * 2009-02-26 2013-08-20 Johnson Matthey Public Limited Company Method and system using a filter for treating exhaust gas having particulate matter
US9662611B2 (en) 2009-04-03 2017-05-30 Basf Corporation Emissions treatment system with ammonia-generating and SCR catalysts
GB2469581A (en) 2009-04-17 2010-10-20 Johnson Matthey Plc Method of using copper/small pore molecular sieve catalysts in a chemical process
KR102180723B1 (ko) * 2009-04-17 2020-11-20 존슨 맛쎄이 퍼블릭 리미티드 컴파니 질소 산화물의 환원에 대한 희박/농후 노화에 대해 내구적인 소기공 분자 체 지지된 구리 촉매
JP5750701B2 (ja) * 2009-10-14 2015-07-22 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se NOxの選択的還元用の銅含有レビ沸石モレキュラーシーブ
BR112012019009A2 (pt) 2010-02-01 2016-04-12 Johnson Matthey Plc catalisador absorvedor de nox, processo de manufatura de um catalisador , método de conversão de óxidos de nitrogênio em gás de escapamento, sistema de escapamento para um motor de combustão interna, e, veículo a motor
RU2593989C2 (ru) 2010-03-11 2016-08-10 Джонсон Мэттей Паблик Лимитед Компани НОСИТЕЛИ НА ОСНОВЕ НЕУПОРЯДОЧЕННЫХ МОЛЕКУЛЯРНЫХ СИТ ДЛЯ СЕЛЕКТИВНОГО КАТАЛИТИЧЕСКОГО ВОССТАНОВЛЕНИЯ NOx
US8987162B2 (en) * 2010-08-13 2015-03-24 Ut-Battelle, Llc Hydrothermally stable, low-temperature NOx reduction NH3-SCR catalyst
US8987161B2 (en) * 2010-08-13 2015-03-24 Ut-Battelle, Llc Zeolite-based SCR catalysts and their use in diesel engine emission treatment
EP2465606A1 (de) * 2010-12-16 2012-06-20 Umicore Ag & Co. Kg Zeolith-basierter Katalysator mit verbesserter katalytischer Aktivität zur Reduktion von Stickoxiden
US20120134916A1 (en) * 2011-02-28 2012-05-31 Fedeyko Joseph M High-temperature scr catalyst
US8101146B2 (en) 2011-04-08 2012-01-24 Johnson Matthey Public Limited Company Catalysts for the reduction of ammonia emission from rich-burn exhaust
JP5767024B2 (ja) * 2011-06-01 2015-08-19 トヨタ自動車株式会社 内燃機関の排気浄化装置
CN103764282A (zh) 2011-07-27 2014-04-30 庄信万丰股份有限公司 低磷菱沸石
CN105363497A (zh) 2011-08-03 2016-03-02 庄信万丰股份有限公司 挤出蜂窝状催化剂
BR112014012818A2 (pt) * 2011-12-02 2017-06-13 Pq Corp material cristalino microporoso estabilizado, o processo de fabricaçãodo mesmo, e o uso para redução catalítica seletiva de nox
US9981256B2 (en) 2011-12-02 2018-05-29 Pq Corporation Stabilized microporous crystalline material, the method of making the same, and the use for selective catalytic reduction of NOx
CN104520548B (zh) 2012-04-27 2018-09-07 优美科两合公司 用于净化来自内燃机的废气的方法和系统
WO2014038636A1 (ja) * 2012-09-07 2014-03-13 東ソー株式会社 シリコアルミノリン酸塩及びこれを用いた窒素酸化物還元触媒
JP5983290B2 (ja) * 2012-10-18 2016-08-31 東ソー株式会社 シリコアルミノリン酸塩及びこれを用いた窒素酸化物還元触媒
RU2015118441A (ru) 2012-10-19 2016-12-10 Басф Корпорейшн Мелкопористые молекулярные сита с 8-членными кольцами и с промотором для улучшения низкотемпературных характеристик
EP2908946B1 (en) 2012-10-19 2020-09-09 BASF Corporation 8-ring small pore molecular sieve as high temperature scr catalyst
JP6070229B2 (ja) * 2013-02-01 2017-02-01 東ソー株式会社 Sav型シリコアルミノリン酸塩及びその製造方法、並びにこれを用いた窒素酸化物還元方法
JP6070230B2 (ja) * 2013-02-01 2017-02-01 東ソー株式会社 Afx型シリコアルミノリン酸塩及びその製造方法、並びにこれを用いた窒素酸化物還元方法
CN103127951B (zh) * 2013-03-05 2015-02-04 四川中自尾气净化有限公司 一种用于柴油车尾气脱硝的低温scr 催化剂及其制备方法
US9802182B2 (en) 2013-03-13 2017-10-31 Basf Corporation Stabilized metal-exchanged SAPO material
CN104703694B (zh) * 2013-03-15 2018-12-21 庄信万丰股份有限公司 用于处理废气的催化剂
US9114363B2 (en) 2013-03-15 2015-08-25 General Electric Company Aftertreatment system for simultaneous emissions control in stationary rich burn engines
GB2517035C (en) * 2013-05-31 2020-02-26 Johnson Matthey Plc Catalyzed filter for treating exhaust gas
EP3004578B1 (en) * 2013-05-31 2019-07-24 Johnson Matthey Public Limited Company Catalyzed filter for treating exhaust gas
JP6559673B2 (ja) * 2013-08-30 2019-08-14 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company Noxを含む排気ガスを処理するためのゼオライトブレンド触媒
US9782761B2 (en) 2013-10-03 2017-10-10 Ford Global Technologies, Llc Selective catalytic reduction catalyst
EP3057696B1 (en) 2013-10-16 2020-04-15 X-Pert Paint Mixing Systems, Inc. Paint dispensing system
BR112016012397B1 (pt) * 2013-12-02 2020-11-24 Johnson Matthey Public Limited Company método para sintetizar um zeólito, composição de zeólito, artigo de catalisador para tratar gás de escape e método para tratar gás de escape
CN110215897A (zh) * 2013-12-06 2019-09-10 庄信万丰股份有限公司 包含贵金属和小孔分子筛的被动式NOx吸附剂
GB2522435B (en) * 2014-01-23 2018-10-03 Johnson Matthey Plc Catalytic extruded solid honeycomb body
US20150231617A1 (en) * 2014-02-19 2015-08-20 Ford Global Technologies, Llc Fe-SAPO-34 CATALYST FOR USE IN NOX REDUCTION AND METHOD OF MAKING
JP6041007B2 (ja) * 2014-02-21 2016-12-07 トヨタ自動車株式会社 選択還元型NOx触媒
RU2702988C2 (ru) * 2014-02-28 2019-10-15 Джонсон Мэтти Паблик Лимитед Компани Катализаторы scr с улучшенной низкотемпературной эффективностью и способы их создания и использования
DE102014205783A1 (de) * 2014-03-27 2015-10-01 Johnson Matthey Public Limited Company Katalysator sowie Verfahren zum Herstellen eines Katalysator
EP3129141B1 (en) 2014-04-07 2020-04-15 Haldor Topsøe A/S Method for producing metal exchanged metallo-aluminophosphates by solid-state ion exchange at low temperatures
KR102101335B1 (ko) 2014-04-07 2020-04-17 할도르 토프쉐 에이/에스 고체-상태 이온 교환에 의한 금속 교환된 미소다공성 물질의 제조 방법
US20150290632A1 (en) * 2014-04-09 2015-10-15 Ford Global Technologies, Llc IRON AND COPPER-CONTAINING CHABAZITE ZEOLITE CATALYST FOR USE IN NOx REDUCTION
CN103920392B (zh) * 2014-04-17 2016-08-17 山东大学 一种利用贫富氧交替反应进行烟气脱硝的工艺
CN105085315B (zh) * 2014-05-04 2017-02-22 中国科学院大连化学物理研究所 一种用于胺催化氧化制备腈类化合物的方法
GB2530129B (en) * 2014-05-16 2016-10-26 Johnson Matthey Plc Catalytic article for treating exhaust gas
US10850265B2 (en) * 2014-06-18 2020-12-01 Basf Corporation Molecular sieve catalyst compositions, catalytic composites, systems, and methods
WO2016060668A1 (en) 2014-10-16 2016-04-21 Cummins Emission Solutions, Inc. Aftertreatment systems for dual-fuel engines
KR102471893B1 (ko) * 2014-10-30 2022-11-30 바스프 코포레이션 혼합 금속의 큰 결정 분자체 촉매 조성물, 촉매 물품, 시스템 및 방법
GB2538877B (en) * 2014-12-08 2017-04-26 Johnson Matthey Plc Passive NOx adsorber
JP6292159B2 (ja) * 2015-04-13 2018-03-14 トヨタ自動車株式会社 排ガス浄化用触媒
ES2789424T3 (es) * 2015-06-12 2020-10-26 Basf Corp Sistema de tratamiento de gases de escape
RU2743125C2 (ru) * 2015-06-18 2021-02-15 Джонсон Мэтти Паблик Лимитед Компани Однослойный или двухслойный катализатор устранения проскока аммиака
ITUB20154976A1 (it) 2015-10-16 2017-04-16 Lavazza Luigi Spa Procedimento per il trattamento degli effluenti gassosi sviluppati in un impianto di tostatura del caffe.
CN106622356B (zh) * 2015-11-03 2019-03-05 中触媒新材料股份有限公司 一种铜改性分子筛选择性还原催化剂及其制备方法和应用
CN106824261B (zh) * 2015-12-03 2019-10-11 中国石油化工股份有限公司 Ni-SSZ-13催化剂、制备方法及其用途
CN107233932A (zh) * 2016-03-29 2017-10-10 巴斯夫公司 用于scr催化剂的脱硫方法
GB2551871A (en) * 2016-04-22 2018-01-03 Johnson Matthey Plc STA-18, A new member of the SFW family of molecular sieve zeotypes, methods of preparation and use
CA3026838A1 (en) * 2016-06-08 2017-12-14 Stefan Maurer Copper-promoted gmelinite and use thereof in the selective catalytic reduction of nox
WO2018025244A1 (en) * 2016-08-05 2018-02-08 Basf Corporation Selective catalytic reduction articles and systems
EP3528929B1 (en) * 2016-10-18 2023-08-16 BASF Corporation Low temperature nox reduction using h2-scr for diesel vehicles
EP3529471B1 (en) 2016-10-24 2022-03-09 BASF Corporation Exhaust gas treatment system and method
GB2556453A (en) 2016-10-26 2018-05-30 Johnson Matthey Plc Hydrocarbon injection through small pore CU-zeolite catalyst
EP3323785A1 (en) * 2016-11-18 2018-05-23 Umicore AG & Co. KG Crystalline zeolites with eri/cha intergrowth framework type
KR102604454B1 (ko) * 2017-03-20 2023-11-22 바스프 코포레이션 선택적 접촉 환원 물품 및 시스템
CN106925266A (zh) * 2017-03-22 2017-07-07 无锡威孚环保催化剂有限公司 单涂层三效催化剂
KR102470847B1 (ko) * 2017-04-04 2022-11-25 바스프 코포레이션 차량 내장식 암모니아 및 수소 생성
CN110869125B (zh) 2017-06-09 2023-08-18 巴斯夫公司 催化制品和废气处理系统
WO2018224651A2 (en) 2017-06-09 2018-12-13 Basf Se Catalytic article and exhaust gas treatment systems
CN109250728B (zh) * 2017-07-12 2022-02-18 中国科学院大连化学物理研究所 Cu-SAPO分子筛合成方法及合成的Cu-SAPO分子筛和应用
CN111201075B (zh) 2017-10-12 2023-02-03 巴斯夫公司 组合的NOx吸收剂和SCR催化剂
CN109701618B (zh) * 2017-10-26 2021-08-03 中国石油化工股份有限公司 Aei复合分子筛及其合成方法
CN109701621B (zh) * 2017-10-26 2021-10-01 中国石油化工股份有限公司 Ssz-13/ssz-39复合结构分子筛催化剂、制备方法及其应用
CN111315970B (zh) 2017-11-10 2023-02-03 巴斯夫公司 氨氧化减少的催化烟灰过滤器
CN108636431A (zh) * 2018-04-20 2018-10-12 中自环保科技股份有限公司 一种壁流式lnt催化剂、制备方法和应用
CN108906117A (zh) * 2018-07-06 2018-11-30 郑州三希新材料科技有限公司 一种新型可视变色的空气净化材料及其制备方法
CN109603811B (zh) * 2018-12-28 2021-07-06 大唐南京环保科技有限责任公司 一种平板式脱硝催化剂的制备方法
CN109590016B (zh) * 2018-12-31 2021-10-29 天津大学 基于改性水滑石衍生氧化物的柴油机用催化剂及制备方法
CN109675615A (zh) * 2019-01-09 2019-04-26 无锡威孚环保催化剂有限公司 改进低温NOx转化效率的稀燃NOx捕集催化剂及其制备方法
CN110252392A (zh) * 2019-07-18 2019-09-20 付华 一种铈改性的Cu-SAPO-34分子筛催化剂及其制备方法
CN110479091A (zh) * 2019-08-23 2019-11-22 山东瀚江环保科技有限公司 一种陶瓷过滤材料及其制备方法
CN110642365B (zh) * 2019-11-11 2021-10-12 浙江晶立捷环境科技有限公司 一种用亚临界氧化技术深度处理废水的方法
CN111762795B (zh) * 2020-07-13 2022-10-14 包头稀土研究院 含有稀土元素的分子筛及其生产方法
CN111762794B (zh) * 2020-07-13 2022-08-05 包头稀土研究院 分子筛及其制备方法
CN112547099B (zh) * 2020-12-23 2023-03-21 天津水泥工业设计研究院有限公司 一种低温铈基抗硫耐水脱硝催化剂及其制备方法
CN115055206A (zh) * 2021-08-27 2022-09-16 华中科技大学 一种酸性位保护改性的Cu-SAPO-34催化剂及其制备方法和应用
CN113976172A (zh) * 2021-10-12 2022-01-28 中山大学 一种高水热稳定性的助剂掺杂Cu-SSZ-39催化剂的制备与应用
CN114588933A (zh) * 2022-02-08 2022-06-07 凯龙蓝烽新材料科技有限公司 一种abc-6小孔分子筛scr催化剂的制备方法及其应用
CN115739172A (zh) * 2022-12-02 2023-03-07 润和科华催化剂(上海)有限公司 一种协同脱除n2o和no的催化剂及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040076565A1 (en) * 2002-10-22 2004-04-22 Gandhi Haren S. Catalyst system for the reduction of NOx and NH3 emissions
US20080241060A1 (en) * 2007-03-26 2008-10-02 Hong-Xin Li Novel microporous crystalline material comprising a molecular sieve or zeolite having an 8-ring pore opening structure and methods of making and using same
WO2008132452A2 (en) * 2007-04-26 2008-11-06 Johnson Matthey Public Limited Company Transition metal/zeolite scr catalysts
CN101352681A (zh) * 2008-08-29 2009-01-28 浙江大学 以氮掺杂活性炭为载体的低温scr催化剂及其制备工艺

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10020170C1 (de) 2000-04-25 2001-09-06 Emitec Emissionstechnologie Verfahren zum Entfernen von Rußpartikeln aus einem Abgas und zugehöriges Auffangelement
US4735930A (en) 1986-02-18 1988-04-05 Norton Company Catalyst for the reduction of oxides of nitrogen
KR960002348B1 (ko) * 1991-10-03 1996-02-16 도요다 지도오샤 가부시끼가이샤 내연기관의 배기정화장치
CA2235016C (en) * 1995-11-09 2002-02-12 Toyota Jidosha Kabushiki Kaisha Method and device for purifying exhaust gas of engine
US5958818A (en) 1997-04-14 1999-09-28 Bulldog Technologies U.S.A., Inc. Alkaline phosphate-activated clay/zeolite catalysts
GB9808876D0 (en) 1998-04-28 1998-06-24 Johnson Matthey Plc Combatting air pollution
US6182443B1 (en) 1999-02-09 2001-02-06 Ford Global Technologies, Inc. Method for converting exhaust gases from a diesel engine using nitrogen oxide absorbent
FI107828B (fi) 1999-05-18 2001-10-15 Kemira Metalkat Oy Dieselmoottoreiden pakokaasujen puhdistusjärjestelmä ja menetelmä dieselmoottoreiden pakokaasujen puhdistamiseksi
DE19922961C2 (de) 1999-05-19 2003-07-17 Daimler Chrysler Ag Abgasreinigungsanlage mit interner Ammoniakerzeugung zur Stickoxidreduktion
DE10001541B4 (de) * 2000-01-14 2005-04-28 Uhde Gmbh Verfahren zur Beseitigung von NOx und N¶2¶O aus dem Restgas der Salpetersäureproduktion
US6914026B2 (en) * 2001-09-07 2005-07-05 Engelhard Corporation Hydrothermally stable metal promoted zeolite beta for NOx reduction
US6912847B2 (en) 2001-12-21 2005-07-05 Engelhard Corporation Diesel engine system comprising a soot filter and low temperature NOx trap
US6964157B2 (en) * 2002-03-28 2005-11-15 Ricardo, Inc Exhaust emission control system and method for removal and storage of vehicle exhaust gas nitrogen oxides during cold operation
DE10300298A1 (de) * 2003-01-02 2004-07-15 Daimlerchrysler Ag Abgasnachbehandlungseinrichtung und -verfahren
KR101003213B1 (ko) * 2003-02-13 2010-12-21 알베마를 네덜란드 비.브이. 금속 히드록시 염을 포함하는 조성물, 이의 제조 방법 및촉매 또는 흡착제로서의 이의 용도
DE10308287B4 (de) 2003-02-26 2006-11-30 Umicore Ag & Co. Kg Verfahren zur Abgasreinigung
JP2005111436A (ja) * 2003-10-10 2005-04-28 Valtion Teknillinen Tutkimuskeskus 窒素酸化物を接触的に除去するための方法とそのための装置
US7490464B2 (en) * 2003-11-04 2009-02-17 Basf Catalysts Llc Emissions treatment system with NSR and SCR catalysts
US7213395B2 (en) * 2004-07-14 2007-05-08 Eaton Corporation Hybrid catalyst system for exhaust emissions reduction
US7062904B1 (en) * 2005-02-16 2006-06-20 Eaton Corporation Integrated NOx and PM reduction devices for the treatment of emissions from internal combustion engines
US20070012032A1 (en) * 2005-07-12 2007-01-18 Eaton Corporation Hybrid system comprising HC-SCR, NOx-trapping, and NH3-SCR for exhaust emission reduction
US7472545B2 (en) * 2006-05-25 2009-01-06 Delphi Technologies, Inc. Engine exhaust emission control system providing on-board ammonia generation
US8580228B2 (en) * 2006-12-27 2013-11-12 Chevron U.S.A. Inc. Treatment of cold start engine exhaust
US7601662B2 (en) 2007-02-27 2009-10-13 Basf Catalysts Llc Copper CHA zeolite catalysts
US7998423B2 (en) 2007-02-27 2011-08-16 Basf Corporation SCR on low thermal mass filter substrates
JP5730584B2 (ja) * 2009-01-22 2015-06-10 三菱樹脂株式会社 窒素酸化物浄化用触媒及びその製造方法
US9453443B2 (en) * 2009-03-20 2016-09-27 Basf Corporation Emissions treatment system with lean NOx trap
US9662611B2 (en) * 2009-04-03 2017-05-30 Basf Corporation Emissions treatment system with ammonia-generating and SCR catalysts
KR102180723B1 (ko) * 2009-04-17 2020-11-20 존슨 맛쎄이 퍼블릭 리미티드 컴파니 질소 산화물의 환원에 대한 희박/농후 노화에 대해 내구적인 소기공 분자 체 지지된 구리 촉매
KR20110024598A (ko) * 2009-09-02 2011-03-09 현대자동차주식회사 디젤 자동차의 질소산화물 저감 장치
US8987162B2 (en) * 2010-08-13 2015-03-24 Ut-Battelle, Llc Hydrothermally stable, low-temperature NOx reduction NH3-SCR catalyst
US8701390B2 (en) * 2010-11-23 2014-04-22 International Engine Intellectual Property Company, Llc Adaptive control strategy
GB2502207A (en) * 2010-12-02 2013-11-20 Johnson Matthey Plc Zeolite catalyst containing metal
EP2463028A1 (en) * 2010-12-11 2012-06-13 Umicore Ag & Co. Kg Process for the production of metal doped zeolites and zeotypes and application of same to the catalytic removal of nitrogen oxides
BR112014012818A2 (pt) * 2011-12-02 2017-06-13 Pq Corp material cristalino microporoso estabilizado, o processo de fabricaçãodo mesmo, e o uso para redução catalítica seletiva de nox
US9802182B2 (en) * 2013-03-13 2017-10-31 Basf Corporation Stabilized metal-exchanged SAPO material
DE102014117602A1 (de) * 2014-09-12 2016-03-17 Hyundai Motor Company Katalysatorsystem für Verbrennungsmotor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040076565A1 (en) * 2002-10-22 2004-04-22 Gandhi Haren S. Catalyst system for the reduction of NOx and NH3 emissions
US20080241060A1 (en) * 2007-03-26 2008-10-02 Hong-Xin Li Novel microporous crystalline material comprising a molecular sieve or zeolite having an 8-ring pore opening structure and methods of making and using same
WO2008132452A2 (en) * 2007-04-26 2008-11-06 Johnson Matthey Public Limited Company Transition metal/zeolite scr catalysts
CN101352681A (zh) * 2008-08-29 2009-01-28 浙江大学 以氮掺杂活性炭为载体的低温scr催化剂及其制备工艺

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110876957A (zh) * 2019-10-31 2020-03-13 山东国瓷功能材料股份有限公司 分子筛Cu-SSZ-13、其合成方法、催化剂和用途
WO2021082139A1 (zh) * 2019-10-31 2021-05-06 山东国瓷功能材料股份有限公司 分子筛Cu-SSZ-13、其合成方法、催化剂和用途

Also Published As

Publication number Publication date
GB2507902B (en) 2015-03-11
US8518355B2 (en) 2013-08-27
GB201402348D0 (en) 2014-03-26
KR20170141263A (ko) 2017-12-22
US20100267548A1 (en) 2010-10-21
US20130323146A1 (en) 2013-12-05
BRPI1015166A2 (pt) 2016-04-19
RU2546666C2 (ru) 2015-04-10
JP5767206B2 (ja) 2015-08-19
US8182777B2 (en) 2012-05-22
US20120093702A1 (en) 2012-04-19
EP2419209A1 (en) 2012-02-22
GB2507006A (en) 2014-04-16
KR102180723B1 (ko) 2020-11-20
US8753598B2 (en) 2014-06-17
KR20120006053A (ko) 2012-01-17
EP4112168A1 (en) 2023-01-04
GB201320065D0 (en) 2013-12-25
JP6363554B2 (ja) 2018-07-25
US20160038876A1 (en) 2016-02-11
RU2011146545A (ru) 2013-05-27
GB2482094B (en) 2014-05-14
WO2010121257A1 (en) 2010-10-21
KR101809040B1 (ko) 2017-12-14
US8101147B2 (en) 2012-01-24
JP2012523958A (ja) 2012-10-11
US20140248203A1 (en) 2014-09-04
US8347614B2 (en) 2013-01-08
US20130095012A1 (en) 2013-04-18
KR20200007089A (ko) 2020-01-21
US20110281720A1 (en) 2011-11-17
JP2015164729A (ja) 2015-09-17
US7998443B2 (en) 2011-08-16
DK2995367T3 (en) 2018-04-09
CN102802791A (zh) 2012-11-28
GB201119664D0 (en) 2011-12-28
GB2507902A (en) 2014-05-14
GB2507006B (en) 2014-11-19
US9199195B2 (en) 2015-12-01
JP2020116573A (ja) 2020-08-06
JP6931628B2 (ja) 2021-09-08
GB2482094A (en) 2012-01-18
US9802156B2 (en) 2017-10-31
JP2019000848A (ja) 2019-01-10
US20120213673A1 (en) 2012-08-23

Similar Documents

Publication Publication Date Title
JP6931628B2 (ja) リーン/リッチエージングに対する耐久性を有する窒素酸化物の還元のための小細孔分子篩担持銅触媒
CN105833717A (zh) 小孔分子筛负载铜催化剂
JP6855432B2 (ja) 遷移金属/ゼオライトscr触媒
JP5882238B2 (ja) NOxの選択触媒還元のための無秩序なモレキュラーシーブ担体
JP6196981B2 (ja) 排気ガス処理触媒
CN108348855A (zh) 具有烟灰催化剂和scr催化剂的催化过滤器
US20230130212A1 (en) Catalyst for treating exhaust gas
WO2023041902A1 (en) Catalyst for treating exhaust gas
KR20150052335A (ko) 전이 금속/제올라이트 scr 촉매

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20160713

RJ01 Rejection of invention patent application after publication