JP6041007B2 - 選択還元型NOx触媒 - Google Patents

選択還元型NOx触媒 Download PDF

Info

Publication number
JP6041007B2
JP6041007B2 JP2015033286A JP2015033286A JP6041007B2 JP 6041007 B2 JP6041007 B2 JP 6041007B2 JP 2015033286 A JP2015033286 A JP 2015033286A JP 2015033286 A JP2015033286 A JP 2015033286A JP 6041007 B2 JP6041007 B2 JP 6041007B2
Authority
JP
Japan
Prior art keywords
catalyst
nox
nox catalyst
primary particles
selective reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015033286A
Other languages
English (en)
Other versions
JP2015171713A (ja
Inventor
寛 大月
寛 大月
寛真 西岡
寛真 西岡
佳久 塚本
佳久 塚本
康正 野竹
康正 野竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015033286A priority Critical patent/JP6041007B2/ja
Publication of JP2015171713A publication Critical patent/JP2015171713A/ja
Application granted granted Critical
Publication of JP6041007B2 publication Critical patent/JP6041007B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • B01J29/072Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/397Egg shell like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/398Egg yolk like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/30Ion-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2062Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20738Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J2029/062Mixtures of different aluminosilicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/183After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2370/00Selection of materials for exhaust purification
    • F01N2370/02Selection of materials for exhaust purification used in catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2370/00Selection of materials for exhaust purification
    • F01N2370/02Selection of materials for exhaust purification used in catalytic reactors
    • F01N2370/04Zeolitic material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Toxicology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

本願発明は、選択還元型NOx触媒に関する。
内燃機関の排気通路には、排気中のNOxを還元浄化するための選択還元型NOx触媒(以下、単に「NOx触媒」とも言う)を備える場合がある。例えば、特許文献1に記載の技術のように、ゼオライトの細孔内部に、FeやCu等のNOxに対する選択還元性を示す少なくとも1種の活性成分がイオン交換により担持されて形成されたNOx触媒が知られている。
また、特許文献2、3に開示されたNOx触媒では、ゼオライト結晶がCuでイオン交換された第1ゼオライトと、ゼオライト結晶がFeでイオン交換された第2ゼオライトとを、適宜組み合わせて排気通路の配置することで、排気中のNOx浄化率の向上が図られている。また、特許文献4には、触媒基材上に配置された触媒層が、下層にゼオライト結晶がFeでイオン交換された層と上層にゼオライト結晶がCuでイオン交換された層を有するように形成されたNOx触媒が開示されている。
特開2008−221203号公報 特開2010−499号公報 特開2011−125849号公報 特開2013−13894号公報 特開2011−167690号公報
NOx触媒において用いられる、NOxに対する選択還元性を示す活性成分としては、FeやCuが挙げられる。ゼオライト結晶をFeでイオン交換することで形成されるNOx触媒(以下、「Fe交換型NOx触媒」という)は、相対的に高温時でのNOx浄化能が高くなる傾向がある。一方で、ゼオライト結晶をCuでイオン交換することで形成されるNOx触媒(以下、「Cu交換型NOx触媒」という)は、相対的に低温時でのNOx浄化能が高くなる傾向があるとともに、高温時にはNOx還元浄化のための還元剤であるアンモニアを酸化してNOxを生成する傾向が強くなる。そのため、内燃機関に配置されるNOx触媒においては、当該NOx触媒が置かれる温度環境等を踏まえて、NOx触媒の構成を適切に調整しなければ十分なNOx浄化能を得ることが困難になる。
しかし、従来技術では、NOx触媒の形成にあたり、Fe交換型NOx触媒とCu交換型NOx触媒とを適宜、組み合わせることで、NOx触媒全体による動作温度領域の拡大等が検討されているに過ぎない。このような組み合わせの構成では、Cu交換型NOx触媒が高温時で発揮する酸化能により、NOx還元浄化のための還元剤であるアンモニアが酸化されるNOx化が進行するため、NOx触媒全体として好適なNOx浄化能を実現することが困難となる。
また、別の従来技術によれば、触媒基材にFe交換型NOx触媒とCu交換型NOx触媒とを塗り分けて触媒層を二層化する等して、一つのNOx触媒を形成する場合がある。このようにすることで、NOxに対する接触の優先度を、Fe交換型NOx触媒とCu交
換型NOx触媒とで差を設け、上述したCu交換型NOx触媒の酸化能による悪影響の緩和が図られる。しかし、このような二層の触媒層を有するNOx触媒では、Cu交換型NOx触媒の酸化能を抑制しようとすれば、本来そのCu交換型NOx触媒がNOx浄化を好適に行い得る温度領域でも、そのNOx浄化能を低下させることになり得る。したがって、このようなNOx触媒では、高いNOx浄化能を発揮し得る動作温度領域を拡大することは難しい。
本願発明は、上記の問題点に鑑みてなされたものであり、広範囲の温度領域において好適なNOx浄化を実現でき、且つ、その製造負荷を軽減し得る選択還元型NOx触媒を提供することを目的とする。
上記課題を達成するために、本願発明は、NOxに対する選択還元性を示す活性成分でゼオライト結晶がイオン交換されて形成された触媒粒子による触媒層が、触媒基材上に配置された選択還元NOx触媒であって、前記選択還元性の活性成分は、高温でのNOx還元性が高い高温活性成分と、低温でのNOx還元性が高い低温活性成分とを含み、前記触媒粒子の1次粒子において、前記高温活性成分と前記低温活性成分は混合された状態で配置され、且つ、該1次粒子での前記低温活性成分の濃度に対する前記高温活性成分の濃度の比率である活性成分比率(=高温活性成分濃度/低温活性成分濃度)に関し、該1次粒子の表面側の活性成分比率は、該1次粒子の内部側の活性成分比率よりも大きくなるように形成される。
本願発明に係る選択還元型NOx触媒は、触媒粒子の1次粒子の細孔において、NOxに対する選択還元性を示す活性成分として、少なくとも高温活性成分と低温活性成分とがイオン交換されて含まれる。このような構成により、NOxや還元剤としてのアンモニアが1次粒子の細孔内部を拡散し、高温活性成分や低温活性成分との接触機会を得ることで、NOxの還元浄化が実現される。ここで、1次粒子の表面側の細孔には1次粒子の内部側の細孔と比べて、高温活性成分の存在率が高くなるように、すなわち上記活性成分比率が高くなるように、高温活性成分と低温活性成分との比率が1次粒子内の場所に応じて調整されている。そして、当該1次粒子から形成される2次粒子が触媒基材上に配置されて、選択還元NOx触媒の触媒層を形成することになる。なお、高温活性成分と低温活性成分としては、それぞれFe、Cuが例示できる。
このように構成される選択還元型NOx触媒では、その触媒層に含まれる触媒粒子の1次粒子において、表面側の細孔においては、低温活性成分と比べて高温活性成分が高濃度で存在し、一方で、その内部側の細孔においては高温活性成分と比べて低温活性成分が高濃度で存在することになる。したがって、低温時には、1次粒子の表面側の細孔に低温活性成分と比べて高濃度で配置される高温活性成分の選択還元性は抑制された状態であるが、1次粒子の内部側の細孔に高温活性成分と比べて高濃度で配置される低温活性成分の選択還元性によって、NOxの好適な還元浄化が見込まれる。また、高温時には、1次粒子の表面側の細孔に低温活性成分と比べて高濃度で配置される高温活性成分の選択還元性により、NOxの好適な還元浄化が見込まれる。このとき、高温時に酸化性能を発揮し得る低温活性成分(例えば、Cu等)は1次粒子の内部側の細孔に高温活性成分と比べて高濃度で配置されているため、NOx還元のために使用される還元剤であるアンモニアに対する接触機会は、高温活性成分よりも少なくなる。そのため、アンモニアは表面側の細孔でのNOx還元反応に多く消費され、その結果、高温活性成分と比べて低温活性成分が高濃度で配置される1次粒子の内部側の細孔には届きにくい状況が形成される。また、仮に低温活性成分との接触によりアンモニアが酸化されNOx化したとしても、そのNOxは表面側の細孔において再び高温活性成分と接触する機会があるため、還元反応に供されることになる。この結果、高温時でのアンモニアのNOx化を抑制でき、以て選択還元型NO
x触媒が好適なNOx浄化率を発揮できる温度動作領域を拡大することが可能となる。
また、触媒基材上に配置される触媒層は、上述した活性成分比率の分布(以下、「所定の分布」ともいう)を有する1次粒子を含む2次粒子によって形成される。したがって、本願発明に係る選択還元型NOx触媒では、触媒基材上に塗布される触媒粒子は1種類であり、従来技術のように、異なる種類の触媒粒子を塗り分け、触媒層を二層化する等の複雑な工程を経ずに製造することが可能となる。換言すれば、本願発明に係る選択還元型NOx触媒は、簡易な製造工程によって好適な製造品質を維持することが可能であり、以て、その製造負荷を軽減可能とするものである。
ここで、上記選択還元型NOx触媒において、前記触媒基材上に配置された前記触媒粒子による触媒層でのNOxの拡散抵抗が、該触媒層の厚さ方向において略均一となるように、前記触媒層が、前記触媒基材上に配置されてもよい。上述したように、本願発明に係る選択還元型NOx触媒では、1次粒子において高温活性成分と低温活性成分とが所定の分布で混合された状態となり、その触媒粒子の2次粒子が触媒層を形成する。そのため、選択還元型NOx触媒の製造にあたっては、触媒層の厚さ方向においてNOxの拡散抵抗を変化させるための複雑な製造工程を必要とせず、触媒粒子を触媒基材上に塗布することで、上述した温度動作領域の拡大を実現することが可能となる。特に、NOxの拡散抵抗が触媒層の厚さ方向において略均一とされることで、配置された触媒粒子全体をNOxの還元浄化のために効率的に利用できる。
また、上記所定の分布に関して、低温時と高温時における各活性成分が、効率的にNOx還元浄化を行い得るように、例えば、以下の2つの形態を例示することができる。先ず、第1の形態では、上述までの選択還元型NOx触媒において、前記1次粒子において、該1次粒子の表面側から内部側に進むに従い前記活性成分比率は小さくなる、所定の分布を採用してもよい。このように1次粒子の中心に進むほど低温活性成分の割合が大きくなることで、特に、高温時でのNOxの還元浄化を効率的に行いつつ、還元剤であるアンモニアのNOx化を抑制することができる。
次に、第2の形態では、上述までの選択還元型NOx触媒において、前記1次粒子において、該1次粒子の内部側に前記活性成分比率が相対的に低い低温活性領域が形成され、且つ、該1次粒子の表面側に前記活性成分比率が相対的に高い高温活性領域が形成される、所定の分布を採用してもよい。このように1次粒子の表面側と内部側に各領域を設けることでも、同じように、低温時での効率的なNOx還元浄化を可能としつつ、高温時での効率的なNOxの還元浄化及び還元剤であるアンモニアのNOx化を抑制することができる。
本願発明によれば、広範囲の温度領域において好適なNOx浄化を実現でき、且つ、その製造負荷を軽減し得る選択還元型NOx触媒を提供することができる。
本願発明に係る選択還元型NOx触媒の概略構成を示す図である。 本願発明に係る選択還元型NOx触媒の1次粒子の概略構成を示す図である。 選択還元型NOx触媒における活性成分としてのCu及びFeの、触媒温度とNOxに対する選択還元能との相関を示す図である。 本願発明に係る選択還元型NOx触媒の製造の流れを示す図である。 本願発明に係る選択還元型NOx触媒に対して、透過電子顕微鏡に付帯されたエネルギー分散型X線分光法を用いた分析装置による測定結果を示す図である。 従来技術に係るタンデム構成の選択還元型NOx触媒の概略構成を示す図である。 冷間始動時の触媒暖機に関する、本願発明に係る選択還元型NOx触媒と従来技術に係るタンデム構成の選択還元型NOx触媒との比較を示す図である。 従来技術に係る二層コートの選択還元型NOx触媒の概略構成を示す図である。 従来技術に係る二層コートの選択還元型NOx触媒における、触媒層でのガスの拡散程度と温度特性との相関を説明する図である。 NOxに対する選択還元能と触媒温度との相関に関する、本願発明に係る選択還元型NOx触媒と従来技術に係る二層コートの選択還元型NOx触媒との比較を示す図である。
以下、本願発明の具体的な実施形態について図面に基づいて説明する。本実施例に記載されている構成部品の寸法、材質、形状、その相対配置等は、特に記載がない限りは発明の技術的範囲をそれらのみに限定する趣旨のものではない。
本願発明に係る選択還元型NOx触媒(以下、単に「NOx触媒」ともいう)の実施例について、本願明細書に添付された図に基づいて説明する。図1は、本実施例に係るNOx触媒3が搭載される、内燃機関1の排気浄化装置を上段に示し、その下段には、NOx触媒3のモデル構造を表している。図1に示す内燃機関1は、車両駆動用のディーゼルエンジンである。ただし、内燃機関1としては、ディーゼルエンジンに限られるものではなく、ガソリンエンジン等であってもよい。なお、図1においては、内燃機関1の吸気系や、排気通路2を流れる排気の一部を吸気系に再循環させるEGR装置等の記載は省略されている。
内燃機関1の排気通路2には、排気中のNOxを、アンモニアを還元剤として選択還元するNOx触媒3が配置されている。更に、NOx触媒3において還元剤として作用するアンモニアを生成するために、尿素タンク4に貯留されている、アンモニアの前駆体である尿素水が、NOx触媒3の上流側に位置する供給弁5によって排気中に供給される。供給弁5から供給された尿素水が排気の熱で加水分解されて、アンモニアが生成され、当該アンモニアが順次、NOx触媒3に流れ込んでそこに吸着し、吸着したアンモニアと排気中のNOxとの還元反応(例えば、以下の式1で示す反応)が生じ、NOxの浄化が行われる。
NO+NO+2NH→2N+3HO ・・・・(式1)
なお、本実施例では、上記の通り供給弁5から尿素水が供給されるが、それに代えて、アンモニア又はアンモニア水を直接排気に供給してもよい。更に、NOx触媒3の下流側に、そこからスリップしてくるアンモニアを酸化するための酸化触媒が設けられてもよい。
NOx触媒3は、触媒基材3a上に触媒粒子を含むスラリーが塗布され、その後の乾燥、焼結工程を経て形成される触媒層3bを有する。なお、NOx触媒3の製造工程については、後述する。触媒層3bでは、破線矩形で抜き出されて示されているように、ゼオライト結晶の一部が、排気中のNOxに対して選択還元性を示す活性成分(後述するCu及びFe)にイオン交換されて形成された1次粒子31が、複数凝集して2次粒子32が形成されており、その2次粒子32同士がバインダ33によって結合されることで、触媒層3bとして触媒基材3a上に固定的に結合される。このように構成されるNOx触媒3に対して排気が流れ込むことで、排気中のNOxが、還元剤のアンモニアとともに触媒層3b内、すなわち、1次粒子31のゼオライト細孔内に拡散していき、1次粒子31内での
上記式1等に従うNOxの選択還元反応に供されることになる。なお、本願発明においては、1次粒子とは触媒粒子の外見上の幾何学的形態から判断して、単位粒子と考えられる粒子をいい、2次粒子はそれが複数凝集して形成されるものである。したがって、2次粒子の凝集形態は、触媒粒子が置かれる環境(温度や湿度等)によって変化し得るものであり、2次粒子に含まれる1次粒子の数は必ずしも一定ではない。
ここで、図2に基づいて、触媒層3bに含まれる触媒粒子の1次粒子31の構造について説明する。図2は、1次粒子31の概略的構造を示している。また、選択還元型NOx触媒に利用される活性成分は、当該NOx触媒が還元浄化の対象とする動作温度環境等に基づいて適宜選択されるものであるが、一例として、ゼオライト結晶に活性成分をイオン交換した場合の、活性成分としてのCuとFeの触媒温度と還元浄化能(NOx浄化率)の相関を、図3に示す。そこに示すように、Cuは、概ね250度〜400度の温度領域において良好な還元浄化能を発揮でき、一方で、触媒温度が400度以上である場合には、Feの方が良好な還元浄化能を発揮することができる。これは、Cuは、高温領域においては、酸素と還元剤との反応に選択性を示しやすくなるため、排気中のNOxではなく酸素によって還元剤のアンモニアを酸化してしまい、結果としてCuは、高温領域で還元浄化能が低下してしまうからである。
このような活性成分Cu、Feのそれぞれの特性を考慮して、本願発明に係るNOx触媒3を形成する1次粒子31では、ゼオライト結晶の一部が、低温時のNOxに対する選択還元性が高いCuと、高温時のNOxに対する選択還元性が高いFeとがイオン交換される。より具体的には、1次粒子31の表面側の細孔においては、FeがCuと比べて多量にイオン交換され、その内部側の細孔においてはCuがFeと比べて多量にイオン交換されることで、1次粒子31の表面側の細孔ではFeがCuと比べて高濃度で存在し、1次粒子の内部側の細孔ではCuがFeと比べて高濃度で存在する所定の分布が、1次粒子31内に形成されている。当該所定分布は、1次粒子31において、低温時の選択還元性が高いCuの濃度に対する高温時の選択還元性が高いFeの濃度の比率である活性成分比率が、表面側の方が内部側よりも大きくなる分布である。
この結果、排気中のNOxがアンモニアとともに1次粒子31外から粒子細孔内に拡散していく過程において、高温活性成分としてのFeがCuより高濃度で存在する高温活性領域31bを経てから、低温活性成分としてのCuがFeより高濃度で存在する低温活性領域31aに至ることになる。このように形成される1次粒子31を含む触媒層3bを有するNOx触媒3は、Cuによる低温領域での良好な選択還元能とFeによる高温領域での良好な選択還元能とを併せ持つことになる。すなわち、NOx触媒3が低温状態(例えば、250度〜400度)にある場合は、1次粒子31に含まれるFeの選択還元能は抑制された状態であるため、触媒粒子内に拡散していくNOxとアンモニアは、高温活性領域31bを通り抜けて、主に低温活性領域31aにおいて上記式1に示すNOx還元反応に供されることになる。したがって、NOx触媒3としては、触媒層3bに含まれる各1次粒子31内の低温活性領域31aによる選択還元能に支えられることで、好適なNOx浄化能を発揮することが可能となる。
一方で、NOx触媒3が高温状態(例えば、400度以上)にある場合は、1次粒子31に含まれるFeの選択還元能が十分に発揮され得る状態である。また、1次粒子31に含まれるCuについては、酸素とアンモニアとの選択性が顕著になり、NOxに対する選択還元性が低下していく。しかし、1次粒子31においては、その表面側に高温活性領域31bが配置され、その内部側に低温活性領域31aが配置されている。そのため、NOx触媒3が高温状態にあれば、触媒粒子内に拡散していくNOxとアンモニアは、先ず高温活性領域31bにおいて、上記式1に示すNOx還元反応に供されることになり、そこを経てから低温活性領域31aに至ることになる。NOx触媒3の高温時には、還元剤の
アンモニアは高温活性領域31bにおいてNOx還元浄化のために消費されるため、低温活性領域31aに到達するアンモニア量を減らし、低温活性領域31aでのアンモニアの酸化によるNOx化を抑制することができる。この結果、NOx触媒3は、低温領域から高温領域までの広い動作領域を確保することが可能となる。
次に、NOx触媒3の製造工程について、図4に基づいて説明する。本願発明に係るNOx触媒3は、ゼオライト結晶の一部を、NOxに対して選択還元性を発揮する活性成分(本実施例は、Cu及びFe)でイオン交換することで生成される触媒スラリーを、触媒基材に塗布し、基材壁面に触媒層3bを形成することで製造される。その製造工程の詳細が、図4のフローに示されている。
ここで、1次粒子31におけるゼオライト結晶内での活性成分(Cu、Fe)の分布は、製造工程におけるゼオライト結晶内での活性成分の拡散速度と、ゼオライト結晶の酸点におけるイオン交換の反応速度との関係を制御することで調整可能である。イオン交換は化学反応であるから、イオン交換速度は環境温度の影響を大きく受けやすく、高温環境であるほどイオン交換速度が大きくなる。一方で、活性成分の拡散速度は、イオン交換速度よりかは環境温度の影響は受けにくい。したがって、主に製造工程の温度条件や反応時間等を調整することで、1次粒子31内における活性成分(Cu、Fe)の分布を制御することができる。
具体的には、先ず、S101で、所定の高温条件で、ゼオライト結晶に対して活性成分Feのイオン交換処理を行う。所定の高温条件を設定することで、ゼオライト結晶を含む1次粒子で活性成分Feが内部に拡散するに際して、速やかにFeのイオン交換反応が発生し、Feによるイオン交換サイトが形成されることになる。なお、イオン交換反応を行う時間を長くすることで、Feが1次粒子の内部へと拡散することになるので、適宜この反応時間を調整することで、1次粒子の内部におけるFeによるイオン交換サイトの形成の程度を制御することができる。
次に、S102では、S101でFeによるイオン交換処理を行った1次粒子に対して、活性成分Cuによるイオン交換処理を行う。このS102におけるイオン交換処理で設定される温度条件は、S101における所定の高温条件よりも低温側の所定の低温条件とされる。このように所定の低温条件を設定することで、S101でゼオライト結晶にイオン交換結合されたFeが溶出してしまうことを防止することができる。そして、1次粒子の表面側の細孔には既にFeがイオン交換されているので、ゼオライト結晶内を拡散していく活性成分Cuは、主に1次粒子の中心側の細孔においてゼオライト結晶とイオン交換反応することになる。この結果、図2に示すようなFeとCuの所定の分布を有する1次粒子を含む触媒スラリーが生成されることになる。
そして、S103では、S102で生成された触媒スラリーが触媒基材3aに塗布され、乾燥、焼結されることで、NOx触媒3が製造される。なお、NOx触媒3における触媒層3bの厚さは、S103における触媒スラリーの塗布条件を適宜調整すればよい。また、上述したように、本願発明に係るNOx触媒3は、その1次粒子31内に上記所定の分布が形成されており、その1次粒子31を含む1種類の触媒スラリーだけを触媒基材3aに塗布し、その後、乾燥、焼結することで、図1に示す触媒構成が形成されることになる。すなわち、複数種類の触媒スラリーを塗り分ける等の複雑な工程を経ずに、NOx触媒3は製造されることになり、その製造負荷を軽減することができる。
ここで、図4に示す製造工程に沿って生成された1次粒子31の、透過電子顕微鏡に付帯されたエネルギー分散型X線分光法(EDX)を用いた分析装置による測定結果を、図5に示す。透過電子顕微鏡に付帯されたEDXを用いた分析装置は、測定試料を透過する
電子線によって励起された原子から放出される特性X線の波長と強度から、測定試料に含まれる成分種とその量を測定することが可能である。そこで、当該EDXを用いた分析装置によれば、1次粒子31内の成分分布を把握することが可能となる。ここで、図5では、その上段(a)に、測定対象となる1次粒子31の略中心を通る断面における活性成分Cu及びFeの含有量のレベルを示し、その下段(b)に、同断面での1次粒子31における活性成分比率のレベルを示す。具体的には、図5(a)、(b)の各グラフの横軸は、1次粒子31内の略中心を通る軸上の粒子内の位置を表し、縦軸は、図5(a)では、計測された特性X線に基づいて算出されたCu、Feのそれぞれの含有量を表し、図5(b)では、当該Cu、Feの含有量から算出された、本発明に係る活性成分比率を表す。そして、図5(a)では、Feに関する推移を実線で示し、Cuに関する推移を点線で示している。上記の通り、1次粒子31内には活性成分Fe、Cuによる所定の分布が形成されている。そのため、図5(a)、(b)に示す結果において、CuがFeと比べて高濃度で存在する低温活性領域31aに対応する測定結果領域31a’と、FeがCuと比べて高濃度で存在する高温活性領域31bに対応する測定結果領域31b’とを見出すことができる。
また、図4に示すNOx触媒3の製造のためのイオン交換条件を調整することで、1次粒子31内の活性成分Fe、Cuの分布状況を変えることもできる。例えば、1次粒子31の内部側までFeが拡散するように、イオン交換のための温度条件と反応時間を調整することで、活性成分Fe、Cuの分布においてある程度のグラデーションが生まれるように、すなわち、1次粒子31の表面側から内部側に進むに従い、Fe濃度が減少するとともにCu濃度が増大するように所定の分布を調整してもよい。この場合、活性成分Fe、Cuの分布は、図5に示すような明確に異なる領域としてではなく、それぞれの含有量や活性成分比率が緩やかに推移するような分布が形成されると考えられる。このような分布においても、1次粒子31の表面側にはCuと比べて高濃度のFeが存在することになるため、上述したように広い動作温度領域を実現することができる。なお、本願発明に係るNOx触媒3は、上記EDXを用いた分析装置以外の装置を利用することでも、1次粒子31内の活性成分Fe、Cuの分布状況を把握することは可能であり、NOx触媒3の特定に当たりその分析手法や分析装置等は限定されるべきではない。
ここで、本願発明に係るNOx触媒3と、従来技術に係るNOx触媒であるタンデム型NOx触媒(図6を参照)、及び二層コート型NOx触媒(図8を参照)との比較結果について、以下に示す。
(1)タンデム型NOx触媒との比較
タンデム型NOx触媒は、排気の流れに沿って2つのNOx触媒を配置して形成される。従来技術では、図6に示すように一般的なタンデム型NOx触媒は、高温領域でのNOx浄化能を考慮して、活性成分Feとゼオライトとをイオン交換させたFe交換型NOx触媒41が上流側に配置され、その下流側に活性成分Cuとゼオライトとをイオン交換させたCu交換型NOx触媒42が配置されて形成される。Fe交換型NOx触媒41では、触媒基材41b上に、NOxに対する選択還元性を示す活性成分としてFeのみを有する触媒粒子からなる触媒層41aが形成されており、Cu交換型NOx触媒42では、触媒基材42b上に、NOxに対する選択還元性を示す活性成分としてCuのみを有する触媒粒子からなる触媒層42aが形成されている。
このように構成されるタンデム型NOx触媒は、低温時には、上流側に配置されたFe交換型NOx触媒41のNOx還元浄化能は良好な状態とは言えないものの、低温領域でNOx還元浄化能を発揮可能なCu交換型NOx触媒42によって、NOx触媒全体のNOx還元浄化能が維持されるように設計されている。また、高温時では、上流側に配置されたFe交換型NOx触媒41のNOx還元浄化能により、排気中のNOxの還元浄化が
行われることになる。なお、このとき、下流側に配置されたCu交換型NOx触媒42では、排気中にアンモニアが存在すれば排気中の酸素との酸化反応によりNOx化を促進させてしまうが、上流側のFe交換型NOx触媒41によって還元剤のアンモニアが消費されるため、当該NOx化は抑制され得る。
ここで、冷間始動時における、本願発明に係るNOx触媒3と、上記タンデム型NOx触媒の暖機特性の相違について、図7に基づいて説明する。図7の線L3は、冷間始動時のNOx触媒3の触媒温度の推移を表し、線L4は、冷間始動時のタンデム型NOx触媒の下流側に配置されたCu交換型NOx触媒42、すなわち、低温時にNOx還元浄化能を発揮するように設計されたNOx触媒の触媒温度の推移を表している。冷間始動時においては、NOx触媒の暖機完了を決定する要素は、低温領域でのNOxに対する選択還元性が高いCuの活性温度への到達時期である。本願発明に係るNOx触媒3では、1次粒子31内でCuとFeがそれぞれイオン交換されて存在するため、NOx触媒3の触媒温度は、Cuの到達温度と同一視できる。そこで、図7に示すように、Cuの到達温度がその活性温度に到達した時期をT1とする。
一方で、タンデム型NOx触媒におけるCu交換型NOx触媒42は、その上流側にFe交換型NOx触媒41が配置されている。そのため、内燃機関1から送られてくる排気は、先ずFe交換型NOx触媒41によってその一部の熱量が奪われた後にCu交換型NOx触媒42に届くことになる。その結果、内燃機関1からの排気の熱量が同じ場合には、図7の線L4に示すように、Cu交換型NOx触媒42の温度上昇率は、線L3で示されるNOx触媒3の温度上昇率よりも小さくなる。そのため、Cu交換型NOx触媒42の触媒温度がCu活性温度に到達するには、時間T2(T2>T1)の経過を要することになる。
以上より、本願発明に係るNOx触媒3は、従来技術に係るタンデム型NOx触媒と比べて、速やかな冷間始動性能を有することになる。また、タンデム型NOx触媒では、基本的にはFe交換型NOx触媒41とCu交換型NOx触媒42のそれぞれに、対応する動作温度領域でのNOx還元浄化能を担わせる必要があるため、各NOx触媒の容量は、概ね本願発明に係るNOx触媒3と同程度が必要となる。そのため、タンデム型NOx触媒全体としては、その容量は大きくならざるを得ない。
(2)二層コート型NOx触媒との比較
二層コート型NOx触媒54は、図8に示すように、触媒基材53上に、活性成分Feとゼオライトとをイオン交換させた触媒粒子を含む触媒層51と、活性成分Cuとゼオライトとをイオン交換させた触媒粒子を含む触媒層52とが、排気の流れに沿って層状になるように形成されている。より具体的には、一般的な二層コート型NOx触媒は、高温領域でのNOx浄化能を考慮して、活性成分Feを含む触媒層51が、活性成分Cuを含む触媒層52の上に位置するように、二層コート型NOx触媒54は形成される。
このように構成される二層コート型NOx触媒は、排気通路2を流れる排気が触媒層の間を拡散することで、排気中のNOxに対する還元浄化能を発揮することになる。例えば、低温時には、上側に配置された活性成分Feを含む触媒層51におけるNOx還元浄化能は良好な状態とは言えないものの、低温領域でNOx還元浄化能を発揮可能な、下側に配置された活性成分Cuを含む触媒層52によって、NOx触媒54全体のNOx還元浄化能が維持されるように設計されている。また、高温時では、上側に配置された活性成分Feを含む触媒層51のNOx還元浄化能により、排気中のNOxの還元浄化が行われることになる。
ここで、二層コート型NOx触媒54は、各触媒層51、52における排気の拡散のし
やすさによって、温度に対するNOx触媒54としてのNOx還元浄化能が大きく変動する性質を有する。例えば、図9や図10の線L5に示すように、触媒層51、52における排気の拡散のしやすさを大きく設定すると、NOx触媒54の低温におけるNOx浄化能を重視した触媒構成となる。これは、排気が触媒層51はもちろん触媒層52にまで到達しやすくなるようにNOx触媒54が構成されることにより、高温時においても触媒層52に含まれる活性成分Cuの影響、すなわちアンモニアのNOx化の影響を受け、高温領域でのNOx浄化能が低下してしまう一方で、低温時には、その活性成分Cuを含む触媒層52によるNOx還元浄化能を十分に利用することができるからである。また、図9や図10の線L6に示すように、触媒層51、52における排気の拡散のしやすさを小さく設定すると、排気が、特に下側に配置された活性成分Cuを含む触媒層52に到達しにくくなり、NOx触媒54の高温におけるNOx浄化能を重視した触媒構成となる。これは、排気が触媒層52に到達しにくいため、低温時において活性成分Cuを含む触媒層52によるNOx還元浄化能を十分に利用できないものの、高温時には、活性成分Feを含む触媒層51によるNOx還元浄化能を十分に利用しつつ、活性成分Cuを含む触媒層52によるアンモニアのNOx化を抑制することが可能となるからである。
したがって、図10に示すように、二層コート型NOx触媒54は、NOxに対する還元浄化能(NOx浄化率)を広い動作温度領域において良好に維持することは困難となり、要求される還元浄化能に応じて、触媒層51、52における排気の拡散のしやすさを適宜設計する必要がある。これに対して、本願発明に係るNOx触媒3では、1次粒子31内でCuとFeがそれぞれイオン交換されて存在するため、図10の線L7に示すように広い動作温度領域にわたって、NOxに対する還元浄化能を好適に発揮することが可能となり、二層コート型NOx触媒54と比べて優れた温度特性を有することになる。
また、二層コート型NOx触媒54の場合、触媒基材53に対して活性成分Feを含む触媒スラリーと活性成分Cuを含む触媒スラリーをそれぞれ塗布しなければならない。そして、各触媒層51、52の厚さや、各触媒層51、52での粒子間隔等の条件は、排気の拡散のしやすさに関連する要素であるため、所望のNOx還元浄化能を得るためには、各触媒層の形成のための製造条件を厳密に管理する必要があり、その製造負荷は少なくない。一方で、本願発明に係るNOx触媒3は、1次粒子31内でCuとFeがそれぞれイオン交換されて存在する1種類の触媒スラリーを触媒基材3aに塗布するため、管理の対象となる触媒層は一つであり、NOx触媒3の製造負荷は、二層コート型NOx触媒54の場合よりも大きく軽減されたものとなる。また、その触媒層が一つであるため該触媒層における排気の拡散のしやすさを、容易に均一に形成でき、以て、触媒層に含まれる触媒粒子を効率的にNOxの還元浄化に利用することが可能となる。
1 内燃機関
2 排気通路
3 NOx触媒
3a 触媒基材
3b 触媒層
31 1次粒子
31a 低温活性領域
31b 高温活性領域
32 2次粒子

Claims (3)

  1. NOxに対する選択還元性を示す活性成分でゼオライト結晶がイオン交換されて形成された1次粒子を含む2次粒子によって形成された触媒層が、触媒基材上に配置された選択還元NOx触媒であって、
    前記選択還元性の活性成分は、高温でのNOx還元性が高い高温活性成分であるFeと、低温でのNOx還元性が高い低温活性成分であるCuとを含み、
    前記1次粒子において、前記高温活性成分と前記低温活性成分は混合された状態で配置され、且つ、該1次粒子での前記低温活性成分の濃度に対する前記高温活性成分の濃度の比率である活性成分比率に関し、該1次粒子の表面側の活性成分比率は、該1次粒子の内部側の活性成分比率よりも大きくなるように形成される、
    選択還元型NOx触媒。
  2. 前記1次粒子において、該1次粒子の表面側から内部側に進むに従い前記活性成分比率は小さくなる、
    請求項1に記載の選択還元型NOx触媒。
  3. 前記1次粒子において、該1次粒子の内部側に前記活性成分比率が相対的に低い低温活性領域が形成され、且つ、該1次粒子の表面側に前記活性成分比率が相対的に高い高温活性領域が形成される、
    請求項1に記載の選択還元型NOx触媒。
JP2015033286A 2014-02-21 2015-02-23 選択還元型NOx触媒 Expired - Fee Related JP6041007B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015033286A JP6041007B2 (ja) 2014-02-21 2015-02-23 選択還元型NOx触媒

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014031549 2014-02-21
JP2014031549 2014-02-21
JP2015033286A JP6041007B2 (ja) 2014-02-21 2015-02-23 選択還元型NOx触媒

Publications (2)

Publication Number Publication Date
JP2015171713A JP2015171713A (ja) 2015-10-01
JP6041007B2 true JP6041007B2 (ja) 2016-12-07

Family

ID=52630453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015033286A Expired - Fee Related JP6041007B2 (ja) 2014-02-21 2015-02-23 選択還元型NOx触媒

Country Status (4)

Country Link
US (1) US10180095B2 (ja)
EP (1) EP3107640A1 (ja)
JP (1) JP6041007B2 (ja)
WO (1) WO2015125496A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019152137A (ja) * 2018-03-02 2019-09-12 トヨタ自動車株式会社 内燃機関の排気浄化装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3841990A1 (de) 1988-12-14 1990-06-21 Degussa Verfahren zur reduktion von stickoxiden aus abgasen
JP2936416B2 (ja) 1989-10-23 1999-08-23 トヨタ自動車株式会社 排気ガスの浄化方法
CA2024154C (en) 1989-08-31 1995-02-14 Senshi Kasahara Catalyst for reducing nitrogen oxides from exhaust gas
JP4617253B2 (ja) 2005-12-26 2011-01-19 エヌ・イーケムキャット株式会社 脱硝触媒、ハニカム構造型脱硝触媒、及びそれを用いた脱硝方法
JP2008221203A (ja) 2007-02-13 2008-09-25 Babcock Hitachi Kk 窒素酸化物除去用触媒及び窒素酸化物除去方法
US10384162B2 (en) 2007-03-26 2019-08-20 Pq Corporation High silica chabazite for selective catalytic reduction, methods of making and using same
EP3401010A1 (en) 2007-03-26 2018-11-14 PQ Corporation Novel microporous crystalline material comprising a molecular sieve or zeolite having an 8-ring pore opening structure and methods of making and using same
JP2010000499A (ja) 2008-05-20 2010-01-07 Ibiden Co Ltd ハニカム構造体
WO2010121257A1 (en) * 2009-04-17 2010-10-21 Johnson Matthey Public Limited Company Small pore molecular sieve supported copper catalysts durable against lean/rich aging for the reduction of nitrogen oxides
EP2308596B1 (en) * 2009-10-07 2016-09-21 Ford Global Technologies, LLC Cu/zeolite SCR catalyst for NOx reduction in exhaust gases and manufacture method thereof
JP5537350B2 (ja) * 2009-11-05 2014-07-02 日本碍子株式会社 ゼオライト構造体及びその製造方法
JP2011125849A (ja) 2009-11-19 2011-06-30 Ibiden Co Ltd ハニカム構造体及び排ガス浄化装置
GB2475740B (en) 2009-11-30 2017-06-07 Johnson Matthey Plc Catalysts for treating transient NOx emissions
US8987161B2 (en) * 2010-08-13 2015-03-24 Ut-Battelle, Llc Zeolite-based SCR catalysts and their use in diesel engine emission treatment
US8987162B2 (en) * 2010-08-13 2015-03-24 Ut-Battelle, Llc Hydrothermally stable, low-temperature NOx reduction NH3-SCR catalyst
CN103127951B (zh) * 2013-03-05 2015-02-04 四川中自尾气净化有限公司 一种用于柴油车尾气脱硝的低温scr 催化剂及其制备方法

Also Published As

Publication number Publication date
JP2015171713A (ja) 2015-10-01
US20160363024A1 (en) 2016-12-15
EP3107640A1 (en) 2016-12-28
US10180095B2 (en) 2019-01-15
WO2015125496A1 (en) 2015-08-27

Similar Documents

Publication Publication Date Title
JP6125552B2 (ja) 選択的アンモニア酸化用の二機能性触媒
CN107206372B (zh) 废气净化用催化剂
JP6822890B2 (ja) 排ガス浄化触媒、排ガス浄化方法、及び排ガス浄化システム
US20030170160A1 (en) Process for purification of exhaust gases and catalyst used for purification of exhaust gases in this process
JP6160005B2 (ja) Co選択メタン化触媒
US7150861B2 (en) Catalyst for purification of exhaust gases and process for purification of exhaust gases
CN105960272A (zh) 高表面积催化剂
US11300029B2 (en) SCR catalyst device containing vanadium oxide and molecular sieve containing iron
US9764287B2 (en) Binary catalyst based selective catalytic reduction filter
KR20080031900A (ko) 내연기관의 배기가스 유동에 암모니아를 제공하는 방법 및장치
Echave et al. Effect of the alloy on micro-structured reactors for methanol steam reforming
JP2013027858A (ja) 排ガス浄化触媒
Shirman et al. Raspberry colloid-templated approach for the synthesis of palladium-based oxidation catalysts with enhanced hydrothermal stability and low-temperature activity
JP6041007B2 (ja) 選択還元型NOx触媒
KR101546332B1 (ko) 연소 시스템 배기물로부터 no₂를 감소시키기 위한 프로세스
US20090264283A1 (en) Stabilized Iridium and Ruthenium Catalysts
Vedyagin et al. Purification of gasoline exhaust gases using bimetallic Pd–Rh/δ-Al 2 O 3 catalysts
Barbato et al. Structuring CuO/CeO 2 Catalyst as Option to Improve Performance Towards CO-PROX
Zeng et al. CuO–CeO 2/Al 2 O 3/FeCrAl monolithic catalysts prepared by sol-pyrolysis method for preferential oxidation of carbon monoxide
CN103521219B (zh) 催化剂、该催化剂的制备方法、该催化剂的应用
Mukherjee et al. Significance of oxygen storage capacity of catalytic materials in emission control application
CN101462059B (zh) 一种含金属支撑体的ft合成催化剂、制备及其应用
WO2020137201A1 (ja) 排気ガス酸化用触媒、その製造方法及びそれを用いた排気ガス酸化方法
JP5747794B2 (ja) 炭化水素選択酸化触媒及びその製造方法
Wang Design and Fabrication of High Performance ZnO/perovskite Nano-array based Monolithic Catalysts for Automotive Emission Control

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160506

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161024

R151 Written notification of patent or utility model registration

Ref document number: 6041007

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees