CN104722342B - 滑动式芯片装置和方法 - Google Patents

滑动式芯片装置和方法 Download PDF

Info

Publication number
CN104722342B
CN104722342B CN201510003895.9A CN201510003895A CN104722342B CN 104722342 B CN104722342 B CN 104722342B CN 201510003895 A CN201510003895 A CN 201510003895A CN 104722342 B CN104722342 B CN 104722342B
Authority
CN
China
Prior art keywords
area
region
primary importance
sample
conduit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510003895.9A
Other languages
English (en)
Other versions
CN104722342A (zh
Inventor
劳斯特姆·F·伊斯马吉洛夫
杜文斌
李亮
沈峰
K·P·F·尼科尔斯
陈德来
J·E·克罗茨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Chicago
Original Assignee
University of Chicago
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Chicago filed Critical University of Chicago
Publication of CN104722342A publication Critical patent/CN104722342A/zh
Application granted granted Critical
Publication of CN104722342B publication Critical patent/CN104722342B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502738Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by integrated valves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5381Crossover interconnections, e.g. bridge stepovers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • B01F33/304Micromixers the mixing being performed in a mixing chamber where the products are brought into contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5025Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures for parallel transport of multiple samples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/025Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/70Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving virus or bacteriophage
    • C12Q1/701Specific hybridization probes
    • C12Q1/702Specific hybridization probes for retroviruses
    • C12Q1/703Viruses associated with AIDS
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54386Analytical elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/025Align devices or objects to ensure defined positions relative to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/026Fluid interfacing between devices or objects, e.g. connectors, inlet details
    • B01L2200/027Fluid interfacing between devices or objects, e.g. connectors, inlet details for microfluidic devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0609Holders integrated in container to position an object
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0864Configuration of multiple channels and/or chambers in a single devices comprising only one inlet and multiple receiving wells, e.g. for separation, splitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0867Multiple inlets and one sample wells, e.g. mixing, dilution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0887Laminated structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0893Geometry, shape and general structure having a very large number of wells, microfabricated wells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/12Specific details about materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings
    • B01L2300/168Specific optical properties, e.g. reflective coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0633Valves, specific forms thereof with moving parts
    • B01L2400/065Valves, specific forms thereof with moving parts sliding valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Hematology (AREA)
  • Organic Chemistry (AREA)
  • Clinical Laboratory Science (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Dispersion Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Virology (AREA)
  • Microbiology (AREA)
  • General Physics & Mathematics (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Urology & Nephrology (AREA)
  • Pathology (AREA)
  • AIDS & HIV (AREA)
  • Cell Biology (AREA)
  • Toxicology (AREA)
  • Plasma & Fusion (AREA)
  • Food Science & Technology (AREA)
  • Fluid Mechanics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

本发明提供滑动式芯片装置和方法。本发明公开了一种装置,该装置包括具有多个第一区域的第一表面和具有多个第二区域的第二表面。第一表面和第二表面彼此相对,并能相对于彼此至少从第一位置移动到第二位置,在第一位置具有第一物质的多个第一区域都不暴露于具有第二物质的多个第二区域。当在第二位置时,多个第一和第二区域暴露于彼此,因此第一和第二物质暴露于彼此。装置还可以包括与多个第一组第二区域连通的一系列导管,以允许当处于第一位置时,将物质设置在多个第二区域中或其上。

Description

滑动式芯片装置和方法
本发明申请是申请日为2010年03月23日,申请号为201080022620.5(PCT/US2010/028316)、发明名称为“滑动式芯片装置和方法”的专利申请的分案申请。
技术领域
本发明涉及滑动式芯片装置和方法。
背景技术
用于进行反应的已知装置和方法受限于两种或多种物质可以彼此暴露的方式。这样的装置利用一系列构造成用于对物质进行特定处理步骤的室,但是要求每个室单独地填充和/或暴露于另一个室,以在该室中进行反应。这些装置没有设计成使交叉污染或来自外部源污染的可能性最小化。此外,为了用多种物质进行多个反应,这些装置必需重新装上另外的物质,如此花费附加的时间并且增加污染的机会。因此,对特定物质进行反应的每种组合是一个费时的过程。
发明内容
本发明包括用于进行反应的装置和方法。在一个实施例中,该装置包括具有第一表面的底板,沿着该第一表面的一部分设置的至少一个第一区域,其中该至少一个第一区域构造成保持至少一种第一物质。具有与第一表面相对的第二表面的平板,并且至少一个第二区域沿着该第二表面的一部分设置,其中该至少一个第二区域构造成保持至少一种第二物质,其中底板的第一表面与平板的第二表面的至少一个构造成相对于另一个在第一位置和第二位置之间运动,在第一位置该至少一个第一区域不暴露于该至少一个第二区域,在第二位置该至少一个第一区域之一仅暴露于至少一个第二区域之一并形成封闭系统。
在另一个实施例中,用于进行反应的装置包括具有第一表面和沿着该第一表面的一部分形成的多个第一区域的底板,其中该多个第一区域的每个构造成保持至少一种第一物质。具有第二表面的平板与第一表面相对并且多个第二区域沿着该第二表面的一部分形成。该多个第二区域的每个构造成保持至少一种第二物质,其中该底板的第一表面和该平板的第二表面的至少一个构造成相对于另一个沿着基本垂直于第一表面的法线的方向在第一位置和第二位置之间滑动,在第一位置该多个第一区域中的至少一些不暴露于该多个第二区域的任一个,在第二位置该多个第一区域的至少一个和该多个第二区域的至少一个才暴露于彼此。
在本发明的另一个实施例中,该装置包括具有第一表面和沿着该第一表面的一部分设置的第一区域的底板,其中该第一区域构造成保持至少一种第一物质。第一导管沿着第一表面的一部分形成并且不暴露于第一区域。具有第二表面的平板与第一表面相对,并且多个第二区域沿着第二表面的一部分设置,其中该第二区域构造成保持至少一种第二物质,其中该第一表面与第二表面构造成相对于彼此在第一位置与第二位置之间滑动,其中在第一位置第一导管暴露于第二区域而第一区域和第二区域不暴露于彼此,并且其中在第二位置第一区域和第二区域才暴露于彼此。
在本发明的另一个实施例中,该装置包括具有第一表面和沿着该第一表面的一部分设置的第一组多个第一区域的底板,其中该第一组多个第一区域具有第一图案并且构造成保持至少一种第一物质。第一组导管沿着第一表面的一部分形成并且不暴露于第一组多个第一区域。具有第二表面的平板与第一表面相对,并且多个第二区域沿着该第二表面的一部分设置,该多个第二区域具有与第一组多个第一区域的图案基本上类似的图案,其中多个第二区域构造成保持至少一种第二物质,其中第一表面和第二表面构造成相对于彼此在第一位置和第二位置之间滑动,在第一位置该第一组导管暴露于多个第二区域,在第二位置,第一组多个第一区域的至少一个和多个第二区域中的至少一个才彼此暴露。
在本发明的另一个实施例中,该装置包括具有第一表面和沿着该第一表面的一部分设置的第一区域的底板,并且该第一区域构造成保持至少一种第一物质。上板具有面向第一表面的第二表面,并具有沿着该第二表面的一部分设置并构造成保持至少一种第二物质的的第二区域。中间板置于底板的第一表面与上板的第二表面之间,并且该中间板具有贯通形成的开口,其中底板、顶板和中间板构造成相对于彼此从第一位置向第二位置滑动,在第一位置第一区域不经由开口暴露于第二区域,而在第二位置 第一区域经由开口暴露于第二区域。
本发明的又一个实施例包括用于进行反应的成套用具,该成套用具包括具有第一表面和沿着该第一表面的一部分设置的第一区域的底板,其中该第一区域构造成保持至少一种第一物质,和具有第二表面和沿着第二表面的一部分设置的第二区域的平板,其中该第二区域构造成保持至少一种第二物质,以及第一区域中的第一物质、第二区域中的第二物质和设置在第一表面与第二表面之间的基质的至少一种,其中底板的第一表面和平板的第二表面构造成使得当配合在一起时,它们彼此相对并且相对于另一个在第一位置和第二位置之间运动,在第一位置第一区域和第二区域不暴露于彼此,而在第二位置第一区域和第二区域才能暴露于彼此。
本发明的又一个实施例包括用于进行反应的成套用具,所述成套用具包括具有第一表面、沿着该第一表面的一部分设置并构造成保持至少一种第一物质的第一区域和沿着第一表面的一部分形成并且不暴露于第一区域的第一导管的底板,具有第二表面和沿着第二表面的一部分设置并构造成保持至少一种第二物质的第二区域的平板,以及设置在第一表面和第二表面之间的基质,其中第一表面和第二表面构造成当配合在一起时它们在第一位置与第二位置之间相对于彼此滑动,其中在第一位置第一导管暴露于第二区域,而第一区域和第二区域不暴露于彼此,并且其中在第二位置第一区域和第二区域才暴露于彼此。
本发明的又一个实施例包括用于进行反应的成套用具,所述成套用具包括具有第一表面、沿着该第一表面的一部分设置的第一组多个第一区域的底板,其中该多个第一区域具有第一图案并且构造成保持至少一种第一物质,以及沿着该第一表面的一部分形成并且不暴露于该第一组多个第一区域的第一组导管。该实施例还包括具有第二表面和沿着该第二表面的一部分设置的多个第二区域平板,其中该多个第二区域具有与第一组多个第一区域的图案基本上类似的图案,并且多个第二区域构造成保持至少一种第二物质,以及第一区域中的第一物质、第二区域中的第二物质和设置在第一表面与第二表面之间的基质中的至少一种,其中第一表面和第二表面构造成当配合在一起时,它们相对于彼此在第一位置和第二位置之间滑动,在第一位置第一组导管暴露于多个第二区域,而在第二位置第一组多个第一区域的至少一个和多个第二区域的至少一个才能暴露于彼此。
本发明的又一个实施例包括用于进行反应的成套用具,所述成套用具包括具有第一表面和沿着该第一表面的一部分设置的第一区域的底板,其中该第一区域构造成保持至少一种第一物质,具有第二表面和沿着该第二表面的一部分设置并构造成保持至少一种第二物质的第二区域的上板,设置在底板的第一表面和上板的第二表面之间、具有贯通形成的开口的中间板,以及第一区域中的第一物质、第二区域中的第二物质和设置在第一表面与第二表面之间的基质的至少一种,其中底板、上板和中间板构造成使得该中间板能够设置在第一和第二表面之间,并且能够相对于底板和上板从第一位置向第二位置滑动,在第一位置第一区域不经由开口暴露于第二区域,而在第二位置第一区域经由开口暴露于第二区域。
本发明的又一个实施例包括用于进行反应的方法,方法包括下列步骤:将装置设置在第一位置,其中该装置包含底板,其具有第一表面和沿着第一表面的一部分设置的第一区域,其中该第一区域构造成保持至少一种第一物质,第一区域中的第一物质;平板,其具有与第一表面相对的第二表面和沿着该第二表面的一部分设置的第二区域,其中该第二区域构造成保持至少一种第二物质,第二区域中的第二物质,其中底板的第一表面和平板的第二表面构造成相对于彼此运动,并且其中当在第一位置时第一区域和第二区域不暴露于彼此,以及通过相对于彼此运动底板的第一表面和平板的第二表面将该装置从第一位置运动到第二位置中,并且其中在第二位置中,第一区域和第二区域才暴露于彼此,从而使第一和第二物质起反应。
本发明的又一个实施例包括用于进行反应的方法,该方法包括下列步骤:将装置设置在第一位置,所述装置包括底板,其具有第一表面和沿着第一表面的一部分形成的多个第一区域,其中该多个第一区域的每个被构造成保持至少一种第一物质,该多个第一区域的至少一个中的至少一种第一物质;平板,其具有与第一表面相对的第二表面和沿着该第二表面的一部分形成的多个第二区域,其中底板的第一表面和该平板的第二表面构造成在基本垂直于第一表面的法线的方向上相对于彼此运动,而该多个第二区域的每个构造成保持至少一种第二物质,该多个第二区域的至少一个中的至少一种第二物质,并且其中在第一位置,多个第一区域中的至少一些不暴露于多个第二区域中的任何一个;以及将装置从第一位置运动到第二位置,其中在第二位置中,多个第一区域中的至少一个和多个第二区域中的至少一个才暴露于彼此,从而使至少一种第一和第二物质起反应。
本发明的又一个实施例包括用于进行反应的方法,该方法包括下列步骤:将装置设置在第一位置,其中装置包括底板,其具有第一表面和沿着该第一表面的一部分设置的一个第一区域,其中该第一区域构造成保持至少一种第一物质,保持在第一区域中的至少一种第一物质,沿着第一表面的一部分形成并且不暴露于第一区域的第一导管;平板,其具有与第一表面相对的第二表面和沿着该第二表面的一部分设置的第二区域,其中第一表面和第二表面构造成相对于彼此从第一位置向第二位置滑动,而该第二区域被构造成保持至少一种第二物质,以及保持在第二区域中的至少一种第二物质,其中当在第一位置时,第一导管暴露于第二区域,而第一区域和第二区域不暴露于彼此;以及将该装置从第一位置运动到第二位置中,其中在第二位置中,第一区域和第二区域才暴露于彼此,从而使至少一种第一和第二物质起反应。
本发明的又一个实施例包括用于进行反应的方法,该方法包括下列步骤:将装置设置在第一位置,其中该装置包括底板,其具有第一表面和沿着第一表面的一部分设置的第一组多个第一区域,其中该第一组多个第一区域具有第一图案并构造成保持至少一种第一物质,保持在至少一个第一区域中的至少一种第一物质,以及沿着第一表面的一部分形成并且不暴露于第一组多个第一区域的第一组导管;平板,其具有与第一表面相对的第二表面和沿着第二表面的一部分设置的多个第二区域,其中第一表面和第二表面构造成相对于彼此滑动,该多个第二区域具有与第一组多个第一区域的图案基本相似的图案,多个第二区域构造成保持至少一种第二物质,以及保持在至少一个第二区域中的至少一种第二物质,其中在第一位置中,第一组导管暴露于多个第二区域;以及将该装置从第一位置运动到第二位置,其中在第二位置中,第一组多个第一区域中的至少一个与多个第二区域中的至少一个才暴露于彼此,从而使至少一种第一和第二物质起反应。
本发明的又一个实施例包括用于进行反应的方法,该方法包括下列步骤:将装置设置在第一位置,其中该装置包括底板,其具有第一表面和沿着该第一表面的一部分设置的第一区域,其中第一区域构造成保持至少一种第一物质,第一区域中的至少一种第一物质,上板,其具有面向第一表面的第二表面、沿着该第二表面的一部分设置并构造成保持至少一种第二物质的第二区域,第二区域中的至少一种第二物质,以及设置在底板的第一表面与上板的第二表面之间、具有贯通形成的开口的中间板,其中底板、上板和中间板构造成相对于彼此滑动,并且其中在第一位置,第一区域不经由开口暴露于第二区域;以及将该装置从第一位置运动到第二位置中,其中在第二位置 中,第一区域经由开口暴露于第二区域,从而使至少一种第一和第二物质起反应。
本发明的又一个实施例包括用于提供整套试剂、从用户接受所希望的子组试剂的成套用具,以及将成套用具提供给用户,其中该成套用具包括底板,其具有第一表面和沿着该第一表面的一部分设置的第一区域,其中该第一区域构造成保持至少一种第一物质,平板,其具有第二表面和沿着该第二表面的一部分设置的第二区域,其中第二区域构造成保持至少一种第二物质,以及第一区域中的第一物质和第二区域中的第二物质中的任一种,其中底板的第一表面和平板的第二表面构造成使得当配合在一起时它们彼此相对,并且相对于另一个在第一位置和第二位置之间运动,在第一位置该第一区域和第二区域不暴露于彼此,而在第二位置该第一区域和第二区域暴露于彼此,并且其中第一物质和第二物质的至少一种是所希望的子组试剂的成分。
本发明的又一个实施例包括用于提供整套试剂、从用户接受所希望的子组试剂的成套用具,以及将成套用具提供给用户,其中该成套用具包括底板,其具有第一表面和沿着该第一表面的一部分设置的第一组多个第一区域,其中第一组多个第一区域具有第一图案并构造成保持至少一种第一物质,以及沿着该第一表面的一部分形成并且不暴露于该第一组多个第一区域的第一组导管,平板,其具有第二表面和沿着第二表面的一部分设置的多个第二区域,其中该多个第二区域具有与第一组多个第一区域的图案基本相似的图案,并且其中该多个第二区域构造成保持至少一种第二物质,以及第一区域中的第一物质和第二区域中的第二物质中的至少一种,其中第一表面和第二表面构造成使得当配合在一起时,它们相对于彼此在第一位置和第二位置之间滑动,在第一位置该第一组导管暴露于多个第二区域,在第二位置该第一组多个第一区域的至少一个和多个第二区域的至少一个才暴露于彼此。
附图说明
图1A是根据本发明一个实施例的滑动式芯片装置在第一位置中的侧视图。
图1B是图1A所示实施例的滑动式芯片装置在第二位置中的侧视图。
图2是根据本发明另一个实施例的滑动式芯片装置的局部视图。
图3A是根据本发明另一个实施例的滑动式芯片装置在第一位置中的透视图。
图3B是图3A所示的滑动式芯片装置在第二位置中的侧视图。
图3C是图3A所示的滑动式芯片装置在第三位置中的侧视图。
图3D是图3A所示的滑动式芯片装置在第四位置中的侧视图。
图4A是根据本发明另一个实施例的滑动式芯片装置在第一位置中的侧视图。
图4B是图4A所示的滑动式芯片装置在第二位置中的侧视图。
图4C是图4A所示的滑动式芯片装置在第三位置中的侧视图。
图5A是根据本发明另一个实施例的滑动式芯片装置在第一位置中的侧视图。
图5B是图5A所示的滑动式芯片装置在第二位置中的侧视图。
图6A是根据本发明另一个实施例的滑动式芯片装置在第一位置中的俯视剖视图。
图6B是图6A所示实施例的滑动式芯片装置在第二位置中的俯视剖视图。
图7A是根据本发明另一个实施例的滑动式芯片装置在第一位置中的局部视图。
图7B是图7A所示的滑动式芯片装置在第二位置中的局部视图。
图8A1和图8A2是根据本发明另一个实施例的滑动式芯片装置在第一位置中的局部俯视图。
图8B是图8A1和图8A2所示的滑动式芯片装置在第二位置中的局部视图。
图8C1和图8C2是图8A1和图8A2所示的滑动式芯片装置在第三位置中的局部视图。
图8D是图8A1和图8A2所示的滑动式芯片装置在第四位置中的局部视图。
图9A是根据本发明另一个实施例的滑动式芯片装置在第一位置中的俯视图。
图9B是图9A所示的滑动式芯片装置在第二位置中的俯视图。
图10A是根据本发明另一个实施例的滑动式芯片装置在第一位置中的局部俯视图。
图10B是图10B所示的滑动式芯片装置在第二位置中的局部俯视图。
图11A是根据本发明另一个实施例的滑动式芯片装置在第一位置中的局部俯视图。
图11B是图11A所示的滑动式芯片装置在第二位置中的局部俯视图。
图11C是根据本发明另一个实施例的滑动式芯片装置在第一位置中的局部俯视图。
图11D是图11C所示的滑动式芯片装置在第二位置中的局部俯视图。
图12A是根据本发明另一个实施例的滑动式芯片装置在第一位置中的俯视图。
图12B是图12A所示的滑动式芯片装置在第二位置中的俯视图。
图13A是根据本发明另一个实施例的滑动式芯片装置在第一位置中的透视图。
图13B是图13A所示的滑动式芯片装置在第二位置中的透视图.
图14A是根据本发明另一个实施例的滑动式芯片装置在第一位置中的局部俯视图。
图14B是图14A所示的滑动式芯片装置在第二位置中的局部俯视图。
图15是根据本发明另一个实施例的滑动式芯片装置的局部侧视图。
具体实施方式
下面将参考附图对本发明进行描述,其中相同的元件用相同的数字表示。通过下面的详细描述将更好地理解本发明的各种元件的关系和功能。但是,下面描述的本发明的实施例仅仅是作为例子,本发明不局限于附图中所示的实施例。尽管不希望受到理论的约束,但是在下面的几个实例中发明人提出了据信使本发明得以运用的理论。提出据信使本发明得以运用的科学理论的任何陈述不是用来限制本发明,也不应当被视为对所主张的发明的限制。
当在本说明书和随附的权利要求书中使用时,单数形式的“一”、“一个”、“该”表示其复数形式,除非上下文另外明确指出。因此,例如,涉及“物质”时包括单个物质以及多个物质,涉及“区域”时包括单个区域和多个区域,“导管”包括单个导管和多个导管,等等。
当在本文中使用时,术语“区域”是指两种或多种物质彼此暴露于对方的地方。“区域”也可以指沿着表面的一部分,该部分能够在其上或沿着该部分保持物质。“区域”可以采取诸如孔、井、空腔或凹部的物理结构,并且具有沿着其长度、宽度或深度的任何横截面形状,例如矩形、圆形或三角形。
术语“在…之间”,当用于在“第一位置”和“第二位置”之间运动的上下文中时,可以指仅仅从第一位置向第二位置运动,仅仅从第二位置向第一位置运动,或者从第一位置向第二位置和从第二位置向第一位置运动。
术语“封闭系统”可以指能够与其周围环境交换热和能量、但不能交换物质的系统。对于某些实施例,封闭系统可以是不能与其周围环境交换液体、但是能交换诸如水蒸气或氧气的气体的系统。对于某些实施例来说,封闭系统可以是不能与其周围环 境交换液态水、但是能交换诸如水蒸气或氧气,或能够透过润滑层或基质的物质——基质也可以是非牛顿流体,例如剪切致稠的流体的系统。也可以是包括水凝胶的凝胶。也可以是富含糖类或富含脂类的相,包括脂类立方相和其他脂类中介相。在一些实施例中,可能需要对气体的渗透性,例如在滑动芯片内使用活细胞和组织的一些应用中。
术语“导管”可以指通过它可以输送物质的三维腔。可选地,它也可以指通过它能够输送物质的表面上的开口槽或沟槽。导管能够采取任何形式或形状,例如管形或圆柱形,沿着其长度具有均匀的或可变的(例如锥形的)直径,并且能够沿着其长度具有诸如矩形、圆形或三角形的一种或多种横截面形状。当在本文中使用时,术语“导管”包括尺寸适合用在装置中的微导管。导管可以通过另一个导管、区域或任何其他类型的管道与至少一个其他导管相连。
在某些实施例中,区域也可以是导管,并且在某些实施例中导管也可以是区域。
正如上面所提到的,导管可以具有任何横截面形状(圆形、椭圆形、三角形、不规则形状、正方形或矩形等),并且可以被覆盖或不被覆盖。在导管被完全覆盖的实施例中,导管的至少一部分可以具有完全闭合的横截面,或除了入口和出口之外整个导管可以沿着其整个长度完全封闭。导管通常包括便于对物质输送进行控制的特性,例如,结构特性和/或物理或化学特性(疏水性对亲水性)或能够对流体施加力的其他特性。导管内的物质可以部分地或完全地填充该导管。在使用开口导管的一些情况下,诸如流体的物质,例如利用表面张力(即凹形或凸形的弯液面)可以被保持在导管内。
导管可以具有任何尺寸,例如,在垂直于例如流体的物质的流动方向上具有最大尺寸,所述最大尺寸小于约50毫米、小于约5毫米、小于约2毫米、小于约1毫米、小于约500微米、小于约200微米、小于约60微米、小于约50微米、小于约40微米、小于约30微米、小于约15微米、小于约10微米、小于约3微米、小于约1微米、小于约300纳米、小于约100纳米、小于约30纳米或小于约10纳米。在一些情况下,导管的尺寸可以选择成使得物质能够自由地流过或流进区域或其他导管。导管的尺寸也可以选择成例如允许导管中流体的一定的体积流率或线性流率。当然,导管的数目和导管的形状可以通过本领域的普通技术人员已知的任何方法来改变。
当在本文中使用时,术语“暴露”是两种或多种要素之间连通的形式。这些要素可以包括物质、区域、导管、通路、通道、腔、或其任何组合。在一些例子中,“暴 露”可以指两种或多种物质彼此流体连通,或可选地,它可以指两种或多种物质相互起反应。
当在本文中使用时,术语“流体连通”是指当通路打开时诸如液体、气体或固体的物质可以基本上不受限制地流过的任何导管、通道、管子、管道或通路。当通路关闭时,物质基本上被限制通过。在存在基质的实施例中,当装置处于闭合位置时,如果反应区域在空间上被设置成允许经由基质扩散而不是经通路通过,则物质可以从一个反应区域通过基质到达另一个反应区域。在通常情况下,物质通过平板、底板和/或基质的受限制的扩散不构成流体连通,所述扩散取决于物质和材料的成分可以发生或可以不发生。
术语“起反应”或“反应”是指物理、化学、生物化学或生物转化,其涉及至少一种物质例如反应物、试剂、相、载体流体、阻塞流体,并且通常涉及(在化学、生物化学和生物转化的情况下)诸如共价键、非共价键、范德瓦尔斯键、氢键或离子键的一个或多个键的断裂或形成。该术语包括典型的光化学和电化学反应、诸如合成反应、中和反应、分解反应、置换反应、还原氧化反应的典型的化学反应、沉淀、结晶、燃烧反应和聚合反应,以及共价和非共价键合、相变化、颜色变化、相形成、溶解、光发射、光吸收或发射性质的变化、温度变化或热吸收或辐射、构象变化以及诸如蛋白质的大分子的折叠或打开。
当在本文中使用时,术语“物质”是指任何化学品、化合物、混合物、溶液、乳液、分散体系、悬液、分子、离子、二聚物、诸如聚合物或蛋白质的大分子、生物分子、沉淀物、晶体、化学组成部分或基团、粒子、纳米粒子、试剂、反应产物、溶剂或流体,以及可以存在于固态、液态或气态中并且通常是分析对象的任何物质。
用于进行反应的装置10示于图1A和1B中。图1A和1B是沿着纵轴线截取的装置10的剖视图。装置10包括底板12和平板14。第一表面16沿着该底板12的一部分形成。第一区域18沿着该第一表面16的一部分设置。第二表面20沿着该平板14的一部分形成,并具有沿着该第二表面20的一部分设置的第二区域22。第一和第二表面16、20可以彼此固定地相对并且可以基本是平面的,或可选地,可以具有互补的表面特性,以允许第一和第二表面16、20之间的相对运动。此外,第二表面20可以是复合的、非平面的、和/或不平行于第一表面16。第一和第二表面16、20能够彼此紧密地相互面接,并且在一些实施例中可以用压力密封技术,例如,通过利用外 部装置(例如夹子、弹簧、气动或液压装置或夹紧装置)促使这些件在一起。此外,为了确保均匀的压力施加在第一和第二表面16、20上,表面的形状可以变化,以确保当沿着装置10在不连续的位置中施加压力时,在整个表面16、20上产生均匀的压力。例如,当两个表面是锥形的时,可以施加压力使两个表面紧密接触。一个或多个平板可以被设计成当施加压力时变形,以将局部压力重新分布成在整个表面上的均匀压力。
在一些实施例中,区域用暴露于彼此时消耗气体或使压力降低的试剂填充,并被构造成使得它们形成封闭系统。例如,至少一个第一区域可以包含氢氧化钠,并且至少一个第二区域可以用二氧化碳填充。一旦装置10的部件被移动以使至少一个第一区域暴露于第二区域后,氢氧化钠与二氧化碳的反应能够形成部分真空。这种部分真空产生作用力以将装置10的底板12和平板14保持在一起。
第一和第二表面16、20可以是平面的或非平面的。例如,表面可以是圆柱形的。在圆柱形装置10中底板12和板14的相对运动将是旋转运动。如果手动地进行底板12和板14的相对运动,手柄可以固定在底板12、平板14任一个上或两者上。本领域的普通技术人员应当明白,表面16、20可以是其他紧密面接的形状。第一和第二表面可以是同心的球面。
第一和第二表面16、20可以分别用与底板12和平板14相同的材料制成。可选地,表面16、20可以用具有低摩擦系数的任何其他合适材料制成,并可以具有疏水或亲水性质。此外,第一和第二区域18、22也可以分别用与第一和第二表面16、20或底板12和平板14不同的材料制成,或具有不同的性质。
如图1A和1B的实施例所示,第一区域18和第二区域22两者是构造成将物质保持在其中的区域23。但是,第一区域18和第二区域22也可以是如图2所示的物质的表面图案25,或是如图4所示的贯通孔。如图2中所示,第一区域18和第二区域22不必具有与另一个相同的结构构造或保持相同的物质。
区域18、22也可以包含多孔材料,例如多孔玻璃、氧化铝或在纸中发现的纤维素基体。这些区域可以通过将基体沉积在区域中来制造。可选地,它们可以通过使多孔层形成图案并且将多孔层围绕区域填充来制造。例如,纸可以通过下文中描述的方法形成图案:Martinez,A.W.,Phillips,S.T.,Carrilho,E.,Thomas III,S.W.,Sindi,H.,Whitesides,G.M.,用于发展中地区的简单远程医疗系统:用于实时非现场诊断的照相 电话和纸基微流体装置(Simple telemedicine for developing regions:Camera phones and paper-based microfluidic devices for real-time,off-site diagnosis),(2008)AnalyticalChemistry,80(10),pp.3699-3707;Martinez,A.W.,Phillips,S.T.,Butte,M.J.,Whitesides,G.M.,作为平台用于廉价、小体积、便携式生物测定的带图案的纸(Patternedpaper as a platform for inexpensive,low-volume,portable bioassays),(2007)Angewandte Chemie -International Edition,46(8),;Martinez,A.W.,FLASH:用于纸基微流体装置样机开发的快速方法(A rapid method for prototyping paper-basedmicrofluidic devices),(2008)Lab Chip;以及Macek,K.,H.,用于色谱的纸、即用型平板和柔性片材(Papers,ready-for-use plates,and flexible sheets forchromatography),(1971)Chromatographic Reviews,15(1),pp.1-28,并且其他材料也可以通过下述文献描述的方法形成图案:Vozzi,G.,Flaim,C.,Ahluwalia,A.,Bhatia,S.,使用软光刻法和微注射器沉积法制造PLGA支架(Fabrication of PLGA scaffolds usingsoft lithography and microsyringe deposition),(2003)Biomaterials,24(14),pp.2533-2540;Desai,T.A.,Hansford,D.J.,Leoni,L.,Essenpreis,M.,Ferrari,M.,用于生物传感器应用的纳米孔防结垢硅薄膜(Nanoporous anti-fouling silicon membranesfor biosensor applications),(2000)Biosensors and Bioelectronics,15(9-10),pp.453-462;Pichonat,T.,Gauthier-Manuel,B.,多孔硅基微型燃料电池的研制(Development of porous silicon-based miniature fuel cells),(2005)Journal ofMicromechanics and Microengineering,15(9),pp.S179-S184;Cohen,M.H.,Melnik,K.,Boiarski,A.A.,Ferrari,M.,Martin,F.J.,用于医疗应用的硅基纳米多孔颗粒物的微制造(Microfabrication of silicon-based nanoporous particulates for medicalapplications),(2003)Biomedical Microdevices,5(3),pp.253-259;De Jong,J.,Ankoné,B.,Lammertink,R.G.H.,Wessling,M.,用于制造具有可调孔隙度的薄聚合物微流体装置的新的复制技术(New replication technique for the fabrication of thinpolymeric microfluidic devices with tunable porosity),(2005)Lab on a Chip-Miniaturisation for Chemistry and Biology,5(11),pp.1240-1247;Ohji,H.,Lahteenmaki,S.,French,P.J.,用于微机械制造的大孔隙硅的成形(Macro poroussilicon formation for micromachining),(1997)Proceedings of SPIE-TheInternational Society for Optical Engineering,3223,pp.189-197;Chu,K.-L.,Gold,S.,Subramanian,V.,Lu,C.,Shannon,M.A.,Masel,R.I.,用于芯片载微电池应用的纳米多孔硅薄膜电极组件(A nanoporous silicon membrane electrode assembly for on-chipmicro fuel cell applications),(2006)Journal of MicroelectromechanicalSystems,15(3),pp.671-677;Petronis,S.,Gretzer,C.,Kasemo,B.,Gold,J.,用于材料-细胞相互作用的系统研究的模型多孔表面(Model porous surfaces for systematicstudies of material-cell interactions),(2003)Journal of Biomedical MaterialsResearch-Part A,66(3),pp.707-721;Wang,M.,Feng,Y.,用于氢传感的钯银薄膜(Palladium-silver thin film for hydrogen sensing),(2007)Sensors andActuators,B:Chemical,123(1),pp.101-106,以填充和/或涂覆区域周围的地方,所有上述文献结合于此供参考。
返回参考图1A和1B所示的实施例,第一和第二表面16、20基本上彼此相对。基质24可以设置在第一和第二表面16、20之间,以帮助将物质保持在每个区域18、22内,或可以操作以保护每个区域18、22免受交叉污染。相对于将与装置10接触和/或通过装置10运输的物质来说,基质24通常由基本惰性的材料构成。通常,基质24也用与和装置10接触和/或通过装置10运输的物质基本上互溶的材料构成。
基质24可以是烃类或氟化物质。可用于本发明的氟化物质包括但不限于氟烃、全氟烃、烷基和芳基氟烃、卤代氟烃、氟化醇、氟化油和液体含氟聚合物、包括全氟聚醚。实例包括但不限于全氟辛基溴化物、全氟辛基乙烷、十八氟十氢萘、1-(1,2,2,3,3,4,4,5,5,6,6-十一氟环己基)乙醇、C6F11C2H4OH、Flourinert(3M)、Krytox油、Fomblin油和Demnum油。烃类物质包括但不限于烷烃或烷烃混合物(例如,诸如己烷、十六烷和矿物油的石蜡油),以及其他有机材料和聚合物。其他流体材料包括硅油和各种油脂(例如,Dow Corning高真空油脂、Fomblin真空油脂、Krytox油脂),以及离子性流体。流体也可以是非牛顿流体,例如,剪切致稠流体、凝胶、包括水凝胶和富含糖类或富含脂类的相,包括脂类立方相和其他脂类中介相。在一些实施例中,可能需要对气体的渗透性,例如在滑动芯片中使用活细胞和组织的一些应用中。可以向基质添加表面活化剂,以例如引起或防止表面聚集和/或影响物质的稳定性。也可以使用润滑粉末或润滑珠。在这里也可以应用某些上述材料的变体或变型,其包括但不限于可以由PTFE、PFA、或FEP特氟隆材料构成的各种特氟隆珠或粉末。其他干润滑剂包括石墨、二硫化钼和二硫化钨。基质也可以是固体膜。例如,如果在区域中使用基于珠子的试剂,膜可以能够防止珠子从区域18移动到区域22,同时仍然允许其他物质从区域18扩散到区域22。这样的膜可以是例如特氟隆膜、聚碳酸酯 膜或纤维素膜或任何其他膜。在某些实施例中,通常当基质24是液体时,它可部分地填充装置的区域和/或导管。具体说,在某些实施例中,表面张力可以使基质24将出现在容积中的样品分成分开的填塞物或被基质24分开的小滴。如果容积的横截面沿着其长度变化,基质24可以例如大部分出现在容积具有较小横截面面积的部分,例如导管中,并且样品可以大部分出现在容积具有较大横截面面积的部分中。
图1A进一步显示了处于被称为“位置A”的第一位置中的装置10,图1B显示了处于被称为“位置B”的第二位置中的该装置。当在第一位置中时,装置10处于第一表面16与第二表面20相对的取向中,并被构造成沿着基本垂直于第二表面20的法向的方向移动,使得第一表面16和第二表面20之间的垂直距离(正如当装置如图1A所示取向时所定义的)保持基本恒定的值。第一表面16和第二表面20之间的距离或间隙,可以根据基质的存在和基质的类型而变化。在某些实施例中,例如由于结构或由于表面粗糙度,距离在不同的装置位置处可以变化。一般而言,间隙可以为0.2纳米至20微米范围内的任何值。
当在第一位置中时,第一区域18和第二区域22各自包含物质,但第一和第二区域18、22以及因此物质都不彼此暴露。当在第二位置中时,底板12或平板14至少其中之一沿着垂直于底板12的法向的方向相对于另一个运动,从而使第一和第二区域18、22彼此暴露。在这个实施例中,如图1A和1B所示,第一和第二区域18、22只有当一个与另一个重叠时才彼此暴露。但是,暴露和重叠的程度可以改变,如图2所示,只有当第一和第二区域18、22的一部分重合时才可以到达第二位置。也考虑到,其他的布局将允许两个或多个区域彼此暴露而没有任何区域的重叠,这将在后面参考本发明的其他实施例进行描述。与第一和第二区域18、22彼此暴露的方式无关,暴露允许第一和第二区域18、22中的物质相互反应。
但是,在本文讨论的每个实施例中,考虑到当装置10处在第二位置中时,可能存在至少一个第一区域18与对应的第二区域22重叠,使得没有其他的物质暴露于第一和第二区域18、22,或与其连通。因此,相应的第一和第二区域18、22将不暴露于任何通道、导管、入口、出口、或构造成在其中提供物质的任何其他结构,或与其连通。
底板12和平板14至少其中之一还可以相对于另一个移动,以将第一和第二区域18、22分开,使得它们不再彼此暴露。底板12和/或平板14可以移动回到第一位置 或移动到不同于第一位置的第三位置,以将第一和第二区域18、22分开。底板12和平板14之间的相对运动可以用导向装置/轨道(未示出)结构、或构造成滑动地啮合底板12和平板14的滚珠轴承引导,以便限制底板12和平板14之间的相对移动的方向和运动量。此外,底板12和平板14之间的相对运动可以是自动的。在本文所讨论的任何实施例中,装置10还可以包括诸如成像或传感器部件的检测器,以记录和/或测量装置10中的反应。这样的检测器和成像装置的实例可以在美国公开号2009/0010804和WO 2008/002267中找到,两者结合于此供参考。检测器可以任何适合于检测的检测器,并且可以选自:网络照相机、数字照相机、移动电话中的数字照相机和摄像机,正如在公开的专利申请WO 2008/002267中所公开的,其整个内容结合于此供参考。可选地,检测器可以是具有足够照明和用于在空间上分辨由装置产生的单个信号的分辨率的照相机或成像装置,如US2009/0010804中所描述的,其整个内容结合于此供为参考。就此而言,本发明的成像装置可以是本领域已知的能够与本装置的各种结构和构造相容的任何成像装置。例如,照相机可以利用任何常用的固态图像传感器,包括电荷耦合器件(CCD)、电荷注射器件(CID)、光敏二极管阵列(PDA)或互补金属氧化物半导体(CMOS)。装置可以包括标志,例如在导管和/或区域中的线、点或可视物质,以能够对齐和/或分析。对齐标志可以包括在装置上,以能够自动修正光差,或调节图像的照相角度和取向。为了检测荧光输出,可以用线性调频的激发/读出装置。例如,蓝色激发光可以照射在装置上例如几纳秒,然后关闭,并可以在例如一纳秒之后检测荧光。然后,例如10纳秒之后,收集另一个图像(没有初始激发闪光)以产生用于减去的背景强度图像。以这种方式,即便在白天也能够分析荧光。为了安全起见,例如如果装置包括可识别图案,检测器可以设计成自动识别装置,使得当检测器对着装置时才产生激发光。Sia等,Angewandte ChemieInternational Edition,(43),4,498-502的文章描述了用于在多流体装置中的检测信号的其他手段,包括利用脉冲调制以减少噪声,该文献结合于此供参考。正如本领域的技术人员所熟知的,还可以通过利用激发/辐射光的偏振来改善检测。
应当知道,第一和第二区域18、22的数目、构造或取向取决于应用,从一个应用到另一个应用可以不同,并且可以包括无数的构造。因此,作为实例,图3A-3D示出了装置10的另一个实施例。在这个以及其他图中,实线用来表示与平板14和第二表面20有关的特征,而虚线表示与底板12和第一表面16有关的特征。在这个实 施例中,装置10包括具有第一区域18的底板12和目前具有两个第二区域22的平板14。两个第二区域22沿着该第二表面20的一部分设置,但是是分开的并且不直接暴露于对方。
取决于底板12与平板14之间的相对移动,第一区域18可以只暴露于其中一个第二区域22、另一个第二区域,或同时暴露于两个第二区域22。例如,如图3A的位置A所示,第一区域18不暴露于两个第二区域22,并且在该位置处两个区域22也不暴露于对方。
底板12和/或平板14可以相对于另一个从图3A的位置A向另一个位置移动,使得第一区域18现在只暴露于一个第二区域22,如图3B的位置B所示,或只暴露于另一个第二区域22,如图3C的位置C所示,或者同时暴露于两个第二区域22,如图3D的位置D所示。底板12和/或平板14还可以从第二位置向其他位置移动,所述其他位置将允许不同的布局和反应。当然,第一区域18和两个第二区域22的至少一个暴露于另一个的顺序将控制发生反应的物质和反应本身。
图3A-3D的实施例只包含一个平板14,但是,设想的其他实施例使用一个以上的平板14。例如,在图4A-4C所示的实施例中,平板14和底板12之间是中间板46。与平板14和底板12相同,中间板46构造成相对于任一个部件滑动并且在其中还形成开口48。
如图4A-4C所示,在这个实施例中的装置10构造成具有设置在其中的三种不同物质,其中一种物质被设置在第一区域18内或沿着第一区域18设置,第二种物质设置在第二区域22内或沿着第二区域22设置,而第三种物质设置在开口48内或沿着开口48设置。第一表面16、第二表面20和中间板46全都构造成相对于彼此移动。在这个实施例中,装置10构造成从第一位置,即图4A中的位置A移动到第二位置、即图4B中的位置B,再到第三位置,即图4C中的位置C,其中在第一位置第一区域18、第二区域22和开口48都不相互暴露,在第二位置第二区域22暴露于开口48,而在第三位置第一区域18、第二区域22和开口48全部相互暴露,以使三种物质能够起反应。应当理解,区域18、22和开口48相互暴露的顺序可以改变,并且中间板48的数目也可以随着应用而变。
图5A和5B中的装置10的实施例是具有采取堆叠布局的一个以上中间板46的一个实例。该实施例包括多个中间板46,多个中间板46的每个具有贯通其中形成的 开口48,当与另一个开口48对齐时,形成连续的柱50。然后物质可以通过其中一个开口48或通过入口(未示出)设置在柱50内。中间板46的堆叠可以用于多种物质测试,或用来装填并储存多个中间板46用于将来的测试。也可以包括夹具(未示出)以提供稳定性、控制板46的相对运动的控制和控制板46所包含物质的蒸发。
正如上面所提到的,装置10的这个实施例可用于多种物质测试。例如,一个中间板46可以至少沿着第一方向从第一位置、即图5A的位置A,相对于另一个中间板46移动或部分“滑”出到第二位置、即图5B的位置B,使得中间板46的开口48能够暴露于沿着底板12的第一表面16的第一区域18,该底板12是构造成接纳中间板46的接纳结构52的形式。
中间板46的堆叠可以具有偏置机构或系统,当一个中间板46被取出时施加偏置力以使柱50保持完整。例如,中间板46的堆叠可以用上板54和下板56限制住,使得当顶部中间板46被取出时,偏置机构将向上推动其余的堆叠板,以使下一个中间板46现在邻接上板54。
可选地,暴露于第一表面16的中间板46可以沿着基本垂直于第一方向的方向和基本与第一方向相反的方向滑动,使得中间板46放置在中间板46的堆叠内,但是开口48不再与柱50连通,并且柱50不再完整。于是中间板46中的其余开口48可以随后滑出,并使得暴露于接纳结构52的另一个或同一个第一区域18。应当明白,多个中间板46可以用于单个装置10,并且上述实施例是多种设想结构的示例。此外,在这里关于仅具有底板12和平板14而没有中间板46的实施例所讨论的特征,也可以在具有一个或多个中间板46的实施例中实现。
在某些实施例中,底板或平板任何一个可以用新的底板或平板替换,其中新底板或平板具有不同的区域布局和/或在其区域中具有不同物质。例如,装置可以用于在底板的区域中进行固相反应,例如在底板的区域中的珠上合成反应。这个反应的试剂将利用本文所述的任何技术在一个或多个步骤中添加。在反应完成之后,可以将平板取出并且用新平板替换,该新平板包含适合于测设置在底板区域内的珠上的反应产物的导管和/或区域。任选地,平板可以具有预先装载的用于进行测定的试剂。在另一个实施例中,反应产物可以从底板中的珠上切下,并且允许其扩散到平板上的反应区域中,然后取出底板并且添加包含导管和/或区域和/或试剂的新底板,用于另外的反应和/或测定。
转到图6A和6B中所示的双板实施例,第一区域18的数目和配置也可以大于1并且与第二区域22的数目一致。图6A和6B是装置10的一个实施例的局部俯视图,具有虚线所示的底板12和实线所示的平板14,具有多个第一和第二区域18、22。沿着第一表面16的一部分形成一系列分散的导管26。这一系列分散的导管26是彼此独立的,并且不单独形成连续的流体路径。分散的导管26的数目可以在从一个到多于一个的范围内。在一系列导管26的每个导管26之间,物理特性可以变化并且与应用有关。
这一系列分散的导管26与多个第一区域18间隔开并且不与其连通。一个或多个分散的导管26可以包括入口导管28,另一个可以是出口导管30。入口导管28和出口导管30可以沿着第一表面16或第二表面20形成,并且不要求入口导管28和出口导管30沿着同一个表面16、20形成。在图6A-6B所示的实施例中,入口导管28和出口导管30沿着第二表面18形成。在具有多个第一和第二区域18、22的一些实施例中,入口导管28的数目将少于该具体实施例的区域18、22的总数的一半。在其他的实施例中,出口导管30的数目将少于区域18、22的总数的一半。
如图6A的位置A所示,当处于第一位置时,第一和第二表面16、20彼此固定地相对,并且多个第二区域22例如暴露于一系列分散导管26,以允许一系列导管26与第二区域22之间的流体连通,以沿着第二区域22或在第二区域22内设置第一物质。在这个实施例中,经由入口导管28将第一物质提供给一系列分散导管26和第二区域22。任何过量的物质经由出口导管30排出。
一旦物质设置在第二区域22内或沿着第二区域22设置之后,底板12和/或平板14可以相对于彼此朝着第二位置,即如图6B所示的位置B移动。当在位置B时,一系列分散导管26与第二区域22之间的流体连通被破坏,并且没有由入口导管28提供的附加物质可以设置在第二区域22内或沿着区域22设置。被称为位置B的第二位置是用户定义的,并且在这个实施例中,当每个第二区域22暴露于相应的第一区域18时达到该第二位置。每个第二区域22对相应的第一区域18的暴露使得第一物质能够与设置在第一区域18内或沿着第一区域18设置的任何其他物质连通,并可能起反应。然后如果需要,可以将底板12和/或平板14移动到另一个位置。
装置可以构造成在底板上具有能够浸入到样品中的入口导管或区域。入口导管或区域可以是凹面的以便捕获样品,或可以包含芯吸材料。在第一装料位置,构造成用 于捕获样品的入口导管或区域可以暴露于环境,也就是说不被相对的平板覆盖,但是在底板和相对的平板相对于彼此移动后,在第二位置被相对的平板覆盖。
在如图7A和7B所示的可选实施例中,第一和第二区域18、22可以沿着相同的表面、或在相同的表面内形成。例如,在这个实施例中,第一和第二区域18、22沿着底板12的第一表面16形成。在这个实施例中,导管26沿着平板14的第二表面20形成。
在这个实施例中,装置10构造成从第一位置,即图7A的位置A,移动到第二位置,即图7B的位置B,在第一位置中两个或多个第二区域22与导管26流体连通或暴露于导管26,但是其中第一和第二区域18、22都不暴露于对方。当在第二位置时,对应的第一和第二区域18、22通过导管26之一彼此暴露。具体来说,第一与第二位置之间的相对运动使得导管26相对于第一区域18和第二区域22从第一位置,即位置A移动到第二位置,即图7B所示的位置B,在第一位置,每个导管26暴露于两个相邻的第二区域22并允许它们之间流体连通,而在第二位置,每个导管26现在暴露于一个第一区域18和一个对应的第二区域22。因此,如这个实施例所示,第一和第二区域18、22可以通过导管26彼此暴露,并且不需要第一和第二区域18、22物理上重叠。然而,构造成通过导管彼此暴露的区域18、22的数目和取向与用途有关。
在上面讨论的任何实施例中,装置10的底板12和平板14以及中间板46之间的相对运动,在方向和距离上可以变化。例如,与图4A至图4C中所公开的单一移动方向不同,图8A1至图8D所示的装置10的实施例示出了多个第一和第二区域18、22,其中每组区域在基体结构中具有它自己的分散导管26。具体来说,这个实施例的装置10在底板12的第一表面16上包括多个第一区域18,并且具有形成在第一表面16内的不与第一区域18直接流体连通的一系列第一导管40。平板14的第二表面20包括多个第二区域22和形成在其中的不与第二区域22直接流体连通的一系列第二导管42。
当在第一位置,即如图8A1和图8A2所示的位置A中时,第一表面16与第二表面20固定地相对,其取向使得第一区域18与第二组导管42流体连通,或暴露于第二组导管42,但是第二区域22不与第一区域18或第一组导管40流体连通,或暴露于它们。当在这个位置时,第一区域18可以用物质填充,或第一区域18的每行可 以用不同的物质填充。第一表面16与第二表面20之间沿着第一方向朝第二位置,即图8B1和图8B2中的位置B的相对运动,使每个第一区域18和对应的一个第二组导管42与另一个第一区域18和第二组导管42隔离。沿着基本垂直于第一方向的第二方向朝图8C1和图8C2中的位置C的另一个运动使第二区域22与第一组导管40流体连通或暴露于第一组导管40,并且允许第二区域22能够用被另一种物质填充,或第二区域22的每列能够用不同的物质填充。沿着与第一方向相反的方向朝图8D的位置D的另一个运动,使得第一区域18至少部分地暴露于第二区域22。应当明白,装置10可以具有更多或更少数目的行和列,并且第一表面16与第二表面20之间的相对运动可以根据具体用途变化。
正如上面所提到的,当在任何两个位置之间移动时,装置10沿着基本垂直于第一表面16的法向的方向移动。因此,方向可以是直线的、旋转的或两者的组合。在一些情况下,二维运动(例如,X-Y运动)可以通过直线和/或旋转运动的组合来实现。例如,可以采用滑动和旋转装置来进行直线和旋转滑动运动。此外,这种用于产生相对滑动运动的装置可以用例如电机、杠杆、皮带轮、齿轮、液压装置、气动装置或其组合来构造,或用本领域普通技术人员已知的其他电子机械的或机械装置来构造。控制一个部件相对于另一个部件运动的方法的其他实例,包括但不限于滑动导向装置、齿条和小齿轮系统(US 7,136,688)、旋转板(US 7,003,104)、滑动组件(US 2007/015545和US 2008/0058039)、导向槽(US 5,805,974和5,026,113)、压电致动器(US 2005/0009582)、滚珠轴承和槽口(US 2,541,413)以及驱动电缆(US 5,114,208)。这些专利和专利申请结合于此供参考。
此外,底板12和平板14或多个板相对于彼此的运动,可以用例如在电连接器中通常单独或以组合方式所用的槽口、定位器和/或孔和配合销系统来限制。底板12和平板14或多个板相对于彼此的运动,也可以用外壳、柱、槽和隆起、齿轮来限制,或者例如在旋转运动的情况下,用中心轴来限制。在某些实施例中,装置10构造成用机器人操纵。
例如,在图9A和9B中所示的实施例中,第一与第二表面16、20之间的相对运动在性质上是旋转。具体来说,图9A所示的装置从第一位置,即位置A移动,其中第二区域22与一系列导管26和入口导管28流体连通。应当明白,在这个实施例中,可以没有出口导管30。第一物质设置在第二区域22中或沿着第二区域22设置的方 式可以改变。例如,外部泵可以产生管路压力,以帮助在第二区域22内、或沿着第二区域22设置第一物质32。可选地,并且如图9A-9B中的实施例所示,整个装置10的旋转产生离心力,其帮助将第一物质32从入口导管28输送到第二区域22。
然后通过相对旋转运动将底板12和平板14从第一位置,即位置A移动到第二位置,即图9B中所示的位置B。在这个位置,至少一个第一区域18暴露于至少一个第二区域22。相对旋转运动可以部分由例如自动操纵的齿轮组件36或手动移动引起。
装置10的每个实施例的图案和形状也可以改变,并且与用途有关。例如,在图10A和10B所示的可选实施例中,第一区域18是形成在第一表面16内构造成保持物质的连续通道21。一系列杆部件38沿着第二表面20与第二区域22相邻形成,当在第一位置,即图10A的位置A时,其不妨碍第一区域18的连续性的。当在位置A时,第一区域18不暴露于第二区域22。然而,当移动到第二位置,即位置B中时,该一系列杆部件38与第一区域18的一部分接合,例如将先前连续的通道21分隔成多个分散的第一区域18,该第一区域18不与其他分散的第一区域18流体连通。当在图10B所示的位置B中时,每个分散的第一区域18暴露于第二区域22。
此外,当表面16、18相对于彼此运动时,沿着第二表面18的杆部件38和沿着第一表面16的第一区域18的组合可以用来产生压力。例如,可以在杆部件38的方向的前面产生正压力,并且可以在后面产生负压力。它可用于将物质装载到装置10中或将物质排出装置10,或在装置10内移动物质,或者正如下面所讨论的用于引入物质,包括过滤。通过这种运动也可以产生流动。
各实施例之间除了第一和第二区域18、22的形状差异之外,每个相应组的第一和第二区域18、22之间的暴露和相对暴露的量也可以变化并且与用途有关。例如,当在第二位置,即图10B所示的位置B时,图11A和11B所示的装置10的实施例改变每个相应组的第一和第二区域18、22之间的暴露的量。每组第一和第二区域18、22之间的暴露的可变的或累进的量,可以通过例如构造第一组区域18和第二组区域22的图案来实现。
例如,第一和第二区域18、22之间的暴露或扩散的量,可以用多种方式获得。例如,如图11A和11B所示,第一和第二区域18、22基本是正方形的形状,每组第一和第二区域18、22之间重叠的量通过在图11B所示的第二位置时第一区域18的带刻度的对角线图案来改变。可选地,在图11C和11D所示的实施例中,暴露或扩 散的量通过改变在图11D所示的第二位置时暴露于第一区域18的第二区域22的入口部分34的形状和/或直径来控制。正如在这里所讨论的,通过控制装置各区域之间物质扩散的量可以产生梯度。在本发明的梯度产生方法的每个步骤中,扩散的程度可以根据装置的滑动位置来控制。本发明的梯度在研究依赖于梯度浓度的生物现象,例如细胞-表面相互作用、使用细胞阵列的高通量筛选和基于细胞的生物传感器中,是有用的。具体来说,涉及趋化性、趋触性和迁移的研究从可以通过本发明实现的相对紧凑和稳定的梯度获益。由于趋化性细胞可能对细胞前后之间小到2%的浓度差异敏感,因此分辨率在单个细胞量级上的梯度(10-100μm,每100μm 2-20%)可能是有用的。本发明提供了产生蛋白质、表面性质和包含生长因子、毒素、酶、药物以及其他类型的生物相关分子的流体流的梯度的能力。此外,具有化学吸引物和化学排斥物性质的可扩散物质的梯度在生物模式形成中发挥重要作用,并且血管再生和轴突通路发现提供了能够利用梯度的过程的实例。本发明还在高等生物体研究中提供了不同物质的梯度(相似或不同)的叠加。本发明的锯齿形梯度也可以用于测试生物过程。本发明的梯度也可以用于其他应用,正如在US 2004/0258571、US 6,705,357、US 7,314,070和US 6,883,559中所描述的,它们的全部内容结合于此供参考。
还存在装置10的其他实施例,其中第一和第二区域18、22形成连续通道,以将两种或多种物质相互暴露。例如,图12A和12B所示装置10的实施例包括沿着第二表面20形成的分枝状形式的入口导管28。在表面20内或沿着表面20还形成了多个系列的第二区域22。然而,当在第一位置,即图12A所示的位置A时,多个系列的第二区域22与入口导管28彼此不直接连通或暴露。多个系列的第一区域18与多个出口导管30一起形成在第一表面16内,或沿着第一表面16形成,每个出口导管30与每个系列的第一区域18对齐,但是在位置A时彼此不直接流体连通或暴露。
在这个实施例中,物质或一系列物质可以放置在每个第一区区域18内,或沿着每个第一区域18放置。当第一和第二表面16、20相对于彼此从第一位置向第二位置,即图12B所示的位置B移动时,对于每个系列的区域18、22来说,第一区域18与第二区域22重叠或彼此暴露,以形成如图12B所示的第一和第二区域18、22的连续系列。另外,当在第二位置,即图12B所示的位置B时,第一区域18的至少一个暴露于入口导管28的至少一个分枝,或与其流通连通。此外,一个第二区域22暴露于一个出口导管30或与其流体连通,在入口导管28与出口导管30之间形成连续通 路,以使物质暴露于一系列第一区域18。入口导管28和出口导管30的取向和分枝数目可以改变,并且与应用有关。但是,正如在这个实施例中所看到的,多种物质可以放置在每个第一区域18内或沿着其形成,并且当在第二位置,即位置B时,可以与入口导管28所提供的物质起反应。
也可以利用连续通道来预装其他反应区域。例如,在如图13A和13B所示的装置10的可选实施例中,装置10可以构造成用物质装填或预装多个第二区域22。在这个实施例中,底板12具有构造用于携带第一物质的连续通道44。平板14的第二区域22和底板12的连续通道44构造成从第一位置,即图13A所示的位置A向第二位置,即图13B所示的位置B移动,在第一位置第二区域22或多个区域22不与连续通道44流体连通或不暴露于连续通道44,而在第二位置,第二区域22或多个区域22的至少一部分暴露于连续通道44或与其流体连通,因此将物质装填或设置在该第二区域22内或沿着该第二区域22装填或设置。然后,底板12和/或平板14构造成相对于彼此移动到第三位置(未示出),使得第二区域22或多个区域22现在用物质装填。然后用该装填的物质预装的平板14可以用于后续用途,其中一些在本文中描述。应当明白,底板12可以代之以具有分散的第一区域18,并在平板14中形成连续通道44(此图中未示出)。此外,不用对区域进行预装,这个实施例也可以用来将第二区域22中的第二物质暴露于在第一表面16内或沿着第一表面16的装填有第一物质的连续通道44,反之亦然。
在图14A和14B所示局部视图的另一个实施例中,第一和第二表面16、20之间的相对运动在性质上是旋转的。第一和第二等区域18、22可以沿着相同的表面形成,或形成在相同的表面内。在这个实施例中入口导管28和导管26的系列沿着第二表面20形成。在这个实施例中,装置构造成从第一位置,即图14A所示的位置A转动,在第一位置,一组两个或多个第一区域18、一组两个或多个第二区域22等各自与对应的一组导管26流体连通或暴露于它们,但是第一和第二区域18、22彼此都不暴露于对方。例如,如图14A和14B所示,当在图14A所示的位置A时,七个第一区域18通过一系列径向连接的导管26彼此暴露于对方,但是不暴露于任何第二区域22。
在第二位置,即图14B所示的位置B,第一和第二表面16、20从第一位置,即位置A通过相对旋转运动移动到第二位置,即位置B。在这个位置,至少一个第一区域18暴露于至少一个第二区域22等。当在位置B时,对应的第一和第二等区域 18、22通过一系列螺旋连接的导管26彼此暴露于对方。例如如图14A和14B所示,第一和第二位置之间的相对运动引起导管相对于第一和第二区域18、22等从第一位置,即位置A移动到位置B,在第一位置,每个导管暴露于相邻的第一区域18并且允许第一区域18的行之间流体连通,而在位置B,通过一系列螺旋连接的导管26,每个导管现在暴露于一个第一区域18、一个对应的第二区域22等。于是第一和第二表面16、20可以通过沿着与从位置A到位置B运动的相同的方向的相对旋转运动从第二位置,即位置B移动到第三位置,即位置C(在图14A和14B未示出)。在如位置A的这个位置,两个或多个第一区域18、两个或多个第二区域22等与导管26流体连通或暴露于导管26,但是在这个位置第一和第二等区域18、22都不彼此暴露于对方。在这个第三位置,即位置C,两个或多个第一区域18通过一系列径向连接的导管26彼此暴露于对方,但是不暴露于第二区域22等。
然后第一和第二表面16、20可以通过进一步的相对旋转运动,从第三位置,即位置C移动到第四位置,即位置D(在图14A和14B未示出)。在如位置B的这个位置处,通过一系列螺旋导管26至少一个第一区域18暴露于至少一个第二区域22等。
在每个顺序的滑动位置,源自于入口导管28的每个导管在下一个相邻的第一或第二等区域18、22上滑动。对于每个顺序的滑动位置,导管26在通过一系列螺旋导管26连接第一区域18的行、第二区域22的行等和连接第一区域18与第二区域22等之间交替。
在本发明的某些实施例中,区域保持一定量的它们所暴露的物质。这可以通过将区域表面功能化、将材料沉积在区域上、在聚合反应(例如肽和DNA合成)中将单体附着在区域上等来实现。在组装该装置之前,区域可以用被捕捉的珠或凝胶装载,因此这些珠和凝胶所吸收、吸附或反应的无论何种物质也被捕获。这个装置还包括出口导管或可选的出口,例如可透气元件。尽管上面的描述涉及具有一个底板和一个平板的装置,但是可选实施例可以包括如图5A-5B所示的多个中间板。
这种装置的潜在应用包括进行酶活性、细胞存活性、细胞粘附、细胞结合等的测定、催化活性或选择性的筛选、储存能力或多价螯合作用的筛选(例如,气体的吸收或有毒化合物的捕获等),以及测试诸如电学、磁学、光学等各种性质。
本文描述的本发明还可以用于放射性同位素的合成。制造放射性同位素的典型方法公开在美国专利No.7,235,216、6,567,492、5,264,570和5,169,942中,其全部内容在此引为参考。这些多步骤方法可以通过控制在装置的每个顺序滑动位置的条件来进行。
用于形成上述本发明的基质和装置10的材料,根据装置10的适当功能所需的物理和化学特性来选择。在微流体应用中,第一和第二表面16、20,第一和第二区域18、22,以及导管26、28、30,通常用能够形成高清晰度(或高“分辨率”)部件,例如具有毫米、微米和亚微米尺寸的微通道、小室、混合部件等的材料来制造。也就是,材料应当能够利用例如干法蚀刻、湿法蚀刻、激光蚀刻、激光烧蚀、模塑法、压花法等进行微制造,以便具有所需的微型化表面部件;优选地,基质能够以这样一种方式进行微制造,以便在基质的表面中、表面上或通过表面形成部件。微结构也可以通过向表面添加材料而形成在基质表面上,例如可以利用可光成像的聚酰亚胺在玻璃基质的表面上形成聚合物通道。此外,所用的所有的装置材料优选相对于在引进流体时与它们所接触的任何物质(例如,关于pH、电场等),在化学上是惰性的并且在物理上是稳定的。用于形成本发明装置的适合材料包括但不限于聚合材料、陶瓷材料(包括氧化铝、氧化硅、二氧化锆等)、半导体材料(包括硅、砷化镓等)、玻璃、金属、复合材料及其层压制品。
滑动芯片的玻璃蚀刻制造:
装置10可以由具有互补图案的两片玻璃载片构成,所述图案用标准的光刻蚀刻和湿法化学蚀刻技术制造(例如,参见He等的文章,Sens Actuators B Chem.2008年2月22日,129(2):811-817)。具有铬和光致抗蚀涂层的钠钙玻璃板从Telic Company(Valencia,CA)获得。用Karl Suss,MJBB3接触对准器将具有光致抗蚀涂层的玻璃板与包含微导管和区域结构的光掩膜对齐。光掩膜也可以包含标记以使掩膜与板对齐。然后将玻璃板和光掩膜对紫外光曝光一分钟。除去光掩膜,通过将玻璃板浸入0.1mol/L NaOH溶液中2分钟使玻璃板被显现。只有光致抗蚀涂层暴露于UV光的区域溶解在溶液中。用铬蚀刻剂(0.6:0.365M的HClO4/(NH4)2Ce(NO3)6溶液)除去暴露的下面的铬层。将板用Milliopore水漂洗并用氮气干燥,将玻璃板的背面用PVC密封胶条(McMaster-Carr)贴上以保护玻璃的背面。然后将贴有密封胶条的玻璃板仔细地浸入具有由1:0.5:0.75mol/L的HF/HN4F/HNO3构成的缓冲蚀刻剂的塑料容器中,在40℃的温度下蚀刻钠钙玻璃。蚀刻速度通过蚀刻温度来控制,并且区域和导 管深度通过蚀刻时间来控制。蚀刻之后,从板上去掉胶条,然后将板用Milliopore水充分漂洗并用氮气干燥。剩余的光致抗蚀涂层用乙醇漂洗除去,而剩余的铬涂层通过将板浸入铬蚀刻剂中除去。玻璃板的表面通过用十三氟-1,1,2,2-四氢辛基-1-三氯硅烷(UnitedChemical Technologies,Inc.美国化工技术公司)进行硅烷化赋予疏水性。入口孔用直径0.76mm的金刚石钻头钻出。
在滑动芯片的两个或多个区域之间形成流体连通的一种方法,包括使用能够埋入滑动芯片中的具有至少一个截面尺寸在纳米范围内的通道、即纳米通道。纳米通道能够埋入多层滑动芯片中。纳米通道的高度可以以纳米级分辨率改变,例如,这将禁止微米尺寸的细胞在孔之间转移,但是能够转移蛋白质、小泡、胶团、遗传物质、小分子、离子以及其他分子和大分子,包括细胞培养基和分泌产物。也可以操控纳米通道的宽度、长度和扭曲度,以便控制孔之间的输送动力学。纳米通道可以如在“超微制造领域中细菌复合种群”(Bacterial metapopulations in nanofabricated landscapes,Juan E.Keymer,PeterGalajda,Cecilia Muldoon,Sungsu Park,and Robert H.Austin,PNAS November 14,2006vol.103no.4617290-17295)中所述来制造,或者通过在第一玻璃件上蚀刻出纳米通道并将其与第二玻璃件相接触,任选地接着进行粘合步骤来制造。应用包括过滤、细胞和颗粒物的捕获、长期细胞培养以及控制细胞和细胞集落以及组织中的相互作用。
PDMS/玻璃类型的装置10也可以利用与前面所述的(Angew.Chem.Int.Ed.2004,43,2508-2511)相似的软光刻技术(McDonald,J.C.;Whitesides,G.M.AccountsChem.Res.2002,35,491-499.)来制造。所用的装置包含两层,每层由具有导管和区域的PDMS薄膜以及尺寸为75mm×25mm的1mm厚的显微镜玻璃载片构成。为了制造装置,对玻璃载片进行清洁并进行氧等离子处理。将Dow-Corning Sylgard 184A和B组分以5:1的质量比混合,并浇注到滑动芯片的模具中。在固化之前将玻璃载片放置在PDMS上。将带有铁珠的玻璃底板放置在玻璃载片上,以使PDMS薄膜变得更薄。将装置在室温下预固化7小时,然后移到60℃烤箱中并固一晚上。固化后,将装置从模具中剥出,并用十三氟-1,1,2,2-四氢辛基-1-三氯硅烷进行硅烷化。入口孔用直径0.76mm的金刚石钻头钻出。
适合用于本发明的聚合材料可以是有机聚合物。这样的聚合物可以是天然存在的或合成的、交联的或非交联的同聚物或共聚物。感兴趣的具体聚合物包括但不限于聚 酰亚胺、聚碳酸酯、聚酯、聚酰胺、聚醚、聚氨基甲酸酯、聚氟烃、聚苯乙烯、聚(丙烯腈-丁二烯-苯乙烯)(ABS)、丙烯酸酯和丙烯酸聚合物例如聚甲基丙烯酸甲酯聚丙烯酸盐甲酯,以及其他取代和未取代聚烯烃及其共聚物。一般而言,当微装置用于输送生物流体时,至少一个基质或装置10的一部分包括抗生物结垢的聚合物。聚酰亚胺是特别重要的,并且在许多情况下被证明是非常理想的基质材料。聚酰亚胺可以在例如商品名(DuPont,Wilmington,Del.)和(Ube Industries,Ltd.,Japan)下购买。聚醚醚酮(PEEK)也表现出理想的抗生物结垢性质。适合用于本发明的聚合材料包括硅酮聚合物例如聚二甲基硅氧烷和环氧树脂聚合物。
本发明的装置10也可以用“复合材料”、即由不同材料构成的复合物制成。复合材料可以是嵌段复合材料例如A-B-A嵌段复合材料、A-B-C嵌段复合材料等。可选地,复合材料可以是材料的非均相组合,即,其中材料分离在不同相中,或者是不同材料的均相组合。当在本文中使用时,术语“复合材料”可以用来包括“层压制品”复合材料。“层压制品”是指从相同或不同材料的若干个不同粘合层形成的复合材料。其他优选的复合材料基质包括聚合物层压制品、聚合物-金属层压制品,例如镀铜的聚合物、金属中包含陶瓷材料或金属中包含聚合物的复合材料。一种优选的复合材料是聚酰亚胺层压制品,其通过将诸如的的第一层聚酰亚胺与称为的聚酰亚胺的热粘合形式的第二薄层共挤出来形成,也可以从杜邦公司(Wilmington,Del.)获得。
装置可以用诸如单独或组合的压塑模制、注模模制或真空模制的技术来制造。具有足够疏水性的材料在模制后可以直接使用。也可以使用亲水材料,但是可能需要附加的表面变性。而且,装置也可以用CNC机械加工从各种材料直接切削,所述材料包括但不限于塑料、金属和玻璃。微制造技术可用于生产具有亚微米尺寸部件的装置。这些制造技术包括但不限于硅的深度反应性离子蚀刻、硅的KOH蚀刻以及玻璃的HF蚀刻。聚二甲基硅氧烷装置也可以用机械加工的阴像压花来制造。除了刚性基质之外,柔性的、可拉伸的、可压缩的以及可以改变形状或尺寸的其他类型的基质,可以用作滑动芯片的某些实施例的材料。在一些实施例中,这些性质可用于例如控制或诱导滑动。
在一些情况下,底板12和平板14以及基质可以用相同材料制造。可选地,可以使用不同材料。例如,在一些实施例中,底板12和平板14可由陶瓷材料构成,而基 质可以由聚合材料构成。
装置可以在任一表面16、20上包含导电材料。材料可以造形成为任何形状的至少一个区域或补片,以形成电极。至少一个电极可以位于一个表面16上,使得在第一位置,该至少一个电极不暴露于相对表面20上的至少一个第一区域,但是当装置的两个部件12、14相对于彼此移动到第二位置时,该至少一个电极重叠于至少一个区域18。至少一个电极可以电连接到外部电路。至少一个电极可以用来进行电化学反应,用于检测和/或合成。如果电压加在至少两个电极上,所述电极暴露于流体连通的区域或多个区域或流体连通的区域和导管的组合中的物质,则得到的系统可以用来进行电泳分离和/或电化学反应和/或输送。任选地,这少一个导管和/或至少一个区域可以存在于与至少一个电极相同的表面上,并且可以定位成使得在第一位置中,至少一个导管和至少一个电极都不暴露于相对表面上的区域18,但是当装置的两个部分12、14相对于彼此移动到第二位置时,至少一个导管和/或至少一个区域和至少一个电极与至少一个区域18重叠。
本发明的若干个实施例需要物质运动通过、进入、和/或跨过至少一个导管和/或区域。例如,物质的运动可以用于免疫测定中的清洗步骤、除去产物或副产物、引入试剂或稀释剂。
物质的装载可以通过本文所述的许多方法进行。例如,通过将出口设计成当物质到达出口时增加流动阻力,可以进行装料以填充装置的导管和区域的任何一个。这种方法对于限定体积的样品或使过量体积通过出口流出同时从物质中任选地捕获被分析物是有价值的。被分析物可以主要是能够流过微尺度系统的任何分散物质。被分析物捕获可以通过例如用收集在区域中的捕获元件(例如,通过磁力或通过几何特征或使用珠和导管的相对尺寸或使用膜保持在区域中的颗粒物、珠或凝胶)预装载装置的区域来完成,因此吸收、吸附或与这些珠或凝胶反应的所有物质也被捕获。然后这些区域将保留被暴露于它们的物质的被分析物的量或组分。这也可以通过区域表面的功能化、将材料沉积在区域上、将聚合反应(例如肽或DNA合成)中的单体附着在区域上等来实现。
捕获要素的其他例子包括抗体、亲和蛋白、适体、珠、颗粒物和生物细胞。珠可以是例如聚合物珠、石英珠、陶瓷珠、粘土珠、玻璃珠、磁性珠、金属珠、无机珠,并且可以使用有机珠。珠和颗粒物基本上可以具有任何形状,例如球形、螺旋形、不 规则形、类球形、杆形、锥形、盘形、立方体、多面形或其组合。捕捉元件任选地耦联于试剂、亲和基体材料等,例如核酸合成试剂、肽合成试剂、聚合物合成试剂、核酸、核苷酸、核苷碱基、核苷、肽、氨基酸、单体、细胞、生物样品、合成分子或其组合。捕捉要素任选地在装置内用于许多目的,包括用作空白颗粒物、虚设颗粒物、标定颗粒物、样品颗粒物、试剂颗粒物、测试颗粒物和分子捕获颗粒物,例如在低浓度下捕获样品。此外,捕获元件可以用来提供颗粒物保留元件。捕获要素的尺寸制造成通过或不通过所选的导管或膜(或其他微尺度元件)。因此,颗粒物或珠的尺寸范围将随用途而定。
可以导入物质以填充大部分反应区域和导管。填充可以进一步继续以提供大于区域和导管容积的过量样品。导入大于区域和导管体积的物质体积,将增加可以捕获在捕获元件中的被分析物的量。在导入物质后可以进行冲洗流体的导入,以冲洗捕获元件和与捕获元件结合的被分析物。可以进行随后的进一步的滑动以进行被分析物的反应和分析。
当分析具有低浓度被分析物的样品,例如稀有核酸或蛋白质、遗传或传染病的标志物和生物标志物、环境污染物等时,上面所述的方法是有益的(参见例如USSN 10/823,503,在此引为参考)。另一个实例包括分析稀有细胞,例如循环癌细胞或母体血液中用于产前诊断的胎儿细胞。对于通过捕获并进一步分析血液、痰液、骨髓吸出物和诸如尿液和脑脊液的其他体液中的微生物细胞以进行感染的快速早期诊断来说,这种方法是有益的。珠和细胞两者的分析可以得益于随机限制(参见例如PCT/US08/71374,结合于此供参考)。
在一些实施例中,装置10可以用于样品、包括复杂生物基体中的细菌的快速检测和药物敏感性筛查,而不需要预先温育。与依赖于样品温育以将细菌浓度增加到可检测水平的常规细菌培养和检测方法不同,本发明的方法可用于将单个细菌限制在容积为纳升级的区域中。当单个细胞被限制在小容积区域中以使装载量小于每个区域一个细菌时,检测时间与区域容积成正比。限制增加了细胞浓度并使释放的分子积累在细胞周围,消除了预先温育步骤并且减少了检测细菌所需的时间。这种方法可以被称为“随机限制”。对于许多抗生素,该装置可以例如用于在单个实验中确定细菌的的抗生谱、或抗生素敏感性图,例如耐甲氧西林金黄色葡萄球菌(Staphylococcus aureus)(MRSA)并且测量药物抗这些菌株的最低抑制浓度(MIC)。此外,这种装置可用 于识别人类血浆样品中的敏感性和抗药性金黄色葡萄球菌菌株。装置也能够对含有细菌的单一样品同时进行多种测试。装置提供了快速有效的对细菌感染的患者进行特异性治疗的方法,并且能够扩展到需要在短时间内对细菌样品进行多种功能测试的各种应用中。
随机限制已经使用在其他系统中,参见例如下述文献:“使用基于阻塞的微流体装置通过纳升微滴中的随机限制检测细菌病确定它们对抗生素的易感性”(Detectingbacteria and determining their susceptibility to antibiotics by stochasticconfinement in nanoliter droplets using plug-based microfluidics,BoedickerJ.Q.,Li L.,Kline T.R.,Ismagilov R.F.Lab on a chip 8(8):1265,2008Aug);已公开的美国专利申请60/962,426;M.Y.He,J.S.Edgar,G.D.M.Jeffries,R.M.Lorenz,J.P.Shelby和D.T.Chiu,Anal.Chem.,2005,77,1539-1544;Y.Marcy,T.Ishoey,R.S.Lasken,T.B.Stockwell,B.P.Walenz,A.L.Halpern,K.Y.Beeson,S.M.D.Goldberg和S.R.Quake,PLoS Genet.,2007,3,1702-1708;A.Huebner,M.Srisa-Art,D.Holt,C.Abell,F.Hollfelder,A.J.Demello和J.B.Edel,Chem.Commun.,2007,1218-1220;S.Takeuchi,W.R.DiLuzio,D.B.Weibel和G.M.Whitesides,Nano Lett.,2005,5,1819-1823;P.Boccazzi,A.Zanzotto,N.Szita,S.Bhattacharya,K.F.Jensen和A.J.Sinskey,App.Microbio.Biotech.,2005,68,518-532;V.V.Abhyankar和D.J.Beebe,Anal.Chem.,2007,79,4066-4073。类似的技术已用于单分子和单个酶的工作。(H.H.Gorris,D.M.Rissin和D.R.Walt,Proc.Natl.Acad.Sci.U.S.A.,2007,104,17680-17685;A.Aharoni,G.Amitai,K.Bernath,S.Magdassi和D.S.Tawfik,Chem.Biol.,2005,12,1281-1289;O.J.Miller,K.Bernath,J.J.Agresti,G.Amitai,B.T.Kelly,E.Mastrobattista,V.Taly,S.Magdassi,D.S.Tawfik和A.D.Griffiths,Nat.Methods,2006,3,561-570;J.Huang和S.L.Schreiber,Proc.Natl.Acad.Sci.U.S.A.,1997,94,13396-13401;D.T.Chiu,C.F.Wilson,F.Ryttsen,A.Stromberg,C.Farre,A.Karlsson,S.Nordholm,A.Gaggar,B.P.Modi,A.Moscho,R.A.Garza-Lopez,O.Orwar和R.N.Zare,Science,1999,283,1892-1895;J.Yu,J.Xiao,X.J.Ren,K.Q.Lao和X.S.Xie,Science,2006,311,1600-1603),所有这些文献的全部内容结合于此供参考。装置也能在同一实验中从单一细菌样品进行对细菌功能的大量测定,其对于快速抗生素易感性筛选来说特别有用。以前,凝胶微滴被用于易感性筛选(Y.Akselband,C.Cabral,D.S.Shapiro和P.McGrath,J.Microbiol.Methods,2005,62, 181-197;C.Ryan,B.T.Nguyen和S.J.Sullivan,J.Clin.Microbiol.,1995,33,1720-1726)。
装置可用于检测生物体。术语“生物体”是指任何生物体或微生物,包括细菌、酵母、真菌、病毒、原生生物(原生动物、微藻)、古细菌和真核生物。术语“生物体”是指包含能够通过本发明的方法检测和鉴定的核酸的活的物质和病毒。生物体包括但不限于细菌、古菌、原核生物、真核生物、病毒、原生动物、支原体、真菌和线虫。不同生物体可以是不同株、不同变种、不同种、不同属、不同科、不同目、不同纲、不同门和/或不同的生物体。生物体可以从环境来源分离,所述环境来源包括土壤提取物、海洋沉积物、淡水沉积物、热泉、冰架、外空样品、岩石缝隙、云层、附着于来自水环境的颗粒物,并且可以参与与多细胞生物体的共生关系。这种生物体的实例包括但不限于链霉菌属(Streptomyces)物种以及来自自然来源的未定性/未知物种。
生物体包括遗传工程改造的生物体。生物体的进一步实例包括细菌病原体例如:嗜水气单胞菌(Aeromonas hydrophila)和其他种(spp.);炭疽芽胞杆菌(Bacillusanthracis);蜡样芽胞杆菌(Bacillus cereus);产肉毒杆菌神经毒素的梭状芽胞杆菌属(Clostridium)物种;流产布鲁氏杆菌(Brucella abortus);马尔他布鲁氏杆菌(Brucellamelitensis);猪布鲁氏杆菌(Brucella suis);鼻疽伯克霍尔德氏菌(Burkholderiamallei)(旧称鼻疽假单胞菌(Pseudomonas mallei));类鼻疽伯克霍尔德氏菌(Burkholderia pseudomallei)(旧称类鼻疽假单胞菌(Pseudomonas pseudomallei));空肠弯曲杆菌(Campylobacter jejuni);鹦鹉衣原体(Chlamydia psittaci);肉毒梭状芽胞杆菌(Clostridium botulinum);肉毒梭状芽胞杆菌(Clostridium botulinum);产气荚膜梭菌(Clostridium perfringens);粗球孢子菌(Coccidioides immitis);Coccidioidesposadasii;反刍动物考德里氏体(Cowdria ruminantium)(牛羊水心胸病);贝纳柯克斯体(Coxiella burnetii);致泻性大肠杆菌群(Enterovirulent Escherichia co//group)(EEC群)例如肠产毒性大肠杆菌(Escherichia coli–enterotoxigenic)(ETEC)、肠致病性大肠杆菌(Escherichia coli–enteropathogenic)(EPEC)、肠出血性大肠杆菌O157:H7(Escherichia coli-O157:H7enterohemorrhagic)(EHEC)和肠侵染性大肠杆菌(Escherichia coli–enteroinvasive)(EIEC);埃立克体属物种(Ehrlichia spp.)例如查菲埃立克体(Ehrlichia chaffeensis);土拉热弗朗西丝 菌(Francisella tularensis);嗜肺军团菌(Legionella pneumophilia);柑桔青果病菌非洲种(Liberobacterafricanus);柑桔青果病菌亚洲种(Liberobacter asiaticus);单核细胞增生性李斯特菌(Listeria monocytogenes);混杂的革兰氏阴性肠道细菌例如克雷伯氏杆菌(Klebsiella)、肠杆菌(Enterobacter)、变形杆菌(Proteus)、柠檬酸杆菌(Citrobacter)、产气杆菌(Aerobacter)、普罗威登斯菌(Providencia)和沙雷菌(Serratia);牛分枝杆菌(Mycobacterium bovis);结核分枝杆菌(Mycobacterium tuberculosis);山羊支原体(Mycoplasma capricolum);蕈状支原体真菌变种(Mycoplasma mycoides ssp mycoides);菲律宾指霜霉(Peronosclerospora philippinensis);豆薯层锈菌(Phakopsorapachyrhizi);类志贺邻单胞菌(Plesiomonas shigelloides);茄科雷尔氏菌小种3生物变种2(Ralstonia solanacearum race 3,biovar 2);普氏立克次体(Rickettsiaprowazekii);立氏立克次体(Rickettsia rickettsii);沙门菌属物种(Salmonellaspp.);(Schlerophthora rayssiae varzeae);志贺菌属物种(Shigella spp.);金黄色葡萄球菌(Staphylococcus aureus);链球菌(Streptococcus);马铃薯癌肿病菌(Synchytrium endobioticum);霍乱弧菌非O1型(Vibrio cholerae non-O1);霍乱弧菌O1型(Vibrio cholerae O1);副溶血弧菌(Vibrio parahaemolyticus)和其他弧菌(Vibrios);创伤弧菌(Vibrio vulnificus);水稻黄单胞菌(Xanthomonas oryzae);耐酸木杆菌(Xylella fastidiosa)(柑桔杂色退绿菌株);小肠结肠炎耶尔森菌(Yersiniaenterocolitica)和假结核耶尔森菌(Yersinia pseudotuberculosis);以及鼠疫耶尔森菌(Yersinia pestis)。生物体的其他实例包括病毒,例如:非洲马瘟病毒;非洲猪瘟病毒;阿卡班病毒;禽流感病毒(高致病性);Bhanja病毒;蓝舌病毒(外来种);骆驼痘病毒;猴疱疹病毒1型;基孔肯亚病毒;经典猪瘟病毒;冠状病毒(SARS);克里米亚-刚果出血热病毒;登革病毒;Dugbe病毒;埃博拉病毒;脑炎病毒例如东方马脑炎病毒、日本脑炎病毒、墨累谷脑炎病毒和委内瑞拉马脑炎病毒;马源性麻疹病毒;Flexal病毒;口蹄疫病毒;杰米斯顿病毒;山羊痘病毒;汉坦病毒或其他汉坦病毒属病毒;亨德拉病毒;Issyk-kul病毒;科坦戈病毒;拉沙热病毒;羊跳跃病病毒;结节性皮肤病病毒;淋巴细胞性脉络丛脑膜炎病毒;恶性卡他热病毒(外来种);马尔堡病毒;马亚罗病毒;曼那角病毒;猴痘病毒;穆坎布病毒;新城疫病毒(WND);尼帕病毒;诺沃克病毒群;奥罗普切病毒;奥轮谷病毒;小反刍动物瘟疫病毒;派尔里病毒;李痘病毒;脊髓灰质炎病毒;马铃薯病 毒;玻瓦桑病毒;裂谷热病毒;牛瘟病毒;轮状病毒;Semliki森林病毒;绵羊痘病毒;南美出血热病毒例如Flexal、瓜纳瑞托、胡宁、马丘坡和萨比亚病毒;斯庞德温尼病毒;猪水泡病病毒;蜱媒脑炎群(黄病毒)病毒例如中欧蜱媒脑炎、远东蜱媒脑炎、俄罗斯春夏脑炎、夸赛纳森林病和Omsk出血热病毒;瓦瑞奥拉重型天花病毒(天花病毒);瓦瑞奥拉轻型天花病毒(类天花);水泡性口炎病毒(外来种);韦塞尔斯布朗病毒;西尼罗病毒;黄热病病毒和南美出血热病毒例如胡宁、马丘坡、萨比亚、Flexal和瓜纳瑞托病毒。
生物体的其他实例包括寄生性原生动物和线虫,例如:棘阿米巴属(Acanthamoeba)和其他自由生活的变形虫;异尖属线虫(Anisakis sp.)和其他相关线虫似蚓蛔线虫(Ascaris lumbricoides)和毛首鞭形线虫(Trichuris trichiura);微小隐孢子虫(Cryptosporidium parvum);圆孢子虫(Cyclospora cayetanensis);阔节裂头绦虫(Diphyllobothrium spp.);溶组织内阿米巴(Entamoeba histolytica);胃瘤线虫(Eustrongylides sp.);贾兰第鞭毛虫(Giardia lamblia);侏形吸虫(Nanophyetusspp.);血吸虫(Shistosoma spp.);刚地弓形虫(Toxoplasma gondii);丝虫(Filarialnematodes)和毛线虫(Trichinella)。被分析物的其他实例包括过敏原例如植物花粉和小麦谷蛋白。
生物体的其他实例包括真菌,例如:曲霉属物种(Aspergillus spp.);皮炎芽生菌(Blastomyces dermatitidis);假丝酵母(Candida);粗球孢子菌(Coccidioidesimmitis);Coccidioides posadasii;新型隐球菌(Cryptococcus neoformans);荚膜组织胞浆菌(Histoplasma capsulatum);玉米锈病病菌(Maize rust);水稻瘟病病菌(Riceblast);水稻胡麻斑病病菌(Rice brown spot disease);黑麦瘟病病菌(Rye blast);申克孢子丝菌(Sporothrix schenckii)和小麦真菌。生物体的其他实例包括线虫例如秀丽隐杆线虫(C.Elegans)和致病蠕虫或线虫。
样品可以从患者或人获得,并包括血液、粪便、尿液、唾液或其他体液。也可以分析食品样品。样品可以是潜在包含生物体的任何样品。发现生物体的环境包括但不限于地热和水热场地、酸性土壤、其中的酶为中性至碱性的sulfotara和沸泥塘、池塘、热泉和间歇泉、海洋放线菌类、后生动物、内和外共生体、热带土壤、温带土壤、干旱土壤、堆肥堆、粪堆、海洋沉积物、淡水沉积物、水浓缩物、高盐和超冷却海冰、北极冻原、浮藻海、开放洋面、海洋雪、水底微生物垫(例如鲸落、泉和深海热泉)、昆虫和线虫消化道微生物群落、北极熊鼻孔、植物内寄生菌、附生水样、工业场所和 离位富集。此外样品可以从真核生物、原核生物、粘细菌(环氧聚微管素)空气、水、沉积物、土壤或岩石、植物样品、食品样品、消化道样品、唾液样品、血液样品、汗液样品、尿液样品、脊髓液样品、组织样品、阴道拭子、粪便样品、羊水样品、指纹、气溶胶包括由咳嗽产生的气溶胶、皮肤样品、组织包括从活检获得的组织、和/或颊漱口样品分离。
为了监测装置中细菌的存在和代谢活性,可以向培养物添加荧光存活指示剂alamarBlue的活性成分是荧光氧化还原指示剂刃天青(J.O’Brien和F.Pognan,Toxicology,2001,164,132-132.)。刃天青被细胞代谢活动中使用的电子受体例如NADH和FADH还原,产生荧光分子试卤灵。因此,区域中的荧光强度与细胞,在这种情况下是细菌的存在和代谢活性相关。因为刃天青指示细胞存活性,因此基于刃天青的测定方法以前被用于抗生素测试中(S.G.Franzblau,R.S.Witzig,J.C.McLaughlin,P.Torres,G.Madico,A.Hernandez,M.T.Degnan,M.B.Cook,V.K.Quenzer,R.M.Ferguson和R.H.Gilman,J.Clin.Microbiol.,1998,36,362-366;A.Martin,M.Camacho,F.Portaels和J.C.Palomino,Antimicrob.Agents Chemother.,2003,47,3616-3619;K.T.Mountzouros和A.P.Howell,J.Clin.Microbiol.,2000,38,2878-2884;C.N.Baker和F.C.Tenover,J.Clin.Microbiol.,1996,34,2654-2659)。刃天青可用于监测活细菌的存在和细菌对药物例如抗生素的响应两者。随机限制减少了检测时间,这是因为在含有细菌的区域中,细菌处于与起始溶液中相比有效的更高浓度下,并且由于刃天青还原产物更快积累在区域中,因此更快地达到检测所需的信噪比。
在食品、医药和安全工业中,检测低浓度物质(低至单个分子和单个细菌)是一项挑战。装置可以允许人们将这样的样品浓缩并进行分析。例如,含有少量目标DNA的样品在过量的其他DNA存在下可以被扩增。如果区域被制造得足够小,使得一些区域含有单个目标DNA分子,而其他区域不含目标DNA分子,则扩增可以被检测到。这种在区域中的分离有效地产生了具有比原始样品更高的目标DNA浓度的区域。DNA在那些区域中的扩增,例如通过PCR,与原始样品的扩增相比可以产生更高的信号。此外,通过类似方法将细菌定位在区域中,可以产生高的局部细菌浓度(每个小区域1个),使它们更容易检测。对于使用群体敏感的某些细菌来说,这可能是激活并检测它们的方法。这样的细菌在低浓度下由于缺乏活性可能是失活/无致病性并 难以检测的,但是在高细菌浓度下,信号传导分子的浓度增加,从而激活了细菌。如果将单个细菌定位在区域中,由细菌产生的信号传导分子不能扩散开,其浓度将快速增加,触发细菌的活化,使检测成为可能。此外,装置可用于通过在区域内部产生凝胶或基质来定位细胞核细菌。通过使空气流过诸如水的流体,然后使用该流体填充多个区域,可以将细菌和其他物质(颗粒物和分子)收集并浓缩在填塞物中。这产生含有浓缩样品的区域,因为一些区域不含任何被分析物。
PCR技术公开在下列已公开的美国专利申请和国际专利申请中:US 2008/0166793,WO 08/069884,US 2005/0019792,WO 07/081386,WO 07/081387,WO 07/133710,WO 07/081385,WO 08/063227,US 2007/0195127,WO 07/089541,WO 07030501,US 2007/0052781,WO 06096571,US 2006/0078893,US 2006/0078888,US 2007/0184489,US 2007/0092914,US 2005/0221339,US 2007/0003442,US 2006/0163385,US 2005/0172476,US2008/0003142和US 2008/0014589,所有这些申请的整个内容结合于此供参考。
下面的文章描述了通过制造小容积区域使少量物品乃至没有物品掺入到区域中从而来浓缩细胞和/或化学物质的方法,其中的具体应用涉及PCR,这些文章在此引为参考:Anal Chem.2003Sep 1;75(17):4591-8.在塑料装置中集成聚合酶链反应、调节流量和电泳用于检测细菌(Integrating polymerase chain reaction,valving,andelectrophoresis in a plastic device for bacterial detection.);Koh CG,Tan W,Zhao MQ,Ricco A J,Fan ZH;Lab Chip.2005Apr;5(4):416-20.Epub 2005Jan 28.使用聚合物微芯片对癌症标志物进行并行纳升级检测(Parallel nanoliter detection ofcancer markers using polymer microchips.);Gulliksen A,Solli LA,Drese KS,Sorensen O,Karlsen F,Rogne H,Hovig E,R.;Ann N Y Acad Sci.2007Mar;1098:375-88.利用上转换荧光成像技术(UPT)开发用于检测口腔样品中的病原体的微流体装置(Development of a microfluidic device for detection of pathogens in oralsamples using upconverting phosphor technology(UPT));Abrams WR,Barber CA,McCann K,Tong G,Chen Z,Mauk MG,Wang J,Volkov A,Bourdelle P,Corstjens PL,Zuiderwijk M,Kardos K,Li S,Tanke H J,Sam Niedbala R,Malamud D,Bau H;Sensors,2004.Proceedings of IEEE 24-27 Oct.2004 Page(s):1191-1194vol.3.用于细菌检测的基于微芯片的DNA纯化和实时PCR生物传感器(A microchip-based DNA purification andreal-time PCR biosensor for bacterial detection);Cady,N.C.;Stelick,S.;Kunnavakkam,M.V.;Yuxin Liu;Batt,C.A.;Science.2006Dec 1;314(5804):1464-7.微流体数字PCR能够对单个环境细菌进行多基因分析(Microfluidic Digital PCR EnablesMultigene Analysis of Individual Environmental Bacteria);Elizabeth A.Ottesen,Jong Wook Hong,Stephen R.Quake,Jared R.Leadbetter;Electrophoresis 2006,27,3753-3763.利用基于微流体芯片的PCR自动化筛查和产物检测来评估肾移植受体中BK病毒有关的肾病变的风险(Automated screening using microfluidic chip-based PCR andproduct detection to assess risk of BK virus associated nephropathy in renaltransplant recipients);Govind V.Kaigala,I,Ryan J.Huskins,Jutta Preiksaitis,Xiao-Li Pang,Linda M.Pilarski,Christopher J.Backhouse;Journal ofMicrobiological Methods 62(2005)317-326.用于水中微生物的基于绝缘体(无电极)的介电电泳浓缩器(An insulator-based(electrodeless)dielectrophoreticconcentrator for microbes in water);Blanca H.Lapizco-Encinas,RafaelV.Davalos,Blake A.Simmons,Eric B.Cummings,Yolanda Fintschenko;Anal.Chem.2004,76,6908-6914.用于浓缩细胞核分子的动电力学生物处理器(ElectrokineticBioprocessor for Concentrating Cells and Molecules);Pak Kin Wong,Che-YangChen,Tza-Huei Wang,and Chih-Ming Ho;Lab Chip,2002,2,179-187.塑料微型反应器中的高灵敏度PCR测定法(High sensitivity PCR assay in plastic micro reactors);Jianing Yang,Yingjie Liu,Cory B.Rauch,Randall L.Stevens,Robin H.Liu,RalfLenigk and Piotr Grodzinski;Anal.Chem.2005,77,1330-1337.具有重力驱动流的基于高通量纳升级样品导入微流体芯片的流动注射分析系统(High-Throughput NanoliterSample Introduction Microfluidic Chip-Based Flow Injection Analysis Systemwith Gravity-Driven Flows);Wen-Bin Du,Qun Fang,Qiao-Hong He,and Zhao-LunFang;Science Vol 3155January 2007,81-84.计数单个细胞中的低拷贝数蛋白(CountingLow-Copy Number Proteins in a Single Cell);Bo Huang,Hongkai Wu,Devaki Bhaya,Arthur Grossman,Sebastien Granier,Brian K.Kobilka,I,Richard N.Zare;NatureBiotechnology Vol 22(4),April 2004.具有并行构造的纳升级核酸处理器(Ananoliterscale nucleic acid processor with parallel architecture);Hong JW,Studer V,Hang G,Anderson WF,and Quake SR;Electrophoresis 2002,23,1531-1536.用于聚合酶链反应的纳升旋转装置(A nanoliter rotary device for polymerase chainreaction.);Jian Liu,Markus Enzelberger,and Stephen Quake; Biosensors andBioelectronics 20(2005)1482-1490.经由纳升容积中的PCR从单一拷贝中基于微型小室阵列的DNA定量及特定序列检测(Microchamber array based DNA quantification andspecific sequence detection from a single copy via PCR in nanolitervolumes.);Yasutaka Matsubara,Kagan Kerman,Masaaki Kobayashi,Shouhei Yamamura,Yasutaka Morita,Eiichi Tamiya;US专利申请2005/0019792,微流体装置及其使用方法(Microfluidic device and methods of using same);和Nature Methods 3,541-543(2006),生物学微滴区室化的方法和应用概述(Overview:methods and applications fordroplet compartmentalization of biology)John H Leamon,Darren R Link,MichaelEgholm&Jonathan M Rothberg。
在特定细菌存在中改变颜色的荧光培养基,也可用于检测细胞。单色培养基包括例如Difco mEI琼脂、Merck/EMD ChromocultTM大肠杆菌琼脂、ChromocultTM肠球菌琼脂/肉汤或LMX肉汤、BL琼脂、IDEXX Colilert、CPI ColiTag和Merck/EMD与发色团或荧光团偶联的典型的酶底物包括ONPG、CPRG和MUG。它们也可以即用型格式例如BBL ml琼脂和“方便”包装例如IDEXX Colilert、CPI ColiTag和Merck/EMD的形式获得。
为了进行抗生素筛选,区域可以包含抗生素,并且允许填充有样品的区域温育,以允许微生物生长。抗生素是公知的,并且是抑制微生物生长或杀死微生物的物质。抗生素的实例包括但不限于金霉素、枯草杆菌肽、制霉菌素、链霉素、多粘菌素、短杆菌肽、氧四环素、氯霉素、利福平、头孢磺啶、头孢替安、头孢西丁、青霉素、四环素、米诺环素、强力霉素、万古霉素、卡那霉素、新霉素、庆大霉素、红霉素、头孢菌素类、格尔德霉素及其类似物。头孢菌素类的实例包括头孢金素、头孢匹林、头孢唑林、头孢氨苄、头孢拉定、头孢羟氨苄、头孢孟多、头孢西丁、头孢克洛、头孢呋辛、头孢尼西、头孢雷特、头孢噻肟、拉氧头孢、头孢唑肟、头孢曲松和头孢哌酮。可以使用的抗生素的其他实例描述在US 2007/0093894 A1中,因而其全文结合于此供参考。在每种抗生素不存在和存在情况下检测微生物的生长和微生物种群的差异,将为抗生素易感性提供信息。首先对样品中的细菌计数。然后将细菌样品暴露于含有不同生长培养基和不同抗体的区域,同时一些区域作为“空白”培养基和“空白”抗生素区域,并测定区域中细菌的生长。
其他应用包括检测细菌,用于国家安全和食物链和水安全。也能够将这些检测方法应用于脓毒症、生物能量、蛋白、酶工程、血凝、生物防御、食品安全、水供应安全和环境修复。下面的专利和专利申请结合于此供参考:WO 2005-010169 A2,US 6,500,617,WO 2007-009082 A1。
引起物质运动的手段的实例,包括但不限于例如当使用含有流体连通的区域阵列的装置时的离心力、表面张力梯度、渗透压、毛细管压、使用例如泵或注射器从外部产生的正压或负压、通过例如压缩或扩展含有流体的区域而引起的滑动、电场力、电渗力、磁力以及通过滑动外部引发或引发的化学反应或过程。
例如,可以使多种液体或固体物质在一起以产生气体产物,由此产生压力。例如可以用硫酸溶液和碳酸盐。可选地,可以向含有物质的区域加入催化剂,所述物质在不存在催化剂的情况下不反应或仅仅缓慢地反应,但是在催化剂存在下反应更快。一个实例是碳酸氢钠与固体酸,例如酒石酸,的混合物,其通过加入用作催化剂的水来激活。许多这样的能够被催化剂激活的混合物被用作发酵粉。可选地,可以使物质在一起以便消耗气体物质,由此产生负压并导致装置中物质的运动。例如,氢氧化钠和二氧化碳将以这样的方式反应。也可以利用相变来引起装置中物质的运动。此外,可以利用芯吸作用。例如,第一区域可以包含吸附物质的材料或由所述材料构成,以便引起运动。在引起物质运动的另一个实例中,在滑动后,即使不施加外部压力,也可以利用由表面张力和流动阻力所引起的压力差来驱动流动。在一种情况下,装置可以包含一个或多个流动所需的主通道以及一个或多个比主通道小的毛细管通道的阵列,因而具有比主通道更高的毛细管压。可以滑动装置以使主通道与毛细管通道的阵列流体连通,由此在毛细管通道中形成具有比主通道中更高压力的流体通路,这种压力驱动流动进入主通道的。可以调节装置和滑动运动,以提供对流动速率和持续时间的控制。例如,可以在毛细管和/或主通道的受控距离处设置与大气相通的流体储液器,来控制由流动阻力引起的压力。这些储液器可以任选地经导管与毛细管和/或主通道相连,以进一步减少流动阻力并由此增加流速。这可用于例如驱动流体流过清洗通道以在免疫测定过程中进行清洗,或用于驱动在细胞的灌注培养物或珠子悬液上的缓慢流动。
本发明的装置可用于容易和经济地用同一物质装载多个区域。例如,对于图12A和12B来说,可以将装置制造成包含多个区域22和区域18。在开放位置处,每个区域彼此并连接于入口28,允许容易地装料。在封闭位置处,每个区域18和22相互 隔离,允许例如检测单个区域中的少量物质(例如通过单一分子、珠子、细胞和细菌的随机限制)。用于在单个区域中检测少量物质的方法描述在例如PCT/US08/071374、PCT/US07/02532和PCT/US08/71370中,其全部在此引为参考。
本发明的装置也可用于容易地将第一物质装载到预装有各种第二物质的多个区域中。例如,对于图12A和12B来说,每个区域18和22可以包含不同的第一物质,其可以附着到区域表面上(例如不同抗生素)。当第二物质(例如含有细菌的样品)通过入口28被装载到装置的开放位置中时,它将装载到每个区域中。在将装置滑动到封闭位置后,可以监测单个区域中第一物质对第二物质的影响。测量细菌对抗生素的易感性的方法描述在PCT/US08/71374中,其在此引为参考。
本文描述的发明的实施例可用于微生物培养。例如,厌氧微生物可以在由玻璃制成的装置中进行培养,其中微生物在厌氧条件下装在装置中。然后厌氧菌可以被操作、生长、分析等,而不将生物体暴露于氧气。这样的装置可用于例如分析好氧或厌氧微生物、分析肠道生物区系、诊断学、测定厌氧感染的抗生素敏感性的应用中。这些微生物培养装置的应用公开在专利申请PCT/US08/71374和PCT/US08/71370中。在已将微生物物种限制在装置的区域中后,可以通过多步骤过程对它们进行操作,以便控制在每个后续滑动位置的条件(即厌氧、化学物质等)。例如,微生物可以在初始滑动位置中被限制,然后在后面的滑动位置中被刺激以产生毒力因子,而后在最后的滑动位置中,毒力因子可以与检测试剂相接触。
此外,本文描述的发明的实施例可用于培养和操作原核和真核细胞,包括多细胞生物体例如线虫。例如,可以将生物体在装置中培养,所述装置被设计成在第一滑动位置中为细胞和生物体供给营养物质,在第二滑动位置中供给刺激物,并在第三滑动位置中除去剩余产物。可以使用任选的其他滑动位置以捕获由装置中的生物体分泌的产物,正如在专利申请PCT/US08/71374和PCT/US08/71370中所公开的。可以将装置设计成与被限制生物体的高分辨率成像相容。
同样,本发明的装置可以构造成容易和经济地用不同物质装载多个区域。例如,在图8A1至图8D中,将装置制造成在一个表面上包含多个区域18,并在相对的表面上包含多个区域22。在位置A中,区域22的平行的行可以装载不同的第一物质。在滑动到位置C中后,区域18的平行的列可以装载不同的第二物质。在位置D中,各种第一和第二物质可以合并,形成不同反应的阵列。在这个实施例中,可以利用例 如在10行中的每行中含有10个区域并在10列中的每列中含有10个区域的装置,以产生100个反应。在其他实施例中,装置可以配置成在相同的位置包含多个区域作为标准的多孔板,该标准的多孔板可以含有例如6、24、96、384、1536、3456或9600个样品孔。在其他实施例中,装置可以含有至少约1、2、3、4、5、6、7、8、9、10、20、24、30、40、48、50、60、70、80、90、96、100、200、300、384、400、500、512、1000、1500、1536、2000、2500、3000、3456、3500、4000、4500、5000、6000、7000、8000、9000、9600、10000、1500、2000、2500、3000、4000、5000、6000、7000、8000、9000、10000、20000、30000、40000、50000、60000、70000、80000、90000、100000、200000、200000、400000、500000、600000、700000、800000、900000、1000000个或更多的区域。标准的多孔板构型描述在US20070015289中,其整个内容结合于此供参考。例如,装置可以含有100,000个区域的阵列,其中每个区域是边长约200微米的立方体,能够将1毫升样品分成100,000个每个10nL的容积。这样的装置可用于例如检测以非常低浓度存在的被分析物。
在某些实施例中,本发明的装置可以在使用前预先装载物质并储存。例如,如果将一种或多种物质烘干在区域中,可以在开放位置中向装置加入溶液以重新水化/溶解物质。烘干物质以备储存的方法描述在US 2008/0213215、US2009/0057149和US 7,135,180中,其整个内容结合于此供参考。
本发明可以与填塞技术一起使用,例如在本发明人的美国专利7,129,091和专利申请US 2007/0172954、US 2006/0003439、US 2005/0087122、PCT/US08/71374、PCT/US08/71370和PCT/US07/26028中所公开的,所有这些文献结合于此供参考。例如,区域可以包括能够用填塞物的阵列填充的底板上的通道。装置可以包括含有一组至少一个区域的相对的平板,在第一位置每个区域与填塞物阵列中的至少一个填塞物重叠,而在第二位置不与填塞物阵列的任何填塞物重叠。
这种装置10的一个实施例示于图12A-12B中。制造图12A-12B中所示装置10的一种方式是用玻璃做材料。通过如上所述的蚀刻法制造具有区域或通道的玻璃载片。区域尺寸约为130×50μm,深度约为15μm。在装置的每层中存在2048个区域,其由32行、每行64个区域构成。所有32行的区域通过Y型树状分布形式与单一入口相通。在滑动后,装置产生4096个单独区室。装置的尺寸为1cm×2cm。
在显微镜下将两片具有互补图案的玻璃载片对齐以形成贯通通道,并用曲别针夹住。当区域对齐时,它们形成与入口相通的连续通道。通道的另一端与向下通向装置边缘的较大通道相连。
首先通过入口注射FC-40以填充所有通道。因为玻璃被硅烷化过并且FC-40润湿玻璃,因此油不仅填充了所有通道,而且填充了两个玻璃层之间的所有接触区域。通过入口推入空气以取代FC-40,同时保持两个层的接触区域仍然被FC-40润湿。此外,通道中存在少量FC-40残留,或者FC-40薄层仍覆盖通道的表面。通过入口在通道中注入荧光素在pH 7.8的10mM Tris中的0.5μM溶液。
在一些实施例中,装载在装置中的样品可以具有珠子,例如能够固定化物质的珠子或磁珠。可以通过将在打开位置中与区域相通的导管的尺寸定制成小于珠子,将珠子限制在装置的不同区域中。此外,可以通过向区域施加聚焦磁场,将磁珠导向或捕集在特定区域中。在一些实施例中,区域装载含有第一物质(例如第一种氨基酸)的珠子。通过将装置在开放和封闭位置之间(或通过几个不同的开放和封闭位置)滑动,珠子可以被清洗、去保护、与第二物质(例如第二种氨基酸)反应、清洗等。通过这种方式,可以形成新分子(例如多肽)的阵列。最终,可以将新分子从珠子上释放并对其进行分析或甚至进行收集。可用于本发明的珠子类型的实例列于US 2009/0035847、WO 2009/018348、WO 2009/013683、WO 2009/002849和WO 2009/012420中,所有这些文献结合于此供参考。
在一些实施例中,可以通过将装置在第一与第二位置之间多次滑动来增加第一和第二物质之间的混合速度。
在一些实施例中,多个区域被排列成允许通过一次以上向其他封闭位置的滑动,连续地添加物质(并且可能进行其他反应)。在这种实施例中,正如上文中讨论的,滑动可以采取相同或不同方向,如关于图14A和14B所描述的。
在一些实施例中,对区域的容积进行控制以便两个区域的混合是定量的,允许对物质浓度进行监测。在一些实施例中,多个区域被排列成当装置滑动到其他封闭位置时,允许对物质进行连续稀释。例如,底板上的第一组至少一个第一区域,可以在第一位置通过例如导管用物质进行装填,随后可以将区域相继移动到不同位置,其中在每个位置至少一个第一区域暴露于例如含有例如缓冲液的稀释剂的相对平板上的第二组预装填的区域之一。在每个位置处暴露保持足以使物质被稀释剂完全稀释的时间。在每个后续位置处,物质根据稀释剂的体积被稀释。例如,如果第一区域含有1 纳升物质并且五个一组的每个第二区域的体积为9纳升,那么在第一区域轮流暴露于每个第二区域后,第二区域将填充有稀释约10倍、100倍、1,000倍、10,000倍和100,000倍的物质。然后可以将第二组区域暴露于进行另外的反应的其他区域和物质。
在可选实施例中,底板上包含多个第一区域的行可以在第一位置例如通过导管用物质进行填充,然后可以将该多个区域顺序地移动到不同位置,其中在每个位置,多个第一区域的每个暴露于例如相对的平板上每个包含稀释剂的相应的第二组预填充区域,并且其中多个第一区域的每个暴露于第二组预填充区域中不同数目的区域。例如,四个第一区域可以在第一位置填充,然后在第二位置,第一个第一区域暴露于稀释区域,但是其他三个第一区域没有暴露。在第三位置,第一和第二个第一区域暴露于稀释区域,但是其余两个没有暴露。在第四位置中,第一、第二和第三个第一区域暴露于稀释区域,但是剩余的一个没有暴露。这些行动的结果是以不同浓度填充一系列四个第一区域,然后可以将它们移动到至少一个另外的位置,在那里它们暴露于试剂,例如,用于测定蛋白质结合或抑制活性。对于本领域的技术人员来说,显然本实例中第一区域和第二区域的数量可以根据装置上的可用区域和可用的物质的量,容易地改变成任何希望的值。
利用这些技术,可以用少量物质快速制备用于例如蛋白活性测定和/或蛋白结合测定的溶液,在这些测定中需要大范围的蛋白和/或抑制剂浓度以获得准确数据。
在一些实施例中,第一表面上的区域与相对的第二表面上的区域对齐,以便在封闭位置,第二表面上的区域与第一表面上的两个或多个区域桥接。在这个实施例中,形成的桥允许从第一表面上的一个区域经由第二表面上的桥接区域向第一表面上的另一个区域的受控扩散。这个实施例对于蛋白质结晶来说特别有用。
进行了几个示例性实验以说明这种装置对于蛋白质结晶的用处。所进行的被称为“RC在滑动芯片上的结晶(L16L025-26)”的一个实验,涉及使用图6A-6B中所示的装置10。具体来说,实验在对齐的PDMS/玻璃滑动芯片上进行(按照图6A-6B造型,尺寸为25mm x75mm)。在使用前将两个层之间的间隙用FC-40填充。在用于滑动的互补的两个层上,装置包含160个用于蛋白的区域和160个用于沉淀剂的区域。所有区域具有100μm深度和300μm宽度,并利用变化的长度将体积控制在8.8至14.2nL范围内。通过用移液器移液将16种沉淀剂和反应中心样品装载到滑动芯片上。每种沉淀剂填充其体积为8.8nL至14.2nL的一排10个区域(相邻区域之间具有 0.6nL的稳定增量),蛋白填充与沉淀剂区域相对的所有160个区域,其体积为14.2至8.8nL。16种沉淀剂包括CrystalScreen试剂盒(Hampton Research)的1号至14号沉淀剂以及两个相同的对照溶液:pH 6.0的50mM Na2HPO4/NaH2PO4中的4M(NH4)2SO4溶液。在装载每种沉淀剂时,使用100μL移液器。将40μL溶液装载在移液器中。为了将溶液装入滑动芯片,将移液器头的末端推至碰到相应的入口孔。然后将溶液推出,并且当整个通道被充满时松开移液器头。在将所有沉淀剂装入芯片后,装入反应中心样品(在4.5%TEAP中~24mg/mL、7%1,2,3-庚三醇、0.08%LDAO和20mM Na2HPO4/NaH2PO4pH 6.0中)。利用10μL移液器并将~6μL RC样品装载在芯片上。用手进行滑动并使RC与相关的沉淀剂接触。在一天的温育后,只有对照沉淀剂产生晶体。其余14种条件即使在一周后也不产生晶体。
另一个被称为“溶菌酶在混杂装置中的结晶(笔记本页码L16L032)”的实验,在图6A-6B和7A-6B中所示的对齐的PDMS/玻璃滑动芯片实施例上进行。在由FID(图7A-7B)和Microbatch类型(图6A-6B)两者构成的对齐的PDMS/玻璃滑动芯片(尺寸为25mm x75mmsize)上,将一种沉淀剂(30%PEG 5000MME、1M NaCl在0.1M NaOAc pH 4.8中)通过16个入口装入16个不同端口。沉淀剂填充与每个入口相连的12个区域。这12个区域包括6个用于混合比例的microbatch优化的区域和6个用于优化自由界面扩散的区域。对于Microbatch实验来说,蛋白质与沉淀剂的混合体积为:7.8nL:15.8nL;9.4nL:14.2nL;11.0nL:12.6nL;12.6nL:11.0nL;14.2nL:9.4nL;15.8nL:7.8nL。对于FID来说,使用的蛋白质和沉淀剂体积均为16nL。存在有横截面为50μm x50μm的桥接导管,其将蛋白质和沉淀剂区域相连,距离为160μm、220μm、280μm、320μm、360μm、400μm。进行与如上所述的相同的用于移取沉淀剂的移液步骤。利用与如上所述述相同的装载蛋白质的步骤将溶菌酶样品(~120mg/mL,在0.1MNaOAc pH 4.8中)装入芯片。在30分钟的温育中,晶体开始出现,首先出现在microbatch类型中,然后出现在FID类型中。
在图7A-7B中所示的被称为FID类型的PDMS/玻璃滑动芯片的实施例上,进行了另一个被称为“溶菌酶、奇异果甜蛋白在FID中的结晶(L16L24,L16L095)”的实验。首先,将含有蛋白样品和沉淀剂区域的底层浸泡在包含在皮氏培养皿中的FC-40中。将来自CrystalScreen(Hampton research)和双倍浓缩wizard I(Emerald BioSystems)的7.5nL沉淀剂溶液沉积在沉淀剂区域中。为了沉积7.5nL溶液,首先 将溶液吸到一根特氟龙管中(100μmI.D.和250μm O.D.),所述管通过另一根特氟龙管(~360μm I.D.)与10μL注射器相连。将两根特氟龙管用蜡密封。注射器通过注射器泵驱动。泵被设置成利用10mL注射器,具有300μL/min的灌注速率。将它设置在体积模式下,并指定每次分发7.5μL。考虑到注射器尺寸的偏差,实际分发体积为7.5nL。
还可以意识到,本发明的装置10可以与其他微流体结晶技术组合,包括在美国专利号6,409,832、6,994,749、7,306,672、7,015,041和6,797,056中所描述的微流体结晶技术,所有这些专利在此引为参考。
此外,本发明的装置可用于进行气相扩散结晶实验。气相扩散实验描述在专利申请WO/2006/101851、美国公开号2005/0087122和美国专利号6,808,934和4,755,363中,上述文献在此全部引为参考。在可用于气相扩散结晶实验的一些实施例中,至少一个第一区域可以经由至少一个导管或第三区域与至少一个第二区域相通,其中导管或第三区域包含第一物质。在一些实施例中,至少一个第一区域包含溶解在溶剂中的待结晶的第二物质,并且至少一个第二区域包含溶解在相同溶剂中的至少一种第三物质,使得至少一个第一区域和至少一个第二区域中溶液的渗透压通过盐浓度的差异而不同。通常,第二区域中的溶液与第一区域中的溶液相比,含有更高的盐浓度。第一物质可以是诸如空气的气体或油,但是也可以是溶剂能够通过它在第一和第二区域之间平衡的任何物质。通常,一部分溶剂,例如水,将朝向平衡状态扩散,从含有待结晶的第二物质的较低盐浓度溶液向较高盐浓度溶液移动。这种扩散将浓缩待结晶的第二物质,从而使其更可能结晶。显然,本文中描述的所有技术,例如将含有适合区域和/或导管的适合底板和适合平板相对于彼此移动,可用于制备这种实验所需的溶液。
沉积后,将包含连接“颈”的顶层对齐在底层的顶上,以连通用于蛋白质样品的相关区域。在对齐后,利用四个曲别针将两个层夹紧。通过入口分别注入奇异果甜蛋白溶液(~80mg/mL的水溶液)和溶菌酶溶液(22mg/mL)。在所有样品区域被两种样品之一填充后,手动进行滑动。进行上述的沉积,其方式是使得来自Crystal Screen的沉淀剂通过“颈”将与奇异果甜蛋白样品连通,而来自双倍浓缩Wizard I的沉淀剂将与溶菌酶样品连通。在5天内,奇异果甜蛋白在Crystal Screen的条件29(0.8M酒石酸钾钠在pH 7.5的0.1M HEPES中)下结晶,溶菌酶在双倍浓缩Wizard I的条件16(3.75M NaCl在pH 6.2的0.1M磷酸钾钠缓冲液中)下结晶。
在一些实施例中,物质被固定化在区域中。例如,可以利用已知方法对催化剂、被分析物和生物分子(即糖类、肽类、蛋白质、DNA、抗体等)进行固定化,所述方法例如在美国专利4,071,409、5,478,893、7,319,003、6,203,989、5,744,305和6,855,490中所描述的方法,所有这些专利在此引为参考。
本发明的装置可以利用各种已知检测方法(光学、x-射线、MALDI、FP/FCS、FCS、荧光测定、比色、化学发光、生物发光、散射、表面等离子共振、电化学、电泳、激光、质谱、FLIPRTM(分子装置)等)来分析。当使用适合的材料(即用于光学检测方法的透光材料)时,可以对装置进行直接分析。对于其中信号是光程长度的函数的检测方法例如光吸收检测方法来说,可以在装置上形成多个区域,使它们包含同样的内含物,但只有光程长度不同。通过这种方式,增加了从至少一个区域获得的信号将处于检测器的动态范围内的机会。可以利用考虑到不同光程长度而构造的计算机系统来获得最终想要的结果,例如被分析物浓度。可选地,装置可以被打开并对单个区域进行分析,或者可以构造成允许滑动到允许进入单个区域(例如通过进入孔)的其他位置中。在一些实施例中,可以进行反应区域的扩增(例如基于银的扩增、小噬细胞扩增等)。
在一些实施例中,在装入导管后,可以利用电场来分离样品的组成成分(电泳)。
本发明的装置可用于研究和进行凝集/凝结、蛋白质凝聚、蛋白质结晶(包括使用蛋白脂质立方相)、小分子、大分子和颗粒物的结晶与分析、同质异像体的结晶与分析、药品、药物和药物候选物的结晶、生物矿化、纳米粒子形成、环境(通过水合空气取样)、培养条件(例如随机限制、细胞裂解等)、药物易感性、药物相互作用等。用于结晶的技术描述在美国专利和公开号7,129,091、US 2007/0172954、US 2006/0003439和US 2005/0087122中,它们的全部内容引为参考。用于测定血液凝集/凝结的方法描述在PCT/US07/02532中,其全文引为参考,并在下文中进一步讨论。这些方法,作为单个测试或其组合包括PT、aPTT、ACT、INR、用于单个凝血因子的测定法、血纤维蛋白原浓度的测定、血小板功能的测定、血栓弹性描记法和该方法的各种修改形式,以及粘度测定法。这些方法可以在滑动芯片上进行,并可以通过利用滑动芯片的各层的移动来增强。蛋白质凝聚测定法描述在美国专利号6,949,575、5,688,651、7,329,485和7,375,190以及美国公开号2003/0022243中,以其全文引为参考。培养条件的研究描述在PCT/US08/71370中,以其全文引为参考。本发明的装置 可用于各种测定法中,包括高通量筛选(例如一种第一物质与许多不同第二物质;许多不同第一物质与许多不同第二物质)、多重测定法(例如PCR、Taqman、免疫测定法(例如ELISA等))、夹心免疫测定法、趋化性、网状分枝扩增(RAM)等。本发明的装置可用于各种合成,包括催化、多步反应、固定化多步合成(例如小分子、肽和核酸合成)、固相合成、放射性同位素合成等。最后,本发明的装置可用于样品的纯化和富集。
正如上面所讨论的,本文描述的本发明的实施例可用于测定血液样品的凝集和血小板功能。例如,本发明提供了可用于测定血凝的装置和方法。该方法包括将来自对象的血液流体与至少两片补片相接触,其中每片补片包含当与来自对象的血液流体接触时能够引起血凝途径的刺激物质。一片补片中的刺激物质与另一片补片中的刺激物质不同;或者一片补片中刺激物质的浓度与第二片补片中的不同;或一片补片具有与另一片补片不同的表面积;或一片补片具有与另一片补片不同的形状;或一片补片具有与另一片补片不同的大小。该方法包括确定哪片补片引起来自对象的血液流体的凝结。本发明可用于所有标准的凝集和血小板功能测定。用于在微流体装置中测定凝集和血小板功能的技术描述在下列专利申请中,并在此引为参考:PCT/US07/02532(公开号WO 2007/089777)。
在一些实施例中,装置可以包含用作阳性或阴性对照的区域。为了制造阳性对照,可以将在装置上的其他区域中正用于测试的被分析物预装在对照区域中,使得当装置部件如本文中所述移动时,预装的被分析物暴露以起反应,并使用与待测量样品相同的方法进行检测。当阳性对照没有给出预期结果时,它可能是装置的储存或使用不当的信号。同样,可以制备不含被分析物的阴性对照区域,预计当暴露于分析试剂时将不给出信号。也可以利用附加的验证对照来确定测定方法的完整性。利用本发明的技术,可以将已知量X的被分析物加入到含有未知量被分析物的样品中,然后利用同样方法,优选在同一装置中测定含有附加物质的样品和含有未知量的原始样品两者的被分析物浓度,给出未知样品的结果Y和具有添加量被分析物的未知样品的结果Z。Z与Y之间的差将是X,并且与X的任何偏差表示测定有问题,例如测定试剂的降解。
任选地,可以将可检测的,例如有色物质如黑墨水或染料置于装置的特定对照区域中,并且设置成使得装置的部件以在装置的其他区域中进行目标反应所需的方式的 移动,将有色物质暴露于装置的相同或不同部件上的其他区域,由此产生特定的已知可检测的图案。如果没有产生预期图案,这可能是装置的储存不当、装置泄漏或装置部件通过目标移动序列的移动不完全的信号。在一些实施例中,预期图案是条形码。图案可以由人工或机器读取。
在其他实施例中,用户向装置加入样品,通过一个或多个步骤滑动,并获得作为区域图案的读出结果,其传达了关于被分析物的存在及其浓度的信息。
测量浓度的一种方法是利用多路复用的许多具有不同响应特性的测定,然后利用统计学计算预期值和置信区间。这类似于在计算机工业中使用的方法,例如用RAID对磁盘所做的和利用许多潜在有缺陷芯片构建超级计算机的HP方法。
可选地,反应可以设置在不同区域中,使得每个区域显示不同的阈值响应。也就是说,每个区域具有对被分析物的不同灵敏度。例如,对于给定被分析物来说,可以设置只有当浓度超过时才给出响应的区域组,例如可以形成例如16个区域的阵列,其被分成例如4个区域组成的组,其中每个组只有当存在例如20、25、30或35个浓度单位时才给出响应。如果例如样品真正含有27个浓度单位的物质,在将样品导入16个区域后,如果所有阈值为20和25个浓度单位的区域响应,而阈值为30和35个浓度单位的区域都不响应,则可以以高置信度报告浓度在25至30个浓度单位之间。与这种响应模式逐渐增大的偏差,将在报告的结果中产生逐渐降低的置信程度。
用于产生阈值响应的机制报告在PCT US2008/071374、PCT/US07/02532和PCT/US08/71370中,全部在此以其全文引为参考。在装置的一个实施例中,装置的平板上的第一区域包含待分析样品。装置的底板上的第二区域包含捕获区域。捕获区域含有能够捕获刚好低于阈值水平的量的被分析物的物质。检测阈值由能够捕获位于捕获区域中的被分析物的物质的量设定。例如,捕获物质可以是表面结合的或珠子结合的抗体、适体或对被分析物具有选择性的其他分子。滑动装置以使待分析样品暴露于捕获区域。如果使用珠子,可以在底板与平板之间设置膜以防止它们移动到捕获区域外。在足以允许交换发生的时间后,再次滑动装置,以将待分析样品暴露于位于底板上的交换区域。交换区域含有能够被被分析物置换的结合的催化剂。催化剂可以是例如能够被珠子或表面结合的抗体或适体结合的功能化金纳米粒子。只有当捕获区域的容量被超过,导致被分析物被带入交换区域时,交换区域中的催化剂才被置换。然后再次滑动装置,以将第一区域中被置换的催化剂暴露于设置在底板上的检测区域。 检测区域包含在催化剂存在下发生反应以产生可检测信号的物质。例如,如果催化剂是功能化金纳米粒子,检测区域可以由两个区域构成,其中一个区域含有例如银(I),而另一个区域含有还原剂例如氢醌。这两个区域可以被设置成只有当含有催化剂的第一区域在它们上方滑过时才彼此暴露。在它们都暴露于催化剂后,金纳米粒子催化银的还原,产生可检测的金属银。对于本领域的技术人员来说,显然在过程的每个步骤中,装置应该在位置中停留足以使反应发生的时间,并且考虑到扩散,例如使这个时间更长或更短,对装置的尺寸和其他特征进行优化。
在一些实施例中,可以通过测量强度或达到强度的时间来测量浓度。时间解析可以自动或手动进行。对于视觉或光度测量检测来说,装置可以包括带有定时器的计算机,用于控制在哪个或哪些时间应该获取图像或观察测试区域,或为此发送信号。
装置可以任选地包含定时区。定时区可以包含标准反应,其能够指示何时应该将装置从一个位置移动到下一个位置。可以利用经历急剧的可视转变的反应。优选,定时区的一个或多个反应在单独的区域中进行,并通过引起待定时的反应的相同的运动来引起。
可选地,可以通过用捕获位点填充容积,将被分析物导入到容积的一端、一侧或一边,选择条件以使相对于分子的扩散速率和携带被分析物的物质流过容积的速率而言,被分析物快速结合,使得当被分析物扩散和/或流过容积时将捕获位点饱和,以通过几何方法测定浓度。如果当被分析物与捕获位点结合时发生颜色变化或其他可检测的差异,测量捕获区的长度或尺寸将直接给出被分析物的量的度量。可选地,正如在本文别处描述的并且对于本领域的技术人员来说显而易见的,可以利用竞争策略,其中在容积中预先形成捕获分子和标记的被分析物的复合物,然后加入的被分析物置换带标记的被分析物,最后检测带标记的被分析物。
本发明可用于测定对象基因组中靶多核苷酸的拷贝数变化,其包括诸如US 2009/0069194中所述的基于扩增的技术、诸如US 2008/0129736和WO 2008/063227中所述的PCR反应、诸如US 2008/0108063、US 2007/0134739、WO 2008/063227、WO 2008/043041和US 7,413,712中所述的核酸和蛋白靶的测定、诸如US 2007/0202525中所述的非侵入性胎儿基因筛查、诸如US 7,501,245和WO 06/088876中所述的多核苷酸测序、诸如US 2008/0107565、US 2007/0077547、US 7,122,301、US 2009/0062134和WO 2008/063227中所述的基于细胞的测定、诸如US 2009/0068760中所述的生物传感器以及诸如WO 2007/081387中所述的高通量筛选,所有上述文献在此引为参考。滑动芯片可用于分析从哺乳动物胚胎、包括人类、小鼠、大鼠、牛和其他胚胎获得的少量细胞。测试可以包括遗传测试,其包括确定某些基因的存在或不存在或基因中的突变、检测包括倒位和缺失的染色体畸变的遗传测试。PCR、FISH、全基因组扩增和比较基因组杂交和其他技术,可用在滑动芯片中。测试可以应用于胚胎选择、胚胎筛查、移植前遗传诊断、基因治疗前的检查、体外受精前的检查以及其他应用。可以进行测试的病症包括囊性纤维变性、β-地中海贫血症、镰刀形红细胞贫血病和1型脊髓性肌萎缩、肌强直性营养不良、亨廷顿舞蹈症和腓骨肌萎缩症、脆性X染色体综合征、A型血友病和杜氏肌营养不良。正如在本申请中所描述的,可以使用PCR、FISH和其他技术进行核酸的分析和扩增。滑动芯片可用于分析新生儿血液中的胆红素或胆红素-白蛋白复合物。
本文描述的本发明的实施例可用于基于PCR的单核苷酸多态性(SNP)或通过实时PCR定量测量基因表达,用于诸如植物和动物诊断、食品和水安全性测试、农业遗传学和人类疾病研究等应用。例如已在牛肉酱、未巴氏消毒牛奶、瓶装果汁和被污水污染的水中发现的病原体大肠杆菌O157:H7以及病原体的各个致病基因,可以通过在本文描述的装置中进行并行PCR来快速筛查和鉴定。
此外,本发明可用于测定酶浓度和/或酶活性,所述酶包括但不限糖苷酶、肽酶、酯酶、磷酸酶、过氧化物酶、硫酸酯酶、磷脂酶、萤光素酶、细胞色素P450、激酶、脂肪酶、磷脂酶、氧化酶、分泌酶、蛋白酶和肽酶,以及使用例如由美国加利福尼亚Carlsbad的LifeTechnologies公司和/或瑞典的Biosynth公司销售的试剂进行免疫测定。
装置可用于进行非均相免疫测定而不需清洗步骤。例如,在其示于图15的局部视图中所示的一个实施例中,装置10的平板14包含区域A、任选的B、C、D和E,其全都预装有适合的试剂或珠子。在第一位置,包含被分析物的样品被装载到至少一个区域A中。抗被分析物捕获抗体被装载在相对的底板上的区域F中。捕获抗体可以固定化在例如珠子上或区域F的表面上。当底板和平板相对于彼此移动到第二位置时,区域F暴露于区域A,并且被分析物分子与捕获抗体结合。在第三任选位置,区域F暴露于区域B,所述区域B包含帮助除去潜在干扰分子的缓冲液和/或其他试剂。在第四位置,区域F暴露于包含检测抗体的区域C。检测抗体被选择为与被分析物强 力结合。检测抗体可以用酶标记。可选地,也可以用荧光标签或其他标签标记,或者可以不标记,这取决于具体的免疫测定法配置。在第五位置,区域F暴露于区域D。区域D包含与检测抗体结合的抗体,但是其亲和性弱于检测抗体-抗原相互作用。D中的抗体可以被固定化在珠子上或区域D的表面上。区域D中的抗体从溶液中除去过量的检测抗体。在第六位置,区域F暴露于区域E。区域E包含基质溶液,其在与检测抗体偶联的酶的存在下可以转变成产物。该步骤对于一些免疫测定法配置来说是任选的。通常,在每个位置,区域F仅暴露于区域A、B、C、D和E其中之一。装置可以被配置成对单个样品或多个样品进行单个这种免疫测定,或对单个样品或多个样品进行多个不同的这种免疫测定。
装置可用于进行样品制备和用于样品储存。例如,装置可用于利用过滤从血液中移除细胞,或用于添加试剂以保存血液样品。通过首先将血液导入装置中由至少一个第一区域和/或导管组成的输入容积中,可以使用装置从血液中过滤出血浆。将输入容积暴露于通过膜与输入容积隔开的至少一个第二区域,使得一部分或全部血浆通过膜进入至少一个第二区域。过量血浆可以收集在至少一个第三区域中,所述第三区域暴露于至少一个第二区域但不直接暴露于输入容积。任选地,在同一封装置中,用如上所述的血浆填充至少一个第二区域可以,并且可以通过经例如破裂的膜或无膜的暴露,用全血填充另外的至少一个第四区域。
在用血浆填充区域后,它们可用于各种反应和操作。例如,通过使用装置部件的相对移动将至少一个第二区域暴露于其他区域,可以通过添加柠檬酸或EDTA以防止凝结来保存血浆。同样地,可以添加其他防腐剂或试剂。然后可以将整个装置储存和运输以备分析。对于分析来说,可以将全部或一部分血清从区域中取出,并用于装置外部的其他测定中。此外,可以将包含血浆的至少一个区域移动到其他位置中,以进行其他分析。这种分析可以利用预装在装置上的其他区域中的试剂来进行。这种分析也能利用用户添加的试剂来进行;这种方法对于涉及难以预装并易于在临使用前添加的试剂的测定来说,是有吸引力的。任选地,测定可以在样品收集时或较晚时,例如在外部温度更容易控制或外部检测器可用的情况下,在装置上进行。
装置可以与用于取样的化学电极一起使用,和/或包含化学电极(参见:Chen等,PNAS,November 4,2008,vol.105,no.4416843-16848;Keats,J.,“Jargon Watch,”WiredMagazine 17.03,2/23/09;Armstrong,G.,Nature Chemistry(14Nov 2008),doi:10.1038/nchem.89,Research Highlights)。
单一装置可用于储存来自单一患者的样品和/或在其上进行单个测定或多个测定,或用于储存来自多个患者的样品和/或在其上进行单个测定或多个测定。也可以进行其他类型样品的制备和储存,例如用于制备和储存其他体液或环境样品。此外,装置10的一个实施例的区域18、22、导管26、或区域18、22与导管26的组合,可以构成分离通路或分离区域。分离可以通过本技术领域已知的方法,利用层析、电势包括凝胶和毛细管电泳、流体动力学分离、过滤、通过离心的分离、基于磁力和矫形力的分离来进行。可以分离各种物质,包括分子(包括蛋白质和核酸)、大分子、颗粒物和细胞。讨论分离通路或区域的专利和公开的申请包括美国专利号5,707,850、5,772,889、5,948,624、5,993,631、6,013,166、6,274,726、6,436,292、6,638,408、6,716,642、6,858,439、6,949,355和美国公开号2002/0076825。这些专利和专利申请在此以其全文引为参考。
膜可以包含在滑动芯片中。例如,透析膜可以利用在芯片上浓缩大分子,例如用于大分子和蛋白质结晶。膜可以用来进行其他分离,例如分离细胞包括血细胞,以及分离血液和其他生物流体的组分。
相对于彼此滑动两块板可用于进行转化,例如:重新配置分离通路或区域,捕获被分离的产物,将试剂带到分离通路或区域以检测、可视化或分析。
在一些实施例中,滑动式芯片可用于双阶段反应。例如,能够在第一、第二和第三位置之间移动的滑动式芯片,可以将区域配置成使得在第二位置,至少一个第一区域与至少一个第二区域重叠,并且第二区域小于在第三位置与第一区域重叠的至少一个第三区域(例如尺寸为十分之一或二十分之一)。这样的装置可用于双阶段蛋白质结晶实验。至少一个第一区域填充有待结晶的蛋白质。至少一个第二区域预装或由用户填充预计将诱导成核作用的物质,例如高浓度沉淀剂,或甲基-β-环糊精溶液或能够移除去污剂的另一种物质的溶液。至少一个第三区域可以包含例如较低浓度的沉淀剂,为了使用芯片,首先对区域进行装填。然后将装置移动到第一位置以进行成核,并且在原地保持足以诱导成核作用的时间,或跨过第一位置继续移动,以使至少一个第一区域与至少一个第二区域接触足以诱导成核作用的时间。时间可以是例如1秒、30秒或5分钟。然后将装置移动到第三位置。至少一个第二区域的小尺寸防止样品的显著稀释。
在一些实施例中,用户装载的滑动芯片通过将样品与多种不同试剂每个以多种混合比例混合,可用于进行多路纳升量级的实验。通过例如稀释荧光染料来定性的混合比例,可以通过每个混合区域的容积来控制。这样的滑动芯片结构用于针对48种不同试剂,筛选来自类鼻疽伯克霍尔德菌(Burkholderia pseudomallei)的可溶性蛋白——戊二酰-CoA脱氢酶的结晶条件;每种试剂在11种不同混合比例下测试,总共进行了528个结晶试验,每个试验的量级为~12nL。该实验使用3个相同的滑动芯片装置来进行,每个装置筛选16种不同试剂。蛋白样品的总消耗量为~10μL。成功地确定了结晶条件。利用在滑动芯片中确定的条件,在板中成功放大了结晶实验。晶体通过X-射线衍射进行性质研究,并提供了与通过常规方法获得的结构相比具有不同空间群和更高分辨率的蛋白质结构。用户装载的滑动芯片可靠地处理具有诸如粘度和表面张力的各种不同物理化学性质的流体。在这些玻璃滑动芯片中,荧光强度的定量测量和高分辨力成像可以直截了当地进行。与基于填塞物的结晶中使用的硅烷化载体类似,利用用硅烷化的润滑液来控制表面化学。这种方法可用于蛋白质结晶之外的大量领域,特别是基于微滴的微流体系统已被证明是成功的领域,包括例如酶动力学和血液凝结的测量、基于细胞的测定和化学反应。
在某些实施例中,滑动芯片可用于将样品与多种不同试剂每个以多种不同混合比例混合,以用户装载的方式进行多路纳升量级的实验。在某些实施例中,这可以不需要滑动芯片之外的设备,例如额外的流体操作设备来进行。多路实验在生物测定、化学合成、蛋白质结晶领域和广泛探索化学空间的任何领域中是常见的。在此以其全文引为参考的美国专利申请61/162,922,描述了滑动芯片的其他特点和实施例。化学空间的广泛探索得益于用于更快的实验和更低的样品消耗的技术,二者都使这些过程产率更高并减少化学废料的量。微流体技术具有用于高通量筛选和在纳升和更小量级上操作流体两种能力。尽管已经开发了用于这些应用的各种微流体系统,但这些系统通常需要泵、阀或离心机。滑动芯片的某些实施例可用于进行多路微流体反应而不需要泵或阀及其操作,在某些实施例中只需要将样品移取到芯片中,然后将芯片的一个部件相对于另一部件滑动以将样品与预装的试剂混合并引起反应。(构造用于滑动的滑动芯片的其他示例性手段描述在Chung等文章中,LabChip,2009,9,2845–2850,在此以其全文引为参考)。在滑动芯片的某些实施例中,样品与预装的试剂混合。对于某些实施例来说,在中央设施中将试剂预装在芯片上并将芯片分配给研究人员是有吸 引力的,对用户来说大大简化了实验。在某些实施例中,滑动芯片不必预装试剂。本发明人用实验证实了滑动芯片可以用来以许多不同试剂——每种采用多种不同混合比例——进行多路纳升量级实验,允许在区域量级上探索化学空间。
本发明人利用这种方法来筛选用于可溶性蛋白结晶的条件。获得蛋白质的晶体仍是在分子水平上解析它们的结构并阐明其功能的瓶颈之一。获得“衍射级”晶体需要对各种浓度下的多种沉淀剂进行高通量筛选,即进行例如数百或数千个结晶试验。利用阀或微滴以准确操控纳升甚至皮升体积的微流体技术已被描述,并且也已应用于蛋白质结晶。尽管这两种方法能够成功结晶蛋白质,但大多数单个实验室仍通过将微升级溶液移取到96孔板中来建立结晶试验,表明对于简单、廉价、快速和可控的用于结晶蛋白质的系统仍存在着需求。这里,我们描述了满足这些标准的用户装载的滑动芯片的实施例。
在用户装载的滑动芯片的一些实施例中,可以将滑动芯片的两块板对齐,使得样品区域与样品导管对齐形成连续的流体通路,而试剂区域和试剂导管偏离。可以通过由重叠的样品区域(顶板)和样品导管(底板)形成的连续流体通路装载样品。可以滑动装置以使试剂区域(底板)和试剂导管(顶板)在这时对齐。可以将试剂装载到由重叠的试剂区域与样品区域形成的单个流体通路中。可以第二次滑动装置,并将来自顶板的样品区域暴露于底板的试剂区域。装载试剂和样品的次序可以由用户决定。
在本发明的一个实施例中,使用滑动芯片针对16种不同沉淀剂筛选蛋白样品,每种沉淀剂采用11种混合比例,总共进行了176个实验,每个在~12nL的量级上,并且所有实验仅需要3.5μL蛋白样品。滑动芯片包含用于试剂的16个独立流体通路,每个通路具有11个区域,以及用于蛋白样品的具有176个区域的单一连续流体通路。在滑动芯片的一些实施例中,试剂流体通路的入口以与96孔板中的区域的间隔和多道移液器中末端的间隔相匹配的方式间隔。这种滑动芯片由两块板构成。顶板含有用于试剂和样品的独立入口、用于样品的导管和用于试剂的区域。底板含有用于试剂的导管,其与顶板上的入口、用于样品的区域和出口连通。两块板由一层润滑液隔开,为此本发明人使用了氟烃,即全氟代三正丁胺和全氟代二正丁基甲基胺的混合物(FC-40)。当两块板第一次组装时,使顶板中用于试剂的入口和区域与底板中用于试剂的导管的顶端对齐。在这种取向中,将每种试剂移取到入口中,试剂流过导管并填充区域。在试剂装载后,将芯片的顶板“滑动”到新的取向,其中顶板中用于样品的 导管与底板中用于样品的区域的顶端对齐。在这种取向中,将样品移取到入口中,样品流过导管并填充区域。在样品和试剂都装载后,将芯片的顶板再次滑动,以将用于试剂的区域定位到用于样品的区域顶上,并通过扩散引起试剂与样品之间的相互作用。
在用户装载的滑动芯片的一个实施例中,顶板由出口导管、试剂入口、与样品导管对齐的样品入口和试剂区域构成。底板由与试剂导管对齐的出口和样品区域构成。组装顶板和底板并用氟烃填充,以产生即用型滑动芯片。在这种取向中,由试剂入口、试剂区域和出口形成连续流体通路。通过移液导入试剂。试剂流过连续流体通路并填充试剂区域。可以将芯片滑动到第二位置中。在该第二位置,由样品入口、样品导管和样品区域形成连续流体通路。样品可以通过移液导入。样品流过连续流体通路并填充样品区域。可以将芯片再次滑动到第三位置,在那里试剂区域对齐在样品区域顶上,并且对齐区域中的样品和试剂通过扩散混合。
在某些实施例中,在滑动步骤期间,在滑动芯片的两块板之间可能形成不想要的薄膜。在某些实施例中,该薄膜将用于试剂的导管与用于试剂的区域连通,而不是将它们保持分离。通过控制在润滑液下测量到的溶液(样品或试剂)与滑动芯片的板之间的接触角,可以将滑动步骤后的交叉污染降到最低。本发明人测量了某些实施例使用的润滑液氟烃(FC)下的接触角,并确定了对于某些实施例来说,优选大于~130°的接触角以使交叉污染最小化。为了证实这一点,当本发明人装载不含表面活性剂并且接触角为139°的试剂溶液时,在第一次滑动步骤后试剂不被捕集在滑动芯片的板之间。对于第二次滑动步骤来说,发现接触角的优选性是相同的;当本发明人向样品溶液加入表面活性剂时,接触角降低到110°,并且表面活性剂溶液的薄膜被捕集在滑动芯片的两块板之间。对于某些实施例,为了使这种问题最小化,本发明人用氟化乙烯丙烯(FEP)薄层旋涂板,使接触角增加至154°。在旋涂后,进行滑动步骤时没有交叉污染。
利用滑动芯片的这个实施例,本发明人控制在每个试验中混合的样品和试剂两者的体积,从而控制混合比例。本发明人将这种滑动芯片构造成具有用于试剂和样品的区域,使得通过滑动以组合两个区域而形成的试验的总容积,总是~12nL,并且每个试验中试剂与样品的混合比例,以体积计在0.67:0.33至0.33:0.76之间变化,中间具有9个平均间隔的比率。
利用荧光染料溶液作为样品、缓冲溶液作为试剂的实验结果证实,这种结构确实在11个区域的每个中得到受控的混合比例。来自实验样品的相对浓度与根据设计的预测浓度之间的关系,显示出良好一致:除了一个区域之外,所有其他区域的实验和预测浓度之间的差异低于10%。
在本发明的一个实施例中,滑动芯片在底板中具有包含荧光染料溶液的用于样品的区域,在顶板中具有包含缓冲溶液的用于试剂的区域。每个区域具有不同的大小,并装有不同体积的流体。区域容积的范围为8nL(相关体积为0.67)至4nL(相关体积为0.33)。在滑动芯片将试剂和样品混合后,试验的总体积总是12nL。将来自实验的稀释样品的相对浓度对根据设计体积预测的相对浓度作图所获得的图,在实验与预测浓度之间显示出良好一致性(斜率=0.98;R2=0.9938)。从荧光强度的测量值推断出浓度。产生具有不同差异值的区域数量的直方图。差异被计算为试验结果与预测浓度之间的浓度差异百分数,并将区域制造、区域填充、滑动和强度测量中的误差和偏差考虑在内。
本发明人利用这种方法,用模式膜蛋白——来自绿色绿芽菌(Blastochlorisviridis)的光合作用反应中心(RC)的结晶确定了试剂浓度的变化性。在滑动芯片上进行了7份平行试验,每个试验具有11种不同的沉淀剂(3.2M(NH4)2SO4在40mM NaH2PO4/Na2HPO4中,pH 6.0)与RC的混合比例,并且该试验可重复。将不同的混合比例随机安排在滑动芯片的行之间。也就是说,不是以0.33沉淀剂比0.67蛋白的混合比例开始,以0.67沉淀剂比0.33蛋白的混合比例结束,并在中间具有平均间隔的混合比例,而是将区域从左至右以下列相对沉淀剂浓度的次序排列:0.33、0.63、0.4、0.57、0.47、0.5、0.53、0.43、0.6、0.37和0.67。选择这种排列方式以便能够将可能使结果从一侧到另一侧系统地歪斜的制造或蒸发的任何人为假象,与混合比例的效应容易地区分开。这种排列方式还将两个相邻区域之间的距离保持相同,将导管长度与区域尺寸保持相同,并使滑动芯片的制造更加简单。当在滑动芯片的行之间顺序地设置不同混合比例时获得的结果相同,表明由于制造或蒸发产生的任何影响是极小的。
为了帮助理解结晶行为,本发明人按照沉淀剂浓度增加的次序将区域的显微照片按照数字重新排列。在沉淀剂与蛋白质的混合比例从0.33:0.67至0.43:0.57时,7个试验都不形成蛋白质晶体。在0.47:0.53的混合比例下,一个试验形成蛋白质晶体, 在1:1的混合比例下4个试验形成蛋白质晶体。在0.53:0.47、0.57:0.43和0.6:0.4的混合比例下,所有7个试验都形成蛋白质晶体。在0.63:0.37的混合比例下,所有7个试验都形成沉淀。在0.67:0.33的混合比例下,两个试验形成蛋白质晶体,而其余5个试验形成沉淀。发现RC的结晶对沉淀剂浓度敏感。当本发明人增加沉淀剂的相对浓度时,发明人观察到从蛋白质保留在溶液中到结晶再到沉淀的转变。降低蛋白质浓度时,观察到成核作用的一定程度的降低。随着混合比例,结晶结果不是没有变化的,具有被微晶体区域分隔开的较大单晶体的区域。除了用于这里描述的7个实验的7行之外,在该芯片上有意空出两行,并在更高的沉淀剂浓度下进行了附加的7个试验。
本发明人还在单个用户装载的滑动芯片上,利用许多不同试剂,每个以许多不同的混合比例,筛选了蛋白质样品的结晶条件。本发明人选择了一种可溶性蛋白作为靶:来自类鼻疽伯克霍尔德菌(Burkholderia pseudomalle)的戊二酰-CoA脱氢酶。蛋白样品从西雅图传染病结构基因组学中心(Seattle Structural Genomics Center for InfectiousDisease)(SSGCID)获得。它在未使用滑动芯片的情况下平行地进行筛选,在使用20%(w/v)PEG-3000、0.1M HEPES pH 7.5、0.2M NaCl的条件中,在气相扩散条件下产生了晶体(PDBid3D6B)。这些晶体产生了分辨率为和空间群为P212121的结果(PDBid 3D6B)。在没有关于这些结晶条件的任何知识背景的情况下,在滑动芯片的实施例上,针对来自基于Wizardscreen的自制筛选试剂盒的48种不同试剂,对蛋白进行了筛选。对于每种试剂来说,筛选了11种不同的蛋白样品与试剂的混合比例,其范围如上所述从0.33:0.67至0.67:0.33。筛选成功地确定了两种用于蛋白质结晶的条件。从这些结果选择出最佳条件:使用45%(w/v)PEG-400、0.2M MgCl2和pH 7.8的0.1M Tris时采用0.57:0.43的混合比例,以及使用30%(w/v)PEG-8000和pH 7.8的0.1M Hepes时采用0.67:0.33的混合比例。后一种条件类似于在SSGCID使用传统技术确定的条件,但不完全一致。将每种这些条件在大面积板中进行重复,在两种情况下都获得了晶体。来自大面积板的晶体分别以分辨率、P21空间群和分辨率和P212121空间群进行X-射线衍射。结果,本发明人利用从以的较高分辨率进行X-射线衍射的晶体收集到的数据集,以分辨率确定了蛋白质结构,并且发明人能够指定在P212121结构中丢失的环。
在一些实施例中,滑动芯片不需要外部设备操作。例如,在某些实施例中,滑动可以手动进行。在某些实施例中可以利用内部导向装置限制板相对于彼此的移动。在 一些实施例中,在装置上进行的反应或多个反应的结果,可以不利用专用设备读出,例如利用用可广泛获得的设备如移动电话上的照相机或通过肉眼或利用条形码扫描器。在某些实施例中,通过使装置的每个区域起到数字显示中的像素的作用以便于读取,其中不同结果产生不同的总体图案,其可以被人类和/或机器感知和/或判读。
在本发明的某些实施例中,通过以不同混合比例和准确计量的纳升体积针对物质筛选许多不同试剂,用户装载的滑动芯片可用于进行多路反应。可以向研究人员提供滑动芯片的某些实施例,取决于给定应用的要求,其预装有多种混合比例的试剂或由用户在使用现场装载。流体通路可以被设计成包含额外导管以增加流体阻力并提供所有区域的足够的填充。这种方法在功能上类似于基于微滴的混杂方法,其中在基于微滴的阵列上筛选许多不同的条件。本发明人已经用实验证实了滑动芯片在筛选可溶性蛋白结晶条件中的利用。通过在多孔板中重复结晶条件获得了蛋白的X-射线衍射数据,证实了在滑动芯片中确定的结晶条件可以在滑动芯片外部可靠地放大。在滑动芯片的不同实施例上可以通过自由界面扩散进行结晶,并且在另一个实施例中,可以利用综合芯片并行地进行微量分批和自由界面扩散结晶两者。
除了结晶之外,用户装载的滑动芯片实施例可应用于其中需要测试不同试剂及其浓度两者的大量其他多路反应和测定中。例如,可以使用氟化的润滑液,以将用于控制表面化学的已建立的方法直接转移到滑动芯片的某些实施例中。与在基于填塞物的系统中所进行的相似的测定,例如使用酶和细胞的测定,可以在滑动芯片的某些实施例中进行。本发明人发现,由于所有区域的位置是确定的,因此对滑动芯片的某些实施例进行成像易于实现。用户装载的滑动芯片的某些实施例,可用于其中基于微滴的方法、特别是混杂方法已得到证实的应用中。总的来说,用户装载的滑动芯片的有吸引力的应用包括诊断、药物发现、组合化学、生物化学、分子生物学和材料科学。
实例
芯片设计和制造。滑动芯片利用本申请中别处所述的滑动芯片玻璃蚀刻制造法来制造,除了下述改变之外:在这个实例中,利用~45分钟的蚀刻来产生~60μm的深度。进入孔用直径为0.030英寸的金刚石钻头钻出。将被蚀刻玻璃板的表面用Millipore水、然后用乙醇清理,并在硅烷化或氟化乙烯丙烯(FEP)涂层之前进行氧等离子处理。
旋涂FEP。在使用前,首先将FEP的水性乳液(TE-9568,Dupont)用Millipore 水稀释4倍。在对滑动芯片装置进行等离子清理后,利用塑料移液器将溶液均匀铺展在装置上。对于旋涂来说,将旋转速度设定在1500rpm并将过程进行30秒,或将旋转速度设定在2000rpm并将过程进行30秒。在涂层完成后,将滑动芯片转移到120℃烤箱并保温10分钟。在保温后,将滑动芯片在加热板上以250℃烘烤10分钟,然后将温度增加至265℃继续烘烤10分钟。在烘烤后,将滑动芯片在加热板上在340℃下烧结1分钟。然后将烧结的芯片冷却至室温。
组装滑动芯片。将滑动芯片在FC-40下组装。首先将底板浸泡在皮氏培养皿中的FC-40中,使图案面朝上。然后将顶板置于底板的顶面上,使图案面朝下。将两块板通过彼此相对移动将位置对齐,然后利用4个微型长尾夹将它们固定。在除去表面上过量的FC-40后,滑动芯片随时可以使用。
测量接触角。首先将滑动芯片浸泡在槽中的氟烃中。将板面朝下,在每一端用两个微型长尾夹夹住,以在板与槽的底面之间产生间隙。将5μL测量水溶液移取到间隙中,水微滴由于其在周围氟烃中的浮力而与板接触。然后利用光学接触角测定仪(Ramé-HartInstrument Co.,Model 500)测量基质上微滴的接触角。
食品染料测定。在使用前将所有用于食品染料测定的溶液用0.45μm PVDF针筒式滤器过滤。将四种食品染料(棕色、粉色、红色和蓝色,Ateco,Glen Cove,NY)从其储液稀释~10倍,并用移液器装载到16根试剂导管中。为了装载每根导管,首先使用移液器将4μL染料通过入口推动直到染料溶液从出口冒出。在装载试剂后,使滑动芯片滑动以形成用于样品的连续流体通路。将绿色染料稀释20倍,然后通过样品入口装载。利用移液器将4μL染料装入芯片,直到所有样品导管完全填充。在装载样品后,将滑动芯片再次滑动,通过扩散混合溶液。
对混合比例进行量化。装载过程与用于食品染料分析的相似。利用两种溶液,荧光溶液(44.8μM Alexa-488在pH 7.8的10mM Tris中)和缓冲液(10mM Tris,pH 7.8)。将最外面的4个流体通路——每个通路包含11个区域——用荧光染料装载,并将其余12个流体通路用缓冲液装载。荧光溶液也用作样品。在用于试剂的区域和用于样品的区域组合后,将滑动芯片在暗处温育1小时以允许完全混合。然后将滑动芯片第二次滑动,以将用于试剂的区域与用于样品的区域分离开。最外部的含有荧光溶液的4个流体通路没有稀释,提供用于校准强度测量值的对照。
对混合比例进行量化:测量荧光。为了证实在荧光显微镜的工作范围内 Alexa-488的荧光强度与浓度线性相关,本发明人在滑动芯片上制作了稀释曲线。首先,将四种溶液装载到预组装的用户装载滑动芯片的4个独立的流体通路中,所述4种溶液包括一种缓冲液(10mM Tris,pH 7.8)和浓度为原始Alexa-488溶液浓度(44.8微摩尔,在pH 7.8的10mMTris中)的1/4、1/2和1倍的三种溶液。将顶板相对于底板滑动以使所有区域分离开。然后利用具有10×0.4NA Leica物镜和Hamamatsu ORCAER照相机的Leica DMI6000显微镜(LeicaMicrosystems),测量底板上装料区域的荧光强度。利用GFP滤光片收集Alexa-488荧光。利用4ms的曝光时间。通过利用Metamorph成像系统6.3r1版(Universal Imaging)获得并分析图像。为了提取荧光信号的强度,在每个目标区域的中部选择100像素乘以100像素的区域。将属于具有相同Alexa-488浓度的区域(每种浓度5个区域)的区段平均积分强度对相于对应的浓度作图,以获得校准曲线。
然后利用样品区域进行荧光测量。本发明人测量底板中的区域的荧光强度。这确保用于测量荧光强度的工作参数是一致的。在本实验中利用并制作稀释曲线中所利用的相同的荧光显微镜设置。然后根据校准曲线将来自测量的强度转变成浓度。为了校准显微镜,记录用于GFP的荧光参考载片的荧光强度并用于背景校正。利用6.3r1型Metamorph成像系统(Universal Imaging)获取和分析图像。
对混合比例进行量化:区域尺寸特性。假定玻璃的湿法蚀刻是各向同性的,并且蚀刻速度在所有方向上相同。利用用微型标尺校准的Leica MZ 16立体显微镜测量蚀刻后区域的尺寸,并由此计算区域的容积。
对混合比例进行量化:数据分析。为了对强度测量进行校准,首先从所有荧光图像中减去荧光背景。然后从位于每个区域中央的100像素乘以100像素区段的积分强度中提取出每个区域的强度。通过用没有稀释的相同尺寸的区域的强度除以每个区域的强度,获得每个区域的稀释率。
RC结晶。获得来自绿色绿芽菌(Blastochloris viridis)的光合作用反应中心(RC)的样品。装料程序与用于食品染料测定的相同。将沉淀剂(3.2M(NH4)2SO4,在40mM pH6.0的NaH2PO4/Na2HPO4中)装入7个试剂导管,并将蛋白样品(36mg/mL RC,在0.07%(w/v)LDAO、7%(w/v)1,2,3-庚三醇、4.5%(w/v)磷酸三乙胺(TEAP)、17mM pH 6.0的Na2HPO4/NaH2PO4中)装入样品导管。然后将包含试验物的滑动芯片在室温下、在暗处储存在皮氏培养皿中的FC-70中。在10天内监测试验以检查晶 体的形成。
来自类鼻疽伯克霍尔德菌(Burkholderia pseudomallei)的戊二酰-CoA脱氢酶在滑动芯片中的结晶。从西雅图传染病结构基因组学中心(Seattle Structural GenomicsCenter for Infectious Disease)(SSGCID)获得蛋白样品。将来自根据Wizard screen自制的筛选试剂盒的48种沉淀剂装载到3个滑动芯片中,每个芯片中16种沉淀剂;装料程序与食品染料实验中的相同。然后将每个滑动芯片浸泡在单独的皮氏培养皿中的FC-70中。将皮氏培养皿在室温下温育,并在2周内监测结果。通过与Leica MZ 16立体显微镜偶联的SPOTInsight照相机(Diagnostic Instruments,Inc.,Sterling Heights,MI)获取含有晶体的区域的图像。
不使用滑动芯片,来自类鼻疽伯克霍尔德菌(Burkholderia pseudomallei)的戊二酰-CoA脱氢酶在多孔板中的结晶。在确定戊二酰-CoA脱氢酶的结晶条件后,在坐滴多孔板(Hampton research)中利用微量分批方法将实验放大。在通过滑动芯片上的筛选实验所确定的相同的混合比例下,将蛋白样品与沉淀剂混合,以在孔中获得3μL的最终体积。在储液器中,将Millipore水与沉淀剂混合,以给出与该孔中相同的沉淀剂浓度;最终体积为600μL。每种条件有一个复本。然后将板用密封胶条(Hampton research)密封,并在室温下温育。通过与Leica MZ 16立体显微镜偶联的SPOT Insight照相机(DiagnosticInstruments,Inc.,Sterling Heights,MI)获取晶体图像。
X-射线衍射和数据处理。用于x-射线衍射的晶体从孔板实验获得。对于含有PEG-400的沉淀剂来说,将母液用作低温防护剂,并将PEG-400的浓度改变至25%(w/v)。对于其他沉淀剂来说,将添加20%(v/v)甘油的母液用作低温防护剂。首先用尼龙环将晶体从原始孔转移到含有低温防护剂的孔。然后将晶体冷冻在液氮中。X-射线衍射测定在AdvancedPhoton Source的GM/CA Cat station 23 ID-D(Argonne National Laboratory)进行。利用波长在100K下收集X-射线数据。
利用HKL-2000对数据进行处理和分析。
戊二酰-CoA脱氢酶的X-射线结构确定。戊二酰-CoA脱氢酶的结构通过分子置换法,利用PDBid 3D6B结构作为起始模型以及CCP4程序集中的MOLREP程序来解析。利用从在含有PEG-400的条件中生长的晶体所收集的数据。刚性体、位置和温度因素的精修用REFMAC5程序使用最大似然靶方法来进行。利用CCP4计算用SigmaA权重的2Fobs-Fcalc和Fobs-Fcalc傅里叶图。傅里叶图在COOT中显示和检 查。新溶剂分子的搜索在COOT帮助下进行。坐标和结构因数已保存在蛋白数据库(Protein Data Bank)中,登记编号为3II9(待决)。
在滑动芯片的某些实施例中,可以组合自由界面扩散和微量分批方法对纳升蛋白结晶进行多参数筛选。在本发明的某些实施例中,可以进行基于滑动芯片的自由界面扩散(FID)方法,以及在单一装置中同时进行微量分批和FID结晶方法的基于滑动芯片的综合法。
在一个实施例中,FID滑动芯片构造成用于筛选每个具有多种扩散平衡时间的多种试剂,并用于针对48种不同试剂为两种蛋白——来自结核分枝杆菌(Mycobacteriumtuberculosis)的烯脂酰-CoA水合酶和来自牛巴贝斯虫(Babesia bovis)的二氢叶酸还原酶/胸苷酸合酶筛选结晶条件,每种试剂利用5种不同的平衡时间,利用3个滑动芯片,总共480个实验,每种蛋白消耗12μL。综合滑动芯片构造成用于筛选各自具有多种混合比例和多种平衡时间的多种试剂,并用于为两种蛋白结晶——来自结核分枝杆菌(Mycobacteriumtuberculosis)的烯脂酰-CoA水合酶和来自牛巴贝斯虫(Babesia bovis)的二氢叶酸还原酶/胸苷酸合酶筛选结晶条件。为了防止交叉污染同时将溶液保持在颈部导管中用于FID稳定,将滑动芯片的板蚀刻成具有纳米尺度区域的图案。这种纳米图案被用于增加水溶液在硅烷化玻璃表面上的接触角。纳米图案形成方法一般性描述在Z.Burton和B.Bhushan,Nanoletters,2005,vol.5,no8,pp.1607-1613中,以其全文引为参考。综合滑动芯片增加了成功结晶条件的数量,并且与单独的FID和微量分批筛选相比确定更多的结晶条件。利用在滑动芯片筛选过程中确定的条件,在多个孔板中进行扩大结晶实验,并获得了X-涉嫌衍射数据,以分辨率产生了二氢叶酸还原酶/胸苷酸合酶的蛋白质结构。这种自由界面扩散方法提供了在微流体装置中设置梯度的简单和高通量的方法,并且也可用于基于细胞的测定。
基于滑动芯片的方法可用于在单一微流体装置中同时进行两种蛋白质结晶方法,即微量分批和自由界面扩散(FID)。目前,在蛋白质结晶方面存在挑战。为了结晶蛋白,必须搜索大量化学空间以确定所需条件。通过更快速的测定和更小的样品量,加快了对正确沉淀剂和正确的蛋白质和沉淀剂浓度的搜索,并且简单、快速和可控的系统推进了新蛋白质结构的发现。结晶蛋白质的特别有吸引力的方法是纳升量级的FID,因为当蛋白质浓度和沉淀剂浓度两者通过扩散逐渐变化时它探索了用于结晶的相图,为晶体成核提供了更高的瞬时过饱和水平,并消除了由快速混合诱导的沉淀。 因此,纳升量级的FID对于结晶是有效的,但是目前它只使用基于阀的系统来进行。FID在机理上与已确立的反向扩散方法相似,所述反向扩散方法通常在微升尺度上进行,包括基于芯片和基于凝胶针刺的方法。在FID中阀的使用需要外部控制设备,并且阀通常由PDMS构成。PDMS装置具有需要大气和蒸发控制的附加复杂情况。进行FID的无阀方法简化了方法并使其更广泛适用。不同的结晶方法探索了通往蛋白质晶体形成时的平衡条件的不同途径,因此产生了不同的结晶结果。可以对这些方法进行修改以改变结晶动力学,因此探索了形成蛋白质晶体的不同路线;然而,不同方法需要不同的技术来混合蛋白溶液和沉淀剂溶液。尽管使用一种以上结晶方法是理想的,但在一个实验中使用两种技术,在技术上是一种挑战。
本文描述的滑动芯片技术致力于应对这些挑战。它已在预先装载和用户装载两种格式中得到证实。在一些实施例中,用户装载的格式可用于证实基于滑动芯片的FID技术,并且也将FID和微量分批技术组合在一个“综合”滑动芯片中。
本发明人设计了包含FID方法的滑动芯片实施例。这种滑动芯片被构造成用于针对采用5种不同平衡时间的16种不同沉淀剂筛选样品。每种平衡时间进行两份研究,在单一滑动芯片上总共进行160个测定。可以将滑动芯片构造成形成16个用于沉淀剂的各含10个区域的独立流体通路,以及用于蛋白样品的含有160个区域的单一流体通路。对于包含FID方法,当滑动芯片被“滑动”以连通蛋白区域和沉淀剂区域时,已形成用于蛋白样品的连续流体通路的微导管(深度为21μm的导管)变成将蛋白区域与沉淀剂区域连通的颈导管。通过逐渐增加蛋白区域与沉淀剂区域之间的距离,颈的长度从91μm增加至491μm;通过减小导管的宽度,颈的宽度从104μm减小到58μm。因此改变了由颈导管的长度除以导管的横截面积所定义的颈的几何尺寸。
滑动芯片构造成利用FID结晶方法针对16种不同沉淀剂筛选蛋白。在同一个滑动芯片上,可以筛选多种沉淀剂以及蛋白与每种沉淀剂混合的多个平衡时间。顶板包含用于蛋白的导管和用于沉淀剂的导管。用于蛋白的导管将变成将蛋白区域与沉淀剂区域连通的颈导管,并且这些导管从左至右宽度逐渐减小,逐渐改变平衡时间。底板具有用于蛋白的区域和用于沉淀剂的区域。用于蛋白的区域与用于沉淀剂的区域之间的距离从左至右逐渐增加,逐渐改变平衡时间。当两块板组装时,形成了用于蛋白的流体通路和用于沉淀剂的流体通路。在“滑动”后,来自底板的蛋白和沉淀剂区域被顶板中的狭窄导管被桥接。
颈的几何尺寸控制平衡时间,并且本发明人发现,平衡时间随着颈的几何尺寸线性增加,与数字模拟相一致。在具有完全展开的扩散分布图的稳态中发生的平衡时间,与形成这些分布图的时间不同;后一个时间与距离的平方成比例。在滑动芯片中可以容易地建立FID测定,不需要阀而仅仅涉及移取和滑动。在这种方法中,用于蛋白样品的导管被用于建立FID测定,因此几乎不浪费样品。因为颈被构造成与含有沉淀剂或蛋白的区域相比更细,因此由改变颈的几何尺寸所引起的体积变化,与结晶测定的总体积相比可以忽略。颈的体积仅占结晶试验总体积的4-8%。本发明人已经用实验证实了改变平衡时间如何影响蛋白质结晶。
在滑动芯片中改变导管的几何尺寸改变了平衡时间。每种条件代表不同的平衡时间,并进行两份试验。通过使用模型荧光染料DTPA,对各种颈的几何尺寸获得了扩散分布图。利用通过区域的线扫描来测量用于蛋白的区域中的平均强度。扩散分布图取决于颈的几何尺寸。50%平衡时间与颈的几何尺寸线性相关。50%平衡时间被定义为蛋白区域中的平均强度达到最大平衡强度的一半所花费的时间;颈的几何尺寸被定义为颈的长度除以颈的横截面积。在最短平衡时间下,只获得沉淀。随着平衡时间的增加,获得了较少、较大的晶体。
本发明人通过利用FID滑动芯片对来自绿色绿芽菌(Blastochloris viridis)的光合作用反应中心进行结晶,首次证实了平衡时间对结晶动力学的影响。本发明人证实了当平衡时间增加时,蛋白质从沉淀发展到许多小晶体再到较少的较大晶体。然后本发明人利用FID滑动芯片为两种蛋白——来自结核分枝杆菌(Mycobacterium tuberculosis)的烯脂酰-CoA水合酶和来自牛巴贝斯虫(Babesia bovis)的二氢叶酸还原酶/胸苷酸合酶,筛选结晶条件。针对含有48种沉淀剂的筛选试剂盒进行筛选,对于总共480个实验来说,消耗了每种蛋白约12μL。这在三个滑动芯片上进行,每个滑动芯片使用16种沉淀剂,每种沉淀剂5种条件各两份平行样,每个芯片总共进行160个实验,并且每个芯片消耗4μL蛋白。本发明人还利用用户装载的滑动芯片的某些实施例,使用微量分批方法针对同样的沉淀剂对两种蛋白进行了筛选,并将微量分批的结果与FID结果进行了比较。
所测定的两种蛋白代表了不同的成核动力学:烯脂酰-CoA水合酶快速成核,而二氢叶酸还原酶/胸苷酸合酶成核慢。对于烯脂酰-CoA水合酶来说,FID使成核作用降到最低,并在微量分批中只能观察到沉淀的条件下产生晶体。利用FID滑动芯片, 本发明人在几种条件下获得了烯脂酰-CoA水合酶的晶体。在两种方法都产生晶体的情况下,例如对于来自绿色绿芽菌(Blastochloris viridis)的光合作用反应中心来说,FID产生较少的大晶体,而微量分批产生许多小晶体。对于形成了结晶的二氢叶酸还原酶/胸苷酸合酶测定来说,在每个试验中仅获得很少晶体,表明二氢叶酸还原酶/胸苷酸合酶的结晶受到成核作用的限制。使用FID方法只有一种沉淀剂条件产生晶体,但是在微量分批方法中有三种沉淀剂条件产生了晶体。这暗示具有不同成核动力学的蛋白需要不同的结晶技术,并且并行地利用多种技术增加了确定产生蛋白质晶体的适合条件的可能性。
在滑动芯片的另一个实施例中,除了确定用于结晶的沉淀剂及其浓度之外,同时对两种方法(FID和微量分批)进行了筛选。在某些实施例中,可以构造用于蛋白样品的连续流体通路和16个用于不同沉淀剂的独立流体通路。在这个实施例中,构造成用于微量分批实验的区域和被设计用于FID实验的区域处于每个流体通路中,允许针对16种沉淀剂每个以多种混合比例和平衡时间对单一蛋白进行筛选。在这个实施例中,FID区域具有多种混合比例(1:2、1:1和2:1),用于每个芯片总共176个实验,其中16种沉淀剂每种进行5个微量分批实验和6个FID实验。
在综合滑动芯片中,可以使用微量分批和FID两种方法,在同一滑动芯片上对多种沉淀剂以及混合蛋白的多种体积和平衡时间进行筛选。顶板包含用于蛋白的区域和用于沉淀剂的导管(微量分批),以及用于蛋白和沉淀剂两者的导管(FID)。底板具有用于蛋白的导管和用于沉淀剂的区域(微量分批),以及用于蛋白和沉淀剂两者的区域(FID)。当两块板组装时,形成了用于蛋白的流体通路和用于沉淀剂的流体通路,以便为微量分批和FID两种方法填充区域。在微量分批中,两个区域彼此对齐,在FID中,两个区域通过狭窄的导管连通。
在某些实施例中,在滑动步骤期间可能发生不想要的交叉污染:在滑动芯片的两块板之间可能形成溶液的薄膜,使应该分隔开的导管和区域连通。为了将不想要的交叉污染降到最低,优选使溶液与滑动芯片的板之间的接触角大于约~130°,并且在其他实施例中,优选将板旋涂上氟化乙烯丙烯的薄层。在FID方法的某些实施例中,颈导管中的溶液在如此高的接触角下不稳定,并倾向于断裂以使表面能最小化。本发明人通过在滑动芯片的表面上形成图案以使其比区域和颈导管内部的表面更加疏水,解决了这个问题。为此,本发明人在洗掉从先前的蚀刻步骤留下的涂层之前,引入了额 外的精细蚀刻步骤。这产生深度为250nm、直径为10μm的区域的图案。不形成纳米图案时,0.1%的N,N-二甲基十二胺N-氧化物(LDAO)样品溶液的平均接触角仅为112.2°,而形成纳米图案时,同样的LDAO样品溶液的平均接触角为134.2°。此外,形成纳米图案减少了在滑动步骤期间玻璃直接暴露于溶液边缘的表面积。小的区域捕集润滑液并产生阻挡层,以防止溶液泄漏。
纳米图案造型的性能受到纳米图案几何尺寸的影响,包括纳米量级区域的尺寸、间隔和蚀刻深度。这些参数可以改变,并且可以测量每个纳米图案造型的接触角。纳米尺度区域的深度和表面积将影响接触角。具有纳米图案造型的硅烷化玻璃典型地具有比未纳米图案造型的玻璃更高的接触角,并且接触角随着蚀刻深度而增加。对于纳米图案造型深度在196nm~3.81μm范围内的玻璃板来说,接触角大于130°。对于深度为3.81μm的纳米图案来说,最大接触角为153.62°(RSD=1.01%,n=5,在设置微滴5分钟后测量)。正如通过在5分钟后测量接触角所观察到的,接触角随时间而减小。减小的量受到纳米图案深度的影响。深度小于200nm的纳米图案与深度超过200nm的纳米图案相比,接触角减小得更快。也利用综合滑动芯片,为利用独立的FID和微量分批实验所研究的同样的两种蛋白——来自结核分枝杆菌(Mycobacterium tuberculosis)的烯脂酰-CoA水合酶和来自牛巴贝斯虫(Babesiabovis)的二氢叶酸还原酶/胸苷酸合酶,筛选结晶条件。由于同时对两条成核和晶体生长路线进行调查,综合方法使相关结晶条件的搜索更高效,同时针对同样的筛选试剂盒筛选每种蛋白消耗同样少量的蛋白(~12μL)。综合滑动芯片的微量分批和自由界面扩散两种组分都发挥作用,并为两种蛋白确定了结晶条件。在综合滑动芯片中,通过独立的微量分批和FID筛选所确定的大部分条件也被确定。对于烯脂酰-CoA水合酶来说,通过混杂方法获得了在任一种单独筛选中没有鉴定到的两种新条件。
利用综合滑动芯片筛选蛋白结晶条件的结果与来自微量分批和FID方法的结果相匹配。所有区域含有试剂41(45%(W/V)PEG-3000,0.1M CHES,pH 9.5)。所用微量分批方法,晶体在2:1(蛋白质:沉淀剂)的混合比例下形成。使用FID方法,晶体在1:2的混合比例下形成。对于烯脂酰-CoA水合酶和二氢叶酸还原酶/胸苷酸合酶两者来说,综合方法产生了与单独的微量分批或FID相比同样多或更多的结晶命中。
本发明人对在微量分批滑动芯片中确定的二氢叶酸还原酶/胸苷酸合酶的三种结晶条件之一进行了规模放大。所选的条件是将蛋白样品以0.33:0.57的混合比例与20%(w/v)PEG-8000、0.2M NaCl和0.1M pH 9.5的CHES混合。本发明人放大二氢叶酸还原酶/胸苷酸合酶而不是烯脂酰-CoA水合酶,是因为二氢叶酸还原酶/胸苷酸合酶更难结晶,正如识别到命中的极少数所表明的。沉淀剂,即20%(w/v)PEG-8000、0.2M NaCl和0.1M pH 9.5的CHES,在所选混合比例下产生具有明确形状的晶体。将微量分批方法结晶试验从滑动芯片转换到多孔板上是直截了当的,并且本发明人从放大的方法成功地获得了晶体。本发明人收集了完整的X-射线衍射数据集,并以 的分辨率和P212121空间群确定了结构。该结构已保存在蛋白数据库(Protein Data Bank)中,编号为PBDid:3KJR。同样的蛋白使用西雅图传染病结构基因组学中心(Seattle Structural Genomics Center for Infectious Disease)(SSGCID)和基因至3D结构加速技术中心(Accelerated Technologies Center for Geneto 3D Structure)(ATCG3D)的设备进行并行的筛选,使用在晶体卡中进行的微流体微量分批方法,在使用20%(w/v)PEG-8000、0.1M pH 9.5的CHES的条件下产生了晶体。这些晶体产生了结构,空间群为P1(PDBid 3D6B)。筛选以双盲方式进行,在筛选完成并获得晶体之前没有共享任何关于结晶条件的信息,即在滑动芯片上对二氢叶酸还原酶/胸苷酸合酶结晶的筛选和相伴的放大测定,在没有关于通过SSGCID和ATCG3D设施中的筛选所获得的条件的任何知识背景下进行。独立地发现了能够产生结构的类似条件,其共有相同的PEG和缓冲液,区别仅在于在滑动芯片筛选中存在NaCl。本发明人获得了具有不同空间群的更高分辨率的结构。
本发明人用实验证明用于结晶蛋白质的基于滑动芯片的FID方法以及同时使用微量分批和FID结晶技术的基于综合滑动芯片的方法。滑动芯片的某些实施例提供了简单并且易于使用的方法,以建立超过160个自由界面扩散方法实验和176个微量分批和自由界面扩散两种方法的实验,并且能够使用单一步骤同时设立所有测定体系。对于诸如蛋白质结晶这种每个试验不一定需要单独控制的应用来说,不存在阀极大地简化了测定的进行和装置的制造。通过使用滑动芯片平台,装置的制造被进一步简化,因为滑动芯片与廉价的模制技术和常用塑料是相容的。在基于填塞物的结晶技术中已经证明的更先进技术,与滑动芯片设计相容。除了筛选多种沉淀剂、混合比例和平衡时间之外,综合滑动芯片能够在同一装置中在纳升量级上比较两种不同的蛋白质结晶技术。通过使用单一装置,所使用的表面化学和溶液相同,并且可以鉴定和认识到一 种方法超出另一种方法的任何优点。微量分批对应于通过较大界面进行快速混合,导致更快的成核。自由界面扩散对应于通过较小界面的较慢混合,对应于较慢的成核。控制颈的几何尺寸能够使方法联系起来,将微量分批和FID方法桥接。基于反向扩散方法的结晶在机理上与FID方法类似。用于结晶的反向扩散在滑动芯片上可以在较小量级上并且以比传统方法更多路的格式进行。综合滑动芯片为测定许多蛋白提供了平台,并为了解更多关于蛋白质结晶的重要特征提供了机会。
在确定结晶条件之后,优选将适合于X-射线衍射的高质量晶体用于晶体性质研究和确定蛋白质结构。为了产生大得足以用于X-射线衍射的晶体,需要典型~10nl的最小试验体积,并且使用例如同步加速器x-射线科学的最新进展,可以分析甚至更小的晶体,因此在滑动芯片中获得的晶体可能大得足以用于结构定性。对于从滑动芯片中生长的晶体获得X-射线衍射数据来说,存在几种选项,包括提取晶体或原位衍射。在某些实施例中,滑动芯片没有被密封,因此可以将两块板分开并将晶体提取出来,正如对于基于孔的芯片所做的。原位衍射可以防止在结晶后的操作过程中对晶体的损伤,并能增加通量。原位X-射线衍射可以在滑动芯片上进行,因为滑动芯片可以由与原位衍射相容的材料制成,例如PDMS、PMMA和环烯烃共聚物,或者如果需要,可以将玻璃蚀刻以产生具有足够薄的壁的区域。
如果在滑动芯片中生长的某些晶体不产生高质量X-射线衍射数据,可以使用通过滑动芯片筛选鉴定到的条件将结晶实验进行规模放大。微量分批实验在孔板中容易加大。使用同样的策略,使用来自类鼻疽伯克霍尔德菌(Burkholderia pseudomallei)的核糖磷酸焦磷酸激酶也获得了成功。通过常规气相扩散方法发现的条件(20%(w/v)PEG-3350,0.2M甲酸镁,pH 5.9)产生空间群为I222的晶体。以分辨率确定了晶体结构(PDBid:3DAH))。以平行方式利用滑动芯片实施例,本发明人平行地发现了不同的条件(11%(w/v)PEG-8000,37mM柠檬酸钠,pH 5.5),其产生空间群为P43212的晶体。用通过规模放大产生的晶体,本发明人以分辨率获得了数据集。利用其他技术,FID方法的放大可能较为繁琐,因为需要在较大规模上复制和周密控制扩散分布图和动力学。本发明人为FID滑动芯片确定的可预测扩散分布图能够合理设计可缩放滑动芯片的缩放规模,向下至例如皮升量级模以及向上至例如微升量级。
这里描述的技术在蛋白质结晶之外还具有许多应用。例如,用于产生超疏水表面的纳米尺度蚀刻方法将影响表面造型技术。此外,用于FID方法的技术可以扩展到当在其他实验中混合溶液时控制平衡时间。这种平衡的控制可用于在各种应用中建立梯度,例如当研究趋化性时以及在其他基于细胞的测定中。
实例
具有纳米图案造型的滑动芯片的制造
本发明人采用在本申请中别处描述的玻璃蚀刻制造过程,并进行了下列修改。首先,将空白玻璃板(钠钙玻璃,厚度:0.7mm;铬涂层:AZ抗光蚀剂:1μm)切割成3in×1in。步骤1:采用玻璃蚀刻制造过程,直到将玻璃板的背侧用PVC胶带密封这一步。接下来,本发明人放置十字标志,用于将第二个光掩模对齐在玻璃板的边缘上;这些标志也用胶带密封以防止蚀刻。在本实施例中,蚀刻时间为~30min,以在玻璃板中蚀刻出深为40μm的区域。将板用Millipore水充分漂洗,并用氮气干燥。步骤2:使用含有用于导管的设计的另一个光掩模和~15min的蚀刻时间,使用与步骤1中相同的程序在玻璃板上蚀刻出20μm深的导管。仔细地将玻璃板与光掩模对齐。在该步骤期间,40μm深的区域被进一步蚀刻至60μm深。将板用Millipore水充分漂洗并用氮气干燥。步骤3:在将导管和区域蚀刻在板内之后,将板与纳米造型光掩模对齐,并重复与步骤1中相同的程序。在除去铬涂层后,将玻璃板浸泡在50:25:37.5mmol/L HF/NH4F/HNO3蚀刻溶液中,在室温下(~23℃)蚀刻20分钟,以在表面上产生~250nm深的图案。最后,将玻璃板用乙醇漂洗,以脱去未显层的抗光蚀剂,并浸泡在铬蚀刻剂中以除去铬涂层。然后将玻璃用乙醇和Millipore水漂洗并用氮气干燥。这里描述的方法将纳米深度设计和各种微米深度设计整合在一块玻璃基质上。它也可用于产生纳米/微米混杂导管,用于其他纳米流体/微米流体应用。将蚀刻的图案用Veeco Dektak 150表面光度仪测量。清洁玻璃板并进行氧等离子处理,然后按照以前的描述通过在真空干燥器中用十三氟-1,1,2,2-四氢辛基-1-三氯甲硅烷硅烷化3小时,使表面具有疏水性。硅烷化后,将玻璃板在120℃烤箱中烘烤30分钟,通过浸泡在FC-3283槽中漂洗,并在60℃烤箱中干燥过夜。
FEP旋涂
旋涂FEP按照在本申请中别处描述的方式进行。
测量纳米图案造型的接触角
如在“具有纳米图案造型的滑动芯片的制造”的步骤3中所述,利用纳米图案造 型光掩模将玻璃板蚀刻上纳米图案,并通过控制蚀刻时间获得纳米尺度区域的不同深度。在测量接触角之前,所有玻璃经过硅烷化和清洁。将玻璃板浸泡在玻璃槽中的氟烃内。将板带有图案的表面朝下,在每一端用两个微型长尾夹夹住,以在板与槽的底面之间产生间隙。将5μL测量水溶液移取到间隙中,含有0.1%LDAO的水微滴由于其在周围氟烃(FC-40)中的浮力而与板接触。然后使用光学接触角测定仪(Ramé-Hart Instrument Co.,Model 500)测量基质上微滴的接触角。接触角在微滴与玻璃板接触后立即测量,并在接触5分钟后再次测量。
FID装置中的食品染料测定
利用上面描述的方法制造FID装置,没有进行纳米图案造型或FEP涂层。将装置的两块板在FC-40下组装。在得到的取向中,形成用于所有16种试剂和一种样品的流体导管。所有用于食品染料实验的溶液在使用前用0.45μm PVDF针筒式滤器过滤。将四种食品染料(黄色、粉色、红色和蓝色)从其储液稀释~10倍,并用移液器装载到16根试剂导管中。为了装载每根导管,首先利用移液器将4μL染料通过入口推动直到染料溶液从出口排出。将绿色染料稀释20倍并与0.04%(w/v)LDAO混合以模拟蛋白样品。然后通过样品入口装入绿色染料。利用移液器将10μL染料装入芯片,直到所有样品导管完全填充。在装载试剂后,将滑动芯片滑动以便断开相邻区域之间的连通,并且垂直导管形成用于样品区域及其下方相关试剂区域的桥接扩散导管。使用带有Plan APO 0.63×物镜的Leica MZ 16立体显微镜获取连续图像(时间间隔为3分钟)。
FID装置中的荧光染料扩散测定
利用上述方法并使用纳米图案造型制造FID装置。组装滑动芯片并按照食品染料实验所述装载溶液。通过移液将PBS缓冲液(1×,pH 7.4)中的250μM MPTS装载到两个试剂导管中。将0.01%(w/v)LDAO溶液装载到样品导管中以填充所有样品区域。在Leica MZ 16立体显微镜下将滑动芯片进行滑动,以形成20个具有5种不同导管几何特征的自由界面扩散实验。使用定时器记录FID的起始时间点。将装置快速转移到带有5×0.4Leica物镜和Hamamatsu ORCAER照相机的Leica DMI6000显微镜(Leica Microsystems)中。使用DAPI滤光片和20ms的曝光时间收集MPTS荧光。为了校准显微镜,记录使用DAPI滤光片时荧光对照载片的荧光强度,并将其用于背景校正。利用6.3r1型Metamorph成像系统(UniversalImaging),利用多维获取功能 获取和分析图像。每10分钟获取图像。为了获得样品区域中的平均强度,本发明人在每个样品区域上获得了线扫描。将沿着线扫描的强度平均,并将平均强度对时间作图。通过将设置FID实验与开始成像之间的延迟考虑在内,对时间进行校正。
混杂装置中的食品染料测定
利用上述的纳米图案造型方法制造混杂滑动芯片。将其在FC-40下组装。在得到的取向中,形成用于16种试剂和一种样品的流体导管。所有用于食品染料实验的溶液在使用前用0.45μm PVDF针筒式滤器过滤。将四种食品染料(黄色、粉色、红色和蓝色,Ateco,GlenCove,NY)从其储液稀释~10倍,并用移液器装载到16根试剂导管中。为了装载每根导管,首先利用移液器将4μL染料通过入口推动直到染料溶液从出口冒出。将绿色染料稀释20倍并与0.04%(w/v)LDAO混合以模拟蛋白样品。然后通过样品入口装入绿色染料。使用移液器将10μL染料装入芯片,直到所有样品导管完全填充。在装载试剂后,将滑动芯片滑动,以使在微量分批区段中试剂区域与样品区域重叠,并且在FID区段中试剂区域通过颈(在滑动前连接样品流体通路的导管)与样品区域连通。
用微量分批滑动芯片对来自结核分枝杆菌(Mycobacterium tuberculosis)的烯脂酰-CoA水合酶进行结晶
蛋白样品从西雅图传染病结构基因组学中心(Seattle Structural GenomicsCenter for Infectious Disease)(SSGCID)获得。微量分批滑动芯片通过玻璃蚀刻制造,用氟化乙烯丙烯(FEP)进行表面涂层,并在氟烃润滑剂——全氟代三正丁胺和全氟代二正丁基甲基胺的混合物(FC-40)下组装。将来自于自制筛选试剂盒的48种沉淀剂装入3个组装的滑动芯片中,每个芯片16种沉淀剂。通过滑动将沉淀剂与蛋白样品合并。然后将每个滑动芯片浸泡在单独的皮氏培养皿中的FC-70中。将皮氏培养皿储存在23℃温箱中,并在2周内监测结果。使用与Leica MZ 16立体显微镜偶联的SPOT Insight照相机(DiagnosticInstruments,Inc.,Sterling Heights,MI),在2周内获取含有晶体试验的区域的图像。
利用FID芯片对烯脂酰-CoA水合酶进行结晶
用于蛋白质结晶的FID滑动芯片用上述的纳米图案造型方法制造。将来自自制筛选试剂盒的48种沉淀剂装载到三个滑动芯片中,每个芯片16种沉淀剂;装载程序与FID芯片的食品染料实验中相同。在滑动后,沉淀剂区域与蛋白区域通过蛋白颈成对 连通,以开始FID实验。然后将每个滑动芯片浸泡在单独的皮氏培养皿中的FC-70中。将皮氏培养皿储存在23℃温箱中,并在2周内监测结果。在2周内获取含有晶体的区域的图像。
利用混杂滑动芯片对烯脂酰-CoA水合酶进行结晶
用于蛋白质结晶的混杂滑动芯片用上述的纳米图案造型方法制造。将来自自制筛选试剂盒的48种沉淀剂装载到三个混杂滑动芯片中,每个芯片16种沉淀剂;装载过程与混杂芯片的食品染料实验中相同。在一个滑动步骤后,建立起微量分批和FID实验两者。然后将每个滑动芯片浸泡在单独的皮氏培养皿中的FC-70中。将皮氏培养皿储存在23℃温箱中,并在2周内监测结果。在2周内获取含有晶体的区域的图像。
利用微量分批滑动芯片对来自牛巴贝斯虫(Babesia bovis)的二氢叶酸还原酶/胸苷酸合酶进行结晶
蛋白样品从SSGCID获得。利用微量分批滑动芯片的筛选测定以与上述烯脂酰-CoA水合酶相同的方式进行。
利用FID芯片对二氢叶酸还原酶/胸苷酸合酶进行结晶
蛋白样品从SSGCID获得。利用FID滑动芯片的筛选测定以与上述烯脂酰-CoA水合酶相同的方式进行。
利用杂合滑动芯片对二氢叶酸还原酶/胸苷酸合酶进行结晶
蛋白样品从SSGCID获得。利用杂合滑动芯片的筛选测定以与上述烯脂酰-CoA水合酶相同的方式进行。
利用UV显微镜对蛋白质晶体进行可视化
为了证实在滑动芯片上的所有结晶测定中获得的晶体确实是蛋白质晶体,本发明人利用了UV显微镜(PRS-1000,Korima Inc.,Carson,CA)。获得亮视野图像和UV光下的图像两者。当检测到来自晶体的UV信号时,晶体被证实为蛋白质晶体,并将相应的结晶条件鉴定为命中。
在孔板中对二氢叶酸还原酶/胸苷酸合酶进行结晶
按照对来自类鼻疽伯克霍尔德菌(Burkholderia pseudomallei)的戊二酰-CoA脱氢酶的描述,在孔板中进行了二氢叶酸还原酶/胸苷酸合酶的结晶。
X-射线衍射和数据处理
X-射线衍射和数据处理按照本申请中别处描述的来进行。
二氢叶酸还原酶/胸苷酸合酶的X-射线结构确定
二氢叶酸还原酶/胸苷酸合酶的结构通过分子置换法,利用PDBid 3I3R结构作为起始模型以及CCP4软件套中的MOLREP程序来解析。利用从在含有PEG-400的条件中生长的晶体所收集的数据。刚性体、位置和温度因素的精修用REFMAC5程序利用最大似然靶方法来进行。利用CCP4计算用SigmaA权重的2Fobs-Fcalc和Fobs-Fcalc傅里叶图。傅里叶图在COOT中显示和检查。新溶剂分子的搜索在COOT帮助下进行。结构已保存在蛋白数据库(ProteinData Bank)中,登记编号为PBDid:3KJR。
混合比例的量化:区域尺寸的性质研究
原始的(蚀刻前)区域是六边形,在第一与第二条边之间以及第四与第五条边之间具有两个相对的直角。区域的容积表示在方程1中,其中W1是区域的原始宽度(第三与第六条边之间的距离),L是区域的原始长度(第三和第六条边的长度),r是伸展距离,d是蚀刻后区域的深度。
方程1 容积=W1Ld+0.5W1 2d+0.707πrdW1+0.666πdr2+0.5πrdL
蚀刻后区域的尺寸使用通过微标尺校准的Leica MZ 16立体显微镜来测量。然后使用方程2计算伸展距离r,其中W2是蚀刻后区域的宽度(沿着与W1相同的轴)。
方程2 r=0.5(W2-W1)
本发明人假定在所有方向上蚀刻速度相同,因此区域的原始图案在所有方向上伸展相同距离。假设伸展距离r与深度d相同。因此,区域的容积可以通过合并方程1和2来计算。
方程3
滑动芯片的区域可以被设计成使得W1总是236μm,并且L是可变的,为0、20、40、60、80、100、120、140、160、180和200μm。六边形的角度为90或135度。通过将区域蚀刻到60μm深,可以将区域设计成分别具有4.0、4.4、4.8、5.2、5.6、6.0、6.4、6.8、7.2、7.6和8.0nL的容积。
在本发明的某些实施例中,滑动芯片可用于进行基于珠子的测定,例如基于珠子的免疫测定。在某些实施例中,基于珠子的滑动芯片方法可以包含多步滑动,将珠子装载在芯片中、操控区域中的珠子、通过滑动将珠子从一层转移到另一层然后从一个区域转移到另一个区域。清洗珠子可以通过许多机制进行,包括来回滑动、向前滑动 和连续稀释。亲水性区域可用于将流体薄层保持在区域中,可以通过产生能够用大体积清洗的小体积用于进行有效连续稀释,并且可以用于加速向薄层内和从薄层向外的扩散。非常薄的纳米尺度区域(例如在约100nm、1μm、10μm之间)可以含有固定化的抗体用于非常快速的免疫测定。这样的免疫测定对于快速分析、例如检测甲状旁腺激索来说可能是有价值的。此外,通过在这样的区域上滑动除去过量材料,可用于评估较弱的结合,例如在Maerkl SJ,Quake SR.“用于测量转录因子的结合能状况的系统”(A Systems Approach to Measuring the BindingEnergy Landscapes of Transcription Factors)Science,2007,315:233-237中所描述的应用。对于滑动芯片免疫测定来说,当珠子被固定化或捕获抗体被固定化在表面上时,可以通过使流体流过对齐的区域和导管来直接进行清洗(为了减少交叉污染,优选并行而不是相继地清洗所有区域)。
细胞培养物可以在区域中生长、维持或测定。区域中可以存在至少一个细胞,并且分析可以通过例如免疫测定来进行。这可能包括细胞的分泌、裂解细胞、刺激细胞,然后通过任何方法包括例如通过免疫测定法来分析结果,或通过滑动加入试剂进行刺激,并通过任何方法包括免疫测定法进行分析。
滑动芯片可用于分析许多样品,所述样品可以从其他装置包括例如化学电极获得。
在一些实施例中,可以在滑动芯片中利用基于珠子的ELISA测定法并行地分析许多小体积样品。分析小体积样品对其来说是重要的情形,包括但不限于分析来自化学电极的样品。了解生物系统可能涉及以高的时间分辨率递送、捕获和解释分子信号的工具。新开发的化学电极通过在数百个纳升体积的填塞物阵列中记录分子信号,随后通过多种独立技术进行平行分析,来应对这种未满足的需求。化学电极可以从以高灵敏度、特异性和通量分析纳升体积记录填塞物的方法中获益。免疫测定法是用于在生物研究中以高特异性和灵敏度检测分子标志物的最常用技术。开发用于这些纳升填塞物的免疫测定法增强了化学电极的分析能力。分析小体积样品对其来说是重要的其他情形,包括但不限于诊断和临床研究。例如,随时间连续监测肿瘤需要重复获取小体积样品并对其进行分析。此外,为了避免不必要地耗尽保存在血库中的血样,化验要求对小体积进行分析。分析小体积样品对其来说是重要的其他情形,包括但不限于单细胞分析,从活组织例如视网膜(Lu,Miao-Jen等,ExpDiabetes Res.2007;2007: 39765)和小样品(例如来自胚胎的材料)中进行纳米流取样。在某些情形中,最大的瓶颈是并行地处理(例如合并样品、用珠子分离样品和添加试剂)许多小体积。用于操作纳升微滴的典型方法一个接一个地连续处理填塞物。对于某些实施例来说,在填塞物的指数化是重要的情况下,这是不太优选的,因为可能积累误差。目前用于在阵列中排列纳升微滴的装置的许多实例,不允许对微滴进行操作(添加试剂、操控珠子)。数字微流体装置使用微升体积来工作。许多微流体装置依靠层流导入样品:它们可能具有大的死体积和/或吸附问题。滑动芯片的某些实施例能够不使用复杂仪器可靠地并行操控许多多步骤反应。本发明人开发了利用滑动芯片进行基于珠子的ELISA以并行地分析许多小体积样品的简单方法。本发明人设计了包含多步滑动的滑动芯片的某些实施例,并进行了实验以验证珠子的装载和清洗。多步滑动允许我们将珠子从一层转移到另一层,然后从一个区域转移到另一个区域。在这些实施例中,珠子可以通过两种机制来清洗:伴有连续稀释的正向滑动,以及来回滑动。亲水性区域将流体的薄层保持在这种滑动芯片的区域中。亲水性区域也允许通过产生能够用较大体积清洗的小体积,来进行高效的连续稀释。本发明人利用滑动芯片的一个实施例所获得的检测极限低至pM范围,该范围在许多分子标志物的生理浓度内。
已经设计了能够并行进行48个免疫测定的滑动芯片的实施例。它包含两个区段,区段A和区段B。区段A用于装载许多小体积样品:该区段的结构是可变的,以适应于不同样品来源的不同要求。为了验证进行基于珠子的ELISA,将装置制造成具有6组,每组含7个区域(1nL,10μm深)。当用于样品的区域(底板)和用于样品的导管(顶板)对齐时,形成6个独立的流体通路,并通过移液到单独入口中来填充每个流体通路。每个流体通路还含有用于溶液的独立出口。在这些实验中,将6种标准校准物装载在用于样品的6个流体通路中。区段B用于进行基于珠子的ELISA:这是装置的核心区段。它含有6行48个区域(9nL,80μm深)。第一行中的区域用于装载含有与捕获抗体偶联的磁珠和酶标记的检测抗体的混合溶液。第二、第三、第四和第五行中的区域被用于装载清洗缓冲液。第六行中的区域被用于装载含有底物的溶液。滑动芯片的实施例的顶层可以包含用于装载样品的入口、出口和导管,以及用于各种试剂的入口、出口和区域。滑动芯片的实施例的底层可以含有用于样品的区域和装载试剂的导管。
在某些实施例中,滑动芯片可以由两层微制造的玻璃构成。顶层可以含有用于样品的所有入口、出口和导管,以及用于试剂的区域。底层可以含有用于样品的区域和用于试剂的导管。为了改进区域的填充,可以将装置表面硅烷化成疏水性的,同时保持区域为亲水性的。在硅烷化构成中可以对区域进行保护以保持亲水表面。交叉污染的潜在来源是在滑动芯片的某些实施例的两块板之间形成溶液薄膜,其将滑动后应该分离的区域相连通。这在溶液润湿滑动芯片的表面是发生。为了在滑动芯片的某些实施例的除了区域和导管内部之外的表面上使含有BSA溶液的润湿最小化,可以在区域和导管外部的表面上制造纳米图案。纳米图案造型增加了溶液与表面之间的接触角,阻止了表面的润湿。
在某些实施例中,利用滑动芯片进行免疫测定包含三个通用步骤:(a)预装试剂,(b)装载样品,和(c)进行测定。在某些实施例中,试剂可以通过8个步骤预装:(1)组装滑动芯片,使第1行的区域与试剂导管连通。(2)将含有例如捕获抗体包被的超顺磁性珠子和酶标记的检测抗体的试剂溶液注入滑动芯片,并填充第1行中的区域。(3)滑动该芯片以通过导管连通第2行的区域。(4)通过导管注射氟烃以除去导管中的任何剩余溶液。(5)注入清洗缓冲液以填充滑动芯片中该行中的区域。(6)滑动该芯片以通过导管连通下一行的区域。(7)将步骤(4)、(5)和(6)重复三次,以用缓冲液填充第3和4行。(8)通过导管注射氟烃以除去导管中的任何剩余溶液,并注射酶底物以填充第6行。
在一个实施例中,通过两个步骤装载样品:(1)对滑动芯片进行滑动,以通过导管将区域连通(对用户来说这是备用状态),(2)通过经由入口移液注入被分析物溶液。
在某些实施例中,测定可以通过5个步骤进行:(1)滑动该滑动芯片,以合并例如抗体和珠子的被分析物与试剂溶液,并将溶液温育以使抗体夹心物形成,(2)将磁体紧靠底层的背面,以将珠子向下拉到底板的区域中,并通过缓慢地滑动该滑动芯片使测定溶液和清洗缓冲液合并,以便尽管移走磁体,珠子仍保留在底板的区域中,(3)将步骤(2)重复三次,(4)利用磁体将珠子向下拉到底板的区域中,并滑动该滑动芯片以合并抗体夹心物和基质,(5)利用荧光显微镜监测荧光的增加。利用本领域的技术人员已知的技术将荧光与被分析物浓度相关联。
在包含两个区段A和B的一个实施例中,可以用8个步骤将试剂预装到滑动芯片中。区段B的第1行的区域可以通过试剂导管相连。可以将含有捕获抗体包被的 超顺磁性珠子和酶标记的检测抗体的试剂溶液注入滑动芯片,以填充区段B的第1行中的区域。可以滑动该滑动芯片以通过导管连通区段B的第2行的区域。可以通过导管注射氟烃以除去导管中的任何剩余溶液。可以注入清洗缓冲液以填充滑动芯片中该行中的区域。可以滑动该滑动芯片以通过导管连通下一行的区域。可以将这些步骤重复三次,以用缓冲液填充区段B的第3、4和5行。可以通过导管注射氟烃以除去导管中的任何剩余溶液,并且可以注射酶底物以填充区段B的第6行。可以用两个步骤将样品装载到滑动芯片的这个实施例中:可以滑动该滑动芯片,以通过用于样品的导管连通区段A中的区域。可以通过经由入口移液注射被分析物溶液。可以用5个步骤进行免疫测定。可以滑动该滑动芯片,以将被分析物与抗体和珠子的试剂溶液合并,并将溶液温育以使抗体夹心物形成。可以用磁体将珠子向下拉到底板的区域中,并可以滑动该滑动芯片以合并测定溶液和清洗缓冲液。如果需要,可以重复步骤。可以用磁体将珠子向下拉到底板的区域中,并可以滑动滑动芯片以合并抗体夹心物和基质。可以使用荧光显微镜监测荧光的增加。
对于本领域的技术人员来说,显然可以制造与上述包含例如1至6行的实施例类似的实施例,其中可以将例如多组六行的区段建造在单一滑动芯片上,以便可以并行地进行多个测定。
在其他实施例中,利用滑动芯片同时进行许多例如纳升样品的分析可以利用基于珠子的胰岛素ELISA进行。为了证实这一方案,本发明人将含有用捕获抗体包被的超顺磁性珠子、碱性磷酸酶标记的抗胰岛素单克隆抗体和阻断缓冲液的溶液,注射到第一区段中第一行的区域中,以形成夹心复合物。为了检测酶标记的检测抗体,本发明人利用了酶的一种荧光基质,即荧光素二磷酸酯(FDP),其在被碱性磷酸酶(ALP)水解后变成发荧光的。本发明人将胰岛素的六种标准校准溶液(0pM,7pM,70pM,350pM,1050pM和2100pM)注射到同一芯片区段中的区域中。随时间测量每个区域的荧光。本发明人发现,由背景信号的三倍偏差所定义的检测极限,约为9pM。
可以在滑动芯片上利用多个小样品并行地进行胰岛素免疫测定。可以随时间测量同一滑动芯片上胰岛素免疫测定的不同区域中多个例如纳升样品的荧光强度。
在滑动芯片的某些实施例中,可以进行基于顺磁性珠子的测定。本发明人证实了这些珠子在滑动期间保持在区域中:珠子没有被捕获在两块板之间,并且损失<3%。对于某些实施例来说,为了提高结果的准确度,珠子的保留是优选的。可以利用移动 的磁体来移动珠子,以便于溶液的混合。对于某些实施例来说,优选对于清洗珠子和珠子在区域之间转移是优选的。利用磁体移动珠子将增加混合,增加混合效率。也可以在滑动前利用磁体将珠子拉入底部区域中,增加滑动芯片中在行之间转移的珠子的数量。残余的酶标记的检测抗体将扩散到清洗缓冲液中,并可以按指数律稀释以最终达到可忽略的水平,清洗了珠子。在某些实施例中,假设在每轮清洗中完全混合,在四轮清洗后,残余试剂将被稀释104倍。在某些实施例中,本发明人证实了在滑动芯片中清洗后,酶标记的检测抗体的水平低于检测极限。
具有亲水性区域的滑动芯片的制造。本发明人利用在本申请中别处描述的玻璃蚀刻滑动芯片制造过程,其中进行了下列修改。首先,将空白玻璃板(钠钙玻璃,厚度:0.7mm;铬涂层:AZ抗光蚀剂:1μm)切割成2in×1in。在从玻璃板上除去光掩模后,通过将玻璃板在0.5%NaOH溶液中浸泡1分钟使其被显现。在这个实例中,玻璃板前部的某些区域也用PVC胶带胶粘以形成较薄区域。在将玻璃板用PVC胶带胶粘后,将其浸泡在蚀刻溶液中,并使用25℃恒温水浴摇床控制蚀刻速度。通过控制蚀刻时间(~50min),在玻璃板中蚀刻出70μm深的区域和导管。将板用Millipore水充分漂洗,并用氮气干燥。
接下来,将保护较薄区域的胶带取下,并将板在蚀刻溶液中浸泡~7min。在玻璃板上移去胶带的部分蚀刻出10μm深的区域。在该步骤期间,70μm深的区域和导管被进一步蚀刻到80μm深。将板用Millipore水充分漂洗,并用氮气干燥。
在板中蚀刻出导管和区域后,将玻璃板用乙醇漂洗,以脱去未显现的抗光蚀剂。然后,将板用OmniCoat涂覆,并在200℃下烘烤1分钟。接下来,将板涂上10μm厚的SU82010层,并将板用光掩模覆盖,所述光掩模保护板上将成为疏水性的区域。从玻璃板的背面进行UV光照射。在被光掩模暴露的区域中,UV光只通过板中铬涂层被移除的部分,因此只有区域中的SU8在显现后保留下来。区域中的SU8保护该区域并防止它们被制造成疏水性的。被暴露表面上的OmniCoat通过在CD-26中浸泡4分钟显现。
接下来,将一层S1813正性抗光蚀剂涂布在板的顶上,并在95℃下烘烤1分钟。然后将板与与纳米图案造型光掩模对齐,并采用与蚀刻区域和导管时所述的相同的程序。在除去铬涂层后,将玻璃板浸泡在稀释10倍的上述玻璃蚀刻溶液中,并在室温下(~20℃)蚀刻10分钟,以在表面上产生~300nm深的图案。最后,将玻璃板用 乙醇漂洗以脱去未显层的抗光蚀剂,并浸泡在铬蚀刻剂中以除去铬涂层。然后将玻璃用乙醇和Millipore水充分漂洗,并用氮气干燥。
蚀刻的图案使用Veeco Dektak 150表面光度仪测量。清洁玻璃板并进行氧等离子处理,然后按照以前的描述通过在真空干燥器中用十三氟-1,1,2,2-四氢辛基-1-三氯甲硅烷硅烷化3小时,使表面具有疏水性。硅烷化后,将玻璃板在120℃烤箱中烘烤30分钟,通过浸泡在FC-3283槽中进行漂洗,并在60℃烤箱中干燥过夜。最后,通过将玻璃板在RemoverPG中在80℃下浸泡30分钟,脱去区域中的SU8。
组装滑动芯片。滑动芯片在FC-40下组装。首先将底板浸泡在皮氏培养皿中的FC-40中,使图案面朝上。然后将顶板置于底板顶上,使图案面朝下。通过将两块板彼此相对移动,使其对齐在图3A所示的位置中,然后使用两个微型长尾夹固定。在除去表面上的额外FC-40后,滑动芯片可随需随用。
食品染料实例。所有食品染料溶液在使用前用0.45μm PVDF针筒式滤器过滤。通过离心作用将偶联到顺磁性粒子上的小鼠抗胰岛素单克隆抗体溶液浓缩6倍。将得到的珠子悬液与两种食品染料(橙色和蓝色,Ateco,Glen Cove,NY,从其储液稀释~10倍)用移液器装载到试剂导管中。为了装载每个导管,首先使用移液器将2.5μL染料通过入口推动直到染料溶液从出口冒出。在装载试剂后,滑动滑动芯片以形成用于样品的连续流体通路。将红色染料稀释10倍,然后通过样品入口进行装载。使用移液器,将2.5μL染料装载到芯片的每个6个流体样品通路中。
胰岛素的基于珠子的ELISA。装载程序与食品染料实例所用的相同。装载试剂区域,并用六种标准胰岛素溶液装载6个样品通路。在用于抗体的区域与用于样品的区域合并后,将滑动芯片在37℃下温育半小时以允许完全反应。然后滑动该滑动芯片以进行测定。
通过与Leica MZ 16立体显微镜偶联的SPOT Insight照相机(DiagnosticInstruments,Inc.,Sterling Heights,MI)获取区域的图像。利用具有20×0.4NA Leica物镜和Hamamatsu ORCAER照相机的Leica DMI6000显微镜(Leica Microsystems)测量区域的荧光强度。利用GFP滤光片收集荧光素的荧光。利用6.3r1型Metamorph成像系统(UniversalImaging)获取和分析图像。首先将图像的最大强度对时间进行作图,然后提取出初始增加速率并减去阴性对照(除了未加入检测抗体之外,测定体系相同)的速率,并将初始速率对相应的浓度作图以获得校准曲线。
在滑动芯片的某些实施例中,免疫测定可以分7步进行:(A)将纳升体积的被分析物溶液沉积在浸泡在氟烃下的滑动芯片的底层中的区域上。(B)组装滑动芯片,并将含有捕获抗体包被的超顺磁性珠子和酶标记的检测抗体的试剂溶液,注入到由底板的导管和顶板的区域形成的流体通路中。(C)滑动该滑动芯片以合并被分析物和试剂溶液,并使用磁体使珠子沉降在底板的区域中。将溶液温育以允许抗体夹心物形成。(D)将滑动芯片滑动回到(B)中的构型中,并将清洗缓冲液注入到由底板的导管和顶板的区域形成的流体通路中。(E)滑动该滑动芯片以合并清洗缓冲液和测定溶液。重复步骤(D)和(E)以除去松散结合的酶标记的检测抗体。(F)滑动该滑动芯片,并将酶底物注入到由底板的导管和顶板的区域形成的流体通路中。(G)将滑动芯片最后一次滑动以合并底物和抗体夹心物。通过测量荧光的增加来监测被分析物浓度。将荧光的增加与被分析物浓度相关联。在滑动芯片的实施例中,在对珠子进行装载、转移和清洗的一个实施例中,通过移取将珠子均匀装载到滑动芯片的区域中,通过使用磁体和滑动将珠子从一层转移到另一层。在滑动期间,珠子将保留在区域中。可以利用移动的磁体来移动珠子,以便于溶液混合。在某些实施例中,这优选用于高效清洗。在某些实施方案、例如某些酶反应中,优选进行混合以提高反应混合物的均匀性。
在一个实施例中,在滑动芯片中操作超顺磁性珠子包括下列步骤:将纳升体积溶液沉积在底板中,组装滑动芯片,将悬浮在溶液中的珠子注入滑动芯片,利用滑动和磁力使珠子沉降在底板的区域中,将滑动芯片滑动回到初始构型,并将缓冲液注入滑动芯片以除去流体通路中的任何残留溶液。
接下来,描述清洗超顺磁性珠子以基本移除滑动芯片上所有松散结合的检测抗体的实施例。本发明人首先将酶标记的检测抗体(碱性磷酸酶标记的抗胰岛素单克隆抗体)的溶液沉积在底板的区域13-24和37-48中。作为对照,本发明人还将缓冲溶液沉积在孔1-12和25-36中。然后,本发明人将悬浮在阻断缓冲液中的捕获抗体包被的超顺磁性珠子注入滑动芯片。本发明人滑动该装置并将珠子与检测抗体合并。为了导入清洗缓冲液,本发明人使用磁力将珠子沉降在底板的区域中并滑动装置。清洗缓冲液被注入。接下来,本发明人滑动该装置以合并清洗缓冲液与珠子。松散结合的检测抗体将扩散到清洗缓冲液中,而珠子保留在底板的区域中。通过重复清洗步骤,残留的酶标记的检测抗体以指数律稀释,并最终达到可忽略的水平;此时认为珠子已被清洗。在一种情况下,清洗步骤重复12次,假定每个清洗循环中混合完全,残余检 测抗体的量将为起始浓度的~0.2%。为了检测残余的酶标记检测抗体,本发明人使用酶的荧光底物荧光素二磷酸酯(FDP),其在被碱性磷酸酶(ALP)水解后变得产荧光。本发明人滑动装置并注入FDP。最后,本发明人滑动装置以合并底物和区域中任何残留的酶标记检测抗体。测量每个区域中的荧光强度。本发明人发现,对于沉积有ALP-抗体的区域和沉积有缓冲液的区域来说,荧光强度非常弱并且相同。荧光强度也与混合有缓冲液的底物溶液的荧光相同。该结果表明,在清洗后,酶标记的检测抗体水平低于检测极限。作为阳性对照,本发明人向区域加入FDP,通过省略清洗步骤而不进行清洗。沉积有ALP-抗体的区域显示出强荧光,表明试剂和方法对于检测残留ALP-抗体有效。合在一起,这些实验显示,通过在滑动芯片中利用来回滑动进行清洗,可以从珠子上基本移除残留的检测抗体。
可以对滑动芯片中的向前滑动方法进行修改,以包含芯片上单细胞分析并分析收集在填塞物中的样品。本发明人使用向前滑动方法测量了来自芯片上装载的单个β-细胞的胰岛素分泌(通过化学电极取样的来自小鼠胰岛的胰岛素分泌)。首先,本发明人修改了区段A的结构以允许分析芯片上装载的单个细胞。在这种结构中,区段A具有两行区域(一行在底板上,一行在顶板上),区段B与前述相同。本发明人将单个β-细胞装载和培养在顶层的第一行区域中,这是区段A中的第二行区域。本发明人将葡萄糖溶液装载在底层的区域行、即区段A中的第一行区域中。这种设计包含了一个附加的滑动步骤,以合并β-细胞与葡萄糖溶液。在β-细胞与葡萄糖溶液合并后,本发明人将样品滑动通过区段B,以进行如上所述的基于珠子的胰岛素ELISA。这种结构可用于在区域中从单细胞开始生长细胞的纯培养物。这种结构还可用于刺激和分析单个细胞。可以通过滑动以使细胞与特定试剂相接触,来对细胞进行刺激,并且可以通过免疫测定(如前所述)或通过其他方法分析细胞的分泌或细胞裂解物。
本发明人还修改了区段A的结构,以允许分析通过化学电极取样的来自小鼠胰岛的胰岛素分泌。在这种结构中,区段A在顶板中具有两行区域。第一行装载有利用化学电极捕获的填塞物,第二行预装有缓冲液。区段B的六行如前所述预先装载。本发明人用葡萄糖刺激单个胰岛,并使用化学电极取样释放到填塞物中的胰岛素。在这种情况下,化学电极产生了代表胰岛素释放的时间分辨率的一系列填塞物。将滑动芯片在氟烃下组装,本发明人在将两层组装之前,首先将样品填塞物直接沉积在顶层上的第一行区域中,然后将两层仔细对齐,使顶层上的第一行区域与底层中的孔的行 对齐。这种滑动芯片结构的顶层行不包含入口或出口,因为填塞物被直接沉积在滑动芯片的区域上。本发明人首先滑动样品,通过滑动到缓冲液中将其稀释。然后本发明人将稀释的样品滑动通过区段B,以进行如上所述的基于珠子的胰岛素ELISA。
滑动芯片也可以被构造成具有非常薄的区域(例如约100nm、1μm或10μm),其含有固定化抗体,用于非常快速的免疫测定。清洗也可以通过主动方法进行:如果珠子通过磁场固定化或者如果捕获抗体固定化在区域表面上,可以通过使流体流过对齐的区域和导管来直接清洗珠子。为了避免主动清洗中的交叉污染,区域并行地而不是相继地清洗。在某些实施方案中,优选将装置设计成使沿着入口导管和出口导管的压力降小于(例如10倍)沿着被清洗的单个流体通路的压力降。当清洗纳米尺度的区域时,流动阻力可能高,因此这种条件可能得到满足。用于清洗流体的入口导管和出口导管可以末端封闭,具有通往其他导管的狭窄导管。当含有固定化抗体的区域被滑动并对齐以连通入口导管和出口导管时,清洗流体可以通过并清洗区域。
滑动芯片的某些实施方案可用于利用珠子进行样品制备:通过在滑动芯片中使珠子在区域之间转移并将它们暴露于不同试剂,可以实现样品纯化和制备,例如在Kingfisher系统中所作的。通过多种场和效应也可以增强清洗和浓缩,例如,电浓缩使用电场浓缩纳米孔或导管附近的分子。
滑动芯片的某些实施例可以与磁免疫测定法相容,包括例如由PhilipsCorporation开发的磁免疫测定法。滑动芯片的某些实施例可用于获得表观遗传学信息。例如,可以分析组蛋白的乙酰化、甲基化、泛素化、磷酸化和苏素化,并且滑动芯片的某些实施例可用于进行并分析染色质免疫沉淀(ChIP),最低达到单细胞水平。
滑动芯片的某些实施例可用于进行PCR实验。至少三种不同的基于滑动芯片的PCR实例如下:用于进行多路PCR实验的预装滑动芯片,构造滑动芯片用于数字PCR,以及将细菌捕获在珠子上并将珠子装载到用于PCR的滑动芯片中。
滑动芯片的某些实施例可以包括在含油区域顶上滑动,在玻璃上利用不含氟油/矿物油和/或不含氟硅烷化,利用顶上带有油的干燥试剂(例如引物),以及比具有PCR混合物的区域更浅的区域以使PCR混合物液滴接触引物。当将含有水性溶液的区域在含有油的任选具有试剂的区域上滑动时,顶部区域的内含物取代油,因此能够与沉积在底部的试剂反应。一些油保留在区域中以提供热膨胀的控制,并且在某些情况下油的总体积可以大于水性溶液的体积。多路PCR装置的某些实施例也可以包括将较 大的正方形与较小的圆形重叠。这种几何特征实现了两个目的:它降低了由于热膨胀引起的误差,因此一些油被捕集在较大的正方形中,并且它降低了由于接触底部区域中的干燥引物而引起的误差。
在滑动芯片的某些实施例中,存在重叠的椭圆形区域。在某些实施例中,椭圆形区域(在填充方向上伸长的区域)提供了强的重叠和用于装载的低的压力降,并可以滑动小段距离以打破它们之间的重叠并产生与含油区域的重叠。在某些实施例中,椭圆形区域可用于使微滴居中,用于为微滴更好地成像。
滑动芯片的某些实施例可用于利用磁珠捕获细菌。可以将来自血浆的细菌捕获在珠子上并装载到滑动芯片的某些实施例中,然后使用例如PCR反应进行分析。
这里描述的装置和方法可用于大量应用。具体来说,可以利用这些装置进行需要温度变化的应用。应用包括通过PCR分析DNA和通过RT-PCR分析RNA、包括分析mRNA。其他应用包括需要酶和其他分子的热变性的过程、需要组分和反应热激活或失活的过程、以及需要非环境温度的过程(例如许多催化反应)。
滑动芯片的某些实施例可用于大量涉及人类、动物和环境样品的应用,所述样品包括但不限于来自血液、尿液、脑脊液(CSF)、粪便、眼、耳、生殖道、下呼吸道、鼻和咽喉的样品。这些应用包括为病毒感染例如HIV和肝炎病毒测量病毒载量、分析病毒和细菌与真菌的突变和药物抗性、用于鉴定病毒和细菌的检测物组、分析癌细胞及其突变、遗传变异性、克隆进化和药物抗性。目标微生物包括但不限于金黄色葡萄球菌(Staphylococcus aureus)、β-溶血性链球菌、肺炎链球菌(Streptococcus pneumonia)、肠球菌、丹毒丝菌(Erysipelothrix)、单核细胞增多性李斯特菌(Listeria monocytogenes)、流感嗜血杆菌(Haemophilus influenza)、铜绿假单胞菌(Pseudomonas aeruginosa)、霉菌、放线菌属物种(Actinomyces sp.)、卵磷脂酶或脂肪酶阳性的厌氧革兰氏阳性生物,以及脆弱拟杆菌族(Bacteroides fragilis group)。
可以利用多种不同测定法在滑动芯片上进行病毒检测,所述测定法包括但不限于扩增和检测病毒靶RNA或DNA序列的核酸测试(NAT)技术。在一些实施例中,可以利用NAT技术扩增和检测HIV靶序列,在滑动芯片上进行HIV检测。
将细胞捕获在珠子或滑动芯片的某些实施例的区域表面上,对于与包括但不限于癌症诊断、产前诊断和传染病等应用相关的细胞分析和操作、例如多路PCR分析来说,是有吸引力的。
在某些实施例中,滑动芯片装置利用在本申请中别处描述的滑动芯片的玻璃蚀刻制造方法来制造,只是进行了下述改变:在本实施例中,~45分钟的蚀刻产生了~60微米的深度。进入孔利用直径为0.030英寸的金刚石钻头钻出。蚀刻玻璃板的表面用Millipore水、然后用乙醇清洁,并在硅烷化前进行氧等离子处理。通过二氯二甲基甲硅烷(一种不含氟甲硅烷)将玻璃在气相中硅烷化1小时。然后将玻璃载片用氯仿、丙酮和乙醇漂洗,最后用氮气干燥。
下面描述预装多路PCR滑动芯片的一个实施例。PCR滑动芯片的顶板包含长度为640μm、深度为70μm的正方形样品区域,底板包含用于样品的导管和含有不同PCR引物组的预先装载的圆形区域。圆形区域直径为560μm,深度为30μm。首先用0.5μL引物溶液(1μM)装载底板中的区域,并在室温下干燥。然后,将底板置于含有矿物油的皮氏培养皿中。在PCR滑动芯片实验中可以使用含氟或不含氟矿物油。通过将底板置于含有油的皮氏培养皿中,在预装的干燥引物顶上形成油层。含有引物的区域被构造成在深度和宽度两方面比含有PCR主混合物的顶部区域小。这允许装载在顶部区域中含有PCR主混合物的微滴,通过引物顶上的油层有效地到达底部区域中的引物。接下来,将PCR滑动芯片的顶板对齐在底板的顶上,使得样品区域与样品导管对齐,形成连续流体通路。含有EvaGreen supermix(Bio-rad)、1mg/mL BSA(Roche)和DNA模板或水(用于对照组)的PCR混合物流过流体通路以装载样品区域。滑动PCR滑动芯片,以将正方形样品区域与圆形引物区域对齐。因为在两个区域之间存在油层,水性PCR混合物在区域中形成微滴以减小表面张力。当PCR混合物接触到引物区域底部的引物时,PCR引物溶解在反应混合物中。在滑动芯片滑动后,利用带有原位转接器的Eppendorf mastercycler进行热循环。利用样品区域的荧光测量和凝胶电泳来进行PCR读取。
在热循环期间,区域中的水性溶液的体积由于温度升高而膨胀。在某些实施例中,当使用仅具有正方形区域的滑动芯片时,水性溶液可以填充正方形区域,在温度升高后具有水性溶液漏出区域的风险,导致材料的损失和浓度不可监测的变化。当将较小的圆形区域与含有水性溶液的正方形区域进行接触时,水性溶液在区域内形成微滴,为热循环过程中的膨胀提供了空间。底部区域的某些形状和尺寸对于在两个区域的中心形成大小一致的单一微滴是优选的。大小一致的微滴使微滴内试剂浓度的变差降到最低。
在PCR滑动芯片的这个实施例中,本发明人在实验中设置了两行没有模板的对照区域和两行含有5pg/μL金黄色葡萄球菌gDNA的区域。本发明人发现,在滑动芯片中没有发生污染,因为只有含有模板的区域显示出扩增。所有含有模板的区域都显示出扩增,证实了PCR滑动芯片的鲁棒性。荧光强度测量和凝胶电泳显示,没有模板的区域在热循环后不出现DNA,并且具有模板的区域只含有一种DNA样品。
定量数据分析证实在PCR滑动芯片中没有污染。为了进一步验证在滑动芯片中不存在污染或交叉污染,我们利用两种不同引物组预装底部芯片,交替使用了用于nuc基因(来自金黄色葡萄球菌)和mecA基因(来自MRSA)的引物组。如上所述将5pg/μL金黄色葡萄球菌基因组DNA注入到芯片中。因为nuc基因仅存在于金黄色葡萄球菌基因组DNA中,而mecA基因仅存在于MRSA中,因此只有装有用于nuc基因的引物的区域显示荧光增加,而含有mecA基因的其他区域不显示荧光。荧光强度的线扫描定量显示了不含模板的区域不显示显著荧光。
在某些实施例中,热循环通过将整个PCR滑动芯片置于热循环仪中来进行,所述热循环仪将升高和降低装置周围的环境温度。在PCR滑动芯片的不同实施例中,热循环发生在装置内部。这里,热循环仪被装置内的稳定温度分布所代替,并将区域从一个温度物理地移动到下一个温度。首先,如上所述通过滑动以合并含有水性溶液的区域和含有油的区域来形成水性微滴。滑动芯片的某些实施例被构造成使得形成的水性微滴可以通过滑动来移动,而不损失溶液。然后将这些微滴滑动到保持在特定温度下的滑动芯片的区域,保持一段特定的时间。滑动芯片的某些实施例中的温度分布,可以通过利用例如P2i涂层下的IR加热器或热电器件来产生。这些“热区”和“冷区”的尺寸可以小到足以容纳单个区域,或大到足以容纳数行区域或几个区域阵列。例如,旋转装置可以将区域从装置冷的部分移动到装置热的部分。装置中多个温度区的存在,可用于为PCR滑动芯片装置的某些实施例增加其他方面:退火温度。因为不同引物具有不同退火温度,因此可以在这种装置上筛选范围更广的引物。
下面描述了数字PCR滑动芯片的一个实施利。滑动芯片的一个实施例包含1,280个区域,每个区域容积约为5nL,并如上所述使用光蚀刻和湿法化学蚀刻技术制造。这种实施例包含椭圆形导管或区域;两块板被图案造型成具有交叠的尺寸为400μm x200μm、深度为50μm的椭圆形区域。两块板也被图案造型成尺寸为直径200μm和深度50μm的圆形区域。通过使用交叠的椭圆形区域,装置中的压力降较小,允许通 过简单的移液进行填充。通过将滑动芯片短距离滑动,将椭圆形区域分离开,并重叠在含有油层的圆形区域顶上。对于数字PCR来说,将引物添加到PCR混合物中而不是预装在圆形区域中。椭圆形区域被设计成使得椭圆形区域的宽度与圆形区域的直径相同。设计能够使微滴集中在区域中心,允许更好地成像。设计还产生了大小一致的微滴,因此产生了具有一致的试剂浓度的微滴。正如在以前描述的PCR滑动芯片中那样,设计在区域内产生被油包围的水性微滴,为热循环期间的热膨胀提供了空间。
数字PCR滑动芯片的某些实施例能够检测浓度低至100fg/10μL的模板DNA。
可以通过例如使用大和小区域的组合来增加数字PCR的动态范围。例如,在含有2,000个区域的装置中,如果1,000个区域含有1nL溶液,1,000个区域含有10nL溶液,则在统计学上人们将获得更大的动态范围和更高的置信度。提供最佳动态范围和最高置信区间的区域尺寸的分布可以预测。
在数字PCR滑动芯片的某些实施例中,可以通过使用旋转结构来设计多个区域的尺寸。大的区域可以以较低密度置于外部,小的区域可以以较高密度置于内部。因为这种滑动芯片的实施例通过旋转来滑动,因此大区域将比小区域移动更大,并且所有区域将各自同时与其在底板上的对应区域接触。
在滑动芯片的某些实施例中,可以利用磁珠进行细菌捕集。本发明人利用磁珠(Bug Trap version C)从人类合并血浆(HPP)中捕获MRSA。向HPP掺入MRSA,使MRSA的终浓度为1x107cfu/mL。然后,将100μL该溶液与Bug Trap珠子在室温下温育20分钟。使用磁体将珠子沉降,并用1x PBS缓冲液清洗5次。然后,将珠子与EvaGreen PCR supermix、1mg/mLBSA、引物混合,并注入到滑动芯片中用于热循环。这里所用的滑动芯片结构与用于多路PCR实验的相同。
这里描述的技术可用于许多个体细胞、病毒、粒子、分子和其他物体的并行分析。例如,滑动芯片的某些实施例可用于对癌细胞群体进行这样的测定,以确定遗传组成、表型、响应、包括对可能疗法和疗法组合的响应动力学的可变性和不均一性。滑动芯片可用于评估细胞和组织例如血细胞中由于例如放疗、工业事故或战争行动或恐怖主义行动引起的放射损伤的标志物。该分析可用于评估人体接受的辐射剂量,并且这样的信息可用于采取适合应对措施,例如调整放疗剂量、施用螯合疗法或摄入无放射活性同位素或其他方法。这些标志物可以是例如双链DNA断裂标志物。可以使用蛋白质、mRNA、miRNA标志物和小分子,既可以是通用标志物也可以是器官特异性标 志物。这样的标志物的一个实例是组蛋白H2AX的磷酸化。标志物可以在滑动芯片上通过例如酶测定法、免疫测定法、电泳、western印迹、核酸扩增技术包括RNA水平的分析以及方法的组合来分析。在单细胞水平上进行的测量将提供进一步有价值的信息,以将整体接受的辐射剂量与局部接受的、甚至与循环细胞接受的剂量区分开。例如,整体损伤可能产生与受损细胞或损伤的单峰分布所显示的相似的损伤水平,而局部损伤可能产生由细胞或损伤的双峰或更复杂分布所显示的损伤水平的变化。从个体病毒扩增遗传物质然后对病毒进行基因分型以确定其耐药谱,能够早期检测耐药表型,对于例如HIV和乙肝病毒感染的治疗是优选的。
这里描述的技术可以与多相流技术包括基于液滴和/或基于微滴的微流体系统和其他技术整合在一起。滑动芯片的某些实施例适合用于分析一系列微滴、液滴和被不混溶流体包围的其他流体体积,包括在滑动芯片上直接产生或在外部产生并引入到滑动芯片中的体积,例如通过化学电极等产生的液滴。
本申请描述了用于分离的滑动芯片装置,其可以与大量不同分离技术和样品类型整合。这是已经描述在美国临时专利申请61/162,922中的能力的更详细的描述(参见例如第00102、00104、00122和00188段)。滑动芯片的构建与上面用于FID蛋白质结晶的滑动芯片所述的相同。
在某些实施例中,滑动芯片可用于基于扩散的分离。许多医学诊断依赖于分离的澄清体液例如血浆来诊断疾病,但是产生澄清体液通常需要昂贵的离心机、时间和劳力。滑动芯片可以被设计成使全血中的小分子量蛋白、核酸和病毒扩散到含有缓冲液的区域中,而红细胞保留在原始区域中。这种分离是基于扩散系数的差异。例如,在5分钟内,乙肝病毒能够扩散600μm,但是红细胞只能扩散4μm。例如,本发明人设计了一种滑动芯片,其中将全血与5μmol/L 8-甲氧基芘-1,3,6-三磺酸(MPTS)混合,并通过移取10μL血液样品将混合物装载在左侧区域中。将1×PBS缓冲液装载在右侧区域中。使装置滑动以将血液区域与缓冲液区域连通。MPTS在30分钟内扩散到缓冲液区域中,而血细胞不移动。
这种滑动芯片结构能够利用导管或区域中的分离介质引起分离。至少一个区域/导管可以含有分离介质。可以整合在区域中的分离介质的实例包括但不限于凝胶(例如硅胶或聚丙烯酰胺凝胶)、缓冲液、聚合物滤器和滤膜、粘合剂、色谱介质、活细胞的表面、含有和不含蛋白质的生物膜(即脂质双层)、粒子和纳米粒子阵列。可选 地,分离介质可以位于装置表面上。例如,可以在滑动芯片上进行薄层层析(TLC)、凝胶电泳和等电聚焦。分离也可以由扩散和外部场和环境驱动。引起分离的场和环境的实例包括磁场、电场、光场、重力场、化学梯度、温度梯度、主动运输和剪切力。场可以由整合在芯片上的元件或从外部产生。例如,可以将电极引入区域和/或导管或滑动芯片的其他区域中,或者电极可以经滑动芯片的入口和出口从外部施加。在将电极整合在滑动芯片中的情况下,人们可以通过将凝胶置于用于电泳的导管中,使用电泳进行分离而不需样品预处理。通过将滑动芯片从一个位置滑动到另一个位置,可以打开/关闭场或调节其强度。通过能够修改物体相对于所施加场的性质的标签,也能进行分离。例如,通过将目标物体与另一种物体结合,能够改变磁化率、电泳迁移率和扩散系数。可以利用表面改性的磁珠结合特定细菌,然后通过磁场分离。可以使用滑动芯片分离和检测小分子例如药物及其代谢物和复合物、激素、环境污染物、抗生素、尼古丁及其代谢物、滥用的药物、应激激素、与长期和短期应激相关的其他分子。这些分离方法也可用于细胞的分离和从生物流体分离细胞。这样的目标细胞包括循环肿瘤细胞、血液中的胎儿细胞、干细胞、细菌和真菌细胞、T细胞和B细胞以及表达特定标志物的其他细胞亚群。这些细胞可以从血液、尿液、脑脊液、组织间隙液、泪液、羊水、骨髓和组织活检样品中分离。例如,分离可用于确定参与神经变性疾病的蛋白质和肽的聚集状态和翻译后修饰。
这种滑动芯片也可用于研究能够独立移动的物体,例如细胞和生物体。通过在滑动芯片内建立化学、热和磁梯度,可以研究趋化性(主动运输)、趋热性和趋磁性。例如,可以使用趋化性分离血液中的细菌或白细胞。
分离可以与滑动芯片的所有其他能力结合在一起。例如,在滑动以将混合物分离成各种部分之后,可以使滑动芯片第二次滑动以导入试剂进行可视化检测,例如递送用于Western印迹分析的抗体。此外,细胞中磷酸化和糖基化水平的检测,对于诊断和药物发现来说是重要的。将分离与免疫染色组合在一起,对于检测磷酸化和糖基化来说是有吸引力的,并且可以使用滑动芯片在低至单细胞水平上进行这种磷酸化和糖基化的测量。可以使用一系列滑动来分离单细胞、将其裂解、进行分离、用抗体对分离的级份染色并进行检测测定。在最初的分离之后,可以在单一步骤或多个步骤中组合多种场,以进行一维、二维或更多维分离。例如,分离可以与蛋白质结晶相组合。通过在结晶期间继续分离,可以分离到蛋白质在结晶期间的各种聚集状态。这种分离 能够产生高质量和纯度的晶体。
在滑动芯片的某些实施例中,可以通过涡流磁场产生强的固有混合。参见Martin,Shea-Rohwer,Phys Rev E Stat Nonlin Soft Matter Phys.2009Jul;80(1Pt 2):016312,在此以其全文引为参考。可以向球形磁性粒子的悬液施加“涡流”磁场,其在整个流体体积内产生强烈、均匀的混合。通过向通道内的铁磁性珠子施加交变磁场,可以对微通道内的层流进行搅拌。参见Rida和Gijs Anal Chem.2004Nov 1;76(21):6239-46,在此以其全文引为参考。使用暴露于空间上均匀的旋转磁场的微米尺度磁棒的搅拌棒策略,也可以使用。可以使用的永久性结构包括由标准磁力搅拌器驱动的制造磁棒。与微型链(microchain)结合的珠子也可用于混合。混合可以通过将珠子暴露于简单旋转场来实现。珠子可以在流体中提供适度的混合水平。对于某些实施例来说,由于设置的简便性,优选利用永磁体(和磁力搅拌器)产生涡流磁场。在微流体装置中常用的其他混合方法,包括超声波混合、“气泡混合器”和由电场驱动的混合与流动、包括交流电双向电泳,可以用在滑动芯片上。
利用磁力搅拌器和强永磁体的实例。
将含有1微米磁珠的微流体装置置于距旋转强磁体1-1.5cm远处,并将4个强磁体以近似相同的距离添加到顶上。在~6nL的区域内部确实发生了强烈混合。没有顶部磁体或下方旋转磁体时,强烈混合停止。不受理论的束缚,据认为产生了涡流磁场。
在本文描述的任何装置中可以采用缓冲区室。优选它们在区域和导管组的上游,更接近入口。它们能够捕集一些样品,并且可以例如当少量样品被太快推入滑动芯片时防止冲出。当用正排气装置(例如移液器等)载样时,缓冲区室是优选的。
在用于进行FID结晶的滑动芯片中,同一装置上用于连通区域的不同尺寸的导管(例如在长度、宽度和深度至少一个维度上不同),可用于跨不同区域产生多种扩散分布图。
对于滑动芯片的某些实施例来说,在一组交叠的区域和/或导管内,在区域和/或导管之间优选具有不同程度的交叠。
在用于进行包括FID结晶的某些反应的滑动芯片中,多个导管可以与单一区域连通,以产生与同一区域相通的多种浓度梯度。
滑动芯片可以构造成进行一种以上的反应。例如,装置可以构造成在同一装置中进行FID结晶和微量分批结晶两者。在一些实施例中,利用分支供料导管在装置用于 不同反应的区域之间提供样品。
与上述用于进行FID结晶的装置类似的滑动芯片,可用于其他类型的实验。例如,可以在这样的装置中进行细胞迁移或细胞极化测定。人们滑动装置以连通至少两个区域,产生梯度,细胞能够沿着所述梯度上下迁移,或者细胞可以对梯度做出响应而极化。人们可以连通多个区域以建立复合梯度和逆向梯度。此外,这样的装置可用于共培养和监测细胞-细胞相互作用。
许多力和场可用于将体积从一个区域转移到另一个区域。能够使体积在区域之间转移的场的实例包括表面张力、磁场、电场、重力场、温度梯度和剪切力。在某些实施例中,滑动芯片可用于计量多个液体体积并将其转移到单一容积中。滑动芯片可以构造成具有不同容积的区域,以将不同体积的样品转移到单一容积中并混合。将不同体积的样品转移到单一容积中并混合的能力,可以用作重新水化干燥试剂的通用方法,并可以随后进行相关测定。它可以用于测定中的试剂的单向转移,用于PCR和其他需要热膨胀的应用,用于蛋白质结晶实验、血凝、测定和方法中,用于向被捕获微滴的阵列添加试剂,如在“液滴斑点阵列(drop spot arrays)”上那样,以及用于例如下列出版物中所述的其他阵列中:Schmitz,C.H.J.;Rowat,A.C.;Koster,S.;Weitz,D.A.,Lab Chip 2009,9,44-49;Shim,J.U.;Olguin,L.F.;Whyte,G.;Scott,D.;Babtie,A.;Abell,C.;Huck,W.T.S.;Hollfelder,F.,J.Am.Chem.Soc.2009,131,15251-15256,其在此引为参考。滑动芯片的区域和板的不同几何形状、尺寸和表面修饰,可用于转移微滴并将其划分在区域中。因为微滴形状和体积受到区域形状和区域容积的限制,因此区域可以填充至不同程度,包括将区域完全填满、将小微滴捕获在较大区域内以及将微滴包含在仅比微滴略大的区域中。在滑动芯片的某些实施例中,不同尺寸和不同填充程度的区域可用于转移和合并体积。
在滑动芯片中如何利用这些区域和微滴尺寸的组合转移体积的一个实例,包括下列步骤:人们可以滑动完全充满一种物质的一个区域,并将该区域与含有由第二种物质构成的微滴的较大区域重叠。当这两个区域进行接触时,第一区域中的液体与较大区域中的微滴合并,并保留在较大区域中以最小化表面张力。
不同几何形状可用于捕集比区域小的微滴。例如,可以利用倾斜区域来限制微滴,或者可以利用三层滑动芯片将微滴限制在中间层中。这些结构可用于精确定位微滴,并可用于避免滑动时微滴的逃逸。此外,它们对于需要被打开以提取微滴进行芯片外 分析的装置来说,也是非常有用的。
滑动芯片还可用于在微滴中诱导混合。在某些实施例中,如果区域没有完全填满,在区域中的溶液与滑动芯片两块板之间的润滑液之间存在附加的润滑液层。当滑动芯片被滑动时,两块板的运动被润滑液的运动传递,可以诱导微滴中的混合。非线性或不可逆的滑动方式可用于增强混合。
在某些实施例中,在未完全填满的区域中,在溶液与滑动芯片的另一块板的表面之间存在的附加的润滑液层,能够防止交叉污染。溶液与滑动芯片的对面板之间的附加阻挡物将减少在滑动芯片的表面上留下残留物的可能性,此外或可选地,通过表面修饰调整了溶液的接触角。
区域的表面修饰可用于控制区域中的定位和物质转移。例如,人们可以产生具有亲水底面的区域,其将微滴捕集在底部,因为区域的底面将优选被水性溶液润湿。在另一个实例中,可以将整个区域制造成亲水的,以使水性溶液润湿区域。不同溶液在相同尺寸的区域中可能具有不同形状和表面曲率(表面能)。表面修饰也可用于将溶液从一个区域转移到另一个区域。例如,两个区域可以与亲水性桥连通,所述亲水性桥将未完全填满的一个区域与填满的另一个区域连通。使用表面张力和扩散,物质可以从一个区域运输到另一个区域。
使流体体积从第一区域(例如计量区域)转移到第二区域(例如反应区域)的一种机制是其中第一区域和第二区域具有的几何形状使得第一区域内的流体体积与第二区域内的流体体积相比具有更高的表面张力。例如,当第一区域比第二区域更浅并且更小时,可以满足这种条件。用户可以使用导管装载第一区域,然后进行滑动以使第一区域与第二区域重叠。第一区域中的微滴由于表面张力而优选进入较大的区域。这种方法可以应用于例如重新水化预装的干燥试剂。这种方法也可用于将多种试剂合并在同一容积内;例如,2、3、4、5种或更多种试剂可以顺序地加入到同一容积中,而不损失已添加的试剂。
在利用表面张力转移微滴的另一个实例中,反应区域的表面可以被修饰成亲水性,而滑动芯片装置的其余表面是疏水的。当利用亲水反应区域和疏水计量区域时,区域的相对尺寸并不重要,因为被计量区域转移的水性溶液将优先润湿反应区域的亲水表面。例如,大的和小的完全充满的疏水区域以及部分填充的疏水区域,可用于填充反应区域。
基于多步转移策略开发了用于高效筛选大量组合的多路滑动芯片。装置可用于建立反应矩阵,每个区域具有不同的溶液组合。可以进行更多步骤以在垂直和水平方向上导入第三和第四种试剂。例如,这样的NxN结构可用于重新水化干燥的试剂、添加样品、添加试剂(在例如垂直方向上),然后添加另一组试剂(在本例中在水平方向上)。装置也可以构造成具有容积不同的区域,为多路筛选增加了附加维度。装置可以利用上述的基于表面张力的体积转移机制。
还描述了可用于将溶液从第一区域转移到第二区域的其他机制。可以利用液体密度差来漂浮微滴或将微滴沉积在较大区域中。如果向第一区域中的微滴添加磁珠,可以利用磁体将微滴移动到第二区域中。人们也可以将电极整合在滑动芯片的某些实施例中,以移动含有带电溶液或粒子的微滴。在用第一溶液填充第二区域后,人们可以向后滑动第二区域并用另一种溶液填充第二区域,然后滑动以将两个区域再次重叠,以合并计量体积的不同溶液。也可以在填充之间对溶液进行温育。用户可以控制填充到反应区域中的溶液数量和每种溶液的体积。例如,具有不同容积的小区域的阵列可用于计量进入反应区域的不同溶液的精确体积。
如果反应区域的容积大于被计量的进入它的微滴的体积,则存在热膨胀空间。这对于其中温度升高的应用(例如在用于PCR的热循环中)是有用的,因为当发生热膨胀时,溶液将不溢出。如果反应区域在计量区域与其进行接触时是满的,那么计量区域中的溶液将与反应区域中的溶液混合。当计量区域被滑离时,它将运走计量体积的的混合溶液。可以将混合技术与滑动芯片整合,以确保两种溶液的良好混合。
描述了利用小区域计量溶液并将溶液转移到大区域进行混合的滑动芯片的实施例。该装置含有10行,其中每行包含20个较大区域、20个较小区域以及导管,并且每行可以用不同溶液填充。较大区域(大小为620μm×240μm,深为60μm,容积为6.8nL)和导管(宽为300μm,深为60μm)位于底板中,较小区域(620μm×120μm宽,35μm深,容积为2nL)位于顶板中。滑动芯片装置在氟烃下组装。氟烃油填充区域、导管和两块板之间的间隙。将红色食品染料溶液装填到由较小区域和导管形成的流体通路中。滑动该装置以将较小区域与较大区域对齐。由于水性溶液的表面张力,溶液从较小区域转移到较大区域中。使装置滑动回到其初始位置以形成通过较小区域和导管的连续流体通路,并将蓝色食品染料溶液填充到较小区域中。再次滑动该装置以将较小区域与较大区域对齐,并使红色和蓝色食品染料在较大区域中合 并和混合。在填充不同食品染料溶液之间,用水和FC40清洗流体通路以减少污染。
在某些实施例中,滑动芯片可用于代谢情况分析。所有人对药物的代谢不同。利用遗传学确定个人代谢情况是可能但也是昂贵的,并且当试图处理组合相互作用时面临挑战。还存在其他挑战,因为肝脏的酶可以被诱导,也可以被抑制。因此,功能测试是有用的。用于代谢情况分析的基于滑动芯片的装置可以在办公室或家庭中使用。对尼古丁代谢物进行定性以优化戒烟过程,也存在着需求。滑动芯片可用于此,因为它可以在实验室外使用。装备有薄层层析能力的滑动芯片可以在例如药店使用,以帮助在具有不同剂量的尼古丁贴片中进行选择。剪切力驱动的层析可用于在滑动芯片上改进薄层层析。在这样的装置上,可以利用例如移动电话或视觉检测装置进行检测和定量。
在例如需要简单装置测定药物浓度或药物与其一种或多种代谢物的比率的情形中,或在重要的是确定剂量的情况中,用于测量物质代谢的滑动芯片是有用的。优选测量唾液中物质的浓度。优选测量无论唾液来源而分配在唾液中的物质的浓度。这样的装置也可用于重要的是监测而不是诊断的情形中,例如患者已在一段长时期中服用一种或多种药物并且一些代谢酶可能被抑制的情形。在这种情况下,监测一种或多种药物随时间的代谢以避免用药过量,是有用的。这种装置也可用于I、II或II期药物试验过程中以最小化副作用并改善结果,或用于检测食品上的杀虫剂。通过薄层层析或其他技术的二维分离可用于提高浓度和改进分离(例如,人们可以使用不同溶剂相在一个维度中浓缩样品,然后在另一个维度中进行分离)。
在一些实施例中,用于代谢情况分析的滑动芯片可以包含不连续的桥接导管,以便能够无交叉污染地进行多步滑动、芯片上的连续稀释、和对装置进行图案造型以产生亲水区域。
滑动芯片可适用于大量方法和技术,以便能够个性化医疗。应用包括测试患者样品用于诊断、药物开发和治疗监测。
滑动芯片可用于评估患者的肾功能,包括通过血液、尿液、唾液和其他样品的分析。它包括分析肌酸酐,以及其他标志物例如中性粒细胞明胶酶相关脂笼蛋白(NGAL)、半胱氨酸蛋白酶抑制剂C和其他标志物的分析。可以使用免疫测定法、酶测定法和本申请中别处描述的其他测定法分析标志物。
滑动芯片可用于评估肝功能,包括酶测定试验和免疫测定试验。靶包括丙氨酸转氨酶(ALT)、天冬氨酸转氨酶(AST)、碱性磷酸酶(ALP)、γ-谷氨酰基转肽酶(GGT)、β-氨基已糖苷酶(β-HEX)、乳酸脱氢酶(LDH)、5'核苷酸酶(5'NTD)。其他试验例如凝集试验(例如INR)、血清葡萄糖、总和直接胆红素(BIL)、血清白蛋白,也可以利用本申请中描述的方法在滑动芯片上进行。
综上所述可以看出,可以进行大量改变和修改而不背离本发明的精神和范围。应该理解,本文例举的具体实施例不打算或不应被解释为限制。当然,旨在通过随附的权利要求书覆盖位于权利要求范围内的所有这样的修改。
在某些实施例中,滑动芯片可用于通过连续稀释产生浓度分布。连续稀释是最常用和基本的实验室技术之一,其应用包括免疫测定、细胞培养测定以及确定酶测定法的动力学。存在几种产生稀释液的微流体方法,包括层流的简单扩散混合,拆分并重新合并多个料流的多步流体分配器,以及混合具有与所需终浓度成比例的流速的多个料流。然而,许多微流体装置依赖于连续流,其受制于大的死体积、吸附、压力降限度和其他限制。在某些实施例中,滑动芯片能够不使用复杂仪器,稳健地操作并行的多路多步反应。本发明人开发了使用滑动芯片进行连续稀释的简单方法。本发明人设计了一种滑动芯片,其包含多步滑动,并通过调整区域尺寸控制多种混合比例。这种方法可以并行地操作许多样品,在某些实施例中可能需要小的样品体积(每个区域纳升级),并可用于定量多路测定。在一个实施例中,连续稀释滑动芯片被设计成并行地进行8个连续稀释步骤。它含有两部分:一行含有样品的浅区域,和装填有用于稀释的缓冲溶液的深区域的阵列。在某些实施例中,使用滑动芯片进行连续稀释包括三个通用步骤:(a)装载缓冲液,(b)装载样品,和(c)多步滑动以进行稀释。在通过例如移液填充滑动芯片后,使芯片的两块板滑动以使导管与区域分离开。当导管与区域分开时,它们也被移出滑动路径。将含有样品的区域与含有缓冲液的区域进行接触,并使样品稀释。混合比例或稀释因数,由区域容积的比率决定。进一步的滑动步骤通过同样的原理操作,从而进行了连续稀释。在一个实例中,连续稀释滑动芯片由两层微制造的玻璃构成:顶层包含所有入口和出口、用于样品的导管和用于缓冲溶液的区域。所有区域深为76μm深,导管深为30μm。底层包含10μm深的用于样品的区域和30μm深的用于缓冲溶液的导管。装置表面被硅烷化成疏水的,同时保持10μm深的区域亲水。本发明人使用比较薄的、10μm深的区域以减少进出区域的稀释次数。本发明人使区域亲水控制水微滴在亲水区域内的形状(和体积),并且也防止浅区域 的外向湿润。10μm深的区域在硅烷化过程中被暂时遮蔽,以保持亲水表面。使用该滑动芯片时,利用荧光染料来定量稀释度。在4次滑动步骤后,观察到约~104倍的稀释。
为了制造具有亲水区域的滑动芯片,本发明人采用本申请中别处描述的滑动芯片的玻璃蚀刻制造程序,并进行了下列修改。首先,将空白玻璃板(钠钙玻璃,厚度:0.7mm;铬涂层:AZ 1500抗光蚀剂:1μm)切成3in×1in。
在从玻璃板上除去光掩模后,通过将玻璃板在0.5%NaOH溶液中浸泡2分钟使其显层。在将玻璃板胶粘并浸泡在蚀刻溶液中之后,利用25℃恒温水浴摇床控制蚀刻速度。通过控制蚀刻时间(~30分钟),在玻璃板中蚀刻出46μm深的区域。利用能够不用放大而指示某一蚀刻深度已经达到的特殊设计的结构,来证实区域的深度。该结构由宽度等于待蚀刻距离的两倍的正方形阵列构成。正方形最初用铬覆盖。在达到所需蚀刻深度后,铬被除去,产生可以用裸眼看到的明显衬比度差。将板取出,用Millipore水充分漂洗,并用氮气干燥。使用含有用于导管的设计的另一个光掩模和~20min的蚀刻时间,在玻璃板中蚀刻出30μm深的导管。将板用Millipore水充分漂洗,并用氮气干燥。本发明人利用相同的方案在底板中制造10μm深的区域和30μm深的导管。
在将玻璃板用乙醇漂洗以脱去未显层的抗光蚀剂后,将玻璃板用piranha清洁(1份30%过氧化氢,3份硫酸),用Millipore水清洗两次,然后在220℃加热板上脱水2小时以上。将板冷却至室温,用OmniCoat(MicroChem,USA)旋涂,并在220℃下烘烤1分钟。将板冷却至室温,并旋涂上20μm厚的SU82025层。接下来,用保护板上将成为疏水的区域的光掩模覆盖板。从玻璃板的背面进行UV光照射,以利用现有的铬掩模。在被光掩模暴露的区域中,UV光只通过板上铬涂层被移除的部分,因此只有区域中的SU8在显层后保留下来。区域中的SU8保护区域并防止它们被制造成疏水性的。通过在MF-319中浸泡30秒并用Millipore水漂洗2分钟,暴露表面上的OmniCoat被显现。
最后,将玻璃板浸泡在铬蚀刻剂中以除去铬涂层。然后将板用乙醇和Millipore水漂洗,并在120℃烤箱中烘烤过夜。
清洁玻璃板,并将其在300mTorr下进行100秒的空气等离子处理,然后通过在真空干燥器中按照以前的描述使用十三氟-1,1,2,2-四氢辛基-1-三氯甲硅烷硅烷化5小 时,为表面提供疏水性。在硅烷化后,将玻璃板(按下列次序)用3×20ml无水甲苯、3x30ml无水乙醇、3×30ml乙醇/H2O(50%:50%,v:v)和3×30ml Millipore水漂洗。将板在120℃烤箱中烘烤15分钟。最后,通过将玻璃板在Remover PG中在80℃下浸泡30分钟,脱去区域中的SU8。然后将板用氯仿、丙酮、然后是乙醇漂洗,并用氮气吹干。
在FC-40下组装滑动芯片。首先将底板浸泡在皮氏培养皿中的FC-40中,使图案面朝上。然后将顶板放置在底板顶上,使图案面朝上。在~3min后,小心翻转顶板以防止在组装滑动芯片时捕集空气泡。如果需要,可以通过将芯片快速放置在真空干燥器中来除去空气泡。通过相对于彼此进行移动将两块板对齐,然后使用4个微型长尾夹将其固定。在装载过程中,滑动芯片保持在FC-40中。
所有荧光染料溶液在使用前用0.22μm PVDF针筒式滤器(Millipore)进行过滤。通过移液,将PBS缓冲液(1×,pH 7.4)中的Alexa Fluor 488酰肼(1.6mM,Invitrogen)装载到样品导管中。将1×PBS缓冲溶液装载在缓冲液导管中,将滑动芯片在Leica MZ 16立体显微镜下滑动,以第一次形成分离的微滴。然后将样品区域与缓冲液区域相继合并。在每个滑动步骤后,本发明人等待3分钟以允许荧光染料扩散。在4次滑动步骤后,将装置快速转移到带有20X 0.7NA Leica物镜和Hamamatsu ORCAER照相机的Leica DMI6000显微镜(LeicaMicrosystems)中。使用L5滤光片以30ms的曝光时间收集Alexa Fluor 488的荧光。利用6.3r1型Metamorph成像系统(Universal Imaging)获取和分析图像。为了校准显微镜,记录用于L5滤光片的荧光参比载片的荧光强度,并将其用于背景校正。使用在PBS缓冲液中的80nM、160nM、400nM和800nM Alexa Fluor 488酰肼溶液来获得校准曲线,用于确定4次滑动步骤后荧光染料的浓度。区域深度使用Veeco Dektak 150表面光度仪测量,并根据蚀刻是各向同性的假设计算区域容积。
滑动芯片的某些实施例也可用于进行其他多步反应,包括但不限于测定IC50、EC50和其他浓度曲线(例如CP450等)。IC50测定可以通过将DMSO化合物文库在100%DMSO或DMSO/水混合物中连续稀释以在获得2x107的稀释度来进行,并且测定可以使用每种稀释度来进行以确定目标化合物的IC50。滑动芯片是以多路方式制造文库稀释以及随后在产生的稀释文库上进行筛选的理想平台。其他可以在滑动芯片上进行的多步骤反应包括通过连续稀释测量酶动力学和通过PCR对浓度定量(与实 时PCR组合或使用终点PCR)。例如,用户可以通过PCR进行HIV病毒载量测试。用户可以将未知样品在宽的动态范围内进行连续稀释,并利用HIV病毒服从泊松分布这个假设从PCR结果提取出浓度。其他可以在滑动芯片上进行的多步反应包括药物和毒素两者的灵敏度测试,其中利用随后给药(在芯片上或在芯片外)于测试生物体或人类对象的目标物质的连续稀释液,以及分离稀有细胞或分子,特别是从具有未知初始浓度的样品:在稠密细胞群体/高浓度混合物中难以发现稀有细胞或分子。当初始浓度未知时,连续稀释提供了获得随机限制(或数字PCR等)所需浓度的方便的方法。可以在滑动芯片上进行的多步骤反应,包括可以通过连续稀释和反演计算快速估算的细菌培养物浓度(或溶液中粒子的浓度)。确定抗体滴度和连续稀释,是消除非特异性结合或将其鉴定为假阳性的一种可能方法。
在本发明的某些实施例中,可以在滑动芯片上进行高通量纳升级数字PCR。已显示滑动芯片没有交叉污染,并且这在以前已通过进行蛋白质结晶和免疫测定法得到证实。本发明人还演示了滑动芯片可用于高通量多路PCR。本发明人已经用滑动芯片平台来进行数字PCR。在某些实施例中,在通过移液将样品导入后,通过一个滑动步骤能够同时形成一千个以上纳升级区室。当低浓度核酸被装载到装置中时,每个区室可能存在不到一个核酸拷贝。在这种情况下,可以使用终点荧光的“是或否”数字读数来检测每个区室中核酸的存在,并可以计算初始样品中核酸的浓度。这样的数字PCR滑动芯片已被用于扩增金黄色葡萄球菌(Staphylococcus aureus)基因组DNA。它也被用于通过RT-PCR从HIV扩增RNA。数字PCR滑动芯片为核酸定量、细胞非均质性研究、产前疾病的诊断和现场分析装置的改进,提供了新的策略。当与等温反应和视觉读出相结合时,PCR滑动芯片平台是在资源受限情况下进行诊断的有力工具。
操作流体体积是现代实验室日常工作的基础。它在从新生物标志物和药物到新材料和方法的研究和开发中是关键的。它是诊断学、食品和水安全以及生物防御中分析科学的重要部分。在这些领域中,滑动芯片技术是有用的。滑动芯片可以被设计成编码复杂的程序,用于许多流体体积的并行操作。在某些实施例中,滑动芯片包含两块可以相对于彼此移动的板。程序作为印刻在板中的区域的图案被编码在每个滑动芯片中。每个区域保持隔离,直至与相对板上的区域重叠。通过将两块板相对于彼此移动或滑动来执行被编码的程序。当板移动时,两块板中的区域以精确确定的顺序进行和 脱离接触,产生并断开暂时流体通路,并使试剂进行和脱离接触。通过这样的流体通路可以引入一种或多种样品。通过使样品与由用户装载到暂时通路中或预装到滑动芯片上的样品进行接触,来执行程序。对于用户来说,可以在数千个区域上非常容易地执行非常复杂的程序。体积越小、样品和试剂越珍贵、相互作用的样品和试剂的数量越多、操作越复杂,滑动芯片就越有利。滑动芯片满足了限制新流体技术发展的7个未满足的要求:它能够小型化,可以顺畅并精确地从皮升放大至纳升至微升体积。滑动芯片能够进行完全不能在大规模上进行的实验,例如对于单个细胞、包括人类细胞和微生物细胞两者进行研究,或对分子进行计数。滑动芯片最小化了试剂和样品的消耗,减少了废物,特别是对于昂贵试剂、稀有样品(活检样品、稀有细胞、储存样本)、有毒、有放射活性和生物危险废物来说。滑动芯片的某些实施例能够进行多路实验,以小型化格式容易地并行进行数千个实验。滑动芯片能够实现“一种样品,一种测定,重复多次”,正如在检测单个细胞的性质或基因型的变化性时所需的。其实例包括通过分析活检样品和循环肿瘤细胞诊断癌症、分析HIV中的稀有和抗药性基因型、以及新兴的用于诊断中风的方法。滑动芯片的某些实施例能够极大简化“一种测定,许多样品”测试,正如由中心实验室例如Quest Diagnostics所做的。滑动芯片的某些实施例能够进行“一种样品,许多测定”,正如在诊断复杂病症所需的多参数诊断中那样。滑动芯片的某些实施例能够进行生物标志物发现和验证所需的“许多样品,许多测定”实验。滑动芯片满足了对速度的要求:缩短从测试到结果的时间。通过在单细胞水平上进行分析和消除对细胞培养的需要,滑动芯片的某些实施例加速了对于脓毒症和食品、水和环境安全诊断来说重要的微生物测试。通过提供简化的平台,滑动芯片的某些实施例能够制成对于急性病症(例如中风和心脏病发作)的诊断来说重要的便携式现场使用装置。滑动芯片的某些实施例满足了以“数字”格式对低至单分子水平的灵敏度的要求。逐个检测单分子对于核酸和蛋白质的灵敏检测和定量来说,是有吸引力的。对于这种需要在小体积中(以使每个分子达到足够高的浓度以便检测化学能够工作)的数千个实验(以获得准确计数)和多步操作(例如用于非均质免疫测定法)的“数字”格式来说,滑动芯片是理想的平台。这种能力在从计数单个癌细胞中的基因拷贝数到诊断心脏病发作和外伤性脑损伤(TBI)中,具有广泛意义。滑动芯片最小化人工劳动、减小误差、增加可重复性、增加通量,这些对于装备精良的实验室、现场和资源贫乏的背景来说,都是必需的。它能够在微尺度上执行 复杂的预先编程的多步程序,包括样品制备和处理,正如遗传测试所需。它支持由用户装载试剂,或在工厂预装试剂并在板上保存,最小化了操作。具有预装试剂的滑动芯片起到“液相微阵列”的作用,具有革新多路溶液基测定方法的潜力,正如基因芯片革新DNA杂交测定那样。它能够使这些复杂程序在实验室外执行,正如台式发现工作、现场和家庭测试以及资源贫乏环境所需。滑动芯片平台支持所有常规实验方法。例如,它支持大范围的应用所需的PCR和其他核酸测试、免疫测定和珠子操作、酶测定和基于细胞的测定。它支持常用的读出设备(光学、磁学和电学)。它独特地适合于使用例如简单的特氟龙和玻璃装置的化学。滑动芯片的某些实施例降低了成本。某些实施例不需要阀,并通过标准的塑料技术简单地制造。可以简单地操作平台,不需或仅需很少的设备。这种低成本与简单性的组合,使滑动芯片优于可能需要复杂仪器运行芯片(机器人、泵、传动装置)和可能需要带有整合的阀的复杂芯片的其他片载微流体实验室技术。滑动芯片优于机器人工作站,后者是资本密集的,并且由于蒸发和精确性问题在小体积范围内不能与滑动芯片的性能匹敌。
滑动芯片的某些实施例可以一次用于许多单个细胞/单个粒子/单个样品/单个分子。它们也可用于3D组织模型以及用于维护、扰动和分析的相关流体装置。
滑动芯片可用于学术、制药、诊断领域,提供实际和设备。滑动芯片的某些实施例允许标准实验室方案的小型化和简化、核酸DNA/RNA浓度的测量(“数字PCR”)、蛋白质结晶,以及在单细胞分析中的独特能力。通过将化合物文库包装在滑动芯片中,滑动芯片也可以为销售这些文库的公司带来价值。目前,这些文库只能销售给筛选中心,并且测试昂贵。可以将例如低10,000倍的每种化合物装载在滑动芯片上并进行测试。滑动芯片能够减少用户测试试剂的障碍;可以向用户配送带有一组试剂配方的预装滑动芯片,用户能够快速有效地试验何种配方最适合他们的应用,并以较大量订购该种配方(可能也在滑动芯片上)。滑动芯片的某些实施例也可在需要高度简化方法的法医学中用于遗传测试。
滑动芯片可能有用的其他领域包括食品、水和环境安全。当前的细菌检测方法在测试前需要过夜培养。滑动芯片的某些实施例能够不需要培养而在~1小时内提供答案,克服了这种耗时的延迟。滑动芯片的某些实施例能够进行现场测试,这对于边远地点(例如空间任务、乡村地区)来说是重要的。它也可用于家畜诊断/农业测试。滑动芯片的某些实施例允许进行小型化并在家庭、现场和临床测试中加速现有的诊断 测试。技术的简化使其对现场、家庭和军队使用具有吸引力;高性能可以使同样的平台对于中心实验室设备来说有吸引力,在FDA批准当前用于临床实验室和现场技术的完全不同平台所需的花费中节省金钱。滑动芯片的某些实施例可用于在脓毒症中加速微生物测试,这种病仅在美国就引起超过100,000人死亡。通过更快速的诊断,这些死亡中的许多是可防止的。诊断包括例如在MRSA和耐药性HIV基因型中的耐药性遗传测试和筛选、耐药性的表型测试、凝血病测试和血液凝集的相关测试和监测、基于细胞的免疫诊断/过敏症情况分析、用于发展中国家的诊断(例如HIV、疟疾TB等)、用于监测器官功能和治疗、特别是使用昂贵生物制品的家庭和现场诊断、用于监测药物治疗和药物代谢以确保安全和效能的通用代谢测试。这些对于消费者以及潜在地对监测临床试验的药物开发者两者来说,都是重要的。华法令是最熟知的实例,但是还有更多实例。滑动芯片可用于新的诊断方法,包括但不限于通过单细胞分析发现新生物标志物,例如在癌症、产前和中风诊断中;利用多路分析发现新的生物标志物组,例如在阿茨海默氏病和癌症中(可能与化学电极联合用于脉冲追踪诊断);它能够进行这些生物标志物的临床研究和验证,能够将这些生物标志物以现场和临床格式使用在诊断中。它也可用于使患有精神障碍的患者保持适合的精神状态,包括例如用于家庭测试、远程监测、患者网络和其他非传统方法。滑动芯片也可用于新治疗方法,包括但不限于将生物标志物发现和验证与药物发现和诊断,以及将复杂组织培养模型与整合分析结合在一起。
滑动芯片也可用作修改行为或帮助人们做出选择的测试,而不是提供医学治疗。例如,尼古丁贴片和其他戒烟产品可以不用处方获得。众所周知,尼古丁的代谢率强烈地影响戒烟的成功率,并应该指导人们应该购买的贴片的类型。这样的测试可以在滑动芯片上实施并卖给正在戒烟的人,将人群分成三类,即低-中-高尼古丁代谢者,并建议适合的戒烟产品。每日进行的测试提出提供平缓戒烟体验的贴片剂量。试剂盒可以包含这样的测试和戒烟产品。滑动芯片也可以优化性能:水合和脱水水平、饮食、咖啡因和其他合法物质、锻炼水平都可以被监测和/或改变,以在正确测试的指导下获得最好表现。这样的测试可以由在给定时间的表现对其来说重要的人使用:竞技运动员、军事人员、学生、运动爱好者以及时间宝贵而不能浪费在午休上的人。“紧张芯片”可用于分析普通人群中短期和长期紧张的标志物。管控紧张可能是改善生活满意度的最重要的途径之一。这样的测试将为个体提供关于其生活方式的更及时的反 馈,以减少与紧张相关的健康状况的可能性。这比等待发生慢性炎症或心血管病症然后再进行干预要便宜得多。对于雇主、军事和执法机关以及保险公司来说,评估和管理人力资源是有价值的。“成瘾滑动芯片”可用于进行评估组或评估组的组合,测试与饮酒相关的肝损伤、与吸烟有关的尼古丁机器代谢水平、与代谢和饮食障碍有关的血糖和糖化血红蛋白水平、咖啡因及其代谢物水平以及滥用的药物水平。“婴儿芯片”、“有机芯片”和“慢性芯片”是用于满足初为父母者、健康狂热者或慢性病症高危人群这些最可能为了想要的信息和监测而先期采取行动的人的求知需要的其他应用。对于具有移动电话读出的简单滑动芯片来说,作为人们组织他们的测试结果并任选将它们与反映饮食、锻炼和行为的博客相链接的方式,与例如谷歌(Google)或微软(Microsoft)成为伙伴是有吸引力的。健康人群可以使用他们的谷歌健康服务(Google Health service)挖掘难以置信量的信息,其可用于给进测试并提供广告和新产品。滑动芯片的某些实施例除了治疗疾病之外,可用于保持健康和表现。通过简单的测试平台分析与表现相关的可测试唾液标志物(在健康状态下包括短期和长期两者)并个性化到每个个人,可以提高生活品质和社会生产率。
在某些实施例中,滑动芯片可用于进行遗传算法(GA),利用甲烷被分子氧的氧化作为模型系统来发现新的均相催化剂。在本发明人所演示的一个实例中,GA的参数是催化剂、能够使用分子氧作为末端氧化剂的辅助催化剂以及能够调节催化系统的配体。GA需要运行数百个反应来发现和优化高适合度的催化剂系统,并且微流体装置能够使这些大量反应并行运行。微流体装置的小尺度和体积提供了显著的安全益处。微流体系统包括形成含有催化剂的填塞物的多样化阵列,在高压下导入气态试剂,并行地运行反应以及利用原位指示系统检测催化剂活性的方法。铂(II)被确定为活性催化剂,铁(II)和多金属氧酸盐H5PMo10V2O40(POM-V2)被确定为活性辅助催化剂。利用NMR实验对Pt/Fe系统进行进一步优化和定性。在优化后,获得约50的转换数,并具有近似相等的甲醇和甲酸产量。Pt/Fe系统正式了铁与整个催化循环的相容性。这种GA指导的进化方法,在催化以及优选进行化学空间的探索的其他领域中,具有显著加快发现的潜力。Kreutz等,J Am Chem Soc.2010Mar 10;132(9):3128-32,以其全文引为参考。
在某些实施例中,滑动芯片平台可用于进行数字PCR,不需仪器进行样品装载并且具有小的样品体积。在一个实例中,通过移液将PCR主混合物导入滑动芯片。 通过细长区域的重叠形成流体通路,并通过简单的滑动将其断开,同时产生1280个反应区室(每个2.6nL)。在热循环后,使用终点荧光强度来检测核酸的存在。使用金黄色葡萄球菌基因组DNA来验证滑动芯片上的数字PCR。当PCR主混合物中的模板被稀释时,阳性区域的分数成比例减小,正如通过统计学分布所预测的。在实验期间没有观察到交叉污染。通过从HIV扩增RNA,也在滑动芯片上演示了数字反转录PCR(RT-PCR)。滑动芯片为通过利用PCR和RT-PCR计数核酸,以及进行单细胞分析、产前诊断和现场诊断,提供了溶液获得的策略。利用等温PCR和视觉读出,可以将滑动芯片上的数字PCR设计成不需仪器,并可在资源缺乏地区广泛应用于研究和诊断。
数字PCR背后的总的想法是通过将一个或少于一个的核酸分子置于区室中来分离分子。随着区室数量的增加和区室尺寸的减小,将单个分子捕集在每个区室中的可能性增加。在单分子水平上,将分子限制在小体积中也增加了相对浓度,从而增加了灵敏度。可以对阳性区域的数量进行计数,并可以计算样品中靶分子的总数。
以前已在多孔板上演示了数字PCR,并且许多组研究已显示了如何以微流体格式进行这种方法。阀控制的微流体芯片采用数字PCR用于各种应用,例如细胞分析和产前诊断;然而,这种方法仍然需要复杂的多层软光刻制造过程和电气动系统来准确控制阀的“开/关”状态。另一种用于数字PCR的系统在微流体装置中利用皮升级微滴用于单拷贝PCR和RT-PCR。尽管通过利用微流体T-接头能够产生大量皮升级微滴,但这种方法需要高精度泵来准确控制流速,以便形成大小均匀的微滴。乳液PCR、微小微滴和工程化纳升级微滴,也可潜在地用于数字PCR,但是这些系统需要机械搅拌或泵来产生小体积微滴。用于高通量纳升体积qPCR的微流体区室也可以适用于数字PCR,但是它仍然需要机械装载和手动密封操作。到目前为止,数字PCR仍限于高端用户。为了使数字PCR在实验室或资源有限背景中成为例行程序,简单廉价的平台仍然是未满足的需求,本发明人验证了基于滑动芯片平台的这种系统。由于固有的简单性,滑动芯片是用于数字PCR的有利平台。所有样品都可以通过简单移液来装载。在蛋白质结晶和免疫测定的情形中,滑动芯片可以在许多小体积上操作多步骤过程。多路PCR在滑动芯片中得到成功验证:当使用不同的预装引物筛选样品以确定病原体的存在时没有观察到交叉污染,并且对滑动芯片的结构进行了修改,为热循环期间水性PCR溶液的热膨胀提供了空间。也已显示滑动芯片能够通过将样品分 成数千个纳升区域来进行数字PCR。
实例。除非另有说明,否则从商业来源购买的所有溶剂和盐以收到时的原样使用。SsoFast EvaGreen Supermix(2X)购自Bio-Rad Laboratories(Hercules,CA)。牛血清白蛋白(BSA)购自Roche Diagnostics(Indianapolis,IN)。所有引物从Integrated DNATechnologies(Coralville,IA)订购。矿物油(无DNA酶、RNA酶和蛋白酶)和DEPC处理的无核酸酶水购自Fisher Scientific(Hanover Park,IL)。二氯二甲基硅烷购自Sigma-Aldrich(St.Louis,MO)。金黄色葡萄球菌(Staphylococcus aureus)基因组DNA(ATCC编号6538D-5)购自美国典型培养物保藏中心(American Type Culture Collection)(Manassas,VA)。涂有铬和抗光蚀剂的钠钙玻璃板购自Telic Company(Valencia,CA)。光谱级食品色素(红色食品染料)购自August Thomsen Corp(Glen Cove,NY)。PCR管和带滤芯移液器头购自Molecular BioProducts(San Diego,CA)。小长尾夹(夹子尺寸为3/4”)购自Officemax(Itasca,IL)。Mastercycler和原位接头购自Eppendorf(Hamburg,德国)。特氟龙管线(O.D.250μm,I.D.200μm)购自Zeus(Orangeburg,SC)。特氟龙管线(I.D.370μm)从WeicoWire&Cable(Edgewood,NY)获得。光掩模从CAD/Art Services,Inc.(Bandon,OR)获得。无定形金刚石涂层的钻头从Harvey Tool获得(切割器直径0.030英寸,Rowley,MA)。
用于制造滑动芯片的过程是基于本文别处描述的滑动芯片的玻璃蚀刻制造过程,并进行了下述修改。将用铬和抗光蚀剂涂层的钠钙玻璃与包含用于滑动芯片的区域(圆形和细长形两种)的结构的光掩模对齐,并暴露于UV光40秒。在除去暴露的抗光蚀剂和铬层之后,将玻璃板在玻璃蚀刻溶液中,在40℃下浸泡35分钟,以产生50μm深的区域。
将带有蚀刻的区域图案的玻璃板用Millipore水合乙醇充分清洗,并用氮气干燥。将玻璃板在等离子清洗器中氧化100秒,并与50μL二氯二甲基硅烷一起立即置于干燥器中。然后施加1小时的真空用于气相硅烷化。将硅烷化的玻璃板用氯仿、丙酮和乙醇漂洗,然后用氮气干燥。为了重新使用,可以将玻璃板用piranha酸(3:1的硫酸:过氧化氢)清洁并如上所述再次硅烷化。
在使用前将矿物油进行过滤和除气。滑动芯片在矿物油下组装。首先将底板浸泡在皮氏培养皿中的油中,使有图案一侧面朝上。然后将顶板置于底板顶上,使有图案一侧面朝下。将两块板对齐并使用长尾夹固定。
根据以前的出版物,选择用于在金黄色葡萄球菌中发现的nuc基因的两条引物序列:5’-GCGATTGATGGTGATACGGTT-3’(引物1)和5’-AGCCAAGCCTTGACGAACTAAAGC-3’(引物2)。反应的主混合物包含10μL的2X SsoFast EvaGreen Supermix、0.5μL引物1(10μmol/L)、0.5μL引物2(10μmol/L)、2μL的10mg/mL BSA溶液、5μL无RNase水合2μL金黄色葡萄球菌gDNA溶液。金黄色葡萄球菌gDNA溶液使用1x BSA溶液(0.01mg/mL)进行连续稀释,以提供一系列模板终浓度:10ng/μL,1ng/μL,100pg/μL,10pg/μL,1pg/μL和100fg/μL。扩增利用PCR热循环仪(Eppendorf)进行。为了扩增DNA,利用94℃2分钟的初始化步骤来激活酶。接下来,如下进行总共35个扩增循环:94℃1分钟的DNA变性步骤,55℃30秒的引物退火步骤和72℃30秒的DNA延伸步骤。在最后一个循环后,最终的延长步骤在72℃下进行5分钟。然后在成像前将PCR产物在4℃下保存在循环仪中。
在金黄色葡萄球菌gDNA中总共存在290万个碱基对(GenBank登记号NC_009632)。为了简化计算,将每个碱基对的平均分子量近似取为660。因此,1ng金黄色葡萄球菌gDNA具有3.15×105个拷贝。每个区室中反应溶液的体积为2.6nL,装置中区域的总数为1280。因此,当金黄色葡萄球菌gDNA的初始浓度为1ng/μL时,每个区域平均含有944个拷贝。
通过Leica立体显微镜获取亮视野图像。所有荧光图像利用安装在具有5X/0.15NA物镜和L5滤光片的Leica DMI 6000B表面荧光显微镜上的数字相机(C4742,HamamatsuPhotonics,日本)在室温下获取。所有荧光图像通过利用标准荧光载片获得的背景图像进行校正,然后利用MetaMorph软件(Molecular Devices,Sunnyvale,CA)拼合在一起。对于所有图像,将强度水平调整到相同值。
为了增加区域的密度,装置的结构是对称的。填充有油的圆形区域的阵列构造在顶板和底板两者上,而顶板和底板两者上的重叠的细长区域被用于导入样品。在滑动后,产生隔离的隔室,并在每个单独隔室中产生大小均匀的水性微滴。该滑动芯片不含导管;相反,每块板含有成排的细长区域和圆形区域,用于总共1,280个反应隔室。细长区域长400μm、宽200μm、深50μm,而圆形区域直径为200μm、深为50μm。在初始布局中,顶板和底板中的细长区域重叠,形成连续流体通路。通过用重叠的细长区域代替通过导管连通的区域,装置中的压力降较小,允许通过简单的移液填充许 多区域,并用3.4μL样品填充整个装置。通过将顶板相对于底板滑动短距离,细长区域分离开,并每个位于含有润滑液(矿物油)层的圆形区域顶部中央。对于数字PCR来说,引物被添加到PCR混合物中而不是预装在圆形区域中。细长区域构造成使得该细长区域的宽度与圆形区域的直径相同。这种结构的优点包括:(1)该结构计能够使微滴位于区域中央,允许更好地成像。(2)该结构还产生体积一致的微滴(~2.6nL),(3)正如在前面描述的多路PCR滑动芯片中那样,该结构在区域中产生被油包围的水性微滴,为热循环期间的热膨胀提供空间。
在热循环期间,由于三种材料的不同热膨胀系数,润滑液和水性PCR混合物的膨胀大于滑动芯片的玻璃材料。当利用具有相同尺寸和几何形状的重叠区域的滑动芯片的某些实施例时,水性溶液将完全填充区域。在热循环所需的温度升高过程中,水性溶液可能膨胀并漏出该区域,导致材料的损失和试剂浓度的变化。对于多路PCR滑动芯片来说,通过将含有水性PCR混合物的正方形区域与含有油的圆形区域重叠,产生悬浮在油中并位于正方形区域中央的微滴,来解决这个问题。对于数字PCR来说,本发明人通过利用位于填充有润滑液的圆形区域上方中央的含有水性PCR混合物的细长区域,获得了相同的结果。
本发明人用10fg/μL金黄色葡萄球菌gDNA在滑动芯片上验证了数字PCR。在这种浓度下,平均每100个区域存在不到1个gDNA拷贝,并实现了单一gDNA拷贝的PCR扩增。在热循环之前和之后对数字PCR滑动芯片进行的线扫描,显示出含有单一DNA模板的区域的荧光强度显著增加,而不含DNA模板的区域的荧光强度没有增加。该线扫描也证实了滑动芯片中没有交叉污染,因为与含有DNA模板的区域相邻的空区域的荧光强度没有变化。
本发明人利用来自金黄色葡萄球菌基因组DNA的5种浓度,对这种装置的性能进行了量化。数字PCR滑动芯片能够检测浓度低至1fg/μL的模板DNA。当总区域的三分之一显示出扩增信号时,本发明人确定获得了单拷贝靶DNA的扩增。DNA模板的预计浓度被显示成每个区域的拷贝数(cpw),并且通过分光光度测量法利用NanoDrop(Thermo Scientific)测量初始DNA储液的浓度。用于计算cpw的详细方法显示在本文的别处。随着PCR主混合物中DNA模板被稀释,阳性区域的分数成比例降低。本发明人没有看到污染的迹象,因为不含模板DNA的对照样品没有给出任何阳性结果。
本发明人对于每种浓度重复了实验(n≥3),并产生了将显示出阳性PCR结果的区域的分数与每个区域预期的模板拷贝数相关联的校准曲线。为了计算阳性区域的预期分数,假定了泊松分布。阳性区域的分数略低于来自泊松分布的预期值;这可能是由样品制备期间的非特异性吸附引起的。本发明人利用数字PCR滑动芯片,用从HIV纯化的RNA进行了反转录PCR(RT-PCR),以量化病毒载量。它们验证了利用标准的热循环PCR技术,滑动芯片能够对样品中存在的核酸量进行定量。滑动芯片含有1,280个区域,构造成用于将3.4μL样品分成1,280个微滴,每个微滴~2.6nL,并且能够在单拷贝水平上检测模板DNA。利用这种装置能够检测的浓度上限,可以随着滑动芯片上区域数量的增加而增加,并且通过减小区域体积能够提高装置的灵敏度。本发明人在尺寸为1.5英寸乘1英寸的单一滑动芯片上,引入了多达16,384个皮升体积的区域。与为蛋白质结晶实验和多路PCR所设计的滑动芯片相同,数字PCR滑动芯片也可以被制造成在同一芯片上筛选多种样品。可以制造多路数字PCR滑动芯片,用于在一个实验中计数多个靶,而不受区域数量增加的干扰,并使用微阵列计数将不同的干燥引物组预装在圆形区域中。对数字PCR滑动芯片设计的其他改进包括引入非热循环方法例如LAMP或NASBA,以及通过利用大的和小的区域的组合增加数字PCR滑动芯片的动态范围。例如,在含有2,000个区域的装置中,如果1,000个区域含有1nL溶液并且1,000个区域含有10nL溶液,人们将获得更大的动态范围和更高的统计学置信度。提供最佳动态范围和最高置信区间的区域尺寸的分布可以被预测。其他改进包括引入实时PCR和多色探针,例如Taqman系统和分子信标(利用本技术领域已知的适合的成像装置)。多色探针可用于将数字PCR应用于单一细胞中的多基因检测以研究非均质性,并且也为结合内部阳性对照提供了方法。滑动芯片可以制造成在用于“样品装入,结果出来”应用的数字PCR之前,在同一芯片上进行核酸(DNA/RNA)提取和纯化。
数字PCR在滑动芯片上的另一种应用是在大量正常细胞存在的情况下检测稀有细胞,例如区分突变和野生型模板DNA。利用传统技术,由于大量正常细胞的干扰,难以对突变体的分数进行定量。通过将稀有细胞限制在小容积区域中,滑动芯片上的数字PCR是增加稀有细胞分数的稳健和容易的方法。
这种平台使数字PCR可广泛获得,并提供非常简单的基于实验室的核酸定量。滑动芯片为进行产前诊断提供了易于获得的方法。装置还可用于单细胞分析,例如检 测突变、监测基因表达和分析非均质性,以及用于廉价的诊断,特别是在资源有限的背景下。可以将非热循环方法、核酸纯化方法和简单读出整合在数字PCR滑动芯片中。
在某些实施例中,可以在滑动芯片上进行纳升级多路PCR阵列。在一个实例中,利用滑动芯片平台来进行高通量纳升级多路PCR。利用滑动芯片平台进行多路PCR的优点包括预装干燥引物阵列的能力、不需仪器进行载样、小样品体积和高通量能力。滑动芯片被设计成在每个反应隔室预装一个引物对,并利用每个反应隔室不到30纳升的样品筛选多达384种不同引物对。本发明人利用40个区域和384个区域的两种滑动芯片结构进行多路PCR。发现两种平台都没有交叉污染,并终点荧光检测用于读出。也可以在同一滑动芯片上同时筛选多个样品。在384个区域的滑动芯片上利用20种不同引物对进行多路PCR,以识别血液感染中经常出现的16种细菌和真菌物种。在独立的实验中,滑动芯片能够正确识别5种不同不同细菌或真菌物种。
自从引入后,多路PCR已成功应用于许多领域,包括癌细胞的遗传分析、遗传变异性和克隆进化的监测以及由病毒、细菌、真菌和寄生虫引起的传染病的鉴定。用于进行多路PCR的常规方法是在一个反应隔室中装载多种引物以扩增多个靶模板。这种方法的通量一般限于每个隔室少于10种靶,这是由于灵敏度或特异性不佳和不同靶的扩增速率不平均,以及不同引物的干扰和检测所需的荧光探针的数量。多路PCR也可以用PCR微阵列来进行,但是这种方法通常需要大量试剂盒样品。另一种常规策略是利用许多小型化区域,每个具有用于不同靶的引物组,但是这种方法受到小体积液体操作中的限制和仪器成本的阻碍。
业已证实,与传统PCR平台相比,微流体技术具有更多优势,包括但不限于小的反应体积、高通量能力和便携性。许多研究组已开发了用于PCR的“芯片实验室”微流体平台,并且已演示了将基于微滴的PCR用于单拷贝核酸检测。然而,大多数微流体PCR系统仍需要复杂的制造,并依赖于泵或精密的阀来控制流体流速。对于多路PCR来说,具有无泵、易于载样、小反应体积和高通量能力的微流体平台,仍是未满足的需求。
滑动芯片允许以高精度将微升级溶液有效分配给数百个纳升级区室,而不需要泵或装载机器。滑动芯片的重要特点在于它允许预装并储存多种试剂而没有交叉污染。本发明人制造滑动芯片以进行高通量、多路PCR。利用手动沉积法将引物组的阵列 直接沉积在滑动芯片的区域中,并允许其在室温下干燥。用于微阵列制造的方法例如喷墨、微喷射沉积法和定点点样(spotting)技术,也可应用于在滑动芯片上制造引物阵列。在这里,本发明人描述了能够同时进行384个PCR反应的滑动芯片,用于在单个10μL样品中使用终点荧光检测确定多达384种不同模板。滑动芯片可以利用简单的移液由用户容易地设置,并通告滑动启动PCR反应,而不依赖于泵或其他仪器。
实例。除非另有说明,否则从商业来源购买的所有溶剂和盐以收到时的原样使用。所有引物从Integrated DNA Technologies(Coralville,IA)订购。引物序列列于本文别处。牛血清白蛋白(BSA)购自Roche Diagnostics(Indianapolis,IN)。SsoFast EvaGreenSupermix(2X)购自Bio-Rad Laboratories(Hercules,CA)。矿物油(无DNA酶、RNA酶和蛋白酶)、琼脂、100bp PCR DNA梯和DEPC处理的无核酸酶的水,从Fisher Scientific(HanoverPark,IL)获得。二氯二甲基硅烷购自Sigma-Aldrich(St.Louis,MO)。金黄色葡萄球菌(Staphylococcus aureus)基因组DNA(ATCC编号6538D-5)、白假丝酵母(Candidaalbicans)(ATCC 10231)、金黄色葡萄球菌(Staphylococcus aureus)(ATCC 25923)、耐甲氧西林金黄色葡萄球菌(Staphylococcus aureus)(MRSA,ATCC 43300)、大肠埃希式杆菌(Escherichia coli)(ATCC 39391)和铜绿假单胞菌(Pseudomonas aeruginosa)(ATCC27853)购自美国典型培养物保藏中心(American Type Culture Collection)(Manassas,VA)。YM肉汤和LB肉汤培养基购自Becton,Dickinson and Company(Sparks,MD)。涂有铬和抗光蚀剂的钠钙玻璃购自Telic Company(Valencia,CA)。光谱纯食品色素(绿色、红色和蓝色食品染料)购自August Thomsen Corp(Glen Cove,NY)。带滤芯移液器头和PCR管购自Molecular BioProducts(San Diego,CA)。小长尾夹(夹子尺寸为3/4”)购自Officemax(Itasca,IL)。Mastercycler和原位接头购自Eppendorf(Hamburg,德国)。特氟龙管线(I.D.370μm)从Weico Wire&Cable(Edgewood,NY)获得,而特氟龙管线(O.D.250μm,I.D.200μm)购自Zeus(Orangeburg,SC)。光掩模从CAD/Art Services,Inc.(Bandon,OR)获得。红色量子点(QDs)、Qdot 655ITK和用于pBad His B质粒的试剂盒购自Invitrogen(Carlsbad,CA)。绿色QDs从Ocean Nanotech(Springdale,AR)获得。MinElute PCR纯化试剂盒从Qiagen(Valencia,CA)获得。
从玻璃制造滑动芯片的过程是基于在本文别处详细描述的滑动芯片的玻璃蚀刻制造过程,并进行了下述修改。将玻璃板与包含用于区域和导管的结构的光掩模对齐,并暴露于UV光40秒。用于40个区域的结构和384个区域的结构两者的顶部载片含有被蚀刻至70μm深的正方形区域。用于40个区域的结构和384个区域的结构两者的底部载片包含被蚀刻至30μm深的圆形区域。在顶板中钻出通孔,作为溶液入口。对于40个区域的结构来说,单个隔室(一对重叠的正方形和圆形区域)的最终容积约为25.9nL,对于384个区域的结构来说约为7.1nL。
将带有蚀刻的区域的玻璃载片用Millipore水合乙醇充分清洗,然后用氮气干燥。将玻璃板在等离子清洗器中氧化100秒,并立即转移到干燥器中。将50μL二氯二甲基硅烷注入到干燥器中,然后施加1小时的真空以进行气相硅烷化。将硅烷化的玻璃载片用氯仿、丙酮和乙醇清洁,然后用氮气干燥。硅烷化过的玻璃载片在一天内用于PCR实验。带有图案的玻璃载片在用piranha溶液(3:1的硫酸:过氧化氢)清洁并如上所述再次硅烷化后,可以重新使用。
对于40个区域的滑动芯片结构来说,每种引物的浓度为0.05μM。将引物溶液流入与50μL Hamilton玻璃注射器相连的特氟龙管线(200μm ID)。通过Harvard注射器泵的控制,将体积为0.1μL的引物溶液沉积在圆形区域中。允许溶液在室温下干燥,并预装的滑动芯片在一天内用于实验。
对于384个区域的滑动芯片结构来说,每种引物的浓度为0.1μM。所有引物序列描述在表1中。将体积为0.02μL的引物溶液沉积在底板上的圆形区域中。允许溶液在室温下干燥,预装的滑动芯片在一天内使用。
表1.384孔滑动芯片中沉积的引物组的名称和序列。在40孔滑动芯片中所用的引物组用星号标出。
金黄色葡萄球菌(Staphylococcus aureus)、耐甲氧西林金黄色葡萄球菌(Staphylococcus aureus)、大肠埃希氏杆菌(Escherichia coli)和铜绿假单胞菌(Pseudomonas aeruginosa)在LB肉汤培养基中培养6-8小时至对数期。白假丝酵母(Candida albicans)在YM肉汤培养基中培养8小时。收集细胞并用1X PBS缓冲液清洗。在显微镜下对细胞数量进行计数,并将浓度归一化至约1x107cfu/mL。在与PCR主混合物混合后,病原体的终浓度为1x106cfu/mL。
在矿物油下组装滑动芯片,所述矿物油在实验前过滤并脱气。首先将底板浸泡在皮氏培养皿中的油中,使带图案一侧面朝上。然后将顶板置于底板顶上,使带图案一 侧面朝下。将两块板对齐并用长尾夹固定。
利用装备有GFP滤光片组件和11.2Color Mosaic相机(Diagnostic InstrumentsInc.,MI)的荧光立体显微镜MZ FLIII(Leica,德国)研究热膨胀。该离体显微镜允许同时观察红色和绿色量子点,二者都用蓝光激发。将滑动芯片两块板之间的间隙用绿色荧光量子点(QDs)染色的矿物油填充。为了对油进行染色,将初始的1%QDs在甲苯中的溶液通过0.22Amicon微米微量离心过滤器(Millipore,MA)进行过滤,并在超声水浴(FisherScientific,NJ)中超声10分钟。在填充装置之前,将QDs在矿物油中的10%溶液充分涡旋振荡,并在真空下保持至少10分钟。
将染色的矿物油沉积在滑动芯片的载片之间;通过将组装好的装置顺序地用氯仿、丙酮和乙醇漂洗,除去过量的油。通过经由区域和导管产生的流体通路注射红色QDs的水性溶液,填充滑动芯片的区域。红色QDs 655 ITK在含有1mM EDTA和50mM NaCl的pH 8.0的10mM Tris-HCl缓冲液中以1:10稀释。将滑动芯片置于立体显微镜下的Mastercycler上,并进行多个热循环以观察水的热膨胀。
对于在40个区域的滑动芯片中的反应,反应主混合物由10μL 2X SsoFastEvaGreen SuperMix、2μL的10mg/mL BSA溶液、6μL无Rnase水和2μL的1ng/μL的金黄色葡萄球菌gDNA(对于对照实验来说,用2μL无Rnase水代替)构成。gDNA模板的终浓度为100pg/uL。对于384个区域的滑动芯片中的反应,利用从His B质粒扩增的331-bp长的dsDNA片段(pBad模板)作为模板,用于PCR对照反应(引物1:GCG TCA CAC TTT GCT ATG CC;引物2:GCT TCTGCG TTC TGA TTT AAT CTG)。利用MinElute PCR纯化试剂盒(Qiagen)纯化pBad模板。用于384个区域的滑动芯片的反应主混合物由10μL的2X SsoFast EvaGreen SuperMix、2μL的10mg/mL BSA溶液、1μL的100pg/μL pBad模板、2μL细胞悬液和5μL无RNase水构成。通过移液将PCR主混合物注入滑动芯片。移动顶板上的正方形区域以与底板上的圆形区域重叠。然后将滑动芯片置于Mastercycler(Eppendorf)中的原位转接器上,用于热循环。利用94℃15分钟的初始步骤裂解细胞并激活用于反应的酶。接下来,进行总共35个如下的扩增循环:94℃1分钟的DNA变性步骤,55℃30秒钟的引物退火步骤,以及72℃30秒钟的DNA延伸步骤。在最后一个循环后,在72℃进行5分钟的DNA延伸步骤。然后在成像前将滑动芯片在4℃下保持在循环仪中。
利用Leica离体显微镜获取亮视野图像。所有荧光图像利用带有5X/0.15NA物镜和L5滤光片的Leica DMI 6000B表面荧光显微镜在室温下获取。对于所有图像,将荧光图像的强度水平调整至相同值。所有荧光图像通过利用标准荧光载片获得的背景图像进行校正。利用MetaMorph软件(Molecular Devices,Sunnyvale,CA)将荧光图像拼合在一起。
本发明人在含有40个区域和用于两种不同样品的两个入口的结构的滑动芯片上进行了PCR。这个装置可用于同时筛选两种不同样品,每种样品使用多达20种不同引物组。顶板含有流体入口、正方形区域(边长为640μm,深度为70μm)和长方形区域(长度为570μm。宽度为230μm,深度为70μm)。底板含有圆形区域(直径为560μm,深度为30μm)和用于导入样品的导管(宽度为150μm,深度为30μm)。将不同引物组预装在底部圆形区域中,并允许其在室温下干燥。然后将顶板和底板浸没在矿物油下并组装,以形成连续流体通路。将PCR主混合物、即含有SsoFast EvaGreen Supermix、1mg/mL BSA和模板(或对于对照实验来说为水)的溶液,通过移液导入滑动芯片中。在这种几何形状下,样品流体甚至在滑动之前就自发断裂成离散的体积。这种连续流成为不连续体积的断裂可用于需要隔室化的应用,例如随机限制和数字PCR。在注入样品后,立即将顶板滑下,以使正方形区域与底板上的圆形区域重叠,并使预装在圆形区域中的干燥引物溶解在从正方形区域导入的样品中。顶板上的长方形区域也与底板上导管的中间对齐。水性溶液由于表面张力在区域中形成圆形微滴,并且通过利用AutoCAD软件,估算出每个隔室中溶液的体积为25.9nL。
通过仔细设计滑动芯片,本发明人致力于热循环期间的热膨胀问题。滑动芯片的材料(玻璃)、润滑液(矿物油)和样品(水性PCR混合物)具有不同的热膨胀系数。已知当滑动芯片的温度从退火温度(55℃)升高到解离温度(95℃)时,矿物油和水性混合物的膨胀超过玻璃。这种滑动芯片的独特结构通过利用区域的几何形状将水性溶液保持在区域内。施加二氯二甲基硅烷赋予滑动芯片的表面以疏水性。本发明人利用含有红色量子点的水性溶液和含有绿色量子点的矿物油研究热循环期间的流体运动。当使用只具有正方形区域的滑动芯片时,水性溶液填充正方形区域。在温度升高后,水性溶液从区域漏出,导致材料损失和不可预测的浓度变化。本发明人发现,当将底板中含有油的较小的圆形区域与顶板中含有水性溶液的正方形区域进行接触时,水性溶液将由于表面张力在疏水区域内形成被矿物油包围的微滴,为热循环期间的膨 胀提供了空间。当温度升高时,水性溶液膨胀以填充反应隔室,矿物油膨胀并通过滑动芯片中顶板与底板之间的间隙移动,起到缓冲材料的作用。不利用这种结构,在某些实施例中在热循环期间观察到泄漏。本发明人确定了底部区域的形状和尺寸可用于在两个区域的中央形成尺寸一致的单个微滴。形成的微滴的一致的尺寸确保了在所有微滴中,微滴内的试剂浓度保持相同。顶板上的长方形区域与底板上的导管重叠,以解决残留在导管中的溶液的热膨胀问题。
通过扩增金黄色葡萄球菌基因组DNA中的nuc基因,本发明人在滑动芯片的实施例中进行了PCR。将用于金黄色葡萄球菌nuc基因的引物预装在滑动芯片底板的圆形区域中,并允许其在室温下干燥。将含有EvaGreen supermix、100pg/μL金黄色葡萄球菌基因组DNA(gDNA)和1mg/mL BSA的PCR主混合物注入导管以填充两行区域。其他两行区域用相同的水性PCR混合物填充,但是用无RNase的水代替gDNA模板。通过将滑动芯片的两块板相对于彼此滑动,使顶板中的正方形区域与底板中的圆形区域重叠。将滑动芯片置于热循环仪中平面原位转接器上,进行PCR扩增。本发明人证明,在滑动芯片的不同行之间没有发生交叉污染,因为只有含有模板的区域显示出扩增。在热循环后,只有含有gDNA的区域中荧光强度显著增加,并且所有含有模板的20个区域都显示出扩增,证实了PCR滑动芯片的鲁棒性。在热循环后,将滑动芯片中的溶液流出并收集,然后进行凝胶电泳实验。凝胶图像显示出成功的芯片上扩增和扩增产物的正确大小(~270bp)。
接下来,通过在芯片上的同一行中交替预装用于金黄色葡萄球菌中的nuc基因和耐甲氧西林金黄色葡萄球菌(MRSA)中的mecA的引物组,然后将含有100pg/μL金黄色葡萄球菌基因组DNA的PCR主混合物注入滑动芯片(引物组可以在表1中发现),本发明人测试了相邻区域之间的交叉污染。因为nuc基因普遍存在于金黄色葡萄球菌中,但mecA基因不是,因此在热循环后所有预装用于nuc基因的引物的10个区域都显示出荧光强度的显著增加,并且装载有用于mecA基因的引物的区域荧光强度都不增加。将上述结果组合在一起,本发明人证实了每个区域具有隔绝的反应条件,并且区域之间没有联络。
此外,本发明人演示了含有384个区域的滑动芯片,其可以预装多达384种不同引物组,可应用于高通量多路PCR。本发明人设计这个平台,通过利用预装在滑动芯片上的20种不同引物组来确定血液感染中通常存在的16种不同病原体。引物序列 根据以前的文献选取,并将PCR主混合物与终浓度约为106cfu/mL的细胞合并。这确保了在每个单个区域中存在靶细胞。本发明人已证实滑动芯片上的PCR能够检测单个分子。滑动芯片制造成具有28个独立区,并将用于每种病原体的引物组作为4乘4矩阵预装,以便于成像。将用于pBad模板的引物预装在滑动芯片边缘处的两列区域中,作为内部阳性对照。在载样前,将纯化的pBad331bp模板(终浓度为1pg/uL)添加到PCR主混合物中。空出与含有用于pBad的引物的区域紧邻的两列,作为用于泄漏的阴性对照。
滑动芯片能够稳健地确定细胞,因为只有预装有适合引物的区域才显示出荧光信号的显著增加。用于阳性对照的区域显示出荧光信号增加,而用于阴性对照的区域没有。滑动芯片能够正确地确定金黄色葡萄球菌(S.aureus)、MRSA、白假丝酵母(Candidaalbicans)、铜绿假单胞菌(P.aeruginosa)和大肠埃希氏杆菌(E.coli)。本发明人在滑动芯片上演示了高通量多路PCR。在某些实施例中,滑动芯片可以利用预先制造的引物组阵列进行384个纳升规模的反应,用于多路PCR。PCR滑动芯片可以通过移液简单地装载,避免了任何对复杂注射方法的要求。本发明人指出,PCR滑动芯片的实施例能够在同一滑动芯片上筛选一个样品中的16种不同病原体,并且不存在可检测的交叉污染。本发明人还证实了可以在单个预装滑动芯片上同时导入并测试两种不同样品。多路PCR滑动芯片可以构造成具有更大的入口数量,用于同时筛选多个样品,用于与非热循环核酸扩增方法例如LAMP、RPA或NASBA和/或与更大的区域数量一起使用,以允许在单一实验中筛选更多条件。PCR滑动芯片可以制造成利用由当前的PCR微阵列技术所建立的引物组,但是利用小得多的尺寸和反应体积。人们也可以采用当前的微阵列印刷技术预装引物并制造滑动芯片。
除了在一个实施例中辨别大量不同物种之外,滑动芯片的某些实施例能够通过例如结合用于多路实时PCR的实时成像技术,或为每个引物组利用大量区域,以便能够在一个实验中对所有扩增子的数量进行计数从而进行多路数字PCR来提供定量结果。
除了用于多路PCR以筛选特定基因之外,滑动芯片的某些实施例可用于其他应用。滑动芯片上的多路PCR和其他核酸扩增化学可用于测序前的高通量DNA扩增,例如用于定位测序的富集方法,其在目前可以在多孔板中或通过基于微滴的方法进行(例如描述在“用于大规模定位测序的基于微滴的PCR富集”(Microdroplet-based PCR enrichment forlarge-scale targeted sequencing)Tewhey,R.等,Nat.Biotechnol.2009,27,1025-1031中)。滑动芯片上的PCR也可用于检测基因组疾病、遗传突变和食品或水污染。也可以改造现有平台以进行用于RNA扩增的反转录PCR,以用于例如RNA病毒检测、基因表达研究和细胞非均质性调查。
滑动芯片可以由廉价材料例如玻璃或塑料制成,并且在某些实施例中,不需要复杂设备或专业知识来操作。当干燥试剂被预装在滑动芯片上时,它也容易运输和储存。它可以结合有等温扩增方法和简单的读出。
滑动芯片也可用于其他需要具有多路和高通量能力的预制试剂阵列的应用,例如蛋白质结晶、免疫测定、DNA杂交、DNA-蛋白质相互作用和染色质免疫沉淀(ChIP)。
在某些实施例中,可以在滑动芯片上进行组合生物催化。组合生物催化在概念上与有机化学中的组合合成类似。组合生物催化能够通过经酶进行的连续的组合生物催化反应,提供来自于单一先导化合物的多样化的衍生物文库。组合生物催化能够在不同底物或不同酶的并行顺序中,产生海量酶产物。带有多官能团(例如羧基、羟基、酰基、胺基等)的先导化合物是潜在的可以使用的分子。组合生物催化需要许多连续的混合和反应步骤。如果先导化合物的量非常小并且昂贵,对于可能需要的数千个反应来说,96孔、384孔或甚至1536孔的多孔板可能需要太大的体积。此外,因为可以获得的量有限,所合成的衍生物的测试可能受限。在标准的多孔板上分析产物,在浓度和体积两方面可能有困难。滑动芯片的某些实施例可以不需复杂装置而提供适合的封闭体积和足够数量的反应中心。滑动芯片对于高通量药物发现/药物筛选来说是有吸引力的解决方案。组合生物催化的可能应用包括生物催化(酶筛选、酶进化、反应条件的优化)、生物工程(系统开发、机器人、工业化)、生物过程工程(反应系统优化、规模放大、商业化)、药物化学(新药候选物、衍生化、ADME毒性测试)、食品化学和工程(天然着色剂、抗氧化剂、食品添加剂)、农业化学(功能性乳制品、乳化剂)和环境化学(天然杀虫剂)。
在本发明的某些实施例中,可以在滑动芯片上进行高通量酶筛选。在世界范围内,筛选酶是一个巨大的研究/工业领域。通常,研究人员将他们的酶候选物应用于检验过的化学文库。通常情况下利用机器人或手工劳动,但是酶样品的量一般是限制因素。相似的问题也出现在组合生物催化中(参见上文)。可以将具有不同底物的各种化学文库提供在滑动芯片中。作为目标底物的化学文库优选覆盖大范围的官能团,并且对 将要测试的具体酶具有靶特异性的集中性。滑动芯片可以包含不同范围的化学文库以及适量的反应物。然后用户可以使少量酶溶液流入装置中,并分析滑动芯片中的每个区域。例如,如果某人具有推测的脂肪酶/酯酶样品,滑动芯片可以含有用于水解测试的各种化学文库(例如,一种文库可以含有C2酯、C3酯、C4酯、…C14酯、C16酯…,等等)。高通量酶筛选的可能应用包括但不限于确定立体特异性、区域特异性、疏水性、水解和/或逆向水解反应性、pH范围、高热稳定酶的温度范围、高压力稳定性酶的压力范围、离子强度范围、对高盐条件的耐受性。
在某些实施例中,滑动芯片可用于筛选新酶的酶测试。一旦从微生物分离到潜在的酶后,通常将其在96孔板中运行酶反应,以评估底物特异性、反应性、选择性和稳定性。对于这种分析来说,通常人们针对化学文库来测试酶。可以提供含有多种底物的预装芯片,用作酶样品的简单测试筛选试剂盒。
在本发明的某些实施例中,滑动芯片可用作平台,以减少样品收集、浓缩和制备(SCCP)的复杂性;处理粘度范围从尿液至痰液的诊断相关样品;并允许处理大的、毫升规模的样品体积以捕集低浓度被分析物,并将其浓缩成易于检测的小的、纳升规模的体积,这些全都采取与大范围的扩增、检测和读出部件相容的方式进行。
滑动芯片平台克服了在资源有限的背景下健康护理和诊断技术所面对的几个关键挑战。诊断测定方法需要一系列复杂的步骤,从样品制备到扩增到检测和读出。这些步骤在资源有限的背景下难以进行,因为它们需要高度训练有素的技术人员或复杂的自动化设备。对于需要高灵敏度(几乎不容许误差和污染)、定量(复杂的方案和设备)和多路复用(对于多个被分析物来说过程必须被重复多次)的测定来说,这种困难进一步增加。滑动芯片平台能够为完整的诊断装置所需的所有步骤进行编码,这些步骤从样品收集、浓缩和制备到扩增、检测和读出。
滑动芯片平台可以容易地制备样品,并为现场检测(POC)应用打开了新的测定技术。它能够例如:(i)接受小体积或大体积(允许高灵敏度)的诊断相关样品,例如血液、痰液、尿液或粪便;(ii)操作它们通过许多样品制备步骤,以分离目标分子;以及(iii)将它们浓缩成可以被扩增或检测部件直接使用的较小体积。
在某些实施例中,滑动芯片可用于从原始的输入样品快速、简单地提取诊断相关的生物标志物。滑动芯片的某些实施例可用于瞄准许多目前明显尚未满足需求的领域,包括但不限于下列领域:(1)全血和血浆的样品制备,用于分离病毒RNA以对 HIV病毒载量进行定量(例如用于监测抗反转录病毒疗法和用于诊断婴儿);(2)痰液的样品制备,用于分离来自于引起肺炎的病原体的RNA和DNA核酸(例如用于确定何时应该给予抗生素治疗)。
在资源有限的背景下定量监测治疗期间的HIV病毒载量,已被认为是世界范围内HIV/AIDS护理的主要障碍。在超过几周大小的婴儿中HIV感染的诊断可以通过定量病毒载量来进行,并且在资源有限背景下是优选的,因为HIV感染的早期诊断和HIV抗反转录病毒药物治疗的实施极大地降低婴儿死亡率。
目前,还没有可以在资源有限的背景下使用的HIV病毒载量定量平台可用;病毒载量的集中化测试不是普遍适用的。现有的集中化病毒载量测定需要大量专业技术知识和仪器设备。在资源有限的背景下安装复杂仪器通常是失败的,并且将样品运输到中央实验室也被证明是有问题的。干血斑(DBS,在滤纸上干燥的全血斑点)是在这些背景下用于运输样品的唯一现实的选项。除了从DBS定量分离病毒RNA的技术问题之外,这种方法不非常适合于移动诊所,因为必须不耽搁地获得结果以便测试结果可以起作用。此外,DBS的使用仍然需要采用精密设备和专业技术知识的定量RNA测试。
在某些实施例中,通过以自备式进行多步样品处理,滑动芯片可用于在资源有限的背景下定量、灵敏地测量HIV病毒载量。滑动芯片的某些实施例可以接受例如100-200μl全血或血浆,并以>30%的收率产生20-50μl纯化的病毒RNA,其质量足以用于随后在数字滑动芯片或另一种扩增部件上进行的等温扩增。
急性下呼吸道感染(ALRIs)例如肺炎的准确诊断,每年能够挽救上千上万的生命,并优选包括同时进行的细菌和病毒的多路检测,并且进行量化以区分较低水平(对应于细菌定植)与较高水平(对应于细菌感染)。在发展中国家,由于缺乏准确、低成本、易于获得的诊断工具而导致的不充分治疗,ALRIs、特别是肺炎,是5岁以下儿童中的主要死亡原因(每年超过两百万例)。诊断能力不良还导致抗生素的过度使用,推动了耐药性菌株的出现。细菌感染,特别是可以用抗生素容易地治疗的肺炎链球菌(Streptococcus pneumoniae)和b型流感嗜血杆菌(Haemophilus influenzae)感染,必须与病毒感染或其他原因区分开。主要的挑战是区分细菌感染与上呼吸道定植,并且简单的定性的是/否化验无效。通过对痰液进行例如16种常见细菌和病毒病原体的定量多路测试,可以极大地改进诊断。例如,在不存在显著水平的其他病原体的情 况下,中等水平的肺炎链球菌细菌可能指示肺炎链球菌感染,而在存在非常高水平的呼吸道合胞病毒(RSV)的情况下,中等水平的肺炎链球菌细菌将指示RSV感染是更可能的病因。
在某些实施例中,滑动芯片可以从痰液中以>30%的收率分离引起肺炎的病原体的RNA和DNA,使其浓度增加>5-10倍,用于在数字滑动芯片或其他组件上进行下游定量和灵敏的检测。
滑动芯片的某些实施例可以被编程以进行从mL至nL体积的复杂操作。通过例如简单地滑动两块板,它们可用于简单地并行处理数百或数千个纳升体积。本发明人已证实更大的体积能够引入到这种平台中(例如200μL全血)。这种多尺度能力是有用的。例如,为了捕获HIV病毒载量为500/mL的50个HIV病毒,人们需要操作至少100μL血浆,而将样品浓缩至更小体积减少了处理过程中的损失,并提供了更适合扩增和定量(例如使用数字PCR滑动芯片)的输出。已经在滑动芯片上演示了105倍的连续稀释和通过稀释进行的清洗。已经在pM范围内在nL体积的免疫测定中演示了珠子的定量操作,操作并检测了数千个蛋白分子。通过简单的化学方法,通过将产热或产冷试剂的合并编程在所需步骤中,可以将局部加热和冷却编程在滑动芯片中。温度控制也可以通过外部或内部片载手段来实现,包括电和热电加热和冷却、以及大量用于进行PCR反应的方法。这些特点可用于以至少30%的收率、以10倍的浓度可靠地分离靶核酸,并能优化收率与浓度之间的折衷。
在某些实施例中,可以对滑动芯片编码以从全血或血浆中提取HIV RNA,用于下游HIV病毒载量分析。滑动芯片可以利用HIV病毒载量为500至106/mL的100至200μL血浆(在芯片上或芯片外制备的),并以>30%的收率将病毒RNA分离到10-30μL溶液中。这种输出足以用于通过数字滑动芯片以每mL 500至106个拷贝的动态范围测量病毒载量,并具有95%置信度下低于3倍的误差。分离到的HIV RNA的质量和数量可以通过实时RT-PCR来定量。
在某些实施例中,可以对滑动芯片编码以从痰液提取RNA和DNA,用于引起肺炎的病原体的鉴定和定量。它们能够操作例如200-500μL痰液,用于以>30%的收率分离RNA和DNA,将其浓缩在例如20-50μL可立即用于扩增的溶液中。滑动芯片上高度并行的处理能够进行任选的改进,其包括:(i)从同一样品同时地平行纯化DNA和RNA,以及(ii)在同一装置上处理多个痰液样品,所述样品来自于单一患 者以确保至少一个高质量样品,或来自于多个患者以增加通量。这些特点与滑动芯片用于扩增、读出和积分的部件相结合,为急需的全球诊断问题,包括HIV病毒载量的定量和肺炎病原体的多路定量分析,提供了解决方案。痰液样品处理方案可以容易地改造,用于从结核分枝杆菌分离DNA以进行TB的分子诊断和耐药性菌株的鉴定,并且可以扩展到从粪便分离核酸。HIV方案可改造用于从血液分离疟原虫(Plasmodium)DNA,用于疟疾的诊断。
在某些实施例中,滑动芯片可用于以与广泛的现有和未来的扩增化学部件相容的方式提供信号扩增并改进检测。
在某些实施例中,通过利用滑动芯片平台实施“随机限制”原理的优点,滑动芯片可用于极大增加信号扩增和检测化学。滑动芯片可用于例如(i)将现有技术的灵敏度提高至单分子或单细胞水平;(ii)增加特异性并降低干扰和背景反应;(iii)在大的动态范围内稳健地定量;iv)进行多路实验。
在某些实施例中,滑动芯片可以用作开放平台,部件构建者可以利用它使扩增化学部件的鲁棒性、定量、灵敏度和特异性适用于资源有限背景下的诊断应用。滑动芯片可用于瞄准许多目前明显尚未满足需求的领域,包括但不限于下列领域:(1)HIV病毒载量的量化(例如用于监测抗反转录病毒疗法和用于诊断婴儿),以及(2)引起肺炎的细菌和病毒病原体的多路定量检测(例如用于确定何时应该施用抗生素治疗)。
在某些实施例中,滑动芯片可用于HIV病毒载量定量,用于例如监测抗反转录病毒疗法和用于诊断婴儿。在某些实施例中,通过将简单的定性扩增化学转变成具有终点读出的“数字”格式,滑动芯片可用于HIV病毒载量的高度定量和灵敏的测量,这在本文中有时被称为“数字滑动芯片”。
在某些实施例中,滑动芯片可用于多路病原体检测,以诊断肺炎病因。目前,肺炎病原体的定量多路诊断在资源有限的背景下是未满足的需求。单一被分析物测试可以通过等温技术进行,但是在不存在定量和多路复用的情况下它们的价值有限。多路定量检测可以通过实时PCR来实现,但是它还不能用于现场、资源有限的背景。在某些实施例中,通过将多路复用与将扩增化学向具有终点读出的“数字”格式的转变向结合,滑动芯片可用于肺炎病原体的定量和灵敏的检测。
在某些实施例中,滑动芯片可用于(i)将现有技术的灵敏度提高至单分子或单细胞水平;(ii)降低干扰和背景反应;(iii)在大的动态范围内稳健地量化;(iv)实 用上不受限制的多路应用。作为两块板中的一系列区域,滑动芯片的某些实施例基本上能够编码任何程序,以操作流体体积。
在某些实施例中,滑动芯片可用于多体积随机限制。滑动芯片可以将样品在扩增前分成例如数百或数千个不同尺寸的采取“数字”格式(每个区域零个对一个或多个被分析物分子)的小体积。将分子限制在小区域中(i)增加了分子浓度,(ii)将这些分子与干扰分子隔离开,(iii)通过最大似然估计能够从终点读出进行量化,具有由同一芯片上同时使用多个体积所提供的大的动态范围。
滑动芯片与利用可商购的储用试剂的数字PCR和数字等温重组酶-聚合酶扩增(RPA)两种扩增技术相容。许多其他等温技术,包括但不限于环介导的等温扩增(LAMP)和基于核酸序列的扩增(NASBA),也可用于被分析物的定量(即使在存在干扰的情况下)。
在某些实施例中,利用多体积随机限制,对于HIV病毒载量分析来说,滑动芯片可以具有500-106/mL的动态范围。在某些实施例中,滑动芯片可以被设计成旋转式多体积数字滑动芯片。这种结构可以具有数百个容积在例如0.37nL至250nL范围内的区域,并可以以500-106个拷贝/mL的动态范围定量HIV病毒RNA,在95%置信度下变化在3倍以内。本发明人证实可以在数字滑动芯片平台上检测HIV RNA。
在某些实施例中,滑动芯片可用于在痰液样品中检测和定量16种与肺炎有关的病原体。在某些实施例中,滑动芯片可以含有用于16种病原体的等温扩增化学(具有任选的用于检测RNA病毒的附加反转录步骤)的预装试剂。本发明人已演示了使用预装试剂在384路均匀区域滑动芯片平台上多路检测病原体。所提出的芯片的不同区域可用于将装置的动态范围调节到适合范围内,例如:具有较大面积的外部区域用于范围为102-105/mL的CMV、HRV和其他病原体的灵敏检测,而具有较小面积的内部区域用于检测和定量102-106/mL范围内的定植病原体,例如肺炎链球菌(S.pneumonia)和b型流感嗜血杆菌(H.influenzae)。滑动芯片的样品制备、可视读出和整合能力,具有为紧迫的全球诊断需求、即对HIV病毒载量进行定量和肺炎病原体的多路定量分析这两个领域提供解决方案的潜力。结核病的诊断可以通过随机限制在滑动芯片上进行,其将放大对结核分枝杆菌(Mycobacteriumtuberculosis)的生理响应,并能快速检测耐药性并对其进行表型分型测试。使用随机限制,可以有效地进行AIDS患者中CD4计数的定量。
在某些实施例中,滑动芯片可用于读出和信号转导。在某些实施例中,滑动芯片能够接受来自多路扩增和检测部件技术的输出,例如病原体检测期间产生的1000个独立的扩增核酸产物的输出,并将它们转变成用于通过肉眼或使用简单的移动电话照相机分析和解释的读出。通过利用滑动芯片平台实施多步和多路处理的优点,滑动芯片能够增强信号处理和读出,产生用于任何诊断测试的视觉读出。在某些实施例中,滑动芯片可用于(i)不依赖用户的专业技能进行技术复杂的处理;(ii)连接与POC中目前可用的相比更加多样化的扩增、处理和检测化学,扩展了诊断工具箱;(iii)不需基础设施进行可定量的可视读出。
在某些实施例中,滑动芯片可用于快速可视分析,用于在资源有限的背景下目前明显尚未满足需要的两个领域中的诊断:1)HIV病毒载量的定量(例如用于监测抗反转录病毒疗法和用于诊断婴儿),以及2)引起肺炎的细菌和病毒病原体的多路定量检测(例如用于确定何时应该施用抗生素治疗)。
在某些实施例中,滑动芯片可用于在没有基础设施的地区进行多路可视读出以确定HIV病毒载量。在某些实施例中,滑动芯片可用于在没有适合基础设施的地区通过以自备式进行多步处理并产生易于解释的可视读出,来量化并灵敏地测量HIV病毒载量。它能够接受在滑动芯片或其他扩增部件上进行的核酸扩增技术(NAT)的产物,并将其转变成可视读出,用于更及时地实施治疗计划。
在某些实施例中,滑动芯片可用于多路可视检测和分析以确定肺炎的病因。
在某些实施例中,滑动芯片可用于(i)接受例如数千个含有来自于例如数字滑动芯片或其他部件的扩增核酸的混合物,并且(ii)对这些混合物进行多步骤处理,以从每个混合物产生定量可视读出。其他技术还不能满足这些需求,对于转变成可视读出来说,优选的是定量的、高度多路的“数字”测试,例如由数字滑动芯片提供的HIV病毒载量测试或肺炎评估组。作为两块板中的一系列区域,滑动芯片的某些实施例能够编码基本上任何程序,以操作流体体积。滑动芯片的某些实施例能够通过多个检测、扩增和可视读出步骤来处理多个体积。
在某些实施例中,滑动芯片可以接受例如数千个容积为例如0.3-300nL的区域,每个区域含有等温扩增的核酸,并通过多步处理从每个区域产生可视读出。在某些实施例中,滑动芯片上大于250μm×250μm、吸光度大于1的区域易于观察。对于具有较低核酸浓度的较大区域来说,可以使用通过金或硒粒子的杂交捕获进行的直接检 测。对于具有较低浓度的较小区域来说,用户可以将样品转移到较大区域中并进行附加的扩增化学。可以对扩增化学进行修改以提供可视检测,并且这样的修改在横向流读出中沿用已久。使用预装试剂,通过滑动,滑动芯片的某些实施例能够支持所有优选包含的步骤(例如将分子捕获在珠子和表面上,磁力操作,任选通过稀释进行清洗),而不需用户具有专业技术知识。在某些实施例中,滑动芯片可用于LAMP和RPA以及其他等温扩增技术。
实例。对于一个RPA实验来说,TwistAmp基础试剂盒购自TwistDx.(Cambridge,英国)。RPA supermix从含有RPA酶和试剂的单管(冷冻干燥的基础反应沉淀物),通过添加20μl重新水合的缓冲液与8μl对照1X引物/探针混合物的混合物来制备。通过将5μl阳性对照模板(10个拷贝/μl)与14μl的RPA supermix混合来制备阳性对照溶液,而将5μl水加入到14μl的RPA supermix中作为阴性对照溶液。
通过与由Harvard注射泵控制的50μL Hamilton玻璃注射器相连的特氟龙管线(200μm ID),将50nl乙酸镁溶液(9.3mM)沉积在40个区域的滑动芯片的底板上的每个圆形区域中。将溶液在室温下放置10分钟进行干燥。
滑动芯片在脱气的矿物油下组装。首先将底板浸泡在皮氏培养皿中的油中,使带图案一侧面朝上。然后将顶板置于底板顶上,使带图案一侧面朝下。将两块板对齐并使用长尾夹固定。
通过移液将阴性对照溶液(5μl)经一个入口注入顶部两行中,而阳性对照溶液(5μl)经另一个入口装载到底部两行中。通过滑动破坏流体通路,并将顶板移动至与底板上含有预装的干燥乙酸镁的圆形区域重叠。每个区域中反应混合物的体积为27nL,预计的乙酸镁浓度为17mM。立即将滑动芯片置于39℃温箱中,并使用Leica DMI 6000B表面荧光显微镜获取荧光强度。在滑动后立刻以及在39℃温育20分钟后,使用5X/0.15NA物镜和L5滤光片获取荧光图像。
如上所述进行了使用干燥乙酸镁的实验一。然而,可选地,乙酸镁溶液也可以以液相装载在滑动芯片中,然后滑动过去与RPA supermix混合以起始反应。在实验二中,进行了乙酸镁溶液与RPA supermix的预混。向19μl阴性对照溶液添加1μl的280mM乙酸镁溶液,然后将溶液注入40个区域的滑动芯片的顶部两行中。将另外1μl的280mM乙酸镁溶液添加到19μl阳性对照溶液中,将溶液通过独立的入口装载到底部两行中。通过滑动破坏流体通路,并移动顶板以与含有矿物油的圆形区域重叠。 将滑动芯片立即置于39℃温箱中,使用LeicaDMI 6000B表面荧光显微镜获取荧光强度。在滑动后立刻以及在39℃温育20分钟后,使用5X/0.15NA物镜和L5滤光片获取荧光图像。在实验一中,在40个区域中只有两个对应于阳性对照溶液的区域变亮。在实验二中,40个区域中的三个对应于阳性对照溶液的区域变亮。在两个实验中,对应于阴性对照溶液的区域都保持黑暗。
滑动芯片与广泛的各种可视检测化学相容。在滑动芯片的某些实施例上的多步骤处理,可以利用在“浸棒”横向流装置中已建立的标准可视化化学(参见例如US专利申请12/425121,在此以其全文引为参考),或能够使用新的化学。在金纳米粒子(AuNPs)表面上起始的银(I)离子的自催化还原,提供了非常高的放大程度,快速产生可目测观察的银沉积。在55nL体积、5pM被分析物(~165,000个分子)的滑动芯片实验中,这种化学产生了可以清楚地与背景区分开的可视信号。信号在10分钟内产生。可以在滑动芯片上进行的其他化学包括但不限于直接标记物捕获、从NBT和BCIP产生可视产物的碱性磷酸酶(AP)以及基于聚合反应的放大。
在某些实施例中,滑动芯片可用于以例如500-106的动态范围可视检测滑动芯片上的HIV病毒载量。从滑动芯片或其他扩增部件产生的来自HIV RNA的RPA产物,可以通过在滑动芯片上进行的其他步骤例如杂交、纯化和视觉信号产生来处理,用于HIV病毒载量的直接可视分析。
在某些实施例中,滑动芯片可用于例如与肺炎相关的16种病原体的可视化检测和定量。用于杂交和可视放大的其他区域也可以整合在两层装置或多层装置中,以增加密度。滑动芯片可用于需要多路、多步骤读出的其他领域中。这包括但不限于依赖于核酸扩增的其他诊断需求(例如在疟疾寄生虫或STDs的鉴定和诊断中)、多路免疫测定(例如在造成持续腹泻或STDs的病原体的鉴定中)以及在结核分枝杆菌细菌的快速可视检测和计数中。
在某些实施例中,确定病毒载量的基于ELISA的方法例如ExaVir Load(CavidiAB),可以在滑动芯片中进行。ExaVir Load根据反转录酶活性的定量来确定病毒载量,它可以测量任何HIV类型或亚型,包括O和N-组。不幸的是,Exavir Load和类似的测定法速度慢并且不定量。这样的测定法需要长的温育时间用于DNA合成,以在低病毒载量下得到可检测量的DNA。然而,如果在滑动芯片的使用随机限制和数字读出的某些实施例中进行分析,高的局部浓度允许较短的温育时间。例如,ExaVir Load的测量范围高达600,000/mL。这由在温育时间(通常为1天)内使锚定在孔底上的所有模板饱和的合成DNA所决定。在具有例如10nL容积和100μm深度的滑动芯片区域中,孔中有一个病毒粒子是100,000/mL,但是区域与96孔板中的孔相比,仅仅约为~1/300。假设模板消耗的速度取决于病毒粒子的浓度,人们将只需要~1/50的时间、即通常约1小时来饱和滑动芯片中的模板。
其他方法例如游离基起始/聚合扩增可以与ExaVir Load联合进行,以便增加扩增。人们可以通过加入少量游离基链终止剂作为抑制剂以建立阈值,来进一步增强扩增。这将少了所需清洗步骤的次数。
在某些实施例中,滑动芯片可以是可堆叠的。可堆叠的滑动芯片可用于目前明显尚未满足需求的许多领域中,包括但不限于下列领域:(1)HIV病毒载量的定量(用于例如检测抗反转录病毒疗法和用于婴儿诊断),以及(2)引起例如肺炎的细菌和病毒病原体的多路定量检测(用于例如确定何时应该实施抗生素治疗)。可堆叠的滑动芯片可用于完整的血液至答案诊断解决方案,用于HIV病毒载量的定量。在某些实施例中,可堆叠的滑动芯片可以通过结合不同的滑动芯片技术,用于HIV病毒载量的定量和灵敏的测量,所述技术例如:(i)用于样品制备和浓缩的滑动芯片,以从血液分离HIV病毒RNA,(ii)数字滑动芯片,以通过等温扩增和RNA分子的计数来定量病毒载量,以及(iii)用于将扩增的核酸转变成可以通过肉眼或例如使用移动电话的照相机检测的读出的滑动芯片。
在某些实施例中,可堆叠的滑动芯片可用于多路病原体检测,用于例如肺炎病因的诊断。在某些实施例中,可堆叠的滑动芯片可以通过结合不同的滑动芯片技术,用于在现场进行肺炎病原体的定量和灵敏的检测,所述技术例如:(i)用于样品制备和浓缩的滑动芯片,以从痰液分离造成肺炎的RNA和DNA病原体,(ii)用于从一组例如16种造成肺炎的病原体多路鉴定和定量核酸的数字滑动芯片,以及(iii)用于将扩增的核酸转变成可以通过肉眼或例如使用移动电话的照相机检测的可视读出的滑动芯片。
在某些实施例中,可堆叠的滑动芯片可用于将多种滑动芯片部件相互之间或与其他化学和硬件部件结合在一起。作为两块板中的一系列区域,滑动芯片的某些实施例可以基本上编码任何程序以操作流体体积。它们可用于样品浓缩和制备、用于确定和定量核酸的多路扩增以及扩增的核酸向可视或例如移动电话读出的转变。可堆叠的滑 动芯片通过将这些部件彼此之间或与其他人开发的其他部件结合在一起,可用于完整的诊断测试。存在许多用于可堆叠的滑动芯片结合的方法,包括但不限于下列方法:将预制的部件芯片堆叠以交换有限数量的输入/输出,以及制造多个堆叠的层以形成交换数百或数千个输入/输出的完整滑动芯片部件。可堆叠的滑动芯片能够控制滑动、珠子的捕获和通过堆叠层控制流体运动,包括毛细管和压力驱动的流动。滑动可堆叠的滑动芯片的单个层能够形成和断开通过该堆叠层的流体通路,因此甚至简单的灯芯或压力源也能引起流体通过堆叠层的高度受控的可重构的运动。
在某些实施例中,可堆叠的滑动芯片可用于结合具有少量输入-输出的预制部件滑动芯片。在某些实施例中,可堆叠的滑动芯片可用于将浓缩滑动芯片与数字滑动芯片结合在一起。堆叠部件之间的单一连接可能足够用于HIV病毒载量测量,而几个连接(例如用于独立地操作来自RNA和DNA制备模块的溶液)可能足以确定定和量化来自例如肺炎病原体的核酸。这种方法是有吸引力的,因为只要建立起输入-输出配置标准,部件就可以单独优化然后容易地结合在一起。
在某些实施例中,可堆叠的滑动芯片可用于滑动芯片层的直接整合。这种方法采取部件滑动芯片的布置方案,并将它们结合在堆叠层中,允许将样品从一个层中的区域直接转移到另一层的区域中。这种方法对于操作数百或数千个样品体积的部件、例如扩增核酸的数字滑动芯片和进行每个体积的多步处理以产生可视读出的读出滑动芯片的结合来说,是有价值的。它也提供了整个装置的显著简化,因为取决于诊断装置的需要,单个数字滑动芯片层可以与几种不同类型的读出滑动芯片中的任一种结合。在某些实施例中,可堆叠的滑动芯片允许进行完整测试,以500-106/mL的动态范围测量HIV病毒载量。在某些实施例中,可堆叠的滑动芯片可用于痰液样品中例如16种肺炎病原体的检测和定量。
在某些实施例中,滑动芯片可用于级联放大,以计数创伤性脑损伤(TBI)生物标志物分子。TBI在军队中是主要的健康问题。轻度TBI(mTBI)尤为重要,因为它涵盖了大部分病例,较难诊断,并且可能引起长期能力丧失。目前的诊断技术磁共振成像和计算机断层扫描,在战场背景下不实用并且受到成本和低灵敏性的限制。在现场(POC)诊断并起始适合的TBI治疗是未满足的需求。
生物标志物可用于诊断TBI,但是需要改进(1)血液中低(pM)水平生物标志物组的检测以及特别是定量(定量是关键的,因为为了正确评估TBI需要生物标志物 的绝对水平和水平的时间依赖性变化两者),以及(2)在没有额外设备的便携式轻量装置中进行和读取测定的功能。从已知的浸棒类型的装置能够获得定性的结果,但是定量需要单独的读取设备并且可能是不可靠的。在低浓度下定量能够检测血液或尿液以及可能甚至唾液中的生物标志物,其与目前的“黄金标准”脑脊液相比,在野外背景下更简单并且更安全。
测定法的发展具有两个对立的要求:放大和定量。低的起始浓度和对强烈、容易检测的信号的需求,要求非常高的的放大程度。然而,这样的放大一般难以定量,并且过于灵敏,甚至少量的错误干扰也会引发放大级联,产生误差和假阳性。这种挑战可以通过组合“随机限制”和化学扩增,在数千个例如纳升、皮升或飞升容积的区域中进行单分子检测来应对。计数单个分子的“数字”方法,常规通过PCR(数字PCR)用于核酸,并已被证实可用于酶。这些方法使用“随机限制”:将样品分离到例如数百或数千个小体积或区域中,以便在统计上每个区域含有零或一个靶被分析物分子。随机限制具有几个优点,包括:(1)强烈、定量的是/否扩增化学通过计数阳性区域产生定量结果;(2)人为假象,例如假的扩增起始或抑制,局限于个体区域;(3)因为在较小体积中单个分子的浓度较高(增加信号)并且干扰分子在统计学上被排除(降低噪音),因此测定的灵敏度和特异性增加。起始扩增(例如通过PCR中的热循环),并且通过泊松统计学校正的阳性区域的数量对应于样品中的分子数量。人们可以使用“随机限制”和用于单分子免疫测定的化学扩增用于数字生物标志物检测。
随机限制和扩增可用于“条形码化”可视读出,以提供即时测量、解释和治疗建议。可视读出在例如远离医院和实验室的精密成像仪器的前方军事背景中是重要的。多路测定体积的可视读出可以被构造成点得数字图案,例如条形码,以便可以通过肉眼或使用移动电话照相机来解释图案。捕获图像可用于进行时间过程测量和自动或授权做出决定。可以通过板载软件或中央设施立即分析和解释图案,以指示最佳行动过程。例如,TBI生物标志物的“数字”计数能够在前方军事背景中进行诊断。在一系列放大步骤后,产生能够快速成像并利用例如移动电话照相机进行分析的可视信号,以提供即时指示。
利用滑动芯片可以实现例如数千个例如纳升、皮升或飞升体积的多步处理。滑动芯片上精密复杂的流体操作可用于进行多步非均相免疫测定和优选用于在单分子水平上检测TBI生物标志物的其他化学。滑动芯片是可用于编码复杂程序,以用于数千 个小体积的并行操作的微流体平台。在滑动芯片的某些实施例上,可以利用扩增来定量进行非均相免疫测定。非均相免疫测定对于检测TBI中低水平的蛋白生物标志物来说是有用的,因为可以利用极大过量的捕获抗体来驱动结合。对于这些测定来说,多步处理是优选的,包括清洗步骤和添加用于信号放大的试剂。本发明人已经演示了用于代谢标志物胰岛素、具有pM级灵敏度的基于珠子的免疫测定法,其在滑动芯片上利用纳升级体积进行。滑动芯片上的随机限制可用于在通过数字PCR扩增后计数单个DNA分子。本发明人演示了通过在每个容积为2.6nL的总共1280个区域中计数阳性区域的数量,能够检测单个DNA分子并对其浓度进行定量。
在某些实施例中,滑动芯片可用于:(1)以高灵敏度定量检测TBI生物标志物,其可以通过在非常高的放大程度后计数单个分子来实现。(2)多步放大级联,其能够提供在可视读出中检测和计数单个TBI生物标志物分子所需的灵敏度。(3)在微小(例如飞升至皮升)体积内对TBI生物标志物分子进行随机限制,其可用于标准的非均相免疫测定化学,用于分子识别。
泛素C-端水解酶-L1(UCH-L1)是神经元细胞体损伤的标志物,SBDP 150是αII-血影蛋白被钙蛋白酶切割的产物,并且是与轴突损伤相关的标志物。在TBI中,它们分别以4至130pM和7至70pM存在于血液中。存在针对它们的商业化单克隆抗体,其可用于这些测定中。滑动芯片的某些实施例可用于定量范围为~0.02-200pM或低至的0.001pM的浓度,并获得一致的检测。
可以使用单分子显微术可用于验证在用于放大和可视读出的区域中单个目标分子的存在。样品可以在Alba显微镜系统(ISS,Champaign,IL)上成像。目标生物标志物、抗体、DNA探针以及甚至金纳米粒子(AuNPs),可以用量子点(QDs,通过闪烁增强)标记。具有长寿命的镧系元素染料可以以时间门控的方式用于强烈发射荧光的人类血浆样品中。
在某些实施例中,滑动芯片可用于在小体积中分配和操作样品。滑动芯片能够形成和操作大范围的体积,例如从几十纳升(区域尺寸为例如500x500x50μm3)、至几十皮升(区域尺寸为例如50x50x5μm3)、至几十飞升(区域尺寸为例如5x5x0.5μm3)。可以在例如微升量级上进行适当的对照反应,以证实试剂和测定如预期地运行。可以利用随机限制来分离单个分子:例如,在9pM浓度下,容积为0.2pL的区域含有平均一个分子。对于给定应用来说,可以确定每种区域尺寸的优势和限制, 例如对于飞升区域来说极为快速的运输相对于增加的制造复杂性。如果对于给定应用来说小体积不太优选,可以使用短的平衡时间从较大体积中捕获单个生物标志物分子。通过单分子显微术表示的特性可用于确保改进的实际浓度的代表性。
为了分析单分子测定,可以利用泊松统计学从观察到的阳性和阴性区域的数量计算被分析物的初始浓度。为了确定具有可视读出的单分子免疫测定法的准确度和精确度,用户可以分析未掺杂和以对数标度的浓度步级掺杂有0.02pM-200pM的生物标志物的缓冲液、人造血浆和保存的正常人类血浆(每种浓度n≥5个样品)中生物标志物的浓度。在TBI的情况下,为了进行测定,可以对来自12位个体TBI患者(Banyan)的保存的人类血浆分析≥3次,以评估测定的精确度并测量mTBI患者中生物标志物的水平。
在某些实施例中,滑动芯片可用于以多路格式利用可视读出获得单个分子的多步阈值放大。为了通过肉眼或移动电话照相机进行简单可视化,阳性区域的光学性质(吸光度或反射度)可以等同于在200μm x200μm区域中0.5至1的吸光度。
在金纳米粒子(AuNP)表面上起始的银(I)离子的自催化还原提供了非常高的放大程度,产生可目测观察的银沉积。为了在免疫测定法中使用,将AuNP与检测抗体偶联。在滑动芯片中,这种化学能够在具有5pM AuNP的55nL体积中(每个区域165,000个AuNP)产生可以与背景清楚区分开的可视信号。可以修改放大条件以获得更低的检测极限,并且可以将初始体积减小至200fL,使得5pM浓度将产生每个区域平均0.6个分子。在含有至少200个区域的装置上,可以实现以<1%的假阳性率从>95%的粒子产生可视信号的来自单一粒子的鲁棒放大。
可以利用暗视野显微术在单分子水平上示踪与150nm AuNPs偶联的抗UCH-L1抗体。可选地,可以使用荧光显微镜系统(例如Alba系统)示踪荧光标记的AuNPs。
对于某些应用来说,优选利用双阶段放大来可视化信号,因为来自亚皮升区域的信号的强度可能不足以可视检测。来自第一阶段AuNP催化的放大的输出,可以在第二组区域中引发大得足以可视观察的放大。因为银沉积是自催化的,因此在不存在AuNPs情况下的可能的信号产生(背景)令人担忧。在第一个放大阶段期间,真阳性产生强信号,背景噪音产生弱信号。可以导入阈值,使得只有强于临界水平的输入信号才能产生进一步放大。通过加入高亲和性硫醇钝化金表面,可以将背景和低于阈值浓度的AuNPs两者抑制1小时以上。阈值的使用能够确保在第二阶段的放大后只 从最初含有AuNP的区域出现可视信号。
PCR可用作附加的放大步骤以增加来自扩增化学的信噪比,并且通过标准PCR的核酸单分子扩增是公知的。可以进行与随机限制组合的单分子免疫PCR。用户可以例如结合抗UCH-L1检测抗体与DNA序列。DNA用作PCR扩增的模板,产生许多序列拷贝。PCR产物的每个拷贝可以设计成与两个探针杂交:一个固定化在区域或珠子表面上,另一个与信号分子相连。碱性磷酸酶(AP)与NBT/BCIP和AuNP催化的银沉积二者都被用于从PCR产物产生可视信号。
在某些实施例中,滑动芯片可用于定量单分子PCR和等位DNA扩增。由于鲁棒且已很好地描述,标准PCR可以在滑动芯片上进行,但是需要热循环并不总是优选的,例如对于野外应用来说。对于某些野外应用来说,等温技术是优选的。本发明人已经在滑动芯片平台上演示了使用等温重组酶-聚合酶扩增(RPA)的单分子检测。
与随机限制组合的用于放大的其他化学可以使用在滑动芯片上。光引发的系统已被证明是非常灵敏的,并可以在单分子水平上起作用。聚合能够产生可视信号,并且向抗体附加多种自由基光引发剂已显示出用于可视读出的希望。与自催化酸生成相结合的光生酸剂,广泛用于需要极端灵敏度的抗光蚀剂中。
单个夹心复合物能够在滑动芯片上提供可明显观察到的信号,并且用于例如TBI生物标志物(例如UCH-L1)的免疫测定法可用于检测低至单分子水平。
随机限制在含有捕获抗体的滑动芯片区域中分离被分析物单分子:具有例如1000个例如0.5pL容积的区域的装置,可以允许在0.2-200pM范围内检测单个分子。使用例如用荧光量子点(QD)标记的靶生物标志物,通过在清洗之前和之后使用例如荧光显微镜系统跟踪含生物标志物的区域,并将结果与计算的预测值进行比较,可以评估捕获效能。例如,含有一个生物标志物分子和0.1μM捕获抗体(Kd=1nM)的1pL区域,预计将以99%的效率捕获生物标志物。用户可以用不同QD标记检测抗体,并直接可视化结合。用户可以测量两种标记物的共定位,以定量免疫夹心复合物的形成并定量检测抗体无靶结合的背景。这允许对来自变化的测定条件(浓度、缓冲液、表面化学等)的改进进行定量,以优化具有低背景的单分子结合。
单分子测量常常遭受高背景和来自单个被分析物分子的弱信号的困扰。随机限制能够增加阳性区域中的信号强度,但是由于检测抗体的非特异性结合(背景结合),这不必然降低假阳性区域的数量,并且可能不能使用上述的传统方法得到缓解。降低 背景结合的一种解决方案是将检测抗体附着到磁珠上,以便可以更容易地从区域中移除未结合的抗体,并且使用声学技术可以进一步提高移除。对于具有高背景信号的应用来说,使用两种检测抗体的一致性检测可用于直接测量并校正背景信号。
在用被分析物的单个分子装载区域并获得预计的抗体结合后,可以进行放大化学,然后用户可以在缓冲液和人造血浆中评估整个免疫测定。用户可以随机限制样品以分离单个分子,形成免疫夹心复合物,使用所选的放大化学进行放大,并且成像以计数阳性区域的数量。用户可以在浓度范围内评估灵敏度、特异性、线性(或总体剂量响应关系)和与预期结果的偏差。
用户可以使用标记的生物标志物进行放大前可视化,以证实单分子的存在和位置。追踪有多少含抗原区域产生可视信号和多少空白区域产生可视信号,可以对系统的性能进行定量。
滑动芯片单分子方法可用于一致性检测以降低由背景结合产生的引号,也可以直接区分背景结合与靶上结合,对背景结合进行定量。用户可以使用用不同荧光团标记的针对靶生物标志物的两个不同表位的两种检测抗体(例如,可获得用于UCH-L1的三个不同表位的三种抗体(Banyan Biomarkers)),并使用两种颜色的检测。一开始,用户可以使用适合的荧光显微镜直接检测一致性,然后通过放大给出双色可视读出或有条件读出(例如在PCR后获取辣根过氧化物酶和葡萄糖氧化酶两者的捕获以产生颜色)。背景结合给出由泊松分布所预测的具有低一致性的信号。靶上结合给出容易与上述随机一致性区别开的信号(例如即使对于25个区域的芯片也产生>98%的一致性)。不进行单分子一致性检测,这些信号可能显得不可区分,具有对任一种检测抗体的5个单位的结合。如果需要,通过要求只有紧邻的标签才产生信号,可以进一步降低背景信号。例如,荧光共振能量转移或荧光交叉相关光谱可用于进行表征,其使用了成对检测适体,只有当两种适体紧邻时、例如与被分析物结合时才引发滚环扩增(RCA)。
人类样品可能具有由血浆中许多其他物质引起的非特异性结合的较高背景信号,并且不同人类样品中背景浓度变化。通过首先使用单分子荧光显微术测量以证实结合特异性发生,然后应用放大化学获得可视读出,用户能够对血浆样品中的生物标志物进行单分子免疫测定。
通过在例如亚纳升体积中的多步放大后对单个分子进行计数,用户能够定量地并使用可视读出检测人类样品中的生物标志物。用户可以使用适体代替抗体、等温扩增代替PCR,对装置进行工程化改造一致性在野外条件下的测定,并设计用于通讯装置的软件以解释测定结果并建议行动方案。滑动芯片也可以加速用于例如TBI的药物发现和生物标志物的发现和测试。它的高灵敏度可用于在更易获得的流体例如唾液、尿液或泪液中开发生物标志物。这也可以使非蛋白生物标志物例如mRNA或miRNA的检测成为可能。
在滑动芯片的某些实施例中,可以将随机限制与一致性检测组合,从而允许进行样品特异性背景校正,以定量具有高水平非特异性结合的样品。为了消除噪音的放大,用户可以引入阈值,以便只有强于临界水平的输入信号才产生进一步放大。
在某些实施例中,滑动芯片可用于使用许多不同生物体、包括但不限于极端微生物的组合生物催化。许多研究人员使用平板测定法筛选普通嗜热菌(优选45℃至约80℃),然而对于超嗜热菌(优选约80至约122℃)来说,由于蒸发和琼脂介质的熔化,难以运行标准的平板实验。最熟知的超嗜热菌是厌氧、需硫和生长缓慢的生物体。滑动芯片可用于培养许多生物体,包括嗜热菌和超嗜热菌。由超嗜热菌进行的许多生物催化反应是生物质降解(例如能够进行纤维素酶生产和反应)。滑动芯片可用于新酶筛选或培养基于群落的培养物。
下面的专利和专利申请在此以其全文引为参考:US 12/257495“用于临床实验室的自动化分析仪(Automated analyzer for clinical laboratory)”,US 12/411,020“集成的微流体测定装置和方法(Integrated microfluidic assay devices and methods)”,US 3,996,345“免疫测定法中使用免疫对的荧光淬灭(Fluorescence quenching withimmunological pairs in immunoassays)”,US 5,686,315“用于被分析物一步检测的测定装置(Assay device for one step detection of analyte)”,以及PCT/US2007/20810“集成的微流体测定装置和方法(Integrated microfluidic assay devices and methods)”。
在某些实施例中,滑动芯片可用作细胞-细胞通讯装置,其中表面被反应流体而不是润滑液润湿。由沿着表面通过纳米图案造型制造的非常细的导管连通的区域,可用于不需接触监测细胞-细胞相互作用,或过滤溶液(如果引起从一个区域到另一个区域的流动)用于例如样品制备和基于珠子的化学。在一些情况下,两个表面都是亲水的,但是在其他情况下,只有一个表面可能是亲水的。可以使用亲水性纳米图案造型。
滑动芯片的某些实施例可用于分析来自于任何液滴制造系统或装置、包括例如化学电极的液滴。在滑动芯片的某些实施例,试剂可以浸泡在润滑或运载流体中。可以通过使用例如含氟的可溶性表面活性剂控制表面化学,来控制蛋白质在滑动芯片的某些实施例上的吸附。滑动芯片的某些实施例可用于储存试剂而没有污染风险。
在一些实施例中,滑动芯片可以是打开和关闭装置。这可用于从大体积中分离和分析稀有细胞、粒子和/或携带目标细胞或分子的珠子。这适用于大量不同种类的细胞,包括但不限于循环肿瘤细胞、体液中的微生物细胞、其他细胞的纯化。这可以利用许多不同方法来进行,包括但不限于标准的载样和捕获,以及利用用于捕获的打开的滑动芯片捕获,然后进行后续组装。滑动芯片的一块板可以用作滤器或作为捕获表面,解决仅具有少量目标细胞的大体积的分析问题。这样的装置可用于例如分析否则难以装载的样品,例如在咳嗽期间产生的细菌和病毒的气溶胶,或者用户希望从其中分析样品而不丧失细胞之间空间关系的痕迹的组织载片,正如对于肿瘤和活检样品所做的。此外,用户可以打开芯片,通过得益于直接接近的方法进行分析(例如质谱,包括通过DESI和MALDI技术分析滑动芯片的区域)。当滑动芯片用可以透过的材料(包括PDMS、聚氨基甲酸酯、其他弹性体和由3M制造的密封胶条)构造时,区域的内含物可以通过例如用针刺穿材料来直接接近。
在本发明的某些实施例中,可以利用表面张力防止泄漏(“表面张力密封”)。装置的两半可以由例如塑料制成,然后利用例如等离子处理将其制成非常疏水的。围绕芯片的封闭通路可以被制成亲水的。将疏水区域用疏水液体润湿。为了防止蒸发,可以存在与适合区域接触的储液库。可以将滑动芯片的两半夹在一起,添加到芯片中的水性溶液将不会由于毛细压力在板之间泄漏。同样地,疏水溶液被亲水层阻止。装置能够抵抗的最高压力由毛细压力决定。
当将滑动芯片的两侧夹在一起时,如果层非常薄,那么优选在表面上均匀地施加压力。利用预应变处理的固定装置,可以在工厂制造非常薄、预先夹紧在一起并剥离开的滑动芯片。可选地,可以使用两块刚性玻璃载片作为夹具,并且如果需要可以通过它们进行成像。如果将要进行x-射线衍射,可以除去玻璃载片。然后,在某些实施例中,不需要夹紧。例如,两块玻璃载片如果润湿,将非常紧密地黏在一起;同样的想法可用于将滑动芯片的层保持在一起。如果相对的表面是刚性并且平的,将产生非常高的毛细压力,并且刚性要求在分离载片时必须在大面积上同时破坏接触,需要 很大力量。应用包括但不限于蛋白质结晶,例如用于膜蛋白结晶。
在其中优选对样品进行计量的滑动芯片的某些应用中,可以将孔过度装填,然后可以通过相邻的层挤掉多余的量。可选地,装置可以具有一组多余通路,其中每个用于纯化和/或分析的通路具有例如5μL容积,当用户将样品装载到装置中时,先填充第一个5μL,然后再填充第二个5μL,等等。这样的装置具有能够在例如10μL和50μL血浆上进行定量分析的鲁棒系统。
在本发明的某些实施例中,滑动芯片可以在离心管中。通过将滑动芯片粘在离心管的底部,这种装置可用于细胞/粒子的重新浓缩。
化学电极这种依赖于两相层流的微流体装置,能够获取重复样品并保持它们以备分析。化学电极是性能类似电极(发送和记录信号),但是利用化学而不是电信号的微型探针。已经演示了用于将来自组织的分泌物取样到隔离区域中的化学电极,以及用于取样土壤悬液的针状化学电极。
化学电极与并行的低至单分子的基于芯片的纳升级测定方法相容,确保可以从单一动物取样并分析许多小体积。利用竞争性免疫测定法和荧光相关光谱术(FCS),已经实现了代谢标志物胰岛素的单分子检测。也可以在滑动芯片上分析通过化学电极获得的微滴。化学电极与FCS或用于分析的滑动芯片相结合,能够从活动物连续取样生物流体,用于定量分析。
滑动芯片的某些实施例可以处理来自于化学电极的许多纳升级体积,以例如在检测生物标志物(例如TBI生物标志物)所需的皮升水平上进行多步非均相免疫测定。
滑动芯片的某些实施例可用于在现场(POC)廉价并且简单地测量HIV病毒载量。迫切需要这样的测试以便在资源有限背景下为进行抗反转录病毒疗法的患者提供适合的护理,并控制世界范围内HIV耐药性毒株的出现和传播。尽管已开发了大量定性的是/否诊断工具,但对于在资源有限背景下进行定量病毒载量测定仍存在未满足的需求。尽管具有实时读出的基于PCR的测定法是定量的,但这些测定法需要对于在资源有限背景下的POC来说过于复杂的设备和环境。此外,从血浆分离并浓缩病毒RNA对于许多POC应用来说是挑战性的。滑动芯片的某些实施例能够编码复杂的程序(算法),用于并行地操作许多流体体积。滑动芯片的某些实施例由相对于彼此移动或“滑动”的两块板构成,其由不与样品流体混溶的惰性流体润滑,惰性流体也提供了表面化学的控制并防止交叉污染。程序作为含有试剂的区域的图案编码在板 中,并通过滑动来进行。滑动使两块板中的区域(或孔)发生和脱离接触,以进行诊断测定。可以在同一芯片上进行例如从100pL至100μL的多种尺度上的操作。这样的滑动芯片促进了上游样品制备的整合以分离和浓缩病毒RNA,并且允许利用具有下游信号放大的“数字”(单分子)检测通过核酸扩增来定量病毒粒子,以便能够以简单到利用例如移动电话照相机获取的图像的形式读出。
人们可以靶向不同的HIV-1亚型,包括主要发现在印度和尼日利亚的A、C和G亚型。
目前可用的定性POC诊断测试不适合用于所需的定量监测。HIV抗体测试已被整合到可以容易地在资源有限背景下利用的浸棒格式中。然而,这种测试不能反映出HIV抗反转录病毒疗法(ART)的效果,因为它只提供关于患者的血清状态的信息。p24抗原测试具有低灵敏度,并且只在非常高的HIV病毒血水平下(>105个粒子/ml)才工作,因此不能用于监测ART。用于CD4细胞计数的方法目前不能广泛获得,并且在许多疾病中计数可能低,并且可能不反映HIV感染。此外,仅仅能够推断HIV病毒动力学和对疗法的抗性,因为CD4计数对于在更快的时间尺度上发生的病毒载量的变化的反映缓慢。来自Cavidi AB的ExaVirLoad具有在资源有限背景下使用的潜力,但是测试需要约3天,价格昂贵,并且需要另外证明其与已建立的临床实践的关联性。
对于资源有限的背景来说,迫切需要通过核酸测试定量测量HIV病毒载量。ART的主要目标被设定为只要有可能,尽可能大地降低血浆中的HIV RNA水平。这需要定量,其目前是基于在中央实验室中的自动化机器上进行的通过实时反转录酶-聚合酶链反应(RT-PCR)的直接核酸测试(NAT)、基于核酸序列的扩增(NASBA)和反转录介导的扩增(TMA)。HIV病毒载量的定量被用于指导何时开始HIV抗反转录病毒药物治疗,提供关于获得的最初抗反转录病毒效果的程度的信息,评估疾病发展的风险,并指导对何时切换到不同ART治疗方案的决定的做出。
目前,正如在本申请的别处所述,没有可用于资源有限背景下的HIV病毒载量定量平台可用。优选的装置具有大量优选特点:宽的动态范围,以测量血浆中例如从500至1,000,000个粒子/mL的病毒载量;利用例如100-200μL全血或血浆;定量程度足以例如以90-95%的概率分辨病毒载量的3-5倍的变化;成本低;易于使用;在例如2-4小时内(在一次就医中)提供结果;只需要简单和鲁棒的设备;以及具有简 单的读出。
数字直接核酸测试(NAT)是技术改进,其能够以更高的灵敏度定量DNA或RNA水平,并且不需要实时读出。对于某些应用来说,实时RT-PCR提供了准确的病毒载量并可以利用,但是对于其他应用来说,它在所需的专业技术和设备方面过于复杂。为了不需实时测量获得定量结果,出现了作为优选的单分子检测。数字NAT是基于在一系列小体积中限制并可视化单个核酸拷贝的概念。产生核酸产物的小体积的数量直接对应于原始样品中存在的分子的数量,使结果高度定量。在数字平台中,具有高背景的样品的检测灵敏度增加,这是因为每个被检测的分子分配到各个小体积中(或被随机限制),与抑制性污染物分离开。
滑动芯片的某些实施例提供了不需外部仪器而并行地划分大量小的(例如皮升至纳升)流体体积。滑动芯片可用于进行数字NAT,用于资源有限背景下的HIV治疗和诊断。滑动芯片的某些实施例容易地形成数千个纳升级反应区室,而不需要昂贵的基于泵的填充系统——一系列相同的孔可以通过单一移液步骤简单地填充,随后通过将一块板相对于另一块板滑动将孔分割成单个的纳升级反应器。滑动芯片可以高度多路复用,但是不需要阀。
滑动芯片的某些实施例即使在灵敏的测定和热循环期间所需的严紧条件下也保持所有反应的分隔。通过改变孔的几何形状,水性微滴可以被润滑液围绕悬浮在孔中。在某些实施例中,在与热循环相关的温度变化过程中,流体膨胀,但是含有PCR反应的水性微滴不漏出孔。
滑动芯片的某些实施例便于在分开的步骤中向所有区室化的反应体积并行地添加多种试剂,而不需外部仪器或者没有相邻反应体积之间的交叉污染,正如对于数字等温NAT和随后NAT读出的放大两者来说优选的。等温NAT对于资源有限背景来说是有利的,因为它不需要热循环,消除了对主要设备件的需要。然而,由于控制扩增反应起始的技术困难,它目前在商业上不能用作POC,因为在将PCR混合物与模板RNA混合后反应立即启动。因为扩增在将样品装载到数字平台中之前开始,因此数字读出不必然准确地反映出原始的RNA靶浓度。当模板核酸在随机限制前被扩增时,可能发生假阳性。滑动芯片的某些实施例解决了这个问题。首先,通过滑动含有样品的孔使其与含有试剂的孔接触来装载RNA模板后,可以在任何用户指定的起始时间即时添加试剂。其次,数字PCR能够利用终点读出,因此反应时间并不重要。 此外,在相邻反应体积之间没有交叉污染。滑动芯片便于不同反应体积的操作,正如对于RNA分离来说优选的。滑动芯片可以被制造成具有不同孔直径和不同深度、例如从几微米至数毫米范围内的深度的任何几何特征。每个含有单个核酸的反应体积可以真正地通过数字解释。作为利用荧光读出的替选方案,可以利用比色酶扩增反应来检测NAT产物。滑动芯片也可以实现向所有反应体积同时添加多种试剂。
在滑动芯片的某些实施例中,分子或病毒粒子可以通过磁珠捕获,同通过利用磁体从大体积拉入到小体积中,以能够进行芯片上浓缩。同样地,小体积可以加入到大体积中,能够进行芯片上稀释。
在滑动芯片的某些实施例,可以在润滑液与反应流体之间的界面处控制界面化学,以简化制造。两种不混溶液体之间的界面化学可以通过例如添加表面活性剂来控制。因为在某些滑动芯片中使用的润滑液可能与以前基于微滴的工作(例如US7,129,091和PCT/US2009/046255,二者都在此以其全文引为参考)中使用的相同,因此可以以类似的方式控制界面化学。对于不含氟润滑液(例如矿物油)来说,可以向水性反应流体加入表面活性剂;对于含氟润滑液来说,可以向润滑液加入可溶于含氟油的表面活性剂。可以在滑动芯片中使用的不同润滑液的实例包括用于单分子PCR滑动芯片的矿物油,和用于实现pM检测极限的免疫测定滑动芯片的含氟油。
用于滑动芯片的可能的表面处理包括但不限于二氯二甲基硅烷(适合于装置)和气相硅烷化。
具有均匀孔容积的玻璃滑动芯片可以具有例如5,000至100,000个HIV粒子/mL的动态检测范围。这种设计的优点在于,如果装载有相同溶液,每个孔都是一致的平行样,因为表面体积比保持恒定。在一个实验中,装载在具有均匀孔容积的滑动芯片中的染料浓度具有3.2%的变差系数。均匀的孔装置可以具有例如1280个反应体积,在滑动芯片的顶板中具有640个细长的孔并且在底板中具有640个细长的孔,以保留空间。细长的孔一开始可以重叠以用于填充。在填充后,可以将细长的孔在含有例如矿物油的圆形孔上滑过。这种设计促进了在滑动后形成被一定体积的矿物油包围的水性微滴。水性微滴在加热后可能膨胀,排挤滑动芯片的两块板之间的矿物油,并防止水性相漏出孔并导致由热膨胀引起的交叉污染。每个圆形孔可以例如直径和深度都为50μm。
这种装置可以利用标准的光蚀刻和湿法化学蚀刻技术从玻璃制造。通过用例如适用于PCR的二氯二甲基硅烷进行硅烷化以赋予滑动芯片的表面以疏水性,可以控制表面化学。可以利用矿物油作为滑动芯片的两块板之间的润滑液并作为围绕含有反应混合物的水性相的润湿层。
可以利用可从Promega商购的Access RT-PCR试剂盒,以及已知浓度的可商购HIV标准品(HIV-1的8E5LAV缺失突变株)和EvaGreen染料来检测产物。人们可以利用用于扩增HIV-1长末端重复序列(LTR)区的引物,其含有在M、N和O组中的所有HIV-1亚型之间保守的序列。这些引物适用于扩增在印度和尼日利亚发现的所有HIV-1亚型(A、C和G)以及在美国流行的亚型(B)。引物为:A1352正义,在来自Los Alamos HIV序列数据库的已发表的序列比对中的607位,GRAACCCACTGCTTAASSCTCAA;A1355反义,708位,GAGGGATCTCTAGNYACCAGAGT。
在实验中,利用6.5μL初始样品实现了1280个孔的可靠填充,并且对于PCR和RT-PCR两者获得了可重复的数字读出。利用金黄色葡萄球菌基因组DNA,对1280个孔的滑动芯片用于数字PCR进行了性质研究。结果既可重复也是定量的。此外,实验证实了利用HIV-1的8E5LAV缺失突变株和A1352与A1355正义和反义引物的RT-PCR的生物化学,与数字滑动芯片平台相容。
可以在滑动芯片中建造内部控制,以证实在野外获得的结果。例如,可以用引物预装100个孔,以检测可以添加到样品中的对照RNA。引物可以在滑动芯片的两块板组装之前手动地或通过简单的机器人分发。
已经演示了在一个芯片上产生多个反应体积的圆形滑动芯片的实施例。这种设计的优点在于它的动态范围可以覆盖例如500至1,000,000个HIV粒子/mL的检测范围。在某些实施例中,孔一开始与导管重叠以便能够进行装填,然后通过旋转装置滑动到离散的反应体积中。用于这种孔体积变化的滑动芯片的示例性尺寸是128个容积为200nL的孔(39–1667个RNA分子/mL),128个容积为20nL的孔(391–16667个RNA分子/mL),256个容积为2nL的孔(1953-166,667个分子/mL),以及512个容积为0.5nL的孔(7813–1,333,333个分子/mL)。由于较大和较小体积的动态范围的重叠,这些孔尺寸允许检查滑动芯片的内部一致性。装置可以掺入内部对照物。
任选地,这样的装置可以在水性样品溶液中利用表面活性剂,或利用含氟油代替矿物油。
在某些实施例中,通过芯片上的连续稀释获得等量大的动态范围可能是优选的,所述芯片在某些实施例中含有较大的孔。这种设计的示例性尺寸是5行,每行含有100个孔,并且含有20nL样品的浅孔在含有180nL稀释缓冲液的预装孔上滑过,通过每次滑动实现10倍稀释。
滑动芯片可以由任何材料制成,包括例如玻璃、聚碳酸酯、聚丙烯和其他塑料。已知聚丙烯和聚碳酸酯二者都与PCR相容。塑料装置可以用不同表面涂层、表面活性剂和油涂层。
滑动芯片的某些实施例可用于控制HIV RNA通过反转录酶(RT)和随后的扩增反应转录成cDNA的启动。通过将滑动芯片上板中含有反应混合物和模板RNA的孔在滑动芯片底板中预装有干燥引物的孔上滑动,来控制cDNA合成和扩增的启动。对于最初测试来说,引物可以利用I.D.为例如50μm的特氟龙管线通过手动或利用简单机器人来装载。
预装有用于检测不同细菌物种的引物的384孔滑动芯片,成功地将耐甲氧西林金黄色葡萄球菌(MRSA)与甲氧西林敏感性金黄色葡萄球菌(MSSA)区分开。滑动芯片任一末端的两列预装有pBad引物,而pBad模板DNA装载在所有孔中作为阳性对照。
可以利用的等温扩增技术包括NASBA和RT-RPA。这些扩增技术可以在40℃下操作(对于某些POC装置来说优选更低的温度):NASBA(产物:RNA),RT-RPA(产物:DNA),利用LAMPHIV-RNA 6引物组之一的RT-LAMP,转录介导的扩增(TMA,41℃),解旋酶依赖性扩增(HDA,65℃)和链置换扩增(SDA,37℃)。
优选用于POC的扩增方法是不需要与环境大的温度差并且可以在一个混合步骤中启动的扩增方法,但是NASBA和RPA含有不耐热酶。因此,人们可以从标准流程中排除变性步骤并将引物退火温度调整至40℃。对于某些实施例来说,如果在40℃下退火产生较低灵敏度,人们可以在基因组RNA中选择在不同HIV-1亚型中保守的、具有弱的二级结构以允许在40℃下有效退火的100-120个核苷酸长的扩增靶。
在实验中,将Mg2+溶液预装在滑动芯片的所有孔中,并利用含有所有其他用于RPA的试剂的溶液来填充剩余的孔。随试剂盒提供的对照模板的初始浓度为2个分子/μL。对约500nL进行分析。
几种诊断性NAT测试在相同的管或孔中掺入了内部对照作为目标RNA,并利用 与荧光团偶联的特异性探针来定量内部对照,所述荧光团与识别被扩增靶RNA的探针的荧光团不同。人们可以利用与例如HIV RNA和所有扩增试剂混合的对照模板RNA(例如3,569nt长的噬菌体MS2基因组RNA)将内部对照掺入到滑动芯片中。通过将芯片上四分之三的孔预装有含有HIV引物的干燥反应混合物,剩余四分之一装有内部对照,利用例如SYBR Green检测来定量HIV和内部对照的载量,人们能够独立并同时分析HIV RNA和内部对照模板。
对于某些资源有限的POC背景来说,可视读出是优选的。人们可以修改滑动芯片以合并对可视读出有用的其他步骤和滑动。获得可视读出可以包含将核酸产物与酶杂交,清洗以除去过量的酶,加入酶可以将其转变成可视信号的底物,以及温育以放大可视信号。为了使可视化更加容易,可以增加孔的尺寸以允许产生更多可视信号。例如移动电话照相机可用于对结果进行记录、分析和存档。
利用表面固定化、磁珠和浅孔,可以在一个步骤中实现单链RNA(由NASBA产生)的杂交。
碱性磷酸酶可用于基于酶的检测。碱性磷酸酶具有沿用已久的BCIP/NBT((5-溴-4-氯-3-吲哚基磷酸,二钠盐)/(氯化硝基四氮唑蓝))底物用于可视化。这种底物在酶活性位点处形成非常强的蓝色沉淀物。对于某些应用来说,预期100nM产物R/DNA结合的酶足以容易并快速地消耗BCIP底物以产生约1mM产物,其对于产生深的、可容易识别的信号来说是优选的。
可以从较大的孔浓缩成小斑点或利用银放大(用于金纳米粒子)的金纳米粒子或着色磁珠,也可用于产生强的可视信号。
移动电话照相机可以容易地记录数据并利用简单的软件计数和计算所需信息来提供快速分析。相机优选能够分辨和识别斑点。通过将例如1兆像素相机聚焦于1280孔的设计方案上,每个孔的图像包含约80个像素。利用2兆像素相机,每个孔的图像包含约200个像素。这种像素数量足以用于可靠计数。这两种分辨率在许多相机中是常见水平,即使在资源有限背景下也可容易地获得。在可视信号显色期间可以将样品转移到较大孔中以便于检测。
对于某些应用来说,优选使纯化的RNA的终浓度达到相当于患者血液中存在的初始HIV病毒载量的至少40%,或分离到200至400,000个分子/mL。基于泊松统计学的计算表明40%的回收率足以可靠地定量来自患者的500至1,000,000个分子/mL 的初始病毒载量。
示例性分离方案包括:
方案1:修改的Boom的从血浆分离RNA的方法,通过利用离液序列高的盐裂解病毒粒子,然后将RNA捕获在硅胶磁珠上(珠子,Merck KGaA)。
方案2:修改的Boom的从血浆分离RNA的方法,通过利用离液序列高的盐裂解病毒粒子,然后将RNA捕获在铁氧化物珠子上。
方案3:从全血分离RNA,通过将病毒粒子捕获在抗体包被的磁珠上(Viro-Adembeads,Ademtech,France),然后进行软裂解程序(在95℃下加热或用弱碱处理)。
对于每种方案来说,在滑动芯片上,人们可以将清洗步骤的数量减少至两次。
实例:为了获得在1280孔数字滑动芯片中利用的HIV RNA,利用含有完全裂解液、载体RNA和小型硅胶柱的Qiagen QiaAmpViral纯化试剂盒,从Acrometrix OptiQual HIV-1高阳性对照纯化了HIV-1(1.7x106个突变的HIV-1粒子/mL;18pgHIV RNA/mL,1OD260=37μg/mL)。
圆形滑动芯片平台的实施例可以适用于利用磁捕获珠子的RNA分离过程的所有步骤。
滑动芯片的某些实施例能够取样全血或血浆,并产生指示HIV病毒载量的可测量读出。
纳升级溶液可以在塑料滑动芯片中,在氟烃中储存超过6个月。人们可以将滑动芯片储存在泡罩包装中。人们可以利用例如Drierite类型的钴基干燥剂估算水通量,和/或在滑动芯片的区域之间产生干燥边界。
在滑动芯片的某些实施例中,样品可以预先储存在大孔中。因为在某些实施例中,样品被润滑油例如氟烃(FC)或石蜡油包围,因此蒸发被阻止。当通过入口施加压力时,样品经流体通路流入孔中,直到它到达封闭端。一旦样品自动停止,将样品孔滑动到试剂孔中以起始反应。当装载数百个具有不同容积的孔时,优选确保所有的孔被填充。封闭端填充便于做到这一点。封闭端上游的所有孔被完全填充,用户不必决定何时停止,因为当样品到达封闭端时载样自动停止。
堆叠式旋转滑动芯片实施例通过模块化提供了附加能力。不同的试剂类型例如湿的和干燥的试剂,可以储存在旋转装置的不同层上。此外,如果利用标准构造,通过 在系统中引入不同的旋转层,可以容易地混合并简单地匹配不同的检测系统。下面描述的RNA纯化循环也可用于其他测定类型。
填充方法包括但不限于压力驱动的孔填充、离心力和封闭端填充。
在某些实施例中,首先收集在较大孔中的样品优选被转移到第二步中进行处理。封闭端填充为转移样品既提供了驱动力也提供了停止机制。也就是说,这样的样品与受控压力源的连通将其从第一层驱动到第二层的所需通道或孔中,然后当它到达末端时自动停止而不泄漏。当它与第三层中的开口连通时,这一过程重新开始。压力源可以是简单到装有空气的注射器。这种方法不限于在旋转徐彤的一层内填充。通过控制压力,它能够通过孔洞填充不同的层。
滑动芯片的某些实施例为储存用于POC诊断的溶液和干燥试剂提供了平台。
实验显示,纳升级溶液可以在塑料滑动芯片中的氟烃中储存超过6个月。
通过加入外部干燥剂或在芯片中湿润区域与干燥区域之间添加干燥剂阱以最小化通过氟烃的串扰,可以降低水吸收。可选地,人们可以修改设计使试剂以干燥形式装载,并将装置构造成允许随后添加溶剂。
在放大测定法中利用的试剂和酶可以利用已知的冷冻干燥方法,任选在稳定剂的存在下(例如蛋白质:海藻糖:甘露糖醇比率为1:20:100)进行冷冻干燥。试剂可以例如干燥储存在矿物油或氟烃油下,储存在空气中或在真空下密封。
滑动芯片的可能结构:4个堆叠的层(从顶部开始编号为1至4),层1和2一起形成滑动芯片,层3和层4也是如此。层2在底部有孔,用于将样品转移到层3中。人们可以利用标准的贯通孔入口/出口位置,使得任何两个滑动芯片可以彼此结合在一起。
在某些实施例中,样品可以预先储存在芯片上的大孔中。用润滑油(例如FC或石蜡油)包围孔可以防止蒸发。当通过入口施加压力时,样品经流体通路流入孔中,直到它到达封闭端。一旦样品自动停止,可以将样品孔滑动到试剂孔中以开始反应。当装载例如数百个既有不同容积的孔时,优选确保所有孔被填充。封闭端填充可用于做到这一点。在这种设计中,所有孔被完全填充,并且用户不必决定何时停止,因为当样品到达封闭端时载样自动停止。
人们可以将微滴排列在滑动芯片的孔中,这可以通过手动或机器人进行。人们可以使用可选的自排列结构,其中使来自于化学电极或其他填塞物来源的微滴(例如使 用在US 7,129,091中所述的技术形成的微滴,所述专利在此以其全文引为参考)流动到芯片中,并通过已知的微滴捕集装置自动捕集。Wu,L.;Li,G.P.;Xu,W.;Bachman,M.,Appl.Phys.Lett.2006,89;Boukellal,H.;Selimovic,S.;Jia,Y.W.;Cristobal,G.;Fraden,S.,在微流体装置中简单、鲁棒地储存液滴和液体(Simple,robust storage ofdrops and fluids in a microfluidic device),Lab on a Chip,2009.9(2):p.331-338;以及Hong Shen,Qun Fang和Zhao-Lun Fang,基于连续注射系统、带有被捕集微滴的液-液萃取和化学发光检测的微流体芯片(A microfluidic chip based sequential injectionsystem with trapped droplet liquid–liquid extraction and chemiluminescencedetection),Lab Chip,2006,6,1387–1389,描述了用于微滴捕集的方法,其全都在此以其全文引为参考。作为WO2008097559A2出版的PCT/US2008/001544,以及US 7,556,776,也在此以其全文引为参考。滑动芯片的某些实施例可以与这些技术组合使用,例如通过使用这些技术产生离散的体积,然后将试剂在它们顶上滑动。
滑动芯片的可能应用包括但不限于:检测病毒性肺炎;使用ELISA检测心脏标志物,包括但不限于GPBB、肌红蛋白、CK-MB和肌钙蛋白T;测试食品,包括例如牛奶、酒、婴儿配方食品、大麦、豆类、干果、果汁、谷类、玉米、牛奶、乳制品、坚果、水稻、谷物、小麦、牛肉、肉类、海产食品、鸡、狗粮;测试食品中抗生素(例如氯霉素)、杀虫剂(包括例如有机磷酸酯杀虫剂(通过胆碱酯酶抑制来测定)、异狄氏剂、二氯双乙烷、胺甲萘、四氯二苯砜、二苯胺、艾氏剂、狄氏剂、六氯苯、氯丹、开蓬、DDT、DDE、TDE、三氯杀螨醇、二溴乙烷、七氯杀虫剂、林丹和/或灭蚁灵)、天然毒素(包括例如黄曲霉毒素、赭曲霉毒素和/或真菌毒素)、残留物和过敏原(包括例如杏仁、鸡蛋、麦醇溶蛋白、榛子、牛奶、芥末、海产食品、花生或大豆残留物)的存在;测试虾中的亚硫酸盐;测试沙门氏菌、李斯特菌和/或大肠埃希氏菌;测试脱氧雪腐镰刀菌醇(DON)、烟曲霉毒素、T-2/HT-2毒素、玉米赤霉烯酮、组胺、展青霉素;血液分型;使用PCR用于甲型流感病毒亚型分型(包括H1N1)、HAI筛查(包括MRSA和/或VRE)、测试囊性纤维变性、新生儿筛查、癌症预后、基因表达聚类、ADME/Tox药物R&D筛选、脓毒症检测、HBV/HCV/HIV献血者筛查、HCV定量、HIV亚型分型、HIV定量、HIV耐药性、HPV亚型分型、运转Ashkenazi候选组、染色体例如13、18、21号和X与Y染色体的产前筛查、禽流感毒株亚型分析、癌症诊断、癌症复发检测、器官移植分型、器官移植监测、高通量筛选;血液的传染 病分子测试;基因型/病毒载量测试;在感染的患者(HIV、HCV)中定量测定病毒载量;测试性传播疾病包括衣原体/淋病/HPV和耐药性;预测学(例如药物有效性);药物基因组学和治疗诊断学(药物/诊断配对);使用PCR测试例如衣原体和.或淋病、结核分枝杆菌、HCV定量、HIV耐药性测试、献血中的HBV、献血中的HCV/HIV、药物代谢酶类、因子II(凝血酶原)、因子V leiden、HPV基因分型、加德纳菌属(gardnerella)、阴道毛滴虫(trichonomonas vaginalis)和假丝酵母属物种(candida spp.)、嗜肺军团菌(legionella pneumophilia)、MRSA、金黄色葡萄球菌(Staphylococcus aureus)、B群链球菌(Group B Streptococci);使用免疫测定法测试A群链球菌(Group A Streptococci)、B群链球菌(Group B Streptococci)、西尼罗病毒(WNV)、细胞肥大病毒、囊性纤维变性筛查;B-细胞慢性淋巴细胞性白血病8号染色体详查(例如CML、AML、MPD、MDS)、HER-2状态、膀胱癌的初始诊断和复发监测、性别错配骨髓移植测试、监测HIV-1病毒中与耐药性相关的突变;用于传染病的实时测试和用于某些癌症类型包括宫颈癌、食道癌和黑素瘤的FISH测试;主动筛查以鉴定被MRSA定植的患者;用于遗传疾病包括乳腺和卵巢癌、遗传性黑素瘤的遗传测试;用于腺瘤性息肉综合征的测试;用于遗传性非息肉性结肠直肠癌(HNPCC)的测试;化学Q&A测试,包括测试活性成分的存在和/或数量和/或用于污染物的测试;测试杀虫剂;测试肥料;测试石油;工业发酵过程控制;测试水、水果、蔬菜、食品、制皂用油、牛奶、乳制品、饮料、鸡蛋;筛选和/或分析不合法的蛋白质或氨基酸、游离脂肪酸、乳酸、过氧化物、氨、氯化物、葡萄糖、苯酚、尿素;测试弯曲杆菌属细菌(campylobacter);分析海藻;测试屠宰场和农场;用于结肠直肠癌监测的血液测试;用于专业司机的皮肤贴片可卡因测试;肺炎筛查组测试(使用例如RT-PCR)以检测支原体肺炎、衣原体肺炎和军团菌肺炎;对新生儿进行例如常见的苯丙酮酸尿症、镰刀细胞贫血症和甲状腺机能减退症筛查;以及测试BNP/Pro、hs-CRP或高半胱氨酸。此外,在滑动芯片上的C-反应蛋白的现场测试可用于监测治疗期间和临床试验期间的疼痛。
可以利用例如本技术领域的专业人员已知的PCR和/或免疫测定法在滑动芯片的某些实施例中检测的生物体,包括但不限于:肺炎链球菌(Streptococcus pneumoniae),b型流感嗜血杆菌(Haemophilus influenzae type b),金黄色葡萄球菌(Staphylococcusaureus),大肠埃希式杆菌(Escherichia coli),铜绿假单胞菌(Pseudomonasaeruginosa), 肺炎衣原体(Chlamydophila pneumoniae),肺炎支原体(Mycoplasmapneumoniae),嗜肺军团菌(Legionella pneumophila),无乳链球菌(Streptococcusagalactiae),结核分枝杆菌(Mycobacterium tuberculosis),肺炎克雷伯氏菌(Klebsiella pneumoniae),卡他莫拉菌(Moraxella catarrhalis),鹦鹉热衣原体(Chlamydophila psittacci),草绿色链球菌(Streptococcus viridans),贝纳柯克斯体(Coxiella burnetii),新型隐球菌(Cryptococcus neoformans),肠杆菌属(Enterobacter),呼吸道合胞病毒(RSV)、流感病毒(甲型和乙型),人类副流感病毒,细胞肥大病毒(CMV),人类鼻病毒(HRV),冠状病毒(例如SARS),腺病毒,偏肺病毒,单纯性疱疹病毒,人类博卡病毒,贾兰第鞭毛虫(Giardia lamblia),微小隐孢子虫(Cryptosporidiumparvum),肠集聚型大肠埃希式杆菌(enteroaggregative Escherichia coli)(EAggEC),霍乱弧菌(Vibrio cholerae),1型痢疾志贺菌(Shigella dysenteriae type 1)(Sd1),肠产毒性大肠埃希式杆菌(enterotoxigenic E.coli)(ETEC),痢疾变形虫(Entamoebahistolytica),弯曲杆菌属(Campylobacter),沙门氏菌属(Salmonella),艰难梭菌(Clostridium difficile),轮状病毒,诺沃克病毒,腺病毒和星状病毒。
描述了利用滑动芯片的某些实施例,从样品例如体液分离或捕获靶、例如稀有细胞或带有目标细胞的珠子的装置和方法。这样的装置和方法对于被捕获的靶以及带有它们的样品的下游分析来说是优选的。例如,可以将稀有细胞、粒子如珠子或聚集物、或分子,从体液包括例如血液、唾液、呼出的水汽、泪液、CSF或尿液,或从其他样品包括土壤悬液、环境水样、组织匀浆液、气体、液体、固体或凝胶中分离出来。方法在分析具有低浓度被分析物的样品时是有益的,所述被分析物例如生物体、细胞器、分子、大分子、DNA、蛋白质和糖类、稀有核酸或蛋白、遗传或传染病的标志物和生物标志物、环境污染物、细胞或囊泡包括宿主细胞例如上皮细胞、循环肿瘤细胞、免疫系统的细胞、红细胞、血小板、外来体、微囊泡、非宿主细胞包括胎儿细胞和精子(参见例如USSN 10/823,503,在此引为参考)。另一个实例包括分析稀有细胞,例如循环癌细胞或用于产前诊断的母体血液中的胎儿细胞。通过捕获并进一步分析血液、痰液、骨髓吸出物和其他体液例如尿液和脑脊液中的微生物细胞,这种方法对于感染的快速早期诊断可能是有益的。珠子和细胞的分析可以从随机限制获益(参见例如PCT/US08/71374,在此引为参考)。
靶的分离或捕获对于广泛的各种系统的表征或分析来说是重要的。一个实例是分析体液中的稀有细胞,该实例对于多种应用来说是重要的,包括但不限于癌症(循环肿瘤细胞(CTCs),引流淋巴结中的侵入性肿瘤细胞)、免疫力(CD4计数,抗原特异性细胞等)、感染(微生物细胞)、产前诊断(母体血液中的胎儿细胞或具核红细胞)和中风(转录改变的外周血单核细胞(PBMCs))。“稀有细胞”可以是处于与丰富的其他类型细胞(例如基质细胞、淋巴细胞)的混合物中的一种类型的细胞(例如CTCs),或者可以是处于与相同类型的正常细胞(例如PBMCs)的混合物中的具有不常见表型或基因型的(例如转录上调的)细胞。
CTCs的分离或捕获对于癌症诊断和监测可能是重要的。肿瘤转移是癌症引起的死亡的主因,因为它们通常对常规疗法具有抗性(在转移肿瘤的癌细胞中存在更高的不均质性)。CTCs是从主体肿瘤上脱落并在血流中循环的细胞。当黏附于其他组织时,它们能够在被侵入的组织中通过在其自身周围产生微环境,起到作为其他肿瘤生长的种子的作用。在血液中观察到的CTCs浓度非常低(106到109个细胞中有一个细胞)。在不同癌症类型中,CTCs的量变化相当大,某些癌症在大多数病例中没有CTCs(卵巢癌),而其他癌症在几乎每个病例中都有CTCs(乳腺癌)。最近的研究聚焦于用于改进这种细胞的检测的方法,并已取得大量进展(参见下文中的当前方法部分)。然而,大多数这些方法只提供CTCs计数,而只有几种方法能够通过PCR或染色提供分析。在本发明中,描述了可用于捕获CTCs以用于广泛的各种下游分析和操作的方法和装置。
尽管CTCs能够提供来自血流的信息,但实体肿瘤样品或淋巴结活检样品的分析能够提供关于原发肿瘤的信息。但是,由于难以无风险或不给患者带来很大不便地接近位于内部的肿瘤,实体肿瘤活检样品通常仅限于来自细针吸取或细针活检的样品。这些样品可能提供少至200个细胞,包括肿瘤细胞与基质或淋巴(非肿瘤)细胞的混合物。需要从这些样品中捕获或分离肿瘤细胞,并且尽管靶细胞数量少但仍能提供多路分析。同样地,需要在手术中的时间框架(<40分钟)内进行快速捕获和分析以确定样品例如前哨淋巴结活检样品是否是转移性的,从而在阳性病例中减少对二次手术的需要。本发明提供了尽管存在大量基质或淋巴细胞,但仍能从这些样品中捕获和分离肿瘤细胞,并能进行快速分析和操作的方法和装置,所述分析和操作例如用于诸如kRAS2中的突变(常见于实体肿瘤)的PCR,或用于特定mRNAs包括乳腺癌中的MUC1的RT-PCR。
捕获和分离的另一个重要应用是免疫系统的分析。人类血流每mL含有几百万个细胞,包括T-和B-淋巴细胞、单核细胞、树突状细胞、中性粒细胞和红细胞,此外还有每mL>108个血小板。对于病症例如癌症以及自体免疫疾病、过敏症和感染来说,特异性针对特定抗原(分别为肿瘤抗原、自体抗原、过敏原或来自病原体的抗原)的T-细胞的频率通常能够预测疾病的发展。然而,这些细胞相当稀少,出现频率为0.002%至0.2%,或1,000至100,000个细胞中2个。当前的分析方法集中于计数(流式细胞术、ELISPOT),几乎不提供进一步分析。本发明提供的装置和方法能够捕获并分离这样的细胞(例如通过用MHC-抗原复合物进行亲和捕获,通过对抗原刺激的细胞因子分泌进行筛选等),并提供下游分析,包括但不限于PCR、其他刺激物响应测定和培养。这样的方法能够为肿瘤、自体免疫疾病和其他病症的分子机制提供见解。例如,它可用于确定特异性针对自体抗原的T-细胞是否也对细胞因子的刺激敏感,从而加重自体免疫应答。滑动芯片可用于进行用于可以使用ELISPOT技术的所有应用的测定法。滑动芯片上的随机限制将提供更快速和灵敏的测定法。
一些当前方法提供了靶的捕获,但是只提供很少或不提供下游分析或处理。当前的捕获方法包括按照大小或形态进行过滤,亲和捕获例如使用抗体包被的磁珠或棒(例如Cell Search、MagSweeper或RoboSCell技术),微流体柱(例如CTC芯片或外来体捕获)或微流体通道壁,功能性捕获,通过独特的行为包括胶原蛋白粘附基质的转移性侵入,通过移除所有其他靶的负选择,通过磁、光、其他性质(例如通过双向电泳场流分级或光声学)进行捕获,以及目测筛选所有靶并收集目标靶,包括通过流式细胞术、光纤阵列或激光扫描(激光激活的分析和处理,LEAPTM,由Cytellect制造)。
与上面列出的方法相反,滑动芯片的某些实施例能够进行大量上游或下游应用,包括将上游样品制备与捕获相组合,以及下游多或单细胞分析和操作。可以进行的分析类型的实例包括但不限于PCR和其他基于核酸的测试、免疫测定法、染色包括免疫染色、组织染色,以及质谱。可以在分离后执行的程序包括但不限于培养,包括单细胞培养、纯培养(一种细胞类型)、混合共培养或空间组织化共培养,刺激物响应测定,包括但不限于抗原、病原体或细胞因子激惹,受体结合和趋化性测定。
靶可以根据尺寸或形态进行选择,例如通过过滤。例如,可以通过例如吸取或流动过程使样品通过过滤装置。过滤装置例如筛或多孔膜,将比过滤孔更大的靶保留在 捕获区域中。它们可用于分离较大的靶,或用于从较小的目标靶中移除物质。然后可以将被捕获的靶滑动到分析区域中进行进一步操作。用于检测目标靶的试剂可以在各种阶段时引入,包括在过滤前与样品混合,或如下文所示预装在装置上。可以将滤器(例如具有亚微米大小孔径的滤器)置于通道中,在通道中可以使样品流过滤器,然后可以将优选体积小于原始样品的清洗液以相反方向流入,以重悬浮被滤器收集的物质。
通过流体动力学进行的捕获可用于例如含有与样品的其他组分具有不同流体动力学性质的靶的样品。例如,可以使用纳米柱阵列将物体按照其流体动力学和扩散性质进行分离。物体在边界附近移动的流体动力学差异也已确立。已经描述了一种撇除方法,其中小细胞能够进入狭窄的侧通道,而大细胞不能(也可用于从细胞分离血浆)。还描述了将细胞包胶在微滴中,然后进行流体动力学分拣以排除空微滴并收集所需大小的细胞。靶可以利用密度变化进行分拣。例如,可以将物质包胶在具有检测试剂的微滴中,使得微滴中的靶产生能够使微滴密度降低并导致微滴漂浮到滑动芯片上部部分中的分子。在滑动芯片上可以利用任一种这些方法,然后可以将被捕获的靶滑动到另一个区域中进行分析和操作。
当靶本身固有地具有不同的电、光、磁性质,或者当那些性质可以被诱导时,可以使用通过电、光、磁和其他性质进行的捕获。例如,磁性粒子与微生物的选择性结合改变了生物体的磁性质,并可用于使用磁场将那些生物体与样品的其他部分分离开。
目标靶可以通过它们对捕获试剂的亲和性来捕获,所述捕获试剂对于目标靶来说可以是特异性或非特异性的。在某些实施例中,样品的主体没有被装置捕获,而所需的靶例如微生物、细胞或分子可以被倾向性结合并富集。
捕获试剂(或捕获元件)可以包括亲和试剂,包括抗体、适体、非特异性捕获试剂包括例如微滴或细胞能够与其黏附的亲水贴片,以及本文描述的其他试剂。可以在同一块板上形成几种捕获元件。例如,一行可以形成有针对细菌的捕获试剂,另一行可以形成有针对真菌的捕获试剂。在板组装后,针对细菌和真菌的检测试剂可以被加入到相应区域中,检测来自同一样品的细菌和真菌。
可以通过独有性质捕获目标靶。例如,可以将细胞装载在包被有诸如胶原蛋白黏附基质的物质的滑动芯片的孔中。转移性细胞将迁移到凝胶中,而其他细胞不会。可 以洗掉其他细胞并溶解凝胶以留下分离在孔中的转移性细胞,其可以被滑动到另一个区域中进行分析。
滑动芯片也能将物质(细胞、珠子等)横跨芯片的不同区域进行排列,然后向所有这些区域施加检测试剂,以便鉴定所需靶的位置。然后可以通过滑动到其他区域对它们进行分离,用于进一步分析和操作。例如,可以将样品中的所有细胞装载在孔中,然后用标记的亲和试剂(例如用于目标标志物例如CD4或EpCAM的荧光标记的抗体)进行鉴定。然后可以将含有被标记细胞的孔滑动到分析区域中,通过例如PCR、细胞培养和/或免疫测定法进行进一步分析或操作。
人们可以在滑动芯片外进行与载体的结合,然后将载体捕获在滑动芯片上。载体可以是例如磁性粒子、包被有DNA、抗体和/或其他定向分子的粒子。在某些实施例中,目标靶与载体结合,并通过捕获区域将载体捕获在滑动芯片上。结合通过包括但不限于利用亲和、电、光、磁或其他性质的方法来实现。载体的捕获可以通过例如上述用于靶的捕获的方法来实现。例如,样品溶液中的稀有细胞可以与包被有抗体的磁珠结合,然后将磁珠捕获在滑动芯片的与磁体相邻的孔中。
捕获可以在封闭装置(两块以上的板在一起)或开放装置(单独暴露于样品的一块或多块板)中进行。对于封闭装置来说,样品可以通过几种方式来装载,包括通过开孔、通过诱导的液流或通过吸入到通道中。对于开放装置来说,滑动芯片的一块板可以起到滤器或捕获表面的作用。开放装置的优点在于可以快速处理大体积样品并快速捕获稀有靶。这对于诸如CTCs这种可能以低至每mL血液0.5-50个细胞的比率存在的靶是有用的。此外,开放装置可用于分析否则可能难以装载的样品,例如在咳嗽期间产生的细菌或病毒的气溶胶,或用于分析组织载片上的样品,对其来说保持细胞之间的空间关系的痕迹是优选的,正如对于例如肿瘤活检组织所做的那样。此外,对于通过得益于直接接近的方法(例如质谱)进行的分析来说,打开芯片是有利的。在开放滑动芯片上收集样品的示例性方法包括将滑动芯片的至少一块板暴露于样品,允许至少一种靶转移到板上(例如通过亲和捕获或过滤捕获),任选地从环境中取出滑动芯片,将滑动芯片的第二块板与第一块板进行接触,以及滑动板以使每块板上的至少一个区域彼此接触,以引起与靶的反应/相互作用,用于分析或操作。
捕获可以与其他技术组合在一起,包括随机限制、检测信号的多步放大和可视读出。例如,靶、例如来自样品的细胞,可以被随机限制在独立的小体积中,这加速了 检测和/或使其更灵敏。应用包括将来自血样的免疫细胞随机限制在例如纳升级体积中,随后通过滑动装置来进行用于CD4的免疫测定,以便鉴定CD4+细胞。这提供了CD4计数。然后可以分离鉴定到的CD4阳性细胞,并将其滑动到另一个区域中用于进一步分析,例如PCR。
捕获方法可以与下游分析和操作组合在一起,包括例如刺激物响应测定和定向爬行测定。刺激响应测定法可用于其表型在静息条件下不明显的细胞进行检测和表征,例如用于液体肿瘤的检测。被捕获的细胞可以用例如细胞因子进行刺激,并通过一组平行的分析和操作测定它们的响应,所述分析和操作包括用于被分泌信号包括细胞因子和蛋白酶的ELISA、用于磷酸化状态的染色以确定信号传导途径、PCR、RT-PCR和培养。定向爬行测定法可用于区别具有不同表型的细胞。例如,转移性细胞在被机械限制时快速并定向爬行;可以将被捕获的CTCs滑动到通道例如长的直导管中,以便评估这种行为。
同样地,可以建立起趋化物梯度,例如通过用趋化试剂装载滑动芯片的某些实施例的一个孔并将其滑动以使其与另一个孔或导管连通,通过扩散建立梯度(正如在FID装置和桥接装置中那样)。也可以使用流动来建立梯度。这些梯度可用于分析被捕获细胞的趋化性,其与炎症、肿瘤逆行和转移、自体免疫疾病和感染相关。
可以随时间监测进行或未进行处理或刺激的单独分离的被捕获靶,提供在批量培养中不能获得的时间解析的单个靶信息。例如,可以监测单个细胞的增殖、报告基因的表达(例如通过荧光监测)和/或信号的分泌。
可以对含有被捕获细胞的孔进行操作,以分析细胞的行为。例如,可以分析孔的细胞外基质的沉积。芯片表面可以通过微米或纳米尺度的拓扑学进行改变,或进行诸如化学表面处理的修饰,以改变细胞外基质形成的动力学和产物。在另一个实例中,可以施加刺激物包括但不限于化学或细胞刺激,以诱导诸如增殖或分化的行为;这在许多细胞类型包括淋巴细胞、单核细胞和干细胞的研究中是有用的。可以将不同类型的被捕获细胞带到一起进行混合或空间限定的共培养,以便分析细胞-细胞相互作用。在一个实例中,可以将抗原呈递细胞与T-细胞一起培养,以便分析T-细胞对抗原识别做出响应的动力学。在另一个实例中,可以将抗原活化的记忆性T-细胞培养在孔中,所述孔与另一个孔通过细得使细胞不能通过的导管流体连通。其他细胞例如未接触过抗原的T-细胞或B-细胞或上皮细胞,可以培养在其他孔中,以便分析可溶性信号例 如细胞因子的效应。
亲水性桥可以使用在滑动芯片的某些实施例中,以允许通过相通的孔的细胞-细胞相互作用。描述了筛选抗生素耐药性的实验。这里描述的装置和方法可用于例如筛选抗生素耐药性、不使细胞进行物理接触而研究细胞-细胞通讯、建立空间限制的微生物群落、理解微生态系统的多样性和进化,以及根据大小、运动型和/或趋化性提取或分离病毒、细菌和/或细胞。
实验部分
化学品和材料
除非另有陈述,否则所有购自商业来源的溶剂和盐以其收到时的原样使用。FC-40(全氟代三正丁基胺与全氟代二正丁基甲基胺的混合物)从3M(St.Paul,MN)获得。食品级染料购自Ateco(Glen Cove,NY)。十三氟-1,1,2,2-四氢辛基-1-散氯甲硅烷购自UnitedChemical Technologies,Inc.(Bristol,PA)。Alexa488染料(Alexa-488)购自Invitrogen(Eugene,OR)。具有铬和抗光蚀剂涂层的钠钙玻璃板购自Telic Company(Valencia,CA)。无定形金刚石涂层的钻头从Harvey Tool获得(切削面直径0.035英寸,Rowley,MA)。荧光参比载片购自Microscopy/Microscopy Education(McKinney,TX)。长尾夹(容量为5/32’英寸,大小为1/2’英寸)购自Officemax(Itasca,IL)。移液器从EppendorfInc.(Westbury,NY)获得。Fisher品牌移液器头购自Fisher Scientific(Hanover Park,IL)。
芯片设计和制造。滑动芯片利用本申请中别处描述的滑动芯片的玻璃蚀刻制造方法来制造,其中进行了下列修改。约25分钟的蚀刻产生了约30μm的深度。在蚀刻后,从板上除去胶带。然后将板用Millipore水充分漂洗,并用氮气干燥。通过将仅含亲水桥部分的黑色图案的光掩模与底板对齐,然后继续别处描述的玻璃蚀刻制造过程,产生亲水的桥表面。利用直径0.035英寸的金刚石钻头钻出进入孔。将蚀刻后的玻璃板的表面用Millipore水清洁,然后同乙醇清洁,并在硅烷化前进行氧等离子体处理。因为亲水桥图案的玻璃表面没有被硅烷化,它在除去亲水桥图案上的铬层后保持亲水。然后将板用Millipore水合乙醇漂洗,并用氮气充分干燥。
组装滑动芯片。滑动芯片在FC-40与0.4mg/ml RfOEG的混合物下组装。将FC-40与0.4mg/ml RfOEG的50μl混合物铺展在皮氏培养皿中的底板上,使图案面朝上。然后将顶板置于底板顶上,使图案面向下。通过将两块板相对于彼此移动将它们位置 对齐,然后使用两个微型长尾夹将其固定。在将表面上过量的FC-40除去后,滑动芯片可随需随用。
食品染料实验。所有用于食品染料实验的溶液在使用前用0.45μm PVDF针筒式滤器过滤。将两种食品染料(蓝色和黄色,Ateco,Glen Cove,NY)用移液器装载在20个试剂通道中。为了装载每个通道,使用移液器将10μL染料经入口压入,直到染料溶液从空气供应通道冒出。在装载试剂后,将芯片进行滑动以使两种试剂的孔在亲水部分上方对齐。通过左右轻微滑动孔,使亲水桥完全润湿。然后两个孔被留在亲水表面上的试剂所产生的润湿层连通。
利用荧光染料的扩散试验。载样程序与用于食品染料实验的程序相似。将Alexa488(44μM)和MPTS(400μM)溶解在10mM TRIS缓冲液中。将Alexa488溶液和MPTS溶液装载在装置中。装置的一半中的10个入口装载有Alexa488,每个通路含有10个孔。装置另一半上的10个入口装载有MPTS。在将含有荧光染料的孔与亲水桥连通后,使用带有10×0.4NALeica目镜和Hamamatsu ORCAER照相机的Leica DMI6000荧光显微镜在暗处对扩散过程成像3小时。使用GFP和DAPI滤光片收集Alexa 488和MPTS的荧光。对于Alexa488和MPTS两者来说都使用30ms的曝光时间。
测量荧光。利用6.3r1型Metamorph成像系统(Universal Imaging)获取和分析图像。为了提取荧光信号的强度,在每个目标孔的中间选取100像素乘以100像素的区域。为了校准显微镜,记录用于GFP和DAPI的荧光参比载片的荧光强度,并将其用于背景校正。
数据分析。为了校准强度测量值,首先从所有荧光图像中减去背景强度。然后从位于每个孔中央的100像素乘以100像素区域的积分强度中提取出每个孔的强度。
利用大肠埃希式杆菌的抗生素筛选实验。带有质粒pDsRed的大肠埃希式杆菌由Benjamin S.Glick教授(芝加哥大学)提供。细胞储用物保存在-80℃下。在每次实验前,将储用物在含有100μg/ml氨苄青霉素的LB琼脂平板上划线(Difco LB营养肉汤,Miller,含2%(wt/vol)Alfa Aesar琼脂粉)。将平板在30℃温育过夜。将菌落接种在含有3mL LB和氨苄青霉素(100μg/ml)的培养管中,斌在30℃、160rpm下传代培养过夜。装载到装置中的细菌培养物是从过夜培养物重新接种并培养至对数期的培养物。通过亲水桥装置的一半入口装载2.5×107个细胞/ml的细菌细胞密度。 将不同浓度的氯霉素和卡那霉素(每种抗生素为0.01μg/ml、0.1μg/ml、1μg/ml、10μg/ml和100μg/ml)装载到装置的另一半中。将空气供应通道吸干以允许将空气运输给大肠杆菌生长。在使用亲水桥将含有细菌和抗生素的孔连通后,使用带有10×0.4NA Leica目镜和Hamamatsu ORCAER照相机的Leica DMI6000荧光显微镜在暗处对大肠杆菌的生长成像16小时。使用德克萨斯红滤光片收集DsRed荧光。使用40ms的曝光时间。使用Metamorph成像系统6.3r1版(Universal Imaging)获取并分析图像。为了对细菌生长进行比较和定量,对于每对孔计算了阈值区域百分率。这通过使用设定阈值来选择图像中的特点并计算“红色”像素数来进行。阈值区域百分数表示在测量区域的全部像素数中红色像素数的百分数。这里,对于每个图像来说,整个测量区域是相同的。
结果
制备了同时进行10个独立相互作用实验的滑动芯片。每个实验含有9个平行试验。在一个试验中,两个孔(每个1.5nL)由大小为300μm x40μm的亚微米厚的亲水桥分隔开。含有成对孔的顶板与含有微通道和亲水正方形图案的底板对齐。具有成对孔的两行分别装载有含有细胞A的蓝色溶液和含有细胞B的黄色溶液。在装载后,将顶板的孔相对于底板滑动以将连续液流打断成区室,并产生通过亲水桥连通的成对孔,以开始扩散。小分子通过亚微米厚的亲水桥扩散。在平衡时,两个孔都是绿色的。细胞A和细胞B不能跨过亲水桥,但是它们分泌的化学物质能够通过亲水桥交换。
利用食品染料对亲水桥装置进行测试。将蓝色和黄色染料分别装载在20个装载通道中。在滑动后,两个孔通过亲水桥连通。两种食品染料通过相通的亲水桥在两个孔之间的双向扩散,由两列孔中均匀的绿色所证实。
在另一个实验中,一组孔最初装载有MPTS,它们与填充有Alexa488(绿色)的孔成对。两种染料通过相通的桥的亲水表面向彼此扩散。重叠的亮视野和荧光图像显示了荧光染料从一组孔向另一组孔的扩散。对于Alexa488来说,在~55分钟后实现完全混合,对于MPTS来说花费~45分钟。
在亲水桥装置中进行了抗生素筛选。亮视野和荧光图像显示出大肠杆菌在亲水桥一侧上的孔中生长。将氯霉素(CLR)和卡那霉素(Kana)装载在另一层上的孔中。每种抗生素的浓度是0.01μg/ml、0.1μg/ml、1μg/ml、10μg/ml和100μg/ml。将大肠杆菌细胞(密度为2.5×107个细胞/ml)装载在成对列中的第一组孔中。从大肠杆菌首 先暴露于不同抗生素浓度时开始16小时后,分析数据。对于每对孔,选择生长的大肠杆菌DsRed的阈值区域并计算阈值区域百分数。阈值区域百分数间接代表了在不同抗生素浓度下的生长差异。
在某些实施例中,滑动芯片的制造和操作不需要润滑液。滑动芯片可以不需分配在板之间的润滑液来操作。对于这样的“干式”操作来说,优选情况下反应流体在装置表面上具有高的接触角(例如大于130°的角)。这种高接触角可以通过多种方法及其组合来获得,包括利用纳米孔和微米孔聚合物、嵌段共聚物的相分离、表面涂层、表面粗糙度和大量用于水性溶液的其他方法,其被称为用于产生疏水和超疏水表面的方法。多孔聚合物可用于产生超疏水表面,例如在Levkin PA,Svec F,Frechet JMJ,Advanced FunctionalMaterials,200919(12):1993-1998中所述。描述了不使用润滑液操作的滑动芯片的实例。
滑动芯片用玻璃模具通过热模压印从塑料制成。制造玻璃模具——玻璃模具通过玻璃蚀刻制备。将具有铬和抗光蚀剂涂层的玻璃板(3mm厚)(Telic Company,Valencia,CA)用含有滑动芯片结构的光掩模覆盖(将图案遮盖在透明背景上),并暴露于UV光1分钟。曝光后,立即通过将玻璃板在0.1mol/L NaOH溶液中浸泡2分钟来进行显影。只有抗光蚀剂暴露于UV光的区域溶解在溶液中。利用铬蚀刻剂(0.6:0.365mol/L的HClO4/(NH4)2Ce(NO3)6溶液)除去暴露的下层铬层。结果,结构中的图案仍然被铬和抗光蚀剂涂层覆盖。将板用Millipore水充分漂洗并用氮气干燥,并将玻璃板的背面用PVC密封胶条(McMaster-Carr)粘贴,以保护玻璃的背面。然后将胶粘的玻璃板小心地浸泡在含有玻璃蚀刻溶液(1:0.5:0.75mol/L的HF/NH4F/HNO3)的塑料容器中,以蚀刻板的裸露的玻璃表面(板上抗光蚀剂和铬涂层都被除去的区域)。使用40℃恒温水浴摇床控制蚀刻速度。通过控制蚀刻时间(~55min),蚀刻深度为60μm。然后通过乙醇和铬蚀刻剂相继移除覆盖图案的抗光蚀剂和铬涂层。结果,未被蚀刻的图案作为60μm高的柱站立。然后将具有正图案的玻璃板用另一层铬涂布。通过使用在193nm处操作的Resonetics RapidX 250受激准分子激光器烧蚀铬层形成孔的阵列(5μm乘以5μm)。调整流量以单一脉冲烧蚀出150nm的Cr层,而不影响玻璃。随后使用Cr作为蚀刻掩膜用HF蚀刻玻璃。得到的孔变成热模压印塑料片中的柱,其明显增加了接触角。制造塑料滑动芯片-使用玻璃模具将芯片图案压印在1/16”氟代乙烯丙烯(FEP,McMaster-Carr)中。芯片在260℃、 400lbs/in2下在Carver 3889热压机中压印20分钟。在移除压力之前,将芯片快速冷却至室温。
在某些实施例中,塑料滑动芯片的操作可以不需润滑液进行。采用封闭端填充方法用水性溶液装载干燥的FEP滑动芯片。在不存在任何润滑液的情况下组装FEP滑动芯片后,将滑动芯片夹在两个玻璃载片之间。顶部玻璃载片具有与滑动芯片的入口对齐的进入孔。将“夹心物”用纸夹固定。溶液全都通过直接移取1μL体积到入口中来装载。将移液器头通过顶部玻璃载片中的进入口压紧在入口上。当溶液到达封闭端时,载样过程自动停止。使用0.1M Fe(NO3)3作为试剂,0.3M KSCN用作样品。在装载后,将滑动芯片的顶板相对于底板滑动并将溶液合并,同时在整个过程中芯片保持夹心在两块玻璃板之间。Fe(NO3)3溶液与KSCN溶液之间的反应产生各种络合物包括Fe(SCN)3的红色溶液。在滑动后没有发现交叉污染或液体残留物留下的迹象,并且在导管中没有红色络合物形成。
在干式FEP装置中的简单化学反应的一个实例中,在不存在润滑液的情况下将滑动芯片的两块板对齐以形成用于试剂和样品的流体通路。通过移液将试剂和样品溶液装载在滑动芯片中。将滑动芯片进行滑动以合并试剂与样品。通过观察从透明至红色的颜色变化来监测反应进程。
在某些实施例中,可以在滑动芯片上进行多体积随机限制,用于通过PCR和其他技术进行数字检测。本发明人开发滑动芯片上的多体积随机限制方法,用于在大的动态范围内使用数字检测来定量靶物质或分子。检测可以通过各种方法来实现,包括PCR、细胞培养、酶和等温扩增方法。随机限制的原理展示在专利申请PCT/US/2008/071374“随机限制以检测、操作和利用分子和生物体”(Stochastic Confinement to Detect,Manipulate,andUtilize Molecules and Organisms)。多体积随机限制的潜在应用包括但不限于诊断、监测或检测疾病生物标志物,测试环境或食品样品,以及分离、表征和分析培养物或其他生物样品。
数字PCR通常使用同样体积的微孔或乳液,因此需要非常高的区室数量(几千至几百万)以获得高精确度和大动态范围。滑动芯片可以构造成在多种容积的孔中进行数字测量。这种方法与单一体积方法相比的一些优点包括使用较少的孔获得大动态范围,以及通过不同尺寸的孔的重叠范围实现精确度的提高。具有多种反应体积的孔的阵列可以设计在单一芯片上,以获得整个所需的检测范围。方法与连续稀释方法类 似,并可以使用相同的数学计算进行统计学分析。代替多体积方法,滑动芯片可用于进行连续稀释然后进行分析。多体积方法已被用于微生物学例如IDEXX 中,用于微生物的检测和计数。这些以及其他应用也可以在滑动芯片上进行。多体积方法可应用于滑动芯片上的数字PCR。包括三种可能的操作方式:(1)将与PCR试剂预混的样品注入芯片中,然后通过滑动进行区室化以进行数字PCR。(2)任选以多路格式分别预装或用户装载试剂例如引物,然后通过滑动与样品进行混合以起始反应。(3)上述的组合。
除了标准的PCR技术之外,滑动芯片还与等温扩增技术相容,例如环介导的扩增(LAMP)、重组酶聚合酶扩增(RPA)、基于核酸序列的扩增(NASBA)、转录介导的扩增(TMA)、解旋酶依赖性扩增(HDA)、滚环扩增(RCA)和链置换扩增(SDA)。多体积滑动芯片可用于数字化这样的平台。多体积滑动芯片可应用于与随机限制(专利申请PCT/US/2008/071374,随机限制以检测、操作和利用分子和生物体(Stochastic Confinement to Detect,Manipulate,and Utilize Molecules and Organisms))相容的其他系统,包括细胞的分析或检测。
多体积滑动芯片的一个应用实例是测量HIV病毒载量。对于现场HIV病毒载量测量来说,一个理想的目标是500至1,000,000个HIV粒子/mL血浆的动态范围,并具有在整个范围内区别至少3倍浓度变化的能力。本发明人演示了满足这个目标的系统的实例。该实例由128个容积为50nL的孔、128个容积为10nL的孔、256个容积为2nL的孔和512个容积为0.4nL的孔构成。容积较小的孔的较大数量可用于增加分辨率,或者可选地可以与内部标准一起使用,以校准系统。考虑到每个HIV病毒粒子两个RNA拷贝,这种结构具有200HIV个粒子/mL的检测下限,以及可以实现3倍分辨率的600-3,500,000个HIV粒子/mL的动态范围,并且在许多范围内将极大地超过这种分辨率。该计算需要对样品制备过程中样品损失和浓缩的影响进行调整,并且这可以例如利用具有不同颜色的探针或利用预装在特定孔中的不同引物在同一装置上检测的内部标准品来进行。
这种结构可应用于现场护理测试。可选地,可能需要在40-10,000,000个粒子/mL范围内的测量。可以对装置进行设计以达到该范围。这种装置的一个实例使用用于检测下限的75μL的总样品体积,并且最小的孔容积在0.25nL量级上。能够预先浓缩样品将允许使用更小的体积。
用于数字测量的多体积滑动芯片方法也可应用于其中感染载量、例如乙肝病毒载量的信息对其有用的其他疾病。
与上述类似的方案可用于其他应用,例如诊断肺炎的病因。因为肺炎可以由许多不同物种引起,因此准确诊断要求高度多路的测试以检测大部分潜在病原体。它也需要定量以区别较低水平(对应于上呼吸道的正常细菌定植)与较高水平(对应于下呼吸道的细菌感染)。通过将设计分成16个相等区段,可以在约1000倍的浓度范围内检测16种不同细菌和病毒物种。用于肺炎检测的可选设计将允许对可能的病毒物种具有低检测限度,并具有足够大的动态范围用于检测可能的细菌病因并区分定植与感染。设计将包括用于病毒检测的8组12x200nL的孔和12x50nL的孔。这些组将具有约1000个粒子/mL至约30,000个粒子/mL的检测范围。它还将包括用于细菌检测和更精确定量的8组24x25nL的孔和24x2.5nL的孔。这些组具有约4000个细菌/mL直到约800,000个细菌/mL的检测范围,在大部分该范围内具有3倍分辨率。检测范围和设计可以根据需要进行调整以满足试验的要求,包括改变孔的尺寸或数量或预先浓缩待测试样品。正如在现有的数字PCR文献中已经证实的,这种方法可用于实时PCR已经应用的任何应用中。这种方法可以在单一装置上将数字分析与多路复用相组合,例如通过添加多种样品(例如血液、尿液或痰液)或对同一样品运行多个测试,或两者的组合。
为了构造装置并分析结果,可以使用几种方法或其组合。装置的结构既取决于所需的检测范围,也取决于可以在范围内获得的分辨率。一种方法使用基于泊松或二项式分布的统计方法来计算采用“最大或然数(MPN)”形式的浓度,正如下列方程中显示的:
&Sigma; s i v i = &Sigma; ( ( n i - s i ) * v i * e ( - v i d ) ) 1 - e ( - v i d )
其中ni是第i次稀释时孔的总数/孔的大小,si是在该水平下无菌/空/未反应的孔的数量,vi是该水平下原始样品溶液的分数(因此稀释10倍或孔容积减小10倍给出0.1的vi值),d是原始浓度,因此方程需要解出d。
检测下限取决于包含在所有孔中的总样品体积。检测上限由最小体积处的样品体积和孔的数量设定。可以使用几种方法或其组合为给定结果建立置信区间(CIs)并确定系统的分辨率。基于方程的近似法是有用的,因为CI值可以快速获得,但它们仅仅是平均近似值,因此对于给定结果来说可能不准确。它们可用于指导系统/装置 的设计,以确保可以合理地预期所需的性能。另一组常用方法被称为“精密”方法,因为它们利用了所有可能结果的概率。这些方法主要基于现有的应用于单一稀释/体积系统的工作,其通常被称为以其创造者命名的Clopper-Pearson(CP)和Sterne方法。CIs可用于确定给定系统的分辨率,并且由于这取决于孔的数量和稀释因数,因此所需分辨率也决定了孔的尺寸和数量。下面的不等式被用于确定分辨率的因数/倍数:
d1+d1的95%CI≤d2-d2的95%CI
当两侧相等时,d1/d2=X,其是分辨率的因数/倍数,并且在全部描述的实例中典型地被设定为至多3倍。
几种滑动芯片结构可用于执行多体积随机限制,包括旋转滑动芯片装置、堆叠式多层滑动芯片装置和需要在一个或两个方向上滑动的装置。不同容积的孔可以制造在同一层中,或通过组合多层中的孔和贯通孔来制造。此外,不同容积的孔可以通过产生深度相同但横向尺寸不同的孔、或通过改变孔的深度来制造。保持容积恒定但增加孔的深度降低了它们的横向尺寸,并可用于增加孔的密度。对于需要热膨胀的应用来说,装置可以被任选设计成使得孔与含有润滑液或其他流体的储液器相接触,正如在最近的论文中所描述的。
在一个实例中,装置包括128个容积为50nL的孔、128个容积为10nL的孔、256个容积为2nL的孔和512个容积为0.4nL的孔。容积较小的孔的较大数量可用于增加分辨率,或者可选地可以与内部标准一起使用,以校准系统。当考虑含有纯化的HIV RNA的溶液,使用核酸扩增技术进行检测并且考虑到每个HIV病毒粒子具有两个RNA拷贝时,这种设计具有200HIV个粒子/mL的检测下限,并且可以获得3倍分辨率的动态范围为600-3,500,000个HIV粒子/mL。在大多数范围内,这种设计将极大超过该分辨率。该计算需要对样品制备过程中样品损失和浓缩的影响进行调整,并且这可以例如使用具有不同颜色的探针或使用预装在特定孔中的不同引物在同一装置上检测内部标准品来进行。对于PCR应用来说,该设计任选包括含有油的较小的孔,其与含有水性溶液的较大的孔进行接触。当较小的孔与较大的孔相接触时,水性溶液自发地在区室中形成被油包围的微滴,为热循环期间的热膨胀提供空间。孔和导管可以分别造型在顶板和底板上。孔可以通过在本申请中别处描述的技术来制造。在一些设计中,孔最初于导管重叠以产生能够进行填充的连续流体通路。填充可 以使用移液或其他机械或化学驱动的压力来实现。封闭端填充或贯通孔作为出口可用于均匀地填充整个芯片。通过例如装置的旋转运动,可以将滑动芯片滑动成离散的反应容积,并且可以同时产生具有不同容积的区室。
在由玻璃制成的多体积装置的一个实例中,装置每列含有15个孔,总共具有135个孔;其容积如下:0.25nL,0.72nL,1.95nL,5.24nL,14.1nL,38.1nL,103nL,278nL和511nL。这提供了约200个粒子/mL的检测极限以及至少3倍分辨率下约800-2,400,000个粒子/mL的动态范围。用于制造这种滑动芯片的过程是基于在以前工作中描述的过程序。概括来说,使用光蚀刻对结构进行造型,然后使用玻璃蚀刻溶液(1:0.5:0.75mol/L HF/NH4F/HNO3)进行蚀刻。通过二氯二甲基硅烷对装置进行硅烷化以提供疏水表面。将橙色食品染料溶液注入装置中,在滑动后产生不同容积的孔。
在另一种结构中,装置具有88个大孔、272个中孔和216个小孔。这种结构可用于HIV病毒载量的定量。考虑到每个HIV粒子两个RNA拷贝并且孔容积分别为50、5和0.5nL,这种结构提供了约250个HIV粒子/mL的检测极限以及至少3倍分辨率下约800-3,300,000个HIV粒子/mL的动态范围,在许多范围内具有更好的分辨率。由于检测范围的重叠,各个孔尺寸的整个范围具有较高精确度。
描述了用于执行数字测量的圆形滑动芯片的两个实例。在第一个实例中,构造成用于测量HIV病毒载量的滑动芯片包含88个每个为50nL的孔(动态范围为950-2.5×104个粒子/mL)、272个各为5nL的孔(动态范围位3.0×103-3.5×105/mL)以及216个每个为0.5nL的孔(动态范围位3.8×104-3.3×106/mL),以给出800-3,300,000个粒子/mL的总动态范围(在4倍浓缩后),具有至少3倍的分辨率。在第二个实例中,滑动芯片构造成用于确定和定量肺炎病原体并区分细菌定植与感染,其包含16个区:8个区包含6×400nL的孔和26×50nL的孔,检测范围约为800-4×105个粒子/mL,用于病毒检测和非定植化细菌检测,另外8个区包含5x400nL的孔、8×50nL的孔和27×5nL的孔,检测范围约为103-4×106个粒子/mL,用于细菌检测。它至少在范围的中间部分能够获得3倍分辨率以区别感染与移殖。
对于多路检测来说,装置可以分隔成多个区。可以利用用于不同样品的不同入口来填充每个区。此外,不同引物和化学物质可以预装在不同区中。区可以具有相同的灵敏度和动态范围或不同的灵敏度和动态范围。对于例如肺炎中病原体的多路检测来说需要不同灵敏度,其中对于低水平检测和中度定量来说需要800-105/mL的范围, 而对于病原体例如肺炎链球菌(S.pneumonia)和b型流感嗜血杆菌(H.influenzae type b)来说,为了改进定量以区别定植与感染,需要102-106/mL范围内的检测。例如在一个设计中存在16个区:8个区含有6x400nL的孔和26x50nL的孔,具有数百至约40,000个粒子/mL的检测范围,用于检测病毒,另外8个区含有5x400nL的孔、8x50nL的孔和27x5nL的孔,具有约1000至400,000个粒子/mL的检测范围,用于检测细菌病区分定植与感染。该设计可用于引起肺炎的病原体的检测和定量。
滑动芯片与各种读出技术相容,包括比色或荧光读出。这些读出方法可以实时或在终点时使用。在某些实施例中,用户可以利用滑动芯片平台从毫升规模的样品富集样品并进行样品制备,用于进一步分析例如PCR、等温扩增和免疫测定。这种方法可以与其他滑动芯片应用一起使用,为诊断、监测或检测疾病生物标志物以及测试环境或食品样品提供手段。在某些实施例中,滑动芯片可用于以高通量或组合方式合成复合粒子。滑动芯片可用于制造粒子,包括由不同聚合物和水凝胶制成的固体或水凝胶粒子,用于许多应用,包括表面装饰和保护、食品添加剂、缓释胶囊、层析、流式细胞术、药物递送和用于移植的细胞包胶。具有精确的大小、形状和组成的粒子,已在MEMS(微电子机械系统)、光子学、诊断学和组织工程中找到应用。然而,使用现有技术例如种子聚合法合成这些粒子费时且昂贵。微流体装置已被证明是用于制造球形粒子或非球形粒子或甚至janus粒子的有力工具。然而,使用这些方法难以形成任意形状或形成复合物粒子。总的来说,通过使用滑动芯片作为模具,滑动芯片可用于制造相当任意的粒子。方法包括使用滑动芯片填充模具,滑走用于填充模具区域的导管,以及形成粒子。诱导粒子形成的方法可以包括使用热能固化、光、紫外线、化学粘合剂等。形成粒子的方法以及用于制造或包被滑动芯片模具的材料,可以由LiquidiaTechnologies所使用的改变而来。在粒子形成期间在滑动芯片中使用润滑液例如含氟润滑液,可以显著便于粒子在形成后的释放。将滑动芯片的填充有粒子前体材料的几个区域滑动以进行接触然后诱导粒子形成,可用于产生复杂形状和组成的复合粒子。通过滑动或通过简单地拆开滑动芯片,可以释放出粒子。通过将具有不同性质的前体带到一起,可以产生具有梯度性质的粒子。
在某些实施例中,被称为矩阵滑动芯片的滑动芯片平台,可用于进行具有n+m个载样步骤的n×m个反应。描述了用于混合2、3和4种组分的滑动芯片结构。描述了使用细菌细胞的两个实验:在矩阵滑动芯片上培养细菌细胞和在矩阵滑动芯片上筛 选细菌-细菌相互作用。突出的特点包括高通量:在<4cm×4cm空间内进行1024个平行实验;节省宝贵的试剂盒样品;以精确的时间和体积控制混合多次;并且装置可重复使用并且可重复配置:在每次使用后,可以将装置打开并清洗,用于下次使用。可以利用含8个入口的顶板以及根据需要含有不同入口数量例如8个入口、16个入口和32个入口的不同底板,因为中心结构是相同的;打开装置以提取出纳升微滴的内含物用于放大培养、检测等,或使用可透过层例如胶带密封的层来存取实验结果;纳升级好氧培养具有足够的空气供应并且没有蒸发;或进行厌氧培养;空气供应通道;用于氧气运输的纳米杆图案;易于产生平行样用于复制和改进数据质量,大量平行样品孔使得能够从装置提取更多样品用于进一步使用和分析:通过重力或磁力将珠子、细胞从一块板上的孔转移到另一块板上的孔;这里描述的装置和方法可用于许多应用。具体来说,滑动芯片可用作执行高通量筛选的平台,特别是用于蛋白质结晶、多路基因组测序、细胞-细胞相互作用、蛋白-蛋白相互作用和药物筛选等。
矩阵滑动芯片具有许多其他应用。ThermoFluor测定法以及反映蛋白质稳定性的其他测定法(例如通过监测与1-苯胺基萘-8-磺酸(ANS)同族的疏水染料的荧光)可用于监测蛋白分子的稳定性随温度的变化或在化学反应中的改变。这些测定法可用于在药物发现中监测配体结合,或优化结晶的配体和缓冲液条件。对于本领域的专业技术人员来说,显然滑动芯片和矩阵滑动芯片能够用于大量其他应用,包括但不限于由Fluidigm销售的应用,包括测量拷贝数变化、基因表达、蛋白质结晶、用于下一代测序的样品定量、单细胞基因表达、SNP基因分型。
矩阵滑动芯片由具有互补图案的顶板和底板构成。它用具有铬和抗光蚀剂涂层的钠钙玻璃板(Telic Company,Valencia,CA)制造。玻璃板上的微通道和孔利用标准光刻和湿法化学蚀刻技术制造。简单来说,将带有抗光蚀剂涂层的玻璃板与含有微通道和孔设计的光掩模对齐,并暴露于UV光1分钟。除去光掩模,将玻璃板在0.1mol/L NaOH溶液中浸泡2分钟进行显层。使用铬蚀刻剂(0.6:0.365M HClO4/(NH4)2Ce(NO3)6溶液)除去暴露的下层铬层。将板用Millipore水漂洗并用氮气干燥,将玻璃板的背面用PVC密封胶条(McMaster-Carr)粘贴以保护玻璃的背面。然后将胶粘的玻璃板小心地浸泡在含有玻璃蚀刻溶液(1:0.5:0.75M HF/NH4F/HNO3)的塑料容器中,以蚀刻在除去铬涂层后暴露的玻璃表面。使用40℃恒温水浴摇床控制蚀刻速度。~25分钟的蚀刻产生~30μm的深度。在蚀刻后,从板上除去胶带。然后将板用Millipore 水充分漂洗,并用氮气干燥。使用直径为0.030英寸的金刚石钻头钻出进入孔。将蚀刻后的玻璃板表面用Millipore水、然后用乙醇清洁,并在硅烷化前进行氧等离子处理。
为了在滑动芯片中培养好氧细胞,在顶板上制造了纳米柱图案以改进氧供应。为了制造纳米柱图案,在蚀刻出30μm图案后,将顶板用水清洁并用氮气干燥。我们利用了仍然覆盖着没有被蚀刻区域的原始抗光蚀剂和铬涂层。将板与纳米柱光掩模对齐,并按照与上述相同的程序,直到移除暴露出的下层铬的步骤。在除去铬涂层后,将顶板浸泡在1:0.5:0.75M HF/NH4F/HNO3蚀刻溶液中,并在室温下(~23℃)蚀刻30~90秒,以在表面上产生所需的纳米柱高度。最后,将顶板与底板(其不含纳米柱)用乙醇漂洗以脱去未显层的抗光蚀剂,并浸泡在铬蚀刻剂中以剥离铬涂层。然后将玻璃用乙醇和Millipore水漂洗,并用氮气干燥。
清洁玻璃板并对其进行氧等离子处理,然后按照以前的描述通过在真空干燥器中用十三氟-1,1,2,2-四氢辛基-1-三氯甲硅烷硅烷化3小时,赋予表面以疏水性。在硅烷化后,将玻璃板在120℃烤箱中烘烤30分钟,浸泡在FC-3283槽中漂洗,并在60℃烤箱中干燥过夜。
使用前,将矩阵滑动芯片的底板和顶板顺序地用肥皂、Millipore水和100%乙醇清洁,用氮气干燥,并放置在干净的皮氏培养皿中,使蚀刻的图案面朝上。将含有0.4mg/mLRfOEG3的50μL FC-40(3M)含氟油铺于底板表面上,然后将顶板放置(有图案一侧朝下)在底板上。FC-40完全润湿硅烷化的表面并在两块板之间伸展。通过相对于彼此滑动将两块板对齐,然后使用两个微型长尾夹固定。在除去表面上的过量FC-40后,滑动芯片随需随用。矩阵滑动芯片的两块板都含有椭圆形孔。孔宽为200μm,长为400μm,被蚀刻至30μm深,容积约为2nL。相通的微通道长为860μm,宽为80μm,深度为30μm。在装载溶液之前,通过在装置的入口处施加真空来吸出通道和孔中的油。在使用前,将四种食品染料(红色、橙色、绿色和蓝色,Ateco,Glen Cove,NY)从其储用溶液稀释~20倍,并用0.45μm PVDF针筒式滤器过滤。将溶液用移液器从8个入口装载到32列孔中。为了装载每个通道,首先使用移液器将8μL染料通过入口推入,直到染料溶液从出口冒出。在装载试剂后,首先将顶板向下滑动,然后向左滑动,以在行中形成连续流体通路。将同样的四种食品染料溶液通过8个入口从左侧装载,以填充32行孔。利用移液器将8μL染料装载到芯片中,直到行中的 所有通道完全填充。在装载了行之后,再次滑动顶板以混合顶板上列中的1024个孔和底板上行中的1024个孔。
本发明人设计了下列的3组分和4组分矩阵滑动芯片,以将2种以上组分的混合整合在一个区室中。利用对2组分基质滑动芯片所描述的相似的过程进行食品染料实验,区别只在于为了利用相同的连接通道装载两组相邻的孔,需要额外的清洗步骤。
在三组分混合矩阵滑动芯片的按步操作中,填充底板中第一组孔。任选地,将芯片滑动并使用相同导管填充底板中的第二组孔。对滑动芯片进行滑动(例如在X和Y方向上)以使水平行对齐,填充顶板中的孔并对滑动芯片进行滑动以使孔重叠,将两个相邻底板孔中的溶液与顶板孔中的溶液合并。
在四组分混合矩阵滑动芯片的按步操作中,填充底板中第一组孔。任选地,将芯片滑动并填充第二组孔。对滑动芯片进行滑动以使水平行对齐,并填充顶板中的第一组孔。对滑动芯片进行滑动以便填充顶板中的第二组水平孔。连通通道首先用缓冲液进行清洗。对滑动芯片进行滑动以使孔重叠,将两个相邻底板孔中的溶液与两个相邻顶板孔中的溶液合并。
在使用食品染料的四组分矩阵滑动芯片的按步操作中,第一步是装载第一组垂直孔。第二步是滑动以填充第二组垂直孔,然后滑动以将水平孔与导管对齐。然后填充第一组水平孔,接着滑动并填充第二组水平孔,最后滑动以将4个孔中的溶液合并。
在滑动芯片上成功培养不同细菌细胞(包括好氧或厌氧菌株),是进一步研究细胞对药物筛选、细菌抗生素耐药性、细菌群体感应和多物种群落相互作用等的基础。与常规方法相比,矩阵滑动芯片能够使用纳升体积观察单细胞或小细胞团体,增加了通量并节省时间和试剂。
为了能够在矩阵滑动芯片的纳升级孔中培养和生长好氧细菌,用户需要向这些孔连续供应氧气。这在滑动芯片上可以通过下列特点来实现:为了在隔离的孔中培养细胞,本发明人将水平孔与通道连通,并用空气状态产生的流体通路以形成呼吸通道。每个隔离的孔可以从两个邻近呼吸通道获得氧气供应。孔与呼吸通道之间的距离是240μm。矩阵滑动芯片使用FC-40作为润滑油,其具有非常高的氧溶解性和良好的氧渗透性。纳米至微米厚的FC-40薄膜能够支持氧气运输。由于呼吸通道的氧供应效率受到两块板之间FC-40薄膜厚度的限制,因此本发明人在顶板上制造了纳米柱图案。这将FC-40薄膜的厚度从估计的500nm增加至1.5μm。这有效地增加了大肠杆 菌DS red细胞在滑动芯片中的生长。
按照下面的描述测试滑动芯片中培养的均质性:
获得带有质粒pDsred的大肠杆菌。细胞储用液储存在-80℃下。在每次实验之前,将储用液在含有100μg/ml氨苄青霉素的LB琼脂平板(Difco LB营养肉汤,Miller,含2%(wt/vol)琼脂粉,Alfa Aesar)上划线。将平板在30℃温育过夜。将菌落接种在含有3mL LB培养基和氨苄青霉素(100μg/ml)的培养管中,并在30℃、160rpm下传代培养过夜。装载在装置中的细菌培养物是从过夜培养物重新接种并培养至对数期的培养物。当将细胞装载到装置中时,细菌细胞密度被调整至1.1×107个细胞/mL,以获得每个孔~22个细胞。
如上所述制备32×32矩阵滑动芯片。在从顶板中的8个入口移液载样之前,将细胞悬液摇动。将8μL细胞悬液装载到每个入口中。装载后,将装置滑动以断开列中的孔与通道的连通并将通道与行中的孔连通,以用作空气供应通道。使用真空除去空气供应通道中的油,以允许空气运输用于大肠杆菌生长。
除去微型长尾夹,并将32×32矩阵滑动芯片小心地放置在皮氏培养皿中。除了滑动芯片之外,培养皿中还置有2个含有50μL FC-40的小盖和一个含有100μL H2O的小盖以供应水分。将皮氏培养皿用Parafilm封口膜包绕,以避免水分逃逸。
利用带有10×0.4NA Leica物镜和Hamamatsu ORCAER照相机的Leica DMI6000荧光显微镜,每2小时在暗处对大肠杆菌的生长进行成像,共进行16小时。利用德克萨斯红滤光片收集Dsred荧光。利用40ms的曝光时间。为了校准显微镜,记录利用德克萨斯红滤光片时荧光参比载片的荧光强度并将其用于背景校正。利用具有多维获取功能的6.3r1型Metamorph成像系统(Universal Imaging)获取和分析图像。为了对细菌生长进行比较和定量,画出覆盖孔的测量圈,并利用背景底物测量每个孔的积分荧光强度。将孔的32x32矩阵分组成16x16个单元,每个单元含有2x2个孔,并对三种装置(分别为无纳米柱、426nm的纳米柱和940nm的纳米柱)收集每个单元的平均强度。结果确定了纳米柱图案能够改善大肠杆菌在矩阵滑动芯片上的生长。
为了在具有呼吸通道的装置上进行细胞培养,将垂直的隔离的孔用细菌培养物装载,将水平孔与通道连通并用空气装载,以向细菌孔供应氧气。顶板上的纳米柱加速了氧气交换。纳米柱大小为20μm乘以20μm,高度为900nm,纳米柱之间的间隔为80μm。纳米柱将保持大于1μm的间隙,其被装置中的FC-40油填充。这种油可 以透过空气并加速氧气从通道和细菌孔的交换。利用不同的纳米图案高度来培养大肠杆菌DS red:无纳米柱;426nm的纳米柱;940nm的纳米柱。随着纳米柱高度的增加,装置中的生长越来越好。
如上所述制备了具有16个入口(每个入口将溶液分配给2列)的32×32矩阵滑动芯片。将装置对齐以便在列中形成流体通路。将三种抗生素、即氯霉素、卡那霉素和链霉素,以不同浓度溶解在LB营养肉汤培养基中(对于每种抗生素为0.01μg/mL、0.1μg/mL、1μg/mL、10μg/mL和100μg/mL),并将其装载在列中的孔中。然后将装置进行滑动以连通行中的孔,用于装载带有质粒pDsred的大肠杆菌。按照前面部分的描述培养大肠杆菌。对细菌细胞密度进行计数,并将其调整至~2.4×107个细胞/mL,以在每个孔中获得约48个大肠杆菌细胞。然后将装置进行滑动以使底板上带有大肠杆菌的孔与顶板上带有抗生素溶液的孔相接触。使顶板面朝下将装置静置30分钟,以使大部分大肠杆菌细胞通过重力沉积到底板中的孔中。然后缓慢滑动装置以便在行中再次形成连续流体通路,用作空气供应通道。利用真空移除空气供应通道中的溶液,以允许空气运输用于大肠杆菌生长。
将矩阵滑动芯片置于皮氏培养皿中,按照以前的描述对大肠杆菌生长进行16小时成像。在16小时的时间点,对每个孔进行同样的数据分析,并将来自大肠杆菌细胞的积分荧光强度作图为灰度图。对于每种抗生素浓度和不含抗生素的对照,使用了两个平行的列中的64个孔。对这64个孔的平均强度进行作图。
对于同样的细胞样品和抗生素浓度,在96孔板上进行了对照实验。简单来说,将100μL细胞悬液的等份试样添加到孔中,然后加入100μL具有不同浓度的抗生素。在0时和16小时后在微孔板读板器中测量OD单位。对于所有三种抗生素,观察到了与使用矩阵滑动芯片所获得的类似的大肠杆菌生长抑制转折点。
对于在32×32矩阵滑动芯片中进行的抗生素筛选来说,在与对照(LB营养肉汤培养基)和具有不同浓度的三种抗生素(氯霉素、卡那霉素和链霉素)1:1混合后,在16小时后的积分强度指示了大肠杆菌在32x32滑动芯片上的生长。每种抗生素的浓度为0.01μg/ml、0.1μg/ml、1μg/ml、10μg/ml、100μg/ml。大肠杆菌细胞初始密度为2.4×107个细胞/mL。在温育16小时后分析数据。在使用不同抗生素浓度培养16小时后来自大肠杆菌的平均荧光强度。转折点表示在不同抗生素浓度下的生长差异。
在某些实施方案中,可以在滑动芯片上进行具有可视或移动电话读出的浓度的模拟向数字转换。利用具有阈值的化学,可以将模拟读出转换成数字读出。阈值的定义可以在专利申请“随机限制以检测、操作和利用分子和生物体”(Stochastic Confinement toDetect,Manipulate,and Utilize Molecules and Organisms)(公开号WO/2009/048673,国际专利申请号PCT/US2008/071374)中发现。在测定的情况下,模拟读出是对应于某种物质的量的信号,其表示在连续量表上,因此需要设备读取。数字读出被表示成数字,其在这种情况下为是/否至(是表示高于阈值,否表示低于阈值)。这样的模拟向数字的转换当与给定的可视读出偶联时,可以不需特殊设备在滑动芯片上进行。基于阈值的模拟向数字转换允许结果通过裸眼识别和半定量,或通过简单的照相机例如移动电话相机捕获,所述移动电话可以将照片发出用于进一步分析或储存。这种方法可以与各种测定法和各种阈值化学一起工作。具体来说,本发明人演示了两种阈值化学类型,使用酶和使用金纳米粒子(AuNPs)的。酶:当抑制剂与酶牢固结合并抑制酶行使催化功能时,存在阈值。当酶量少时,存在足够的抑制剂来抑制所有酶分子行使催化功能。当酶量较大时,不存在足够的抑制剂来抑制酶反应。结果,对于一定量抑制剂来说存在阈值,这意味着当酶浓度超过该阈值时本发明人能够观察到信号。因此,阈值位置取决于抑制剂的量。这里,本发明人使用了抑制剂顺式-(S)-TZ2PIQ-A51,其以1对1的比例与乙酰胆碱酯酶(AChE)牢固结合。AChE的阈值量由抑制剂的量设定。AChE水解乙酰胆碱产生硫代胆碱。硫代胆碱与淀粉/I2复合物反应。该反应使眼色从深蓝变成透明。金纳米粒子(Au NP):Au NPs能够催化(在氢醌存在下)无色的银(I)离子还原成银(0)粒子,其是黑色沉淀物。硫醇通过牢固的Au-S键,在Au NPs表面上形成层。该层阻断了Au NsP表面与溶液中的反应物之间的相互作用。当Au NPs量少时,存在足够的硫醇包被所有Au NPs的表面,抑制Au与银之间的接触并抑制银增强反应。当Au的量较大时,没有足够的硫醇包被整个Au的表面,银增强将快速发生。只有当Au NPs与硫醇的量相比过量时,才有表面暴露于银,因此阈值位置依赖于硫醇的量。
阈值化学可以与测定法相偶联。例如,阈值可以与免疫测定法的报告分子相偶联。在本文中,本发明人报道了一个实验结果,其中在滑动芯片中进行的半胱氨酸蛋白酶抑制剂C的免疫测定,通过利用作为报告分子的AChE的阈值给出了可视数字读出。本发明人还显示了用于Au NP的阈值能够在滑动芯片中起作用以给出可视数字读出,从而证实了将该阈值应用于测定例如免疫测定的潜力。
已经在滑动芯片上成功演示了用于胰岛素的夹心免疫测定法。然而,测定法的读出仍需要荧光显微镜。在这里,本发明人修改了用于半胱氨酸蛋白酶抑制剂C的测定法,使用AChE作为报告酶。由于通过抑制剂顺式-(S)-TZ2PIQ-A5的不同量所设定的阈值,测定法给出了数字读出,并通过硫代胆碱(酶反应的产物)与深蓝色的淀粉/I2复合物的使混合物无色的变色反应,给出了可视读出。半胱氨酸蛋白酶抑制剂C的量与AChE的量线性相关。通过使用不同量的抑制剂,本发明人可以为AChE设定不同阈值。AChE的浓度将使反应在某个阈值处进行,而在其他阈值处被抑制。这样的结果将指示AChE的浓度范围,因此指示半胱氨酸蛋白酶抑制剂C的浓度范围。
这种滑动芯片与用于进行基于珠子的免疫测定法的滑动芯片类似,修改之处在于较大的尺寸、每行中孔的数量的改变、顶板中附加的用于试剂的行,以及该行中的不同深度,以便允许在单一滑动芯片上评估多种阈值浓度。
对于用于具有阈值的免疫测定的滑动芯片来说,菱形孔的尺寸为780μm x780μm。导管宽为380μm,深为90μm。行和列之间的间隔分别为2.5和1.5mm。滑动芯片的底板含有容纳样品的孔和装载试剂的导管。在顶板中,导管被用于装载样品。顶板上第1行中的孔装载有捕获混合物。第2-5行用清洗缓冲液填充,第6行装载有抑制剂,第7行装载有底物。第6行中的孔被分成5组[5,6,6,6,6]个孔,对应的深度为[16,21,28,51,90]μm。顶板上的其他孔深度为90μm。底板上的孔深度为7μm。为了进行免疫测定,将板对齐以装载捕获混合物。将板多次滑动并对齐以装载试剂,然后滑动并对齐以装载被分析物。将板进行滑动以使底板中孔的行相继与顶板中的每行孔接触,然后滑动以显示最终结果。
在滑动芯片中进行全酶法免疫测定之前,本发明人通过显示仅仅AChE和抑制剂顺式-(S)-TZ2PIQ-A5的简单阈值,验证了AChE阈值在在滑动芯片中的用途。事实上,在5nM的最终抑制剂浓度下,AChE正如预期显示出5nM(终浓度)的阈值。使用>5nM的AChE浓度进行的反应给出几乎透明的溶液,而使用≤5nM的AChE浓度进行的反应保持深蓝色。
对于滑动芯片中的酶阈值化学来说,顶板具有4行与同一入口连通的孔。底板具有4行带有独立入口和出口的孔。顶板上的孔的深度为80μm,底板上的孔的深度为60μm。将抑制剂溶液装载在顶板上的孔中。具有不同浓度的4种不同的AChE溶液被装载在底板上的孔中。将底板相对于顶板滑动,以允许两块板的孔重叠。在30分 钟的温育后,将两块板滑动回到初始位置。将底物混合物装载到顶板上的孔中。再次将滑动芯片进行滑动以使顶板和底板的孔回到接触状态,并使用立体显微镜监测反应。
本发明人还获得了另一种类型的阈值产生反应、即使用Au NPs的银还原的初步结果。本发明人已经在多孔板上显示了Au NPs中的阈值。在这里,本发明人证实了该阈值可以在滑动芯片上进行。在这个实验中,本发明人利用恒定浓度的Au NPs以及不同量的硫醇抑制剂。当2-巯基乙醇的浓度低于110μM时,硫醇不完全覆盖AuNsP的表面,因此Ag(I)的还原可以进行,正如深色所指示的。但是当2-巯基乙醇的浓度高于330μM时,反应被抑制并且没有观察到信号。Au NPs是生物学应用中的常用标签,使得能够将这种方法与广泛的检测反应相偶联。
对于滑动芯片生物结合中的AChE阈值和免疫测定法来说:珠子-Ab:按照制造商的说明书,将半胱氨酸蛋白酶抑制剂C抗体克隆24(Genway,目录号20-511-242278)偶联到甲苯磺酸化的顺磁性珠子(Invitrogen,目录号65501)上。Ab-生物素:使用Lightning连接试剂盒(Innova Biosciences,目录号704-0010),按照制造商的说明书将半胱氨酸蛋白酶抑制剂C抗体克隆(Genway,目录号20-511-242277)偶联到生物素上。
溶液如下进行制备:磷酸缓冲液:pH 7的0.1M磷酸钠,含有1mg/mL普卢诺尼克F127(BASF)。BAB:1mg/mL普卢诺尼克F127在pH 7的1xDPBS(Gibco)中。WB:额外含有0.2M NaCl(总共0.337mM NaCl)的BAB。淀粉溶液:将玉米粉在磷酸缓冲液中的悬液煮沸10分钟并冷却至室温。然后将上清液通过带有5-μm膜的针筒式滤器进行过滤,以给出淀粉溶液。底物混合物1:将45μL淀粉溶液、5μL乙酰硫代胆碱溶液(0.4M,在磷酸缓冲液中)以及NaI(18.64mg)与I2(1.55mg)在620μL的水中的溶液1μL,在600-μL微量离心管中通过涡旋振荡进行混合。底物混合物2:将98μL淀粉溶液、1μL乙酰硫代胆碱溶液溶液(0.4M,在磷酸缓冲液中)以及NaI(798.07mg)与I2(101.93M)在4.016mL磷酸缓冲液中溶液1μL,在600-μL微量离心管中通过涡旋振荡进行混合。捕获混合物:2.5mg/mL珠子-Ab、0.025mg/mL Ab-生物素和25mg/mLAChE-亲和素(Cayman Chemicals,cat#400045)在BAB中。
滑动芯片上的特征的制造如下进行:用于简单阈值的滑动芯片按照以前的描述制造。顶板上孔的尺寸位1960μm x400μm x80μm,底板上孔的尺寸为1920μm x360μm x60μm。在用于具有阈值的免疫测定的滑动芯片上,除了顶板的第6行的孔和底板的孔之外的所有零件按照以前的描述制造。顶板的第6行中的孔和底板的孔使用激光钻孔形成(ResoneticsRapidX250系统,具有7倍缩小,130mJ恒定能量模式,75-mm透镜,通量为2.5J/cm2)。
滑动芯片的涂层如下进行:用于简单阈值的滑动芯片的表面处理按照以前的描述进行。用于具有阈值的免疫测定的滑动芯片用FEP涂层以具有鲁棒的涂层,用于防止不含任何特征(孔或导管)的区域被水性溶液润湿。将裸露的玻璃芯片在H2SO498%:H2O230%(3:1v/v)中清洁1小时。然后将它们在用Millipore水稀释3倍的FEP乳液(Fuel Cell EarthLLC,目录号TE9568-250)中浸涂,其中进出溶液的速度分别为10.8和1.8cm/min。将涂层过的芯片在加热板上从室温(21-23℃)烘烤至250℃,并在250℃保持5分钟,然后在室温下在空气中冷却。顶板第6行中和底板中的孔中的FEP层通过层钻孔(70mJ,带有50%衰减器,其他参数与孔的钻孔时相同)除去,随后在显微镜下手动施用针(Beckton-Dickinson,目录号305109)。
滑动芯片的操作如下进行:通过将0.5mL FC-40(3M)滴加在底板上,将顶板置于底板顶上并用晒衣夹夹住两块板,来组装滑动芯片。通过将含有10μL溶液的10-μL移液管顶在入口孔中并将溶液压出移液管,来装载滑动芯片的每一行。
如下进行试剂和样品在滑动芯片中的装载:用于简单阈值的滑动芯片:首先,将抑制剂溶液通过与4个连通的入口并行地装载到4行中;将AChE(SigmaAldrich,目录号C2888)在磷酸缓冲液中的溶液从4个独立的入口一个接一个地装载到4行中。对芯片进行滑动以便每行AChE溶液与一行抑制剂溶液重叠。然后将芯片温育30分钟,再将其滑动回到原始位置。将过量(~100μL)的底物混合物1装载到4个平行的行中的孔中。然后再次滑动芯片以使底物混合物与前一步骤中形成的AChE和抑制剂的混合物进行接触。AChE的终浓度为~4、5、6和7nM,抑制剂的终浓度为~5nM。使用带有Plan APO 0.63x物镜的Leica MZ 16立体显微镜(Leica Microsystems)监测反应。用于具有阈值的免疫测定法的滑动芯片:在两块板组装后,将它们对齐以便顶板的第1行中的孔通过底板中的导管连通。然后将捕获混合物装载在第一行孔中。然后将板相对于彼此滑动,以便顶板的第二行中的孔通过底板中的导管连通,并将WB装载在第二行中。同样地,将第3至7行中的孔分别用WB、磷酸缓冲液、磷 酸缓冲液、抑制剂溶液和底物混合物2装载。然后将板对齐以便底板中的孔通过顶板中的导管连通,并且将半胱氨酸蛋白酶抑制剂C样品(BAB)装载在底板的孔中。
滑动该滑动芯片以使底板的孔与顶板中第一行的孔重叠。将样品和捕获混合物的混合物在室温(21-23℃)下温育30分钟。利用磁体将珠子拉到底板中的孔的底部。对芯片进行滑动以使底板中的孔与顶板中的第二行孔重叠,并将其温育2分钟。将底板中的孔相继与顶板的第3至7行中的孔进行接触,温育时间为2、2、2、30和120分钟。最后,将珠子拉到底板中孔的底部,并将孔与顶板的第7行中的孔分离。当反应在孔中进行的情况下,读取顶板的第7行中的孔的结果,并将底板中含有珠子的孔用作顶板的第7行中的孔的位置的标志物。利用廉价的移动电话照相机(Nokia 3555b)获取结果的照片。
滑动芯片的制造如下进行:本发明人按照以前描述的制造步骤,并进行了下列修改。将带有抗光蚀剂涂层的玻璃板与光掩模对齐,并在UV光下暴露1分钟。孔的大小被确定为1920μm(长度)x360μm(宽度)。用于Au NP阈值的芯片在每行中具有5个孔,总共20个孔。在曝光后立即将光掩模从玻璃板上除去,并将玻璃板单独地在0.1mol/L NaOH溶液和铬蚀刻剂(0.6:0.365mol/L HClO4/(NH4)2Ce(NO3)6溶液)中显层。然后将胶粘的玻璃板小心地浸泡在含有玻璃蚀刻溶液(1:0.5:0.75mol/L HF/NH4F/HNO3)的塑料容器中,以蚀刻在铬涂层被除去后暴露出的玻璃表面。在玻璃板中蚀刻出80μm深的孔和导管。最后,将玻璃板用乙醇漂洗以脱去未显层的抗光蚀剂,并浸泡在铬蚀刻剂中以除去铬涂层。使用Veeco Dektak 150表面光度仪验证蚀刻的图案。在进行氧等离子体处理后,通过在真空干燥器中使用十三氟-1,1,2,2-四氢辛基-1-三氯甲硅烷进行3小时的硅烷化,赋予表面以疏水性。
在滑动芯片上混合之前,银增强溶液如下进行制备:溶液A:将3μL 200mM柠檬酸缓冲液与15μL 100mM AgNO3溶液和82μL Millipore水混合在一起。溶液B(B1-B4):将4μL0.15mM Au NPs与30μL 100mM氢醌溶液和不同体积的1mM巯基乙醇溶液(0、10、30、50μL)混合,并通过用Millipore水补足将总体积固定到90μL。
在滑动芯片上基于Au NPs的阈值实验如下进行:按照以前的描述对滑动芯片进行组装、载样和滑动。首先,将溶液A通过与4行连通的入口移取到平行的4行中;将溶液B1至B2一个接一个地从4个独立的入口移取到4行中。然后将一块玻璃板 相对于另一块板滑动,使不同板中的孔彼此对齐。在混合后将整个芯片置于暗处,每5分钟通过利用带有Plan APO0.63x物镜的Leica MZ 16立体显微镜(Leica Microsystems)获取显微照片来检查结果。
利用阈值获得浓度的模数转换的想法,也可以应用于其他测定法(除了本文描述的免疫测定法之外),使得它适合于许多诊断需求。例如,可以使用设定量的固定化互补片段与核酸结合并物理移除结合的分子,来设定核酸中的阈值。这样的阈值可应用于在与HIV、HBV、HCV和其他感染相关的核酸定量中提供数字读出。当与模拟至数字转换组合使用时,滑动芯片可以被商业化,并为可以广泛应用的无设备的现场装置提出了一种有吸引力的平台。
在某些实施例中,可以进行滑动芯片的封闭端填充,包括控制用于润滑和干燥滑动芯片的板的表面化学和板之间的间隙尺寸。
这里描述了一些通过封闭端填充来装载滑动芯片的当前工作。在我们称为“封闭端填充”的方法中,在组装后填充滑动芯片的流体(润滑液或空气)通过滑动芯片的两块板之间的间隙散开。这种滑动芯片结构在被封闭端填充所填充的流体通路中没有出口(常规意义上的)。
这种方法可用于制造具有与标准的SBS格式例如96或384或1536孔板相容的入口的滑动芯片;可以利用标准设备将溶液分配到板中,并在加压后可以在滑动芯片中形成所需体积,可以使用滑动来推动过程的进行。具有适合开口的标准SBS板可用作滑动芯片的一个层;可以构造成通过一个孔注入溶液并通过另一个孔进行观察,等等。
装置的制造如下进行:利用具有铬和抗光蚀剂涂层(Telic Company,Valencia,CA)的钠钙玻璃板制造装置。利用制造玻璃滑动芯片的标准方法。简单来说,将用具有孔和导管结构的光掩模覆盖的抗光蚀剂涂层的玻璃板暴露于紫外光。在利用0.1MNaOH溶液除去抗光蚀剂后,通过铬蚀刻溶液移除暴露的铬涂层。然后在40℃摇床中,在玻璃蚀刻溶液中蚀刻出图案。在玻璃蚀刻后,通过乙醇和铬蚀刻溶液分别除去残留的抗光蚀剂和铬涂层。对蚀刻过的玻璃板的表面进行清洁,并进行氧等离子体处理,然后按照以前的描述在真空干燥器中通过硅烷化赋予表面以疏水性。利用直径为0.035英寸的金刚石钻头钻出入口孔。
表面张力如下测量:水性溶液在氟烃中的表面张力按照以前的报道进行测量,并作出了一些修改。简单来说,在一次性微滴挤出尖头的末端处形成所需水性溶液的微滴。通过使用快速固化环氧树脂将聚酰亚胺包被的玻璃管线与一个10μL一次性移液器头胶粘在一起,来组装尖头。然后将尖头反向插过在1mL聚苯乙烯比色杯上钻出的孔,并使用环氧树脂胶固定。利用30号特氟龙管线将聚酰亚胺管线与50μL Hamilton Gastight注射器相连。然后将注射器用水性溶液填充,并用氟烃填充1mL比色杯。使用250型标准数字测角计和DROPimage高级软件(Rame-Hart Instrument Co)对形成的微滴成像。
利用由Cannon Instrument Company(State College,PA)制造的Cannon-Fenske校准粘度计测量粘度。按照伴随产品的说明书进行测量。
接触角按照与以前报道的相同的方案来测量3,4。简单来说,将4μL待测量溶液移取到目标基质上。然后利用光接触角测量仪(Ramé-Hart Instrument Co.,500型)测量微滴在基质上的接触角。
滑动芯片的两块板之间的间隙的测量和控制如下进行:间隙测量在装备有Hamamatsu数字冷却CCD相机(日本)的由Leica(德国)制造的DMI6000表面荧光显微镜上进行。这种冷却相机具有对光强度的线性响应,允许进行精确的强度测量。载片之间的间隙使用用绿色荧光量子点(QD)(Ocean Nanotech,AR)染色的矿物油(Fisher Scientific,NJ)来测量。将1%QD在甲苯中的原始溶液通过0.22微米微量离心管Amicon过滤器(Millipore,MA)过滤,并在超声波水浴(Fisher Scientific,NJ)中超声10分钟。在填充装置之前,将QD在矿物油中的10%溶液充分涡旋振荡,并在真空下保持至少10分钟。
将染色的矿物油置于滑动芯片的两块板之间;通过将组装后的装置相继用氯仿、丙酮和乙醇漂洗以除去过量的油。将两块板用8个纸夹夹紧,并在测量之前在压力下保持至少1小时。图像获取、图像处理和测量利用Metamorph软件(Universal ImagingCorporation)进行。图像在减弱的照明区处获取,以避免来自用作参比的亮得多的表面零件的荧光使相对黯淡的周围区域失去颜色。荧光图像按照标准程序进行处理,所述程序包括减去相机背景噪音和对照明区的均匀性进行补偿。滑动芯片具有深度已知的表面零件,允许估算未知表面零件的深度包括载片之间的间隙,这通过简单地比较这些表面零件的荧光强度来进行。为了确定载片之间的精确距离,我们应用按照下面公式的自递归过程:
di+1=(w+di)×Is/Iw
这里的w是已知表面特征(孔)的深度,d0=0;di–间隙大小,Is和Iw是从周围表面和孔获取的强度。本发明人通常进行i=1-2迭代来获得可靠的距离。
为了验证这个过程并检查线性度,我们进行了一系列已知深度的孔的荧光测量。这些基准孔在激光溶蚀系统(Resonetics,NH)上制造。所有表面特征的深度使用表面光度仪(Dektak 150,Veeco,CA)测量。发现从孔获取的荧光强度与孔的深度保持线性关系。利用两种方法获得的距离的差异在~5%以内。因此,人们可以使用荧光强度测量滑动芯片的板之间的间隙。
为了控制载片之间的间隙,本发明人利用两种不同尺寸的荧光硅胶珠。具体来说,本发明人利用从Corpuscular Inc.,NY获得的直径分别为1.5μm和3.86μm的珠子。这些珠子在使用前进行硅烷化以使它们与烃油相容。硅烷化如下进行:将珠子用丙酮漂洗并超声3次;向丙酮中的珠子加入5%二氯二甲基甲硅烷,并在室温下暴露30分钟。将珠子用丙酮漂洗一次,用氯仿漂洗两次。将适量珠子加入到荧光染色的烃油中以获得相对均匀的珠子分布。对于每种情况如上所述测量滑动芯片之间的间隙。
每个装置由两块板构成。将约300μL润滑剂FC移取到地板上,并将顶板缓慢放置在底板顶上,以避免在通道中捕集空气泡。然后将紧密接触的板在显微镜下对齐,并用纸夹固定。
物理模型的测试(改变压力(家庭来源和压力表)并观察溶液泄漏)如下进行:压力控制。压力由可调节的N2源提供。将N2源分叉到两个末端,一端与指示系统输出压力的压力表相连,另一端与滑动芯片相连。装载溶液。将4μL绿色染料移取到组装好的装置的入口顶上。然后将由PDMS制成的高度~5mm的O型环夹在组装好的装置与玻璃板之间,并用纸夹固定。将玻璃板钻出纳米端口组件(Upchurch Scientific)。然后将组件与压力源相连,并将溶液装载到滑动芯片中的通道内。在FC接收通道中观察任何溶液泄漏。装载速度的表征。利用两个圆之间的通道部分表征装载速度。速度是平均容积流率,被定义为Qave=V/t。V(m3)是用溶液填充的通道部分的容积,t(s)是填充通道部分所记录的时间。
利用5种溶液装载FC润滑的装置:绿色染料溶液用于装载用于样品的流体通路;红色、蓝色、橙色和黄色染料用于装载用于试剂的16个流体通路。板的表面被造型成具有间隔约~8μm的孔(约为12μm长、12μm宽和2μm深)。这样的孔便于润 滑FC的分散。利用与用于测试物理模型相同的样品装载过程同时装载样品和多种试剂溶液,区别在于所有溶液首先被装载到流体通路顶上的大的储液孔中。在装载后,将顶板相对于底板滑动以使试剂孔与样品孔接触,并混合内部溶液。
为了更详细地描述填充过程,本发明人利用了用于压力平衡的方程。在入口处施加的压力必须克服第1相与第2相之间的界面处的毛细压力。
方程1:ΔPflow=P0-ΔPcap
ΔPflow是填充有水性相1的通道的相对末端之间由流体流动阻力产生的压力差,P0是在入口处施加的用于驱动第1相进入流体通路的压力;ΔPcap是在填充通道内第1相与第2相的界面处产生的毛细压力。一般来说,即使在长方形通道中也难以确定界面的精确形状,5,6特别是如果该界面部分由固体表面、部分由液体界面形成的话,正如本案中的情况。根据Young-Laplace方程,在长方形通道中第1相与第2相之间的界面处的近似压力差将是在这里σ是表面张力,Rw(Rw=w/2cosθ)和Rh(Rh=h/2cosθ)是水平(宽度为w)和垂直(高度为h)方向上的界面近似曲率;θ是接触角。
当P0大于Pcap时,Pflow为正并且通道被第1相填充。这些压力之间的差越大,填充越快。粘滞阻力将阻止通道即时填满。通过固体长方形通道流动期间的粘滞阻力的详细分析以前已经讨论。通道由围绕水性相的氟烃油形成(至少部分地)。密封压力Pseal(Pa)(方程2)阻止了第1相从通道泄漏。
方程2:Pseal=-2×γ×cosθ/d<2×γ/d=Pseal,max
在这里:γ(N/m)是水性溶液(第1相)与FC(第2相)之间的表面张力;θ是第1相与第2相中滑动芯片的表面之间的接触角,并需要大于90°以阻止第1相的毛细作用;d(m)是滑动芯片的两块板之间的间隙距离。假定θ=180°,存在最大压力Pseal,max(Pa)。入口压力必须小于密封压力(方程3)以避免泄漏到间隙中,如果压力较高,水性溶液在板之间流动,引起泄漏。
方程3:P0<Pseal,max
FC的散逸限制填充速度。本发明人利用方程进行预测,并发现改变相关参数影响装载速度,而改变无关参数时不影响。在测试滑动芯片中,ΔPflow包括三项(方程5):ΔP1,由装载通道中水性相的流动阻力引起的压力差;ΔP2,由装载通道中第2相的流动阻力引起的压力差;以及ΔP3,由滑动芯片的两块板之间的FC的流动阻力 引起的压力差。由方程1与方程5合并而获得的方程6,表述了沿着系统的压力差。由流动阻力引起的压力差可以表示在方程7中。7μi是相应流体的粘度,因此在这里μ1(Pa.S)是水性相的黏度,μ2与μ3相同,等于润滑相的粘度;Li(m)是流体通路的平均长度。本发明人假设L1与L2相同,等于整个装载通道的一半长度。L3等于装载通道与大的接收通道之间的距离;Qi(m3/s)是排出流速。由于质量守恒,Q1、Q2和Q3相同;hi是流体通路的高度,因此h1和h2相同,等于通道的高度。h3等于滑动芯片的间隙;wi是流体通路的宽度。w1和w2相同,等于装载通道的宽度。由于难以确定润滑氟烃沿着两块板之间的装载通道的流动分布情况,因此本发明人假设w3为装载通道的一半长度。
方程5:ΔPflow=ΔP1+ΔP2+ΔP3
方程6:ΔPinlet=ΔP1+ΔP2+ΔP3+ΔPcap
方程7: &Delta;P i = &pi; 4 &mu; i L i Q i 8 h i 3 w i ( 1 - 2 h i &pi; w i tanh ( &pi; w i 2 h i ) )
当通道高宽比增加时(通道高度减小和/或宽度增加),双曲正切将渐近地趋向1。同时,当高宽比w/h渐进趋向∞时,通道中的压力降ΔP将与1/h3w成正比变化。因为h3<<h1和2<wi(方程8),ΔP3远远大于ΔP1或ΔP2。本发明将测试芯片设计成确保ΔPinlet远远大于ΔPcap。因此ΔPinlet与ΔP3近似相同。通过将方程7和10合并,并取h3<<w3下的近似值,本发明人获得了方程10,其表明在固定的入口压力下,水性溶液的装载速率由润滑氟烃的散逸决定,包括其粘度、其散逸大小。
方程8:ΔP3>>ΔP1≈ΔP2
方程9:ΔPinlet≈ΔP3
方程10: Q = Q 3 = 8 h 3 3 &times; w 3 &times; &Delta; P inlet &pi; 4 &mu; 3 &times; L 3
本发明人通过改变h3和μ3,同时保持w3、L3和ΔPinlet分别恒定在1×104μm、2×103μm和5.3×103Pa,对预测进行了实验验证。装载速率近似地随着h3 3和μ3独立增加。此外,本发明人证实了与ΔP1、ΔP2和ΔPcap相关的其他参数的变化对装载速率没有大的影响。
滑动芯片可以通过封闭端填充来装载。本发明人利用物理模型,设计了使用封闭端填充将多种溶液同时装载到滑动芯片中的系统。本发明人利用了以前报道的设计, 该设计与利用16种不同沉淀剂和每种沉淀剂的11种混合比例为蛋白质结晶筛选条件的用户装载的滑动芯片相关。本发明人进行了下列修改以简化设计:导管被制造成最适合于装载的不带转角的直线形;没有使用狭窄通道来平衡压力。此外,本发明人为每种装载溶液添加了入口储液池。设计它不仅是为了如在测试滑动芯片中所述的缓冲流动,而且还为了储存和防止蒸发。本发明人还设计了较小的出口储液池以防止不想要的回流。为了最小化板之间的润滑液散逸所产生的流动压力同时保持相同的密封压力,将接收通道设计在流体通路附近以使LF的流动距离最小化。本发明人在滑动芯片的接触表面上制造了小的图案(深度~2μm)以进一步降低板之间的流动压力。
当溶液到达流体通路的末端时填充自发停止,即使其他溶液仍在装载。结果,可以利用单一压力源装载所有溶液。
为了简化将溶液移取在滑动芯片中并允许溶液的稳定储存,可以对结构进行修改以使靠近入口的储液池具有多个进入孔。在这种结构中,润滑液可以通过一个进入孔流出储液池,降低了压力阻力以允许容易地装载。溶液保持被润滑液包围,允许稳定地储存,减少蒸发。为了分发溶液,在所有进入孔处施加压力以将溶液推入待装载的通道。储液池的形状可以被设计成使得水性微滴从进入口自发移走并进入与装载通道邻近的地点。
综上所述可以看出,可以不脱离本发明的精神和范围对其进行大量改变和修改。应该理解,不打算或不应解释为将本发明限于本文说明的具体实施例。当然,旨在由权利要求书覆盖落于权利要求书范围之内的所有这样的修改。
本发明在(美国)国立卫生研究院(NIH)提供的资助号GM074961和DP10D003584以及(美国)国家科学基金会提供的资助号CHE-0526693下,由政府支持做出。(美国)政府对本发明享有一定权力。
本申请要求Rustem F.Ismagilov于2009年3月24日提交的题为“滑动式芯片装置和方法(Slip Chip device And Methods)”的美国专利申请临时序列号61/162,922、Rustem F.Ismagilov于2009年11月18日提交的题为“滑动式芯片装置和方法(Slip Chipdevice And Methods)”的美国专利申请临时序列号61/262,375以及Rustem F.Ismagilov于2010年3月22日提交的题为“滑动式芯片装置和方法(Slip Chip device And Methods)”的美国专利申请临时序列号61/340,872(律师编号7814-275)的优先权,所有这些临时专利申请的全部内容结合于此供参考。

Claims (25)

1.一种用于进行反应的反应系统,所述反应系统包括:
具有第一表面的第一部分;
沿着所述第一表面的一部分设置的多个第一区域,所述多个第一区域均构造成保持至少一种第一物质;
具有与所述第一表面相对的第二表面的第二部分;
沿着所述第二表面的一部分设置的多个第二区域,所述多个第二区域均构造成保持至少一种第二物质;以及
入口导管;
其中所述第一部分的第一表面和所述第二部分的第二表面中的至少一个表面构造成相对于另一个表面在第一位置和第二位置之间运动,在第一位置所述多个第一区域不暴露于所述多个第二区域中的任一个,在第二位置所述多个第一区域中的至少一个区域仅暴露于所述多个第二区域中的一个区域;其中仅在所述第一位置或仅在所述第二位置,所述入口导管与所述多个第一区域中的每一个区域经由所述第一部分和所述第二部分内的连续的流体路径流体连通。
2.根据权利要求1所述的反应系统,其中所述反应系统处于第一位置,并且所述多个第一区域中的至少一个包含试剂。
3.根据权利要求1所述的反应系统,其中所述反应系统处于第一位置,并且所述多个第二区域中的至少一个包含试剂。
4.根据权利要求2或3所述的反应系统,其中所述试剂包含从由核酸、酶、细菌、结晶剂、蛋白、肽和哺乳动物细胞构成的组中选出的至少一种成分。
5.根据权利要求2或3所述的反应系统,该反应系统还包含不能与所述试剂溶混的流体。
6.根据权利要求1所述的反应系统,其中所述第一部分的第一表面和所述第二部分的第二表面中的至少一个表面构造成相对于另一个表面从第一位置向第二位置运动。
7.根据权利要求1所述的反应系统,其中所述第一部分的第一表面和所述第二部分的第二表面中的至少一个表面构造成相对于另一个表面从第二位置向第一位置运动。
8.根据权利要求1所述的反应系统,该反应系统还包括:
具有第三表面的第三部分;
所述第二部分上的第四表面,
其中所述多个第二区域的一部分沿着所述第四表面设置,并且所述第三表面与所述第四表面相对;以及
沿着所述第三表面的一部分设置的至少一个第三区域,所述至少一个第三区域构造成保持至少一种第三物质,其中所述第三部分的第三表面和所述第二部分的第四表面中的至少一个表面构造成相对于另一个表面在第三位置和第四位置之间运动,在第三位置所述至少一个第三区域不暴露于所述多个第二区域,在第四位置所述至少一个第三区域之一仅暴露于所述多个第二区域之一以形成封闭系统。
9.根据权利要求1所述的反应系统,其中所述第一部分的第一表面和所述第二部分的第二表面中的所述至少一个表面构造成当从第一位置向第二位置运动时,沿着基本垂直于所述第一部分的第一表面的法线的方向运动。
10.根据权利要求1所述的反应系统,其中当处于第二位置时,所述多个第二区域中的一个同时暴露于所述多个第一区域中的至少两个。
11.根据权利要求1所述的反应系统,其中第一组多个第一区域以第一图案排列并且其中所述多个第二区域以互补图案排列,其中从第一位置向第二位置的运动允许所述第一组多个第一区域中的至少一个区域暴露于相应的第二区域。
12.根据权利要求11所述的反应系统,其中所述第一区域的数量等于所述第二区域的数量,所述第一区域的数量大于所述第二区域的数量,或者所述第一区域的数量小于所述第二区域的数量。
13.根据权利要求1所述的反应系统,其中所述第一区域和所述第二区域中的至少两个区域的体积不同。
14.根据权利要求1所述的反应系统,该反应系统还包括设置在所述第一表面和所述第二表面之间的基质。
15.根据权利要求1所述的反应系统,其中所述多个第一区域和所述多个第二区域中的至少一个区域包括孔。
16.根据权利要求1所述的反应系统,其中所述多个第一区域和所述多个第二区域中的至少一个区域包括表面图案。
17.根据权利要求1所述的反应系统,其中同一表面上的至少两个区域的深度不同。
18.根据权利要求1所述的反应系统,其中所述第一部分的第一表面和所述第二部分的第二表面中的至少一个表面构造成相对于另一个表面从第一位置向第二位置滑动,从第二位置向第一位置滑动,或在第一位置和第二位置之间来回滑动。
19.根据权利要求1所述的反应系统,该反应系统还包括设置在所述第一部分的第一表面和所述第二部分的第二表面之间的中间第三部分,所述中间第三部分具有贯穿其中形成的开口;
其中所述第一部分、所述第二部分和所述中间第三部分构造成相对于彼此从第一位置向第二位置滑动,在第一位置所述多个第一区域不通过所述开口暴露于所述多个第二区域,在第二位置所述多个第一区域中的至少一个区域通过所述开口暴露于所述多个第二区域中的至少一个区域。
20.根据权利要求1所述的反应系统,其中仅在所述第一位置所述入口导管与所述多个第一区域流体连通,而在所述第二位置所述入口导管不与所述多个第一区域流体连通。
21.根据权利要求20所述的反应系统,其中所述多个第一区域中的至少一个区域与所述多个第二区域中的至少一个区域在所述第二位置共同形成封闭系统。
22.根据权利要求1所述的反应系统,其中仅在所述第二位置所述入口导管与所述多个第一区域流体连通,而在所述第一位置所述入口导管不与所述多个第一区域流体连通。
23.根据权利要求1所述的反应系统,其中所述入口导管是分枝状形式。
24.根据权利要求4所述的反应系统,其中所述酶是聚合酶。
25.根据权利要求4所述的反应系统,其中所述蛋白是抗体。
CN201510003895.9A 2009-03-24 2010-03-23 滑动式芯片装置和方法 Active CN104722342B (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US16292209P 2009-03-24 2009-03-24
US61/162,922 2009-03-24
US26237509P 2009-11-18 2009-11-18
US61/262,375 2009-11-18
US34087210P 2010-03-22 2010-03-22
US61/340,872 2010-03-22
CN201080022620.5A CN102439717B (zh) 2009-03-24 2010-03-23 滑动式芯片装置和方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201080022620.5A Division CN102439717B (zh) 2009-03-24 2010-03-23 滑动式芯片装置和方法

Publications (2)

Publication Number Publication Date
CN104722342A CN104722342A (zh) 2015-06-24
CN104722342B true CN104722342B (zh) 2017-01-11

Family

ID=42781435

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201080022620.5A Active CN102439717B (zh) 2009-03-24 2010-03-23 滑动式芯片装置和方法
CN201510003895.9A Active CN104722342B (zh) 2009-03-24 2010-03-23 滑动式芯片装置和方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201080022620.5A Active CN102439717B (zh) 2009-03-24 2010-03-23 滑动式芯片装置和方法

Country Status (9)

Country Link
US (3) US9415392B2 (zh)
EP (1) EP2412020B1 (zh)
JP (4) JP5766178B2 (zh)
KR (2) KR101796906B1 (zh)
CN (2) CN102439717B (zh)
AU (1) AU2010229490B2 (zh)
CA (1) CA2756463C (zh)
IL (2) IL215160A (zh)
WO (1) WO2010111265A1 (zh)

Families Citing this family (244)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120077206A1 (en) 2003-07-12 2012-03-29 Accelr8 Technology Corporation Rapid Microbial Detection and Antimicrobial Susceptibility Testing
EP1648286B1 (en) 2003-07-12 2017-12-20 Accelerate Diagnostics, Inc. Sensitive and rapid biodetection
US8741158B2 (en) 2010-10-08 2014-06-03 Ut-Battelle, Llc Superhydrophobic transparent glass (STG) thin film articles
AU2009223122B2 (en) 2008-03-12 2014-12-11 University Of Virginia Patent Foundation Detection of polymeric analytes
KR101796906B1 (ko) 2009-03-24 2017-11-10 유니버시티 오브 시카고 반응을 수행하기 위한 방법
US10196700B2 (en) 2009-03-24 2019-02-05 University Of Chicago Multivolume devices, kits and related methods for quantification and detection of nucleic acids and other analytes
US9447461B2 (en) 2009-03-24 2016-09-20 California Institute Of Technology Analysis devices, kits, and related methods for digital quantification of nucleic acids and other analytes
US9464319B2 (en) 2009-03-24 2016-10-11 California Institute Of Technology Multivolume devices, kits and related methods for quantification of nucleic acids and other analytes
IT1393855B1 (it) * 2009-04-22 2012-05-11 Consiglio Nazionale Ricerche Dispensatore elettrodinamico di liquidi in quantita' micro/nano-litriche basato sull'effetto piroelettrico in materiali funzionalizzati, senza l'impiego di sorgenti elettriche esterne.
CA2769320C (en) * 2009-08-02 2021-01-26 Qvella Corporation Cell concentration, capture and lysis devices and methods of use thereof
US10739358B2 (en) * 2009-12-18 2020-08-11 Entegrion, Inc. Portable coagulation monitoring devices, systems, and methods
CN102740976B (zh) 2010-01-29 2016-04-20 精密公司 取样-应答微流体盒
WO2011108576A1 (ja) * 2010-03-03 2011-09-09 日本化薬株式会社 検出デバイス
US20150359431A1 (en) * 2010-04-25 2015-12-17 Tomer Bakalash Brand-self perceptual neural model utilizing the superior temporal sulcus
US20140297397A1 (en) * 2010-04-25 2014-10-02 Tomer Bakalash Use of neural activation in the superior temporal sulcus as a predictor for memorability of audio and/or visual content and emotional engagement
WO2011137533A1 (en) 2010-05-05 2011-11-10 The Governing Council Of The University Of Toronto Method of processing dried samples using digital microfluidic device
US8465707B2 (en) 2010-07-22 2013-06-18 Gencell Biosystems Ltd. Composite liquid cells
CA2813090C (en) 2010-10-01 2019-11-12 The Governing Council Of The University Of Toronto Digital microfluidic devices and methods incorporating a solid phase
JP5756611B2 (ja) * 2010-10-07 2015-07-29 株式会社 資生堂 分析方法
US11292919B2 (en) 2010-10-08 2022-04-05 Ut-Battelle, Llc Anti-fingerprint coatings
CN103429997B (zh) * 2011-01-20 2017-08-25 华盛顿大学商业中心 进行数字测量的方法和系统
US9434937B2 (en) 2011-03-07 2016-09-06 Accelerate Diagnostics, Inc. Rapid cell purification systems
US10254204B2 (en) 2011-03-07 2019-04-09 Accelerate Diagnostics, Inc. Membrane-assisted purification
US9291567B2 (en) 2011-03-15 2016-03-22 Lidija Malic Microfluidic system having monolithic nanoplasmonic structures
US9541480B2 (en) 2011-06-29 2017-01-10 Academia Sinica Capture, purification, and release of biological substances using a surface coating
US20140349298A1 (en) * 2011-07-14 2014-11-27 William Eugene Stanchina Portable, low power instrument for the optoelectronic detection of pathogens using isothermal nucleic acid amplification protocols
WO2013028774A1 (en) 2011-08-22 2013-02-28 Waters Technologies Corporation Analysis of dried blood spot samples in a microfluidic system with dilution of extracted samples
WO2013029155A1 (en) * 2011-08-30 2013-03-07 The Royal Institute For The Advancement Of Learning/Mcgill University Methods and devices for multiplexed microarray microfluidic analysis of biomolecules
US10183968B2 (en) * 2011-10-31 2019-01-22 Merck Sharp & Dohme Corp. Methods of preparing lyophilized spherical-shaped pellets of biological materials
US8824768B1 (en) * 2011-11-10 2014-09-02 Blair K. Simon Fertilization test method and apparatus
JP6057251B2 (ja) * 2011-11-11 2017-01-11 国立研究開発法人産業技術総合研究所 粒子分別装置および粒子分別方法
ES2757700T3 (es) 2011-12-21 2020-04-29 Huawei Tech Co Ltd Detección y codificación de altura tonal muy débil
DE102012100824A1 (de) * 2012-02-01 2013-09-05 Albert-Ludwigs-Universität Freiburg Gemultiplexte Digital PCR
EP3984643A1 (en) * 2012-03-16 2022-04-20 Life Technologies Corporation Systems and methods for assessing of biological samples
EP2833892A4 (en) 2012-04-02 2016-07-20 Moderna Therapeutics Inc MODIFIED POLYNUCLEOTIDES FOR THE PRODUCTION OF PROTEINS AND PEPTIDES ASSOCIATED WITH ONCOLOGY
WO2013151666A2 (en) 2012-04-02 2013-10-10 modeRNA Therapeutics Modified polynucleotides for the production of biologics and proteins associated with human disease
US9808798B2 (en) 2012-04-20 2017-11-07 California Institute Of Technology Fluidic devices for biospecimen preservation
JP6196661B2 (ja) * 2012-04-20 2017-09-13 スリップチップ, エルエルシー サンプル調製または自律分析のための流体デバイスおよびシステム
US20150107993A1 (en) * 2012-04-24 2015-04-23 Transfert Plus, S.E.C. Methods and apparatuses for evaluating water pollution
US9803237B2 (en) * 2012-04-24 2017-10-31 California Institute Of Technology Slip-induced compartmentalization
US9480966B2 (en) 2012-04-30 2016-11-01 General Electric Company Substrates and methods for collection, stabilization and elution of biomolecules
US9044738B2 (en) * 2012-04-30 2015-06-02 General Electric Company Methods and compositions for extraction and storage of nucleic acids
US9186670B2 (en) * 2012-05-09 2015-11-17 Wisconsin Alumni Research Foundation Functionalized microfluidic device and method
US9283559B2 (en) * 2012-05-09 2016-03-15 Wisconsin Alumni Research Foundation Lid for functionalized microfluidic platform and method
US9410171B2 (en) * 2012-06-20 2016-08-09 The Regents Of The University Of California Non-thermal cycling for polymerase chain reaction
RU2018103106A (ru) 2012-06-28 2019-02-22 Флюоресентрик, Инк. Устройство для обнаружения химического индикатора
BR112014031983A2 (pt) 2012-06-29 2017-06-27 Koninklijke Philips Nv aparelho para o processamento de partículas magnéticas (mp, mp'), método para o processamento de partículas magnéticas (mp, mp') e utilização do aparelho
US9136099B2 (en) * 2012-07-04 2015-09-15 Sony Dadc Austria Ag Method and substrates for forming crystals
US9771656B2 (en) 2012-08-28 2017-09-26 Ut-Battelle, Llc Superhydrophobic films and methods for making superhydrophobic films
US9766166B2 (en) * 2013-01-09 2017-09-19 Wisconsin Alumni Research Foundation Device and method incorporating a slideable lid for extracting a targeted fraction from a sample
WO2014055963A1 (en) * 2012-10-05 2014-04-10 California Institute Of Technology Methods and systems for microfluidics imaging and analysis
WO2016154113A1 (en) * 2015-03-20 2016-09-29 The Methodist Hospital Multiplexed volumetric bar chart chip for point of care biomarker and/or analyte quantitation, including competitive control
US9097710B2 (en) * 2012-10-16 2015-08-04 The Methodist Hospital Research Institute Multiplexed volumetric bar chart chip for point of care biomarker and analyte quantitation
AU2013350823B2 (en) 2012-11-27 2017-11-16 Gencell Biosystems Ltd. Handling liquid samples
WO2014100732A1 (en) 2012-12-21 2014-06-26 Micronics, Inc. Fluidic circuits and related manufacturing methods
EP3549674B1 (en) 2012-12-21 2020-08-12 PerkinElmer Health Sciences, Inc. Low elasticity films for microfluidic use
KR20150097764A (ko) 2012-12-21 2015-08-26 마이크로닉스 인코포레이티드. 휴대형 형광 검출 시스템 및 미량분석 카트리지
US20140206007A1 (en) * 2013-01-18 2014-07-24 The Johns Hopkins University Electromagnetically actuated droplet microfluidic chip and system
USD758372S1 (en) * 2013-03-13 2016-06-07 Nagrastar Llc Smart card interface
US9888283B2 (en) 2013-03-13 2018-02-06 Nagrastar Llc Systems and methods for performing transport I/O
US11029310B2 (en) * 2013-03-14 2021-06-08 Wisconsin Alumni Research Foundation Device and method for extracting a targeted fraction from a sample
US20160016166A1 (en) * 2013-03-14 2016-01-21 Diagnostics For All, Inc. Molecular diagnostic devices with magnetic components
US9677109B2 (en) 2013-03-15 2017-06-13 Accelerate Diagnostics, Inc. Rapid determination of microbial growth and antimicrobial susceptibility
GB201304797D0 (en) * 2013-03-15 2013-05-01 Diagnostics For The Real World Ltd Apparatus and method for automated sample preparation and adaptor for use in the apparatus
SG10201800317PA (en) * 2013-04-19 2018-02-27 California Inst Of Techn Parallelized sample handling
US10386377B2 (en) 2013-05-07 2019-08-20 Micronics, Inc. Microfluidic devices and methods for performing serum separation and blood cross-matching
WO2014182847A1 (en) * 2013-05-07 2014-11-13 Micronics, Inc. Device for preparation and analysis of nucleic acids
WO2014182831A1 (en) 2013-05-07 2014-11-13 Micronics, Inc. Methods for preparation of nucleic acid-containing samples using clay minerals and alkaline solutions
JP6244589B2 (ja) * 2013-05-21 2017-12-13 国立大学法人名古屋大学 微粒子分離用マイクロ流路チップ、移流集積ユニット、微粒子分離用システム及び微粒子分離方法
GB201311679D0 (en) 2013-06-28 2013-08-14 Ibm Microfluidic chip with dielectrophoretic electrodes extending in hydrophilic flow path
WO2015009967A1 (en) 2013-07-19 2015-01-22 California Institute Of Technology Digital assay for quantifying and concentrating analytes
US20160194368A1 (en) 2013-09-03 2016-07-07 Moderna Therapeutics, Inc. Circular polynucleotides
AU2014315287A1 (en) 2013-09-03 2015-03-12 Moderna Therapeutics, Inc. Chimeric polynucleotides
US10207269B2 (en) 2013-09-18 2019-02-19 California Institute Of Technology System and method for movement and timing control
JP2015068708A (ja) * 2013-09-27 2015-04-13 株式会社東芝 表面状態評価装置及び表面状態評価方法
TWI581861B (zh) * 2013-09-30 2017-05-11 新加坡科技研究局 微流體裝置、用於檢測之系統、使用該系統之檢測方法及該系統之用途
EP3052234B8 (en) * 2013-09-30 2024-06-19 Capitainer AB A microfluidic device and methods
US10323076B2 (en) 2013-10-03 2019-06-18 Modernatx, Inc. Polynucleotides encoding low density lipoprotein receptor
EP3058100A4 (en) 2013-10-18 2017-04-19 California Institute of Technology Enhanced nucleic acid identification and detection
US10823743B1 (en) 2013-10-28 2020-11-03 Ifirst Medical Technologies, Inc. Methods of measuring coagulation of a biological sample
WO2015066635A1 (en) * 2013-11-01 2015-05-07 Daniel Irimia Cell sorting
WO2015160419A2 (en) 2014-02-05 2015-10-22 Slipchip Corporation Sample preparation module with stepwise pressurization mechanism
EP3105326A4 (en) 2014-02-10 2018-01-10 Gencell Biosystems Limited Composite liquid cell (clc) mediated nucleic acid library preparation device, and methods for using the same
US20150239773A1 (en) 2014-02-21 2015-08-27 Ut-Battelle, Llc Transparent omniphobic thin film articles
US9895693B2 (en) 2014-03-07 2018-02-20 Bio-Rad Laboratories, Inc. Automated blotting using sliding devices
WO2015138343A1 (en) * 2014-03-10 2015-09-17 Click Diagnostics, Inc. Cartridge-based thermocycler
WO2015148609A2 (en) * 2014-03-26 2015-10-01 Li-Cor, Inc. Immunoassays using colloidal crystals
TW201623605A (zh) 2014-04-01 2016-07-01 中央研究院 用於癌症診斷及預後之方法及系統
EP3653727A1 (en) 2014-04-08 2020-05-20 University Of Washington Through Its Center For Commercialization Methods and apparatus for performing digital assays using polydisperse droplets
ES2749925T3 (es) 2014-04-24 2020-03-24 Lucira Health Inc Detección colorimétrica de amplificación de ácido nucleico
KR101596131B1 (ko) * 2014-04-25 2016-02-22 한국과학기술원 소수성 표면을 이용한 칩 패키징 방법 및 칩 패키지
CA2955250A1 (en) 2014-07-16 2016-01-21 Moderna Therapeutics, Inc. Chimeric polynucleotides
US20170210788A1 (en) 2014-07-23 2017-07-27 Modernatx, Inc. Modified polynucleotides for the production of intrabodies
US10073091B2 (en) 2014-08-08 2018-09-11 Ortho-Clinical Diagnostics, Inc. Lateral flow assay device
TW201612308A (en) 2014-08-26 2016-04-01 Academia Sinica Collector architecture layout design
WO2016044578A1 (en) * 2014-09-18 2016-03-24 Cedars-Sinai Medical Center Antifungal therapy for the treatment of hirschsprung-associated enterocolitis
JP6443450B2 (ja) * 2014-09-19 2018-12-26 コニカミノルタ株式会社 画像処理装置、画像処理方法、及びプログラム
US10446728B2 (en) * 2014-10-31 2019-10-15 eLux, Inc. Pick-and remove system and method for emissive display repair
US10418527B2 (en) * 2014-10-31 2019-09-17 eLux, Inc. System and method for the fluidic assembly of emissive displays
US10252231B2 (en) 2014-10-31 2019-04-09 Massachusetts Institute Of Technology Compositions and methods for forming emulsions
EP3215631A4 (en) 2014-11-05 2018-08-08 California Institute of Technology Microfluidic measurements of the response of an organism to a drug
FR3028318A1 (fr) * 2014-11-12 2016-05-13 Phuong Lan Tran Procede et dispositif de tri selectif, specifique et simultane de cellules rares cibles dans un echantillon biologique
AU2015373998A1 (en) 2014-12-31 2017-06-29 Visby Medical, Inc. Devices and methods for molecular diagnostic testing
US10233505B2 (en) * 2015-01-16 2019-03-19 Kansas State University Research Foundation Co-detection and association of multiple genes from the same genome in a sample
GB2536650A (en) 2015-03-24 2016-09-28 Augmedics Ltd Method and system for combining video-based and optic-based augmented reality in a near eye display
KR101656181B1 (ko) 2015-03-30 2016-09-08 경희대학교 산학협력단 마이크로 패드 플랫폼
WO2016161022A2 (en) 2015-03-30 2016-10-06 Accerlate Diagnostics, Inc. Instrument and system for rapid microorganism identification and antimicrobial agent susceptibility testing
US10253355B2 (en) 2015-03-30 2019-04-09 Accelerate Diagnostics, Inc. Instrument and system for rapid microorganism identification and antimicrobial agent susceptibility testing
CN104774747B (zh) * 2015-04-14 2017-03-01 浙江大学 用于细胞迁移分析实验的微流控液滴芯片装置及方法
WO2016172388A2 (en) * 2015-04-21 2016-10-27 Joseph Paul Robinson Culture detection and measurement over time
EP3250919A4 (en) * 2015-04-29 2019-03-06 Ixcela, Inc. METHOD AND DEVICE FOR QUANTIZING BLOOD SAMPLES
USD864968S1 (en) 2015-04-30 2019-10-29 Echostar Technologies L.L.C. Smart card interface
CN106268392B (zh) * 2015-05-27 2019-12-13 艾博生物医药(杭州)有限公司 一种混合至少两种物质的方法
EP3303548A4 (en) 2015-06-05 2019-01-02 Miroculus Inc. Evaporation management in digital microfluidic devices
WO2016197103A1 (en) 2015-06-05 2016-12-08 Miroculus Inc. Air-matrix digital microfluidics apparatuses and methods for limiting evaporation and surface fouling
GB201511342D0 (en) * 2015-06-29 2015-08-12 Rolls Royce Plc Vortex identification methods and tools
EP3120928A1 (en) 2015-07-24 2017-01-25 Centre National De La Recherche Scientifique Fluidic devices with at least one actionnable fiber
WO2017035484A1 (en) * 2015-08-26 2017-03-02 EMULATE, Inc. Perfusion manifold assembly
WO2017033070A1 (en) * 2015-08-26 2017-03-02 Gencell Biosystems Ltd. Composite liquid cell (clc) supports, and methods of making and using the same
CN115161178A (zh) 2015-09-09 2022-10-11 集联健康有限公司 用于样品收集、稳定化和保存的系统、方法和装置
US10300485B2 (en) 2015-10-23 2019-05-28 The Royal Institution For The Advancement Of Learning/Mcgill University Nanoarray-in-microarray multiplexed analysis methods and systems
FR3044685B1 (fr) * 2015-12-02 2020-11-27 Univ Grenoble 1 Puce microfluidique pour la cristallisation de molecules, procede de preparation, dispositif la comprenant et procede de cristallisation de molecules
CN105400693B (zh) * 2015-12-15 2017-06-06 上海海洋大学 平板等温核酸扩增芯片
CN105400692B (zh) * 2015-12-15 2017-06-27 上海海洋大学 等温核酸扩增装置及等温核酸扩增实验方法
TWI579030B (zh) * 2015-12-15 2017-04-21 Cg生物技術有限公司 分離細胞之容器、系統及方法
WO2017123622A1 (en) * 2016-01-11 2017-07-20 Fluoresentric, Inc. Systems, apparatus, and methods for inline sample preparation
KR20170099737A (ko) * 2016-02-23 2017-09-01 노을 주식회사 접촉식 염색 패치 및 이를 이용하는 염색 방법
US11753682B2 (en) 2016-03-07 2023-09-12 Father Flanagan's Boys'Home Noninvasive molecular controls
US10107726B2 (en) 2016-03-16 2018-10-23 Cellmax, Ltd. Collection of suspended cells using a transferable membrane
CN105861309B (zh) * 2016-04-14 2018-05-11 清华大学 一种超疏水微坑阵列芯片及其制备方法与应用
US10987674B2 (en) 2016-04-22 2021-04-27 Visby Medical, Inc. Printed circuit board heater for an amplification module
WO2017197040A1 (en) 2016-05-11 2017-11-16 Click Diagnostics, Inc. Devices and methods for nucleic acid extraction
CN106031889B (zh) * 2016-05-17 2018-04-17 西安交通大学 一种基于离心平台的蛋白质快速检测系统
CN106513062B (zh) * 2016-05-30 2019-02-22 苏州汶颢芯片科技有限公司 酶联免疫快速检测的微流控芯片及其预处理和检测方法
US10255524B2 (en) * 2016-06-03 2019-04-09 Becton Dickinson Rowa Germany Gmbh Method for providing a singling device of a storage and dispensing container
US10150115B2 (en) * 2016-07-21 2018-12-11 Spacepharma SA System and method for rehydrating powder and delivering the rehydrated powder to a reactor
CN106268990B (zh) * 2016-07-26 2018-07-24 林捷琳 一种基于点阵热压法的纸微流控芯片制备方法
WO2018039281A1 (en) 2016-08-22 2018-03-01 Miroculus Inc. Feedback system for parallel droplet control in a digital microfluidic device
US11168347B2 (en) 2016-09-23 2021-11-09 California Institute Of Technology Digital quantification of DNA replication and/or chromosome segregation based determination of antimicrobial susceptibility
JP7254349B2 (ja) * 2016-10-26 2023-04-10 インテグレーテッド ナノ-テクノロジーズ,インコーポレイティド 生体分子標的の光検知システム及び方法
CN106370832B (zh) * 2016-11-09 2024-02-27 苏州一呼医疗科技有限公司 智能呼气分子诊断系统
CN106754335B (zh) * 2016-11-22 2019-05-17 上海海洋大学 一种等温核酸扩增芯片
CN110383061A (zh) 2016-12-28 2019-10-25 米罗库鲁斯公司 数字微流控设备和方法
EP3568076A4 (en) 2017-01-10 2020-10-21 Drawbridge Health, Inc. DEVICES, SYSTEMS AND METHODS FOR SAMPLING
US10470841B2 (en) * 2017-03-28 2019-11-12 Steris Inc. Robot-based rack processing system
WO2018187476A1 (en) 2017-04-04 2018-10-11 Miroculus Inc. Digital microfluidic apparatuses and methods for manipulating and processing encapsulated droplets
US11080848B2 (en) 2017-04-06 2021-08-03 Lucira Health, Inc. Image-based disease diagnostics using a mobile device
CN106916728B (zh) * 2017-04-18 2023-10-27 朱红 一种磁力搅拌式药敏分析仪器以及配套试剂盒
US10787695B2 (en) * 2017-06-01 2020-09-29 General Electric Company Systems and methods for rapidly sensing microbial metabolism
US11413617B2 (en) 2017-07-24 2022-08-16 Miroculus Inc. Digital microfluidics systems and methods with integrated plasma collection device
JP2019024366A (ja) * 2017-07-27 2019-02-21 キヤノン株式会社 分析システム、分析方法、プログラム、および記憶媒体
CN107287112A (zh) * 2017-08-03 2017-10-24 甘肃出入境检验检疫局检验检疫综合技术中心 一种阵列式数字pcr芯片及其使用方法
CN107365685A (zh) * 2017-08-03 2017-11-21 甘肃出入境检验检疫局检验检疫综合技术中心 数字pcr扩增仪及其工作方法
JP2019030273A (ja) * 2017-08-09 2019-02-28 キヤノン株式会社 分析システム、分析方法、プログラム、および記憶媒体
CA3073287A1 (en) 2017-08-18 2019-02-21 Somadetect Inc. Methods and systems for assessing a health state of a lactating mammal
KR102192651B1 (ko) * 2017-08-23 2020-12-17 노을 주식회사 시약을 저장하는 저장 매체 및 이를 이용한 검사 방법 및 검사 모듈
EP3676009A4 (en) 2017-09-01 2021-06-16 Miroculus Inc. DIGITAL MICROFLUIDIC DEVICES AND THEIR METHODS OF USE
EP4219715A3 (en) 2017-09-08 2023-09-06 MiNA Therapeutics Limited Stabilized cebpa sarna compositions and methods of use
KR101977963B1 (ko) * 2017-09-13 2019-08-28 건국대학교 산학협력단 미세 유체 제어 장치 및 이를 이용하는 미세 유체의 제어 방법
US11149265B2 (en) 2017-09-14 2021-10-19 California Institute Of Technology Purification and detection of analytes
WO2019060914A2 (en) * 2017-09-25 2019-03-28 California Institute Of Technology METHODS AND SYSTEMS FOR PERFORMING THE ANALYSIS OF A SINGLE CELL OF MOLECULAR MOLECULES AND MOLECULAR COMPLEXES
CN107886496A (zh) * 2017-09-30 2018-04-06 北京得华机器人技术研究院有限公司 一种基于形状匹配的汽车零配件的质量检测方法
EP3695009A4 (en) 2017-10-11 2021-08-11 California Institute of Technology ANTIBIOTIC SENSITIVITY OF MICROORGANISMS AND RELATED COMPOSITIONS, PROCEDURES AND SYSTEMS
WO2019075321A1 (en) 2017-10-13 2019-04-18 The Charles Stark Draper Laboratory, Inc. MINIATURIZED DNA MICROARRAY FOR SMALL VOLUME SAMPLE PROCESSING
CN108004129A (zh) * 2017-10-28 2018-05-08 深圳职业技术学院 一种核酸一体化多重检测盒体及检测方法
JP7098096B2 (ja) * 2017-11-07 2022-07-11 株式会社リコー 検出精度特定方法、検出精度特定装置、及び検出精度特定プログラム
KR20200079264A (ko) 2017-11-09 2020-07-02 비스비 메디컬, 인코포레이티드 표적 바이러스 검출을 위한 휴대용 분자 진단 디바이스 및 방법
US11162192B2 (en) 2017-12-01 2021-11-02 Arizona Board Of Regents On Behalf Of Arizona State University Materials and methods relating to single molecule arrays
EP3495865A1 (en) * 2017-12-07 2019-06-12 European Molecular Biology Laboratory A sample holder for imaging a plurality of samples
US11707736B2 (en) * 2017-12-08 2023-07-25 Enuvio Inc. Microfluidic chip and method for making the same
CN116121340A (zh) * 2017-12-19 2023-05-16 生物动力学公司 用于从生物样品中检测多种分析物的方法和装置
CN108153955A (zh) * 2017-12-20 2018-06-12 湖州师范学院 基于遗传算法的柴油机硅油减振器多目标动态匹配方法
WO2019155488A1 (en) * 2018-02-07 2019-08-15 Jaydeep Bhattacharya A low cost microfluidic device for dna/rna isolation, purification and amplification using chip based pcr/ rt- pcr for biosensing applications
CN108660068B (zh) * 2018-02-13 2022-04-05 臻准生物工程(山西)有限公司 生物反应芯片及其制备方法
WO2019165363A1 (en) * 2018-02-23 2019-08-29 University Of Virginia Patent Foundation Slipchip device for on-chip dilution and size-based extraction of protein labeling reagents
CN108121981A (zh) * 2018-02-26 2018-06-05 深圳市生强科技有限公司 指纹检测装置
CN117065932A (zh) 2018-04-02 2023-11-17 生物动力学公司 介电材料
EP3775211B1 (en) 2018-04-12 2023-04-05 MiNA Therapeutics Limited Sirt1-sarna compositions and methods of use
CN114345261B (zh) * 2018-04-17 2023-03-14 上海交通大学 一种制备微颗粒的方法
US11980507B2 (en) 2018-05-02 2024-05-14 Augmedics Ltd. Registration of a fiducial marker for an augmented reality system
US11592407B2 (en) 2018-05-18 2023-02-28 Enersoft Inc. Systems, devices, and methods for x-ray fluorescence analysis of geological samples
CN112469504A (zh) 2018-05-23 2021-03-09 米罗库鲁斯公司 对数字微流控中的蒸发的控制
CN108837718A (zh) * 2018-06-11 2018-11-20 上海交通大学 一种高通量微液滴梯度稀释装置和方法
CN108896754A (zh) * 2018-07-05 2018-11-27 南京优芯生物科技有限公司 一种快速检测生物标志物的滑动微流控芯片
GB201812192D0 (en) 2018-07-26 2018-09-12 Ttp Plc Variable temperature reactor, heater and control circuit for the same
WO2020028729A1 (en) * 2018-08-01 2020-02-06 Mammoth Biosciences, Inc. Programmable nuclease compositions and methods of use thereof
JP2020034496A (ja) * 2018-08-31 2020-03-05 シスメックス株式会社 試料処理方法、試料処理装置、プログラムおよび試料処理カートリッジ
JP2020031606A (ja) * 2018-08-31 2020-03-05 シスメックス株式会社 核酸検出装置および核酸検出方法
CN109046484B (zh) * 2018-09-12 2021-03-30 上海交通大学 一种位移式微流控芯片由表面张力生成液滴的方法
WO2020076928A1 (en) * 2018-10-09 2020-04-16 Lucira Health, Inc. Consumer-based disease diagnostics
US20210373015A1 (en) * 2018-10-23 2021-12-02 Myriad Applied Technologies, Inc. Kits and methods for real-time mulitplex detection and identification of pathogens
CN109092022B (zh) * 2018-11-06 2023-11-24 王东杰 一种内外循环风道切换结构及其控湿装置
US11766296B2 (en) 2018-11-26 2023-09-26 Augmedics Ltd. Tracking system for image-guided surgery
CN109612853B (zh) * 2018-11-26 2021-08-03 Tcl华星光电技术有限公司 抗压测试装置及其测试方法
US20220120671A1 (en) * 2019-01-14 2022-04-21 Infiniplex Ltd. Multi-test kit
JP7335343B2 (ja) * 2019-01-31 2023-08-29 サンプリックス エーピーエス マイクロ流体デバイスおよびエマルション液滴の提供のための方法
CN109540860B (zh) * 2019-02-19 2021-03-02 济南大学 一种检测卡那霉素的荧光生物传感器及其制备方法和应用
CN109904131B (zh) * 2019-02-22 2020-11-17 西安航思半导体有限公司 高稳定性dfn封装器件
US11976269B2 (en) * 2019-03-18 2024-05-07 Cellular Research, Inc. Precise delivery of components into fluids
CN113661235B (zh) * 2019-04-03 2024-06-14 格瑞丁泰克公司 盒组件
EP3953041A4 (en) 2019-04-08 2023-01-25 Miroculus Inc. MULTIPLE CARTRIDGE DIGITAL MICROFLUIDIC APPARATUS AND METHODS OF USE
WO2020208361A1 (en) 2019-04-12 2020-10-15 Mina Therapeutics Limited Sirt1-sarna compositions and methods of use
CN110071031B (zh) * 2019-05-05 2020-05-05 东北大学 一种蛇形线式质谱仪连续性变压取样装置及方法
CA3139147A1 (en) 2019-05-06 2020-11-12 University Of Prince Edward Island Portable field testing apparatus and method
CN110082346B (zh) * 2019-05-12 2020-11-03 武汉生之源生物科技股份有限公司 一种载脂蛋白e检测试剂盒
CN114174533A (zh) * 2019-05-27 2022-03-11 国家科学研究中心 使用等温扩增的数字生物分子检测和/或定量
CN110272822B (zh) * 2019-06-06 2021-10-26 上海交通大学 一种基因扩增实时荧光定量检测装置及检测方法
WO2021016614A1 (en) 2019-07-25 2021-01-28 Miroculus Inc. Digital microfluidics devices and methods of use thereof
US11980506B2 (en) 2019-07-29 2024-05-14 Augmedics Ltd. Fiducial marker
WO2021021906A1 (en) * 2019-07-29 2021-02-04 The Regents Of The University Of California Early detection of e. coli and total coliform using an automated, colorimetric and fluorometric fiber optics-based device
CN110643483B (zh) * 2019-09-06 2023-04-14 上海交通大学 一种在微流控芯片上生成液滴阵列的方法
US20210116338A1 (en) * 2019-10-19 2021-04-22 Cfd Research Corporation Fluidic bead trap and methods of use
US11382712B2 (en) 2019-12-22 2022-07-12 Augmedics Ltd. Mirroring in image guided surgery
US11866695B2 (en) 2019-12-23 2024-01-09 California Institute Of Technology Methods and systems and related compositions for mixtures separation with a solid matrix
EP4085149A4 (en) 2020-01-03 2024-03-06 Visby Medical, Inc. ANTIBIOTIC SUSCEPTIBILITY TESTING DEVICES AND METHODS
WO2021142439A1 (en) * 2020-01-09 2021-07-15 The Regents Of The University Of Michigan Device for rapid and quantitative detection of drugs of abuse in sweat
CN111250182B (zh) * 2020-02-11 2021-03-19 北京理工大学 一种高通量微流控电泳筛分芯片及其制备方法、应用方法
KR102375816B1 (ko) * 2020-02-14 2022-03-18 주식회사 디앤에이보이 검체 분석 디바이스 및 이의 제조 방법
CN111676131A (zh) * 2020-06-17 2020-09-18 清华大学 用于活体单细胞局部微区原位自由基刺激的微流控装置
AU2021364598A1 (en) 2020-10-19 2023-06-08 Bio-Rad Laboratories, Inc. System and method for rapid multiplexed sample processing with applications for nucleic acid amplification assays
TWI797650B (zh) * 2020-11-12 2023-04-01 邑流微測股份有限公司 鈕扣電池測試裝置
GB2603454A (en) 2020-12-09 2022-08-10 Ucl Business Ltd Novel therapeutics for the treatment of neurodegenerative disorders
JP2022102386A (ja) * 2020-12-25 2022-07-07 国立大学法人旭川医科大学 遺伝子解析用サンプルの製造方法
CN114798013A (zh) * 2021-01-29 2022-07-29 中国科学院长春光学精密机械与物理研究所 一种微流控芯片及其制造方法
CN114836291A (zh) * 2021-02-01 2022-08-02 深圳拜尔洛克生物技术有限公司 生物材料解冻复苏的系统及其方法
KR20230160872A (ko) 2021-03-26 2023-11-24 미나 테라퓨틱스 리미티드 Tmem173 sarna 조성물 및 사용 방법
KR102577768B1 (ko) * 2021-04-06 2023-09-12 연세대학교 산학협력단 세포포획이 가능한 미세유체 디바이스
US11896445B2 (en) 2021-07-07 2024-02-13 Augmedics Ltd. Iliac pin and adapter
CN113699033A (zh) * 2021-08-10 2021-11-26 上海交通大学 一种基于熔解曲线的多重数字核酸分析装置和分析方法
RU209656U1 (ru) * 2021-09-22 2022-03-17 Федеральное государственное бюджетное образовательное учреждение высшего образования "Брянский государственный аграрный университет" Цилиндрический триер
WO2023044582A1 (en) * 2021-09-27 2023-03-30 Queen's University At Kingston Method and apparatus for rapid mass spectrometric calibration
CN114062632B (zh) * 2021-11-17 2023-12-29 扬州大学 一种基于纳米颗粒酶联增敏的镉离子微流控检测方法
WO2023099884A1 (en) 2021-12-01 2023-06-08 Mina Therapeutics Limited Pax6 sarna compositions and methods of use
GB202117758D0 (en) 2021-12-09 2022-01-26 Ucl Business Ltd Therapeutics for the treatment of neurodegenerative disorders
CN114113023B (zh) * 2021-12-16 2024-04-26 郑州轻工业大学 基于单核增生李斯特菌来源的氮掺杂碳点的制备方法和应用
US11857961B2 (en) 2022-01-12 2024-01-02 Miroculus Inc. Sequencing by synthesis using mechanical compression
WO2023170435A1 (en) 2022-03-07 2023-09-14 Mina Therapeutics Limited Il10 sarna compositions and methods of use
CN114591812B (zh) * 2022-05-10 2022-07-22 博奥生物集团有限公司 生物反应芯片及离心式微流控系统
CN114608891B (zh) * 2022-05-12 2022-07-15 潍坊优特检测服务有限公司 一种全自动水质检测仪器
CN115178199B (zh) * 2022-05-31 2024-04-30 清华大学 无源微流控微反应器以及微流控芯片
US20240175008A1 (en) * 2022-11-30 2024-05-30 FemtoFluidics, Inc. Synthesizing chemical libraries using digital microfluidics
CN116606727B (zh) * 2023-04-17 2024-03-12 长庚大学 核酸检测装置及核酸检测方法
CN117168612B (zh) * 2023-09-27 2024-01-02 华安钢宝利高新汽车板加工(常熟)有限公司 一种激光器发光功率监测装置
CN117970855B (zh) * 2024-03-28 2024-05-28 睢宁县泰宁建材有限公司 一种混凝土制备生产线运行智能监控控制系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1791509A (zh) * 2002-12-30 2006-06-21 加州大学评议会 检测和分析病原体的方法和设备
CN1886644A (zh) * 2003-11-26 2006-12-27 布勒医药股份公司 用于确定小量液体样品的装置和方法

Family Cites Families (280)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2541413A (en) 1947-04-01 1951-02-13 Graflex Inc Photographic camera and shutter therefor
US3787290A (en) 1972-04-10 1974-01-22 S Kaye Method and means for assaying biological factors demonstrating quantal response
US3996345A (en) 1974-08-12 1976-12-07 Syva Company Fluorescence quenching with immunological pairs in immunoassays
US4071409A (en) 1976-05-20 1978-01-31 Corning Glass Works Immobilization of proteins on inorganic support materials
GB2097692B (en) 1981-01-10 1985-05-22 Shaw Stewart P D Combining chemical reagents
US4853336A (en) 1982-11-15 1989-08-01 Technicon Instruments Corporation Single channel continuous flow system
US5656493A (en) 1985-03-28 1997-08-12 The Perkin-Elmer Corporation System for automated performance of the polymerase chain reaction
US4963498A (en) 1985-08-05 1990-10-16 Biotrack Capillary flow device
JPS62106000A (ja) 1985-10-30 1987-05-16 Fujitsu Ltd 生体高分子結晶自動作製装置
US5077017A (en) 1987-11-05 1991-12-31 Biotrack, Inc. Integrated serial dilution and mixing cartridge
US5185099A (en) 1988-04-20 1993-02-09 Institut National De Recherche Chimique Appliquee Visco-elastic, isotropic materials based on water, fluorinate sufactants and fluorinated oils, process for their preparation, and their use in various fields, such as optics, pharmacology and electrodynamics
US5026113A (en) 1988-09-09 1991-06-25 Sky-Top Sunroofs Ltd. Sliding and venting sunroof
US5237016A (en) 1989-01-05 1993-08-17 Siska Diagnostics, Inc. End-attachment of oligonucleotides to polyacrylamide solid supports for capture and detection of nucleic acids
US5744101A (en) 1989-06-07 1998-04-28 Affymax Technologies N.V. Photolabile nucleoside protecting groups
US5114208A (en) 1989-08-04 1992-05-19 Aisin Seiki Kabushiki Kaisha Sliding mechanism for sunroof
US6503707B1 (en) 1990-06-27 2003-01-07 The Blood Center Research Foundation, Inc. Method for genetic typing
US5994056A (en) 1991-05-02 1999-11-30 Roche Molecular Systems, Inc. Homogeneous methods for nucleic acid amplification and detection
WO1992019960A1 (en) 1991-05-09 1992-11-12 Nanophore, Inc. Methods for the electrophoretic separation of nucleic acids and other linear macromolecules in gel media with restrictive pore diameters
US5686315A (en) 1991-06-14 1997-11-11 Quidel Corporation Assay device for one step detection of analyte
US5251670A (en) 1991-06-25 1993-10-12 Bates Lyle D Flush valve
US5169942A (en) 1991-11-21 1992-12-08 General Electric Company Method for making 2-(18F)fluoro-2-deoxy-D-glucose
DE4143639C2 (de) 1991-12-02 2002-10-24 Qiagen Gmbh Verfahren zur Isolierung und Reinigung von Nukleinsäuren
US5726026A (en) 1992-05-01 1998-03-10 Trustees Of The University Of Pennsylvania Mesoscale sample preparation device and systems for determination and processing of analytes
US5264570A (en) 1992-08-05 1993-11-23 General Electric Company Method for making 2-[18 F]fluoro-2-deoxy-D-glucose
US5639423A (en) 1992-08-31 1997-06-17 The Regents Of The University Of Calfornia Microfabricated reactor
US5795714A (en) 1992-11-06 1998-08-18 Trustees Of Boston University Method for replicating an array of nucleic acid probes
GB9301122D0 (en) 1993-01-21 1993-03-10 Scient Generics Ltd Method of analysis/separation
US5518892A (en) * 1994-02-23 1996-05-21 Idexx Laboratories, Inc. Apparatus and method for quantification of biological material in a liquid sample
US5986076A (en) 1994-05-11 1999-11-16 Trustees Of Boston University Photocleavable agents and conjugates for the detection and isolation of biomolecules
DE4420732A1 (de) 1994-06-15 1995-12-21 Boehringer Mannheim Gmbh Vorrichtung zur Behandlung von Nukleinsäuren aus einer Probe
US5585069A (en) 1994-11-10 1996-12-17 David Sarnoff Research Center, Inc. Partitioned microelectronic and fluidic device array for clinical diagnostics and chemical synthesis
WO1996014934A1 (en) 1994-11-14 1996-05-23 Trustees Of The University Of Pennsylvania Mesoscale sample preparation device and systems for determination and processing of analytes
US5688651A (en) 1994-12-16 1997-11-18 Ramot University Authority For Applied Research And Development Ltd. Prevention of protein aggregation
US6168948B1 (en) 1995-06-29 2001-01-02 Affymetrix, Inc. Miniaturized genetic analysis systems and methods
US20020022261A1 (en) 1995-06-29 2002-02-21 Anderson Rolfe C. Miniaturized genetic analysis systems and methods
US5856174A (en) 1995-06-29 1999-01-05 Affymetrix, Inc. Integrated nucleic acid diagnostic device
US5872010A (en) 1995-07-21 1999-02-16 Northeastern University Microscale fluid handling system
US5773258A (en) 1995-08-25 1998-06-30 Roche Molecular Systems, Inc. Nucleic acid amplification using a reversibly inactivated thermostable enzyme
US6146854A (en) 1995-08-31 2000-11-14 Sequenom, Inc. Filtration processes, kits and devices for isolating plasmids
US6130098A (en) 1995-09-15 2000-10-10 The Regents Of The University Of Michigan Moving microdroplets
US5707850A (en) 1995-11-09 1998-01-13 Cole; Kenneth D. Concentration and size-fractionation of nucleic acids and viruses in porous media
US5772889A (en) 1995-11-13 1998-06-30 Transgenomic, Inc. System and method for performing nucleic acid separations using liquid chromatography
US5805947A (en) 1995-12-08 1998-09-08 Nikon Corporation Camera provided with a sliding cover
US5917184A (en) 1996-02-08 1999-06-29 Perseptive Biosystems Interface between liquid flow and mass spectrometer
JP4912517B2 (ja) * 1996-04-03 2012-04-11 アプライド バイオシステムズ リミテッド ライアビリティー カンパニー 複数の分析物の検出のためのデバイスおよび方法
WO1997039359A1 (en) 1996-04-15 1997-10-23 Dade International Inc. Apparatus and method for analysis
CN1173776C (zh) 1996-06-28 2004-11-03 卡钳技术有限公司 在微规模流体性设备里的高通过量的筛选分析系统
CN1329729C (zh) 1996-06-28 2007-08-01 卡钳生命科学股份有限公司 微流体系统
US5800690A (en) 1996-07-03 1998-09-01 Caliper Technologies Corporation Variable control of electroosmotic and/or electrophoretic forces within a fluid-containing structure via electrical forces
DE69707288T2 (de) 1996-07-15 2002-07-18 Calcitech Ltd Herstellung von pulvern
US5718509A (en) * 1996-10-03 1998-02-17 Instrumentation Technology Associates, Inc. Materials dispersion apparatus with relatively slidable blocks
US6140053A (en) 1996-11-06 2000-10-31 Sequenom, Inc. DNA sequencing by mass spectrometry via exonuclease degradation
CA2276251A1 (en) 1996-11-20 1998-05-28 The Regents Of The University Of Michigan Microfabricated isothermal nucleic acid amplification devices and methods
US5725017A (en) 1997-01-27 1998-03-10 Medtronic, Inc. In-line pressure check valve for drug-delivery systems
US6143496A (en) 1997-04-17 2000-11-07 Cytonix Corporation Method of sampling, amplifying and quantifying segment of nucleic acid, polymerase chain reaction assembly having nanoliter-sized sample chambers, and method of filling assembly
DE19717085C2 (de) 1997-04-23 1999-06-17 Bruker Daltonik Gmbh Verfahren und Geräte für extrem schnelle DNA-Vervielfachung durch Polymerase-Kettenreaktionen (PCR)
US6558901B1 (en) 1997-05-02 2003-05-06 Biomerieux Vitek Nucleic acid assays
JP2002503336A (ja) 1997-05-16 2002-01-29 アルバータ リサーチ カウンシル 微量流通システムおよびその使用方法
US20050070005A1 (en) 1997-06-16 2005-03-31 Martin Keller High throughput or capillary-based screening for a bioactivity or biomolecule
GB9715101D0 (en) 1997-07-18 1997-09-24 Environmental Sensors Ltd The production of microstructures for analysis of fluids
US6300138B1 (en) 1997-08-01 2001-10-09 Qualigen, Inc. Methods for conducting tests
US6426230B1 (en) 1997-08-01 2002-07-30 Qualigen, Inc. Disposable diagnostic device and method
US6111096A (en) 1997-10-31 2000-08-29 Bbi Bioseq, Inc. Nucleic acid isolation and purification
CN1230440C (zh) 1997-12-06 2005-12-07 Dna研究创新有限公司 核酸的分离
US6632653B1 (en) 1997-12-08 2003-10-14 Thomas W. Astle Continuous polymerase chain reaction apparatus with multiple temperature stations
EP1060022A1 (en) 1998-02-04 2000-12-20 Merck & Co., Inc. Virtual wells for use in high throughput screening assays
CA2325567A1 (en) 1998-05-01 1999-11-11 Maxygen, Inc. Optimization of pest resistance genes using dna shuffling
US5997636A (en) 1998-05-01 1999-12-07 Instrumentation Technology Associates, Inc. Method and apparatus for growing crystals
GB2337261B (en) 1998-05-15 2002-09-18 Fsm Technologies Ltd Separation of nucleic acids
US6761816B1 (en) 1998-06-23 2004-07-13 Clinical Micro Systems, Inc. Printed circuit boards with monolayers and capture ligands
FR2782729B1 (fr) 1998-09-01 2002-10-25 Bio Merieux Carte de denombrement et de caracterisation de micro-organismes
US6804663B1 (en) 1998-09-21 2004-10-12 Microsoft Corporation Methods for optimizing the installation of a software product onto a target computer system
US6203989B1 (en) 1998-09-30 2001-03-20 Affymetrix, Inc. Methods and compositions for amplifying detectable signals in specific binding assays
US6149787A (en) 1998-10-14 2000-11-21 Caliper Technologies Corp. External material accession systems and methods
US6569631B1 (en) 1998-11-12 2003-05-27 3-Dimensional Pharmaceuticals, Inc. Microplate thermal shift assay for ligand development using 5-(4″dimethylaminophenyl)-2-(4′-phenyl)oxazole derivative fluorescent dyes
US20030069601A1 (en) 1998-12-15 2003-04-10 Closys Corporation Clotting cascade initiating apparatus and methods of use
US7790865B1 (en) 1999-02-02 2010-09-07 Qiagen North American Holdings, Inc Eluting reagents, methods and kits for isolating DNA
CA2299119C (en) 1999-02-23 2013-02-05 Qiagen Gmbh A method of stabilizing and/or isolating nucleic acids
US7615373B2 (en) 1999-02-25 2009-11-10 Virginia Commonwealth University Intellectual Property Foundation Electroprocessed collagen and tissue engineering
AU3609900A (en) 1999-03-02 2000-09-21 Qualigen, Inc. Methods and apparatus for separation of biological fluids
US6749814B1 (en) 1999-03-03 2004-06-15 Symyx Technologies, Inc. Chemical processing microsystems comprising parallel flow microreactors and methods for using same
ATE399215T1 (de) 1999-03-11 2008-07-15 Whatman Inc Festmedium sowie verfahren zur speicherung und schnellen aufreinigung von nukleinsäuren
US6858439B1 (en) 1999-03-15 2005-02-22 Aviva Biosciences Compositions and methods for separation of moieties on chips
TW496775B (en) 1999-03-15 2002-08-01 Aviva Bioscience Corp Individually addressable micro-electromagnetic unit array chips
US6436292B1 (en) 1999-04-02 2002-08-20 Symyx Technologies, Inc. Parallel high-performance liquid chromatography with post-separation treatment
US6451610B1 (en) 1999-04-14 2002-09-17 International Technidyne Corporation Method and apparatus for coagulation based assays
US7011940B1 (en) 1999-04-14 2006-03-14 Medical Discovery Partners Llc Quality control for cytochemical assays
EP1925678B1 (en) 1999-05-03 2009-07-22 Gen-Probe Incorporated Polynucleotide matrix-based method of identifying microorganisms
EP1177318B1 (en) 1999-05-03 2008-02-13 Gen-Probe Incorporated Polynucleotide matrix-based method of identifying microorganisms
US6821770B1 (en) 1999-05-03 2004-11-23 Gen-Probe Incorporated Polynucleotide matrix-based method of identifying microorganisms
US6391624B1 (en) 1999-06-03 2002-05-21 Lockheed Martin Corporation Highly sensitive biological agent probe
DE19926181C1 (de) 1999-06-09 2000-12-14 Inst Mikrotechnik Mainz Gmbh Magazin für mikrostrukturierte Formteile und Verfahren zu dessen Herstellung
US6630006B2 (en) 1999-06-18 2003-10-07 The Regents Of The University Of California Method for screening microcrystallizations for crystal formation
US7139592B2 (en) 1999-06-21 2006-11-21 Arraycomm Llc Null deepening for an adaptive antenna based communication station
US7306672B2 (en) 2001-04-06 2007-12-11 California Institute Of Technology Microfluidic free interface diffusion techniques
US7501245B2 (en) 1999-06-28 2009-03-10 Helicos Biosciences Corp. Methods and apparatuses for analyzing polynucleotide sequences
US6372895B1 (en) 2000-07-07 2002-04-16 3M Innovative Properties Company Fluorogenic compounds
US6524456B1 (en) 1999-08-12 2003-02-25 Ut-Battelle, Llc Microfluidic devices for the controlled manipulation of small volumes
GB2355717A (en) 1999-10-28 2001-05-02 Amersham Pharm Biotech Uk Ltd DNA isolation method
US6875619B2 (en) 1999-11-12 2005-04-05 Motorola, Inc. Microfluidic devices comprising biochannels
EP1255984B1 (en) 2000-02-11 2009-10-07 Aclara BioSciences, Inc. Microfluid device with sample injector and method of use
US20020012971A1 (en) 2000-03-20 2002-01-31 Mehta Tammy Burd PCR compatible nucleic acid sieving medium
JP4927287B2 (ja) 2000-03-31 2012-05-09 マイクロニックス、インコーポレーテッド タンパク質の結晶化のマイクロ流動体装置
US6638408B1 (en) 2000-04-03 2003-10-28 The Wistar Institute Method and device for separation of charged molecules by solution isoelectric focusing
EP1275005A1 (en) 2000-04-06 2003-01-15 Caliper Technologies Corporation Methods and devices for achieving long incubation times in high-throughput systems
US6949575B2 (en) 2000-05-04 2005-09-27 Pfizer Inc. Method of inhibiting amyloid protein aggregation and imaging amyloid deposits using aminoindane derivatives
GB0011443D0 (en) 2000-05-13 2000-06-28 Dna Research Instr Limited Separation device
WO2001090614A2 (en) 2000-05-24 2001-11-29 Micronics, Inc. Surface tension valves for microfluidic applications
DE10030584A1 (de) 2000-06-21 2002-01-03 Gneuss Kunststofftechnik Gmbh Mehrweg-Drehschieber-Ventil zur Verteilung von hochmolekularen Polymer-Kunststoff-Schmelzen
US6720187B2 (en) 2000-06-28 2004-04-13 3M Innovative Properties Company Multi-format sample processing devices
US6548256B2 (en) 2000-07-14 2003-04-15 Eppendorf 5 Prime, Inc. DNA isolation method and kit
AU2001283069B2 (en) 2000-08-04 2006-04-27 Caliper Life Sciences, Inc. Control of operation conditions within fluidic systems
US20040005582A1 (en) 2000-08-10 2004-01-08 Nanobiodynamics, Incorporated Biospecific desorption microflow systems and methods for studying biospecific interactions and their modulators
EP1334347A1 (en) 2000-09-15 2003-08-13 California Institute Of Technology Microfabricated crossflow devices and methods
AU2002213423B2 (en) 2000-09-18 2007-09-06 President And Fellows Of Harvard College Method and apparatus for gradient generation
US20020076806A1 (en) 2000-09-21 2002-06-20 Dna Sciences, Inc. Sample injector system and method
US6808934B2 (en) 2000-09-25 2004-10-26 Picoliter Inc. High-throughput biomolecular crystallization and biomolecular crystal screening
US20020076825A1 (en) 2000-10-10 2002-06-20 Jing Cheng Integrated biochip system for sample preparation and analysis
GB0030929D0 (en) 2000-12-19 2001-01-31 Inverness Medical Ltd Analyte measurement
US6770434B2 (en) 2000-12-29 2004-08-03 The Provost, Fellows And Scholars Of The College Of The Holy & Undivided Trinity Of Queen Elizabeth Near Dublin Biological assay method
CN2482070Y (zh) 2001-01-02 2002-03-13 大连市临床检验中心 血液促凝球
AU2002306486A1 (en) * 2001-02-09 2002-08-28 Microchem Solutions Method and apparatus for sample injection in microfabricated devices
US20020110835A1 (en) 2001-02-13 2002-08-15 Rajan Kumar Microfluidic devices and methods
NL1017374C2 (nl) 2001-02-15 2002-08-16 Univ Delft Tech Inrichting voor het uitvoeren van een reactie, alsmede een werkwijze voor het uitvoeren van een reactie in de inrichting.
JP4808365B2 (ja) 2001-03-02 2011-11-02 ユニバーシティ オブ ピッツバーグ オブ ザ コモンウェルス システム オブ ハイヤー エデュケイション Pcr法
EP1372852A4 (en) * 2001-03-08 2006-04-12 Exelixis Inc MULTI WELL DEVICE
ATE457200T1 (de) 2001-03-09 2010-02-15 Gen Probe Inc Durchlässige haube
US6717136B2 (en) 2001-03-19 2004-04-06 Gyros Ab Microfludic system (EDI)
US6575188B2 (en) 2001-07-26 2003-06-10 Handylab, Inc. Methods and systems for fluid control in microfluidic devices
US20030064414A1 (en) 2001-03-30 2003-04-03 Benecky Michael J. Rapid assessment of coagulation activity in whole blood
EP1383921A2 (en) 2001-05-03 2004-01-28 Warnex Research Inc. A molecular tag code for monitoring a product and process using same
US6994749B2 (en) 2001-06-08 2006-02-07 Syrrx, Inc. Microfluidic device for parallel delivery and mixing of fluids
US6797056B2 (en) 2001-06-08 2004-09-28 Syrrx, Inc. Microfluidic method employing delivery of plural different fluids to same lumen
US6567492B2 (en) 2001-06-11 2003-05-20 Eastern Isotopes, Inc. Process and apparatus for production of F-18 fluoride
US7025774B2 (en) 2001-06-12 2006-04-11 Pelikan Technologies, Inc. Tissue penetration device
US20030022243A1 (en) 2001-06-20 2003-01-30 Les Kondejewski Protein aggregation assays and uses thereof
US20030003962A1 (en) 2001-06-29 2003-01-02 Tan Vooi-Kia Automatic sliding machanism for portable electronic product, particularly for a sliding front cover of a mobile phone
US6702256B2 (en) 2001-07-17 2004-03-09 Agilent Technologies, Inc. Flow-switching microdevice
WO2003015890A1 (en) 2001-08-20 2003-02-27 President And Fellows Of Harvard College Fluidic arrays and method of using
CA2462914A1 (en) 2001-10-11 2003-04-17 Aviva Biosciences Corporation Methods, compositions, and automated systems for separating rare cells from fluid samples
US7297485B2 (en) 2001-10-15 2007-11-20 Qiagen Gmbh Method for nucleic acid amplification that results in low amplification bias
US20030089605A1 (en) 2001-10-19 2003-05-15 West Virginia University Research Corporation Microfluidic system for proteome analysis
NL1019378C2 (nl) 2001-11-16 2003-05-20 Univ Delft Tech Werkwijze voor het vullen van een putje in een substraat.
US7691333B2 (en) 2001-11-30 2010-04-06 Fluidigm Corporation Microfluidic device and methods of using same
US7867757B2 (en) 2001-12-28 2011-01-11 Norchip As Fluid manipulation in a microfabricated reaction chamber systems
AU2002366983A1 (en) 2001-12-31 2003-07-30 The Provost Fellows And Scholars Of The College Of The Holy And Undivided Trinity Of Queen Elizabeth Assembly for cell-based assays
US7399590B2 (en) 2002-02-21 2008-07-15 Asm Scientific, Inc. Recombinase polymerase amplification
FR2838066B1 (fr) 2002-04-09 2004-06-25 Genesystems Procede et automate d'extraction d'acides nucleiques a partir d'un melange complexe
WO2003087327A2 (en) 2002-04-11 2003-10-23 Medimmune Vaccines, Inc. Preservation of bioactive materials by freeze dried foam
EP2283917B1 (en) 2002-05-09 2021-12-15 The University of Chicago Device for pressure-driven plug transport and reaction
US7901939B2 (en) 2002-05-09 2011-03-08 University Of Chicago Method for performing crystallization and reactions in pressure-driven fluid plugs
US7122640B2 (en) 2002-06-10 2006-10-17 Phynexus, Inc. Open channel solid phase extraction systems and methods
JP2006507921A (ja) 2002-06-28 2006-03-09 プレジデント・アンド・フェロウズ・オブ・ハーバード・カレッジ 流体分散のための方法および装置
US20040005247A1 (en) 2002-07-03 2004-01-08 Nanostream, Inc. Microfluidic closed-end metering systems and methods
DE60331879D1 (de) 2002-07-10 2010-05-12 Fujifilm Corp Methode zur Trennung und Aufreinigung von Nukleinsäuren
JP3890360B2 (ja) 2002-07-19 2007-03-07 富士フイルム株式会社 核酸の分離精製方法
JP3983125B2 (ja) 2002-07-19 2007-09-26 富士フイルム株式会社 核酸の分離精製方法
US7244961B2 (en) 2002-08-02 2007-07-17 Silicon Valley Scientific Integrated system with modular microfluidic components
US6870185B2 (en) * 2002-08-02 2005-03-22 Amersham Biosciences (Sv) Corp Integrated microchip design
EP1560642A4 (en) 2002-10-09 2006-05-03 Univ Illinois MICROFLUIDIC SYSTEMS AND COMPONENTS
JP2006504937A (ja) 2002-10-31 2006-02-09 シェモメテック・アクティーゼルスカブ 粒子の評価方法
US20050042639A1 (en) * 2002-12-20 2005-02-24 Caliper Life Sciences, Inc. Single molecule amplification and detection of DNA length
CA2521999A1 (en) 2002-12-20 2004-09-02 Biotrove, Inc. Assay apparatus and method using microfluidic arrays
KR20050088476A (ko) * 2002-12-30 2005-09-06 더 리전트 오브 더 유니버시티 오브 캘리포니아 병원균 검출과 분석을 위한 방법과 기구
WO2004075734A2 (en) 2003-02-25 2004-09-10 Inlight Solutions, Inc. DETERMINATION OF pH INCLUDING HEMOGLOBIN CORRECTION
JP4053444B2 (ja) 2003-03-07 2008-02-27 シャープ株式会社 携帯可能な多機能電子機器
US7713485B2 (en) 2003-03-19 2010-05-11 Industrial Technology Research Institute Microfluidics switch with moving planes
US20040223874A1 (en) 2003-03-31 2004-11-11 Canon Kabushiki Kaisha Biochemical reaction cartridge
US20060078893A1 (en) 2004-10-12 2006-04-13 Medical Research Council Compartmentalised combinatorial chemistry by microfluidic control
FI118669B (fi) 2003-04-01 2008-01-31 Samsung Electro Mech Liukutyyppinen matkapuhelin ja liukumismenetelmä siihen
JP2006523142A (ja) 2003-04-10 2006-10-12 プレジデント・アンド・フェロウズ・オブ・ハーバード・カレッジ 流体種の形成および制御
US7262059B2 (en) 2003-05-06 2007-08-28 Thrombodyne, Inc. Systems and methods for measuring fluid properties
US8362219B2 (en) 2003-05-08 2013-01-29 Phynexus, Inc. Open channel solid phase extraction systems and methods
US6916113B2 (en) * 2003-05-16 2005-07-12 Agilent Technologies, Inc. Devices and methods for fluid mixing
ATE493508T1 (de) 2003-05-19 2011-01-15 Univ Brandeis Verfahren, kits und vorrichtungen zur prozessierung von nukleinsäuren
US7648835B2 (en) 2003-06-06 2010-01-19 Micronics, Inc. System and method for heating, cooling and heat cycling on microfluidic device
AU2003250952A1 (en) 2003-07-04 2005-01-21 November Aktiengesellschaft Gesellschaft Fur Molekulare Medizin Use of a disposable container, microfluidic device and method for processing molecules
DE10336849A1 (de) 2003-08-11 2005-03-10 Thinxxs Gmbh Flusszelle
US7413712B2 (en) 2003-08-11 2008-08-19 California Institute Of Technology Microfluidic rotary flow reactor matrix
KR20070029618A (ko) 2003-08-27 2007-03-14 더 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 유체종의 전자적 제어
JP2005083505A (ja) * 2003-09-09 2005-03-31 Olympus Corp スライド式バルブ装置
JP2005083510A (ja) * 2003-09-09 2005-03-31 Toshiba Corp バルブ装置、化学分析装置及び化学分析システム
US7003104B2 (en) 2003-10-13 2006-02-21 Hanbit Precision Co., Ltd. Apparatus for opening and closing cover of cellular phone
US7846333B2 (en) 2003-11-24 2010-12-07 Effendorf AG Porous media
WO2005056186A1 (en) 2003-12-10 2005-06-23 The Provost Fellows And Scholars Of The College Of The Holy And Undivided Trinity Of Queen Elizabeth Near Dublin A modular biochip assembly
US20050130177A1 (en) 2003-12-12 2005-06-16 3M Innovative Properties Company Variable valve apparatus and methods
US7939249B2 (en) 2003-12-24 2011-05-10 3M Innovative Properties Company Methods for nucleic acid isolation and kits using a microfluidic device and concentration step
US7629165B2 (en) 2004-01-22 2009-12-08 Qualigen, Inc Diagnostic device and method
GB2416030B (en) 2004-01-28 2008-07-23 Norchip As A diagnostic system for carrying out a nucleic acid sequence amplification and detection process
US20050221339A1 (en) 2004-03-31 2005-10-06 Medical Research Council Harvard University Compartmentalised screening by microfluidic control
DE102004021780B4 (de) 2004-04-30 2008-10-02 Siemens Ag Verfahren und Anordnung zur DNA-Isolierung mit Trockenreagenzien
JP5344817B2 (ja) 2004-05-03 2013-11-20 ハンディーラブ インコーポレイテッド ポリヌクレオチド含有サンプルの処理
WO2005111243A2 (en) 2004-05-07 2005-11-24 Cepheid Multiplexed detection of biological agents
US7655470B2 (en) 2004-10-29 2010-02-02 University Of Chicago Method for manipulating a plurality of plugs and performing reactions therein in microfluidic systems
US9477233B2 (en) 2004-07-02 2016-10-25 The University Of Chicago Microfluidic system with a plurality of sequential T-junctions for performing reactions in microdroplets
WO2006018044A1 (en) * 2004-08-18 2006-02-23 Agilent Technologies, Inc. Microfluidic assembly with coupled microfluidic devices
ATE541037T1 (de) 2004-08-25 2012-01-15 Fujifilm Corp Verfahren zur trennung und reinigung von nukleinsäure
US7869844B2 (en) 2004-09-15 2011-01-11 Laird Technologies, Inc. Sliding mechanism for opening and closing of cellular phone
US7955504B1 (en) 2004-10-06 2011-06-07 State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Microfluidic devices, particularly filtration devices comprising polymeric membranes, and method for their manufacture and use
US7968287B2 (en) 2004-10-08 2011-06-28 Medical Research Council Harvard University In vitro evolution in microfluidic systems
US20060183261A1 (en) 2005-02-15 2006-08-17 Dudenhoefer Christie L Method of forming a biological sensor
JP4829509B2 (ja) 2005-02-18 2011-12-07 シスメックス株式会社 遺伝子検査方法
EP2248578B1 (en) 2005-03-04 2012-06-06 President and Fellows of Harvard College Method for forming multiple emulsions
WO2006099255A2 (en) 2005-03-10 2006-09-21 Gen-Probe Incorporated Systems and methods to perform assays for detecting or quantifying analytes within samples
JP4837725B2 (ja) 2005-04-09 2011-12-14 ベーリンガー インゲルハイム マイクロパーツ ゲゼルシャフト ミット ベシュレンクテル ハフツング サンプル液の検査装置及び方法
WO2006116616A2 (en) 2005-04-26 2006-11-02 Applera Corporation Systems and methods for multiple analyte detection
DE602006015633D1 (de) 2005-04-29 2010-09-02 Synthetic Genomics Inc Amplifikation und klonierung einzelner dna-moleküle mittels rolling-circle-amplifikation
US7235216B2 (en) 2005-05-01 2007-06-26 Iba Molecular North America, Inc. Apparatus and method for producing radiopharmaceuticals
WO2006120221A1 (en) 2005-05-12 2006-11-16 Stmicroelectronics S.R.L. Microfluidic device with integrated micropump, in particular biochemical microreactor, and manufacturing method thereof
JP2008539787A (ja) 2005-05-18 2008-11-20 コーネル・リサーチ・ファンデーション・インコーポレイテッド 生物学的な障壁を有する薬物動態学ベース培養システム
EP2409767B1 (en) 2005-06-23 2018-08-08 Biocartis NV Modular cartridge, system and method for automated medical diagnosis
JP2009501522A (ja) 2005-07-12 2009-01-22 コドン デバイシズ インコーポレイテッド 生体触媒工学のための組成物及び方法
US20070026439A1 (en) * 2005-07-15 2007-02-01 Applera Corporation Fluid processing device and method
EP2377554A1 (en) 2005-07-22 2011-10-19 Amgen, Inc Concentrated protein lyophilates, methods and uses
EP1941035B1 (en) 2005-09-01 2017-11-22 Canon U.S. Life Sciences, Inc. Method and molecular diagnostic device for detection, analysis and identification of genomic dna
US7556776B2 (en) 2005-09-08 2009-07-07 President And Fellows Of Harvard College Microfluidic manipulation of fluids and reactions
US7329485B2 (en) 2005-10-12 2008-02-12 The Board Of Regents Of The University Of Oklahoma Methods for detecting compounds that interfere with protein aggregation utilizing an in vitro fluorescence-based assay
WO2007044974A2 (en) 2005-10-12 2007-04-19 The Research Foundation Of State University Of New York Absolute pcr quantification
WO2007050565A2 (en) 2005-10-25 2007-05-03 Baylor College Of Medicine Incorporation of antimicrobial combinations onto devices to reduce infection
US20070134739A1 (en) 2005-12-12 2007-06-14 Gyros Patent Ab Microfluidic assays and microfluidic devices
CA2634066A1 (en) 2005-12-13 2007-06-21 Great Basin Scientific Improved thin film biosensor and method and device for detection of analytes
US20100137163A1 (en) 2006-01-11 2010-06-03 Link Darren R Microfluidic Devices and Methods of Use in The Formation and Control of Nanoreactors
EP2263787A3 (en) 2006-01-27 2012-02-22 President and Fellows of Harvard College Fluidic droplet coalescence
WO2007089777A2 (en) 2006-01-31 2007-08-09 University Of Chicago Method and apparatus for assaying blood clotting
ES2739483T3 (es) 2006-02-02 2020-01-31 Univ Leland Stanford Junior Detección genética fetal no invasiva mediante análisis digital
US7815868B1 (en) 2006-02-28 2010-10-19 Fluidigm Corporation Microfluidic reaction apparatus for high throughput screening
GB0604973D0 (en) 2006-03-11 2006-04-19 Central Science Lab Csl Of San Purification method and kit
WO2007106579A2 (en) 2006-03-15 2007-09-20 Micronics, Inc. Integrated nucleic acid assays
US7998708B2 (en) 2006-03-24 2011-08-16 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
US8828661B2 (en) 2006-04-24 2014-09-09 Fluidigm Corporation Methods for detection and quantification of nucleic acid or protein targets in a sample
US8900828B2 (en) 2006-05-01 2014-12-02 Cepheid Methods and apparatus for sequential amplification reactions
WO2007133710A2 (en) 2006-05-11 2007-11-22 Raindance Technologies, Inc. Microfluidic devices and methods of use thereof
WO2007146923A2 (en) 2006-06-12 2007-12-21 Great Basin Scientific Methods and materials for detecting frameshift mutations
US7608399B2 (en) 2006-06-26 2009-10-27 Blood Cell Storage, Inc. Device and method for extraction and analysis of nucleic acids from biological samples
US20090297401A1 (en) 2006-06-28 2009-12-03 Rgb Technologies Ab Sensor kit and a system for detecting an analyte in a test environment
US7465597B2 (en) 2006-06-29 2008-12-16 Home Diagnostics, Inc. Method of manufacturing a diagnostic test strip
US8187557B2 (en) 2006-07-13 2012-05-29 Cepheid Reagent reservoir system for analytical instruments
WO2008014485A2 (en) 2006-07-28 2008-01-31 California Institute Of Technology Multiplex q-pcr arrays
KR101422572B1 (ko) 2006-09-05 2014-07-30 삼성전자주식회사 핵산 검출을 위한 원심력 기반의 미세유동장치 및 이를포함하는 미세유동시스템
US7375190B2 (en) 2006-09-19 2008-05-20 National Yang-Ming University Recombinant protein and method of screening for agents that modulate polypeptide aggregation
WO2008147382A1 (en) 2006-09-27 2008-12-04 Micronics, Inc. Integrated microfluidic assay devices and methods
WO2008043041A1 (en) 2006-10-04 2008-04-10 University Of Washington Method and device for rapid parallel microfluidic molecular affinity assays
CN101578520B (zh) 2006-10-18 2015-09-16 哈佛学院院长等 基于形成图案的多孔介质的横向流动和穿过生物测定装置、及其制备方法和使用方法
US7709203B2 (en) 2006-10-20 2010-05-04 E.I. Du Pont De Nemours And Company Sequences diagnostic for shrimp pathogens
WO2008057781A2 (en) 2006-10-27 2008-05-15 Montecito Bio-Sciences, Ltd. Portable apparatus for improved sample analysis
US8473216B2 (en) 2006-11-30 2013-06-25 Fluidigm Corporation Method and program for performing baseline correction of amplification curves in a PCR experiment
WO2008069884A2 (en) 2006-12-01 2008-06-12 Panomics, Inc. Two-stage nucleic acid amplification using an amplification oligomer
WO2008079274A1 (en) 2006-12-19 2008-07-03 University Of Chicago Spacers for microfludic channels
US8338166B2 (en) 2007-01-04 2012-12-25 Lawrence Livermore National Security, Llc Sorting, amplification, detection, and identification of nucleic acid subsequences in a complex mixture
US8772046B2 (en) 2007-02-06 2014-07-08 Brandeis University Manipulation of fluids and reactions in microfluidic systems
US7851207B1 (en) 2007-02-07 2010-12-14 The United States Of America As Represented By The Secretary Of The Army Multiplex field device to detect and identify a variety of microbial agents simultaneously
EP2425894B1 (en) 2007-06-21 2016-12-28 Gen-Probe Incorporated Instruments and method for exposing a receptacle to multiple thermal zones
WO2009002849A2 (en) 2007-06-22 2008-12-31 Millennium Medical Technologies, Inc. Fluid concentrator, autologous concentrated body fluids, and uses thereof
US8105783B2 (en) 2007-07-13 2012-01-31 Handylab, Inc. Microfluidic cartridge
EP2172566B2 (en) 2007-07-17 2022-05-18 Somalogic, Inc. Method for generating aptamers with improved off-rates
EP2017618A1 (en) 2007-07-20 2009-01-21 Koninklijke Philips Electronics N.V. Methods and systems for detecting
US20100227767A1 (en) 2007-07-26 2010-09-09 Boedicker James Q Stochastic confinement to detect, manipulate, and utilize molecules and organisms
US20100227323A1 (en) 2007-07-30 2010-09-09 Cornell Research Foundation, Inc. Microchannel detection device and use thereof
US20090053719A1 (en) 2007-08-03 2009-02-26 The Chinese University Of Hong Kong Analysis of nucleic acids by digital pcr
EA018555B1 (ru) 2007-09-07 2013-08-30 Флуидигм Корпорейшн Определение вариаций количества копий, способы и системы
US7736891B2 (en) 2007-09-11 2010-06-15 University Of Washington Microfluidic assay system with dispersion monitoring
WO2009054493A1 (ja) * 2007-10-26 2009-04-30 Toppan Printing Co., Ltd. 反応チップおよびその製造方法
US8222048B2 (en) 2007-11-05 2012-07-17 Abbott Laboratories Automated analyzer for clinical laboratory
US20100304387A1 (en) 2007-11-28 2010-12-02 Jenison Robert D Methods and compositions for signal enhancement using multivalent interactions
DE102007059533A1 (de) 2007-12-06 2009-06-10 Thinxxs Microtechnology Ag Mikrofluidische Speichervorrichtung
US20090215050A1 (en) 2008-02-22 2009-08-27 Robert Delmar Jenison Systems and methods for point-of-care amplification and detection of polynucleotides
GB0808557D0 (en) 2008-05-13 2008-06-18 3M Innovative Properties Co Sampling devices and methods of use
US8622987B2 (en) 2008-06-04 2014-01-07 The University Of Chicago Chemistrode, a plug-based microfluidic device and method for stimulation and sampling with high temporal, spatial, and chemical resolution
EP2315629B1 (en) 2008-07-18 2021-12-15 Bio-Rad Laboratories, Inc. Droplet libraries
DE102008042581B4 (de) 2008-10-02 2012-02-02 INSTITUT FüR MIKROTECHNIK MAINZ GMBH Mikrofluidische Extraktions- und Reaktionsvorrichtung
WO2010078420A2 (en) 2008-12-30 2010-07-08 Redhorse Fluidics Systems, devices, methods and kits for fluid handling
DE102009005874A1 (de) 2009-01-21 2010-07-22 Thinxxs Microtechnology Ag Ventil, insbesondere für ein Bauelement der Mikrofluidtechnik
DE102009009728A1 (de) 2009-02-19 2010-09-02 Thinxxs Microtechnology Ag Flusszelle mit integriertem Fluidspeicher
US9447461B2 (en) 2009-03-24 2016-09-20 California Institute Of Technology Analysis devices, kits, and related methods for digital quantification of nucleic acids and other analytes
KR101796906B1 (ko) 2009-03-24 2017-11-10 유니버시티 오브 시카고 반응을 수행하기 위한 방법
US9464319B2 (en) 2009-03-24 2016-10-11 California Institute Of Technology Multivolume devices, kits and related methods for quantification of nucleic acids and other analytes
SG183468A1 (en) 2010-03-04 2012-09-27 Univ Singapore Microfluidics sorter for cell detection and isolation
CA2881200A1 (en) 2012-02-14 2013-08-22 Great Basin Scientific Methods of isothermal amplification using blocked primers
US20130331298A1 (en) 2012-06-06 2013-12-12 Great Basin Scientific Analyzer and disposable cartridge for molecular in vitro diagnostics
US9097710B2 (en) * 2012-10-16 2015-08-04 The Methodist Hospital Research Institute Multiplexed volumetric bar chart chip for point of care biomarker and analyte quantitation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1791509A (zh) * 2002-12-30 2006-06-21 加州大学评议会 检测和分析病原体的方法和设备
CN1886644A (zh) * 2003-11-26 2006-12-27 布勒医药股份公司 用于确定小量液体样品的装置和方法

Also Published As

Publication number Publication date
JP2012521219A (ja) 2012-09-13
CN104722342A (zh) 2015-06-24
IL215160A0 (en) 2011-12-29
IL251198A0 (en) 2017-04-30
EP2412020B1 (en) 2020-09-30
EP2412020A4 (en) 2016-05-04
KR20170018077A (ko) 2017-02-15
JP6141822B2 (ja) 2017-06-07
EP2412020A1 (en) 2012-02-01
CN102439717A (zh) 2012-05-02
KR20130008439A (ko) 2013-01-22
US10543485B2 (en) 2020-01-28
AU2010229490B2 (en) 2015-02-12
WO2010111265A1 (en) 2010-09-30
KR101702154B1 (ko) 2017-02-03
JP2016163590A (ja) 2016-09-08
US9415392B2 (en) 2016-08-16
JP6227059B2 (ja) 2017-11-08
US20160256870A1 (en) 2016-09-08
KR101796906B1 (ko) 2017-11-10
JP2016165306A (ja) 2016-09-15
US20160288121A1 (en) 2016-10-06
JP5766178B2 (ja) 2015-08-19
JP6263577B2 (ja) 2018-01-17
IL215160A (en) 2017-04-30
AU2010229490A1 (en) 2011-10-20
CA2756463C (en) 2019-01-22
US20120028342A1 (en) 2012-02-02
CA2756463A1 (en) 2010-09-30
CN102439717B (zh) 2015-01-21
JP2015061544A (ja) 2015-04-02
IL251198B (en) 2019-05-30

Similar Documents

Publication Publication Date Title
CN104722342B (zh) 滑动式芯片装置和方法
Kovarik et al. Micro total analysis systems: fundamental advances and applications in the laboratory, clinic, and field
Yang et al. Engineered tools to study intercellular communication
CN103269787B9 (zh) 用于在管内操作对象成分的器件和方法
CN101472940B (zh) 基于小滴的生物化学
US20160016166A1 (en) Molecular diagnostic devices with magnetic components
AU2017202597B2 (en) Slip chip device and methods
Solanki et al. Emerging trends in microfluidics based devices
Merrin Frontiers in microfluidics, a teaching resource review
Tan et al. What can microfluidics do for human microbiome research?
Zhu et al. A novel microfluidic device integrated with chitosan-modified capillaries for rapid ZIKV detection
Natsuhara et al. A microfluidic diagnostic device capable of autonomous sample mixing and dispensing for the simultaneous genetic detection of multiple plant viruses
Gorgannezhad et al. Microfluidic array chip for parallel detection of waterborne bacteria
Jacobson et al. Output and dissemination from the work in this thesis Research publications
Kumar Comprehensive Sample Preparation Device for Multi-Omics Analysis
Thompson Targeted Virus Detection and Enrichment Using Droplet Microfluidics
Zec DEVELOPMENT OF MICROFLUIDIC PLATFORMS AS A TOOL FOR HIGH-THROUGHPUT BIOMARKER SCREENING
Azizi Microfluidics for Pathogen Detection and Antimicrobial Susceptibility Testing
CN116648621A (zh) 使用微制造装置筛选荧光微生物
Novak Microfluidic technologies for quantitative single cell analysis

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant