CN1042023C - 盐溶无机纤维 - Google Patents

盐溶无机纤维 Download PDF

Info

Publication number
CN1042023C
CN1042023C CN93102385A CN93102385A CN1042023C CN 1042023 C CN1042023 C CN 1042023C CN 93102385 A CN93102385 A CN 93102385A CN 93102385 A CN93102385 A CN 93102385A CN 1042023 C CN1042023 C CN 1042023C
Authority
CN
China
Prior art keywords
fiber
mgo
cao
sio
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN93102385A
Other languages
English (en)
Other versions
CN1078218A (zh
Inventor
G·A·贾布
J·-L·马丁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Morgan Crucible Co PLC
Original Assignee
Morgan Crucible Co PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26300173&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN1042023(C) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from GB929200993A external-priority patent/GB9200993D0/en
Priority claimed from GB929224612A external-priority patent/GB9224612D0/en
Application filed by Morgan Crucible Co PLC filed Critical Morgan Crucible Co PLC
Publication of CN1078218A publication Critical patent/CN1078218A/zh
Application granted granted Critical
Publication of CN1042023C publication Critical patent/CN1042023C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2213/00Glass fibres or filaments
    • C03C2213/02Biodegradable glass fibres

Abstract

公开了一种玻璃质无机纤维在现有技术中的使用,该纤维具有一种组成;其要满足的条件是计算组成中应该能够处于平衡状态的化合物的水合自由能的总和比-10千卡/100克更小,(根据专业知识,经验或合理的推断为基础)。这类组或是可盐溶的。

Description

盐溶无机纤维
本发明涉及可盐溶的、非金属、非晶形、无机氧化物的耐火纤维材料。
无机纤维材料是众所周知的且广泛地应用于许多方面(例如以块状、玻璃纤维毡、或毛毡为形式的绝热或隔音、用于真空成形模型、作为真空成形板和纸、和作为绳索、纱线或织物原料;作为在建筑材料中的增强纤维;作为车辆中刹车片构件。在大多数的这些应用中所使用的无机纤维材料的性能要求是耐热,及其常常是耐化学环境的侵蚀。
无机纤维材料既能是玻璃化的也能是结晶的。石棉是一种无机纤维材料,但它是与呼吸疾病有很大关系的因素之一。
现在还不清楚石棉引起疾病的诱发机理,但是一些研究者相信,该机理是力学的,且与颗粒尺寸有关。一种很小尺寸的石棉在人体内能刺穿细胞,并且由此经长期重复伤害细胞,因此损害健康。
不论这种机理是真还是假,管理机构已经提出了将无机纤维产品按对呼吸作用是否“危险”来分类的要求,而不管这样分类是否具有可靠的依据。令人遗憾的是在使用无机纤维的许多应用中,没有理想的替代物。
因此,要求无机纤维尽可能地减少危险(即使有),且具有充分的理由使人们相信它们是安全的。
已提出一种研究方案,若制得的无机纤维在生理液体中可充分地溶解,使其在人体中的滞留时间很短,则损害将不会发生或至少是很轻微的。由于,石棉所引起的疾病的危险显然非常取决于暴露时间长短,所以这个主意是合理的。石棉很难溶解。
由于事实上细胞间液体是含盐的,所以在含盐溶液中纤维溶解度的重要性已经被公认。若在生理含盐溶液中纤维是可溶的,而且所得到的溶解的成份是无毒性的,该纤维应该比其没溶解时的纤维更安全。在人体内纤维滞留的时间越短,则它所能造成的损害就越小。H.F_rster在“The behaviour of mineral fibres in physiologicalsolutions′(Proceedings of 1982 WHO IARC Conference,Copenhagen,Volume 2,pages 27-55(1988)中讨论了市售的制品化的矿物纤维在生理含盐溶液中的特性。讨论了很宽范围内变化溶解度的纤维。
国际专利申请No.WO 87/05007公开了含有氧化镁、二氧化硅、氧化钙和少于10%(重量比)的氧化铝的纤维,其在盐溶液中可溶解。所提出的纤维的溶解度是根据每百万个硅(从含二氧化硅的纤维材料中提取)在一种盐溶液中浸泡5小时之后所存在的部分来确定的。在实例中公布的最高值是67ppm的二氧化硅级。与之相反,在调整到同样测量状态下,F_rster论文中所公开的最高值约相等于1ppm。相反地若将该国际专利申请中所公布的最高值在相同测量条件下转化成F_rster论文,则它将具有901,500mgSi/Kg纤维的提取率,即比F_rster试验的任何纤维高出约69倍,而在F_rster试验中具有最高提取率的纤维是具有高碱金属含量的玻璃纤维,所以它将具有低熔点。这说明要考虑更多的因素(例如不同的试验溶液和实验时间)才能更好地说明问题。
国际专利申请No.WO 89/12032公开了在盐溶液中可溶解的辅加纤维并讨论了在这样的纤维中可以存在的一些结构。
欧洲专利申请EP0399320公开了具有高生理溶解度的玻璃纤维。
对于纤维的盐溶解度的纤维选择所公开的专利说明书还包括EP0412878和EP0459897,FR2662687和FR2662688,PCT的WO 86/04807和WO 90/02713。
在这些不同的现有文献中所公开的纤维的耐火性各有不同的考虑。这些所公开的纤维的最高使用温度(当用作耐火材料时)达到815℃(1500°F)。
对于耐火材料的使用温度可用许多方式来限定,但要与上述国际专利申请的保持一致,该申请限定的使用温度含意为在此温度下纤维仅表现出可接受的收缩(在经受该温度下24小时之后最大线性收缩为5%),且该纤维没有明显地显示出过多的凝结或熔化。
要求生理可溶性纤维具有大于815℃的使用温度,更具体地说是对于这类纤维要具有900℃以上的使用温度。
对于生理可溶性和安全性的试验可以通过吸入研究(如在鼠身上)来进行。然而这类研究极其费时且费钱。一个研究能从开始到结束花
Figure C9310238500061
年的时间,且每个研究能很容易地就花去1百万英镑。一种更便宜的替代方法是在玻璃试管中用生理液体或类似液体进行溶解度试验。
在生理溶液中对无机纤维进行可溶性试验不那么费时,但是现在没有办法预计哪些系统将产生这样的可溶纤维。所以任何一个要寻找这样的可溶纤维的人不得不借助于通常称之为“化学直觉知识”的直觉,通过不断摸索的方法来工作,而这种直觉相当于通常所说的“预感”。这种不断摸索的试验方法是费力和费时的。另外,即使找到一种可溶的纤维时,却不一定它就能够用于所期望的使用温度。
因此,需要一种推断的方法,即推断一种纤维是否在生理溶液中具有合理的溶解度,又需要一种最好能显示所期望的使用温度的这样的试验。
无机耐火纤维的收缩通过两种机理产生:首先是纤维材料的粘滞流动。大多数无机耐火纤维是玻璃,因此可以定义为具有极高粘度的液体(但还是易于流动的)。纤维的自然状态是细长的,因此它们具有每单位体积很高的表面积。由于表面积的减少意味着该材料表面能的减少,因此,当玻璃变成液体时,减少的表面积足以使它流动。这种流动造成纤维变粗和变短,因此收缩,并在极端的情况下造成纤维断裂变成分开的小颗粒。
第二种引起收缩的机理是在高温下玻璃可结晶,形成一种或多种晶相。一般这些晶相具有比玻璃结晶更小的摩尔体积,因此造成收缩。一些纤维已知其结晶的摩尔体积要超过其玻璃的体积(如Al2O3/SiO2玻璃纤维可结晶而形成莫来石晶体)。在这种情况下,由于结晶作用的膨胀可通过粘滞流体引起反向收缩。
若在此结晶化温度低得多的温度下产生粘滞流动收缩,那么结晶作用对于该收缩不起补偿作用。
因此,要求纤维在尽可能高和尽可能相同的温度下既产生粘滞流动又产生结晶作用,且最好是结晶作用的膨胀与粘滞流动的收缩严密地匹配,以便净作用尽可能地趋近于零收缩。
当用作耐火材料时,无机耐火纤维以几种形式使用。将纤维可作成块状材料,但在这种形式下,纤维对于许多应用很难加工。另外将纤维可作成毡。毡纤维通常是通过将纤维用空气吸到输送机上而形成毡的工艺制得的。由于纤维束是成行地直线排列平行于输送机表面,所以它们能很容易地分开。因此,这种毡纤维通过加粘合剂使这些纤维结合在一起,或缝合该毡,或两者均使用使得纤维接合在一起。在用针缝时,针穿过该毡的厚度,使往复的纤维横向放置在毡上,从而将纤维连接在一起。由于粘合剂通常是树脂,如酚醛树脂,所以它们首先起火。期望减少粘合剂的使用量,这是由于粘合剂在加工处理中可能影响健康,同时由于该易燃产品可以影响纤维的强度的原故。因此,一般最好是缝制的毡。
纤维也可以作成块板,一般是由无机纤维毡叠层而制得的。
对于这些纤维的缝合是不可能的。结晶的纤维一般太脆而不能承受压力。对于在工业上已知的这些纤维,如玻璃纤维(它们一般用于低温下的应用),存在一定量的“丸粒”(非纤维状的玻璃颗粒),由于其量之多,使得当丸粒损坏针时而不能进行缝制。在市场上没有缝制的毡具有最高的使用温度是处在900℃-1200℃范围之内。缝制的毡具有更高的最高使用温度,但这些使用的纤维与其他所使用的纤维(带有粘合剂的),如在900-1200℃温度范围内的毡比较要责。
因此,缝制的纤维毡需要用便宜的材料制作,这些材料在盐溶液中可溶解,并且具有最高的使用温度在900℃-1200℃范围内。
如上所述,耐火氧化物纤维可由几种方法制得,所有这些方法均涉及熔融氧化物的形成,以及通过例如离心纺丝或喷吹纤维的方法连续地将熔融物形成纤维。
氧化物材料的熔化经常是通过电交换来熔化其组成物的原料而形成的。本申请人在制造CaO/MgO/SiO2耐火氧化物纤维中由于需要处理CaO而遇到了问题。发现这些问题是由于市售得到的CaO的水分含量所造成的。使用CaO的问题之一是由熔化而造成的排气,这就导致在熔化池上产生多个气孔,从而引起熔化电流的波动。另外,CaO的使用明显地导致在熔化电极的加速腐蚀。对于加工处理CaO也是较困难的,并且它是腐蚀材料。
因此,需要一个方法,使其使用CaO最少。
由此,本发明提供下列特性,它们既独立又关联。A.使用一种现有技术中的(in the knowlodge)玻璃质无机纤维,它具有一种均满足如下条件的组成物:-该组成的化合物的水合自由能的计算总和比-10Kcal/100grams(-418.4KJ/Kg)要更负,其中化合物应该或能够处于平衡状态(均根据专业知识,经验或合理的推断);或者非桥(non-bridging)氧的百分比大于30%。这样的组成物趋向于可盐溶的。B.使用这样一种现有技术中的玻璃质无机纤维,它含有一种满足以下条件的组成物,即,玻璃网络外体与网状成形物的比率要小于一确定值(对于SiO2基质的组合物该确定值是1)。这样的组合物趋向于是玻璃形成物。C.本发明也包括由可溶性试验和玻璃形成等试验条件选择纤维。D.所用的可盐溶纤维具有当处在1000℃ 24小时和/或800℃24小时时其收缩为小于3.5%,该玻璃质纤维具有的成份包括(以重量百分比计):SiO2    >58%       -(对于MgO=<10%)和SiO2    >58%+0.5(%MgO-10)
                  (对于MgO>=10%)CaO     0%-42%MgO     0%-31.33%Al2O30%-<4%SiO2   最好低于70%而且基本上不含助熔成份如碱金属和氧化硼。E.在一种使用方法中,由结晶作用造成的第一种结晶材料具有透辉石的晶体结构,且该组份主要包括:
成份             组份A(重量百分比)
SiO2             59-64
Al2O3           0-3.5
CaO               19-23
MgO               14-17F.在第二种使用方法中,由结晶作用造成的第一种结晶材料具有硅灰石/假硅灰石的晶体结构,且含有的组份主要包括:
成份             组份B(重量百分比)
SiO2             60-67
Al2O3           0-3.5
CaO                26-35
MgO                4-6G.以这些方式使用的纤维进一步可用作缝制的纤维毡。H.最好是上述的普通组份和组份A和B的纤维具有的SiO2含量大于60%(以SiO2、CaO和MgO结构的重量百分比来表示)。I.本发明进一步提供一种制造耐火氧化物纤维的方法,其中该纤维含有钙和硅,它是通过含有钙和硅的一种氧化物的融熔物来形成的,其特征在于钙的全部或部分和硅的全部或部分是由硅酸钙提供的。
本发明以下述的实例方式来说明,且参考其附图。
图1是一个三元相图,其中表示了SiO2/CaO/MgO系统的晶相(Phase Diagrams for Ceramists,The American CeramicSociety,1964);
图2是一个三元组份的在SiO2/CaO/MgO相的组份上的投影图,其中包括SiO2、CaO、MgO和Al2O3
图3是用于在实验组份的系列循环暴露试验中的着火规范的温度/时间曲线图;
图4是对于系列纤维计算水合作用自由能的log V(总溶解度)的曲线图;
图5是对于系列纤维非氧键的log V%(总溶解度)的曲线图(参见下面)。
系列纤维由列于表1的组成制造。这些纤维是由制造无机纤维的已知类型的竖直离心纺丝系统而熔化离心喷出制成的。在表1中也表示出了一些市售可购得的无机氧化物纤维和玻璃纤维的比较组份。
                 表1
    Al2O3 SiO2   CaO    MgO    ZrO2SW-A    3.3      59.3    20.5   15.5   -SW-A1   1.1      63.7    20.5   15.2   -SW-A2   0.8      60.8    21.4   15.4   -SW-B1   2.3      65.3    26.8   5.7    -SW-B2   1.3      66.9    27.5   5.2    -SW-B3   1.0      60.0    34.0   4.4    -
                        比较例
    Al2O3 SiO2   CaO    MgO    ZrO2   MSTCRBT    46.5     53      0.04   0.01   -       1260℃CWBT    40.6     49.5    5.50   4.00   -       870℃CHBT    49.7     35.1    0.04   0.01   14.7    1425℃Glass   15.2/    53.7/   21.1/  1.3/   -       +5.9-6.2%B2O3Fibre   15.5     57.5    21.8   1.6             0.11-0.12%TiO2
                                            0.46%Na2O
                                            0.32-0.33%K2ONeedled 3.7      60.5/   8.1    4.0    -       +2.85-2.95%B2O3Glass            60.0    7.9           -        13.5% Na2OFibre                                           1.0%K2O
  [MST=最高使用温度(氧化气氛)]
纤维SW-A、SW-A1、SW-A2、SW-B1、SW-B2和SW-B3通过以下的方法对溶解度进行试验。
首先以下列方式切断纤维。在一个家用Moulinex(商标)食品搅拌器中用250cm3蒸馏水将2.5g纤维(用手去除丸粒)液化20秒钟。然后将该悬浮液移到一个500cm3的塑料杯中,并且倾注过滤使其尽可能地滤出液体后在炉子上以110℃的条件干燥去除掉其余的液体。
溶解度试验设备包括一个震荡恒温箱水溶器,试验溶液具有下列组份:
化合物                     名称                
NaCl                       氯化钠               6.780
NH4Cl                     氯化铵               0.540
NaHCO3                    碳酸氢钠             2.270
Na2HPO4·H2O           磷酸氢二钠           0.170
Na3C6H5P7p·2H2O    柠檬酸钠二水物       0.060
H2NCH2CO2H             甘氨酸               0.450
H2SO4比重1.84            硫酸                 0.050以上材料用蒸馏水稀释至1升,以形成类似生理盐溶液。
将0.500g±0.0003g的碎纤维称重放进一个塑料离心管中,且加入上述盐溶液25cm3。使该纤维和盐溶液充分震荡,并插入到震荡恒温箱水溶器中,维持人体的温度(37℃±1℃)。该震荡器的速度设定为20转/分钟。
在一段所需时间之后(一般5小时或24小时),开动离心管,且以约4500转/分钟的速度离心作用约5分钟。然后使用一个注射器和皮下针头吸出上清液体。随之从注射器中去除针头,从注射器中排出空气,并使液体流过一个过滤器(0.45微米硝酸纤维素膜过滤纸[从Whatman Labsales Limited得到的WCN型])进入到一个干净的塑料瓶中。然后通过使用一种Thermo Jarrell AshSmith-Hiefje II仪器进行原子吸收分析该液体。
操作条件是:元素   波长(nm)   带宽   电流(MA)  火焰(氧化亚氮+乙炔)Al      309.3       1.0     8         富燃烧SiO2   251.6       0.3     12        富燃烧CaO     422.7       1.0     7         贫燃烧MgO     285.2       1.0     3         贫燃烧
测定上述元素所采用的过程和标准表述如下。
SiO2不进行稀释能被测定至250ppm的浓度(1ppm=1mg/l)。定容积地制成上述这个浓度之相应的稀释液。将0.1KCl溶液(在100cm3中有0.1g)加入到最终的稀释液中,以防离子干涉。注意:若使用玻璃设备,则需要瞬发分析。
从1000ppm纯灼烧二氧化(ignited silica)99.999%)的储液中产生以下标准:(其中该二氧化硅是在一白金坩埚中处于1200℃条件下与Na2CO3一起熔融20分钟(0.2500gSiO2/2gNa2CO3)并在一塑料定量瓶中用蒸馏水稀释至250cm3的氢氯酸(4摩尔)里溶解)。
标准(PPM SiO2)             储液(cm3)
10.0                          1.0
20.0                          2.0
30.0                          3.0
50.0                          5.0
100.0                         10.0
250.0                         25.0
在制到100cm3之前加入0.1%KCl到每个标准中。
铝可以不进行稀释直接从其样品中测量。可以用1.0、5.0和10.0ppm A1的标准。对于校准读数乘以1.8895,从而从Al换算到了Al2O3
一种标准Al原子吸收溶液(如BDH 1000ppm Al)可以买到,并用准确移液管来稀释到所要求的浓度。加入0.1%KCl以防止离子干涉。
钙在测定之前可要求在其样品上进行稀释(即×10和×20稀释)。稀释液必须含有0.1%KCl。
一种标准的Ca原子吸收溶液(如BDH 1000ppm Ca)用蒸馏水稀释,并用精确的移液管给出标准的0.5、4.0和10.0ppm。加入0.1%KCl以防离子干涉。对于从Ca到CaO获得的换算读数使用一个1.4因数。
镁在测定之前可要求在其样品上进行稀释(即×10和×20)。对每个稀释液加入0.1%的KCl。对于Mg到MgO的换算是乘以1.658。
一种标准Mg原子吸收溶液(如BDH 1000ppm Mg)用蒸馏水稀释,且用精确的移液管给出标准的0.5、1.0和10.0ppm Mg。加入0.1%KCl以防离子干涉。
所有储液在塑料瓶中储存。
试验的结果列于表2中。
                      表2
                  流体溶解度
                     (ppm)
             SiO2          CaO            MgO
         5小时  24小时  5小时  24小时  5小时  24小时SW-A         98     120     63     56      33     66SW-A1        83     141     32     70      21     70SW-A2        130    202     43     73      100    177SW-B1        58     77      10     38      5      9SW-B2        64     121     27     55      5      10SW-B3        138    192     80     4       8      21
试验得出具有最好溶解度的纤维(SW-A2和SW-B3),然后在变化温度条件下退火之后,与表1的比较例相比。其结果列于表3。
能够看出,对于SW-A2纤维,随着退火温度的增加,其二氧化硅的溶解度快速地下降。与之相反,SW-B3组份至到800℃处溶解度没有表现出减小,虽然在该温度以上表现出溶解度减少,但它不是象SW-A2那样惊人。尽管在溶解度中有这样的差别,但要注意的是,仅仅缝制的GF纤维表示了具有可比较的二氧化硅溶解度,该材料在700℃熔化。
                      表3 纤维        条件              溶解度分析
                        CaO(ppm)       MgO(ppm)       SiO2 (ppm)
                        5小时  24小时  5小时  24小时  5小时 24小时SW-A2      标准的           58     37      37     3       89    130SW-A2      600℃,48小时    33     56      27     43      60    108SW-A2      800℃,48小时    35     53      17     30      43    87SW-A2      1000℃,48小时   7      3       3      2       11    21SW-B3      标准的           35     69      7      22      22    100SW-E3      600℃,48小时    61     150     12     22      55    130SW-E3      800℃,48小时    41     90      3      7       24    144SW-B3      1000℃,48小时   18     40      3      3       17    60CRBT       标准的           10     8       6      3       5     3CHBT       标准的           16     10      7      3       4     0.3
玻璃纤维  标准的        14     17      5      3       5     7
缝制的    标准的        17     34      8      15      66    85
缝制的    600℃,48小时 11     26      7      10      19    37
矿物纤维  标准的        16     16      7      6       8     9[该玻璃纤维和缝制玻璃纤维所具有的组成示于表1中]
使用者起初关心的是纤维在常温下的溶解度,因为在该条件下进行大多数的加工处理;在常温下SW-A2和SW-B3均具有极高的溶解度。甚至在处于800℃和1000℃之后,这些纤维具有的溶解度比其它高温使用的纤维高很多。
为了调查在高温退火之后在SW-A2和SW-B3之间在溶解度上产生差别的原因,在这些纤维上进行定量X-射线衍射。其结果列于表4,并能看到SW-B3纤维形成了假硅灰石和硅灰石,然而SW-A2纤维形成了透辉石。所以这说明晶体透辉石在生理盐溶液中具有比从SW-B3纤维中析出的晶体假硅灰石和硅灰石材料更低的溶解度。
                       表4 样品       条件                 定性XRDSW-A2       600℃,48小时         非晶相SW-A2       800℃,48小时         带少量透辉石的非晶相SW-A2       1000℃,48小时        透辉石SW-B3       600℃,48小时         非晶相SW-B3       800℃,48小时         非晶相SW-B3       1000℃,48小时        伪硅灰石和硅灰石
下面对于各种纤维进行收缩特性试验。表5示出了所有试验纤维和一些比较纤维收缩试验的结果。这些结果通过推荐的ISO标准ISO/TC33/SC2/N220(相当于British StandardBS1920,part6,1986)进行一些改进从而计算小样品尺寸而获得的。总之,该方法包括真空浇铸预制件的制作,使用75g纤维在500cm3的0.2%淀粉溶液中,装入一个120×65mm的工具中。铂引线(pin)(约0.1~0.3mm直径)放置在100×45mm隔开的4角中。测量最长的长度(L1和L2)和对角线(L3和L4),精度为±0.01mm,使用一个可移动望远镜安装有游标尺的钢刻度尺。该样品放置在一炉子中处于确定的温度下且停留24小时。收缩值由4次测量的平均值给出。
                      表5
                   线性收缩(%)
               (在该温度24小时)温度℃     SW-A    SW-A1    SW-A2    SW-B1    SW-B2    SW-B3730        1.45             1.43     1.02     0.22870                                  0.41900                         1.07                       1.071000               1.04     1.3      0.51     0.6      1.11100               0.71     1.8               0.73     2.2最高使用温度   850     1050     1050     1050     1050     1000℃
能够看出,在SW-A、SW-A1、SW-A2、SW-B1、SW-B2和SW-B3中,由于结晶作用使摩尔体积增加,其在最大耐温处的线性收缩小于3.5%。
表6表示了用同样方式进行的进一步系列收缩试验的结果。
                   表6样品      测量方向
                     试验温度       线性收缩%
      参照旋转方向   ℃             范围     平均值SW-A2     平行           850            1.1-1.4  1.2SW-A2     垂直           850            0.7-1.5  1.3SW-A2     平行           900            0.5-1.1  0.9SW-A2     垂直           900            1.9-4.5  3.0SW-A2     平行           1000           0.5-2.9  1.3SW-A2     垂直           1000           1.7-2.9  2.2SW-A2     平行           1100           0.7-1.5  1.0SW-A2     垂直           1100           1.0-2.6  1.8SW-B3     平行           900            1.6-1.8  1.7SW-B3     垂直           900            1.4-2.4  2.1SW-B3     平行           1000           1.6-2.3  1.9SW-B3     垂直           1000           1.0-2.3  1.7SW-B3     平行和         1100           完全熔融
      垂直                          (残余物的信号型)对于确定这些试验的可应用性,从而长期使用该方法,在这些材料上进行一系列的循环收缩试验,且将用于这些循环试验的加热图表示于图3。
在表7和8中列出了试验的结果(给出SW-B3的两种数据是由于在化学分析中略有不同[在纤维生产运动结束时的纤维一般比在纤维生产运行开始时的组份稍微有所不同])。
进一步与上述讨论的材料用作比较的,是由组成为55%SiO2、29.9%CaO和18.6%MgO制得。用这个组份制得的纤维最高的耐火温度是700℃,并且在800℃熔化。
因为这些结果促使本申请人进行进一步地和延伸地系列试验,集中在SW-A2和SW-B3的组成上,从而确定这些结果的再现性以及该有效组份的边界。
以下表9A和B给出一系列熔融物的组份,列出二氧化硅含量,并示出在处于1000℃24小时之后(第1栏)和处于800℃24小时(第二栏)之后的收缩数据。用上面给出的同样的收缩测量方法对这些收缩进行测量,但测量是用装有数字式线性尺精度为±5μm的可移动的望远镜进行。能够清楚地看到,所有二氧化硅含量小于58%的纤维在1000℃处的收缩大于3.5%,除两个(B3-3和708)之外。具有二氧化硅含量大于58%的纤维虽然在1000℃处显示了较好的数据,但在800℃处却显示出一个很差的数据。
              表7
       循环收缩率(线性)
             (%)产品       1000℃    1100℃    在100℃
                           24小时循环数:   58        42CRBT       2.0       2.7       1.9CWBT       15.0      13.3      12.1SW-A2      0.33      2.0       1.3SW-B3      1.00      1.67      1.1SW-B3      0.33      0.67      1.1
          误差:+或-0.33%
                       表8
                      循环收缩
                       (%)
             线性收缩          厚度收缩
 产品   1000℃   1100℃   24小时在1000℃时    1000℃    1100℃
 No.cycles   104   100    104    100
 CRBTCWBTSW-A2SW-B3SW-B3   1.4714.41.51.731.47   3.115.22.11.631.77   1.912.11.31.11.1    0.4738.638.587.247.02    11.1932.148.757.577.16
             误差:+或-0.3%(%)
                           表9A
                                 分析的组成(重量%-%)        收缩℃          理论组成
玻璃液  SiO2 CaO% MgO% Al2O3 Na2O%  K2O% Fe2O3 ZrO2 1000   800  SiO2 CaO% MgO%
A2-16A2-15B3-28A2-17B3-18A2-6B3-16B3-27759B3-19B3-17A2-13B3-22A2-10B3-15719A2-5A2-8718B3-14721B3-30B3-23A2-9A2-12723757B3-13A2-7725  73.4372.2570.8170.4369.4269.2968.7468.5668.3367.5867.2566.6766.1766.1765.8665.7765.6965.3365.2365.1165.0864.1364.0963.6663.5662.6162.6062.3361.9861.83 12.4012.6718.7411.5823.2715.1724.9920.9817.4524.9126.6814.8721.2816.2229.8225.6918.7416.8627.1424.9127.2631.9323.2621.4416.5529.7920.9230.6223.3728.13 10.0912.357.0314.523.7612.761.717.0012.603.651.8616.019.3415.801.788.1213.7814.246.955.545.330.379.3312.9618.005.4415.222.0611.987.54   0.190.110.470.150.430.070.650.78<0.050.450.700.110.520.490.47<0.050.180.22<0.050.580.060.640.561.490.33<0.050.200.550.440.10 <0.05<0.050.23<0.050.370.250.380.350.110.370.450.050.330.060.450.240.160.130.240.430.170.450.360.320.110.17<0.050.650.250.36 <0.05<0.050.07<0.050.06<0.050.100.08<0.050.070.10<0.050.08<0.050.08<0.05<0.05<0.05<0.050.09<0.050.090.090.10<0.05<0.05<0.050.09<0.05<0.05    0.110.100.160.130.120.110.240.170.330.150.230.100.180.090.180.230.100.140.200.190.080.140.160.110.080.130.160.170.100.17   2.231.240.751.580.471.131.030.79<0.050.650.570.920.54<0.050.51<0.050.141.170.490.61<0.050.280.300.050.05<0.05<0.050.910.23<0.05  0.71.10.21.30.41.50.30.81.70.50.31.61.12.20.30.51.91.50.41.00.30.61.01.91.00.41.30.81.40.6     ****0.20.71.10.81.91.00.60.92.30.52.90.9    76.674.373.373.072.071.372.071.069.570.370.268.468.467.467.666.066.967.765.768.166.666.566.364.964.864.063.465.663.763.4  12.913.019.412.024.115.626.221.717.725.927.915.222.016.530.625.819.117.527.326.127.933.124.021.916.930.421.232.224.028.9 10.512.77.315.03.913.11.87.312.83.81.916.49.616.11.88.214.014.87.05.85.50.49.713.218.35.615.42.212.37.7
                             表9B
                                      分析组成 收缩℃           理论组成
玻璃液 SiO2 CaO%  MgO% Al2O3 Na2O%  K2O% Fe2O3 ZrO2 1000   800 SiO2 CaO% MgO%
B3-11B3-24722924A2-14A2-11B3-9B3-1932692B3-25B3-29714696586694765660B3-20712B3-21B3-26971734973B3-370871  61.7161.6261.3361.3260.7460.3260.2860.1159.8559.8259.5359.4059.0558.8158.6558.3957.7857.7457.5757.5457.3856.9856.8256.5856.1855.9955.2254.68 33.2525.5331.0819.7825.3024.2824.4932.5621.6034.3428.1536.0032.0030.9135.0333.103.9034.6532.7035.3936.6230.5023.9223.6224.4536.0742.7924.04   2.339.735.2514.5411.6613.242.503.8015.655.449.220.688.276.153.906.0235.074.836.074.612.439.4417.3617.0516.814.440.7719.66    0.690.580.052.570.280.250.760.791.500.130.480.92<0.050.210.130.272.121.150.910.060.730.620.741.000.500.58<0.050.20   0.520.380.20<0.050.180.180.500.540.060.190.390.430.270.180.230.20<0.050.240.570.230.510.440.180.060.080.450.310.17   0.120.10<0.05<0.050.05<0.050.130.12<0.05<0.050.080.14<0.05<0.05<0.05<0.05<0.05<0.050.13<0.050.110.11<0.05<0.05<0.050.09<0.05<0.05    0.250.170.160.090.130.090.280.230.180.080.140.230.400.080.160.100.230.190.220.120.16<0.050.140.130.140.380.120.23   0.59<0.05<0.050.660.160.080.490.820.110.17<0.050.17<0.050.24<0.050.17<0.05<0.05<0.05<0.050.08<0.050.050.050.051.46<0.05<0.05  0.91.81.30.31.81.81.60.512.82.12.30.90.70.31.91.634.224.730.94.430.339.841.739.334.90.31.151.7 1.23.01.11.71.21.41.61.93.426.634.78.7  63.463.662.864.162.261.762.062.361.660.061.461.859.561.360.159.959.759.459.859.059.558.857.958.257.758.055.955.6  34.226.431.820.725.924.835.433.822.334.529.137.532.232.335.933.94.035.633.936.338.031.524.424.325.137.443.324.4   2.410.05.415.211.913.52.63.916.15.59.50.78.36.44.06.236.35.06.34.72.59.717.717.517.24.60.820.0
*含许多细颗粒的劣质纤维,所有其它成份<0.1%
                         表10A
                                           分析组成(重量%)           溶解度            理论组成
玻璃液  SiO2 CaO%  MgO% Al2O3   Na2O%    K2O%   Fe2O3 ZrO2  SiO2  CaO MgO SiO2 CaO% MgO%
A2-16A2-15B3-28A2-17B3-18A2-6B3-16B3-27759B3-19B3-17A2-13A2-10B3-22B3-15719A2-5A2-8718B3-14721B3-30B3-23A2-9A2-12723757B3-13A2-7725  73.4372.2570.8170.4369.4269.2968.7468.5668.3367.5867.2566.6766.1766.1765.8665.7765.6965.3365.2365.1165.0864.1364.0963.6663.5662.6162.6062.3361.9861.83 12.4012.6718.7411.5823.2715.1724.9920.9817.4524.9126.6814.8716.2221.2829.8225.6918.7416.8627.1424.9127.2631.9323.2621.4416.5529.7920.9230.6223.3728.13  10.0912.357.0314.523.7612.761.717.0012.603.651.8616.0115.809.341.788.1213.7814.246.955.545.330.379.3312.9618.005.4415.222.0611.987.54    0.190.110.470.150.430.070.650.78<0.050.450.700.110.490.520.47<0.050.180.22<0.050.580.060.640.561.490.33<0.050.200.550.440.10   <0.05<0.050.23<0.050.370.250.380.350.110.370.450.050.060.330.450.240.160.130.240.430.170.450.360.320.110.17<0.050.650.250.36   <0.05<0.050.07<0.050.06<0.050.100.08<0.050.070.10<0.05<0.050.080.08<0.05<0.05<0.05<0.050.09<0.050.090.090.10<0.05<0.05<0.050.09<0.05<0.05      0.110.100.160.130.120.110.240.170.330.150.230.100.090.180.180.230.100.140.200.190.080.140.180.110.080.130.160.170.100.17   2.231.240.751.580.471.131.030.79<0.050.650.570.92<0.050.540.51<0.050.141.170.490.61<0.050.280.30<0.050.05<0.05<0.050.910.23<0.05   11310510891145152132122117163162159122174156115150181107158153163101195160141187151178186   453549356648725438444947426238514854476768834467476262415976   554831721770102040211370525772460842027203316666177376335   76.674.373.373.072.071.372.071.069.570.370.268.467.468.467.666.066.967.765.768.166.666.566.364.964.864.063.465.663.763.4  12.913.019.412.024.115.626.221.717.725.927.915.216.522.030.625.819.117.527.326.127.933.124.021.916.930.421.232.224.028.9  10.512.77.315.03.913.11.87.312.83.81.916.416.19.61.88.214.014.87.05.85.50.49.713.218.35.615.42.212.37.7
                             表10B
                                         分析的组成(重量%)          溶解度           理论组成
玻璃液 SiO2 CaO%    MgO% Al2O3 Na2O%  K2O% Fe2O3 ZrO2  SiO2  CaO  MgO SiO2 CaO% MgO%
B3-11B3-24722924A2-14A2-11B3-9B3-1932692B3-25B3-29714696586694765660B3-20712B3-21B3-26971734973B3-370871  61.7161.6261.3361.3260.7460.3260.2860.1159.8559.8259.5359.4059.0558.8158.6558.3957.7857.7457.5757.5457.3856.9856.8256.5856.1855.9955.2254.68 33.2525.5331.0819.7825.3024.2834.4932.5621.6034.3428.1536.0032.0030.9135.0333.103.9034.6532.7035.3936.6230.5023.9223.6224.4536.0742.7924.04     2.339.735.2514.5411.6613.242.503.8015.655.449.220.688.276.153.906.0235.074.836.074.612.439.4417.3617.0516.814.440.7719.66    0.690.580.052.570.280.250.760.791.500.130.480.92<0.050.210.130.272.121.150.910.060.730.620.741.000.500.58<0.050.20   0.520.380.20<0.050.180.180.500.540.060.190.390.430.270.180.230.20<0.050.240.570.230.510.440.180.060.080.450.310.17   0.120.10<0.05<0.050.05<0.050.130.12<0.05<0.050.080.14<0.05<0.05<0.05<0.05<0.05<0.050.13<0.050.110.11<0.05<0.05<0.050.09<0.05<0.05    0.250.170.160.090.130.090.280.230.180.080.140.230.400.080.160.100.230.190.220.120.16<0.050.140.130.140.380.120.23   0.59<0.05<0.050.660.160.080.490.820.110.17<0.050.17<0.050.24<0.050.17<0.05<0.05<0.05<0.050.08<0.050.050.050.051.46<0.05<0.05   1621851857712714917514692140133201142163182133100152181160175149142135102185193133   2837813657548844167482973485466166929242564555242143155   155723374351517432333530371927169234022164173664718262   63.463.662.864.162.261.762.062.361.660.061.461.859.561.360.159.959.759.459.859.059.558.857.958.257.758.055.955.6  34.226.431.820.725.924.835.433.822.334.529.137.532.232.335.933.94.035.633.936.338.031.524.424.325.137.443.324.4   2.410.05.415.211.913.52.63.916.15.59.50.78.36.44.06.236.35.06.34.72.59.717.717.517.24.60.820.0
明显反常的是纤维932,该纤维含有59.85%的SiO2含量,具有12.8%的收缩。设想在最低SiO2含量上用MgO含量的变化来得到满意的收缩,本申请从已经确定具有下列SiO2含量(以重量%)的纤维在800℃②和在1000℃这两处温度条件下     不具有满意地收缩:
SiO2  >58%             -(对于MgO=<10%)和
SiO2  >58%+0.5(%MgO-10)
                          -(对于MgO>=10%)
能够看出,样品924在800℃处具有3.0%的收缩。这个比相近的组成(最相近的是757和A2-9)更高,这一点可以通过2.5%的铝含量解释。本申请人已发现,随着氧化铝含量的增加,第一种材料的结晶是铝酸钙,并且这可能形成一个液相有助于流动,因此收缩。
表10A和10B列出了对于与表9A和9B相同组成的每个主要结构24小时的溶解度。能看到所有这些组成都具有高溶解度。
如上所述,在制造含有钙的纤维中使用CaO是不方便的且是危险的。本申请人研究使用混合氧化物材料,以避免对CaO的处理。可以用二氧化硅和硅灰石(CaSiO3)与氧化镁的混合物来制成纤维。
使用于制造熔融物的原料包括:
粟褐色Darlington重氧化镁(#200)
MgO                      92.60%
CaO                      1.75%
Fe2O3                  0.04%
SiO2                    0.20%
Cl                   0.25%
SO3                 0.70%
LOI                  4.50%Partek的芬兰低铁硅灰石(#200)(U.K.代理-Cornelius Chemical Co.,Romford,Essex)
SiO2                51.8%
CaO                  44.50%
MgO                  0.80%
Al2O3              0.60%
Fe2O3              0.30%
Na2O                0.10%
K2O                 0.05%
TiO2                0.05%
S                    0.02%
MnO                  0.01%
P                    0.01%
F                    0.01%
LOI                  1.70%Hepworth Mineral的Redhill T洗的石英沙
SiO2                99.0%(最少)
这些成份混合成为78.65%硅灰石;19.25%SiO2;和3.6%MgO。这样给出在最终熔融物中的Al2O3为0.4~0.5%。
惊讶地发现,在生产使用这些成份的一种熔融物,其目前的要求仅是使用原料氧化物的三分之二。
纤维由喷吹法生产(尽管离心法和其它方法均能使用)。用不同的喷吹条件进行2批次。
化学分析由本申请从的辅助部门Morgan Materials Technology(以后称为M2T)的Analytical Department使用湿法化学技术来承担。纤维直径的测量是使用M2T的Galac颗粒分析器,其具有分析软件。通常40,000纤维作为一批进行分析。
第一个注意的结果是使用硅灰石时与右灰时比较熔化反应的速度。此时也可看见电流是非常稳定地工作于熔化过程。若电流在拉断该电极时失掉,则该电流能通过将它们再次推回而被简单储存。这里不可能使用石灰进行生产。
化学分析
     其它  CaO   MgO  Al 2 O 3   SiO 2   ZrO 2  Na 2 O   总计第一批    0.7   32.6   3.8   0.8        60.1    0.8    0.5       99.3第二批    0.7   32.5   3.8   0.8        60.1    0.8    0.6       99.3第一批和第二批表示对于每一批的各自的X-射线荧光分析
收缩结果(1000℃  24小时)
         L1   L2   L3   L4   平均   标准Dev第1批        0.9   0.2   0.4   0.6   0.5     0.3第2批(A)     1.0   -0.2  0.7   0.6   0.5     0.5第2批(B)     0.5   0.2   0.0   0.4   0.2     0.2
溶解度结果(ppm)
                 CaO  MgO  SiO 2第1批(5小时)         67    10    95第1批(24小时)        84    17    146第2批(5小时)         39    7     72第2批(24小时)        73    17    186
纤维直径
     平均值   中间值   100%<  %>5μm   %<1μm第1批    5.1μm    3.4μm    30μm     33%        13%第2批    4.1μm    2.7μm    25μm     25%        19%
因此,由此情况明显看出,用这些材料的组份比用纯氧化物更便宜,它能获得与用纯氧化物具有同样高特性的纤维,且使得能量消耗得以改进并且安全。要注意的是本发明的这个特性不仅限于可盐溶纤维,而任何含有钙和硅的氧化物纤维均能用硅酸钙更好地制得,其中硅灰石仅是这类硅酸盐的一个例子。
以上说明的是特定的盐溶纤维在高温下的使用。下面将讨论盐溶纤维的推断和使用。一系列熔化的玻璃熔融物由列于下表11A和表11B的组份来制成,并在水中淬火。淬火的熔融物的各种成份的溶解度通过前面已描述过的原子吸收方法来测量。溶解度用纤维的比表面积0.25m2/g来归一化。
水合作用的自由能由归一化的化学分析对100的重量百分比进行计算;从而假定单一的硅酸盐(MSiO3/M2 SiO3)存在时可制得,并对其每一类物质所贡献的水合作用自由能进行计算;并且求和可得到水合作用的总的自由能。在表11A和11B中的数据也在图4中得以表示。能够看出纤维一般将随着线性正比于下面要解释的四组材料而定。
下面列出表11A和11B中每栏的项目:
  纤维参数
  组成
  摩尔比
  摩尔/100克熔融物
  设定的物质(参见下面)
  计算所设定物质的水合作用的自由能
  (千卡/100克)(参见下面)
  计算所设定物质的水合自由能
  (千焦/千克)(参见下面)
  溶解度数据(#表示没有测量[参见下面])
  比表面积
  归一化的溶解度数据
  归一化的溶解度的对数
水合自由能的计算所算出的基本数据在表12中列出,其中表示水合自由能的单位取自文献中常用的千卡/摩尔和千焦/摩尔。
                    硅酸盐玻璃的水合自由能量表
                               表11A
玻璃液代码                   组成 摩尔数 在100g中的摩尔/数 物质 摩尔/IKg 游离水合自由能(kcal/100g) 游离水合自由能(kJ/kg)           溶解度 比表面积m2/g 归一化的溶解度 log(归-化溶解度)
  Oxide   wt.%     理论的     Oxide   (ppm)
 CAS10(B)-A   CaOAl2O3SiO2Total   47.224.527.198.8     47.824.827.4100.0   0.8520.2430.451     0.4510.2430.401    CaSiO3Al2O3CaO     4.512.434.01     -7.30.8-5.3-11.6     -304.031.6-219.7-492.1     CaOAl2O3SiO2Total   440751   0.30     43   1.63
 CASIO(B)-B   CaOAl2O3SiO2Total   46.523.728.498.6     47.224.028.8100.0   0.8420.2350.479     0.4790.2350.363    CaSiO3Al2O3CaO     4.792.353.63     -7.70.7-4.8-11.8     -322.830.6-198.9-491.1     CaOAl2O3SiO2Total   58144103   0.39     66   1.82
 CASIO(B)-C   CaOAl2O3SiO2Total   47.823.927.198.8     48.424.227.4100.0   0.8630.2370.456     0.4560.2370.407    CaSiO3Al2O3CaO     4.562.374.07     -7.30.7-5.3-11.9     -307.330.8-223.0-499.5     CaOAl2O3SiO2Total   55055110   0.36     76   1.88
 CTS(A)   CaOTiO2SiO2Total   42.712.741.096.4     44.313.242.5100.0   0.7900.1650.707     0.7070.0830.165    CaSiO3CaOTiO2     7.070.631.65     -11.4-1.12.6-9.9     -476.5-45.5110.4-411.6     CaOTiO2SiO2Total   62049111   0.40     69   1.84
 SrSiO3   SrOSiO2Total   63.134.998.0     64.435.6100.0   0.6220.592     0.5920.030    SrSiO3SrO     5.920.30     -14.4-0.5-14.9     -604.4-21.7-626.1     SrOSiO2Total   2367369   0.37     249   2.40
 CaSiO3   CaOSiO2Total   46.152.398.4     46.953.1100.0   0.8360.884     0.8360.048    CaSiO3SiO2     8.360.48     -13.50.3-13.2     -563.511.2-552.3     CaOSiO2Total   41253294   0.49     163   2.21
 NAS(A)   Na2OAl2O3SiO2Total   18.839.741.199.6     18.939.841.3100.0   0.3050.3900.687     0.3050.3900.382    Na2SiO3Al2O3SiO2     3.053.903.82     -8.81.22.1-5.5     -367.550.789.4-227.4     Na2OAl2O3SiO2Total   #459   0.56     4   0.60
 CAS4   CaOAl2O3SiO2Total   21.035.444.2100.6     20.935.243.9100.0   0.3730.3450.731     0.3730.3450.358    CaSiO3Al2O3SiO2     3.733.457.31     -6.01.12.0-2.9     -251.444.9171.1-35.4     CaOAl2O3SiO2Total   114520   0.62     0   0.90
 MAS(B)   MgOAl2O3SiO2Total   10.033.753.096.7     10.334.954.0100.0   0.2560.3420.912     0.2560.3420.656    MgSiO3Al2O3SiO2     2.563.426.56     -3.61.13.71.2     -149.044.5153.549.0     MgOAl2O3SiO2Total   72413   0.52     6   0.78
 SAS(A)   SrOAl2O3SiO2Total   29.831.136.897.7     30.531.837.7100.0   0.2940.3120.627     0.2940.3120.333    SrSiO3Al2O3SiO2     2.943.123.33     -7.21.01.9-4.3     -300.240.677.9-181.7     SrOAl2O3SiO2Total   92516   0.50     8   0.90
 SCS(A)   SrOCaOSiO2Total   35.021.043.699.6     35.121.143.8100.0   0.3390.3760.729     0.3390.3760.014    SrSiO3CaSiO3SiO2     3.393.760.14     -8.3-6.10.1-14.3     -346.1-253.43.3-596.2     SrOCaOSiO2Total   7530355460   0.41     280   2.45
                           硅酸盐玻璃的水合自由能量表
                                      表11B
玻璃液代码               组成 摩尔数 摩尔/100g 物质 摩尔/Kg 游离水合自由能(kcal/100g) 游离水合自由能(kJ/kg)         溶解度 比表面积m2/g 归一化的溶解度 log(归一化溶解度)
  Oxide     wt.%     理论的   Oxide   (ppm)
  SMAS(A)   SrOMgOAl2O3SiO2Total     55.01.223.717.397.2     56.61.224.417.8100.0   0.5460.0300.2390.296   0.2960.0300.2390.250     SrSiO3MgOAl2O3SrO     2.960.302.392.50     -7.2-0.20.7-4.3-11.0     -302.2-8.231.1-181.0-460.3   SrOMgOAl2O3SiO2Total   5725569   0.46     38     1.58
  SMA3(B)   SrOMgOAl2O3SiO2Total     55.04.814.823.798.3     55.94.915.124.1100.0   0.5390.1220.1480.401   0.4010.1220.1480.138     SrSiO3MgOAl2O3SrO     4.011.221.481.38     -9.8-0.80.5-2.4-12.5     -409.4-33.219.2-99.9-523.3   SrOMgOAl2O3SiO2Total   11015122148   0.39     95     1.98
  SMS(A)   SrOMgOAl2O3SiO2Total     33.012.51.053.8100.3     32.912.51.053.6100.0   0.3180.3100.0100.892   0.3180.3100.0100.264     SrSiO3MgSiO3Al2O3SiO2     3.183.100.102.64     -7.8-4.30.01.510.6     -324.7-180.41.361.8-442.0   SrOMgOAl2O3SiO2Total   147610123331   0.39     212     2.33
  SAS(C)   SrOAl2O3SiO2Total     S6.019.724.099.7     56.219.724.1100.0   0.S420.1930.401   0.4010.1930.141     SrSiO3Al2O3SrO     4.011.931.41     -9.80.6-2.4-11.6     -409.425.1-102.1-486.4   SrOAl2O3SiO2Total   701879   0.38     52     1.72
  CHAS(A)   CaOMgOAl2O3SiO2Total     35.04.544.017.8101.3     34.64.443.417.6100.0   0.6170.1090.4260.293   0.2930.1090.4260.324     CaSiO3MgOAl2O3CaO     2.931.094.263.24     -4.7-0.71.3-4.2-8.3     -197.5-29.655.4-177.6-349.3   CaOMgOAl2O3SiO2Total   1173829   0.30     24     1.38
  SWA2   CaOMgOAl2O3SiO2Total     21.715.70.861.8100.0     21.715.70.861.8100.0   0.3870.3890.0081.028   0.3870.3890.0080.252     CaSiO3MgSiO3Al2O3SiO2     3.873.890.082.52     -6.2-5.40.01.4-10.2     -260.8-226.41.059.0-427.2   CaOMgOAl2O3SiO2Total   53570118228   0.48     119     2.08
  SAS(D)   SrOAl2O3SiO2Total     56.517.624.498.5     57.317.924.8100.0   0.5530.1760.413   0.4130.1760.140     SrSiO3Al2O3SrO     4.131.761.40     -10.10.5-2.4-12.0     -421.722.9-101.4-500.2   SrOAl2O3SiO2Total   107132147   0.40     92     1.96
  KMAS(A)   K2OMgOAl2O3SiO2Total     16.513.018.052.8100.3     16.513.017.952.6100.0   0.1750.3230.1760.875   0.1750.3230.1760.377     K2SiO3MgSiO3Al2O3SiO2     1.753.231.768.75     -7.3-2.10.52.1-6.8     -305.4-188.022.9204.8-265.7   K2OMgOAl2O3SiO2Total   6811120   0.36     14     1.15
                  表12
                                   ΔG水合
涉及的氧化物                     (千卡/摩尔)       (kJ/摩尔)
SiO2   +H2O→   H2SiO3           5.6              23.4
(vitreous silica)
Al2O3+3H2O→  2Al(OH)3           3.1              13.0
MgO     +H2O →  Mg(OH)2            -6.5             -27.2
CaO     +H2O →  Ca(OH)2            -13.1            -54.8
SrO     +H2O →  Sr(OH)2            -17.3            -72.4
Na2O   +H2O → 2NaOH                -33.5            -140.2
K2O    +H2O → 2KOH                 -46.1            -192.9
TiO2   +H2O → Ti(OH)2O           16.0              66.9
P2O5  +3H2O→ 2H3PO4            -55.9            -233.9
B2O3  +3H2O→ 2H3BO3            -9.8             -41.0
ZrO2   +H2O → 2r(OH)2O            -7.1             -29.7涉及的硅酸盐Na2SiO3+2H+(aq)→H2SiO3+2Na+(aq)   -28.8            -120.5K2SiO3 +2H+(aq)→H2SiO3+2K+(aq)    -41.7            -174.5MgSiO3  +2H+(aq)→H2SiO3+Mg2+(ag)    -13.9            -58.2CaSiO3  +2H+(aq)→H2SiO3+Ca2+(aq)    -16.1            -67.4SrSiO3  +2H+(aq)→H2SiO3+Sr2+(aq)    -24.4            -102.1BaSiO3  +2H+(aq)→H2SiO3+Ba2+(aq)    -37.3            -156.1ZnSiO3  +2H+(aq)→H2SiO3+Zn2+(aq)    -2.4             -10.0二硅酸盐Ca2SiO4+3H+(aq)→H2SiO3+2Ca2++OH-  -30.3            -126.8Sr2SiO4+3H+(aq)→H2SiO3+2Sr2++OH-  -50.3            -210.5Mg2SiO4+3H+(aq)→H2SiO3+2Mg2++OH-  -17.9            -74.9
虽然计算是设定最简单的硅酸盐的存在形式来进行,但选用其它的硅酸盐(如二硅酸盐)没有明显地改变计算结果。例如下面给出的是对所设定的组成的计算,它仅表现出对于所计算的水合作用自由能有较小的差别。组成(摩尔/100克)            0.767CaO
                        0.417MgO
                        0.669SiO20.384 Ca2SiO4=-11.6 或  0.433  CaSiO3  =-7.00.285 MgSiO3  =-4.0  或  0.236  MgSiO3  =-3.00.132 MgO     = -0.9或  0.334   CaO     =-4.4
               -16.5    0.181   MgO     = -1.2
                                            -15.9
                    或  0.384  Ca2SiO4=-11.6
                        0.132  MgSiO4   =-2.4
                        0.153  MgSiO3   = -2.1
                                             -16.1
本申请人已发现,当水合作用的自由能比组份的-10千卡/100克(-418.4KJ/Kg)更小时,该组份表现出高溶解度。而不具有这种关系的那些组份是其总溶解度不可接受的组成(如那些材料含有钠,而任何被溶解的钠将会被在盐溶液中的钠所干扰)或其大多数此类制品的水合作用自由能是文献中所不接受的。
对于这个技术的试验,用EP0399320的两个实例来验证。该已公开的实例所具有的组份:成份        组成1(重量百分比)    组成2(重量百分比)SiO2        60.7                  58.5Al2O3      -                     5.8CaO          16.5                  3.0MgO          3.2                   -B2O3      3.3                   11.0Na2O        15.4                  9.8K2O         0.7                   2.9氧化铁       0.2                   0.1BaO          -                     5.0ZnO          -                     3.9
用上述方法计算组成1,其具有的水合自由能为-11.6千卡/100克(-485.3KJ/Kg),而组成2具有的水合自由能为-5.8千卡/100克(-242.6KJ/Kg)。这样就推断组份1会是可盐溶纤维,因此比不可溶解的纤维更具有生理安全性;然而,组成2应被推断是一个相对地不可溶纤维因此是不安全的。在EP0399320中所公开的是在研究中将组份2的纤维导入鼠的内腹膜中,该纤维具有较长的滞留时间。
如上所述,在一些环境条件下这种推断试验可能失败。为了避免这些困难,本申请人找到了一个不同的预测工艺,称为非桥接氧存在量预测法。这个方法是通过化学分析对于100重量百分比的归一化计算;其中计算每个氧化物的摩尔百分比;将每个氧化物对于得到总氧数时氧重量的基值相加;将每个氧化物的非桥接氧的重量基值加起来(参见下面);并计算非挢接氧与总氧数的比率。本申请人发现,当这个数值超过30%时,该纤维是可溶解的。
为了解释非桥接氧一词,还必须考虑其玻璃结构。玻璃是非常粘的液体,且通常需要存在一种能形成网络(通常为一种桥氧连的网络)的材料来制成。该网络可通过成份来修饰,该成份提供非桥连部分给网络,以打开该网络的结构,从而阻止结晶作用。这些材料通常分别当作网络成形物和网络外体。
网络外体和网络成形物这些术语在玻璃工业中是公知的。网络成形物是这样一些材料如SiO2、P2O5、B2O3和GeO2,它们能够形成一种内联的网络,从而形成玻璃相。网络外体是这样一些物质如CaO、Na2O和K2O,它们可替代网络且具有影响象粘度和熔点这样一些特性的作用。有一些中间体材料(如Al2O3、TiO2、PbO、ZnO和BeO)它们的行为既可作网络成形物,又可作网络外体,这取决于环境和其存在的量。
在以上所述试验中,对于非桥氧的计算,人们忽略该网络成形物,且计算相互的氧化物的基值。每个氧化物的基值取决于在玻璃中的几何形状和每个阳离子的交换。下面提供一些典型例子:Ca2+、Mg2+、Sr2+和其它二价网络修饰阳离子提供2个非桥氧K+和Na+和其它一价网络变性阳离子提供1个非桥氧A13+、Ti3+和其它中间体阳离子提供-1个非桥氧(即这些氧化物减少非桥氧的数目)(Ti4+当以相对较小的量存在于玻璃中时在大多数玻璃中被减为Ti3+)
         对硅酸盐玻璃液的非桥氧计算表
                      表13A
玻璃液代码          组成 摩尔数 摩尔% 氧的总数 N.B.O. %N.B.O            溶解度 S.S.Am2/g 归一化的溶解度 log(归一化溶解度)
  氧化物   重量.%     Oxlde     (ppm)
  CASIO(B)-A   CaOAl2O3SiO2   47.224.527.1Total     0.8420.2400.4511.533     54.915.729.4100.0   160.8      78.4    48.8     CaOAl2O3SiO2Total     440751     0.30   43   1.63
  CASIO(B)-B   CaOAl2O3SiO2   46.523.728.4Total     0.8290.2520.4731.534     54.015.130.8100.0   160.9      77.8    48.4     CaOAl2O3SiO2Total     58144103     0.39   66   1.82
  CASIO(B)-C   CaOAl2O3SiO2   47.823.927.1Total     0.8520.2340.4511.537     55.415.229.3100.0   159.6      80.4    50.4     CaOAl2O3SiO2Total     55055110     0.36   76   1.88
  CTS(A)   CaOTiO2SiO2   42.712.741.0Total 0.1590.6821.602     47.59.942.6100.0   152.5      85.1    55.8     CaOTiO2SiO2Total     62049111     0.40   69   1.84
  SrSiO3   SrOSiO2   63.134.9Tota1     0.6090.5811.190     51.248.8100.0   148.8      102.4    68.8     SrOSiO2Total     2367369     0.37   249   2.40
  CaSiO3   CaOSiO2   46.152.3Total     0.8220.8701.692     48.651.4100.0   151.4      97.2    64.2     CaOSiO2Total     41253294     0.45   163   2.21
  NAS(A)   Na2OAl2O3SiO2   18.839.741.1Total     0.3030.3890.6841.376     22.028.349.7100.0   228.3      -12.6    -5.5     Na2OAl2O3SiO2Total     4459     0.56   4   0.60
  CAS(U)   CaOAl2O3SiO2   21.035.444.2Total     0.3740.3470.7361.457     25.723.850.5100.0   198.1      3.8    1.9     CaOAl2O3SiO2Total     114520     0.42   8   0.90
  MAS(B)   MgOAl2O3SiO2   10.033.753.0Total     0.2480.3310.8821.461     17.022.660.4100.0   205.6      -11.2    -5.4     MgOAl2O3SiO2Total     12413     0.52   6   0.78
  SAS(A)   SrOAl2O3SiO2   29.831.136.8Total     0.2880.3050.6121.205     23.925.350.8100.0   201.4      -2.6    -1.4     SrOAl2O3SiO2Toral     92510     0.50   8   0.90
  SCS(A)   SrOCaOSiO2   35.021.043.6Total     0.3380.3740.7261.438     23.526.050.5100.0   150.5      99.0    65.8     SrOCaOSiO2Total     7530355460     0.41   200   2.45
        对硅酸盐玻璃液的非桥氧计算表
                      表13B
玻璃液代码 组成 摩尔数 摩尔% 氧的总数 N.B.O. %N.B.O 溶解度 S.S.Am2/g 归一化的溶解度 log(归一化溶解度)
  氧化物   重量.%   Oxide     (ppm)
  SMAS(A)   SrOMgOAl2O3SiO2   55.01.223.717.3Total   0.5310.0300.2320.2881.081   49.12.821.526.6100.0   169.6   60.8   35.8   SrOMgOAl2O3SiO2Total     5752569     0.46   38 1.58
  SMAS(B)   SrOMgOAl2O3SiO2   55.04.814.823.7Total   0.5310.1190.1450.3941.189   44.610.012.233.2100.0   157.6   84.8   53.8   SrOMgOAl2O3SiO2Total     11015122148     0.39   95 1.98
  SMS(A)   SrOMgOAl2O3SiO2   33.012.51.053.8Total   0.3180.3100.0100.8951.533   20.720.20.658.4100.0   159.5   80.6   50.5   SrOMgOAl2O3SiO2Total     147610123331     0.39   212 2.33
  SAS(C)   SrOAl2O3SiO2   56.019.724.0Total   0.5400.1930.3991.132   47.717.035.3100.0   169.3   61.4   36.3   SrOAl2O3SiO2Total     701879     -0.38   52 1.72
  CMAS(A)   CaOMgOAl2O3SiO2   35.04.544.017.8Total   0.6240.1120.4320.2961.464   42.67.629.520.3100.0   179.3   41.4   23.1   CaOMgOAl2O3SiO2Total     1173829     0.30   24 1.38
  SWA2   CaOMgOAl2O3SiO2   21.715.70.861.8Total   0.3870.3890.0081.0281.812   21.421.50.456.7100.0   157.5   85.0   54.0   CaOMgOAl2O3SiO2Total     53570118228     0.48   119 2.08
  SAS(D)   SrOAl2O3SiO2   56.517.624.4Total   0.5450.1730.4061.124   48.515.436.1100.0   166.9   66.2   39.7   SrOAl2O3SiO2Total     107139147     0.40   92 1.96
  KHAS(A)   K2OMgOAl2O3SiO2   16.513.018.052.8Total   0.1750.3230.1770.8791.554   11.320.811.4.56.6100.0   179.5   41.4   23.1   K2OMgOAl2O3SiO2Total     4811120     0.36   14 1.15
表13A和13B列出的是对于表11A和11B的组份进行计算的非键接氧数值,并把这些数值在图5中画出。可以看出图5的曲线比图4更线性化。具有大于30%非挢氧的组成显示高溶解度。
为了说明计算方法,下面给出一实例(在表13A中所列的第一个):
    摩尔数/摩尔    总的氧            非桥氧CaO      0.549          0.549              1.098(2×0.549)Al2O3 0.157          0.471(0.157×3)    -0.314(-1×0.157×2A1)SiO2   0.294         0.588              0.000
    1.000          1.608               0.784%非桥氧(0.784/1.608)×100=48.8%
作为一个实例,人们可以看一下上面曾涉及的EP 0399320。对于该欧洲专利说明书使用该计算方法时,组成1具有非桥氧的百分比为48.2%,然而组成2具有非桥氧的百分比为19.6%,再一次判断出组成1比组成2更可溶解。
进一步要判断的是一个组成必须满足使得它成为玻璃质纤维,即该组成能形成一种玻璃。本申请人发现一个简单的试验。若网络外体与网络成形物的比率小于一个确定值(对于SiO2基质玻璃)一般该组份将会形成一种玻璃。为了这个试验的目的,若将中间体原料处理成为网络体则可获得合理的结果。表14A和14B示出一系列的组成在每一栏中:
纤维编号(注意:这些不是在表9A、9B、10A和10B
中所列出的同样纤维)
组成
摩尔比
玻璃网络外体与网络成形物比率
原料氧化物水合作用的自由能
熔点
X射线衍射结果
溶解度数据(#表示没有测量)
比表面积
归一化的溶解度数据
对于溶解度和玻璃形成能力的经验评估
表示是否熔点在1500℃以上
应该强调,这个试验是一种筛选试验,而不是一种完全的预测,因为有几种情况可能使其失败。在这些情况中是化合物的形成作用,且不能足够快速地淬火以形成玻璃。
用筛选方法进行这些试验,那么下面的进一步的步骤是证实是否该组成将形成一种玻璃质纤维。这最后的步骤是实验上最好的验证,因为纤维成形能力是一种许多物理特性的复杂功能,如粘度,它常常是很难测量的。
溶解度与玻璃形成能力的关系表
溶解度与玻璃形成能力的关系表
Figure C9310238500441

Claims (7)

1.作为耐火绝热材料用的可盐溶纤维,所述绝热材料的最高使用温度为900℃或超过900℃,所选用的可盐溶纤维具有在1000℃暴露24小时时收缩率小于3.5%,以及在800℃暴露24小时时收缩率小于3.5%的性能,所述可盐溶纤维包括玻璃态纤维,所述玻璃态纤维含有SiO2以及CaO和/或MgO的组分,所述组分的含量以重量%表示:
在MgO=<10%的情况时:
SiO2大于58%、小于70%
CaO    0%~42%
MgO    0%~10%
Al2O30%~<3.97%
在MgO>=10%的情况时:
SiO2大于58%+0.5(%MgO-10)、小于70%
CaO    0%~42%
MgO    10%~31.33%
Al2O30%~<3.97%而且,基本上不含助熔成份,如碱金属和氧化硼。
2.根据权利要求1所述作为耐火绝热材料用的可盐溶纤维,其中,所述纤维在结晶时晶化成为透辉石,而且具有主要组成如下的组分,
     成份                  组成A(重量%)
     SiO2                 60~64
     Al2O3               0~3.5
     CaO                   19~23
     MgO                   14~17其中,所述纤维在结晶时晶化成为硅灰石和/或假硅灰石,而且具有主要组成如下的组分,
     成份              组成B (重量%)
     SiO2             60~67
     Al2O3           0~3.5
     CaO               26~35
     MgO               4~6
4.根据权利要求1所述作为耐火绝热材料用的可盐溶纤维,其中,由于在结晶时摩尔体积的增加,故最高使用温度时的线性收缩率小于3.5%。
5.根据权利要求1所述作为耐火绝热材料用的可盐溶纤维,其中,所述纤维具有以下的组分:
SiO2   不超过68.74%
CaO     16.22%~34.49%
MgO     1.71%~18.00%
Al2O3 不超过2.57%
6.根据权利要求5所述作为耐火绝热材料用的可盐溶纤维,其中,所述纤维含有:
Na2O         <0.05~0.65%
K2O          <0.05~0.13%
Fe2O3       0.08~0.40%
ZrO2         <0.05~1.23%
7.根据权利要求1-6中任何一项所述的作为耐火绝热材料用的可盐溶纤维,其中,所述耐火绝缘材料呈针织毡的形态。
8.将权利要求1-7中任何一项所述的作为耐火绝热材料用的可盐溶纤维用作超过1000℃温度的绝热材料。
CN93102385A 1992-01-17 1993-01-16 盐溶无机纤维 Expired - Lifetime CN1042023C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
GB9200993.5 1992-01-17
GB929200993A GB9200993D0 (en) 1992-01-17 1992-01-17 Saline soluble inorganic fibres
GB9224612.3 1992-11-24
GB929224612A GB9224612D0 (en) 1992-11-24 1992-11-24 Manufacture of calcium and silicon-containing refractory oxide fibres

Publications (2)

Publication Number Publication Date
CN1078218A CN1078218A (zh) 1993-11-10
CN1042023C true CN1042023C (zh) 1999-02-10

Family

ID=26300173

Family Applications (1)

Application Number Title Priority Date Filing Date
CN93102385A Expired - Lifetime CN1042023C (zh) 1992-01-17 1993-01-16 盐溶无机纤维

Country Status (24)

Country Link
US (1) US7259118B2 (zh)
EP (2) EP1179513A1 (zh)
JP (2) JP3630167B2 (zh)
KR (1) KR100236883B1 (zh)
CN (1) CN1042023C (zh)
AT (1) ATE211122T1 (zh)
AU (2) AU663155C (zh)
BR (1) BR9305741A (zh)
CA (1) CA2127357C (zh)
CZ (1) CZ286812B6 (zh)
DE (1) DE69331376T2 (zh)
DK (1) DK0621858T3 (zh)
ES (1) ES2168094T3 (zh)
FI (1) FI943380A (zh)
GB (2) GB2287934A (zh)
HK (1) HK1001888A1 (zh)
HU (1) HU218828B (zh)
IN (1) IN186395B (zh)
MX (1) MX9300200A (zh)
NO (1) NO942655L (zh)
NZ (1) NZ246629A (zh)
RU (1) RU2113420C1 (zh)
SK (1) SK282182B6 (zh)
WO (1) WO1993015028A1 (zh)

Families Citing this family (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4228353C1 (de) * 1992-08-26 1994-04-28 Didier Werke Ag Anorganische Faser
ES2196040T3 (es) * 1993-01-15 2003-12-16 Morgan Crucible Co Fibras inorganicas solubles en disoluciones salinas.
CA2154442C (en) * 1993-01-15 2004-04-13 Gary Anthony Jubb Saline soluble inorganic fibres
WO1994015883A1 (en) * 1993-01-15 1994-07-21 The Morgan Crucible Company Plc Saline soluble inorganic fibres
DE19503169A1 (de) * 1995-02-01 1996-08-08 Gruenzweig & Hartmann Mineralfaserzusammensetzung
IS4284A (is) * 1994-05-17 1995-11-18 Isover Saint-Gobain Samsetning glerullartrefja
DE9422034U1 (de) * 1994-05-28 1997-10-02 Gruenzweig & Hartmann Glasfaserzusammensetzungen
EP0804391B1 (en) * 1995-10-30 2004-03-03 Unifrax Corporation High temperature resistant glass fiber
US6030910A (en) * 1995-10-30 2000-02-29 Unifrax Corporation High temperature resistant glass fiber
GB9613023D0 (en) * 1996-06-21 1996-08-28 Morgan Crucible Co Saline soluble inorganic fibres
ZA989387B (en) * 1998-08-13 1999-04-15 Unifrax Corp High temperature resistant glass fiber
GB2347490B (en) 1999-06-11 2001-03-07 Morgan Crucible Co Surface combustion radiant heaters and heating plaques
WO2001019744A1 (en) * 1999-09-10 2001-03-22 The Morgan Crucible Company Plc High temperature resistant saline soluble fibres
GB9921504D0 (en) * 1999-09-10 1999-11-17 Morgan Crucible Co High temperatures resistant saline soluble fibres
GB2353996B (en) 1999-09-27 2001-07-25 Morgan Crucible Co Methods of making inorganic fibres
GB2383793B (en) * 2002-01-04 2003-11-19 Morgan Crucible Co Saline soluble inorganic fibres
KR100937621B1 (ko) * 2002-01-10 2010-01-20 유니프랙스 아이 엘엘씨 고온 내성의 유리성 무기 섬유
FR2856055B1 (fr) * 2003-06-11 2007-06-08 Saint Gobain Vetrotex Fils de verre aptes a renforcer des matieres organiques et/ou inorganiques, composites les renfermant et composition utilisee
CN1842498B (zh) 2003-06-27 2010-06-16 尤尼弗瑞克斯有限公司 耐高温的玻璃质无机纤维
WO2005000754A1 (en) 2003-06-27 2005-01-06 Unifrax Corporation High temperature resistant vitreous inorganic fiber
JP2006089881A (ja) * 2004-09-24 2006-04-06 Saint-Gobain Tm Kk 無機繊維とその製造方法
DE602005007864D1 (de) * 2004-11-01 2008-08-14 Morgan Crucible Co Modifizierung von erdalkalimetallsilicatfasern
JP2006152468A (ja) * 2004-11-26 2006-06-15 Saint-Gobain Tm Kk 無機繊維およびその製造方法
FR2879591B1 (fr) * 2004-12-16 2007-02-09 Saint Gobain Vetrotex Fils de verre aptes a renforcer des matieres organiques et/ou inorganiques
EP1910595B1 (en) 2005-06-30 2018-08-08 Unifrax I LLC Phosphate coated inorganic fiber and methods of preparation and use
JP4859415B2 (ja) 2005-08-31 2012-01-25 ニチアス株式会社 無機繊維及びその製造方法
US7823417B2 (en) * 2005-11-04 2010-11-02 Ocv Intellectual Capital, Llc Method of manufacturing high performance glass fibers in a refractory lined melter and fiber formed thereby
US9187361B2 (en) * 2005-11-04 2015-11-17 Ocv Intellectual Capital, Llc Method of manufacturing S-glass fibers in a direct melt operation and products formed there from
US9656903B2 (en) * 2005-11-04 2017-05-23 Ocv Intellectual Capital, Llc Method of manufacturing high strength glass fibers in a direct melt operation and products formed there from
US8586491B2 (en) 2005-11-04 2013-11-19 Ocv Intellectual Capital, Llc Composition for high performance glass, high performance glass fibers and articles therefrom
US7799713B2 (en) * 2005-11-04 2010-09-21 Ocv Intellectual Capital, Llc Composition for high performance glass, high performance glass fibers and articles therefrom
US8338319B2 (en) * 2008-12-22 2012-12-25 Ocv Intellectual Capital, Llc Composition for high performance glass fibers and fibers formed therewith
RU2427546C2 (ru) 2005-11-10 2011-08-27 ДЗЕ МОРГАН КРАСИБЛ КОМПАНИ ПиЭлСи Жаростойкие волокна
EP1997789B1 (en) * 2006-03-17 2014-05-07 NGK Insulators, Ltd. Honeycomb structure and bonding material to be used for the same
JP4731381B2 (ja) * 2006-03-31 2011-07-20 ニチアス株式会社 ディスクロール及びディスクロール用基材
GB0623770D0 (en) * 2006-11-28 2007-01-10 Morgan Crucible Co Inorganic fibre compositions
AU2007327075B8 (en) 2006-11-28 2012-09-06 Morgan Advanced Materials Plc Inorganic fibre compositions
AU2008246336A1 (en) * 2007-01-08 2008-11-13 Unifrax I Llc Fire-barrier film laminate
RU2453713C2 (ru) * 2007-08-31 2012-06-20 ЮНИФРЭКС I ЭлЭлСи Устройство для обработки выхлопных газов
AU2008327713A1 (en) * 2007-11-23 2009-05-28 The Morgan Crucible Company Plc Inorganic fibre compositions
BRPI0917717A2 (pt) * 2008-08-29 2016-02-16 Unifrax I Llc esteira de montagem com protetor de borda flexível e dispositivo de tratamento de gás de exaustão incorporado na esteira de montagem.
USD628718S1 (en) 2008-10-31 2010-12-07 Owens Corning Intellectual Capital, Llc Shingle ridge vent
USD615218S1 (en) 2009-02-10 2010-05-04 Owens Corning Intellectual Capital, Llc Shingle ridge vent
WO2010074711A2 (en) 2008-12-15 2010-07-01 Unifrax I Llc Ceramic honeycomb structure skin coating
US8252707B2 (en) * 2008-12-24 2012-08-28 Ocv Intellectual Capital, Llc Composition for high performance glass fibers and fibers formed therewith
RU2011126262A (ru) * 2009-01-05 2013-02-10 ЮНИФРЭКС I ЭлЭлСи Изолирующая пластина из высокопрочных биорастворимых неорганических волокон
EP2419613B1 (en) * 2009-04-17 2016-08-17 Unifrax I LLC Exhaust gas treatment device
CN102713191B (zh) * 2009-08-10 2016-06-22 尤尼弗瑞克斯I有限责任公司 可变基重垫或预型件以及废气处理装置
EP2464838A1 (en) 2009-08-14 2012-06-20 Unifrax I LLC Multiple layer substrate support and exhaust gas treatment device
CN102575542B (zh) 2009-08-14 2014-09-10 尤尼弗瑞克斯I有限责任公司 用于排气处理装置的安装垫
KR101671048B1 (ko) * 2009-08-25 2016-10-31 액세스 비지니스 그룹 인터내셔날 엘엘씨 영구 적층된 자속 집중기 조립체 및 가요성 자속 집중기 조립체
US8071040B2 (en) 2009-09-23 2011-12-06 Unifax I LLC Low shear mounting mat for pollution control devices
KR20120074284A (ko) 2009-09-24 2012-07-05 유니프랙스 아이 엘엘씨 다층 매트 및 배기 가스 처리 장치
ES2613640T3 (es) * 2009-10-02 2017-05-25 Unifrax I Llc Tablero de aislamiento de peso ultra ligero
BR112012011392A2 (pt) 2009-11-13 2016-04-26 Unifrax I Llc material multicamadas de proteção contra incêndios
US8729155B2 (en) 2009-11-16 2014-05-20 Unifrax I Llc Intumescent material for fire protection
KR101223675B1 (ko) * 2009-11-27 2013-01-17 주식회사 케이씨씨 염용해성 세라믹 섬유 조성물
EP2513442B1 (en) 2009-12-17 2017-11-29 Unifrax I LLC An exhaust gas treatment device
KR20140130206A (ko) 2009-12-17 2014-11-07 유니프랙스 아이 엘엘씨 오염 제어 장치용 다층 장착 매트
EP2513443B1 (en) 2009-12-17 2016-08-10 Unifrax I LLC Mounting mat for exhaust gas treatment device
EP2603676B1 (en) 2010-08-13 2016-03-23 Unifrax I LLC Mounting mat with flexible edge protection and exhaust gas treatment device incorporating the mounting mat
US9924564B2 (en) 2010-11-11 2018-03-20 Unifrax I Llc Heated mat and exhaust gas treatment device
KR20130101564A (ko) 2010-11-16 2013-09-13 유니프랙스 아이 엘엘씨 무기 섬유
CA2816880C (en) 2010-11-19 2019-03-26 Unifrax I Llc Fire barrier layer and fire barrier film laminate
US9676168B2 (en) 2010-11-19 2017-06-13 Lamart Corporation Fire barrier layer and fire barrier film laminate
JP4862099B1 (ja) 2010-12-28 2012-01-25 ニチアス株式会社 生体溶解性無機繊維
JP5006979B1 (ja) 2011-03-31 2012-08-22 ニチアス株式会社 生体溶解性無機繊維の製造方法
JP5015336B1 (ja) * 2011-03-31 2012-08-29 ニチアス株式会社 無機繊維質ペーパー及びその製造方法
US8940134B2 (en) * 2011-04-05 2015-01-27 Nichias Corporation Paper comprising heat treated bio-soluble inorganic fibers, and method and equipment for making same
US20130129963A1 (en) 2011-11-18 2013-05-23 Unifrax I Llc Fire barrier layer and fire barrier film laminate
JP5022512B1 (ja) * 2011-12-01 2012-09-12 ニチアス株式会社 不定形組成物
JP5138806B1 (ja) 2011-12-01 2013-02-06 ニチアス株式会社 生体溶解性無機繊維及びその製造方法
BR112014014087A2 (pt) * 2011-12-19 2017-06-13 Unifrax I Llc fibra inorgânica resistente a alta temperatura
JP5174948B1 (ja) * 2011-12-23 2013-04-03 ニチアス株式会社 生体溶解性無機繊維及びその製造方法
JP5087709B1 (ja) 2012-01-24 2012-12-05 ニチアス株式会社 無機繊維質定形体及びその硬度の調整方法
WO2013179330A1 (ja) 2012-05-28 2013-12-05 ニチアス株式会社 Si-Mg系無機繊維及びその組成物
IN2014DN10759A (zh) 2012-06-29 2015-09-04 Nichias Corp
USD710985S1 (en) 2012-10-10 2014-08-12 Owens Corning Intellectual Capital, Llc Roof vent
US10370855B2 (en) 2012-10-10 2019-08-06 Owens Corning Intellectual Capital, Llc Roof deck intake vent
KR102115058B1 (ko) 2012-11-02 2020-05-25 유니프랙스 아이 엘엘씨 인성 무기 섬유의 처리 및 배기 가스 처리 기기용 장착 매트에서의 인성 무기 섬유의 용도
EP2969989B1 (en) 2013-03-15 2019-05-08 Unifrax I LLC Inorganic fiber
JP6266250B2 (ja) 2013-07-25 2018-01-24 ニチアス株式会社 耐熱無機繊維
JP6513905B2 (ja) * 2014-04-23 2019-05-15 ニチアス株式会社 生体溶解性無機繊維
JP6554269B2 (ja) 2014-07-08 2019-07-31 ニチアス株式会社 生体溶解性無機繊維の製造方法
US10023491B2 (en) 2014-07-16 2018-07-17 Unifrax I Llc Inorganic fiber
PL3169833T3 (pl) 2014-07-16 2020-01-31 Unifrax I Llc Włókno nieorganiczne o ulepszonej kurczliwości i wytrzymałości
CA2953765A1 (en) 2014-07-17 2016-01-21 Unifrax I Llc Inorganic fiber with improved shrinkage and strength
JP5634637B1 (ja) * 2014-08-08 2014-12-03 ニチアス株式会社 生体溶解性無機繊維
KR20170118679A (ko) 2015-02-24 2017-10-25 유니프랙스 아이 엘엘씨 내고온성 절연 매트
US9919957B2 (en) 2016-01-19 2018-03-20 Unifrax I Llc Inorganic fiber
CN109661262A (zh) 2016-05-09 2019-04-19 尤尼弗瑞克斯 I 有限责任公司 具有高表面积材料的催化过滤介质及其制作方法
WO2017205260A1 (en) 2016-05-25 2017-11-30 Unifrax I Llc Filter element and method for making the same
EP3464488B1 (en) 2016-06-06 2021-07-14 Unifrax I LLC Refractory coating material containing low biopersistent fibers and method for making the same
WO2019074794A1 (en) 2017-10-10 2019-04-18 Unifrax 1 Llc INORGANIC FIBER WITH LOW BIOPERSISTANCE EXEMPT FROM CRYSTALLINE SILICA
CN112423980A (zh) 2018-05-18 2021-02-26 尤尼弗瑞克斯 I 有限责任公司 防火组合物及相关方法
US10882779B2 (en) 2018-05-25 2021-01-05 Unifrax I Llc Inorganic fiber
WO2022061284A2 (en) 2020-09-21 2022-03-24 Unifrax I Llc Homogeneous catalytic fiber coatings and methods of preparing same
GB2591039B (en) 2020-10-23 2021-11-24 Thermal Ceramics Uk Ltd Thermal insulation
CN114034811A (zh) * 2021-10-20 2022-02-11 吉林大学 基于相图学辨别玄武岩纤维生产原料品质的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987005007A1 (en) * 1986-02-20 1987-08-27 Manville Corporation INORGANIC FIBER COMPOSITION CONSISTING ESSENTIALLY OF Al2O3, MgO, CaO AND SiO2
WO1989012032A2 (en) * 1988-06-01 1989-12-14 Manville Sales Corporation Process for decomposing an inorganic fiber
EP0399320A1 (de) * 1989-05-25 1990-11-28 Bayer Ag Glasfasern mit erhöhter biologischer Verträglichkeit
EP0412878A1 (fr) * 1989-08-11 1991-02-13 Isover Saint-Gobain Fibres de verre susceptibles de se décomposer en milieu physiologique
CN1078708A (zh) * 1992-04-23 1993-11-24 伊索福圣戈班公司 可溶于生理介质的矿物纤维

Family Cites Families (115)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1759919A (en) 1926-12-17 1930-05-27 Singer Felix Artificial plagioclase compound
US2051279A (en) * 1934-03-21 1936-08-18 Alfred W Knight Mineral wool
US2116303A (en) * 1934-11-28 1938-05-03 Johns Manville Mineral wool composition
US2155107A (en) * 1936-11-25 1939-04-18 Dewey Portland Cement Company Process for the manufacture of rock wool
US2308857A (en) * 1939-12-20 1943-01-19 Owens Corning Fiberglass Corp Sodium calcium borosilicate glass
US2335220A (en) 1941-04-21 1943-11-23 Walter M Ericson Building insulation
US2428810A (en) * 1943-04-29 1947-10-14 Johns Manville Method and apparatus for fiberizing molten material
US2520168A (en) * 1944-09-22 1950-08-29 Johns Manville Method and apparatus for fiberizing molten material
US2576312A (en) * 1948-08-16 1951-11-27 Baldwin Hill Company Method of making mineral wool
US2577431A (en) * 1949-03-18 1951-12-04 Johns Manville Method and apparatus for the manufacture of mineral wool
US2823416A (en) * 1955-08-16 1958-02-18 Johns Manville Apparatus for melting and fiberizing refractory materials
BE639230A (zh) 1962-05-11
US3402055A (en) 1962-05-25 1968-09-17 Owens Corning Fiberglass Corp Glass composition
BE638932A (zh) 1962-10-26
US3348994A (en) 1963-09-26 1967-10-24 Owens Corning Fiberglass Corp High temperature fibrous board
US3380818A (en) 1964-03-18 1968-04-30 Owens Illinois Inc Glass composition and method and product
US3459568A (en) 1965-06-22 1969-08-05 Ppg Industries Inc High strength fiber glass
US3449137A (en) * 1965-10-13 1969-06-10 Johns Manville Refractory fibers for service to 2700 f.
US3900329A (en) 1965-12-07 1975-08-19 Owens Illinois Inc Glass compositions
US3348956A (en) * 1965-12-30 1967-10-24 Johns Manville Refractory fiber composition
US3901720A (en) * 1966-07-11 1975-08-26 Nat Res Dev Glass fibres and compositions containing glass fibres
US3597179A (en) 1967-03-30 1971-08-03 Owens Illinois Inc Glass treatment and glass-ceramic article therefrom
US3854986A (en) 1967-09-26 1974-12-17 Ceskoslovenska Akademie Ved Method of making mineral fibers of high corrosion resistance and fibers produced
US3573078A (en) 1967-11-16 1971-03-30 United Aircraft Corp Glass compositions with a high modulus of elasticity
GB1307357A (en) 1969-04-03 1973-02-21 Nat Res Dev Cement compositions containing glass fibres
US3804646A (en) 1969-06-11 1974-04-16 Corning Glass Works Very high elastic moduli glasses
US3687850A (en) 1970-03-27 1972-08-29 Johns Manville High temperature insulating fiber
GB1370324A (en) * 1971-03-18 1974-10-16 Rogers P S Glass products
GB1374605A (en) 1971-05-24 1974-11-20 Pilkington Brothers Ltd Method of manufacturing glass ceramic material
US3904424A (en) 1972-06-09 1975-09-09 Nippon Asbestos Company Ltd Alkali resistant glassy fibers
US3835054A (en) * 1972-07-10 1974-09-10 Nalco Chemical Co Method for preparation of thermal insulation board
US4036654A (en) * 1972-12-19 1977-07-19 Pilkington Brothers Limited Alkali-resistant glass compositions
GB1459385A (en) * 1973-02-14 1976-12-22 Turner Newall Ltd Glass fibres
US4011651A (en) * 1973-03-01 1977-03-15 Imperial Chemical Industries Limited Fibre masses
US4041199A (en) * 1974-01-02 1977-08-09 Foseco International Limited Refractory heat-insulating materials
JPS5113819A (zh) * 1974-07-25 1976-02-03 Denki Kagaku Kogyo Kk
US4014704A (en) * 1974-10-07 1977-03-29 Johns-Manville Corporation Insulating refractory fiber composition and articles for use in casting ferrous metals
US4325724A (en) * 1974-11-25 1982-04-20 Owens-Corning Fiberglas Corporation Method for making glass
US4002482A (en) 1975-02-14 1977-01-11 Jenaer Glaswerk Schott & Gen. Glass compositions suitable for incorporation into concrete
US4046948A (en) 1975-04-09 1977-09-06 Ppg Industries, Inc. Acid resistant glass fibers
JPS51137710A (en) * 1975-05-23 1976-11-27 Fuji Fibre Glass Co Ltd Composite of alkaliiproof glass with good texturizing property
DE2528916B2 (de) 1975-06-28 1978-06-01 Bayer Ag, 5090 Leverkusen Glasfasern des Glassystems ZnO- MgO-Al2 O3
DE2532842A1 (de) 1975-07-23 1977-02-10 Bayer Ag Glaeser des systems mgo-cao-zno- al tief 2 o tief 3 -sio tief 2 -tio tief 2 zur herstellung von glasfasern
US4055434A (en) * 1976-04-23 1977-10-25 Johns-Manville Corporation Refractory fiber composition and intermediate temperature range fibrous insulation composed thereof
US4047965A (en) * 1976-05-04 1977-09-13 Minnesota Mining And Manufacturing Company Non-frangible alumina-silica fibers
SE400273C (sv) * 1976-07-22 1980-08-07 Rockwool Ab Forfaringssett for framstellning av mineralull
DK143938C (da) * 1978-01-02 1982-04-19 Rockwool Int Alkaliresistente,syntetiske mineralfibre og fiberforstaerket produkt paa basis af cement eller calciumsilikat som bindemiddel
US4251279A (en) * 1979-03-05 1981-02-17 Johns-Manville Corporation Method of producing alumina-containing fiber and composition therefor
US4238213A (en) * 1979-04-05 1980-12-09 Johns-Manville Corporation Method of operation of a refractory fiber production process
US4379111A (en) 1979-05-21 1983-04-05 Kennecott Corporation Method for producing chromium oxide coated refractory fibers
CA1141640A (en) * 1979-06-08 1983-02-22 Thomas A. Pilgrim Building components
US4274881A (en) * 1980-01-14 1981-06-23 Langton Christine A High temperature cement
JPS605539B2 (ja) 1980-03-17 1985-02-12 日東紡績株式会社 耐アルカリ性、耐熱性無機質繊維
JPS573739A (en) * 1980-06-11 1982-01-09 Nippon Kogaku Kk <Nikon> Bioactive glass and glass ceramic
JPS5747741A (en) * 1980-09-01 1982-03-18 Nippon Sheet Glass Co Ltd Glass suitable for manufacturing fibrous wollastonite
US4342581A (en) * 1980-10-28 1982-08-03 Ppg Industries, Inc. Mat width control
US4387180A (en) 1980-12-08 1983-06-07 Owens-Corning Fiberglas Corporation Glass compositions
US4377415A (en) * 1981-02-11 1983-03-22 National Gypsum Company Reinforced cement sheet product containing wollastonite for reduced shrinkage
US4351054A (en) * 1981-03-04 1982-09-21 Manville Service Corporation Optimized mixing and melting electric furnace
US4366251A (en) * 1981-06-15 1982-12-28 Owens-Corning Fiberglas Corporation Glass compositions and their fibers
NZ203102A (en) * 1982-02-23 1985-05-31 Univ Leeds Ind Service Ltd Water-soluble glass articles;use in treatment of ruminants
US4430369A (en) * 1982-06-01 1984-02-07 Nalco Chemical Company Silica sol penetration and saturation of thermal insulation fibers
US4558015A (en) 1983-04-22 1985-12-10 Manville Service Corporation Chemically resistant refractory fiber
US4555492A (en) * 1983-04-22 1985-11-26 Manville Service Corporation High temperature refractory fiber
US4492722A (en) 1983-07-25 1985-01-08 Owens-Corning Fiberglas Corporation Preparation of glass-ceramic fibers
FR2550523B1 (fr) * 1983-08-09 1986-07-25 Saint Gobain Vitrage Procede et dispositif de fusion, d'affinage et d'homogeneisation de verre, et leurs applications
FR2552075B1 (fr) * 1983-09-19 1986-08-14 Saint Gobain Isover Fibres de verre et composition convenant pour leur fabrication
GB8331661D0 (en) * 1983-11-26 1984-01-04 Standard Telephones Cables Ltd Water soluble glass composition
US4542106A (en) 1983-12-19 1985-09-17 Ppg Industries, Inc. Fiber glass composition
SE443133C (sv) * 1984-07-03 1987-07-14 Rockwool Ab Forfarande och anordning vid fibrering av mineralsmelta
US4778499A (en) 1984-12-24 1988-10-18 Ppg Industries, Inc. Method of producing porous hollow silica-rich fibers
US4604097A (en) * 1985-02-19 1986-08-05 University Of Dayton Bioabsorbable glass fibers for use in the reinforcement of bioabsorbable polymers for bone fixation devices and artificial ligaments
US4857489A (en) * 1985-11-22 1989-08-15 A. P. Green Industries, Inc. Molten aluminum resistant ceramic fiber composition
US5332699A (en) * 1986-02-20 1994-07-26 Manville Corp Inorganic fiber composition
US5217529A (en) * 1986-05-15 1993-06-08 Isover Saint-Gobain Aqueous medium of a water insoluble additive for mineral fiber insulating materials
DE3616454C3 (de) * 1986-05-15 1997-04-17 Gruenzweig & Hartmann Verwendung einer stabilen wäßrigen Emulsion eines wasserunlöslichen Zusatzstoffes zum Imprägnieren (Schmälzen) von künstlichen Mineralfasern von Dämmstoffen
US4830989A (en) * 1986-05-28 1989-05-16 Pfizer Inc. Alkali-resistant glass fiber
US4882302A (en) 1986-12-03 1989-11-21 Ensci, Inc. Lathanide series oxide modified alkaline-resistant glass
CA1274859A (en) * 1987-06-26 1990-10-02 Alcan International Limited Insulating lightweight refractory materials
US4933307A (en) 1988-04-21 1990-06-12 Ppg Industries, Inc. Silica-rich porous substrates with reduced tendencies for breaking or cracking
US5032552A (en) * 1988-07-04 1991-07-16 Tdk Corporation Biomedical material
DE68914834T2 (de) * 1989-03-30 1994-08-04 Osaka Gas Co Ltd Kohlenstoffkeramikkomposit zur verwendung in kontakt mit geschmolzenem nichteisenmetall.
US5250488A (en) * 1989-08-11 1993-10-05 Sylvie Thelohan Mineral fibers decomposable in a physiological medium
JPH0764593B2 (ja) 1989-08-23 1995-07-12 日本電気硝子株式会社 耐アルカリ性ガラス繊維組成物
DK163494C (da) * 1990-02-01 1992-08-10 Rockwool Int Mineralfibre
DE4015264C1 (zh) * 1990-05-12 1991-07-18 Schott Glaswerke
USRE35557E (en) * 1990-06-01 1997-07-08 Isover-Saint Gobain Mineral fibers decomposable in a physiological medium
US5055428A (en) * 1990-09-26 1991-10-08 Owens-Corning Fiberglass Corporation Glass fiber compositions
US5843854A (en) * 1990-11-23 1998-12-01 Partek Paroc Oy Ab Mineral fibre composition
FI93346C (sv) * 1990-11-23 1998-03-07 Partek Ab Mineralfibersammansättning
FR2669624B1 (fr) * 1990-11-28 1994-01-07 Rhone Poulenc Chimie Articles isolants a base de fibres minerales et leur procede de fabrication.
CA2060709C (en) * 1991-02-08 1996-06-04 Kiyotaka Komori Glass fiber forming composition, glass fibers obtained from the composition and substrate for circuit board including the glass fibers as reinforcing material
EP0510653B1 (en) * 1991-04-24 1995-12-06 Asahi Glass Company Ltd. Highly heat resistant glass fiber and process for its production
US5994247A (en) * 1992-01-17 1999-11-30 The Morgan Crucible Company Plc Saline soluble inorganic fibres
DE4228355C1 (de) * 1992-08-26 1994-02-24 Didier Werke Ag Feuerfeste Leichtformkörper
DE4228353C1 (de) * 1992-08-26 1994-04-28 Didier Werke Ag Anorganische Faser
US5401693A (en) * 1992-09-18 1995-03-28 Schuller International, Inc. Glass fiber composition with improved biosolubility
DK156692D0 (da) * 1992-12-29 1992-12-29 Rockwool Int Mineralfiberprodukt
US5811360A (en) * 1993-01-15 1998-09-22 The Morgan Crucible Company Plc Saline soluble inorganic fibres
ES2196040T3 (es) * 1993-01-15 2003-12-16 Morgan Crucible Co Fibras inorganicas solubles en disoluciones salinas.
PL177839B1 (pl) * 1994-02-11 2000-01-31 Rockwool Int Sztuczne włókna szklane
US5691255A (en) * 1994-04-19 1997-11-25 Rockwool International Man-made vitreous fiber wool
GB9414154D0 (en) * 1994-07-13 1994-08-31 Morgan Crucible Co Saline soluble inorganic fibres
GB9508683D0 (en) * 1994-08-02 1995-06-14 Morgan Crucible Co Inorganic fibres
US5569629A (en) 1994-08-23 1996-10-29 Unifrax Corporation High temperature stable continuous filament glass ceramic fibers
US5928975A (en) * 1995-09-21 1999-07-27 The Morgan Crucible Company,Plc Saline soluble inorganic fibers
US6030910A (en) * 1995-10-30 2000-02-29 Unifrax Corporation High temperature resistant glass fiber
EP0804391B1 (en) * 1995-10-30 2004-03-03 Unifrax Corporation High temperature resistant glass fiber
US5962354A (en) * 1996-01-16 1999-10-05 Fyles; Kenneth M. Compositions for high temperature fiberisation
US5691259A (en) * 1996-11-08 1997-11-25 Fiber Ceramics, Inc. Process of making a self sintering ceramic composition
US5945049A (en) * 1997-09-26 1999-08-31 Wes Bond Corporation Bonding of ceramic fibers
US6043172A (en) * 1998-01-14 2000-03-28 Global Consulting, Inc. Ceramic fiber insulation material
US5880046A (en) * 1998-01-23 1999-03-09 Cerminco Inc. Moldable refractory composition and process for preparing the same
GB2383793B (en) * 2002-01-04 2003-11-19 Morgan Crucible Co Saline soluble inorganic fibres
KR100937621B1 (ko) * 2002-01-10 2010-01-20 유니프랙스 아이 엘엘씨 고온 내성의 유리성 무기 섬유

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987005007A1 (en) * 1986-02-20 1987-08-27 Manville Corporation INORGANIC FIBER COMPOSITION CONSISTING ESSENTIALLY OF Al2O3, MgO, CaO AND SiO2
WO1989012032A2 (en) * 1988-06-01 1989-12-14 Manville Sales Corporation Process for decomposing an inorganic fiber
EP0399320A1 (de) * 1989-05-25 1990-11-28 Bayer Ag Glasfasern mit erhöhter biologischer Verträglichkeit
EP0412878A1 (fr) * 1989-08-11 1991-02-13 Isover Saint-Gobain Fibres de verre susceptibles de se décomposer en milieu physiologique
CN1078708A (zh) * 1992-04-23 1993-11-24 伊索福圣戈班公司 可溶于生理介质的矿物纤维

Also Published As

Publication number Publication date
AU2717195A (en) 1995-09-28
IN186395B (zh) 2001-08-18
CA2127357A1 (en) 1993-08-05
NZ246629A (en) 1997-07-27
ATE211122T1 (de) 2002-01-15
CZ286812B6 (en) 2000-07-12
SK282182B6 (sk) 2001-11-06
EP0621858A1 (en) 1994-11-02
EP1179513A1 (en) 2002-02-13
GB9509871D0 (en) 1995-07-12
US7259118B2 (en) 2007-08-21
GB2277516B (en) 1995-11-22
RU2113420C1 (ru) 1998-06-20
KR100236883B1 (ko) 2000-01-15
DE69331376D1 (de) 2002-01-31
FI943380A (fi) 1994-09-14
RU94037553A (ru) 1996-05-20
CZ170094A3 (en) 1995-06-14
DK0621858T3 (da) 2002-04-15
US20050014624A1 (en) 2005-01-20
NO942655D0 (no) 1994-07-14
FI943380A0 (fi) 1994-07-15
JP2001270737A (ja) 2001-10-02
CA2127357C (en) 2004-05-04
WO1993015028A1 (en) 1993-08-05
MX9300200A (es) 1997-04-30
GB9414171D0 (en) 1994-08-31
HU9402118D0 (en) 1994-09-28
BR9305741A (pt) 1997-01-28
HK1001888A1 (en) 1998-07-17
GB2277516A (en) 1994-11-02
NO942655L (no) 1994-07-14
AU663155B2 (en) 1995-09-28
ES2168094T3 (es) 2002-06-01
HU218828B (hu) 2000-12-28
JP3753416B2 (ja) 2006-03-08
DE69331376T2 (de) 2002-07-11
JP3630167B2 (ja) 2005-03-16
AU663155C (en) 2005-12-15
JPH07502969A (ja) 1995-03-30
GB2287934A (en) 1995-10-04
KR940703787A (ko) 1994-12-12
AU3358493A (en) 1993-09-01
EP0621858B1 (en) 2001-12-19
HUT68033A (en) 1995-05-29
SK85694A3 (en) 1995-01-12
CN1078218A (zh) 1993-11-10

Similar Documents

Publication Publication Date Title
CN1042023C (zh) 盐溶无机纤维
CN1223241A (zh) 给制品提供耐温性能的方法
RU2358928C2 (ru) Композиции стекловолокна
CN100347114C (zh) 纤维及其生产
TWI246992B (en) Heat-resistant glass fiber and process for the production thereof
JP5791878B2 (ja) チタン酸化物およびジルコニウム酸化物を持つボロン欠乏中性ガラス
JP3961564B2 (ja) 耐火性繊維
CN1127533C (zh) 生产聚酯的催化剂和采用上述催化剂生产聚酯的方法
CN101052597A (zh) 碱土金属硅酸盐纤维的改性
US9643881B2 (en) Glass composition for glass fiber, glass fiber, and method for producing glass fiber
CZ288196B6 (en) Synthetic glass fibers
CN1041707C (zh) 耐熔纤维
US3044888A (en) Glass fiber
FR2651223A1 (fr) Verre resistant aux alcalis pour la fabrication de fibres de verre.
CA2375719C (en) Glass fiber composition
CN102666436A (zh) 可溶于盐的陶瓷纤维组合物
EP3326979B1 (en) Borosilicate glass for pharmaceutical container
JP2014193810A (ja) 光ファイバーまたはガラス質残分からのGeCl4および/またはSiCl4回収プロセスおよびSiO2に富む材料からSiCl4を製造するプロセス
JP4077536B2 (ja) 極細ガラス繊維
CN109982982B (zh) 玻璃纤维用玻璃组合物、玻璃纤维和玻璃纤维的制造方法
JP5014568B2 (ja) 低ホウ素e−ガラス組成物
CN102066288A (zh) 高氧化锆浓度耐火产品
JP3132234B2 (ja) ガラス長繊維
US11577990B2 (en) Glass fiber and method for producing same
CN1040202C (zh) 矿物纤维组合物

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CX01 Expiry of patent term

Expiration termination date: 20130116

Granted publication date: 19990210