WO2013179330A1 - Si-Mg系無機繊維及びその組成物 - Google Patents

Si-Mg系無機繊維及びその組成物 Download PDF

Info

Publication number
WO2013179330A1
WO2013179330A1 PCT/JP2012/003463 JP2012003463W WO2013179330A1 WO 2013179330 A1 WO2013179330 A1 WO 2013179330A1 JP 2012003463 W JP2012003463 W JP 2012003463W WO 2013179330 A1 WO2013179330 A1 WO 2013179330A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
weight
composition
sio
mgo
Prior art date
Application number
PCT/JP2012/003463
Other languages
English (en)
French (fr)
Inventor
耕治 岩田
英樹 北原
持田 貴仁
賢 米内山
洋一 石川
達郎 三木
Original Assignee
ニチアス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニチアス株式会社 filed Critical ニチアス株式会社
Priority to JP2014518077A priority Critical patent/JP5945596B2/ja
Priority to CN201280073521.9A priority patent/CN104350019A/zh
Priority to US14/402,617 priority patent/US20150144828A1/en
Priority to KR1020147031903A priority patent/KR20150013168A/ko
Priority to PCT/JP2012/003463 priority patent/WO2013179330A1/ja
Priority to EP12878118.4A priority patent/EP2857369A4/en
Publication of WO2013179330A1 publication Critical patent/WO2013179330A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials
    • F16L59/028Composition or method of fixing a thermally insulating material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/06Mineral fibres, e.g. slag wool, mineral wool, rock wool
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2213/00Glass fibres or filaments
    • C03C2213/02Biodegradable glass fibres
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2
    • Y02P60/21Dinitrogen oxide [N2O], e.g. using aquaponics, hydroponics or efficiency measures

Definitions

  • the present invention relates to a Si—Mg based inorganic fiber excellent in biosolubility and a composition for obtaining the inorganic fiber.
  • Asbestos has been used as, for example, a heat-resistant sealing material because it is lightweight, easy to handle and excellent in heat resistance.
  • asbestos is inhaled by the human body and causes illness in the lungs, so its use is prohibited.
  • ceramic fibers and the like are used. Ceramic fibers and the like have high heat resistance comparable to asbestos, and it is considered that there is no health problem if they are handled appropriately, but there is a trend that requires more safety. Therefore, various biosoluble fibers have been developed aiming at biosoluble inorganic fibers that do not cause problems or are unlikely to occur even when inhaled by the human body (for example, Patent Documents 1 and 2).
  • conventional inorganic fibers are secondary-processed into shaped products and irregular shaped materials together with various binders and additives, and joint materials in furnaces such as heat treatment equipment, industrial kiln furnaces, incinerators, It is used as a joint material, a sealing material, a packing material, a heat insulating material, and the like for filling gaps such as refractory tiles, heat insulating bricks, iron skin, and mortar refractories. Therefore, it is often exposed to high temperatures during use, and preferably has heat resistance.
  • alumina is often used as a member in the furnace, and there is a problem that the fibers contained in the secondary processed product react with the alumina and the secondary processed product or member adheres or melts. .
  • An object of the present invention is to provide an inorganic fiber having high solubility in physiological saline having a pH of 4.5 and a composition for obtaining the inorganic fiber.
  • the following inorganic fiber composition and inorganic fiber are provided.
  • the composition for inorganic fibers which has the following compositions and does not contain a solvent, and inorganic fiber.
  • a method for producing an inorganic fiber wherein the melted composition for inorganic fiber according to 1 is made into a fiber.
  • the composition for inorganic fibers which has the following composition 1 or composition 2, and inorganic fiber.
  • composition 1 SiO 2 1.0 to 21.5% by weight Al 2 O 3 24.0 wt% or more and less than 58.0 wt% MgO 1.0 to 57.0 wt% Less than 7.4% by weight of CaO
  • Composition 2 SiO 2 1.0 to 22.0% by weight Al 2 O 3 58.0 wt% or more and 79.0 wt% or less MgO 19.2-41.0 wt% 4. Less than 7.4% by weight of CaO 5.
  • the composition for inorganic fibers which has the following composition 3 or composition 4, and inorganic fiber.
  • composition 3 SiO 2 1.0-54.5% by weight Al 2 O 3 less than 58.0% by weight MgO 3.0 to 69.0% by weight CaO 6.0 wt% or less The total of SiO 2 , Al 2 O 3 , and MgO exceeds 94.0 wt%
  • Composition 4 SiO 2 30.0 to 41.0% by weight Al 2 O 3 58.0 to 69.0 wt% MgO 1.0-12.0 wt% CaO 6.0 wt% or less The total of SiO 2 , Al 2 O 3 and MgO exceeds 94.0 wt%.
  • an inorganic fiber having high solubility in physiological saline having a pH of 4.5 and a composition for obtaining the inorganic fiber it is possible to provide an inorganic fiber having high solubility in physiological saline having a pH of 4.5 and a composition for obtaining the inorganic fiber.
  • FIG. 10 is a diagram showing the composition of the fibers produced in Example 18.
  • 10 is a SEM photograph of fibers produced in Example 18.
  • 20 is an unheated XRD chart of sample A and fiber A produced in Example 19. It is the XRD chart after the heating of the sample A produced in Example 19, and the fiber A.
  • FIG. CaO experimented with Experimental Example 1 is a diagram showing the relationship of the amount and volume shrinkage of Na 2 O, Fe 2 O 3 . It is a diagram showing the relationship of the amount and volume shrinkage of Na 2 O of an experiment in Experimental Example 1.
  • composition for inorganic fibers of the present invention has the following composition. SiO 2 1.0-54.5% by weight Al 2 O 3 less than 58.0 wt% MgO 1.0-69.0 wt% CaO 6.0 wt% or less Total of SiO 2 , Al 2 O 3 and MgO exceeds 94.0 wt%
  • Said composition can be made into the following compositions. SiO 2 4.0 to 54.5% by weight Al 2 O 3 less than 58.0% by weight MgO 4.0 to 64.0% by weight CaO less than 6.0% by weight
  • the inorganic fiber composition of the present invention has any one of the following compositions 1 to 4.
  • Composition 1 SiO 2 1.0 to 21.5% by weight Al 2 O 3 24.0 wt% or more and less than 58.0 wt% MgO 1.0 to 57.0 wt% Less than 7.4% by weight of CaO
  • Composition 2 SiO 2 1.0 to 22.0% by weight Al 2 O 3 58.0 wt% or more and 79.0 wt% or less MgO 19.2-41.0 wt% Less than 7.4% by weight of CaO
  • Composition 3 SiO 2 1.0-54.5% by weight Al 2 O 3 less than 58.0% by weight MgO 3.0 to 69.0% by weight CaO 6.0 wt% or less
  • the total of SiO 2 , Al 2 O 3 , and MgO exceeds 94.0 wt%
  • Composition 4 SiO 2 30.0 to 41.0% by weight Al 2 O 3 58.0 to 69.0 wt% MgO 1.0-1
  • the composition 1 can be the following composition. SiO 2 1.0 to 21.5% by weight Al 2 O 3 29.0 wt% or more and less than 58.0 wt% MgO 4.0 to 52.0 wt% CaO less than 6.0% by weight
  • the composition 3 can be the following composition. SiO 2 6.0 to 54.5% by weight Al 2 O 3 less than 58.0% by weight MgO 8.0 to 64.0% by weight CaO less than 6.0% by weight
  • SiO 2 14.0 to 24.0% by weight Al 2 O 3 29.0-39.0 wt% MgO 42.0-52.0 wt%
  • Said composition can be made into the following compositions. SiO 2 44.0-54.0% by weight Al 2 O 3 33.0-43.0 wt% MgO 8.0-18.0 wt%
  • the following compositions are preferable. SiO 2 17.0 to 21.5% by weight Al 2 O 3 63.0 wt% or more and less than 58.0 wt% MgO 5.0-15.0 wt%
  • the following compositions are preferable. SiO 2 36.0-54.5% by weight Al 2 O 3 0.0-10.0 wt% MgO 44.0-64.0 wt%
  • Said composition can be made into the following compositions. SiO 2 41.0-51.0 wt% Al 2 O 3 0.0 to 3.0% by weight MgO 49.0-59.0 wt%
  • the following compositions are preferable. SiO 2 6.0 to 16.0% by weight Al 2 O 3 46.0-56.0 wt% MgO 33.0-43.0 wt%
  • SiO 2 is 5.0 wt% or more, 8.0 wt% or more, or 10.0 or as a weight percent or more. SiO 2 may be less than 53.0 wt%, or 39.0 wt%.
  • Al 2 O 3 may be 3.0% by weight or more, 5.0% by weight or more, or 8.0% by weight or more. Al 2 O 3 may be 74.0% by weight or less.
  • MgO may be more than 1.0% by weight, 5.0% by weight or more, 7.0% by weight or more, 20.0% by weight or more, or 21.0% by weight or more. MgO may be 63.0 wt% or less, or 60.0 wt% or less.
  • CaO is good also as 7.0 weight% or less, 5.0 weight% or less, 2 weight% or less, or 1 weight% or less.
  • MgO is preferably 30% by weight or more, 36.5% by weight or more, or 38.0% by weight or more.
  • SiO 2 is preferably 20.0% by weight or more, or 26.0% by weight or more.
  • Al 2 O 3 is preferably 34.0% by weight or more, 43.0% by weight or more, or 56.0% by weight or more.
  • MgO is preferably 24.0% by weight or less, 23.8% by weight or less, 21.5% by weight or less, or 21.0% by weight or less.
  • the total of SiO 2 , Al 2 O 3 , and MgO may be 85 wt% or more, 90 wt% or more, 93 wt% or more, 95 wt% or more, 98 wt% or more, 99 wt% or more, or 100 wt%.
  • the rest other than the specified components is oxides or impurities of other elements.
  • the composition of the present invention comprises a respective oxide selected from Sc, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y or mixtures thereof. May or may not be included.
  • the amount of these oxides is 10 wt% or less, 5.0 wt% or less, 3 wt% or less, 2 wt% or less, 1.0 wt% or less, 0.5 wt% or less, 0.2 wt%, respectively. Or 0.1% by weight or less.
  • Each of the alkali metal oxides may or may not be contained, or each or a total of 10% by weight or less, 5.0% by weight or less, 3% by weight %, 2%, 1.0%, 0.5%, 0.2% or 0.1% by weight.
  • the alkali metal oxide may be less than 5 mol%.
  • Potassium oxide may be less than 12 mol% or less than 5 mol%.
  • Each of TiO 2 , ZnO, B 2 O 3 , P 2 O 5 , CaO, SrO, BaO, Cr 2 O 3 , ZrO 2 , Fe 2 O 3 may or may not be included, and each has a weight of 10 % Or less, 5.0% or less, 3% or less, 2% or less, 1.0% or less, 0.5% or less, 0.2% or less, or 0.1% or less Can do.
  • the total of CaO, Na 2 O, and Fe 2 O 3 can be 2 wt% or less, 1 wt% or less, or 0.5 wt% or less.
  • the amount of each component of the above composition may be arbitrarily combined.
  • composition of the present invention usually does not contain the following substances, or even contains them at 1.0% or less, 0.5% or less, 0.2% or less or 0.1% or less, respectively.
  • Inorganic fibers can be obtained from the composition of the present invention.
  • Inorganic fibers can be produced by a known method such as a melting method or a sol-gel method, but the melting method is preferred because of its low cost.
  • a raw material melt is produced by a normal method, and the melt is made into a fiber.
  • Solvent is not included.
  • it can be manufactured by a spinning method in which a melted raw material is poured onto a wheel rotating at high speed, and a blow method in which the melted raw material is fiberized by applying compressed air.
  • the fiber may be coated with a known coating material or may not be coated.
  • the fiber of the present invention is the same as the composition of the raw material, and by having the above composition, it has excellent solubility in physiological saline having a pH of 4.5.
  • the solubility in physiological saline at pH 4.5 is preferably 3.5 mg / g or more, more preferably 5.0 mg / g or more, and even more preferably 6.3 mg / g or more, according to the measurement method of the example.
  • the solubility of the fiber can also be measured by the following method.
  • the fiber is placed on a membrane filter, pH 4.5 physiological saline is dropped on the fiber by a micropump, and the filtrate that has passed through the fiber and filter is stored in a container.
  • the accumulated filtrate is taken out after 24 and 48 hours, and the eluted components are quantified with an ICP emission spectrometer, and the solubility and dissolution rate constant are calculated.
  • the measurement element can be three elements of Al, Ca, and Mg which are main elements.
  • the fiber diameter may be measured and converted to a dissolution rate constant k (unit: ng / cm 2 ⁇ h), which is an elution amount per unit surface area / unit time.
  • the fiber of the present invention preferably has low alumina reactivity.
  • Alumina reactivity is a measurement method according to the example, preferably having a mark but not adhering, more preferably not adhering and without a mark.
  • the fibers of the present invention preferably have heat resistance at 800 ° C or higher, 1000 ° C or higher, 1100 ° C or higher, 1200 ° C or higher, 1300 ° C or higher, 1400 ° C or higher.
  • the volume shrinkage (%) obtained by heating a cylindrical sample having a diameter of about 7 mm and a height of about 15 mm at a predetermined temperature of 800 to 1400 ° C. for 8 hours is 40% or less at 1400 ° C. for 8 hours. , Preferably 30% or less, more preferably 23% or less, and most preferably 15% or less. It is 40% or less, preferably 30% or less, more preferably 23% or less, and most preferably 15% or less at 1300 ° C. for 8 hours.
  • the heat shrinkage rate of the fiber can be measured before and after producing a blanket from the fiber and firing it at 1100 ° C. and 1260 ° C. for 24 hours.
  • the tensile strength can be measured with a universal testing machine.
  • the fiber of the present invention since the fiber of the present invention has few kinds of essential components, the number of man-hours for the blending process is reduced and the cost is reduced. In addition, the fact that there are few kinds of components for adjusting delicate blending amounts reduces the difficulty of production.
  • Examples 1 to 17 and Comparative Example 1 The fiber composition shown in Table 1 was examined as follows. First, the raw materials were mixed so as to have the composition shown in Table 1, and pressed to obtain a molded body. The molded product was melted by heating and rapidly cooled to obtain a sample. Using this sample, the following method was used for evaluation. The results are shown in Table 1.
  • Biosolubility 1 g of a sample was placed in an Erlenmeyer flask (volume: 300 mL) containing 150 mL of pH 4.5 physiological saline. This flask was placed in an incubator at 37 ° C., and horizontal vibration at 120 revolutions per minute was continued for 2.5 hours. Thereafter, the amount (mg) of each element contained in the filtrate obtained by filtration was measured with an ICP emission spectrometer, and the total was taken as the elution amount (mg / sample 1 g).
  • Alumina reactivity A sample was molded to obtain a cylindrical sample having a diameter of about 7 mm and a thickness of about 5 mm. This cylindrical sample was placed on an alumina plate and heated at 1400 ° C. for 8 hours to observe the presence or absence of adhesion or melting. It was 4 when the cylindrical sample was melted, 3 when it was adhered, 2 when it was not adhered but remained, and 1 when it was not adhered and remained.
  • Comparative Example 2 A ceramic fiber (conventional heat-resistant inorganic fiber) containing 47% by mass of SiO 2 and 52% by mass of Al 2 O 3 was evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 18 The composition of SiO 2 , Al 2 O 3 , and MgO is the composition indicated by ⁇ in the triangular diagram of FIG. 1, and CaO was produced from the composition for inorganic fibers of 2% by weight or less by a melting method.
  • the black squares in the triangular diagram are manufactured in Examples 1 to 17.
  • the quality of the fiber was good or acceptable.
  • FIG. 2 shows an SEM photograph of the obtained fiber (SiO 2 44.1 wt%, Al 2 O 3 39.9 wt%, MgO 15.4 wt%).
  • Example 19 (1) Sample A having the composition shown in Table 2 was produced by the method of Example 1, and fiber A having the composition shown in Table 2 was produced by the method of Example 18.
  • biosolubility and alumina reactivity were evaluated in the same manner as in Example 1, and heat resistance was evaluated by the following method. The results are shown in Table 2. The characteristics of Sample A and Fiber A were almost the same.
  • Experimental example 1 (1) The effects of CaO, Na 2 O, and Fe 2 O 3 in the composition mainly composed of SiO 2 , Al 2 O 3 , and MgO were examined. First, the compositions A, B, and C (% by weight) shown in Table 3 were added to SiO 2 , Al 2 O 3 , and MgO with the amounts of CaO, Na 2 O, and Fe 2 O 3 added as shown in Table 4. Samples were prepared in the same manner as in Example 1, and the volume shrinkage (1400 ° C., 8 hours) was measured. The results are shown in FIG.
  • the shrinkage ratio increases when CaO, Na 2 O, or Fe 2 O 3 is added. It can be seen that the shrinkage rate increases particularly when Na 2 O is added.
  • the inorganic fiber of the present invention can be used for various purposes as a heat insulating material or as a substitute for asbestos.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Glass Compositions (AREA)
  • Inorganic Fibers (AREA)

Abstract

SiO1.0~54.5重量%、Al58.0重量%未満、MgO1.0~69.0重量%、CaO6.0重量%以下、SiO、Al、MgOの合計が94.0重量%超の組成を有し、溶媒は含まない無機繊維用組成物。

Description

Si-Mg系無機繊維及びその組成物
 本発明は、生体溶解性に優れるSi-Mg系無機繊維とその無機繊維を得るための組成物に関する。
 アスベストは、軽量で扱いやすく且つ耐熱性に優れるため、例えば、耐熱性のシール材として使用されていた。しかしアスベストは人体に吸入されて肺に疾患を引き起こすため使用が禁止され、これに代わりにセラミック繊維等が使用されている。セラミック繊維等は、耐熱性がアスベストに匹敵する程高く、適切な取り扱いをすれば健康上の問題は無いと考えられているが、より安全性を求められる風潮がある。そこで、人体に吸入されても問題を起こさない又は起こしにくい生体溶解性無機繊維を目指して、様々な生体溶解性繊維が開発されている(例えば、特許文献1,2)。
 従来市販されている生体溶解性繊維はpH7.4の生理食塩水に対し高い溶解性を持つ物がほとんどであった。一方で繊維が肺に吸入されるとマクロファージに捕り込まれることが知られており、マクロファージ周囲のpHは4.5であることも知られている。従って、pH4.5の生理食塩水に対する溶解性の高い繊維も、肺内で溶解、分解されることが期待される。
 また、従来の無機繊維は、アスベストと同様に、様々なバインダーや添加物とともに、定形物、不定形物に二次加工されて、熱処理装置、工業窯炉や焼却炉等の炉における目地材、耐火タイル、断熱レンガ、鉄皮、モルタル耐火物等の隙間を埋める目地材、シール材、パッキング材、断熱材等として用いられている。従って、使用の際は高温に晒されることが多く、耐熱性を有することが好ましい。
 さらに、炉内の部材にアルミナが使用されていることが多く、二次加工品に含まれる繊維が、このアルミナと反応し二次加工品や部材が付着したり溶融したりする問題もあった。
特許公報第3753416号 特表2005-514318
 本発明の目的は、pH4.5の生理食塩水に対する溶解性が高い無機繊維とその無機繊維を得るための組成物を提供することである。
 本発明によれば、以下の無機繊維用組成物及び無機繊維等が提供される。
1.以下の組成を有する、溶媒は含まない無機繊維用組成物、及び無機繊維。
 SiO   1.0~54.5重量%
 Al  58.0重量%未満
 MgO   1.0~69.0重量%
 CaO   6.0重量%以下
 SiO、Al、MgOの合計は94.0重量%超
2.溶融した1記載の無機繊維用組成物を繊維化する無機繊維の製造方法。
3.2記載の製造方法で得られる無機繊維。
4.以下の組成1又は組成2を有する無機繊維用組成物、及び無機繊維。
[組成1]
 SiO   1.0~21.5重量%
 Al  24.0重量%以上58.0重量%未満
 MgO   1.0~57.0重量%
 CaO   7.4重量%未満
[組成2]
 SiO   1.0~22.0重量%
 Al  58.0重量%以上79.0重量%以下
 MgO   19.2~41.0重量%
 CaO   7.4重量%未満
5.SiO、Al、MgOの合計が85重量%以上である4記載の無機繊維用組成物、及び無機繊維。
6.以下の組成3又は組成4を有する無機繊維用組成物、及び無機繊維。
[組成3]
 SiO   1.0~54.5重量%
 Al  58.0重量%未満
 MgO   3.0~69.0重量%
 CaO   6.0重量%以下
 SiO、Al、MgOの合計は94.0重量%超
[組成4]
 SiO   30.0~41.0重量%
 Al  58.0~69.0重量%
 MgO   1.0~12.0重量%
 CaO   6.0重量%以下
 SiO、Al、MgOの合計は94.0重量%超
7.組成3のSiO、Al、MgOが以下の量である6記載の無機繊維用組成物、及び無機繊維。
 SiO   14.0~51.0重量%
 Al  0.0~39.0重量%
 MgO   42.0~59.0重量%
8.組成3のSiO、Al、MgOが以下の量である6記載の無機繊維用組成物、及び無機繊維。
 SiO   39.0~54.5重量%
 Al  28.0~48.0重量%
 MgO   3.0~23.0重量%
9.NaOが2.0重量%以下である1及び4~8のいずれか記載の無機繊維用組成物、及び無機繊維。
10.4~9のいずれか記載の無機繊維用組成物から得られる無機繊維。
11.3又は10記載の無機繊維を用いて得られる定形物又は不定形物。
 本発明によれば、pH4.5の生理食塩水に対する溶解性が高い無機繊維とその無機繊維を得るための組成物を提供することができる。
実施例18で作製した繊維の組成を示す図である。 実施例18で作製した繊維のSEM写真である。 実施例19で作製したサンプルAと繊維Aの未加熱のXRDチャートである。 実施例19で作製したサンプルAと繊維Aの加熱後のXRDチャートである。 実験例1で実験したCaO、NaO、Feの量と体積収縮率の関係を示す図である。 実験例1で実験したNaOの量と体積収縮率の関係を示す図である。
 本発明の無機繊維用組成物は以下の組成を有する。
 SiO   1.0~54.5重量%
 Al  58.0重量%未満
 MgO   1.0~69.0重量%
 CaO   6.0重量%以下
 SiO、Al、MgOの合計は94.0重量%超
 上記の組成を以下の組成とすることができる。
 SiO   4.0~54.5重量%
 Al  58.0重量%未満
 MgO   4.0~64.0重量%
 CaO   6.0重量%未満
 また、本発明の無機繊維用組成物は以下の組成1~4のいずれかを有する。
[組成1]
 SiO   1.0~21.5重量%
 Al  24.0重量%以上58.0重量%未満
 MgO   1.0~57.0重量%
 CaO   7.4重量%未満
[組成2]
 SiO   1.0~22.0重量%
 Al  58.0重量%以上79.0重量%以下
 MgO   19.2~41.0重量%
 CaO   7.4重量%未満
[組成3]
 SiO   1.0~54.5重量%
 Al  58.0重量%未満
 MgO   3.0~69.0重量%
 CaO   6.0重量%以下
 SiO、Al、MgOの合計は94.0重量%超
[組成4]
 SiO   30.0~41.0重量%
 Al  58.0~69.0重量%
 MgO   1.0~12.0重量%
 CaO   6.0重量%以下
 SiO、Al、MgOの合計は94.0重量%超
 組成1は以下の組成とすることができる。
 SiO   1.0~21.5重量%
 Al  29.0重量%以上58.0重量%未満
 MgO   4.0~52.0重量%
 CaO   6.0重量%未満
 組成3は以下の組成とすることができる。
 SiO   6.0~54.5重量%
 Al  58.0重量%未満
 MgO   8.0~64.0重量%
 CaO   6.0重量%未満
 生体溶解性、耐アルミナ反応性の観点から、好ましくは以下の組成を挙げられる。
 SiO   14.0~24.0重量%
 Al  29.0~39.0重量%
 MgO   42.0~52.0重量%
 また、生体溶解性、耐アルミナ反応性の観点から、好ましくは以下の組成を挙げられる。
 SiO   39.0~54.5重量%
 Al  28.0~48.0重量%
 MgO   3.0~23.0重量%
 上記の組成物を以下の組成とすることができる。
 SiO   44.0~54.0重量%
 Al  33.0~43.0重量%
 MgO   8.0~18.0重量%
 また、生体溶解性、耐アルミナ反応性の観点から、好ましくは以下の組成を挙げられる。
 SiO   17.0~21.5重量%
 Al  63.0重量%以上58.0重量%未満
 MgO   5.0~15.0重量%
 また、生体溶解性、耐アルミナ反応性の観点から、好ましくは以下の組成を挙げられる。
 SiO   36.0~54.5重量%
 Al  0.0~10.0重量%
 MgO   44.0~64.0重量%
 上記の組成物を以下の組成とすることができる。
 SiO   41.0~51.0重量%
 Al  0.0~3.0重量%
 MgO   49.0~59.0重量%
 また、生体溶解性、耐アルミナ反応性の観点から、好ましくは以下の組成を挙げられる。
 SiO   6.0~16.0重量%
 Al  46.0~56.0重量%
 MgO   33.0~43.0重量%
 また、生体溶解性、耐アルミナ反応性の観点から、好ましくは以下の組成を挙げられる。
 SiO   25.0~35.0重量%
 Al  6.0~16.0重量%
 MgO   54.0~64.0重量%
 上記の組成に対応させて、以下のようにできる。
 SiOは、5.0重量%以上、8.0重量%以上、又は10.0重量%以上としてもよい。
 SiOは、53.0重量%以下又は39.0重量%未満としてもよい。
 Alは、3.0重量%以上、5.0重量%以上、又は8.0重量%以上としてもよい。
 Alは、74.0重量%以下してもよい。
 MgOは、1.0重量%超、5.0重量%以上、7.0重量%以上、20.0重量%以上、又は21.0重量%以上としてもよい。
 MgOは、63.0重量%以下、又は60.0重量%以下としてもよい。
 CaOは、7.0重量%以下、5.0重量%以下、2重量%以下又は1重量%以下としてもよい。
 生体溶解性の観点から、好ましくは、MgOは、30重量%以上、36.5重量%以上、又は38.0重量%以上である。また、生体溶解性の観点から、好ましくは、SiOは、20.0重量%以上、又は26.0重量%以上である。耐アルミナ反応性の観点から、好ましくは、Alは、34.0重量%以上、43.0重量%以上、又は56.0重量%以上である。耐アルミナ反応性の観点から、好ましくは、MgOは、24.0重量%以下、23.8重量%以下、21.5重量%以下、又は21.0重量%以下である。
 SiO、Al、MgOの合計を、85重量%以上、90重量%以上、93重量%以上、95重量%以上、98重量%以上、99重量%以上又は100重量%としてもよい。
 特定する成分以外の残りは他の元素の酸化物又は不純物等である。
 本発明の組成物は、Sc,La,Ce,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Y又はこれらの混合物から選択されるそれぞれの酸化物を含んでも含まなくてもよい。これらの酸化物の量を、それぞれ10重量%以下、5.0重量%以下、3重量%以下、2重量%以下、1.0重量%以下、0.5重量%以下、0.2重量%以下又は0.1重量%以下としてもよい。
 アルカリ金属酸化物(KO、NaO、LiO等)の各々は含まれても含まれなくてもよく、それぞれ又は合計で10重量%以下、5.0重量%以下、3重量%以下、2重量%以下、1.0重量%以下、0.5重量%以下、0.2重量%以下又は0.1重量%以下とすることができる。アルカリ金属酸化物を5モル%未満とすることもできる。酸化カリウムを12モル%未満又は5モル%未満とすることもできる。
 TiO、ZnO、B、P、CaO、SrO、BaO、Cr、ZrO、Feの各々は含まれても含まれなくてもよく、それぞれ10重量%以下、5.0重量%以下、3重量%以下、2重量%以下、1.0重量%以下、0.5重量%以下、0.2重量%以下又は0.1重量%以下とすることができる。
 加熱収縮率の観点から、NaO、Fe、特にNaOは少ない程よい。また、CaOは少量のときは少ない程よい。例えば、CaO、NaO、Feの合計を2重量%以下、1重量%以下又は0.5重量%以下とできる。
 上記の組成の各成分の量を任意に組み合わせてもよい。
 本発明の組成物は通常以下の物質を含まない、又は含んでもそれぞれ1.0重量%以下、0.5重量%以下、0.2重量%以下又は0.1重量%以下である。
 酸化ゲルマニウム、酸化テルル、酸化バナジウム、酸化イオウ、リン化合物、スズ、コバルト、酸化マンガン、フッ化物、酸化銅。
 本発明の組成物から無機繊維を得ることができる。
 無機繊維は溶融法、ゾルゲル法等公知の方法で製造できるが、低コストのため溶融法が好ましい。溶融法では、通常の方法により、原料の溶融物を作製し、この溶融物を繊維化して製造する。溶媒は含まない。例えば、高速回転しているホイール上に熔解した原料を流し当てることで繊維化するスピニング法及び熔解した原料に圧縮空気を当てることで繊維化するブロー法等により製造できる。
 繊維は公知の被覆材により被覆されていてもよいし被覆されていなくてもよい。
 本発明の繊維は原料の組成の組成と同じであり、上記の組成を有することにより、pH4.5の生理食塩水に対する溶解性に優れる。
 pH4.5の生理食塩水に対する溶解性は、実施例の測定方法で、好ましくは3.5mg/g以上、より好ましくは5.0mg/g以上、さらに好ましくは6.3mg/g以上である。
 繊維の溶解性は以下の方法でも測定できる。
 繊維を、メンブレンフィルター上に置き、繊維上にマイクロポンプによりpH4.5の生理食塩水を滴下させ、繊維、フィルターを通った濾液を容器内に貯める。貯めた濾液を24、48時間経過後に取り出し、溶出成分をICP発光分析装置により定量し、溶解度及び溶解速度定数を算出する。例えば、測定元素は主要元素であるAl、Ca、Mgの3元素とすることができる。尚、繊維径を測定して単位表面積・単位時間当たりの溶出量である溶解速度定数k(単位:ng/cm・h)に換算してもよい。
 本発明の繊維は、アルミナ反応性が低いことが好ましい。アルミナ反応性は、実施例の測定方法で、好ましくは痕は付くが付着せず、さらに好ましくは付着しないで痕も無いことである。
 本発明の繊維は、好ましくは800℃以上、1000℃以上、1100℃以上、1200℃以上、1300℃以上、1400℃以上で耐熱性を有する。具体的には、直径約7mm、高さ約15mmの円柱状サンプルを800~1400℃の所定温度で8時間加熱して求めた体積収縮率(%)が、1400℃-8時間で40%以下、好ましくは30%以下、更に好ましくは23%以下、最も好ましくは15%以下である。1300℃-8時間で40%以下、好ましくは30%以下、更に好ましくは23%以下、最も好ましくは15%以下である。1200℃-8時間で40%以下、好ましくは30%以下、更に好ましくは23%以下、最も好ましくは15%以下である。1100℃-8時間で40%以下、好ましくは30%以下、更に好ましくは23%以下、最も好ましくは15%以下である。1000℃-8時間で40%以下、好ましくは30%以下、更に好ましくは23%以下、最も好ましくは15%以下である。800℃-8時間で40%以下、好ましくは30%以下、更に好ましくは23%以下、最も好ましくは15%以下である。
 繊維の加熱収縮率は、繊維からブランケットを製造して1100℃,1260℃で24時間焼成した前後で測定することができる。また、引張強度は万能試験機により測定できる。
 さらに、本発明の繊維は、必須成分の種類が少ないので、配合過程の工数が減り、コスト減となる。また微妙な配合量を調整する成分の種類が少ないことは製造の困難性を低減する。
 本発明の繊維から、バルク、ブランケット、ブロックや、水等の溶媒を使用し製造するボード、モールド、ペーパー、フェルト等の定形品が得られる。また、水等の溶媒を使用し製造する不定形材料(マスチック、キャスター、コーティング材等)も得られる。
実施例1~17,比較例1
 表1に示す繊維組成について以下のように検討した。
 まず、表1に示す組成となるように原料を混合し、プレス加工して成形体を得た。この成形体を加熱溶融し、急冷して得られた物を粉砕しサンプルを得た。このサンプルを用いて以下の方法で評価した。その結果を表1に示す。
(1)生体溶解性
 サンプル1gを、pH4.5の生理食塩水150mLが入った三角フラスコ(容積300mL)に入れた。このフラスコを、37℃のインキュベーター内に設置して、毎分120回転の水平振動を2.5時間継続した。その後、ろ過により得られた濾液に含有されている各元素の量(mg)をICP発光分析装置により測定し、その合計を溶出量とした(mg/サンプル1g)。
(2)アルミナ反応性
 サンプルを成形して、直径約7mm、厚み約5mmの円柱状サンプルを得た。この円柱状サンプルをアルミナ板に載せて、1400℃8時間加熱して、付着や溶融の有無を観察した。円柱状サンプルが溶融したときは4、付着したときは3、付着しないが痕が残ったときは2、付着もせず痕も残らないときは1とした。
比較例2
 SiOを47質量%、Alを52質量%含むセラミック繊維(従来の耐熱性無機繊維)について、実施例1と同様に評価した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
実施例18
 SiO、Al、MgOの組成が図1の三角図の○に示す組成であり、CaOは2重量%以下の無機繊維用組成物から、熔融法により繊維を製造した。尚、三角図の黒四角は、実施例1~17で製造したものである。
 繊維の品質は良好又は許容できるものであった。得られた繊維(SiO44.1重量%、Al39.9重量%、MgO15.4重量%)のSEM写真を図2に示す。
実施例19
(1)実施例1の方法で、表2に示す組成のサンプルAを作製し、実施例18の方法で、表2に示す組成の繊維Aを作製した。
 サンプルAと繊維Aについて、実施例1と同様に、生体溶解性とアルミナ反応性を評価し、耐熱性については以下の方法で評価した。結果を表2に示す。サンプルAと繊維Aの特性はほぼ一致した。
(耐熱性)
 サンプルA及び繊維Aを成形して、直径約7mm、高さ約15mmの円柱状サンプルを得た。この円柱状サンプルを1400℃8時間加熱して、体積収縮率を求めた。
(2)また、サンプルAと繊維AについてXRD測定した。結果を図3Aに示す。さらに、サンプルAと繊維Aを1400℃で8時間加熱した後、XRD測定して結晶相を確認した。結果を図3Bに示す。図3A,Bから分かるように、結晶ピーク、強度ともほぼ同じで、生成結晶相に違いはなかった。
Figure JPOXMLDOC01-appb-T000002
実験例1
(1)SiO、Al、MgOを主成分とする組成における、CaO、NaO、Feの影響を調べた。
 まず表3に示す組成A,B,C(重量%)のSiO、Al、MgOに、CaO、NaO、Feを表4に示す量を加えた組成で、実施例1と同様にサンプルを準備し、体積収縮率(1400℃8時間)を測定した。結果を図4に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 図4から、CaO、NaO、Feを添加すると収縮率が高くなり。特にNaOを添加すると収縮率が高くなることが分かる。
(2)表3に示す組成Bに、NaOを、添加量(0~約1.3重量%)を変えて加え、実施例1と同様にサンプルを準備し、体積収縮率(1400℃8時間)を測定した。結果を図5に示す。
 図5から、NaOの量が増えると収縮率が高くなることが分かる。
 本発明の無機繊維は、断熱材、またアスベストの代替品として、様々な用途に用いることができる。
 上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
 この明細書に記載の文献の内容を全てここに援用する。

Claims (11)

  1.  以下の組成を有し、溶媒は含まない無機繊維用組成物。
     SiO   1.0~54.5重量%
     Al  58.0重量%未満
     MgO   1.0~69.0重量%
     CaO   6.0重量%以下
     SiO、Al、MgOの合計は94.0重量%超
  2.  溶融した請求項1記載の無機繊維用組成物を繊維化する無機繊維の製造方法。
  3.  請求項2記載の製造方法で得られる無機繊維。
  4.  以下の組成1又は組成2を有する無機繊維用組成物。
    [組成1]
     SiO   1.0~21.5重量%
     Al  24.0重量%以上58.0重量%未満
     MgO   1.0~57.0重量%
     CaO   7.4重量%未満
    [組成2]
     SiO   1.0~22.0重量%
     Al  58.0重量%以上79.0重量%以下
     MgO   19.2~41.0重量%
     CaO   7.4重量%未満
  5.  SiO、Al、MgOの合計が85重量%以上である請求項4記載の無機繊維用組成物。
  6.  以下の組成3又は組成4を有する無機繊維用組成物。
    [組成3]
     SiO   1.0~54.5重量%
     Al  58.0重量%未満
     MgO   3.0~69.0重量%
     CaO   6.0重量%以下
     SiO、Al、MgOの合計は94.0重量%超
    [組成4]
     SiO   30.0~41.0重量%
     Al  58.0~69.0重量%
     MgO   1.0~12.0重量%
     CaO   6.0重量%以下
     SiO、Al、MgOの合計は94.0重量%超
  7.  組成3のSiO、Al、MgOが以下の量である請求項6記載の無機繊維用組成物。
     SiO   14.0~51.0重量%
     Al  0.0~39.0重量%
     MgO   42.0~59.0重量%
  8.  組成3のSiO、Al、MgOが以下の量である請求項6記載の無機繊維用組成物。
     SiO   39.0~54.5重量%
     Al  28.0~48.0重量%
     MgO   3.0~23.0重量%
  9.  NaOが2.0重量%以下である請求項1及び4~8のいずれか記載の無機繊維用組成物。
  10.  請求項4~9のいずれか記載の無機繊維用組成物から得られる無機繊維。
  11.  請求項3又は10記載の無機繊維を用いて得られる定形物又は不定形物。
PCT/JP2012/003463 2012-05-28 2012-05-28 Si-Mg系無機繊維及びその組成物 WO2013179330A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2014518077A JP5945596B2 (ja) 2012-05-28 2012-05-28 Si−Mg系無機繊維及びその組成物
CN201280073521.9A CN104350019A (zh) 2012-05-28 2012-05-28 Si-Mg系无机纤维及其组合物
US14/402,617 US20150144828A1 (en) 2012-05-28 2012-05-28 Si-Mg-BASED INORGANIC FIBERS AND COMPOSITION CONTAINING THE SAME
KR1020147031903A KR20150013168A (ko) 2012-05-28 2012-05-28 Si-Mg계 무기 섬유 및 그 조성물
PCT/JP2012/003463 WO2013179330A1 (ja) 2012-05-28 2012-05-28 Si-Mg系無機繊維及びその組成物
EP12878118.4A EP2857369A4 (en) 2012-05-28 2012-05-28 INORGANIC FIBER BASED ON SI-MG AND COMPOSITION CONTAINING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/003463 WO2013179330A1 (ja) 2012-05-28 2012-05-28 Si-Mg系無機繊維及びその組成物

Publications (1)

Publication Number Publication Date
WO2013179330A1 true WO2013179330A1 (ja) 2013-12-05

Family

ID=49672590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/003463 WO2013179330A1 (ja) 2012-05-28 2012-05-28 Si-Mg系無機繊維及びその組成物

Country Status (6)

Country Link
US (1) US20150144828A1 (ja)
EP (1) EP2857369A4 (ja)
JP (1) JP5945596B2 (ja)
KR (1) KR20150013168A (ja)
CN (1) CN104350019A (ja)
WO (1) WO2013179330A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016017011A (ja) * 2014-07-08 2016-02-01 ニチアス株式会社 生体溶解性無機繊維

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014062987A2 (en) * 2012-10-18 2014-04-24 Ocv Intellectual Capital, Llc Glass composition for the manufacture of fibers and process

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS557593A (en) * 1978-06-19 1980-01-19 Du Pont Sodium ion conductive sodium aluminum borate glass
JPS5637250A (en) * 1979-01-30 1981-04-10 Saint Gobain Isover Glass fiber for cement reinforcement
JPS6110056A (ja) * 1984-06-04 1986-01-17 クアーズ ポーセレイン カンパニー ムライト・コージーライト複合セラミツク
JPS61232245A (ja) * 1985-04-01 1986-10-16 コ−ニング グラス ワ−クス 光フアイバ
US4818290A (en) * 1984-12-21 1989-04-04 Outokumpu Oy Method for utilizing slag from ferroalloy production
JPH02502372A (ja) * 1987-11-27 1990-08-02 オウトクンプ オイ 耐火性および耐薬品性の繊維を製造するためにフェロクロムスラグを混合する方法
JPH06206736A (ja) * 1992-11-21 1994-07-26 Yamamura Glass Co Ltd 低温焼成基板用ガラス組成物およびそれから得られる基板
JPH10503463A (ja) * 1994-08-02 1998-03-31 ザ・モーガン・クルーシブル・カンパニー・ピーエルシー 無機質繊維
JP2001351827A (ja) * 2000-06-08 2001-12-21 Murata Mfg Co Ltd 複合積層電子部品
JP2005514318A (ja) 2002-01-04 2005-05-19 ザ・モーガン・クルーシブル・カンパニー・ピーエルシー 生理食塩水に可溶の無機繊維
JP3753416B2 (ja) 1992-01-17 2006-03-08 ザ・モーガン・クルーシブル・カンパニー・ピーエルシー 物品の絶縁方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB701496A (en) * 1951-08-28 1953-12-23 Gen Electric Improvements in and relating to insulated seals for electric devices
US3044888A (en) * 1960-07-05 1962-07-17 Houze Glass Corp Glass fiber
GB1005338A (en) * 1964-04-17 1965-09-22 Corning Glass Works Semicrystalline glass-ceramic body and method of making it
US3573078A (en) * 1967-11-16 1971-03-30 United Aircraft Corp Glass compositions with a high modulus of elasticity
GB1367903A (en) * 1971-07-12 1974-09-25 Pilkington Brothers Ltd Photochromic glasses
US3907618A (en) * 1974-01-07 1975-09-23 Owens Illinois Inc Process for doping semiconductor employing glass-ceramic dopant
US4092174A (en) * 1976-01-30 1978-05-30 Pilkington Brothers Limited Photochromic glasses
SE400273C (sv) * 1976-07-22 1980-08-18 Rockwool Ab Forfaringssett for framstellning av mineralull
SU638556A1 (ru) * 1977-09-16 1978-12-25 Предприятие П/Я В-2120 Эмалевое покрытие дл защиты стали
JPS5777045A (en) * 1980-10-28 1982-05-14 Fuji Photo Film Co Ltd Glass containing phosphate
JPS5922399B2 (ja) * 1981-10-14 1984-05-26 日本電気株式会社 多層セラミツク基板
JPS61278195A (ja) * 1985-06-03 1986-12-09 株式会社日立製作所 多層回路基板及びその製造方法
JP3130800B2 (ja) * 1995-07-24 2001-01-31 日本山村硝子株式会社 磁気ディスク基板用ガラス組成物及び磁気ディスク基板
JPH1186736A (ja) * 1997-09-03 1999-03-30 Toray Ind Inc プラズマディスプレイ用基板、プラズマディスプレイおよびその製造方法
JP2004026606A (ja) * 2002-06-27 2004-01-29 Okamoto Glass Co Ltd 低熱膨張ガラス
DE10245234B4 (de) * 2002-09-27 2011-11-10 Schott Ag Kristallisierbares Glas, seine Verwendung zur Herstellung einer hochsteifen, bruchfesten Glaskeramik mit gut polierbarer Oberfläche sowie Verwendung der Glaskeramik
DE10245233B3 (de) * 2002-09-27 2004-02-12 Schott Glas Kristallisierbares Glas und seine Verwendung zur Herstellung einer hochsteifen, bruchfesten Glaskeramik
DE102005038457B3 (de) * 2005-08-13 2007-04-05 Schott Ag Verwendung einer Glaskeramik als Panzermaterial

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS557593A (en) * 1978-06-19 1980-01-19 Du Pont Sodium ion conductive sodium aluminum borate glass
JPS5637250A (en) * 1979-01-30 1981-04-10 Saint Gobain Isover Glass fiber for cement reinforcement
JPS6110056A (ja) * 1984-06-04 1986-01-17 クアーズ ポーセレイン カンパニー ムライト・コージーライト複合セラミツク
US4818290A (en) * 1984-12-21 1989-04-04 Outokumpu Oy Method for utilizing slag from ferroalloy production
JPS61232245A (ja) * 1985-04-01 1986-10-16 コ−ニング グラス ワ−クス 光フアイバ
JPH02502372A (ja) * 1987-11-27 1990-08-02 オウトクンプ オイ 耐火性および耐薬品性の繊維を製造するためにフェロクロムスラグを混合する方法
JP3753416B2 (ja) 1992-01-17 2006-03-08 ザ・モーガン・クルーシブル・カンパニー・ピーエルシー 物品の絶縁方法
JPH06206736A (ja) * 1992-11-21 1994-07-26 Yamamura Glass Co Ltd 低温焼成基板用ガラス組成物およびそれから得られる基板
JPH10503463A (ja) * 1994-08-02 1998-03-31 ザ・モーガン・クルーシブル・カンパニー・ピーエルシー 無機質繊維
JP2001351827A (ja) * 2000-06-08 2001-12-21 Murata Mfg Co Ltd 複合積層電子部品
JP2005514318A (ja) 2002-01-04 2005-05-19 ザ・モーガン・クルーシブル・カンパニー・ピーエルシー 生理食塩水に可溶の無機繊維

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP2857369A4 *
TORBEN KNUDSEN: "New type of stonewool (HT fibres) with a high dissolution rate at pH=4.5", GLASTECH. BER. GLASS SCI. TECHNOL., vol. 69, no. 10, 1996, pages 331 - 337, XP008174058 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016017011A (ja) * 2014-07-08 2016-02-01 ニチアス株式会社 生体溶解性無機繊維

Also Published As

Publication number Publication date
JPWO2013179330A1 (ja) 2016-01-14
KR20150013168A (ko) 2015-02-04
US20150144828A1 (en) 2015-05-28
JP5945596B2 (ja) 2016-07-05
EP2857369A1 (en) 2015-04-08
EP2857369A4 (en) 2016-03-23
CN104350019A (zh) 2015-02-11

Similar Documents

Publication Publication Date Title
KR102168895B1 (ko) 생체 용해성 무기섬유
WO2012090455A1 (ja) 生体溶解性無機繊維
JP6266250B2 (ja) 耐熱無機繊維
WO2014115550A1 (ja) 生体溶解性無機繊維及びその組成物
JP6554269B2 (ja) 生体溶解性無機繊維の製造方法
JP5945596B2 (ja) Si−Mg系無機繊維及びその組成物
JP6348843B2 (ja) 生体溶解性無機繊維及びその組成物
JP2014058423A (ja) 耐熱性を有する生体溶解性無機繊維及びその組成物
JP6212040B2 (ja) 耐熱無機繊維
JP5856541B2 (ja) 生理食塩水に可溶なAl−Ca系無機繊維及びその組成物
JP2014028709A (ja) Si/Al/Ca含有無機繊維
JP4814402B1 (ja) 無機繊維用接着剤
WO2013132859A1 (ja) 生理食塩水に可溶なSr/Ba含有無機繊維及びその組成物
WO2013132858A1 (ja) 生理食塩水に可溶なLa/Ce含有無機繊維及びその組成物
JP6513905B2 (ja) 生体溶解性無機繊維

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12878118

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014518077

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012878118

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147031903

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14402617

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE