US2051279A - Mineral wool - Google Patents

Mineral wool Download PDF

Info

Publication number
US2051279A
US2051279A US716675A US71667534A US2051279A US 2051279 A US2051279 A US 2051279A US 716675 A US716675 A US 716675A US 71667534 A US71667534 A US 71667534A US 2051279 A US2051279 A US 2051279A
Authority
US
United States
Prior art keywords
mineral
wool
mineral wool
raw material
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US716675A
Inventor
John T Thorndyke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ALFRED W KNIGHT
Original Assignee
ALFRED W KNIGHT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ALFRED W KNIGHT filed Critical ALFRED W KNIGHT
Priority to US716675A priority Critical patent/US2051279A/en
Application granted granted Critical
Publication of US2051279A publication Critical patent/US2051279A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/06Mineral fibres, e.g. slag wool, mineral wool, rock wool

Definitions

  • This invention relates to the manufacture of a more stable and permanent rock or mineral wool, and particularly to a mineral wool of advantageous composition and physical properties.
  • mineral wool may be prepared by melting a suitable charge of raw materials and then introducing a stream of a suitable fiuid such as air or steam into a stream of the molten raw material whereby the molten mal terial is blown into threads or fibres, such threads or fibres being collected in a suitable chamber or the like, from which they are removed from time to time or continuously as the case may be.
  • a suitable fiuid such as air or steam
  • the raw material from which the mineral 15 wool is prepared is commonly termed "wool-roe and generally consists principally of an argillaceous calcium carbonate, or the raw material may consist of a mixture of rocks or minerals containing calcium and magnesium carbonates,
  • a suitable fiuxing agent iscommonly required to facilitate the melting thereof.
  • the most common raw material at present employed is argil- 25 laceous limestone, and in view' of the fact that such limestone is not a true mineral in the sense of having a relatively fixed composition, it is very difilcult to obtain a uniform product therewith due to variations in the composition of such raw
  • Some mineral wool is prepared from blast furnace slag or the like, which may be of relatively uniform composition, but it is generally considered necessary to exercise careful control of the raw materials and to modify such raw ma- 35 terials with other reagents or fluxes to insure the production of a uniform grade of product.
  • the color of the mineral wool is considered highly important in the trade, and wools which are very light-colored or substantially col- 0 orless command a premium.
  • mineral wool is prepared of slag, or even from mixtures of various materials such as calcium carbonate, silica and aluminum oxides, as is sometimes done,
  • one vof the principal objects of the present invention is to provide a mineral wool which may be produced of particu- 50 larly high salability as regards color and other physical properties.
  • a further object of the invention is to provide a mineral wool at a materially lower cost as compared with hitherto proposed mineral wools.
  • a further object of the invention is to provide a mineral wool which may be produced from-a raw material comprising a natural mineral having a substantially unvarying chemical composition. 7
  • a mineral selected from a group of minerals mineralogically classified as pyroxenes is subjected to fusion and the mineral wool produced by blowing a stream of air or other suitable fluid into a stream of the fused raw l0 material according to the well-known practice in mineral wool manufacture.
  • the novelty of the present invention rests principally in the use of an advantageous raw material for the production of such mineral wool.
  • the minerals which are mineralogically classified as pyroxenes bear the general formula RSiO: where R consists principally of calcium plus magnesium, giving rise to minerals such as diopside CaMg(SiO2) 2.
  • pyroxenes contain some iron, aluminum, 2o manganese, zinc and like metals usually along with but sometimes in place of the calcium or magnesium above-mentioned.
  • the pyroxenes which are suitable in the present instance are more particularly those pyroxenes which are high in calcium, and of these, the mineral Wollastonite has been found to be the most advantageous raw mineral in view of its relatively low melting point and its freedom from color, due to the absence of other metallic ions, and the following description is directed principally to the use of this particular mineral.
  • the mineral Wollastonite is essentially an anhydrous calcium metasilicate, CaO.SiOz. This mineral is available in certain localities in relatively pure form, and until the advent of the present invention has been considered of no particular commercial importance.
  • the advantages in the use of Wollastonite in the manufacture of mineral wool lie principally in its relatively low melting point, the substantially unvarying chemical composition of the naturally'occurring mineral, and its characteristic of being relatively flexible and highly resilient when fused into a glass, whereby a mineral wool produced therefrom is not only of highly uniform composition and color due to the invariability of the raw material, but is highly desirable from the standpoint of the high mechanical strength of the individual fibres constituting the wool.
  • a wool which has a relatively high melting point as compared to standard wools may be prepared by melting a raw material at a some what lower temperature than is required for melting the raw materials hitherto employed.
  • This seeming anomaly may be explained by the following example: If a mineral wool is to be made from a mixture of raw materials such as calcium carbonate, silica and alumina, the charge of raw material must be heated to a temperature suflicient to actually melt one of the constituents before a homogeneous melt is obtained.
  • the wool produced from such glass will accordingly have a melting point which is materially lower than the temperature to which the raw material was raised to effect the formation of the glass.
  • a material such as Wollastonite
  • the wool of the present invention may have a melting point above that of the conventional wool, the melting temperature of the raw charge may be material- 1y lower than the melting temperature of a conventional wool charge.
  • the production of mineral wool according to the present invention may be carried out in the standard apparatus at present in use in the art, as exemplified by United States patents to Fay No. 1,256,541, Powell No. 1,656,828 and Miller No. 1,765,026, or as described in an article entitled The Mineral Wool Industry in Indiana by W. N. Logan, appearing as an American Institute of Mining and Metallurgical Engineers preprint. It has been hitherto considered proper practice to melt the wool-rock in a cupola with coke or coal used as fuel, but it will be understood that any. suitable melting means may be provided, either gas-fired, coal-fired, coke-fired, or electrically heated.
  • the principal feature of any process for producing the mineral wool lies in providing a source of molten wool-rock, and blowing a suitable fiuld'such as steam. or air against a small stream of the molten glass, whereby the molten material is thrown into long threadiike fibres.
  • the fibres may be allowed to settle in a long enclosed room, where the acl0 cumulated mass resembles a bank of freshly fallen snow, or may be collected in any other suitable manner, for example, on a travelling belt or conveyor, as shown in patent to Miller No. 1,765,026.
  • the mineral wool prepared by the use 01' W01- lastonite is a highly superior commercial product, having a uniformly white color, being substantially free of non-fibrous contaminations, and being capable of maintaining its physical form in handling.
  • a wool made from such a raw material is of a novel chemical composition as compared with the previously known forms of mineral wool. Such composition is characterized by a substantial absence of aluminum compounds, which were hitherto considered as an essential constituent of a satisfactory wool.
  • the wool is further characterized by containing substantially equal molecular proportions of calcium oxide and silicon dioxide.
  • the proportion of calcium oxide in the product is in general between 40 and 45% and the proportion of silicon dioxide is in general between 45 and 50%, while the proportion of calcium oxide and silicon dioxide is in general seldom less than per cent of the total.
  • the following is an example of the chemical analysis of a mineral wool prepared in this manner:
  • the percentages of calcium and silicon oxides are generally in a substantially molecular ratio when the Wollastonite is used as the raw material, and where other pyroxenes are used this ratio preferably still maintains and is then between R0 and SiOz, where R0 indicates (CaO) (MgO) etc., or mixtures thereof such as (CaO, MgO)
  • R0 indicates (CaO) (MgO) etc., or mixtures thereof such as (CaO, MgO)
  • certain fluxes such as borax or the like may be incorporated in the melt, if desired, whereby the melting point of the glass is reduced, or the fluidity of the melt modified. In general, however, due to the physical properties of the present raw material, such fiuxing is not considered necessary.
  • a mineral wool prepared by fusing the natu- 4.
  • a mineral wool consisting principally of the oxide and silicon dioxide. oxides of calcium and silicon combined in substantially equi-molecular proportions. JOHN T. THORNDYKE.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Description

I 30 material.
Patented Aug. "18,
* UNITED STATES woor.
John '1. Thorndyke, Loo Angeles, Calif., allignor of one-third to Alfred W. Knight, South Pmdena, Calif.
No Application March 21, 1934,
Serial No. 716,675
4 Claims. (Cl. 106-363) This invention relates to the manufacture of a more stable and permanent rock or mineral wool, and particularly to a mineral wool of advantageous composition and physical properties.
'5 It is well known that mineral wool may be prepared by melting a suitable charge of raw materials and then introducing a stream of a suitable fiuid such as air or steam into a stream of the molten raw material whereby the molten mal terial is blown into threads or fibres, such threads or fibres being collected in a suitable chamber or the like, from which they are removed from time to time or continuously as the case may be. In general, the raw material from which the mineral 15 wool is prepared is commonly termed "wool-roe and generally consists principally of an argillaceous calcium carbonate, or the raw material may consist of a mixture of rocks or minerals containing calcium and magnesium carbonates,
o alumina and silica. In either case, whether a natural wool-rock or a mixture of rocks is used,
a suitable fiuxing agent iscommonly required to facilitate the melting thereof. The most common raw material at present employed is argil- 25 laceous limestone, and in view' of the fact that such limestone is not a true mineral in the sense of having a relatively fixed composition, it is very difilcult to obtain a uniform product therewith due to variations in the composition of such raw Some mineral wool is prepared from blast furnace slag or the like, which may be of relatively uniform composition, but it is generally considered necessary to exercise careful control of the raw materials and to modify such raw ma- 35 terials with other reagents or fluxes to insure the production of a uniform grade of product. Furthermore, the color of the mineral wool is considered highly important in the trade, and wools which are very light-colored or substantially col- 0 orless command a premium. Where mineral wool is prepared of slag, or even from mixtures of various materials such as calcium carbonate, silica and aluminum oxides, as is sometimes done,
it has been found relatively diflicult if not im- 5 possible to definitely control the color of the resulting mineral wool.
In view of the above, one vof the principal objects of the present invention is to provide a mineral wool which may be produced of particu- 50 larly high salability as regards color and other physical properties.
A further object of the invention is to provide a mineral wool at a materially lower cost as compared with hitherto proposed mineral wools.
55 A further object of the invention is to provide a mineral wool which may be produced from-a raw material comprising a natural mineral having a substantially unvarying chemical composition. 7
According to a preferred embodiment of the 5 present invention, a mineral selected from a group of minerals mineralogically classified as pyroxenes is subjected to fusion and the mineral wool produced by blowing a stream of air or other suitable fluid into a stream of the fused raw l0 material according to the well-known practice in mineral wool manufacture. The novelty of the present invention rests principally in the use of an advantageous raw material for the production of such mineral wool. The minerals which are mineralogically classified as pyroxenes bear the general formula RSiO: where R consists principally of calcium plus magnesium, giving rise to minerals such as diopside CaMg(SiO2) 2. Other of the pyroxenes contain some iron, aluminum, 2o manganese, zinc and like metals usually along with but sometimes in place of the calcium or magnesium above-mentioned. The pyroxenes which are suitable in the present instance are more particularly those pyroxenes which are high in calcium, and of these, the mineral Wollastonite has been found to be the most advantageous raw mineral in view of its relatively low melting point and its freedom from color, due to the absence of other metallic ions, and the following description is directed principally to the use of this particular mineral.
The mineral Wollastonite is essentially an anhydrous calcium metasilicate, CaO.SiOz. This mineral is available in certain localities in relatively pure form, and until the advent of the present invention has been considered of no particular commercial importance. The advantages in the use of Wollastonite in the manufacture of mineral wool lie principally in its relatively low melting point, the substantially unvarying chemical composition of the naturally'occurring mineral, and its characteristic of being relatively flexible and highly resilient when fused into a glass, whereby a mineral wool produced therefrom is not only of highly uniform composition and color due to the invariability of the raw material, but is highly desirable from the standpoint of the high mechanical strength of the individual fibres constituting the wool. V
It has been found that the most desirable mineral wool product is obtained when the melted material is brought toa temperature in the vicinity of 100 C. above its true melting point. It has been, recognized in the mineral wool art that the raw material should be heated to a certain desirable temperature somewhat above the actual melting point of the mixture in order to obtain the most advantageous product,
but this desirable temperature has been hitherto quite difiicult to decide upon, in view of the tremendous variations in the chemical constitution and hence actual melting point of. the raw material. Ifthe molten raw material is blown at a temperature not suiliciently in excess of its melting point, a relatively high percentage of non-fibrous glass is realized in the wool, which adds to its weight per cubic foot and materially detracts from its desirable characteristics, and if the temperature is raised too far beyond the melting point, the resulting fibres are found to be 011 color and relatively brittle. When a material of known and sub stantially constant chemical constitution is employed as a raw material for the production of mineral wool the true melting point of such material will be known and substantially constant temperature, hence it is possible to raise the temperature of the molten material to a definite point above the true melting point to obtain a finished product having the desired characteristics.
In addition to the above advantageous character of the mineral Wollastonite as a raw material for the manufactureof mineral wool, another quite advantageous feature lies in the fact that a wool which has a relatively high melting point as compared to standard wools may be prepared by melting a raw material at a some what lower temperature than is required for melting the raw materials hitherto employed. This seeming anomaly may be explained by the following example: If a mineral wool is to be made from a mixture of raw materials such as calcium carbonate, silica and alumina, the charge of raw material must be heated to a temperature suflicient to actually melt one of the constituents before a homogeneous melt is obtained. This requires that the charge of raw material must be heated to a temperature generally materially above'the true melting point of the final glass, and the wool produced from such glass will accordingly have a melting point which is materially lower than the temperature to which the raw material was raised to effect the formation of the glass. Where a material such as Wollastonite is employed, it is only necessary to raise the temperature of the charge to a point sufiiciently in excess of the true melting point thereof to obtain the desired fluidity, and the melting point of the subsequently formed wool will be no lower than the melting point of the raw material. Thus, even though the wool of the present invention may have a melting point above that of the conventional wool, the melting temperature of the raw charge may be material- 1y lower than the melting temperature of a conventional wool charge.
The production of mineral wool according to the present invention may be carried out in the standard apparatus at present in use in the art, as exemplified by United States patents to Fay No. 1,256,541, Powell No. 1,656,828 and Miller No. 1,765,026, or as described in an article entitled The Mineral Wool Industry in Indiana by W. N. Logan, appearing as an American Institute of Mining and Metallurgical Engineers preprint. It has been hitherto considered proper practice to melt the wool-rock in a cupola with coke or coal used as fuel, but it will be understood that any. suitable melting means may be provided, either gas-fired, coal-fired, coke-fired, or electrically heated. The principal feature of any process for producing the mineral wool lies in providing a source of molten wool-rock, and blowing a suitable fiuld'such as steam. or air against a small stream of the molten glass, whereby the molten material is thrown into long threadiike fibres. The fibres may be allowed to settle in a long enclosed room, where the acl0 cumulated mass resembles a bank of freshly fallen snow, or may be collected in any other suitable manner, for example, on a travelling belt or conveyor, as shown in patent to Miller No. 1,765,026.
The mineral wool prepared by the use 01' W01- lastonite is a highly superior commercial product, having a uniformly white color, being substantially free of non-fibrous contaminations, and being capable of maintaining its physical form in handling. Furthermore, a wool made from such a raw material is of a novel chemical composition as compared with the previously known forms of mineral wool. Such composition is characterized by a substantial absence of aluminum compounds, which were hitherto considered as an essential constituent of a satisfactory wool. The wool is further characterized by containing substantially equal molecular proportions of calcium oxide and silicon dioxide. The proportion of calcium oxide in the product is in general between 40 and 45% and the proportion of silicon dioxide is in general between 45 and 50%, while the proportion of calcium oxide and silicon dioxide is in general seldom less than per cent of the total. The following is an example of the chemical analysis of a mineral wool prepared in this manner:
Per cent 5102 49.20 F9203 ,64 A 2.46 0110 44.30 80 2.62 K20 ,20 N 320"-.. ,50 M112 ,()4
As above pointed out, the percentages of calcium and silicon oxides are generally in a substantially molecular ratio when the Wollastonite is used as the raw material, and where other pyroxenes are used this ratio preferably still maintains and is then between R0 and SiOz, where R0 indicates (CaO) (MgO) etc., or mixtures thereof such as (CaO, MgO) It will be appreciated that certain fluxes such as borax or the like may be incorporated in the melt, if desired, whereby the melting point of the glass is reduced, or the fluidity of the melt modified. In general, however, due to the physical properties of the present raw material, such fiuxing is not considered necessary.
I claim:
1. -A mineral wool prepared by fusing a high calcium mineral selected from the pyroxene mineralogical group and having a composition represented ,by the general formula RS103 in which the molecular proportion of silica is substantially equal to the molecular proportionof the other metal oxide or oxides present in said mineral, and blowing a stream of such molten mineral to form fibrous strands.
2. A mineral wool prepared by fusing the natu- 4. A mineral wool containing in excess of 95 re] mineral Wollastonite and blowing a stream per cent of a. chemical combination of substanof such molten mineral to form fibrous strands. tially equi-molecular proportions of calcium 3. A mineral wool consisting principally of the oxide and silicon dioxide. oxides of calcium and silicon combined in substantially equi-molecular proportions. JOHN T. THORNDYKE.
US716675A 1934-03-21 1934-03-21 Mineral wool Expired - Lifetime US2051279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US716675A US2051279A (en) 1934-03-21 1934-03-21 Mineral wool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US716675A US2051279A (en) 1934-03-21 1934-03-21 Mineral wool

Publications (1)

Publication Number Publication Date
US2051279A true US2051279A (en) 1936-08-18

Family

ID=24878965

Family Applications (1)

Application Number Title Priority Date Filing Date
US716675A Expired - Lifetime US2051279A (en) 1934-03-21 1934-03-21 Mineral wool

Country Status (1)

Country Link
US (1) US2051279A (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2576566A (en) * 1948-08-16 1951-11-27 G And W H Corson Inc Agglomerated body and the method of preparing same
US2576312A (en) * 1948-08-16 1951-11-27 Baldwin Hill Company Method of making mineral wool
US3274006A (en) * 1959-07-23 1966-09-20 Owens Corning Fiberglass Corp Borosilicate glass melting method
US4803803A (en) * 1986-04-24 1989-02-14 Moffet Jr Frank W Growing medium for plants
US4857489A (en) * 1985-11-22 1989-08-15 A. P. Green Industries, Inc. Molten aluminum resistant ceramic fiber composition
WO1989012032A3 (en) * 1988-06-01 1990-04-05 Manville Sales Corp Process for decomposing an inorganic fiber
US4959926A (en) * 1986-04-24 1990-10-02 Moffet Jr Frank W Growing medium for plants
US5099605A (en) * 1986-04-24 1992-03-31 Moffet Jr Frank W Growing medium for plants
US5401693A (en) * 1992-09-18 1995-03-28 Schuller International, Inc. Glass fiber composition with improved biosolubility
US5714421A (en) * 1986-02-20 1998-02-03 Manville Corporation Inorganic fiber composition
US5811360A (en) * 1993-01-15 1998-09-22 The Morgan Crucible Company Plc Saline soluble inorganic fibres
US5928975A (en) * 1995-09-21 1999-07-27 The Morgan Crucible Company,Plc Saline soluble inorganic fibers
US5955389A (en) * 1993-01-15 1999-09-21 The Morgan Crucible Company, P/C Saline soluble inorganic fibres
US5994247A (en) * 1992-01-17 1999-11-30 The Morgan Crucible Company Plc Saline soluble inorganic fibres
US5998315A (en) * 1994-08-02 1999-12-07 Morgan Crucible Company Plc Strontium aluminate inorganic fibers
EP0257092B1 (en) * 1986-02-20 2003-06-18 The Morgan Crucible Company Plc USE OF INORGANIC FIBERS CONSISTING OF Al 2O3, MgO, CaO AND SiO2
US20030162019A1 (en) * 2002-01-10 2003-08-28 Unifrax Corporation High temperature resistant vitreous inorganic fiber
US20040234436A1 (en) * 2001-10-09 2004-11-25 Howorth Gary F Compositions containing biosoluble inorganic fibers and micaceous binders
US20040254056A1 (en) * 2002-01-04 2004-12-16 Jubb Gary Anthony Saline soluble inorganic fibres
US20050014624A1 (en) * 1992-01-17 2005-01-20 Jubb Gary Anthony Saline soluble inorganic fibers
US20050032619A1 (en) * 2003-06-27 2005-02-10 Zoitos Bruce K. High temperature resistant vitreous inorganic fiber
US20050032620A1 (en) * 2003-06-27 2005-02-10 Unifrax Corporation High temperature resistant vitreous inorganic fiber
US6861381B1 (en) 1999-09-10 2005-03-01 The Morgan Crucible Company Plc High temperature resistant saline soluble fibres
US6987076B1 (en) 1998-09-15 2006-01-17 The Morgan Crucible Company Plc Bonded fibrous materials
US20060094583A1 (en) * 2004-11-01 2006-05-04 Freeman Craig J Modification of alkaline earth silicate fibres
US9556063B2 (en) 2014-07-17 2017-01-31 Unifrax I Llc Inorganic fiber with improved shrinkage and strength
US9708214B2 (en) 2014-07-16 2017-07-18 Unifrax I Llc Inorganic fiber with improved shrinkage and strength
US9919957B2 (en) 2016-01-19 2018-03-20 Unifrax I Llc Inorganic fiber
US10023491B2 (en) 2014-07-16 2018-07-17 Unifrax I Llc Inorganic fiber
US10882779B2 (en) 2018-05-25 2021-01-05 Unifrax I Llc Inorganic fiber

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2576312A (en) * 1948-08-16 1951-11-27 Baldwin Hill Company Method of making mineral wool
US2576566A (en) * 1948-08-16 1951-11-27 G And W H Corson Inc Agglomerated body and the method of preparing same
US3274006A (en) * 1959-07-23 1966-09-20 Owens Corning Fiberglass Corp Borosilicate glass melting method
US4857489A (en) * 1985-11-22 1989-08-15 A. P. Green Industries, Inc. Molten aluminum resistant ceramic fiber composition
EP0257092B1 (en) * 1986-02-20 2003-06-18 The Morgan Crucible Company Plc USE OF INORGANIC FIBERS CONSISTING OF Al 2O3, MgO, CaO AND SiO2
US5714421A (en) * 1986-02-20 1998-02-03 Manville Corporation Inorganic fiber composition
US4803803A (en) * 1986-04-24 1989-02-14 Moffet Jr Frank W Growing medium for plants
US4959926A (en) * 1986-04-24 1990-10-02 Moffet Jr Frank W Growing medium for plants
US5099605A (en) * 1986-04-24 1992-03-31 Moffet Jr Frank W Growing medium for plants
WO1989012032A3 (en) * 1988-06-01 1990-04-05 Manville Sales Corp Process for decomposing an inorganic fiber
US6180546B1 (en) 1992-01-17 2001-01-30 The Morgan Crucible Company Plc Saline soluble inorganic fibers
US5994247A (en) * 1992-01-17 1999-11-30 The Morgan Crucible Company Plc Saline soluble inorganic fibres
US20050014624A1 (en) * 1992-01-17 2005-01-20 Jubb Gary Anthony Saline soluble inorganic fibers
US7259118B2 (en) 1992-01-17 2007-08-21 The Morgan Crucible Company Plc Saline soluble inorganic fibers
US5401693A (en) * 1992-09-18 1995-03-28 Schuller International, Inc. Glass fiber composition with improved biosolubility
US5955389A (en) * 1993-01-15 1999-09-21 The Morgan Crucible Company, P/C Saline soluble inorganic fibres
US5811360A (en) * 1993-01-15 1998-09-22 The Morgan Crucible Company Plc Saline soluble inorganic fibres
US5998315A (en) * 1994-08-02 1999-12-07 Morgan Crucible Company Plc Strontium aluminate inorganic fibers
US5928975A (en) * 1995-09-21 1999-07-27 The Morgan Crucible Company,Plc Saline soluble inorganic fibers
US6987076B1 (en) 1998-09-15 2006-01-17 The Morgan Crucible Company Plc Bonded fibrous materials
US6861381B1 (en) 1999-09-10 2005-03-01 The Morgan Crucible Company Plc High temperature resistant saline soluble fibres
US8673229B2 (en) 2001-10-09 2014-03-18 3M Innovative Properties Company Compositions containing biosoluble inorganic fibers and micaceous binders
US20040234436A1 (en) * 2001-10-09 2004-11-25 Howorth Gary F Compositions containing biosoluble inorganic fibers and micaceous binders
US20090127489A1 (en) * 2002-01-04 2009-05-21 Gary Anthony Jubb Saline soluble inorganic fibres
US7651965B2 (en) 2002-01-04 2010-01-26 The Morgan Crucible Company Plc Saline soluble inorganic fibres
US20050233887A1 (en) * 2002-01-04 2005-10-20 Jubb Gary A Saline soluble inorganic fibres
US7153796B2 (en) 2002-01-04 2006-12-26 The Morgan Crucible Company Plc Saline soluble inorganic fibres
US7470641B2 (en) 2002-01-04 2008-12-30 The Morgan Crucible Company Plc Saline soluble inorganic fibres
US20040254056A1 (en) * 2002-01-04 2004-12-16 Jubb Gary Anthony Saline soluble inorganic fibres
US20030162019A1 (en) * 2002-01-10 2003-08-28 Unifrax Corporation High temperature resistant vitreous inorganic fiber
US6953757B2 (en) 2002-01-10 2005-10-11 Unifrax Corporation High temperature a resistant vitreous inorganic fiber
US20050032620A1 (en) * 2003-06-27 2005-02-10 Unifrax Corporation High temperature resistant vitreous inorganic fiber
US20050032619A1 (en) * 2003-06-27 2005-02-10 Zoitos Bruce K. High temperature resistant vitreous inorganic fiber
US7468337B2 (en) 2003-06-27 2008-12-23 Unifrax I Llc High temperature resistant vitreous inorganic fiber
US7468336B2 (en) 2003-06-27 2008-12-23 Unifrax Llc High temperature resistant vitreous inorganic fiber
US20090156386A1 (en) * 2004-11-01 2009-06-18 Craig John Freeman Modification of alkaline earth silicate fibres
US7875566B2 (en) 2004-11-01 2011-01-25 The Morgan Crucible Company Plc Modification of alkaline earth silicate fibres
US20060094583A1 (en) * 2004-11-01 2006-05-04 Freeman Craig J Modification of alkaline earth silicate fibres
US9708214B2 (en) 2014-07-16 2017-07-18 Unifrax I Llc Inorganic fiber with improved shrinkage and strength
US10023491B2 (en) 2014-07-16 2018-07-17 Unifrax I Llc Inorganic fiber
US10301213B2 (en) 2014-07-16 2019-05-28 Unifrax I Llc Inorganic fiber with improved shrinkage and strength
US9556063B2 (en) 2014-07-17 2017-01-31 Unifrax I Llc Inorganic fiber with improved shrinkage and strength
US9926224B2 (en) 2014-07-17 2018-03-27 Unifrax I Llc Inorganic fiber with improved shrinkage and strength
US9919957B2 (en) 2016-01-19 2018-03-20 Unifrax I Llc Inorganic fiber
US10882779B2 (en) 2018-05-25 2021-01-05 Unifrax I Llc Inorganic fiber

Similar Documents

Publication Publication Date Title
US2051279A (en) Mineral wool
CA2265572C (en) Process for making mineral wool fibers and fibers made according to such process
EP0036275B1 (en) Alkali- and heat-resistant inorganic fiber
US2474787A (en) Arc welding composition and method of making same
US3573887A (en) Method of making glass from reacted and shaped batch materials
US3985935A (en) Alkali resistant perlite - CaO vitreous fibers
US2184078A (en) Method of sintering finely divided fluorspar
JPH02502371A (en) Method of mixing molten iron silicate with ferroalloy slag to produce fire-resistant and chemical-resistant fibers
US1890485A (en) Method of treating metal
US2228639A (en) Electric welding medium
US3679443A (en) Mineral wool made from silicate glass comprising iron oxides
US2756158A (en) Glass composition
US2414068A (en) Method for utilizing borate tailings
US2685526A (en) Glass composition
US4356027A (en) Iron ore pellets containing magnesium oxide
US3360386A (en) Glass fiber composition
US2300930A (en) Mineral wool
US1907868A (en) Rock wool and composition for producing the same
NO115871B (en)
US2279399A (en) Blast furnace process
JPH0543265A (en) Production of rock wool
US2198625A (en) Method for the removal of sulphur compounds from iron
US2130228A (en) Product for improving the quality of cast iron and for the manufacture of ferromanganese
US2084328A (en) Glass batch and process of making
US2022811A (en) Mineral wool and manufacture thereof