CN102376768A - 与高压垂直晶体管集成的感测fet - Google Patents

与高压垂直晶体管集成的感测fet Download PDF

Info

Publication number
CN102376768A
CN102376768A CN2011103495905A CN201110349590A CN102376768A CN 102376768 A CN102376768 A CN 102376768A CN 2011103495905 A CN2011103495905 A CN 2011103495905A CN 201110349590 A CN201110349590 A CN 201110349590A CN 102376768 A CN102376768 A CN 102376768A
Authority
CN
China
Prior art keywords
post
transistor
semiconductor device
source area
conduction type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011103495905A
Other languages
English (en)
Other versions
CN102376768B (zh
Inventor
V·帕塔萨拉蒂
S·巴纳吉
M·H·曼利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Power Integrations Inc
Original Assignee
Power Integrations Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Power Integrations Inc filed Critical Power Integrations Inc
Publication of CN102376768A publication Critical patent/CN102376768A/zh
Application granted granted Critical
Publication of CN102376768B publication Critical patent/CN102376768B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7815Vertical DMOS transistors, i.e. VDMOS transistors with voltage or current sensing structure, e.g. emulator section, overcurrent sensing cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

公开了与高压垂直晶体管集成的感测FET。在一个实施例中,半导体器件包括主垂直场效应晶体管(FET)和感测FET。主垂直FET和感测FET都形成在半导体材料柱上。两者共享形成在衬底之上的柱中的延伸漏极区,并且第一和第二栅极元件形成在柱的相对侧的电介质中。主垂直FET和感测FET沿第一横向分开并且电隔离。在操作中,感测FET采样在主垂直FET中流动的电流的小部分。要强调的是,提供该摘要是为了遵守需要摘要的规定以使得检索者或其他读者迅速确定本技术公开的主题。

Description

与高压垂直晶体管集成的感测FET
本申请是于2008年2月18日递交的名为“与高压垂直晶体管集成的感测FET”的专利申请200810080752.8的分案申请。
技术领域
本公开涉及半导体器件、器件结构和用来制作高压或功率晶体管器件的工艺。
背景技术
电流感测场效应晶体管,通常被称作感测fet,在其中精确电流感测可以为控制和过电流保护提供信息的应用中已经被广泛使用许多年。感测场效应晶体管通常构成更大的、主电流运载半导体器件的小部分或晶体管部分。例如,在常规的绝缘栅场效应晶体管(MOSFET)器件中,感测场效应晶体管可以包括主器件的沟道区的小部分。在操作中,感测场效应晶体管可以采样更大器件的沟道电流的小部分,由此提供流过主晶体管器件的电流的指示。感测场效应晶体管和主器件通常共享公共漏极和栅极,但是均具有单独的源电极。
在半导体领域中高电压场效应晶体管(HVFET)已是公知的。很多HVFET采用的器件结构包括延伸漏极区,当器件处于“截止”状态时,该延伸漏极区支持或阻断所施加的高电压(例如几百伏)。在常规的垂直HVFET结构中,半导体材料的台或柱形成用于导通状态中的电流的延伸的漏极或漂移区。在衬底顶部附近、与台的侧壁区域相邻地形成沟槽栅极结构,在台处将本体区设置在延伸漏板区上方。向栅极施加适当的电压电势沿着本体区的垂直侧壁部分形成导电沟道,使得电流可以垂直流过半导体材料,即,从设置源极区的衬底顶表面向下流到设置漏极区的衬底底部。
存在的一个问题是被设计用于供常规MOSFET使用的现有技术感测FET通常由于形成隔离沟道和漂移区的柱的深沟槽而不可用于供垂直功率晶体管结构使用。
发明内容
根据本发明的一个实施例,提供一种半导体器件,包括:主垂直晶体管,其包括:第一导电类型的衬底;设置在衬底之上的半导体材料柱,所述柱具有宽度和沿第一横向延伸的长度,第一源极区包括设置在所述柱的顸表面处或附近的第一导电类型的一个或多个区域,第二导电类型的本体区被设置在第一源极区下面的柱中,第一导电类型的延伸漏极区被设置在本体区下面的柱中;分别设置在柱的相对侧的第一和第二介电区域,第一介电区域被柱横向包围,并且第二介电区域横向包围所述柱;分别设置在第一和第二介电区域中的第一和第二场板;分别设置在邻近本体区的柱的顶表面处或附近的第一和第二介电区域中的第一和第二栅极元件,所述第一和第二栅极元件通过具有第一厚度的栅极氧化物与本体区分开;感测晶体管,其包括:设置在柱的顶表面处或附近的第一导电类型的第二源极区,第二源极区沿第一横向借助延伸到柱的顶表面的本体区的区域与第一源极区分开,其中感测晶体管用来采样在主垂直晶体管中流动的电流的小部分。
根据本发明的一个实施例,提供一种半导体器件,包括:主垂直场效应晶体管(FET);以及感测FET,主垂直FET和感测FET都形成在形成在第一导电类型的衬底上的半导体材料柱上,所述柱具有宽度和沿第一横向延伸的长度,第一和第二介电区域设置在柱的相对侧,第一和第二栅极元件分别设置得邻近在柱本体区的顶表面处或附近的第一和第二介电区域中的柱,主垂直FET和感测FET两者共享形成在衬底之上的柱中的第一导电类型的延伸漏极区,第一和第二栅极元件也通常被主垂直FET和感测FET共享;主垂直FET进一步包括:设置在延伸漏极区上的柱中的第二导电类型的第一本体区;以及设置在柱的顶表面处或附近的第一源极区,所述源极区借助第一本体区与延伸漏极区垂直分开:感测FET进一步包括:设置在延伸漏极区上的柱中的第二导电类型的第二本体区;以及设置在柱的顶表面处或附近的第二源极区,所述第二源极区借助第二本体区与延伸漏极区垂直分开,第二源极区与第一源极区沿第一横向分开并且电隔离,其中感测FET用来采样在主垂直FET中流动的电流的小部分。
根据本发明的一个实施例,提供一种半导体器件,包括:设置成并排关系的多个晶体管段,每个晶体管段包括:在第一导电类型的衬底上形成跑道形布局的半导体材料柱,所述柱具有沿第一横向延伸的长度和宽度,所述柱具有设置在柱的项表面处或附近的源极区、延伸漏极区、以及垂直分开源极和延伸漏极区的第二导电类型的本体区;分别设置在所述柱的相对侧的第一和第二介电区域,第一介电区域被柱横向包围,并且第二介电区域横向包围所述柱;分别设置在邻近本体区的柱的顶表面处或附近的第一和第二介电区域中的第一和第二栅极元件:分别设置在第一和第二介电区域中的第一和第二场板;电接触大多数晶体管段的源极区的源电极,该源电极与主垂直晶体管相关联;电接触少数晶体管段的源极区的感测电极,该感测电极与感测晶体管相关联,所述感测晶体管用来采样在主垂直晶体管中流动的电流的小部分;以及电接触衬底的底表面的漏电极,该漏电极与第一和第二栅极元件均为主垂直晶体管和感测晶体管所共用。
附图说明
从下面的详细说明和附图将可以更全面地理解本发明,不过,详细说明和附图不应用来将本发明限制到所示的具体实施例,而是仅用于解释和理解。
图1示出了垂直HVFET结构的实例截面侧视图。
图2A示出了图1中所示的垂直HVFET结构的实例布局。
图2B为图2A中所示的实例布局的一部分的放大视图。
图3A示出了图1中所示的垂直HVFET结构的另一实例布局。
图3B为图3A中所示的实例布局的一部分的放大视图。
图4A示出了图1中所示的垂直HVFET结构的又一实例布局。
图4B为图4A中所示的实例布局的一部分的放大视图.
图5示出了具有管芯至管芯棋盘式布置的HVFET的晶片的实例布局。
图6示出了具有管芯至管芯棋盘式布置的分段的HVFET的晶片的实例布局。
图7示出了具有HVFET段的棋盘式块的矩形管芯的实例布局。
图8A是并入图1中所示的垂直HVFET结构的感测fet的实例布局的一部分的顶视图。
图8B是通过图8A中所示的实例布局的切割线A-A’的截面侧视图。
图9是图8A和8B中所示的集成的器件结构的实例电路示意图。
图10A是并入图1中所示的垂直HVFET结构的感测fet的另一个实例布局的一部分的顶视图。
图10B是通过图10A中所示的感测fet和HVFET的切割线B-B’的截面侧视图。
图11是图10A和10B中所示的集成的器件结构的实例电路示意图。
图12A是并入图1中所示的垂直HVFET结构的感测fet的又一个实例布局的一部分的顶视图。
图12B是通过图12A中所示的器件结构的切割线C-C’的截面侧视图。
图12C是通过图12A中所示的器件结构的切割线D-D’的截面侧视图。
图13是图12A-12C中所示的集成的器件结构的实例电路示意图。
具体实施方式
在下述说明中,为了提供对本发明的透彻理解,给出了具体细节,例如材料类型、尺寸、结构特点、处理步骤等。不过,本领域的普通技术人员将理解,实施本发明可以不需要这些具体细节。还应理解,图中的元件是代表性的,为了清晰起见没有按照比例绘制。
图1示出了垂直HVFET 1O的实例截面侧视图,该HVFET 10具有这样的结构,其包括形成于N+掺杂硅衬底11上的N型硅的延伸漏极区12。对衬底11进行重掺杂以使其对流经漏电极的电流的电阻最小化,在完成的器件中漏电极位于衬底的底部上。在一个实施例中,延伸漏极区12为从衬底11延伸到硅晶片的顶表面的外延层的一部分。接近外延层的顶表面形成P型本体区13以及被P型区域16横向分开的N+掺杂的源极区14a和14b。如可以看到的,P型本体区13设置于延伸漏极区12上方且垂直地将延伸漏极区12与N+源极区14a和14b以及P型区域16分开。
在一个实施例中,外延层包括延伸漏极区12的部分的掺杂浓度是线性渐变的,以产生表现出基本均匀的电场分布的延伸漏板区。线性渐变可以在外延层12的顶表面下方的某个点处停止。
在图1的实例垂直晶体管中,延伸漏极区12、本体区13、源极区14a和14b以及P型区域16共同包括硅材料的台或柱17(在本申请中两个术语作为同义词使用)。用介电材料(例如氧化物)层填充形成于柱17的相对侧上的垂直沟槽,所述介电材料形成介电区域15。可以由器件的击穿电压要求决定柱17的高度和宽度以及相邻垂直沟槽之间的间距。在各实施例中,台17的垂直高度(厚度)在大约30μm到120μm厚的范围内。例如,在尺寸大约为1mm×1mm的管芯上形成的HVFET可以具有垂直厚度为大约60μm的柱17。作为另一实例,在每一侧的大约2mm-4mm的管芯上形成的晶体管结构可以具有大约30μm厚的柱结构。在特定实施例中,柱17的横向宽度尽量窄到能可靠制造的程度(例如大约0.4μm到0.8μm宽),以便实现非常高的击穿电压(例如600-800V)。
在另一实施例中,不是跨越柱17的横向宽度在N+源极区14a和14b之间布置P型区域16(如图1所示),而是可以跨越柱17的横向长度在柱17的顶部交替形成N+源极区和P型区域。换句话说,诸如图1中所示的给定的截面图将具有跨越柱17的整个横向宽度延伸的N+源极区14或P型区域16,取决于该截面取自哪里。在这样的实施例中,每个N+源极区14在两侧(沿柱的横向长度)与P型区域16邻接。类似地,每个P型区域16在两侧(沿柱的横向长度)与N+源极区14邻接。(这样的实施例的实例在下面讨论的图12A和12B中示出)。
介电区域15a、15b可以包括二氧化硅、氮化硅或其他合适的介电材料。可以使用多种公知方法,包括热生长和化学汽相淀积来形成介电区域15。设置在每个介电层15中并与衬底11和柱17完全绝缘的是场板(fieldplate)19。用于形成场板19的导电材料可以包括重掺杂的多晶硅、金属(或金属合金)、硅化物或其他适当的材料。在完成的器件结构中,场板19a和19b通常起电容极板的作用,当HVFET处于截止状态时(即当漏极被升高至高电压电势时)所述电容极板可用于耗尽延伸漏极区的电荷。在一个实施例中,将每个场板19与柱17的侧壁分开的氧化物区域15的横向厚度大约为4μm。
垂直HVFET晶体管80的沟槽栅极结构包括栅极元件18a、18b,每个栅极元件分别设置在场板19a、19b和本体区13之间、柱17的相对侧上的氧化物区域15a和15b中。高质量的薄(例如,~500A)栅极氧化物层将栅极元件18与和本体区13相邻的柱17的侧壁分开。栅极元件18可以包括多晶硅、或某种其他适合的材料。在一个实施例中,每个栅极元件18具有大约1.5μm的横向宽度和大约3.5μm的深度。
本领域的实践人员将会理解,柱17的顶部附近的N+源极区14和P-型本体区13均可以使用普通的淀积、扩散和/或注入处理技术形成。在形成N+源极区38之后,通过利用常规制造方法形成电连接到器件的相应区域/材料(为了清晰图中未示出)的源、漏、栅、和场板电极可以完成HVFET 10。
图2A示出了图1中所示的垂直HVFET结构的实例布局。图2A的顶视图示出了单个分立的HVFET,其包括半导体管芯21上的上部晶体管部分30a和下部晶体管部分30b。由伪硅柱32将这两部分分开。每个部分30包括多个“跑道(racetrack)”形晶体管结构或段,每个晶体管段包括细长环或椭圆,其包括在相对侧由介电区域15a和15b包围的硅柱17。柱17本身在x和y方向上横向延伸以形成连续细长的跑道形环或椭圆。设置在介电区域15a和15b中的是相应的栅极元件18a和18b以及场板19a和19b。场板19a包括单个细长元件,其在圆形指尖(fingertip)区域中终结于任一端。另一方面,场板19b包括环绕柱17的细长环或椭圆。相邻跑道结构的场板19b被示为合并的(merged),从而它们共享在一侧的公共元件。作为参考,图1的截面图可以取自图2A的实例布局的切割线A-A’。
应当理解,在图2A的实例中,每个跑道形晶体管段在y方向上的宽度(即间距)大约为13μm,在x方向上的长度在大约400μm到1000um的范围内,且柱高度约为60μm。换句话说,包括部分30a和30b的各个跑道形晶体管段的长宽比在大约30直到80的范围内。在一个实施例中,每个跑道形段的长度大于其间距或宽度至少20倍。
本领域的实践人员将理解,在完成的器件结构中,使用图案化金属层来互连各个晶体管段的每个硅柱17。也就是说,在实际实施例中,分别将所有的源极区、栅极元件和场板一起布线至管芯上对应的电极。在图示的实施例中,每个部分30中的晶体管段基本跨越管芯21的宽度沿y方向设置成并排关系。类似地,在x方向上,部分30a和30b的晶体管段的额外长度基本在管芯21的长度上延伸。在图2A的实例布局中,跨越半导体管芯21,分开硅柱的介电区域15的宽度以及场板的宽度是基本均匀的。以均匀的宽度和间隔距离布置晶体管段防止了在用于共形地淀积包括介电区域15和场板19的层的处理步骤之后形成空隙或孔。
图2B为图2A中所示的实例布局的一部分的放大视图。为了清晰起见,仅示出了每个晶体管段的柱17和介电区域15b。图示的伪硅柱32分开相应晶体管段部分30a和30b的介电区域15b的圆端区域。换句话说,在半导体衬底中被蚀刻来限定柱17的深垂直沟槽也限定伪硅柱32。在一个实施例中,使伪硅柱32在x方向上的宽度(即其分开晶体管段部分)小到能被可靠地制造。
将单个管芯HVFET分段成由伪硅柱32分开的部分的目的在于在细长跑道形晶体管段中引入长度方向上(x方向)的应力消除(stressrelief)。将晶体管器件结构分段或断开成两个或更多个部分减轻了跨越管芯长度的机械应力。该应力由位于柱侧面的氧化物区域引起,并且通常集中于每个跑道形段的圆形端处.由此通过将晶体管器件结构分段成两个或更多个部分来减轻机械应力防止了由应力导致的不希望有的硅柱翘曲和对硅的损伤(例如位错)。
要理解的是,在通过高度分段的布局提供的应力消除和导电区域的损失之间存在折衷。更多的分段导致更大的应力减轻,但是以导电区域为代价.通常,柱的垂直高度越大且半导体管芯越大,则需要的晶体管部分或段的数目越大。在一个实施例中,对于具有60μm高的柱的2mm×2mm的管芯,利用包括四个跑道形晶体管部分的布局在导通电阻约为1欧姆的HVFET中提供足够的应力减轻,所述四个跑道形晶体管部分由伪硅柱分开,每个伪硅柱具有大约13μm的间距(y方向)和大约450μm的长度(x方向)。
在另一个实施例中,不是用伪硅柱来分开成对的跑道形晶体管段,每一对位于不同部分中,而是可以用包括不同材料的伪柱。用于伪柱的材料应当具有接近硅的热膨胀系数或充分不同于介电区域的热膨胀系数的热膨胀系数以便减轻由位于硅柱侧面的介电区域引起的长度方向上的应力。
图3A示出了图1所示的垂直HVFET结构的另一实例布局。图3B为图3A中所示的实例布局的一部分的放大图,仅示出了柱17、氧化物区域15b和可选的伪硅柱33。类似于图2A和2B的实施例,图3A和3B示出了半导体管芯21上的单个分立的HVFET,其包括上部晶体管部分30a和下部晶体管部分30b。但是在图3A和3B的实例中,由氧化物区域15b填充的深垂直沟槽以及晶体管部分30a和30b的场板19b重叠,或者被合并,在分段的晶体管部分之间留下小的菱形伪硅柱33。在该实施例中,单个伪柱中心位于两个部分上相邻成对的晶体管段的四个圆形端之间。在所示的实例中,对于包括管芯21的晶体管部分30中的每N个(其中N为大于1的整数)跑道形段或结构,存在总共N-1个伪柱33。
图4A示出了图1所示的垂直HVFET结构的又一实例布局。图4B为图4A中所示的实例布局的一部分的放大图。在图4B的放大图中为了清晰仅示出了柱17和氧化物区域15b。在该实例中,将半导体管芯21的包括HVFET的晶体管段交替移动每个跑道形段的长度的一半,结果形成交替与上部晶体管部分40a和下部晶体管部分40b相关联的跑道形晶体管段。换句话说,一行部分40a的每个晶体管段由部分40b的一对晶体管段分开,该对晶体管段沿x方向设置成端到端的关系。
要理解的是,可以将各段交替移动段长度的任何百分数(fraction)。换句话说,段的移动不限于长度的50%或一半。多种实施例可以包括交替移动了晶体管段的长度的从大于0%到小于100%的任何百分比或百分数的段。
在图4A和4B的实例中,相应部分40a和40b中交替的晶体管段的介电区域15b被合并。在图示的具体实施例中,与不同相邻部分相关联的晶体管段的圆形端重叠或被合并,使得相邻部分的场板19b在各端处(沿x方向)被合并。而且,不同部分的交替晶体管段的场板19b的延伸的直边部分沿着每个段的基本长度被合并。要理解的是,区域15b和19b在相应部分之间有或没有伪柱(或隔离的伪硅柱)的情况下都可以被合并。
图5示出了晶片50的实例布局,其在半导体管芯21a-21d上分别具有管芯至管芯的棋盘式HVFET 10a-10d。HVFET 10的每一个包括如图1所示的多个跑道形晶体管段,它们沿着其宽度并排设置成基本方形的块。在该实例中,HVFET 10a-10d均包括长度基本跨越相应管芯21a-21d的长度延伸的晶体管段。在一个实施例中,每个段的宽度约为13μm,且长度在大约500μm到2000μm的范围内。其他实施例可以具有大于2000μm的长度。段的块或堆叠结构也基本跨越每个管芯的宽度延伸。(注意每个管芯21的有边的方形代表相邻半导体管芯之间划线区域的边缘。)虽然图5示出了两行和两列的HVFET 10,但可以理解的是,可以跨越整个晶片衬底重复所示出的管芯至管芯棋盘式布置。
在图5的实例中,行或列中相邻的管芯被取向为使得一个管芯中的晶体管段的长度在一个方向上延伸,且相邻管芯中的晶体管段的长度沿第二正交方向延伸。例如,HVFET 10a被示为其晶体管段的长度沿x方向取向,而相邻的HVFET 10b和10c。通过跨越晶片50正交地交替每单个管芯21中的晶体管段的取向(即棋盘式布置),将由长介电区域产生的机械应力沿两个正交方向分布,由此减少了晶片50的翘曲。
图6示出了具有分段的HVFET的管芯到管芯棋盘式布置的晶片的另一实例布局。图6的实例使用了与图5相同的方法管芯到管芯地交替晶体管结构的取向;然而,在图6的实施例中,将HVFET结构分段成多个(例如两个)部分。例如,将基本跨越半导体管芯21的长度和宽度延伸的每个HVFET分段成由伪柱32分开的两个部分30a和30b。
对于基本方形的管芯而言,图6中所示的每个半导体管芯21具有与图2所示的相同的布局。类似于图5中所示的实例,相邻管芯具有跨越晶片50正交交替的晶体管段。也就是说,管芯21a和21d的部分30a和30b中的晶体管段具有在x方向上取向的长度,而管芯21b和21c的部分30a和30b中的晶体管段具有在y方向上取向的长度。
可以理解,可以用多个均由一个或多个伪柱分开的晶体管部分,例如大于2个的晶体管部分形成每个管芯21的HVFET。此外,可以将图2A-4B的实例中所示的具有多个晶体管部分的单个管芯布局中的任何一个用在图6中所示的每个管芯21中,且各段的取向跨越晶片50管芯到管芯地交替。
图7示出了管芯25的实例矩形布局,其具有以并排布置的基本方形块或部分36堆叠的跑道形HVFET段的棋盘式块。行或列中的相邻部分被取向成使得一个部分中的晶体管段的长度在一个方向上延伸,且其他相邻部分中的晶体管段的长度在第二正交方向上延伸。例如,管芯25的每个行和列包括取向为细长的晶体管段沿x方向对准(alignod)的晶体管部分36a和取向为细长的晶体管段沿y方向对准的交替的晶体管部分36b。晶体管部分36a和36b之间的空间包括伪硅柱;也就是说,形成伪柱的硅不是有源晶体管区域。
在图示的实施例中,管芯25包括三行和四列的晶体管部分36。图7的实例中所示的棋盘式布局方式可以用来在几乎任何(在可行的限度内)直线形状的管芯上生产单个分立的HVFET。
图8A是并入图1中所示的垂直HVFET结构的感测fet的实例布局的一部分的顶视图。在所示的实施例中,感测fet被集成到相同的硅柱17中作为主垂直功率晶体管器件。图8B是通过图8A中所示的实例布局的切割线A-A’的截面侧视图。图9是图8A和8B中所示的集成的器件结构的实例电路示意图。总体观察,柱17的顶部看起来包括沿给定的跑道形晶体管段中的柱的横向长度交替的N+源极区14和P+区16。例如,从左到右,图8A和8B示出了包括垂直HVFET器件58(见图9)的顶部部分的区域14a、16a、14b、和16b。P-本体区13延伸到柱17的项表面至区域16b的紧邻的右边,由此将区域16b与N+区域24分开,其与感测fet器件59相关联。
应当理解,N+区域24的另一横向侧(到所示部分的右边)类似地借助延伸到柱17的表面的P-本体区13的区域与相应N+/P+区域14和16的交替图案分开。在典型的实施例中,区域24包括整个晶体管段(柱)布局的小部分,使得感测fet 59感测流过主垂直晶体管器件58的电流的小部分。
在图8A和8B的实例中,柱17通过栅极元件18a和18b在相对的横向侧侧面相接,所述栅极元件18a和18b分别通过栅极氧化物层20a和20b与柱17的顶部部分分开。源电板61电接触区域14和16中的每一个,而感测电极62仅接触感测fet 59的N+区域24。在特定实施例中,源电极61也可以电接触内部和外部场板元件19a和19b。
图9的电路示意图示出垂直HVFET器件58和感测fet 59共享公共栅极18和公共漏极节点63。延伸漏极区12和N+衬底11分别被示为耦合在节点63和漏电极71之间的串联连接的电阻器64和65,后者形成在衬底11的底表面上。在操作中,感测fet 59的电极62可以被用来采样流过大得多的垂直晶体管器件58的电流的小部分,由此提供流过主晶体管58的电流的指示。
图10A是并入图1中所示的垂直HVFET结构的感测fet的另一个实例布局的一部分的顶视图。图10B是通过图10A中所示的感测fet和HVFET的切割线B-B’的截面侧视图。图11是图10A和10B中所示的集成的器件结构的实例电路示意图。注意图10A、10B和11中所示的实施例,感测fet69包括沿柱17的横向长度(即围绕跑道形状)交替的P+区域25和N+区域24。区域24和25中的每一个被设置在P-本体区13b中,所述P-本体区13b借助延伸到柱17的表面的延伸漏极区12的区域与和主垂直晶体管68相关联的P-本体区13a分开。P-本体区13a和13b中的每一个延伸到在相应晶体管68和69的N+/P+区域的交替序列的两个横向侧的柱的表面。
在图11中,垂直HVFET器件68和感测fet 69被示为共享公共栅极18和公共漏极节点63。公共延伸漏极区64和N+衬底65分别被示为耦合在节点63和漏电极71之间的串联连接的电阻器64和65。源电极81电接触主垂直晶体管68的区域14和16中的每一个,而感测电极82仅接触感测fet 69的区域24和25。源电极81也可以电接触金属化布局中的内部和外部场板元件19a和19b。
图12A是并入图1中所示的垂直HVFET结构的感测fet的又一个实例布局的一部分的顶视图。图12B和12C分别是通过图12A中所示的器件结构的切割线C-C’和D-D’的截面侧视图。注意,在该实施例中,感测fet和主垂直HVFET器件形成在彼此隔离的分开的柱上。图12B是主垂直晶体管器件78(与柱17相关联)的截面,而图12C是感测fet 79(与柱17’相关联)的截面。作为实例,柱17’可以包括专用于感测fet 79的单个跑道形晶体管段,所述单个跑道形晶体管段被设置得邻近专用于主垂直晶体管器件78的多个其它类似形状的晶体管段。应当理解,主垂直HVFET器件包括管芯上的大多数的晶体管段,并且感测fet包括少数(例如单个一个)的晶体管段。
如图12B中所示,主垂直晶体管器件78包括设置在柱17的顶部的交替N+区域14和P+区域16。源电极91电接触区域14和16中的每一个。在主晶体管器件78中,P-本体区13a分开区域14和16与在下面的延伸漏极区12a。类似地,图12C示出包括设置在柱17’的顶部的交替N+区域24和P+区域25的感测fet 79。感测电极92电接触区域24和25中的每一个。P-本体区13b分开区域24和25与在下面的延伸漏极区12b。
注意,在图13C的实例电路示意图中,电阻器65表示被示为在公共节点95和漏电极71之间的N+衬底11的电阻。延伸漏极区12b的电阻被示为连接在感测fet 79的漏极和节点95之间的电阻器64b。类似地,延伸漏极区12a的电阻被示为连接在主垂直晶体管器件78的漏极和公共节点95之间的电阻器64a。图13的等效电路图反映了这样的事实:即使感测fet 79和主晶体管78形成在分开的柱上,在半导体管芯上的每个柱仍共享公共N+衬底区域。
虽然已经结合具体器件类型描述了以上实施例,但是本领域的普通技术人员将理解多种变型和改变都在本发明的范围内。例如,虽然已经描述了HVFET,但是图示的方法、布局和结构同样适用于其他结构和器件类型,包括肖特基、二极管、IGBT和双极型结构。因此,应当将说明书和附图看作是示例性的而不是限制性的。

Claims (22)

1.一种半导体器件,包括:
主垂直高电压场效应晶体管,其包括:
第一导电类型的衬底;
从衬底开始延伸的半导体材料柱,所述柱具有沿横向延伸的长度,
i)第一源极区包括设置在所述柱的顶表面处或附近的第一导电类型的一个或多个区域和设置在所述柱的顶表面处或附近的第二导电类型的一个或多个区域的交替图案,所述第一和第二导电类型的区域被以交替方式设置使得所述第一导电类型的区域中的每个区域邻接所述第二导电类型的区域中的至少一个区域,
ii)第二导电类型的本体区被设置在第一源极区和衬底之间的柱中,并且
iii)第一导电类型的延伸漏极区被设置在本体区和衬底之间的柱中;
分别设置在柱的相对侧的第一和第二介电区域;
分别设置在邻近本体区的柱的顶表面处或附近的第一和第二介电区域中的第一和第二栅极元件,所述第一和第二栅极元件通过栅极氧化物与本体区分开;
感测晶体管,被结合在所述半导体材料柱中,并且与所述主垂直晶体管共享所述第一和第二栅极元件以及所述延伸漏极区,其包括:
设置在柱的顶表面处或附近的第一导电类型的第二源极区,第二源极区沿横向借助延伸到柱的顶表面的本体区的区域与包括第一源极区的第一和第二导电类型的区域的交替图案分开,
其中感测晶体管用来采样在主垂直晶体管中流动的电流的小部分。
2.根据权利要求1所述的半导体器件,其中:
所述柱设置成跑道形布局;
所述第一介电区域被所述柱横向包围;并且
所述第二节点区域横向包围所述柱。
3.根据权利要求1所述的半导体器件,进一步包括:
电接触所述一个或多个第一源极区的源电极;
电接触第二源极区的感测源电极;以及
电接触衬底的底表面的漏电极。
4.根据权利要求1所述的半导体器件,其中所述柱的沿横向的长度比所述柱的宽度大至少30倍。
5.根据任一前述权利要求所述的半导体器件,其中所述本体区是轻掺杂的本体区。
6.一种半导体器件,包括:
主垂直场效应晶体管;以及
感测场效应晶体管,主垂直场效应晶体管和感测场效应晶体管都形成在从第一导电类型的衬底开始延伸的半导体材料柱上,所述柱具有沿横向延伸的长度,第一和第二介电区域设置在柱的相对侧,第一和第二栅极元件分别设置得邻近在柱本体区的顶表面处或附近的第一和第二介电区域中的柱,主垂直场效应晶体管和感测场效应晶体管两者共享形成在衬底之上的柱中的第一导电类型的延伸漏极区,第一和第二栅极元件也通常被主垂直场效应晶体管和感测场效应晶体管共享:
主垂直场效应晶体管进一步包括:
设置在柱本体区中的第二导电类型的第一本体区;以及
设置在柱的顶表面处或附近的第一源极区,所述源极区借助第一本体区与延伸漏极区分开;
感测场效应晶体管进一步包括:
设置在延伸漏极区上的柱本体区中的第二导电类型的第二本体区;以及
设置在柱的顶表面处或附近的第二源极区,所述第二源极区借助第二本体区与延伸漏极区垂直分开,第二源极区与第一源极区沿横向分开并且电隔离,
其中第一源极区和第二源极区分别包括N+/P+区的交替序列,并且
其中感测场效应晶体管用来采样在主垂直场效应晶体管中流动的电流的小部分。
7.根据权利要求6所述的半导体器件,进一步包括分别设置在第一和第二介电区域中的第一和第二场板。
8.根据权利要求7所述的半导体器件,进一步包括:
电接触第一源极区的源电极;
电接触第二源极区的感测源电极;以及
电接触衬底的底表面的漏电极。
9.根据权利要求8所述的半导体器件,其中源电极也电接触第一和第二场板。
10.根据权利要求6所述的半导体器件,其中延伸漏极区的区域延伸到第一和第二本体区之间的柱的顶表面。
11.根据权利要求10所述的半导体器件,其中第一本体区沿横向延伸到在第一源极区的相对侧的柱的顶表面,并且第二本体区沿横向延伸到在第二源极区的相对侧的柱的顶表面。
12.根据权利要求6所述的半导体器件,其中第一和第二本体区包括为主垂直场效应晶体管和感测场效应晶体管共用的单个本体区,该单个本体区的区域延伸到第一和第二源极区之间的柱的顶表面。
13.根据权利要求6所述的半导体器件,其中所述柱设置成跑道形布局,所述柱的长度比宽度大至少30倍。
14.根据权利要求6至13中任一项所述的半导体器件,其中所述柱本体区是轻掺杂的本体区。
15.一种半导体器件,包括:
设置成并排关系的多个晶体管段,每个晶体管段包括:
从第一导电类型的衬底开始延伸的半导体材料柱,所述柱具有沿横向延伸的长度和宽度,所述柱具有设置在柱的顶表面处或附近的源极区、延伸漏极区、以及垂直分开源极和延伸漏极区的第二导电类型的本体区;
分别设置在所述柱的相对侧的第一和第二介电区域;
分别设置在邻近本体区的柱的顶表面处或附近的第一和第二介电区域中的第一和第二栅极元件;
分别设置在第一和第二介电区域中的第一和第二场板;
电接触大多数晶体管段的源极区的源电极,该源电极与主垂直晶体管相关联:
电接触少数晶体管段的源极区的感测电极,接触该感测电极的源极区分别包括N+/P+区域的交替序列,该感测电极与感测晶体管相关联,所述感测晶体管用来采样在主垂直晶体管中流动的电流的小部分;以及
电接触衬底的底表面的漏电极,该漏电极与第一和第二栅极元件均为主垂直晶体管和感测晶体管所共用。
16.根据权利要求15所述的半导体器件,其中所述少数晶体管段包括单个晶体管段。
17.根据权利要求15所述的半导体器件,其中源电极电接触全部晶体管段的第一和第二场板。
18.根据权利要求15所述的半导体器件,其中源电极电接触全部晶体管段的第二场板以及与主垂直晶体管相关联的所述大多数晶体管段的第一场板,感测电极电接触与感测晶体管相关联的所述少数晶体管段的第一场板。
19.根据权利要求15所述的半导体器件,其中沿横向的所述长度比所述宽度大至少30倍。
20.根据权利要求15所述的半导体器件,其中第一和第二栅极元件与第一和第二场板绝缘。
21.根据权利要求15所述的半导体器件,其中源极区包括第一导电类型的第一区和第二导电类型的第二区,第一和第二区沿横向以交替方式设置使得第一区中的每一个邻接第二区中的一个。
22.根据权利要求15至21中任一项所述的半导体器件,其中所述本体区是轻掺杂的本体区。
CN201110349590.5A 2007-02-16 2008-02-18 与高压垂直晶体管集成的感测fet Active CN102376768B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/707,586 US8653583B2 (en) 2007-02-16 2007-02-16 Sensing FET integrated with a high-voltage transistor
US11/707,586 2007-02-16
CN2008100807528A CN101246887B (zh) 2007-02-16 2008-02-18 与高压垂直晶体管集成的感测fet

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN2008100807528A Division CN101246887B (zh) 2007-02-16 2008-02-18 与高压垂直晶体管集成的感测fet

Publications (2)

Publication Number Publication Date
CN102376768A true CN102376768A (zh) 2012-03-14
CN102376768B CN102376768B (zh) 2015-08-19

Family

ID=39410363

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201110349590.5A Active CN102376768B (zh) 2007-02-16 2008-02-18 与高压垂直晶体管集成的感测fet
CN2008100807528A Active CN101246887B (zh) 2007-02-16 2008-02-18 与高压垂直晶体管集成的感测fet

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN2008100807528A Active CN101246887B (zh) 2007-02-16 2008-02-18 与高压垂直晶体管集成的感测fet

Country Status (4)

Country Link
US (1) US8653583B2 (zh)
EP (1) EP1959499A3 (zh)
JP (2) JP5214288B2 (zh)
CN (2) CN102376768B (zh)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005051417A1 (de) * 2005-10-27 2007-05-03 X-Fab Semiconductor Foundries Ag Simulations- bzw. Layoutverfahren für vertikale Leistungstransistoren mit variierbarer Kanalweite und variierbarer Gate-Drain-Kapazität
US8093621B2 (en) * 2008-12-23 2012-01-10 Power Integrations, Inc. VTS insulated gate bipolar transistor
US7468536B2 (en) * 2007-02-16 2008-12-23 Power Integrations, Inc. Gate metal routing for transistor with checkerboarded layout
US7557406B2 (en) * 2007-02-16 2009-07-07 Power Integrations, Inc. Segmented pillar layout for a high-voltage vertical transistor
US7595523B2 (en) 2007-02-16 2009-09-29 Power Integrations, Inc. Gate pullback at ends of high-voltage vertical transistor structure
US8653583B2 (en) 2007-02-16 2014-02-18 Power Integrations, Inc. Sensing FET integrated with a high-voltage transistor
US7859037B2 (en) * 2007-02-16 2010-12-28 Power Integrations, Inc. Checkerboarded high-voltage vertical transistor layout
US8674434B2 (en) * 2008-03-24 2014-03-18 Micron Technology, Inc. Impact ionization devices
US7964912B2 (en) 2008-09-18 2011-06-21 Power Integrations, Inc. High-voltage vertical transistor with a varied width silicon pillar
US7871882B2 (en) * 2008-12-20 2011-01-18 Power Integrations, Inc. Method of fabricating a deep trench insulated gate bipolar transistor
US20100155831A1 (en) * 2008-12-20 2010-06-24 Power Integrations, Inc. Deep trench insulated gate bipolar transistor
US8796760B2 (en) * 2012-03-14 2014-08-05 Taiwan Semiconductor Manufacturing Company, Ltd. Transistor and method of manufacturing the same
US8653600B2 (en) 2012-06-01 2014-02-18 Power Integrations, Inc. High-voltage monolithic schottky device structure
US9136368B2 (en) * 2013-10-03 2015-09-15 Texas Instruments Incorporated Trench gate trench field plate semi-vertical semi-lateral MOSFET
US9543396B2 (en) 2013-12-13 2017-01-10 Power Integrations, Inc. Vertical transistor device structure with cylindrically-shaped regions
US10325988B2 (en) 2013-12-13 2019-06-18 Power Integrations, Inc. Vertical transistor device structure with cylindrically-shaped field plates
US9461639B2 (en) * 2014-05-16 2016-10-04 Freescale Semiconductor, Inc. Semiconductor device and power circuit including a sense transistor for current sensing
US9496339B2 (en) * 2014-06-02 2016-11-15 Infineon Technologies Austria Ag Semiconductor device comprising trench structures
EP3183753A4 (en) 2014-08-19 2018-01-10 Vishay-Siliconix Electronic circuit
US9973183B2 (en) 2015-09-28 2018-05-15 Power Integrations, Inc. Field-effect transistor device with partial finger current sensing FETs
US9983239B2 (en) 2016-05-13 2018-05-29 Power Integrations, Inc. Integrated linear current sense circuitry for semiconductor transistor devices
JP6953512B2 (ja) 2016-08-08 2021-10-27 パワー・インテグレーションズ・インコーポレーテッド 半導体スイッチングデバイスの高速温度検出のための集積回路
DE102016125879B3 (de) * 2016-12-29 2018-06-21 Infineon Technologies Ag Halbleitervorrichtung mit einer IGBT-Region und einer nicht schaltbaren Diodenregion
US10753964B2 (en) * 2017-04-27 2020-08-25 Microchip Technology Incorporated Current sensing for integrated circuit devices
JP7224979B2 (ja) 2019-03-15 2023-02-20 株式会社東芝 半導体装置
US11004970B2 (en) * 2019-05-20 2021-05-11 Nxp Usa, Inc. Mirror device structure for power MOSFET and method of manufacture
JP7186679B2 (ja) 2019-08-23 2022-12-09 三菱電機株式会社 デジタル出力装置
US11322612B2 (en) 2019-09-17 2022-05-03 Kabushiki Kaisha Toshiba Semiconductor device with region of varying thickness
DE102019128071B3 (de) * 2019-10-17 2021-02-04 Infineon Technologies Ag Transistorbauelement

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10107282A (ja) * 1996-09-30 1998-04-24 Toshiba Corp 半導体装置
US5821580A (en) * 1996-04-30 1998-10-13 Kabushiki Kaisha Toshiba MOS device having a trench gate structure
US20050167742A1 (en) * 2001-01-30 2005-08-04 Fairchild Semiconductor Corp. Power semiconductor devices and methods of manufacture
EP1689001A2 (en) * 2005-02-03 2006-08-09 Power Integrations, Inc. High-voltage semiconductor devices

Family Cites Families (180)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4343015A (en) 1980-05-14 1982-08-03 General Electric Company Vertical channel field effect transistor
GB2089119A (en) 1980-12-10 1982-06-16 Philips Electronic Associated High voltage semiconductor devices
US4626879A (en) 1982-12-21 1986-12-02 North American Philips Corporation Lateral double-diffused MOS transistor devices suitable for source-follower applications
US4738936A (en) 1983-07-01 1988-04-19 Acrian, Inc. Method of fabrication lateral FET structure having a substrate to source contact
US4626789A (en) 1983-08-19 1986-12-02 Hitachi, Ltd. Demodulating circuit for data signal
US4531173A (en) 1983-11-02 1985-07-23 Motorola, Inc. Protective power foldback circuit for a power semiconductor
US4553084A (en) * 1984-04-02 1985-11-12 Motorola, Inc. Current sensing circuit
US4618541A (en) 1984-12-21 1986-10-21 Advanced Micro Devices, Inc. Method of forming a silicon nitride film transparent to ultraviolet radiation and resulting article
JPS61168253A (ja) 1985-01-19 1986-07-29 Sharp Corp 高耐圧mos電界効果半導体装置
US4665426A (en) 1985-02-01 1987-05-12 Advanced Micro Devices, Inc. EPROM with ultraviolet radiation transparent silicon nitride passivation layer
US4963951A (en) 1985-11-29 1990-10-16 General Electric Company Lateral insulated gate bipolar transistors with improved latch-up immunity
US4764800A (en) 1986-05-07 1988-08-16 Advanced Micro Devices, Inc. Seal structure for an integrated circuit
US4769685A (en) 1986-10-27 1988-09-06 General Motors Corporation Recessed-gate junction-MOS field effect transistor
US4796070A (en) 1987-01-15 1989-01-03 General Electric Company Lateral charge control semiconductor device and method of fabrication
US5010024A (en) 1987-03-04 1991-04-23 Advanced Micro Devices, Inc. Passivation for integrated circuit structures
US4811075A (en) 1987-04-24 1989-03-07 Power Integrations, Inc. High voltage MOS transistors
US4890144A (en) 1987-09-14 1989-12-26 Motorola, Inc. Integrated circuit trench cell
JPH01112764A (ja) 1987-10-27 1989-05-01 Nec Corp 半導体装置
US4926074A (en) 1987-10-30 1990-05-15 North American Philips Corporation Semiconductor switch with parallel lateral double diffused MOS transistor and lateral insulated gate transistor
US4939566A (en) 1987-10-30 1990-07-03 North American Philips Corporation Semiconductor switch with parallel DMOS and IGT
US4890146A (en) 1987-12-16 1989-12-26 Siliconix Incorporated High voltage level shift semiconductor device
US4922327A (en) 1987-12-24 1990-05-01 University Of Toronto Innovations Foundation Semiconductor LDMOS device with upper and lower passages
US4929987A (en) 1988-02-01 1990-05-29 General Instrument Corporation Method for setting the threshold voltage of a power mosfet
US5025296A (en) 1988-02-29 1991-06-18 Motorola, Inc. Center tapped FET
JPH0777262B2 (ja) * 1988-04-19 1995-08-16 日本電気株式会社 縦型電界効果トランジスタ
US5283201A (en) 1988-05-17 1994-02-01 Advanced Power Technology, Inc. High density power device fabrication process
US5237193A (en) 1988-06-24 1993-08-17 Siliconix Incorporated Lightly doped drain MOSFET with reduced on-resistance
US4951102A (en) * 1988-08-24 1990-08-21 Harris Corporation Trench gate VCMOS
DE68926384T2 (de) 1988-11-29 1996-10-10 Toshiba Kawasaki Kk Lateraler Leitfähigkeitsmodulations-MOSFET
US5072266A (en) 1988-12-27 1991-12-10 Siliconix Incorporated Trench DMOS power transistor with field-shaping body profile and three-dimensional geometry
US5008794A (en) 1989-12-21 1991-04-16 Power Integrations, Inc. Regulated flyback converter with spike suppressing coupled inductors
JP2597412B2 (ja) 1990-03-20 1997-04-09 三菱電機株式会社 半導体装置およびその製造方法
US5040045A (en) 1990-05-17 1991-08-13 U.S. Philips Corporation High voltage MOS transistor having shielded crossover path for a high voltage connection bus
US5072268A (en) 1991-03-12 1991-12-10 Power Integrations, Inc. MOS gated bipolar transistor
US5122848A (en) 1991-04-08 1992-06-16 Micron Technology, Inc. Insulated-gate vertical field-effect transistor with high current drive and minimum overlap capacitance
US5386136A (en) 1991-05-06 1995-01-31 Siliconix Incorporated Lightly-doped drain MOSFET with improved breakdown characteristics
US5146298A (en) 1991-08-16 1992-09-08 Eklund Klas H Device which functions as a lateral double-diffused insulated gate field effect transistor or as a bipolar transistor
US5164891A (en) 1991-08-21 1992-11-17 Power Integrations, Inc. Low noise voltage regulator and method using a gated single ended oscillator
US5258636A (en) 1991-12-12 1993-11-02 Power Integrations, Inc. Narrow radius tips for high voltage semiconductor devices with interdigitated source and drain electrodes
US5270264A (en) 1991-12-20 1993-12-14 Intel Corporation Process for filling submicron spaces with dielectric
US5285367A (en) 1992-02-07 1994-02-08 Power Integrations, Inc. Linear load circuit to control switching power supplies under minimum load conditions
JP3435173B2 (ja) 1992-07-10 2003-08-11 株式会社日立製作所 半導体装置
US5294824A (en) 1992-07-31 1994-03-15 Motorola, Inc. High voltage transistor having reduced on-resistance
US5323044A (en) 1992-10-02 1994-06-21 Power Integrations, Inc. Bi-directional MOSFET switch
US5326711A (en) 1993-01-04 1994-07-05 Texas Instruments Incorporated High performance high voltage vertical transistor and method of fabrication
US5408141A (en) * 1993-01-04 1995-04-18 Texas Instruments Incorporated Sensed current driving device
US5274259A (en) 1993-02-01 1993-12-28 Power Integrations, Inc. High voltage transistor
US5313082A (en) 1993-02-16 1994-05-17 Power Integrations, Inc. High voltage MOS transistor with a low on-resistance
DE4309764C2 (de) 1993-03-25 1997-01-30 Siemens Ag Leistungs-MOSFET
US5349225A (en) 1993-04-12 1994-09-20 Texas Instruments Incorporated Field effect transistor with a lightly doped drain
US5324683A (en) 1993-06-02 1994-06-28 Motorola, Inc. Method of forming a semiconductor structure having an air region
BE1007283A3 (nl) 1993-07-12 1995-05-09 Philips Electronics Nv Halfgeleiderinrichting met een most voorzien van een extended draingebied voor hoge spanningen.
ATE175523T1 (de) 1993-09-17 1999-01-15 Cons Ric Microelettronica Eine integrierte vorrichtung mit einem bipolaren transistor und einem mosfet transistor in emittorschaltungsanordnung
US5523604A (en) 1994-05-13 1996-06-04 International Rectifier Corporation Amorphous silicon layer for top surface of semiconductor device
US5494853A (en) 1994-07-25 1996-02-27 United Microelectronics Corporation Method to solve holes in passivation by metal layout
JP3338185B2 (ja) * 1994-08-02 2002-10-28 株式会社東芝 半導体装置
US5521105A (en) 1994-08-12 1996-05-28 United Microelectronics Corporation Method of forming counter-doped island in power MOSFET
JP3959125B2 (ja) * 1994-09-14 2007-08-15 株式会社東芝 半導体装置
US5550405A (en) 1994-12-21 1996-08-27 Advanced Micro Devices, Incorporated Processing techniques for achieving production-worthy, low dielectric, low interconnect resistance and high performance ICS
US5656543A (en) 1995-02-03 1997-08-12 National Semiconductor Corporation Fabrication of integrated circuits with borderless vias
EP0726603B1 (en) 1995-02-10 1999-04-21 SILICONIX Incorporated Trenched field effect transistor with PN depletion barrier
JP3291958B2 (ja) 1995-02-21 2002-06-17 富士電機株式会社 バックソースmosfet
US5670828A (en) 1995-02-21 1997-09-23 Advanced Micro Devices, Inc. Tunneling technology for reducing intra-conductive layer capacitance
US6049108A (en) 1995-06-02 2000-04-11 Siliconix Incorporated Trench-gated MOSFET with bidirectional voltage clamping
US6204533B1 (en) 1995-06-02 2001-03-20 Siliconix Incorporated Vertical trench-gated power MOSFET having stripe geometry and high cell density
US5659201A (en) 1995-06-05 1997-08-19 Advanced Micro Devices, Inc. High conductivity interconnection line
KR100188096B1 (ko) 1995-09-14 1999-06-01 김광호 반도체 장치 및 그 제조 방법
US5637898A (en) 1995-12-22 1997-06-10 North Carolina State University Vertical field effect transistors having improved breakdown voltage capability and low on-state resistance
US6097063A (en) 1996-01-22 2000-08-01 Fuji Electric Co., Ltd. Semiconductor device having a plurality of parallel drift regions
WO1997029518A1 (de) 1996-02-05 1997-08-14 Siemens Aktiengesellschaft Durch feldeffekt steuerbares halbleiterbauelement
DE19611045C1 (de) 1996-03-20 1997-05-22 Siemens Ag Durch Feldeffekt steuerbares Halbleiterbauelement
EP0948818B1 (en) 1996-07-19 2009-01-07 SILICONIX Incorporated High density trench dmos transistor with trench bottom implant
US5841166A (en) 1996-09-10 1998-11-24 Spectrian, Inc. Lateral DMOS transistor for RF/microwave applications
US6168983B1 (en) 1996-11-05 2001-01-02 Power Integrations, Inc. Method of making a high-voltage transistor with multiple lateral conduction layers
US6800903B2 (en) 1996-11-05 2004-10-05 Power Integrations, Inc. High-voltage transistor with multi-layer conduction region
US6207994B1 (en) 1996-11-05 2001-03-27 Power Integrations, Inc. High-voltage transistor with multi-layer conduction region
KR100228331B1 (ko) 1996-12-30 1999-11-01 김영환 반도체 소자의 삼중웰 제조 방법
EP0856887B1 (en) 1997-01-31 2004-04-28 SGS-THOMSON MICROELECTRONICS S.r.l. Process for forming a morphological edge structure to seal integrated electronic devices, and corresponding device
JP3393544B2 (ja) 1997-02-26 2003-04-07 シャープ株式会社 半導体装置の製造方法
US6133607A (en) 1997-05-22 2000-10-17 Kabushiki Kaisha Toshiba Semiconductor device
US5869875A (en) 1997-06-10 1999-02-09 Spectrian Lateral diffused MOS transistor with trench source contact
US6054752A (en) 1997-06-30 2000-04-25 Denso Corporation Semiconductor device
US6194283B1 (en) 1997-10-29 2001-02-27 Advanced Micro Devices, Inc. High density trench fill due to new spacer fill method including isotropically etching silicon nitride spacers
US6316807B1 (en) 1997-12-05 2001-11-13 Naoto Fujishima Low on-resistance trench lateral MISFET with better switching characteristics and method for manufacturing same
JP3410949B2 (ja) * 1998-02-12 2003-05-26 株式会社東芝 半導体装置
US6362064B2 (en) 1998-04-21 2002-03-26 National Semiconductor Corporation Elimination of walkout in high voltage trench isolated devices
JP3211771B2 (ja) 1998-05-26 2001-09-25 日本電気株式会社 音声送受信装置
JP3016762B2 (ja) 1998-06-25 2000-03-06 松下電子工業株式会社 半導体装置およびその製造方法
US6037631A (en) 1998-09-18 2000-03-14 Siemens Aktiengesellschaft Semiconductor component with a high-voltage endurance edge structure
US5998833A (en) 1998-10-26 1999-12-07 North Carolina State University Power semiconductor devices having improved high frequency switching and breakdown characteristics
US6621121B2 (en) 1998-10-26 2003-09-16 Silicon Semiconductor Corporation Vertical MOSFETs having trench-based gate electrodes within deeper trench-based source electrodes
US6674107B1 (en) 1998-12-07 2004-01-06 Lovoltech, Inc. Enhancement mode junction field effect transistor with low on resistance
US6304007B1 (en) 1998-12-09 2001-10-16 Lovoltech, Inc. Switcher for switching capacitors
US6307223B1 (en) 1998-12-11 2001-10-23 Lovoltech, Inc. Complementary junction field effect transistors
US6281705B1 (en) 1998-12-11 2001-08-28 Lovoltech, Inc. Power supply module in integrated circuits
US6251716B1 (en) 1999-01-06 2001-06-26 Lovoltech, Inc. JFET structure and manufacture method for low on-resistance and low voltage application
US6084277A (en) 1999-02-18 2000-07-04 Power Integrations, Inc. Lateral power MOSFET with improved gate design
JP2000252465A (ja) 1999-03-03 2000-09-14 Sony Corp 半導体装置およびその製造方法
US6191447B1 (en) 1999-05-28 2001-02-20 Micro-Ohm Corporation Power semiconductor devices that utilize tapered trench-based insulating regions to improve electric field profiles in highly doped drift region mesas and methods of forming same
GB9917099D0 (en) 1999-07-22 1999-09-22 Koninkl Philips Electronics Nv Cellular trench-gate field-effect transistors
JP3971062B2 (ja) 1999-07-29 2007-09-05 株式会社東芝 高耐圧半導体装置
US6365932B1 (en) 1999-08-20 2002-04-02 Denso Corporation Power MOS transistor
US6127703A (en) 1999-08-31 2000-10-03 Philips Electronics North America Corporation Lateral thin-film silicon-on-insulator (SOI) PMOS device having a drain extension region
US6355513B1 (en) 1999-10-29 2002-03-12 Lovoltech, Inc. Asymmetric depletion region for normally off JFET
US6580252B1 (en) 1999-10-29 2003-06-17 Lovoltech, Inc. Boost circuit with normally off JFET
US6566936B1 (en) 1999-10-29 2003-05-20 Lovoltech Inc. Two terminal rectifier normally OFF JFET
US6614289B1 (en) 2000-11-07 2003-09-02 Lovoltech Inc. Starter device for normally off FETs
US6349047B1 (en) 2000-12-18 2002-02-19 Lovoltech, Inc. Full wave rectifier circuit using normally off JFETs
US6734715B1 (en) 1999-11-29 2004-05-11 Lovoltech, Inc. Two terminal rectifier using normally off JFET
US6489653B2 (en) 1999-12-27 2002-12-03 Kabushiki Kaisha Toshiba Lateral high-breakdown-voltage transistor
GB0003185D0 (en) 2000-02-12 2000-04-05 Koninkl Philips Electronics Nv An insulated gate field effect device
US7098634B1 (en) 2003-02-21 2006-08-29 Lovoltech, Inc. Buck-boost circuit with normally off JFET
US6781194B2 (en) 2001-04-11 2004-08-24 Silicon Semiconductor Corporation Vertical power devices having retrograded-doped transition regions and insulated trench-based electrodes therein
JP3448015B2 (ja) 2000-07-26 2003-09-16 松下電器産業株式会社 半導体装置及びその製造方法
US6750698B1 (en) 2000-09-29 2004-06-15 Lovoltech, Inc. Cascade circuits utilizing normally-off junction field effect transistors for low on-resistance and low voltage applications
CA2360031C (en) * 2000-10-30 2006-06-20 Thomas & Betts International, Inc. Capacitive test point voltage and phasing detector
US6525372B2 (en) 2000-11-16 2003-02-25 Silicon Wireless Corporation Vertical power devices having insulated source electrodes in discontinuous deep trenches
US6509220B2 (en) 2000-11-27 2003-01-21 Power Integrations, Inc. Method of fabricating a high-voltage transistor
US6468847B1 (en) 2000-11-27 2002-10-22 Power Integrations, Inc. Method of fabricating a high-voltage transistor
US6768171B2 (en) 2000-11-27 2004-07-27 Power Integrations, Inc. High-voltage transistor with JFET conduction channels
US6424007B1 (en) 2001-01-24 2002-07-23 Power Integrations, Inc. High-voltage transistor with buried conduction layer
US6677641B2 (en) 2001-10-17 2004-01-13 Fairchild Semiconductor Corporation Semiconductor structure with improved smaller forward voltage loss and higher blocking capability
US6356059B1 (en) 2001-02-16 2002-03-12 Lovoltech, Inc. Buck converter with normally off JFET
TW543146B (en) 2001-03-09 2003-07-21 Fairchild Semiconductor Ultra dense trench-gated power device with the reduced drain-source feedback capacitance and miller charge
US6528880B1 (en) 2001-06-25 2003-03-04 Lovoltech Inc. Semiconductor package for power JFET having copper plate for source and ribbon contact for gate
JP4421144B2 (ja) 2001-06-29 2010-02-24 株式会社東芝 半導体装置
US6635544B2 (en) 2001-09-07 2003-10-21 Power Intergrations, Inc. Method of fabricating a high-voltage transistor with a multi-layered extended drain structure
US6573558B2 (en) * 2001-09-07 2003-06-03 Power Integrations, Inc. High-voltage vertical transistor with a multi-layered extended drain structure
US7221011B2 (en) 2001-09-07 2007-05-22 Power Integrations, Inc. High-voltage vertical transistor with a multi-gradient drain doping profile
US6555873B2 (en) 2001-09-07 2003-04-29 Power Integrations, Inc. High-voltage lateral transistor with a multi-layered extended drain structure
US6683344B2 (en) 2001-09-07 2004-01-27 Ixys Corporation Rugged and fast power MOSFET and IGBT
US6555883B1 (en) 2001-10-29 2003-04-29 Power Integrations, Inc. Lateral power MOSFET for high switching speeds
US6552597B1 (en) 2001-11-02 2003-04-22 Power Integrations, Inc. Integrated circuit with closely coupled high voltage output and offline transistor pair
DE10214151B4 (de) 2002-03-28 2007-04-05 Infineon Technologies Ag Halbleiterbauelement mit erhöhter Durchbruchspannung im Randbereich
US6900506B1 (en) 2002-04-04 2005-05-31 Lovoltech, Inc. Method and structure for a high voltage junction field effect transistor
JP4107867B2 (ja) 2002-04-09 2008-06-25 株式会社ミツカングループ本社 包材入り柑橘調味料
US6583663B1 (en) 2002-04-22 2003-06-24 Power Integrations, Inc. Power integrated circuit with distributed gate driver
JP4107877B2 (ja) 2002-05-16 2008-06-25 セイコーインスツル株式会社 半導体不揮発性メモリ装置
US7262461B1 (en) 2002-05-20 2007-08-28 Qspeed Semiconductor Inc. JFET and MESFET structures for low voltage, high current and high frequency applications
US6921932B1 (en) 2002-05-20 2005-07-26 Lovoltech, Inc. JFET and MESFET structures for low voltage, high current and high frequency applications
US7268378B1 (en) 2002-05-29 2007-09-11 Qspeed Semiconductor Inc. Structure for reduced gate capacitance in a JFET
JP2004022700A (ja) 2002-06-14 2004-01-22 Sanyo Electric Co Ltd 半導体装置
US6777722B1 (en) 2002-07-02 2004-08-17 Lovoltech, Inc. Method and structure for double dose gate in a JFET
US6661276B1 (en) 2002-07-29 2003-12-09 Lovoltech Inc. MOSFET driver matching circuit for an enhancement mode JFET
US6747342B1 (en) 2002-08-09 2004-06-08 Lovoltech, Inc. Flip-chip packaging
JP4158453B2 (ja) 2002-08-22 2008-10-01 株式会社デンソー 半導体装置及びその製造方法
US6696706B1 (en) 2002-10-22 2004-02-24 Lovoltech, Inc. Structure and method for a junction field effect transistor with reduced gate capacitance
US6774417B1 (en) 2002-10-23 2004-08-10 Lovoltech, Inc. Electrostatic discharge protection device for integrated circuits
US7075132B1 (en) 2002-12-30 2006-07-11 Lovoltech, Inc. Programmable junction field effect transistor and method for programming the same
US7009228B1 (en) 2003-03-04 2006-03-07 Lovoltech, Incorporated Guard ring structure and method for fabricating same
US7452763B1 (en) 2003-03-04 2008-11-18 Qspeed Semiconductor Inc. Method for a junction field effect transistor with reduced gate capacitance
US7038260B1 (en) 2003-03-04 2006-05-02 Lovoltech, Incorporated Dual gate structure for a FET and method for fabricating same
US6887768B1 (en) 2003-05-15 2005-05-03 Lovoltech, Inc. Method and structure for composite trench fill
US6865093B2 (en) 2003-05-27 2005-03-08 Power Integrations, Inc. Electronic circuit control element with tap element
US7227242B1 (en) 2003-10-09 2007-06-05 Qspeed Semiconductor Inc. Structure and method for enhanced performance in semiconductor substrates
US7157959B2 (en) * 2004-03-31 2007-01-02 Semiconductor Components Industries, L.L.C. Method of forming a self-gated transistor and structure therefor
US7211845B1 (en) 2004-04-19 2007-05-01 Qspeed Semiconductor, Inc. Multiple doped channel in a multiple doped gate junction field effect transistor
US7608888B1 (en) 2004-06-10 2009-10-27 Qspeed Semiconductor Inc. Field effect transistor
US7417266B1 (en) 2004-06-10 2008-08-26 Qspeed Semiconductor Inc. MOSFET having a JFET embedded as a body diode
US7238976B1 (en) 2004-06-15 2007-07-03 Qspeed Semiconductor Inc. Schottky barrier rectifier and method of manufacturing the same
US20060086974A1 (en) 2004-10-26 2006-04-27 Power Integrations, Inc. Integrated circuit with multi-length power transistor segments
US7135748B2 (en) 2004-10-26 2006-11-14 Power Integrations, Inc. Integrated circuit with multi-length output transistor segment
US7436039B2 (en) 2005-01-06 2008-10-14 Velox Semiconductor Corporation Gallium nitride semiconductor device
US7348826B1 (en) 2005-03-18 2008-03-25 Qspeed Semiconductor Inc. Composite field effect transistor
US7696598B2 (en) 2005-12-27 2010-04-13 Qspeed Semiconductor Inc. Ultrafast recovery diode
JP5351519B2 (ja) 2005-12-27 2013-11-27 パワー・インテグレーションズ・インコーポレーテッド 高速回復整流器構造体の装置および方法
US7554152B1 (en) * 2006-01-11 2009-06-30 National Semiconductor Corporation Versatile system for integrated sense transistor
US7746156B1 (en) 2006-04-14 2010-06-29 Qspeed Semiconductor Inc. Circuit and method for driving a junction field effect transistor
US7381618B2 (en) 2006-10-03 2008-06-03 Power Integrations, Inc. Gate etch process for a high-voltage FET
US7557406B2 (en) 2007-02-16 2009-07-07 Power Integrations, Inc. Segmented pillar layout for a high-voltage vertical transistor
US7595523B2 (en) 2007-02-16 2009-09-29 Power Integrations, Inc. Gate pullback at ends of high-voltage vertical transistor structure
US8653583B2 (en) 2007-02-16 2014-02-18 Power Integrations, Inc. Sensing FET integrated with a high-voltage transistor
US7859037B2 (en) 2007-02-16 2010-12-28 Power Integrations, Inc. Checkerboarded high-voltage vertical transistor layout
US7468536B2 (en) 2007-02-16 2008-12-23 Power Integrations, Inc. Gate metal routing for transistor with checkerboarded layout
US7939853B2 (en) 2007-03-20 2011-05-10 Power Integrations, Inc. Termination and contact structures for a high voltage GaN-based heterojunction transistor
US7875962B2 (en) 2007-10-15 2011-01-25 Power Integrations, Inc. Package for a power semiconductor device
US7964912B2 (en) 2008-09-18 2011-06-21 Power Integrations, Inc. High-voltage vertical transistor with a varied width silicon pillar
US7871882B2 (en) 2008-12-20 2011-01-18 Power Integrations, Inc. Method of fabricating a deep trench insulated gate bipolar transistor
US7893754B1 (en) 2009-10-02 2011-02-22 Power Integrations, Inc. Temperature independent reference circuit
US7932738B1 (en) 2010-05-07 2011-04-26 Power Integrations, Inc. Method and apparatus for reading a programmable anti-fuse element in a high-voltage integrated circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5821580A (en) * 1996-04-30 1998-10-13 Kabushiki Kaisha Toshiba MOS device having a trench gate structure
JPH10107282A (ja) * 1996-09-30 1998-04-24 Toshiba Corp 半導体装置
US20050167742A1 (en) * 2001-01-30 2005-08-04 Fairchild Semiconductor Corp. Power semiconductor devices and methods of manufacture
EP1689001A2 (en) * 2005-02-03 2006-08-09 Power Integrations, Inc. High-voltage semiconductor devices

Also Published As

Publication number Publication date
CN101246887B (zh) 2011-12-21
US20080197406A1 (en) 2008-08-21
JP5214288B2 (ja) 2013-06-19
US8653583B2 (en) 2014-02-18
EP1959499A2 (en) 2008-08-20
JP2013141005A (ja) 2013-07-18
JP5638645B2 (ja) 2014-12-10
CN102376768B (zh) 2015-08-19
CN101246887A (zh) 2008-08-20
JP2008205482A (ja) 2008-09-04
EP1959499A3 (en) 2010-07-14

Similar Documents

Publication Publication Date Title
CN101246887B (zh) 与高压垂直晶体管集成的感测fet
CN101246905B (zh) 棋盘式高电压垂直晶体管布局
CN101246906B (zh) 在高压晶体管结构的端处的栅极回拉
CN101246908B (zh) 高电压垂直晶体管的分段式柱布局
CN101246907B (zh) 用于具有棋盘式布局的晶体管的栅极金属布线
CN104183645B (zh) 垂直沟道式结型SiC功率FET及其制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant