CN102165604A - 单片集成太阳能电池组件 - Google Patents

单片集成太阳能电池组件 Download PDF

Info

Publication number
CN102165604A
CN102165604A CN2009801378058A CN200980137805A CN102165604A CN 102165604 A CN102165604 A CN 102165604A CN 2009801378058 A CN2009801378058 A CN 2009801378058A CN 200980137805 A CN200980137805 A CN 200980137805A CN 102165604 A CN102165604 A CN 102165604A
Authority
CN
China
Prior art keywords
layer
electrode
piles
silicon layer
solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2009801378058A
Other languages
English (en)
Inventor
K·M·考克雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThinSilicon Corp
Original Assignee
ThinSilicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThinSilicon Corp filed Critical ThinSilicon Corp
Publication of CN102165604A publication Critical patent/CN102165604A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0368Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors
    • H01L31/03682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors including only elements of Group IV of the Periodic System
    • H01L31/03685Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors including only elements of Group IV of the Periodic System including microcrystalline silicon, uc-Si
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0376Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
    • H01L31/03762Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors including only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03921Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/056Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means the light-reflecting means being of the back surface reflector [BSR] type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PIN type
    • H01L31/076Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

一种太阳能电池组件包括衬底、以电气方式互相连接的多个太阳能电池和上分离间隙。太阳能电池设置在衬底上方。至少一个太阳能电池包括反射电极、硅层堆叠和透光电极。反射电极设置在衬底上方。硅层堆叠包括设置在反射电极上方的n掺杂层、设置在n掺杂层上方的本征层和设置在本征层上方的p掺杂层。透光电极设置在硅层堆叠上方。上分离间隙位于电池之间。上分离间隙使太阳能电池中的透光电极彼此电气分离,从而太阳能电池之一的透光电极以电气方式连接到另一太阳能电池的反射电极。

Description

单片集成太阳能电池组件
相关申请的交叉引用
本申请要求2008年9月29日提交的标题为“Monolithically-Integrated Solar Module”的美国临时申请No.61/101,022(“022申请”)的优先权利益。“022申请”的全部内容通过引用包含于此。
技术领域
本发明的主题一般地涉及太阳能电池,更具体地讲,涉及用于以单片方式把太阳能电池集成到太阳能电池组件(solar module)的系统和方法。
背景技术
太阳能电池组件把入射光转换成电。太阳能电池组件包括以电气方式彼此串联连接的几个太阳能电池。每个太阳能电池可包括夹在顶电极和底电极之间的多个半导体层的堆叠(stack)。一个太阳能电池的顶电极以电气方式连接到邻近太阳能电池的底电极。半导体层的堆叠包括夹在一对掺杂半导体层之间的本征半导体层。一些已知的太阳能电池包括半导体层的P-I-N堆叠,这意味着半导体层的堆叠包括p掺杂半导体材料的底部的第一沉积层、沉积在底层上的中间本征或轻掺杂半导体材料和沉积在本征层上的n掺杂半导体材料的顶层。其它已知太阳能电池包括半导体层的N-I-P堆叠,这意味着半导体层的堆叠包括n掺杂半导体材料的底层、中间本征或轻掺杂半导体材料和p掺杂半导体材料的顶层。
入射到太阳能电池上的光撞击半导体层堆叠。光中的光子在半导体层堆叠中激发电子并使电子与原子分离。当电子与原子分离时,产生互补的正电荷或空穴。电子漂移或扩散通过半导体层堆叠并在顶电极和底电极中的一个电极处被收集。空穴漂移或扩散通过半导体层堆叠并在顶电极和底电极中的另一个电极处被收集。在顶电极和底电极处对电子和空穴的收集会在每个太阳能电池中产生电压差。太阳能电池中的电压差在太阳能电池组件上可以是累加的。例如,如果太阳能电池串联连接,则每个太阳能电池中的电压差相加在一起。
通过电子和空穴流过顶电极和底电极以及在邻近太阳能电池之间流动,产生电流和电压。在太阳能电池组件中的串联的太阳能电池上,由每个太阳能电池产生的电压相加。然后从太阳能电池组件获得用于外部电力负载的电流。
关于一些已知太阳能电池中的P-I-N半导体层堆叠,硼从半导体层堆叠中的p掺杂非晶或微晶硅层向半导体层堆叠中的中间本征非晶或微晶硅层的相互扩散能够导致半导体层堆叠内的结污染。半导体层堆叠内的结污染可能降低太阳能电池组件的效率。例如,在具有非晶半导体层堆叠并且在i层和n层之前沉积p层的已知P-I-N太阳能电池中,可能发生“p/i污染影响”。p/i污染影响是用于形成p层的掺杂物的相互扩散,并且例如可包括硼。硼向本征层的相互扩散的量可以与本征和n掺杂半导体层沉积的温度相关。结果,随着本征和n掺杂层的沉积温度增加,p/i污染的量增加。
为了减少p/i污染的量,具有P-I-N半导体层堆叠的已知太阳能电池对于本征和n掺杂半导体层的沉积采用较低沉积温度。例如,一些已知太阳能电池可使用低于大约220摄氏度的沉积温度。高于大约220摄氏度的沉积温度可导致足以引起太阳能电池在把入射光转换成电的方面的总体效率的降低的p/i污染。另一方面,在P-I-N半导体层堆叠中的半导体层之间不存在掺杂物相互扩散的情况下,半导体层堆叠中的硅膜的质量和电子性质在较高的沉积温度趋向于改善。
减小太阳能电池在高沉积温度的p/i污染影响的大小的一种方式是在N-I-P半导体层堆叠中在本征半导体层的沉积之后沉积p掺杂半导体。在本征层之后沉积p掺杂层会减少p掺杂层暴露于增加的沉积温度的时间的量。例如,沉积p掺杂层所需的时间可仅构成沉积N-I-P层堆叠所需的总时间的一小部分,大约5%或更少。当沉积时间的量减少时,p掺杂层中的硼掺杂物向本征层的相互扩散的量减小。此外,p掺杂层能够以较低沉积温度沉积,对太阳能电池的效率只有很小负面影响或者没有负面影响。以较低沉积温度(例如,220摄氏度或更低)沉积p掺杂层可在p掺杂层的初始沉积期间允许本征层的表面的温度保持相对较低。如果p掺杂层使用等离子增强方法(诸如,等离子增强化学气相沉积(PECVD))进行沉积,则当p掺杂层沉积时等离子体与本征层的表面的相互作用可在高温下显著增强p掺杂层中的硼向本征层的相互扩散。
一些具有N-I-P半导体层堆叠的已知太阳能电池包括:沿电池的底部的衬底、沉积在衬底上的反射电极、沉积在反射电极上的非晶或微晶n掺杂硅层、沉积在n掺杂层上的非晶或微晶本征硅层、沉积在本征层上的非晶或微晶p掺杂硅层和沉积在p掺杂层上的透明电极。这种层的结构可称为太阳能电池的“衬底结构”,入射光在与衬底相对的一侧撞击太阳能电池。一些已知衬底结构太阳能电池包括在N-I-P半导体层堆叠顶上的第二半导体层堆叠。这些类型的太阳能电池可称为“级联(tandem)衬底结构”太阳能电池。另一类型的已知太阳能电池是“超衬底结构”太阳能电池,其中衬底对于光是透明的并且入射光在与衬底相同的一侧撞击太阳能电池。超衬底结构中的衬底可称为超衬底。
具有按照衬底结构或级联衬底结构太阳能电池排列的几个太阳能电池的已知太阳能电池组件包括由导电材料形成的衬底。例如,一些已知太阳能电池包括不锈钢衬底或用作衬底的由不锈钢形成的箔片。在不锈钢衬底上制造太阳能电池比较复杂,因为不锈钢导电。为了如上所述以电气方式串联连接太阳能电池,太阳能电池需要通过把不锈钢衬底切成条带并随后使用导电格栅(grid)把各个电池“缝(stitch)”回到一起,从而以电气方式彼此分离。这些另外的电气分离步骤增加了制造太阳能电池组件的成本。
如果不锈钢衬底不切成条带,则不锈钢的导电性能够在相邻电池中的反射电极之间产生所不希望的电分流(electric shunt)或短路。例如,不锈钢衬底可在反射电极之间提供具有小于0.5欧姆*cm2的面积比(area-specific)电阻的导电路径。另外,在串联连接的组件中,相邻太阳能电池中的顶电极需要彼此分离,从而在相邻电池中的顶电极之间不存在将在组件的操作期间在电池之间提供电气短路的导电路径。
其它已知的超衬底结构和级联超衬底结构太阳能电池包括非导电或电介质衬底。电极和半导体层堆叠沉积在衬底上,并且仅电极和半导体层以电气方式隔离并互相连接以在邻近太阳能电池之间形成串联连接。这种太阳能电池在绝缘衬底上互相连接的连接方案称为“单片集成”。
在太阳能电池的超衬底结构中,底电极是透明电极,顶电极是反射电极。激光划片是可用于在薄膜太阳能电池组件中对电极和半导体材料或膜进行图形化的一种已知技术。超衬底结构太阳能电池的激光划片可以按照三个步骤执行:首先,紧跟在底部透明电极的沉积之后,紫外(“UV”)或红外(“IR”)激光用于在玻璃上对底部透明电极进行图形化;第二,紧跟在半导体层的沉积之后,可见光激光穿过超衬底和透明电极以去除半导体层;第三,紧跟在顶部反射电极的沉积之后,可见光激光穿过玻璃超衬底和底部透明电极以局部烧蚀半导体层堆叠和顶部反射电极。在超衬底结构中,激光在由半导体层吸收的波长的范围内通过透明电极透射到半导体层中以便极为迅速地去除半导体层。激光迅速加热并气化半导体材料,从而产生导致半导体材料和顶部反射电极的极为迅速的去除的压力波。
激光穿过玻璃超衬底以对半导体层堆叠进行图形化的技术不能应用于已知的太阳能电池的衬底结构。例如,在已知的衬底结构太阳能电池中激光不能穿过衬底和底部反射电极以便以电气方式隔离半导体层堆叠和顶部透明电极。底部反射电极不能在由硅吸收的波长范围上透射该激光。例如,反射电极阻挡原本将要用于烧蚀半导体层堆叠的波长的激光。结果,激光不能经通过底部反射电极的照明极为迅速地去除半导体层。
在已知衬底结构太阳能电池组件中改为需要机械和激光划片来分离太阳能电池中的各个层。例如,可能需要机械划片来以电气方式分离组件中的太阳能电池的顶电极。由于以下至少一个或多个原因,使用激光去除半导体层堆叠和/或顶电极的部分可能成为问题。衬底可能不允许激光穿过衬底和底部反射电极以选择性地对半导体层堆叠划片并由此选择性地去除半导体层堆叠和顶部透光电极。此外,激光可能无法穿过顶部透光电极以去除半导体层堆叠和顶电极。当激光从太阳能电池上方入射并穿过顶电极时,立刻在半导体层堆叠的顶侧形成当激光被吸收时形成的气化的半导体材料。当半导体材料气化时产生的压力波朝着衬底延伸,而非迫使半导体材料沿能够容易地从组件去除半导体材料的方向。
补偿缺乏在衬底结构中极为迅速的去除的一种已知技术是利用激光把半导体层和/或透明电极层加热足够的时间从而整个半导体和电极层被气化。但是,加热半导体和/或透明电极层通常在半导体层和电极层周围的区域中导致非常大程度的过多的热量耗散。过多的热量耗散导致在接近激光入射到半导体层的地方的区域中电极层和半导体层彼此相互扩散。这些层的混杂可在相邻太阳能电池之间和/或在单个太阳能电池内形成电分流。例如,混杂可形成相邻太阳能电池中的顶部透明电极层之间的导电路径或单个太阳能电池中的电极层之间的导电路径。太阳能电池的电气短路显著降低太阳能电池组件的效率和产出。
发明内容
在一个实施例中,太阳能电池组件包括衬底、以电气方式互相连接的多个太阳能电池和上分离间隙。太阳能电池设置在衬底上。太阳能电池中的至少一个包括:反射电极、硅层堆叠和透光电极。反射电极设置在衬底上方。硅层堆叠包括设置在反射电极上方的n掺杂层、设置在n掺杂层上方的本征层和设置在本征层上方的p掺杂层。透光电极设置在硅层堆叠上方。上分离间隙设置在电池之间。上分离间隙使太阳能电池中的透光电极彼此电气分离,从而太阳能电池之一的透光电极以电气方式连接到另一太阳能电池的反射电极。
在另一实施例中,一种制造具有以电气方式互相连接的多个太阳能电池的太阳能电池组件的方法包括设置衬底、反射电极、硅层堆叠和透光电极。硅层堆叠包括设置于反射电极上方的n掺杂层、设置在n掺杂层上方的本征层和设置在本征层上方的p掺杂层。该方法还包括:去除透光电极的部分以便太阳能电池中的透光电极彼此电气分离。通过使透光电极从太阳能电池组件的与衬底相对的一侧暴露于图形化技术以去除所述部分。
在另一实施例中,提供了另一种太阳能电池组件。该太阳能电池组件包括非导电衬底、互相连接的多个太阳能电池和上分离间隙。太阳能电池设置在衬底上方。太阳能电池中的至少一个包括反射电极、底部硅层堆叠、顶部硅层堆叠和透光电极。反射电极设置在衬底上方。底部硅层堆叠包括沉积在反射电极上方的N-I-P层堆叠。顶部硅层堆叠包括沉积在底部硅层堆叠上方的N-I-P层堆叠。透光电极设置在顶部硅层堆叠上方。上分离间隙设置在电池之间,并且使太阳能电池中的透光电极彼此电气分离。太阳能电池之一的透光电极以电气方式连接到另一太阳能电池的反射电极。
附图说明
图1是根据一个实施例的衬底结构太阳能电池组件的示意图的透视图和该太阳能电池组件的横截面部分的放大图。
图2是图1中显示的太阳能电池组件在太阳能电池组件的加工的一个阶段的放大图的示意图。
图3是图1中显示的太阳能电池组件在太阳能电池组件的加工的另一个阶段的放大图的示意图。
图4是用于产生图2、3和/或5中显示的间隙的激光划片线的示图。
图5是图1中显示的太阳能电池组件在太阳能电池组件的加工的另一个阶段的放大图的示意图。
具体实施方式
当结合附图阅读时,将会更好地理解前述发明内容以及下面对本发明的某些实施例的详细描述。如这里所使用,以单数形式列举并利用词语“一个”或“一种”描述的元件或步骤应该理解为不排除多个所述元件或步骤,除非明确指出这种排除的情况。另外,对本发明的“一个实施例”的参照不应解释为排除也包括列举的特征的另外实施例的存在。此外,除非明确进行相反的陈述,否则“包括”或“具有”带有特定性质的一个元件或多个元件的实施例可包括另外的不带有该性质的这样的元件。应该注意的是,虽然可能结合使用激光以单片方式集成硅太阳能电池的系统描述了一个或多个实施例,但这里描述的实施例不限于基于硅的太阳能电池或激光。特别地,一个或多个实施例可包括除硅以外的材料和/或采用除激光划片以外的不同的图形化技术。
图1是根据一个或多个实施例的衬底结构太阳能电池组件100的示意图的透视图和该太阳能电池组件100的横截面部分的放大图110。太阳能电池组件100可称为光伏(“PV”)装置100。太阳能电池组件100包括以电气方式彼此串联连接的多个太阳能电池102。例如,太阳能电池组件100可具有彼此串联连接的二十五个或更多的太阳能电池102。每个最外面的太阳能电池102还可以以电气方式与多个引线104、106之一连接。引线104、106在太阳能电池组件100的相对端128、130之间延伸。引线104、106与电路108连接。电路108是收集或应用由太阳能电池组件100产生的电流的负载。
每个太阳能电池102包括多个层的堆叠。例如,太阳能电池102可包括非导电衬底112、底电极114、半导体层堆叠116、顶电极118、顶部粘合剂120和盖板122。太阳能电池组件100中的太阳能电池102可以以电气方式串联连接。一个太阳能电池102的顶电极118以电气方式与另一太阳能电池102中的底电极114连接。例如,一个太阳能电池102中的顶电极118可以以电气方式与邻近或相邻太阳能电池102中的底电极114连接,以在邻近太阳能电池102之间提供导电路径。因此,太阳能电池组件100中的太阳能电池102以电气方式串联连接。半导体层堆叠116包括至少三个半导体层。例如,半导体层堆叠116能够包括半导体层的N-I-P堆叠。可选地,半导体层堆叠116能够包括按照级联半导体堆叠排列以一层在另一层上的方式布置的两个或三个N-I-P堆叠。
太阳能电池组件100从入射到太阳能电池组件100的顶表面124上的光产生电流。太阳能电池组件100的顶表面124可称为太阳能电池组件100的膜侧。相对的底表面126可称为太阳能电池组件100的衬底侧。光穿过盖板122、顶部粘合剂120和顶电极118。光由半导体层堆叠116吸收。一些光可穿过半导体层堆叠116。这些光可以由底电极114反射回至半导体层堆叠116。光中的光子在半导体层堆叠116中激发电子并导致电子与原子分离。当电子与原子分离时,产生互补的正电荷或空穴。电子漂移或扩散通过半导体层堆叠116并在顶电极118和底电极114中的一个电极处被收集。空穴漂移或扩散通过半导体层堆叠116并在顶电极118和底电极114中的另一个电极处被收集。在顶电极118和底电极114处对电子和空穴的收集会在太阳能电池102中产生电压差。太阳能电池102中的电压差在整个太阳能电池组件100上可以是累加的。例如,几个太阳能电池102中的电压差相加在一起。当以电气方式串联连接的太阳能电池102的数量增加时,在串联的太阳能电池102上累加的电压差也可以增加。
电子和空穴经一个太阳能电池102中的顶电极118和底电极114流到邻近太阳能电池102中的相对电极114、118。例如,如果当光撞击半导体层堆叠116时电子流到第一太阳能电池102中的底电极114,则这些电子经底电极114流到邻近太阳能电池102中的顶电极118。类似地,如果空穴流到第一太阳能电池102中的顶电极118,则这些空穴经顶电极118流向邻近太阳能电池102中的底电极114。
通过电子和空穴在顶电极118和底电极114中以及在邻近太阳能电池102之间的流动,产生电流和电压。在多个串联的太阳能电池102之间,由每个太阳能电池102产生的电压相加。然后,通过引线104、106与最外面的太阳能电池102中的顶电极118和底电极114的连接,电流被抽出至电路108。例如,第一引线104可以以电气方式连接到最左面的太阳能电池102中的顶电极118,而第二引线106以电气方式连接到最右面的太阳能电池102中的底电极114。
图2是太阳能电池组件100在太阳能电池组件100的加工的一个阶段的放大图110的示意图。衬底112包括非导电材料,诸如玻璃板。衬底112具有上表面200,在衬底112上沉积任何另外的层之前可以使上表面200变粗糙。使上表面200变粗糙可以改善衬底112的光散射性质。改善衬底112的光散射性质可以提高太阳能电池组件100在把入射光转换成电的方面的效率。通过用沙子破坏上表面200可以使上表面200变粗糙。
在衬底112上方设置底电极114。例如,通过把底电极114溅射在衬底112上,底电极114可以沉积在衬底112上。底电极114可以在衬底112上连续沉积。图2中的示图显示通过去除底电极114的部分导致的底电极114中的下分离间隙202,如以下所述。可以沉积底电极114,以使得在底电极114的沉积之后在底电极114中不存在下分离间隙202。底电极114包括反光的导电材料。例如,底电极114可包括银(Ag)、铝(Al)和镍铬合金(NiCr)中的一种或多种。在一个实施例中,底电极114包括在高温(诸如,大约100至500摄氏度之间的温度)沉积在衬底112上的银。在高温在衬底112上沉积银能够使底电极114的上表面变粗糙。底电极114可包括这些材料的组合的金属堆叠。例如,底电极114包括沉积在衬底112上的大约30纳米厚的镍铬合金层、沉积在镍铬合金上的大约100至500纳米厚的铝层和沉积在铝上的大约50至500纳米厚的银层。
粘合层设置在上述导电层中的一个或多个导电层下方。例如,在底电极114中的每个金属层下方可沉积包括钛(Ti)、铬(Cr)、钼(Mo)或镍铬合金的粘合层,以帮助把底电极114中的各个层粘合在一起。
在一个实施例中,底电极114包括设置在底电极114上方的缓冲层。例如,缓冲层可沉积在上述导电层上面。缓冲层包括稳定底电极114中的导电材料并帮助防止导电材料向半导体层堆叠116(图1中显示)的化学扩散的材料。例如,缓冲层可减小从底电极114扩散到半导体层堆叠116中的银的量。缓冲层可减小半导体层堆叠116中的等离子体激元吸收损失。在一个实施例中,通过在底电极114中的导电层上溅射大约100纳米的缓冲层,沉积缓冲层。在导电材料上溅射缓冲层之前可以使底电极114中的导电材料变粗糙,以帮助把缓冲层粘合到导电材料。替代地,缓冲层可使用化学气相沉积技术(诸如,PECVD)沉积。缓冲层可以以大约1微米的厚度沉积在底电极114的导电材料上。在缓冲层的沉积之后,可以使底电极114的上表面204变粗糙。通过以化学方式蚀刻缓冲层可以使上表面204变粗糙。例如,上表面204可以暴露于酸(诸如,1%盐酸(HCl)和99%水(H2O)的溶液)大约2分钟或更短时间。
去除底电极114的部分以露出底电极114中的下分离间隙202。仅作为示例,可通过在底电极114上使用图形化技术选择性地去除底电极114的部分来去除底电极114的部分。在一个实施例中,图形化技术206是对底电极114中的下分离间隙202划片的激光。替代地,除激光之外的能量源可以用作图形化技术206。图形化技术206可以是所示出的实施例中从太阳能电池组件100的底侧或衬底侧126引导至底电极114的激光。可选地,图形化技术可以是从底电极114的上表面204引导至底电极114的激光206。激光206穿过衬底112以去除底电极114的一部分,以便产生下分离间隙202。下分离间隙202在与衬底112的上表面200平行的方向上具有大约10至100微米的宽度208。在一个实施例中,宽度208为大约50微米。在去除底电极114的部分以产生下分离间隙202之后,底电极114的剩余部分排列为在垂直于图2的平面的方向上延伸的直线条带。例如,底电极114可以排列为垂直于测量的宽度208的方向的直线条带。底电极114的直线条带在平行于测量的宽度208的方向上具有宽度210。在一个实施例中,底电极114直线条带的宽度210为大约5至15毫米。
图3是太阳能电池组件100在太阳能电池组件100的加工的另一个阶段的放大图的示意图。半导体层堆叠116设置在底电极114和衬底112上方。例如,半导体层堆叠116可以沉积在底电极114和衬底112上。半导体层堆叠116可以在底电极114的下分离间隙202(图2中显示)中沉积在衬底112上。在图1表示的实施例中,半导体层堆叠116在组件100的顶表面124和底表面126之间延伸的垂直方向324上在顶电极118和底电极114之间沉积在每个电池102中并且在横向方向326上沉积在相邻电池102的底电极114之间。
如半导体层堆叠116的放大图300中所示,在所示出的实施例中,半导体层堆叠116包括硅层的两个N-I-P堆叠302、304的级联排列。底堆叠302包括硅层的N-I-P堆叠,顶堆叠304包括另一硅层的N-I-P堆叠。夹层306可设置在顶N-I-P堆叠302和底N-I-P堆叠304之间。替代地,在层堆叠116中可以不包括夹层306。夹层306包括至少部分地反射组件100上的入射光的一层材料。例如,夹层306可部分地把入射光反射回至N-I-P层的顶堆叠304,同时允许一些光穿过夹层306进入底堆叠302。夹层306可包括诸如氧化锌(ZnO)、非化学计量氧化硅(SiOx)或氮化硅(SiNx)的材料。
通过首先在底电极114上方设置微晶n掺杂硅的第一层308可以设置半导体层堆叠116。例如,第一层308可以沉积在底电极114上。可选地,n掺杂硅的第一层308设置为非晶层。可以按照大约5至30纳米的厚度设置n掺杂硅的第一层308。在一个实施例中,在相对较高的沉积温度沉积第一层308。例如,可以在大约315摄氏度的温度沉积第一层308。在另一例子中,可以在大约300至400摄氏度的温度沉积第一层308。在一个实施例中,这些温度是衬底112的温度。在另一实施例中,在较低的温度沉积第一层308。例如,可以在大约180至300摄氏度的衬底温度沉积第一层308。
在第一层308上方设置本征或轻掺杂的硅的第二层310。例如,第二层310可以沉积在第一层308上。第二层310可以是硅的微晶或非晶层。可以按照大于第一层308的厚度设置第二层310。仅作为示例,可以按照大约2微米或者大约1至3微米的厚度设置微晶第二层310。作为另一例子,可以按照大约300纳米或者大约200至400纳米的厚度设置非晶第二层310。可以在相对较高的沉积温度沉积第二层310。例如,可以在大约300至400摄氏度的衬底温度沉积第二层310。替代地,在较低的沉积温度(诸如,180至300摄氏度)沉积第二层310。
在第二层310上方设置p掺杂硅的第三层312。例如,第三层312可以沉积在第二层310上。在一个实施例中,第三层312设置为微晶层。替代地,第三层312设置为非晶层。可以按照稍微小于第一层308的厚度沉积第三层312。例如,可以按照大约5至20纳米的厚度沉积第三层312。可以在相对较低的衬底温度沉积第三层312以减小第三层312中的掺杂物向第二层310的相互扩散。例如,可以在大约180至400摄氏度的衬底温度沉积第三层312。在一个实施例中,夹层306可以沉积在第三层312上。
在夹层306上方设置n掺杂硅的第四层314。替代地,在第三层312上方设置第四层314。第四层314可以作为硅的非晶或微晶层沉积在夹层306或第三层312上。可以按照大约5至30纳米或更小的厚度设置第四层314。在一个实施例中,在大约180至400摄氏度的衬底温度沉积第四层314。在第四层314上方设置本征或轻掺杂的硅的第五层316。第五层316可以是硅的非晶层。在一个实施例中,可以按照大约70至300纳米的厚度设置第五层316。在另一例子中,按照大约200至400纳米的厚度沉积第五层316。可以在300至400摄氏度的衬底温度沉积第五层316。在第五层316上方设置非晶或微晶p掺杂硅的第六层318。可以按照大约5至20纳米的厚度设置第六层318。在相对较低的衬底温度设置第六层318以减小第六层318中的掺杂物向第五层316的相互扩散。例如,可以在大约180至400摄氏度的衬底温度沉积第六层318。
尽管这里的说明把半导体层116描述为包括半导体层的级联排列,但在半导体层116中可包括其它半导体层堆叠和/或夹层。例如,半导体层堆叠116可包括非晶硅层的单个或多个N-I-P堆叠。替代地,半导体层堆叠116可包括微晶硅层的单个或多个N-I-P堆叠。在另一例子中,半导体层堆叠116可包括三结层堆叠,其中中间结包括位于结的底部的n掺杂微晶硅层、沉积在n掺杂层上的本征或轻掺杂的锗化硅(SiGe)或硅的非晶层和沉积在本征层上的硅的p掺杂非晶层。
层308-316中的悬空键可降低太阳能电池组件100在把入射光转换成电的方面的效率。例如,在本征层310、316中或者在本征层310、316与位于本征层310、316的相对侧的层308、312、314、318中的一层或多层之间的界面附近,当光撞击本征层310、316时产生的电子或空穴可以在悬空键处被俘获并重新结合。随着悬空键的数量增加,到达电极114、118的电子的量可能减小。随着到达电极114、118的电子的数量减小,由太阳能电池102产生的电功率也可能减小。
通过悬空键和氢之间的键的形成,可减少层308-318中的悬空键的数量。例如,用于沉积层308-318中的一层或多层的沉积气体中的氢可以以化学方式与悬空键键合。沉积气体可包括硅烷(SiH4)或氢气(H2)。氢可以在包括硅的层308-318中与悬空硅键结合以形成SiH2。通常,层308-318中的SiH2的量与电池102中的光感应退化的量相关。一种提高电池102中的非晶本征层的质量的技术是增加SiH键与SiH2键的比例。例如,通过增加SiH与SiH2键的比例可以提高层316的质量。使用FTIR可以测量SiH与SiH2键的比例。
设置层308-312的次序可允许半导体层堆叠116中的本征或轻掺杂的层在比已知超衬底结构太阳能电池组件中使用的温度更高的温度沉积。增加半导体层堆叠116中的本征层的沉积温度可允许增加半导体层堆叠116中的本征层的沉积速度而不会显著牺牲本征层的电子质量。
根据一个实施例,通过在比一些已知沉积方法中使用的沉积温度高的沉积温度沉积层308-318,可以减小层308-318中的一层或多层中的悬空键的数量。例如,可以在大约300至400摄氏度的衬底温度沉积本征层310、316。替代地,可以在较高的沉积温度沉积层308-318中的其它层。在较高沉积温度沉积这些层会增加在本征层310、316的沉积表面上的原子的迁移率。由于原子更易于移动,原子能够更好地在正在沉积的本征层310、316的增长的非晶或微晶硅表面上找到悬空键或开放位置(open site)。原子可以在悬空键或开放格位处键合以减少正在沉积的本征层310、316中的悬空键和开放晶格位置的数量。如上所述,随着悬空键或开放格位的数量减小,与悬空键或开放格位键合所需的氢的量减小。在一个实施例中,非晶本征层316中的SiH2键的百分比为大约7原子%或更小。在另一实施例中,非晶本征层316中的SiH2键的百分比为大约5原子%或更小。在第三实施例中,非晶本征层316中的SiH2键的百分比为大约2.5%或更小。关于非晶本征层316中的氢的浓度,氢含量在一个实施例中为大约21原子%或更小,在另一实施例中为大约15原子%或更小,并且在另一实施例中为大约7.5原子%或更小。
层308-318中的一层或多层中的最后氢浓度可以使用二次离子质谱仪(“SIMS”)测量。层308-318中的一层或多层的样本放到SIMS中。然后利用离子束溅射该样本。离子束导致从该样本发射二次离子。使用质谱仪收集并分析二次离子。质谱仪随后确定样本的分子组成。质谱仪能够确定样本中的氢的原子百分数。替代地,层308-318中的一层或多层中的最后氢浓度可以使用傅立叶变换红外光谱仪(“FTIR”)测量。在FTIR中,红外光束随后穿过层308-318中的一层或多层的样本发送。样本中的不同分子结构和种类可不同地吸收红外光。基于样本中的不同分子种类的相对浓度,获得样本中的分子种类的光谱。根据这个光谱能够确定样本中的氢的原子百分数。替代地,获得几个光谱并且根据这组光谱确定样本中的氢的原子百分数。
半导体层堆叠116能够暴露于聚焦能量束以去除半导体层堆叠116的部分并在半导体层堆叠116中提供半导体层间间隙320。聚焦能量束可包括激光322。激光322可应用于对半导体层堆叠116进行激光划片或烧蚀。在示出的实施例中,从太阳能电池组件100的膜侧把激光322引导至半导体层堆叠116。可以作为脉冲激光产生激光322。例如,可以以相对较短的持续时间(诸如,每次小于10纳秒)产生激光322。在另一例子中,可以以每次小于1000皮秒的持续时间产生激光322。替代地,可以通过非脉冲激光提供激光322。在另一实施例中,除激光划片之外的技术用于去除半导体层堆叠116的部分。
继续参照图3,图4是用于产生半导体层间间隙320的激光划片线400的示图。可以脉冲地产生激光322:以一定持续时间朝着半导体层堆叠116产生激光322,把激光322从半导体层堆叠116移开,使激光源322和半导体层堆叠116相对于彼此移动,以一定持续时间朝着半导体层堆叠116产生激光322,等等,直至激光322已分离邻近电池102中的半导体层堆叠116。例如,激光322可以以10纳秒或更短时间在半导体层堆叠116中激光烧蚀近似圆形的第一脉冲标记402,使激光322停止工作,相对于半导体层堆叠116移动激光,以10纳秒或更短时间在半导体层堆叠116中蚀刻第二脉冲标记404,等等,直至激光划片线400使相邻电池102中的半导体层堆叠116彼此分离。如图4中所示,激光划片线400可以作为基本上直线的蚀刻标记出现于半导体层堆叠116中。蚀刻标记可具有激光的近似圆形形状或者可具有不同形状。
图5是太阳能电池组件100在太阳能电池组件100的加工的另一个阶段的放大图110的示意图。在半导体层堆叠116上方以及在通过激光322(图3中显示)进行图形化形成的半导体层间间隙320(图3中显示)中设置顶电极118。在图1表示的实施例中,顶电极118沿垂直方向324沉积在半导体层堆叠116上并且沿横向方向326在间隙320中沉积在相邻电池102的半导体层堆叠116之间。例如,使用诸如低压化学气相沉积(LPCVD)的方法可以把顶电极118溅射或沉积在半导体层堆叠116上。顶电极118包括透光和导电材料。例如,顶电极118可允许顶电极118上的入射光的至少80%穿过构成顶电极118的材料。在另一例子中,顶电极118可允许不同量的入射光穿过顶电极118。例如,顶电极118可允许入射光的60%、40%或20%穿过顶电极118。透射的光的量可取决于入射光的波长。顶电极118可以沉积为大约80纳米至2微米厚的氧化铟锡(“ITO”)。替代地,顶电极118可沉积为铝掺杂氧化锌(Al:ZnO)、硼掺杂氧化锌(B:ZnO)、镓掺杂氧化锌(Ga:ZnO)或另一类型氧化锌(ZnO)的层。在另一实施例中,顶电极118可包括具有在顶电极118的顶表面500上形成的银的导电格栅的ITO的层。
在一个实施例中,对顶电极118的顶表面500进行蚀刻以增加顶表面500的粗糙度。例如,顶电极118可以暴露于使用1%盐酸(HCl)和99%水(H2O)的溶液的化学蚀刻剂,顶电极118暴露于化学蚀刻剂大约2分钟或更短时间。可以使顶表面500变粗糙以增加顶电极118的光陷阱(light trapping)性质。例如,随着顶表面500的粗糙度增加,穿过顶电极118并反射回至顶电极118的入射光可以在内部从顶表面500反射并朝着半导体层堆叠116反射回去。
通过使顶电极118暴露于图形化技术504去除顶电极118的部分。图形化技术504选择性地去除顶电极118的部分以便使电池102中的顶电极118彼此电气分离。图形化技术504从电池102和组件100的膜侧被引导至顶电极118。例如,图形化技术504在与衬底112相对的电池102和组件100的一侧入射到顶电极118上。上分离间隙502以电气方式分离组件100中的不同电池102的顶电极118,如以下更详细所述。在一个实施例中,图形化技术504是聚焦能量束,诸如激光。激光可以应用于对顶电极118进行激光划片。在一个实施例中,激光产生为脉冲激光。例如,可以以相对较短的持续时间(诸如,每次小于10纳秒)产生激光。在另一例子中,可以以相对较短的持续时间(诸如,每次小于1000皮秒)产生激光。替代地,激光可以是非脉冲激光。激光可以产生类似于图4中显示的激光划片线400的激光划片。
替代地,图形化技术504可包括化学蚀刻剂。例如,酸蚀刻剂可以由喷墨印刷设备引导至上分离间隙502中的顶电极118。酸蚀刻剂可以去除上分离间隙502中的顶电极118。在另一实施例中,可以在半导体层堆叠116和顶电极118之间提供牺牲光吸收层作为图形化技术504。可以使用喷墨印刷设备沉积该光吸收层,喷墨印刷设备在顶电极118沉积之前在半导体层堆叠116和顶电极118之间在上分离间隙502中沉积吸收层。当使用使透明电极为透明的波长从膜侧发出激光时,该吸收层可吸收该激光。这随后能够导致从牺牲光吸收层上方烧蚀透明电极。然后通过激光划片可以去除吸收层和顶电极118的组合以便去除上分离间隙502中的顶电极118。在另一例子中,机械划片或光刻可用于去除上分离间隙502中的顶电极118。
如上所述,电极118和半导体层堆叠116之间的显著相互扩散可导致相邻电池102中的顶电极118之间的电气短路或导电桥。替代地,半导体层堆叠116的n掺杂、本征和p掺杂子层内的显著相互扩散可导致各电池102中的顶电极118和反射电极114之间的电气短路或导电桥。以相对较短的持续时间或脉冲朝着半导体层堆叠116和或顶电极产生激光322或其它能量源,以便去除上分离间隙502中的顶电极118,同时在顶电极118和/或半导体层堆叠116中不会大量增加耗散的热量。例如,可以经非常短的脉冲产生激光504以避免把足够的热能施加于顶电极118和半导体层堆叠116,从而导致在相邻顶电极118之间或者在顶电极118和反射电极114之间经相互扩散形成导电路径。减小顶电极118和半导体层堆叠116之间的相互扩散的量可导致在相邻电池102中的顶电极118之间以及在各电池102中的顶电极118和反射电极114之间保持足够大的阻抗或电阻。
在相邻电池102中的顶电极118之间延伸的半导体层堆叠116的电气隔离区域506使相邻电池102中的顶电极118彼此电气分离。上分离间隙502可以通过电气分离区域506分离邻近电池102中的顶电极118,从而避免了顶电极118之间的电气短路。仅作为示例,上分离间隙502可以使顶电极118彼此分离,从而当每个相邻电池102中的顶电极118和底电极114之间的电压差在大约-0.1和0.1伏特之间时,在相邻电池102中的顶电极118之间不存在具有小于500欧姆*cm2的面积比电阻的导电路径。在另一例子中,上分离间隙502可以使顶电极118彼此分离,从而当每个相邻电池102中的顶电极118和底电极114之间的电压差在大约-0.1和0.1伏特之间时,在相邻电池102中的顶电极118之间不存在具有小于1000欧姆*cm2的面积比电阻的导电路径。在另一例子中,上分离间隙502可以使顶电极118彼此分离,从而当顶电极118和底电极114之间的电压差在大约-0.1和0.1伏特之间时,在相邻电池102中的顶电极118之间不存在具有小于2000欧姆*cm2的面积比电阻的导电路径。替代地,电气分离区域506的电阻可以是更大的量。
参照图1,在顶电极118上方以及在去除了半导体层堆叠116的在半导体层间间隙320中在半导体层堆叠116上方设置粘合剂材料120的层。例如,粘合剂层120可以在半导体层间间隙320中沉积在半导体层堆叠116上以及沉积在顶电极118上。例如,粘合剂层120可包括诸如聚乙烯醇缩丁醛(“PVB”)、沙林或乙烯-乙酸乙烯酯(“EVA”)共聚物的材料。透光材料的盖板120随后放在粘合剂层120上方。例如,盖板120可以放在粘合剂层120上。盖板122包括或者由以下材料形成:透光材料或者透明或半透明材料,诸如玻璃。例如,盖板122可包括淬火玻璃。替代地,盖板122能够包括钠钙玻璃、低铁淬火玻璃或低铁退火玻璃。在盖板122中使用淬火玻璃可帮助保护组件100免于物理损伤。例如,淬火玻璃盖板122可帮助保护组件100免受冰雹块和其它环境损伤。在顶部玻璃盖板的层合之前,组件100可切割成小于2.2米乘2.6米的尺寸或者其它类似尺寸以用于不同的光伏应用。
这里描述的一个或多个实施例提供了一种单片集成太阳能电池组件。这里描述的组件可包括在沉积p掺杂层之前沉积半导体层堆叠的本征层的衬底结构太阳能电池组件。在本征层之后沉积p掺杂层允许在比已知超衬底结构太阳能电池组件中使用的温度更高的温度沉积本征层。此外,在本征层之后沉积p掺杂层可减小p掺杂层和本征层之间的相互扩散。在一些实施例中,通过使顶电极暴露于能量源可以使太阳能电池彼此电气分离,同时避免顶电极和半导体层堆叠的显著相互扩散。避免顶电极和半导体层堆叠的显著相互扩散可防止相邻电池中的顶电极之间的电气短路。
应该理解,以上描述是说明性的而非限制性的。例如,上述实施例(和/或其各方面)可以彼此结合使用。另外,在不脱离其范围的情况下,可以做出许多修改以使特定情况或材料适应于本发明的教导。这里描述的各种部件的尺寸、材料的类型、方位以及各种部件的数量和位置旨在定义某些实施例的参数而绝不是限制性的,并且只是示例性实施例。当阅读以上描述时,权利要求的精神和范围内的很多其它实施例和变型对于本领域技术人员而言将会是清楚的。因此,本发明的范围应该参照所附权利要求以及这些权利要求的等同物的全部范围来确定。在所附权利要求中,术语“包括”和“在其中”用作各术语“包含”和“其中”的通俗英语等同物。此外,在下面的权利要求中,术语“第一”、“第二”和“第三”等仅用作标签而非对它们的目标施加数字要求。另外,下面权利要求的限制未以装置加功能的格式书写并且不应基于35U.S.C.§112第六段进行解释,除非这种权利要求限制明确使用词语“用于...的装置”并且后面跟着没有另外的结构的功能的陈述。

Claims (26)

1.一种太阳能电池组件,包括:
非导电衬底;
设置在衬底上方的以电气方式互相连接的多个太阳能电池,太阳能电池中的至少一个包括:
反射电极,设置在衬底上方;
硅层堆叠,包括设置在反射电极上方的n掺杂层、设置在n掺杂层上方的本征层和设置在本征层上方的p掺杂层;和
透光电极,设置在硅层堆叠上方;以及
设置在电池之间的上分离间隙,上分离间隙使太阳能电池中的透光电极彼此电气分离,其中太阳能电池之一的透光电极以电气方式连接到另一太阳能电池的反射电极。
2.如权利要求1所述的太阳能电池组件,其中多个太阳能电池包括以电气方式串联连接的至少25个太阳能电池。
3.如权利要求1所述的太阳能电池组件,其中上分离间隙在太阳能电池中的透光电极之间露出硅层堆叠。
4.如权利要求1所述的太阳能电池组件,其中当相邻太阳能电池中的反射电极和透光电极之间的电压差在-0.1和0.1伏特之间时,在分离间隙中在透光电极之间延伸的硅层堆叠的区域具有至少大约1000欧姆*cm2的面积比电分流电阻。
5.如权利要求1所述的太阳能电池组件,其中当相邻太阳能电池中的反射电极和透光电极之间的电压差在-0.1和0.1伏特之间时,在分离间隙中在透光电极之间延伸的硅层堆叠的区域具有至少大约500欧姆*cm2的面积比电分流电阻。
6.如权利要求1所述的太阳能电池组件,还包括:设置在反射电极和硅层堆叠之间的缓冲层。
7.如权利要求1所述的太阳能电池组件,还包括:设置在太阳能电池之间的下分离间隙,下分离间隙使太阳能电池中的反射电极彼此电气分离。
8.如权利要求1所述的太阳能电池组件,其中硅层堆叠设置为微晶硅层堆叠。
9.如权利要求1所述的太阳能电池组件,其中硅层堆叠包括n掺杂层、本征层和p掺杂层的底部层堆叠,硅层堆叠还包括设置在底部层堆叠上方的顶部层堆叠,顶部层堆叠包括顶部堆叠n掺杂层、设置在顶部堆叠n掺杂层上方的顶部堆叠本征层和设置在顶部堆叠本征层上方的顶部堆叠p掺杂层。
10.如权利要求9所述的太阳能电池组件,还包括:设置在底部层堆叠和顶部层堆叠之间的夹层,夹层至少部分地把入射光反射回至顶部层堆叠。
11.如权利要求9所述的太阳能电池组件,其中底部层堆叠的本征层是SiH2的含量为大约2.5原子%或更小的非晶本征层。
12.如权利要求1所述的太阳能电池组件,其中所述本征层的SiH2的含量为大约2.5原子%或更小。
13.如权利要求1所述的太阳能电池组件,还包括:设置在太阳能电池之间的硅层间间隙,硅层间间隙使相邻太阳能电池中的透光电极分离,其中硅层间间隙包括具有圆形烧蚀标记的基本上直线的激光划片线。
14.一种制造具有以电气方式互相连接的多个太阳能电池的太阳能电池组件的方法,该方法包括:
设置衬底、反射电极、硅层堆叠和透光电极,硅层堆叠包括设置在反射电极上方的n掺杂层、设置在n掺杂层上方的本征层和设置在本征层上方的p掺杂层;和
去除透光电极的部分以便使太阳能电池中的透光电极彼此电气分离,其中通过使透光电极从太阳能电池组件的与衬底相对的一侧暴露于图形化技术以去除所述部分。
15.如权利要求14所述的方法,其中图形化技术包括激光。
16.如权利要求14所述的方法,其中图形化技术包括脉冲持续时间为大约1000皮秒或更短的激光。
17.如权利要求14所述的方法,其中图形化技术包括脉冲持续时间为大约30纳秒或更短的激光。
18.如权利要求14所述的方法,其中去除透光电极的部分的步骤使太阳能电池之间的硅层堆叠的区域露出,当相邻太阳能电池中的反射电极和透光电极之间的电压差在-0.1和0.1伏特之间时,该露出的区域具有至少大约1000欧姆*cm2的面积比电阻。
19.如权利要求14所述的方法,其中去除透光电极的部分的步骤使太阳能电池之间的硅层堆叠的区域露出,当相邻太阳能电池中的反射电极和透光电极之间的电压差在-0.1和0.1伏特之间时,该露出的区域具有至少大约500欧姆*cm2的面积比电阻。
20.如权利要求14所述的方法,其中设置的步骤包括:在衬底上方设置反射电极,在反射电极上方设置硅层堆叠,在硅层堆叠上方设置透光电极。
21.如权利要求14所述的方法,其中设置的步骤包括:在比硅层堆叠的p掺杂层更高的温度沉积硅层堆叠的本征层。
22.一种太阳能电池组件,包括:
非导电衬底;
设置在衬底上方的以电气方式互相连接的多个太阳能电池,太阳能电池中的至少一个包括:
反射电极,设置在衬底上方;
底部硅层堆叠,包括沉积在反射电极上方的N-I-P层堆叠;
顶部硅层堆叠,包括沉积在底部硅层堆叠上方的N-I-P层堆叠;和
透光电极,设置在顶部硅层堆叠上方;以及
设置在电池之间的上分离间隙,上分离间隙使太阳能电池中的透光电极彼此电气分离,其中太阳能电池之一的透光电极以电气方式连接到另一太阳能电池的反射电极。
23.如权利要求22所述的太阳能电池组件,其中底部硅层堆叠和顶部硅层堆叠都包括非晶N-I-P层堆叠。
24.如权利要求22所述的太阳能电池组件,其中底部硅层堆叠是微晶N-I-P层堆叠,顶部硅层堆叠是非晶N-I-P层堆叠。
25.如权利要求22所述的太阳能电池组件,其中当相邻太阳能电池中的反射电极和透光电极之间的电压差在-0.1和0.1伏特之间时,在上分离间隙中在透光电极之间延伸的顶部硅层堆叠的区域具有至少大约1000欧姆*cm2的面积比电分流电阻。
26.如权利要求22所述的太阳能电池组件,还包括:设置在太阳能电池之间的半导体层间间隙,半导体层间间隙使太阳能电池中的透光电极彼此分离,其中半导体层间间隙包括激光划片线。
CN2009801378058A 2008-09-29 2009-09-29 单片集成太阳能电池组件 Pending CN102165604A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10102208P 2008-09-29 2008-09-29
US61/101,022 2008-09-29
PCT/US2009/058805 WO2010037102A2 (en) 2008-09-29 2009-09-29 Monolithically-integrated solar module

Publications (1)

Publication Number Publication Date
CN102165604A true CN102165604A (zh) 2011-08-24

Family

ID=42056088

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009801378058A Pending CN102165604A (zh) 2008-09-29 2009-09-29 单片集成太阳能电池组件

Country Status (6)

Country Link
US (1) US20100078064A1 (zh)
EP (1) EP2332177A4 (zh)
JP (1) JP2012504350A (zh)
KR (1) KR101308324B1 (zh)
CN (1) CN102165604A (zh)
WO (1) WO2010037102A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104081537A (zh) * 2012-01-04 2014-10-01 Esi派罗弗特尼克斯雷射股份有限公司 使用不连续激光刻划线的方法及结构

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080072953A1 (en) * 2006-09-27 2008-03-27 Thinsilicon Corp. Back contact device for photovoltaic cells and method of manufacturing a back contact device
WO2008150769A2 (en) * 2007-05-31 2008-12-11 Thinsilicon Corporation Photovoltaic device and method of manufacturing photovoltaic devices
US20100282314A1 (en) * 2009-05-06 2010-11-11 Thinsilicion Corporation Photovoltaic cells and methods to enhance light trapping in semiconductor layer stacks
US20110114156A1 (en) * 2009-06-10 2011-05-19 Thinsilicon Corporation Photovoltaic modules having a built-in bypass diode and methods for manufacturing photovoltaic modules having a built-in bypass diode
EP2441095A4 (en) * 2009-06-10 2013-07-03 Thinsilicon Corp PV MODULES AND METHOD FOR PRODUCING PV MODULES WITH TANDEM SEMICONDUCTOR LAYERING PLATES
TWI397189B (zh) * 2009-12-24 2013-05-21 Au Optronics Corp 製作太陽能薄膜電池之方法及其結構
US8114702B2 (en) 2010-06-07 2012-02-14 Boris Gilman Method of manufacturing a monolithic thin-film photovoltaic device with enhanced output voltage
US8563351B2 (en) * 2010-06-25 2013-10-22 Taiwan Semiconductor Manufacturing Co., Ltd. Method for manufacturing photovoltaic device
US20130014800A1 (en) * 2011-07-13 2013-01-17 Thinsilicon Corporation Photovoltaic device and method for scribing a photovoltaic device
KR101258185B1 (ko) 2011-07-22 2013-04-25 광주과학기술원 태양전지 모듈 및 이의 제조방법
USD1009775S1 (en) 2014-10-15 2024-01-02 Maxeon Solar Pte. Ltd. Solar panel
US10090430B2 (en) 2014-05-27 2018-10-02 Sunpower Corporation System for manufacturing a shingled solar cell module
USD933584S1 (en) 2012-11-08 2021-10-19 Sunpower Corporation Solar panel
US9780253B2 (en) 2014-05-27 2017-10-03 Sunpower Corporation Shingled solar cell module
US9947820B2 (en) 2014-05-27 2018-04-17 Sunpower Corporation Shingled solar cell panel employing hidden taps
US20140124014A1 (en) 2012-11-08 2014-05-08 Cogenra Solar, Inc. High efficiency configuration for solar cell string
US11942561B2 (en) 2014-05-27 2024-03-26 Maxeon Solar Pte. Ltd. Shingled solar cell module
US11482639B2 (en) 2014-05-27 2022-10-25 Sunpower Corporation Shingled solar cell module
USD933585S1 (en) 2014-10-15 2021-10-19 Sunpower Corporation Solar panel
USD896747S1 (en) 2014-10-15 2020-09-22 Sunpower Corporation Solar panel
USD913210S1 (en) 2014-10-15 2021-03-16 Sunpower Corporation Solar panel
USD999723S1 (en) 2014-10-15 2023-09-26 Sunpower Corporation Solar panel
US10861999B2 (en) 2015-04-21 2020-12-08 Sunpower Corporation Shingled solar cell module comprising hidden tap interconnects
WO2017030695A1 (en) 2015-08-18 2017-02-23 Sunpower Corporation Solar panel
US10673379B2 (en) 2016-06-08 2020-06-02 Sunpower Corporation Systems and methods for reworking shingled solar cell modules
DE202017107931U1 (de) * 2017-12-28 2019-04-01 Inalfa Roof Systems Group B.V. Dachkonstruktion für ein Fahrzeug und ein semi-transparentes Photovoltaik-Paneel darin

Family Cites Families (112)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2609564A1 (de) * 1976-03-08 1977-09-15 Siemens Ag Verfahren zum abscheiden von elementarem silicium aus der gasphase
US4260427A (en) * 1979-06-18 1981-04-07 Ametek, Inc. CdTe Schottky barrier photovoltaic cell
US4282295A (en) * 1979-08-06 1981-08-04 Honeywell Inc. Element for thermoplastic recording
US4292092A (en) * 1980-06-02 1981-09-29 Rca Corporation Laser processing technique for fabricating series-connected and tandem junction series-connected solar cells into a solar battery
US4891074A (en) * 1980-11-13 1990-01-02 Energy Conversion Devices, Inc. Multiple cell photoresponsive amorphous alloys and devices
HU184389B (en) * 1981-02-27 1984-08-28 Villamos Ipari Kutato Intezet Method and apparatus for destroying wastes by using of plasmatechnic
JPS58197775A (ja) * 1982-05-13 1983-11-17 Canon Inc 薄膜トランジスタ
EP0097883B1 (de) * 1982-06-26 1987-09-16 AUTE Gesellschaft für autogene Technik mbH Einteilige Kurzdüse für einen Brenner zum thermochemischen Trennen oder Hobeln
JPS6150378A (ja) * 1984-08-20 1986-03-12 Mitsui Toatsu Chem Inc 非晶質太陽電池の製法
US4795500A (en) * 1985-07-02 1989-01-03 Sanyo Electric Co., Ltd. Photovoltaic device
US4776894A (en) * 1986-08-18 1988-10-11 Sanyo Electric Co., Ltd. Photovoltaic device
US4826668A (en) * 1987-06-11 1989-05-02 Union Carbide Corporation Process for the production of ultra high purity polycrystalline silicon
JPH01134976A (ja) * 1987-11-20 1989-05-26 Mitsubishi Electric Corp 太陽電池の製造方法
US5281541A (en) * 1990-09-07 1994-01-25 Canon Kabushiki Kaisha Method for repairing an electrically short-circuited semiconductor device, and process for producing a semiconductor device utilizing said method
JP2804839B2 (ja) * 1990-10-17 1998-09-30 三菱電機株式会社 半導体装置の製造方法
US5221365A (en) * 1990-10-22 1993-06-22 Sanyo Electric Co., Ltd. Photovoltaic cell and method of manufacturing polycrystalline semiconductive film
US5273911A (en) * 1991-03-07 1993-12-28 Mitsubishi Denki Kabushiki Kaisha Method of producing a thin-film solar cell
US5147568A (en) * 1991-05-07 1992-09-15 Ciba-Geigy Corporation Substituted 2,3-dihydroperimidine stabilizers
JP2908067B2 (ja) * 1991-05-09 1999-06-21 キヤノン株式会社 太陽電池用基板および太陽電池
US5501744A (en) * 1992-01-13 1996-03-26 Photon Energy, Inc. Photovoltaic cell having a p-type polycrystalline layer with large crystals
DE4324318C1 (de) * 1993-07-20 1995-01-12 Siemens Ag Verfahren zur Serienverschaltung einer integrierten Dünnfilmsolarzellenanordnung
JPH0779004A (ja) * 1993-09-08 1995-03-20 Fuji Electric Co Ltd 薄膜太陽電池
US5538564A (en) * 1994-03-18 1996-07-23 Regents Of The University Of California Three dimensional amorphous silicon/microcrystalline silicon solar cells
CN1135635C (zh) * 1994-03-25 2004-01-21 阿莫科/恩龙太阳公司 增强光电器件和电子器件的光和电特性的等离子淀积工艺
JP3651932B2 (ja) * 1994-08-24 2005-05-25 キヤノン株式会社 光起電力素子用裏面反射層及びその形成方法並びに光起電力素子及びその製造方法
AUPM996094A0 (en) * 1994-12-08 1995-01-05 Pacific Solar Pty Limited Multilayer solar cells with bypass diode protection
JP3653800B2 (ja) * 1995-06-15 2005-06-02 株式会社カネカ 集積化薄膜太陽電池の製造方法
JP3017422B2 (ja) * 1995-09-11 2000-03-06 キヤノン株式会社 光起電力素子アレー及びその製造方法
US5824566A (en) * 1995-09-26 1998-10-20 Canon Kabushiki Kaisha Method of producing a photovoltaic device
US5885884A (en) * 1995-09-29 1999-03-23 Intel Corporation Process for fabricating a microcrystalline silicon structure
JPH09129561A (ja) * 1995-11-06 1997-05-16 Teisan Kk ガス回収装置
US5977476A (en) * 1996-10-16 1999-11-02 United Solar Systems Corporation High efficiency photovoltaic device
US6087580A (en) * 1996-12-12 2000-07-11 Energy Conversion Devices, Inc. Semiconductor having large volume fraction of intermediate range order material
JP3935237B2 (ja) * 1997-03-11 2007-06-20 キヤノン株式会社 光電気変換体及び建材
JPH1197733A (ja) * 1997-09-18 1999-04-09 Sanyo Electric Co Ltd 光起電力装置
US6099649A (en) * 1997-12-23 2000-08-08 Applied Materials, Inc. Chemical vapor deposition hot-trap for unreacted precursor conversion and effluent removal
JPH11195795A (ja) * 1998-01-05 1999-07-21 Kanegafuchi Chem Ind Co Ltd 集積型シリコン系薄膜光電変換装置とその製造方法
JP3252780B2 (ja) * 1998-01-16 2002-02-04 日本電気株式会社 シリコン層のエッチング方法
US6248948B1 (en) * 1998-05-15 2001-06-19 Canon Kabushiki Kaisha Solar cell module and method of producing the same
US6278054B1 (en) * 1998-05-28 2001-08-21 Tecstar Power Systems, Inc. Solar cell having an integral monolithically grown bypass diode
WO1999063600A1 (en) * 1998-06-01 1999-12-09 Kaneka Corporation Silicon-base thin-film photoelectric device
JP3754841B2 (ja) * 1998-06-11 2006-03-15 キヤノン株式会社 光起電力素子およびその製造方法
JP2000009037A (ja) * 1998-06-18 2000-01-11 Fujitsu Ltd 排気装置及び排気方法
US6077722A (en) * 1998-07-14 2000-06-20 Bp Solarex Producing thin film photovoltaic modules with high integrity interconnects and dual layer contacts
US6468828B1 (en) * 1998-07-14 2002-10-22 Sky Solar L.L.C. Method of manufacturing lightweight, high efficiency photovoltaic module
US6281555B1 (en) * 1998-11-06 2001-08-28 Advanced Micro Devices, Inc. Integrated circuit having isolation structures
US6197698B1 (en) * 1999-06-28 2001-03-06 United Microelectronics Corp. Method for etching a poly-silicon layer of a semiconductor wafer
US7103684B2 (en) * 2003-12-02 2006-09-05 Super Talent Electronics, Inc. Single-chip USB controller reading power-on boot code from integrated flash memory for user storage
US6863019B2 (en) * 2000-06-13 2005-03-08 Applied Materials, Inc. Semiconductor device fabrication chamber cleaning method and apparatus with recirculation of cleaning gas
WO2002005352A2 (en) * 2000-07-06 2002-01-17 Bp Corporation North America Inc. Partially transparent photovoltaic modules
US7906229B2 (en) * 2007-03-08 2011-03-15 Amit Goyal Semiconductor-based, large-area, flexible, electronic devices
JP3513592B2 (ja) * 2000-09-25 2004-03-31 独立行政法人産業技術総合研究所 太陽電池の製造方法
US6632993B2 (en) * 2000-10-05 2003-10-14 Kaneka Corporation Photovoltaic module
JP2002231986A (ja) * 2001-02-07 2002-08-16 Mitsubishi Heavy Ind Ltd 集積型薄膜太陽電池の製造方法
KR20020066689A (ko) * 2001-02-13 2002-08-21 조주환 고 광전변환 효율을 갖는 태양전지의 제조방법
US6737361B2 (en) * 2001-04-06 2004-05-18 Wafermaster, Inc Method for H2 Recycling in semiconductor processing system
JP4201241B2 (ja) * 2001-05-17 2008-12-24 株式会社カネカ 集積型薄膜光電変換モジュールの作製方法
JP4560245B2 (ja) * 2001-06-29 2010-10-13 キヤノン株式会社 光起電力素子
US6858196B2 (en) * 2001-07-19 2005-02-22 Asm America, Inc. Method and apparatus for chemical synthesis
US20030178057A1 (en) * 2001-10-24 2003-09-25 Shuichi Fujii Solar cell, manufacturing method thereof and electrode material
US7259321B2 (en) * 2002-01-07 2007-08-21 Bp Corporation North America Inc. Method of manufacturing thin film photovoltaic modules
JP2003209271A (ja) * 2002-01-16 2003-07-25 Hitachi Ltd 太陽電池およびその製造方法
JP2003347572A (ja) * 2002-01-28 2003-12-05 Kanegafuchi Chem Ind Co Ltd タンデム型薄膜光電変換装置とその製造方法
CN100336210C (zh) * 2002-02-01 2007-09-05 壳牌阳光有限公司 由含聚合多元醇的可固化树脂制造的隔离层
JP2003298089A (ja) * 2002-04-02 2003-10-17 Kanegafuchi Chem Ind Co Ltd タンデム型薄膜光電変換装置とその製造方法
US6818533B2 (en) * 2002-05-09 2004-11-16 Taiwan Semiconductor Manufacturing Co., Ltd Epitaxial plasma enhanced chemical vapor deposition (PECVD) method providing epitaxial layer with attenuated defects
JP4078137B2 (ja) * 2002-07-04 2008-04-23 三菱重工業株式会社 レーザービームのパルス幅の設定方法
JP2004165394A (ja) * 2002-11-13 2004-06-10 Canon Inc 積層型光起電力素子
AU2003297649A1 (en) * 2002-12-05 2004-06-30 Blue Photonics, Inc. High efficiency, monolithic multijunction solar cells containing lattice-mismatched materials and methods of forming same
US20080105303A1 (en) * 2003-01-03 2008-05-08 Bp Corporation North America Inc. Method and Manufacturing Thin Film Photovoltaic Modules
US20040231590A1 (en) * 2003-05-19 2004-11-25 Ovshinsky Stanford R. Deposition apparatus for the formation of polycrystalline materials on mobile substrates
JP4186725B2 (ja) * 2003-06-24 2008-11-26 トヨタ自動車株式会社 光電変換素子
ES2405597T3 (es) * 2003-07-24 2013-05-31 Kaneka Corporation Convertidor fotoeléctrico apilado
JP2005072157A (ja) * 2003-08-22 2005-03-17 Mitsubishi Heavy Ind Ltd 電力変換装置
JP4194468B2 (ja) * 2003-10-10 2008-12-10 シャープ株式会社 太陽電池およびその製造方法
JP2005197597A (ja) * 2004-01-09 2005-07-21 Sharp Corp 多接合型太陽電池
JP2005197608A (ja) * 2004-01-09 2005-07-21 Mitsubishi Heavy Ind Ltd 光電変換装置
BRPI0506541A (pt) * 2004-01-20 2007-02-27 Cyrium Technologies Inc célula solar com material de ponto quántico epitaxialmente crescido
JP2005294326A (ja) * 2004-03-31 2005-10-20 Canon Inc 光起電力素子及びその製造方法
JP2005308832A (ja) * 2004-04-16 2005-11-04 Sharp Corp 表示装置、及び、表示装置の製造方法
US7846822B2 (en) * 2004-07-30 2010-12-07 The Board Of Trustees Of The University Of Illinois Methods for controlling dopant concentration and activation in semiconductor structures
DE102004050269A1 (de) * 2004-10-14 2006-04-20 Institut Für Solarenergieforschung Gmbh Verfahren zur Kontakttrennung elektrisch leitfähiger Schichten auf rückkontaktierten Solarzellen und Solarzelle
US20060108688A1 (en) * 2004-11-19 2006-05-25 California Institute Of Technology Large grained polycrystalline silicon and method of making same
JPWO2006057161A1 (ja) * 2004-11-29 2008-06-05 株式会社カネカ 薄膜光電変換装置用基板、及びそれを備えた薄膜光電変換装置
US7368000B2 (en) * 2004-12-22 2008-05-06 The Boc Group Plc Treatment of effluent gases
US7554031B2 (en) * 2005-03-03 2009-06-30 Sunpower Corporation Preventing harmful polarization of solar cells
JP4355321B2 (ja) * 2005-03-04 2009-10-28 株式会社ニューフレアテクノロジー 気相成長装置
FR2883663B1 (fr) * 2005-03-22 2007-05-11 Commissariat Energie Atomique Procede de fabrication d'une cellule photovoltaique a base de silicium en couche mince.
WO2006120735A1 (ja) * 2005-05-11 2006-11-16 Mitsubishi Denki Kabushiki Kaisha 太陽電池およびその製造方法
JP2007067001A (ja) * 2005-08-29 2007-03-15 Sharp Corp 薄膜太陽電池モジュール及びその製造方法
EP1920468B1 (en) * 2005-09-01 2014-02-26 Merck Patent GmbH Photovoltaic cells integrated with bypass diode
US7687707B2 (en) * 2005-11-16 2010-03-30 Emcore Solar Power, Inc. Via structures in solar cells with bypass diode
JP5180590B2 (ja) * 2005-12-26 2013-04-10 株式会社カネカ 積層型光電変換装置
US7718888B2 (en) * 2005-12-30 2010-05-18 Sunpower Corporation Solar cell having polymer heterojunction contacts
US20070272666A1 (en) * 2006-05-25 2007-11-29 O'brien James N Infrared laser wafer scribing using short pulses
US8624157B2 (en) * 2006-05-25 2014-01-07 Electro Scientific Industries, Inc. Ultrashort laser pulse wafer scribing
GB2439962B (en) * 2006-06-14 2008-09-24 Exitech Ltd Process and apparatus for laser scribing
JP2007331983A (ja) * 2006-06-15 2007-12-27 Sony Corp ガラスのスクライブ方法
US20080072953A1 (en) * 2006-09-27 2008-03-27 Thinsilicon Corp. Back contact device for photovoltaic cells and method of manufacturing a back contact device
US8012317B2 (en) * 2006-11-02 2011-09-06 Guardian Industries Corp. Front electrode including transparent conductive coating on patterned glass substrate for use in photovoltaic device and method of making same
US20080149173A1 (en) * 2006-12-21 2008-06-26 Sharps Paul R Inverted metamorphic solar cell with bypass diode
US7982127B2 (en) * 2006-12-29 2011-07-19 Industrial Technology Research Institute Thin film solar cell module of see-through type
AU2007346981B2 (en) * 2007-02-16 2013-08-22 Mitsubishi Heavy Industries, Ltd. Photovoltaic device and process for producing same
US20080223436A1 (en) * 2007-03-15 2008-09-18 Guardian Industries Corp. Back reflector for use in photovoltaic device
KR20100015811A (ko) * 2007-03-22 2010-02-12 유나이티드 솔라 오보닉 엘엘씨 초경량 반도체 장치의 레이저 스크라이빙을 위한 방법 및 장치
US7911622B2 (en) * 2007-06-15 2011-03-22 The Board Of Trustees Of The Leland Stanford Junior University System and method for using slow light in optical sensors
US20090017206A1 (en) * 2007-06-16 2009-01-15 Applied Materials, Inc. Methods and apparatus for reducing the consumption of reagents in electronic device manufacturing processes
JP2007324633A (ja) * 2007-09-14 2007-12-13 Masayoshi Murata 集積化タンデム型薄膜シリコン太陽電池モジュール及びその製造方法
US20090101201A1 (en) * 2007-10-22 2009-04-23 White John M Nip-nip thin-film photovoltaic structure
KR101608953B1 (ko) * 2007-11-09 2016-04-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 광전 변환 장치 및 그 제조 방법
KR100976696B1 (ko) * 2008-07-10 2010-08-18 주식회사 하이닉스반도체 불휘발성 메모리 장치의 프로그램 방법
US20100059110A1 (en) * 2008-09-11 2010-03-11 Applied Materials, Inc. Microcrystalline silicon alloys for thin film and wafer based solar applications

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104081537A (zh) * 2012-01-04 2014-10-01 Esi派罗弗特尼克斯雷射股份有限公司 使用不连续激光刻划线的方法及结构

Also Published As

Publication number Publication date
EP2332177A2 (en) 2011-06-15
JP2012504350A (ja) 2012-02-16
US20100078064A1 (en) 2010-04-01
KR101308324B1 (ko) 2013-09-17
WO2010037102A2 (en) 2010-04-01
WO2010037102A3 (en) 2010-07-01
KR20110079692A (ko) 2011-07-07
EP2332177A4 (en) 2012-12-26

Similar Documents

Publication Publication Date Title
CN102165604A (zh) 单片集成太阳能电池组件
US20180175234A1 (en) Array Of Monolithically Integrated Thin Film Photovoltaic Cells And Associated Methods
CN204928739U (zh) 双面太阳能面板和双面太阳能电池
KR101319750B1 (ko) 반도체 다층 스택을 구비한 광전지 모듈 및 광전지 모듈의 제작 방법
US8906733B2 (en) Methods for forming nanostructures and photovoltaic cells implementing same
US20130000700A1 (en) Solar cell and manufacturing method of the same
CN102612754A (zh) 用于具有亚波长和超波长特征尺寸的光伏电池的有孔电极格栅
EP2963691B1 (en) Solar cell
CN101779295A (zh) 光电转换装置及其制造方法
CN102318074A (zh) 太阳能电池及其制造方法
JP2011114153A (ja) 光電変換装置およびその製造方法
Gress et al. Wire bonding as a cell interconnection technique for polycrystalline silicon thin‐film solar cells on glass
CN102918657A (zh) 光伏模块和制造具有电极扩散层的光伏模块的方法
EP2073269A1 (en) Method for providing a series connection in a solar cell system
KR101166456B1 (ko) 태양전지 및 그 제조방법
JP2011124474A (ja) 多接合型太陽電池、該多接合型太陽電池を備えた太陽電池モジュール、及び該多接合型太陽電池の製造方法
US20130014800A1 (en) Photovoltaic device and method for scribing a photovoltaic device
Chowdhury et al. Analysis of cell to module loss factor for shingled PV module
DE202013012571U1 (de) Herstellungsanlage zur Herstellung eines Photovoltaikmoduls sowie Photovoltaikmodul
JP5539081B2 (ja) 集積型薄膜光電変換装置の製造方法
JP2010171127A (ja) 薄膜太陽電池およびその製造方法
CN113690339A (zh) 一种太阳能电池组件的制作方法和系统
JP2008091532A (ja) 太陽電池モジュール
JP2003298090A (ja) 太陽電池素子およびその製造方法
EP2251909A2 (en) Solar cell structure and manufacturing method thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20110824