CN101091258B - 具有减小的密勒电容的mos栅控晶体管 - Google Patents

具有减小的密勒电容的mos栅控晶体管 Download PDF

Info

Publication number
CN101091258B
CN101091258B CN2005800343157A CN200580034315A CN101091258B CN 101091258 B CN101091258 B CN 101091258B CN 2005800343157 A CN2005800343157 A CN 2005800343157A CN 200580034315 A CN200580034315 A CN 200580034315A CN 101091258 B CN101091258 B CN 101091258B
Authority
CN
China
Prior art keywords
well region
district
conduction type
groove
gate trench
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2005800343157A
Other languages
English (en)
Other versions
CN101091258A (zh
Inventor
普拉韦恩·穆拉利德哈伦·谢诺
克里斯多佛·博古斯洛·科库
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fairchild Semiconductor Corp
Original Assignee
Fairchild Semiconductor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fairchild Semiconductor Corp filed Critical Fairchild Semiconductor Corp
Publication of CN101091258A publication Critical patent/CN101091258A/zh
Application granted granted Critical
Publication of CN101091258B publication Critical patent/CN101091258B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7831Field effect transistors with field effect produced by an insulated gate with multiple gate structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

在本发明的一个实施例中,沟槽MOS栅控晶体管包括:第一导电类型的第一区,其与第二导电类型的阱区形成pn结。阱区具有平坦底部和延伸深于平坦底部的部分。栅极沟槽延伸进阱区。沟道区沿栅极沟槽的外部侧壁在阱区中延伸。栅极沟槽具有终止在第一区内的第一底部和终止在阱区的更深部分内的第二底部,使得当晶体管处于导通状态时,阱区的更深部分防止电流流过直接位于阱区更深部分上的那些沟道区部分。

Description

具有减小的密勒电容的MOS栅控晶体管
技术领域
本发明总的来说涉及半导体功率器件,具体地,涉及一种具有减小的密勒电容的沟槽MOS栅控晶体管。
背景技术
图1示出了传统垂直沟槽的栅极MOSFET 100的简化截面图。n型导电类型的外延层104在形成漏极接触区的n型基片102之上延伸。p型导电类型的阱区106形成在外延层104的上部中。栅极沟槽109延伸穿过阱区106,并正好终止于外延层104和阱区106之间的界面之下。沿着栅极沟槽109的侧壁和底部以介电层112作为衬里,并且栅极沟槽109中填充有形成晶体管栅极的多晶硅材料110。源极区108分布在沟槽109的每一侧,并沿垂直尺度与栅极110交叠。在导通状态下,电流垂直地从漏极端114流向源极端116,其中,穿过基片102、外延层104、沿沟槽109外部侧壁的阱区106中的沟道区、最后穿过源极区108。
外延层104和基片102一起形成漏极区。可以看出,栅极110沿着沟槽109的底部与漏极区交叠。为了改善晶体管的开关速度,期望将这种栅极-漏极交叠最小化。栅极-漏极电荷Qgd与该交叠区成比例,并与沿沟槽109底部的电介质厚度成反比。已经提出了若干减小Qgd的方法,包括:减小沟槽宽度、沿沟槽底部使用较厚的电介质、除去沿沟槽平坦底部部分的栅极部分、以及延伸p型阱区至稍微深于沟槽。这些技术的每一种均具有其自身的优点和缺点。某些技术要求更加复杂的工艺技术,而其它技术在没有不利地影响其它器件特性的情况下不能有效地减小Qgd。
因此,期望一种具有改善特性(包括充分减小的密勒电容)且易于制造的MOS栅控晶体管。
发明内容
根据本发明的一个实施例,沟槽MOS栅控晶体管包括与第二导电类型的阱区形成pn结的第一导电类型的第一区。阱区具有平坦底部和延伸深于平坦底部的部分。栅极沟槽延伸到阱区中。沟道区沿栅极沟槽的外部侧壁在阱区中延伸。栅极沟槽具有终止在第一区内的第一底部以及终止在阱区的更深部分内的第二部分,使得当晶体管处于导通状态时,阱区的更深部分防止电流流过直接位于阱区的更深部分上方的那些沟道区部分。
根据本发明的另一个实施例,沟槽MOS栅控晶体管包括硅基片上的第一导电类型的硅层。第二导电类型的阱区形成在硅层的上部中。栅极沟槽延伸穿过阱区并终止在硅层内。第一导电类型的源极区分布在栅极沟槽的每一侧。栅极沟槽填充有至少到达源极区并与源极区部分交叠的多晶硅材料。第二导电类型的硅区沿沟槽的底部延伸,使得在硅区和阱区之间形成间隙,当晶体管处于导通状态时,电流通过该间隙流动。
根据本发明另一个实施例,如下形成沟槽MOS栅控晶体管。设置第一导电类型的第一区。然后,在第一区的上部中形成第二导电类型的阱区。形成延伸穿过阱区并终止在第一区内的沟槽。沿沟槽底部的预定部分注入第二导电类型的掺杂物,以沿沟槽底部形成与阱区邻接的区域,使得当晶体管处于导通状态时,阱区的更深部分防止电流流过直接位于阱区更深部分上方的那些沟道区部分。
根据本发明的又一实施例,如下形成沟槽MOS栅控晶体管。在基片上方形成第一导电类型的外延层。在外延层的上部中形成第二导电类型的阱区。形成延伸穿过阱区并终止在外延层内的沟槽。沿沟槽底部注入第二导电类型的掺杂物,以形成沿沟槽底部延伸的第二导电类型的区域,使得在第二导电类型的区域和阱区之间形成间隙,当晶体管处于导通状态时,电流通过该间隙流动。
将参照附图和以下详细的描述,描述本发明的这些和其它实施例。
附图说明
图1示出了传统垂直沟槽栅极MOSFET的简化截面图;
图2A示出了根据本发明一个实施例的垂直沟槽栅极MOSFET的简化截面图;
图2B示出了图2A中的垂直沟槽栅极MOSFET的简化顶视布局图;
图3示出了根据本发明另一实施例的垂直沟槽栅极MOSFET的简化截面图;
图4示出了本发明可选实施例的简化顶视布局图,其中,结合了图2A和图3的单元结构;
图5示出了图2A中MOSFET实施例的电流和电压波形与现有技术的图1中MOSFET的电流和电压波形;以及
图6示出了图3中MOSFET的电流和电压波形与现有技术的图1中MOSFET的电流和电压波形。
具体实施方式
根据本发明的一个实施例,通过使用沟槽栅极下方的注入区来减小MOSFET的栅极-漏极电容,其中,注入区与MOSFET的阱区邻接。注入区使形成在其上方的沟槽区不起作用(inactive),是因为其阻挡了晶体管沟道对应部分中的导电。该实施例的一个适当应用将会是高压器件,其中,沟道电阻对晶体管导通电阻Rdson的贡献较小。在另一个实施例中,在栅极沟槽下方形成注入区,使得在注入区和阱区之间存在间隙,沟道电流可通过该间隙流动。在该实施例中,最小化了注入区对Rdson的影响,因此,该实施例的适当应用将会是低压器件。这两个实施例在要求紧密的沟槽单元间距(cell pitch)(例如,超结器件的紧密交替pn柱间距(pillar pitch))或低Rdson的设计中尤其有用。在单个MOSFET中可将这两个实施例结合起来。可选地,根据需要,可将这两个实施例中的一个与图1所示现有技术的结构结合起来。
图2A示出了根据本发明一个实施例的垂直沟槽栅极MOSFET200的简化截面图。n型导电类型的外延层204在形成漏极接触区的n型基片202上延伸。p型导电类型的阱区206形成在外延层204的上部中。栅极沟槽209延伸穿过阱区206。直接在沟槽209下方的阱区206的部分206a比阱区206的其它部分更深地延伸进外延层204,使得栅极沟槽209终止在部分206a内。沿着栅极沟槽209的侧壁和底部以介电层212作衬里。沟槽209填充有形成晶体管栅极的多晶硅材料210。源极区208分布在沟槽209的每一侧,并沿垂直尺度与栅极210交叠。在可选实施例中,沟槽209部分地填充有多晶硅材料和在多晶硅上方的介电材料。注意到,基片202、外延层204、包括部分206a的阱区206、以及源极区208中的一个或多个可由晶体硅(Si)、碳化硅(SiC)、氮化镓(GaN)、或锗化硅(SiGe)形成。
在图2A中,由于栅极210没有与外延层204交叠,所以在导通状态下没有在部分206a上形成沟道。在图2A实施例的一个变化中,如图2B中的简化顶视布局图所示,沟槽栅极单元为条形(即,以开放单元(open cell)结构设计)。条形沟槽栅极210垂直于分布在沟槽栅电极210每一侧的源极区208延伸。如图所示,更深延伸的阱部分206a被沿着条形沟槽栅电极210的长度周期地形成。在没有形成部分206a的地方(例如,沿虚线1-1),单元横截面与图1中的横截面类似(即,栅极沟槽210延伸穿过阱区206并终止在外延层204内,使得栅极沟槽沿垂直尺度与外延层交叠)。以这种方式,在导通状态下,沿着其下方没有形成更深延伸阱部分206a的沟槽侧壁的那些部分(以类似于上面参照图1描述的方式)建立电流。然而,在栅极下面形成更深延伸的阱部分206a的地方电流被阻挡。因此,栅极-漏极交叠被减小对应于部分206a的数量。而且,由于总的阱区206尺寸增加,所以栅极-源极电容或Qgs增加。因此,Qgd/Qgs比有利地进一步减小。从而,充分改善了MOSFET的开关特性。
在一个实施例中,如下形成图2A中的结构。使用传统技术在基片202上形成外延层204。使用已知技术,通过注入并推进p型掺杂物在外延层204的上部中形成阱区206。然后,通过使用传统的硅蚀刻技术蚀刻硅来形成沟槽209。使用掩蔽层,然后选择性地对沟槽209的底部注入p型掺杂物,由此形成区206a。在一个实施例中,使用在1×1013~1×1014cm-3范围内的注入剂量以及40~120KeV范围内的注入能量。在另一个实施例中,区206a最深点的厚度在0.2~0.4μm的范围内。介电层212、填充沟槽209的掺杂多晶硅210、以及源极区208都是使用传统方法形成的。
图3示出了根据本发明另一个实施例的垂直沟槽栅极MOSFET300的简化截面图。除了替代更深延伸的阱部分206a直接在沟槽309下形成p型区307之外,MOSFET 300的截面图与图2A中的类似。如图3中所示,形成区307,使得在沟槽309的每一个底部拐角处在阱区306和区307之间存在间隙。在导通状态期间,电流流过这些间隙。因此,通过使用具有如图所示间隙的区307,显著减小了栅极-漏极交叠,而没有阻挡电流。在一个实施例中,使用30~80KeV范围内的注入能量,通过执行穿过沟槽底部的浅硼注入来形成区307。在一个实施例中,区307具有0.1~0.3μm范围的厚度,并且区307和阱区306之间的间隙在0.1~0.3μm的范围内。如图2A中的实施例,基片302、外延层304、阱区306、区307、以及源极区308中的一个或多个可由晶体硅(Si)、碳化硅(SiC)、氮化镓(GaN)、或锗化硅(SiGe)形成。
在条形单元布局实施例中,区307可以是沿条形沟槽栅极的长度连续的。区307可在条形沟槽栅极的末端或沿条形沟槽栅极的其它位置向上延伸,以与阱区306电接触。可选地,没有对区307加偏压,因此,使其电浮置。在一个可选实施例中,类似于图2B中所示的布局,沿条形的长度周期地形成许多p型区307,使得沿条形部分的单元结构(例如,虚线1-1处)类似于现有技术图1中的单元结构。可选地,如图4中的布局图所示,可将图2A和图3的实施例结合起来。在图4中,区206a对应于图2A中的区206a,区307对应于图3中的区307。如由两个箭头所示,在形成区206a的地方,没有出现电流传导,但是电流可以在形成区307的地方以及在区206a和307之间的区域流动。区307和206a的特定配置不限于图4中所示的配置。许多其它配置也是可以的。在又一实施例中,区206a和307之间的区域被除去,使得沿该条形不存在类似于现有技术中形成的图1中所示的单元结构。
在本发明的一个实施例中,可以如下形成图2A中的阱区206和栅极沟槽下方的区206a以及图3中的阱区306和栅极沟槽下方的区307。执行将p型掺杂物注入外延层的浅覆盖注入(blanketimplant)(在有源区中)。然后,使用掩蔽层执行将p型掺杂物注入外延层的所选择的区中的深注入。可以以相反的顺序执行这两个注入步骤,然后执行温度循环,以将注入的掺杂物更深地推进到外延层中。结果,在外延层中形成对应于浅覆盖注入的阱区以及对应于深注入的预定硅区,使得预定硅区的最深部分深于阱区的底面。为了获得图2A中的结构,需要设计上述两个注入步骤和温度循环,以在推进掺杂物之后,硅区与阱区邻接。可选地,为了形成图3的结构,需要设计这两个注入步骤和温度循环,以在推进掺杂物以及形成栅极沟槽之后,在硅区中的每一个与阱区之间形成间隙。考虑到该公开,本领域的技术人员应该知道如何去设计两个注入步骤和温度循环,以获得图2A和图3中所示的结构。
在形成图2A中的阱区206和栅极沟槽下方的区206a以及图3中的阱区306和栅极沟槽下方的区307的另一种方法中,首先使用掩蔽层执行将p型掺杂物注入外延层的所选择的区的浅注入。然后,执行温度循环以将注入的掺杂物更深地注入到外延层中。然后,执行将p型掺杂物注入第一硅区中的覆盖注入(在有源区中)。然后,执行第二温度循环,以将覆盖注入步骤的注入掺杂物更深地推入外延层,以及将浅注入步骤的掺杂物更深地推入外延层。结果,形成对应于覆盖注入的阱区和对应于浅注入的硅区,使得硅区的最深部分深于阱区的底面。为了获得图2A中所示的结构,需要设计上述两个注入步骤和两个温度循环,以在推入掺杂物之后,硅区与阱区邻接。可选地,为了形成图3中所示的结构,需要设计两个注入步骤和两个注入步骤,以在推进掺杂物以及形成栅极沟槽之后,在硅区中的每一个和阱区之间形成间隙。如前述实施例一样,考虑到该公开,本领域的技术人员应该知道如何去设计两个注入步骤和两个温度循环,以获得图2A和图3中所示的结构。
下面的表格示出了现有技术图1中的MOSFET 100、图2A中的MOSFET 200、以及图3中的MOSFET 300中每一个的Qgs、Qgd、以及Qgd/Qgs比的仿真结果。具有6μm间距和0.6μm沟槽宽度的600V超结MOSFET被用于仿真。
  参数   图1   图2A   图3
  Qgs nC/cm2   72.8   103.8   73.2
  Qgd nC/cm2   36.4   27.3   31.6
  Qgd/Qgs   0.50   0.26   0.43
可以看出,MOSFET 200和300均具有低于现有技术MOSFET100的Qgd,以及均具有高于现有技术MOSFET 100的Qgs。因此,MOSFET 200和300均获得比MOSFET 100低的Qgd/Qgs比。图5和图6中的仿真波形示出了相似的结果。图5示出了图2A中的MOSFET和现有技术图1中的MOSFET的Idrain、Vdrain、和Vgate,图6示出了图3中的MOSFET和现有技术图1中的MOSFET的相同参数。
不同实施例的截面图和顶视布局图可以不按比例,因而,不用于限制对应结构布局设计中的可能变化。而且,可以在包括六角形或正方形晶体管单元的单元结构中形成各种晶体管。
尽管示出并在上面描述了许多特定实施例,但本发明的实施例不限于此。例如,应该理解,在不背离本发明的情况下,示出并描述的结构的掺杂极性可以相反和/或各种元素的掺杂浓度可以改变。作为另一实例,上述各种示例性垂直晶体管具有终止在漂移区中的沟槽,但是它们也可以终止在更重掺杂的基片中。作为又一实例,在垂直MOSFET实施例的情况下示出并描述本发明,但是可以在其它沟槽栅极结构(例如,沟槽栅极IGBT和横向沟槽栅极MOSFET)中类似地形成图2A中的区206a和图3中的区307。
因此,本发明的范围不应该参照上述描述来确定,而应该参照所附权利要求和它们等同物的全部范围来确定。

Claims (31)

1.一种沟槽MOS栅控晶体管,包括:
第一导电类型的第一区;
第二导电类型的阱区,与所述第一区形成pn结,所述阱区具有平坦底部和延伸深于所述平坦底部的部分,其中,所述阱区的更深部分比所述平坦底部深0.2-0.4μm;
栅极沟槽,延伸进所述阱区;以及
沟道区,沿所述栅极沟槽的外部侧壁位于所述阱区中,其中,所述栅极沟槽的第一底部终止在所述第一区内,所述栅极沟槽的第二底部终止在所述阱区的更深部分内,使得当所述晶体管处于导通状态时,所述阱区的所述更深部分防止电流流过直接位于所述阱区的所述更深部分之上的那些沟道区部分。
2.根据权利要求1所述的沟槽MOS栅控晶体管,进一步包括:
第一导电类型的基片,其中,所述第一区为在所述基片上延伸的外延层。
3.根据权利要求1所述的沟槽MOS栅控晶体管,进一步包括:
所述阱区中的所述第一导电类型的源极区,所述源极区分布在所述栅极沟槽的每一侧。
4.根据权利要求1所述的沟槽MOS栅控晶体管,其中,所述栅极沟槽包括用作所述栅极沟槽的所述侧壁和底部的衬里的介电层,并且所述栅极沟槽至少部分地填充有多晶硅。
5.根据权利要求1所述的沟槽MOS栅控晶体管,进一步包括:
在所述第一区中的所述第二导电类型的第二区,终止在所述第二区内的所述栅极沟槽的第三底部,所述第二区与所述阱区分隔开,以在它们之间形成间隙,其中,当所述晶体管处于导通状态时,电流流过所述间隙。
6.根据权利要求1所述的沟槽MOS栅控晶体管,其中,所述第一区和所述阱区的至少一个由晶体硅(Si)、碳化硅(SiC)、氮化镓(GaN)、和锗化硅(SiGe)中的一种形成。
7.一种沟槽MOS栅控晶体管,包括:
基片;
第一导电类型的外延层,在所述基片上延伸并与所述基片接触;
第二导电类型的阱区,形成在所述外延层的上部中,所述阱区具有平坦底部和延伸深于所述平坦底部的多个部分,其中,所述阱区的多个更深部分比所述平坦底部深0.2-0.4μm;
多个栅极沟槽,延伸进所述阱区;以及
所述第一导电类型的源极区,形成在所述阱区的上部中,所述源极区分布在所述多个栅极沟槽的每一侧,以沿所述多个栅极沟槽的每一个的外部侧壁在所述阱区中形成沟道区,所述多个栅极沟槽的每一个均具有延伸穿过所述阱区并终止在所述外延层内的第一多个底部以及每一个都终止在所述阱区的多个更深部分的对应的一个部分内的第二多个底部,使得当所述晶体管处于导通状态时,所述阱区的所述多个更深部分防止电流流过直接位于所述阱区的所述更深部分之上的那些沟道区部分。
8.根据权利要求7所述的沟槽MOS栅控晶体管,进一步包括:
在所述外延层中的所述第二导电类型的多个区,终止在所述第二导电类型的所述多个区的对应的一个区内的每个栅极沟槽的第三多个底部,所述第二导电类型的所述多个区与所述阱区分隔开,以在它们之间形成间隙,其中,当所述晶体管处于导通状态时,电流流过所述间隙。
9.根据权利要求7所述的沟槽MOS栅控晶体管,其中,所述多个栅极沟槽的每一个均包括用作所述栅极沟槽的所述侧壁和底部的衬里的介电层,并且每个栅极沟槽至少部分地填充有多晶硅。
10.根据权利要求7所述的沟槽MOS栅控晶体管,其中,所述基片、所述外延层、所述阱区、以及所述源极区中的至少一个由晶体硅(Si)、碳化硅(SiC)、氮化镓(GaN)、和锗化硅(SiGe)中的一种形成。
11.一种沟槽MOS栅控晶体管,包括:
硅材料的基片;
在所述基片上的第一导电类型的硅材料层;
第二导电类型的阱区,形成在所述硅材料层的上部中;
栅极沟槽,延伸进所述阱区,所述栅极沟槽具有第一底部和第二底部,所述第二底部终止于所述硅材料层内;
所述第一导电类型的源极区,分布在所述栅极沟槽的每一侧,以沿所述栅极沟槽的外部侧壁在所述阱区中形成沟道区,所述栅极沟槽填充有至少到达所述源极区并与所述源极区部分地交叠的多晶硅材料;以及
所述第二导电类型的硅材料区,只环绕在所述栅极沟槽的第一底部周围,使得在所述硅材料区和所述阱区之间形成间隙,当所述晶体管处于导通状态时,电流通过所述间隙流动,其中,所述硅材料区电浮置。
12.根据权利要求11所述的沟槽MOS栅控晶体管,其中,所述硅材料层为在所述基片上延伸的外延层。
13.根据权利要求11所述的沟槽MOS栅控晶体管,其中,所述硅材料区具有0.1~0.3μm范围内的厚度。
14.根据权利要求11所述的沟槽MOS栅控晶体管,其中,所述栅极沟槽为条形,并且所述硅材料区沿所述条形栅极沟槽的长度部分地延伸。
15.根据权利要求11所述的沟槽MOS栅控晶体管,其中,所述阱区具有平坦底部和延伸深于所述平坦底部的部分,使得所述栅极沟槽的部分终止在所述阱区的所述更深部分内。
16.一种形成沟槽MOS栅控晶体管的方法,所述方法包括:
设置第一导电类型的第一区;
在所述第一区的上部中形成第二导电类型的阱区;
形成延伸穿过所述阱区并终止在所述第一区内的沟槽,所述阱区的部分沿形成沟道区的所述沟槽侧壁延伸;以及
沿所述沟槽的所述底部的预定部分注入所述第二导电类型的掺杂物,以形成延伸深于所述阱区底面的多个第二区,所述多个第二区的每一个均与所述阱区邻接,使得当所述晶体管处于导通状态时,所述多个第二区防止电流流过直接位于所述多个第二区上的那些沟道区部分。
17.根据权利要求16所述的方法,其中,所述第一区为外延层,所述方法进一步包括:
在所述第一导电类型的基片上形成所述外延层。
18.根据权利要求16所述的方法,进一步包括:
使用介电层作为所述沟槽的侧壁和底部的衬里;
至少部分地用多晶硅材料填充所述沟槽;以及
在所述阱区中形成所述第一导电类型的源极区,所述源极区分布在所述栅极沟槽的每一侧。
19.根据权利要求16所述的方法,其中,所述第一区、所述阱区、和所述多个第二区中的至少一个由晶体硅(Si)、碳化硅(SiC)、氮化镓(GaN)、和锗化硅(SiGe)中的一种形成。
20.一种形成沟槽MOS栅控晶体管的方法,所述方法包括:
设置硅基片;
在所述基片上形成第一导电类型的硅外延层;
在所述硅外延层的上部中形成第二导电类型的阱区;
形成延伸穿过所述阱区并终止在所述外延硅层内的沟槽;
沿所述沟槽的底部注入所述第二导电类型的掺杂物,以形成沿所述沟槽的底部延伸的所述第二导电类型的掺杂区,使得在所述掺杂区和所述阱区之间形成间隙,当所述晶体管处于导通状态时,电流通过所述间隙流动;
形成分布在所述沟槽的每一侧的所述第一导电类型的源极区,从而,沿所述多个栅极沟槽的每一个的外部侧壁延伸的所述阱区的部分形成沟道区;以及
使用多晶硅材料填充所述沟槽,至少到达所述源极区并与所述源极区部分地交叠。
21.根据权利要求20所述的方法,进一步包括:
形成分布在所述沟槽的每一侧的所述第一导电类型的源极区;以及
使用至少到达所述源极区并与所述源极区部分地交叠的多晶硅材料填充所述沟槽。
22.根据权利要求20所述的方法,其中,所述掺杂区具有0.1~0.3μm范围内的厚度。
23.一种形成沟槽MOS栅控晶体管的方法,所述方法包括:
设置第一导电类型的第一区;
执行将第二导电类型的掺杂物注入所述第一区的浅注入;
执行将所述第二导电类型的掺杂物注入所述第一区的深注入;
在所述深注入和所述浅注入步骤之后,执行温度循环,
以将分别注入的掺杂物更深地推进所述第一区,从而形成对应于所述浅注入的阱区和对应于所述深注入的第二区,所述第二区的最深部分深于所述阱区的底面;以及
形成沟槽,所述沟槽具有延伸穿过所述阱区并终止在所述第一区内的第一部分和延伸穿过所述阱区并终止在所述第二区内的第二部分。
24.根据权利要求23所述的方法,其中,沿所述沟槽侧壁延伸的所述阱区的部分形成沟道区,并且其中,在所述温度循环之后,
所述第二区与所述阱区邻接,使得所述第二区防止电流流过直接位于所述第二区之上的那些沟道区部分。
25.根据权利要求23所述的方法,其中,在所述温度循环之后,所述第二区与所述阱区分隔开,使得在形成所述沟槽之后,所述第二区和所述阱区之间的间隔形成间隙,当所述晶体管处于导通状态时,电流通过所述间隙流动。
26.根据权利要求23所述的方法,其中,使用掩蔽层执行所述深注入步骤。
27.根据权利要求23所述的方法,其中,所述第一区、所述阱区、和所述第二区中的至少一个由晶体硅(Si)、碳化硅(SiC)、氮化镓(GaN)、和锗化硅(SiGe)中的一种形成。
28.一种形成沟槽MOS栅控晶体管的方法,所述方法包括:设置第一导电类型的第一区;
执行将第二导电类型的掺杂物注入所述第一区的浅注入;
执行温度循环,以将注入的掺杂物更深地推进所述第一区;
执行将所述第二导电类型的掺杂物注入所述第一区的第二注入;
执行温度循环,以将所述第二注入步骤的所注入的掺杂物更深地推进到所述第一区中,以及将所述浅注入步骤的所述掺杂物更深地推进到所述第一区中,从而形成对应于所述第二注入的阱区以及对应于所述浅注入的第二区,所述第二区的最深部分深于所述阱区的底面;以及
形成沟槽,所述沟槽具有延伸穿过所述阱区并终止在所述第一区内的第一部分和延伸穿过所述阱区并终止在所述第二区内的第二部分。
29.根据权利要求28所述的方法,其中,沿所述沟槽的侧壁延伸的所述阱区的部分形成沟道区,并且,在所述温度循环之后,所述第二区与所述阱区邻接,使得所述第二区防止电流流过直接位于所述第二区之上的那些沟道区部分。
30.根据权利要求28所述的方法,其中,在所述温度循环之后,所述第二区与所述阱区分隔开,使得在形成所述沟槽之后,所述第二区和所述阱区之间的间隔形成间隙,当所述晶体管处于导通状态时,电流通过所述间隙流动。
31.根据权利要求28所述的方法,其中,所述第一区、所述阱区、和所述第二区中的至少一个由晶体硅(Si)、碳化硅(SiC)、氮化镓(GaN)、和锗化硅(SiGe)中的一种形成。
CN2005800343157A 2004-10-08 2005-10-04 具有减小的密勒电容的mos栅控晶体管 Expired - Fee Related CN101091258B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/962,367 US7265415B2 (en) 2004-10-08 2004-10-08 MOS-gated transistor with reduced miller capacitance
US10/962,367 2004-10-08
PCT/US2005/035620 WO2006041823A2 (en) 2004-10-08 2005-10-04 Mos-gated transistor with reduced miller capacitance

Publications (2)

Publication Number Publication Date
CN101091258A CN101091258A (zh) 2007-12-19
CN101091258B true CN101091258B (zh) 2011-11-02

Family

ID=36144410

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2005800343157A Expired - Fee Related CN101091258B (zh) 2004-10-08 2005-10-04 具有减小的密勒电容的mos栅控晶体管

Country Status (8)

Country Link
US (2) US7265415B2 (zh)
EP (1) EP1803159B1 (zh)
JP (1) JP2008516451A (zh)
KR (2) KR100929714B1 (zh)
CN (1) CN101091258B (zh)
HK (1) HK1112111A1 (zh)
TW (1) TWI393254B (zh)
WO (1) WO2006041823A2 (zh)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7576388B1 (en) * 2002-10-03 2009-08-18 Fairchild Semiconductor Corporation Trench-gate LDMOS structures
US7265415B2 (en) * 2004-10-08 2007-09-04 Fairchild Semiconductor Corporation MOS-gated transistor with reduced miller capacitance
DE102005024951A1 (de) * 2005-05-31 2006-12-14 Infineon Technologies Ag Halbleiterspeicherbauelement
US7400172B2 (en) * 2006-10-16 2008-07-15 Freescale Semiconductor, Inc. Miller capacitance tolerant buffer element
JP2008130896A (ja) * 2006-11-22 2008-06-05 Fuji Electric Device Technology Co Ltd 半導体装置
US7994005B2 (en) * 2007-11-01 2011-08-09 Alpha & Omega Semiconductor, Ltd High-mobility trench MOSFETs
JP4644730B2 (ja) * 2008-08-12 2011-03-02 株式会社日立製作所 半導体装置及びそれを用いた電力変換装置
US8237195B2 (en) * 2008-09-29 2012-08-07 Fairchild Semiconductor Corporation Power MOSFET having a strained channel in a semiconductor heterostructure on metal substrate
CN101807546B (zh) * 2009-02-13 2013-04-17 尼克森微电子股份有限公司 沟道式金属氧化物半导体元件及其制作方法
US8242510B2 (en) * 2010-01-28 2012-08-14 Intersil Americas Inc. Monolithic integration of gallium nitride and silicon devices and circuits, structure and method
US8525260B2 (en) * 2010-03-19 2013-09-03 Monolithic Power Systems, Inc. Super junction device with deep trench and implant
US8304828B2 (en) * 2010-03-22 2012-11-06 Great Power Semiconductor Corp. Closed cell trench power MOSFET structure
JP5531787B2 (ja) * 2010-05-31 2014-06-25 株式会社デンソー 炭化珪素半導体装置およびその製造方法
US8313995B2 (en) 2011-01-13 2012-11-20 Infineon Technologies Austria Ag Method for manufacturing a semiconductor device
JP5717661B2 (ja) * 2011-03-10 2015-05-13 株式会社東芝 半導体装置とその製造方法
CN102184960B (zh) * 2011-04-22 2016-07-27 上海华虹宏力半导体制造有限公司 功率金属氧化物半导体场效应管及其形成方法
WO2013035845A1 (ja) 2011-09-08 2013-03-14 株式会社タムラ製作所 Ga2O3系半導体素子
CN110010670A (zh) 2011-09-08 2019-07-12 株式会社田村制作所 Ga2O3系MISFET和Ga2O3系MESFET
EP2602829A1 (en) * 2011-12-07 2013-06-12 Nxp B.V. Trench-gate resurf semiconductor device and manufacturing method
US8785278B2 (en) 2012-02-02 2014-07-22 Alpha And Omega Semiconductor Incorporated Nano MOSFET with trench bottom oxide shielded and third dimensional P-body contact
TW201421683A (zh) * 2012-11-23 2014-06-01 Anpec Electronics Corp 具有低米勒電容之金氧半場效電晶體元件及其製作方法
TWI544635B (zh) 2014-03-20 2016-08-01 帥群微電子股份有限公司 溝槽式功率金氧半場效電晶體與其製造方法
US9443973B2 (en) * 2014-11-26 2016-09-13 Infineon Technologies Austria Ag Semiconductor device with charge compensation region underneath gate trench
DE102014117780B4 (de) 2014-12-03 2018-06-21 Infineon Technologies Ag Halbleiterbauelement mit einer Grabenelektrode und Verfahren zur Herstellung
DE102014119465B3 (de) * 2014-12-22 2016-05-25 Infineon Technologies Ag Halbleitervorrichtung mit streifenförmigen trenchgatestrukturen, transistormesas und diodenmesas
JP2017112161A (ja) * 2015-12-15 2017-06-22 三菱電機株式会社 半導体装置
JP6560142B2 (ja) * 2016-02-26 2019-08-14 トヨタ自動車株式会社 スイッチング素子
JP6560141B2 (ja) * 2016-02-26 2019-08-14 トヨタ自動車株式会社 スイッチング素子
US10032907B2 (en) * 2016-10-04 2018-07-24 Nexperia B.V. TrenchMOS
US9887287B1 (en) * 2016-12-08 2018-02-06 Cree, Inc. Power semiconductor devices having gate trenches with implanted sidewalls and related methods
CN106449419A (zh) * 2016-12-08 2017-02-22 西安电子科技大学 基于Ga2O3材料的U型栅MOSFET及其制备方法
US11271084B2 (en) * 2017-06-06 2022-03-08 Mitsubishi Electric Corporation Semiconductor device and power converter
CN109427886A (zh) * 2017-08-25 2019-03-05 比亚迪股份有限公司 Mosfet及制备方法、电子设备、车辆
CN109671766B (zh) * 2017-10-13 2023-06-27 联华电子股份有限公司 功率金属氧化物半导体场效晶体管
JP2019087611A (ja) * 2017-11-06 2019-06-06 トヨタ自動車株式会社 スイッチング素子とその製造方法
DE102018103973B4 (de) 2018-02-22 2020-12-03 Infineon Technologies Ag Siliziumcarbid-halbleiterbauelement
DE102018106670A1 (de) * 2018-03-21 2019-09-26 Infineon Technologies Ag Siliziumcarbid-Halbleitervorrichtung mit Graben-Gatestruktur und einem Sourcegebiet in einem oberen Bereich eines Mesaabschnitts
DE102019111308A1 (de) 2018-05-07 2019-11-07 Infineon Technologies Ag Siliziumcarbid halbleiterbauelement
CN109037337A (zh) * 2018-06-28 2018-12-18 华为技术有限公司 一种功率半导体器件及制造方法
JP7005453B2 (ja) * 2018-08-08 2022-01-21 株式会社東芝 半導体装置
DE102018124740A1 (de) 2018-10-08 2020-04-09 Infineon Technologies Ag Halbleiterbauelement mit einem sic halbleiterkörper und verfahren zur herstellung eines halbleiterbauelements
US10903322B2 (en) 2018-11-16 2021-01-26 Infineon Technologies Ag SiC power semiconductor device with integrated body diode
US10586845B1 (en) 2018-11-16 2020-03-10 Infineon Technologies Ag SiC trench transistor device and methods of manufacturing thereof
US10985248B2 (en) 2018-11-16 2021-04-20 Infineon Technologies Ag SiC power semiconductor device with integrated Schottky junction
CN110137259A (zh) * 2019-04-11 2019-08-16 深圳大学 Mosfet管及其制备方法
CN111584365B (zh) * 2020-04-29 2024-01-30 北京时代民芯科技有限公司 一种低米勒电容槽栅vdmos器件制造方法
US11961903B2 (en) * 2020-05-26 2024-04-16 Hyundai Mobis Co., Ltd. Power semiconductor device and method of fabricating the same
WO2022104074A1 (en) * 2020-11-13 2022-05-19 The Regents Of The University Of California Epitaxy-enabled substrate transfer
CN117393585B (zh) * 2023-12-07 2024-04-05 深圳市冠禹半导体有限公司 一种高驱动能力的mosfet器件及其驱动电路

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1234613A (zh) * 1998-04-23 1999-11-10 国际整流器有限公司 P沟道槽型金属氧化物半导体场效应晶体管结构
US6194741B1 (en) * 1998-11-03 2001-02-27 International Rectifier Corp. MOSgated trench type power semiconductor with silicon carbide substrate and increased gate breakdown voltage and reduced on-resistance

Family Cites Families (172)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3404295A (en) 1964-11-30 1968-10-01 Motorola Inc High frequency and voltage transistor with added region for punch-through protection
US3412297A (en) 1965-12-16 1968-11-19 United Aircraft Corp Mos field-effect transistor with a onemicron vertical channel
US3497777A (en) * 1967-06-13 1970-02-24 Stanislas Teszner Multichannel field-effect semi-conductor device
US3564356A (en) * 1968-10-24 1971-02-16 Tektronix Inc High voltage integrated circuit transistor
US3660697A (en) 1970-02-16 1972-05-02 Bell Telephone Labor Inc Monolithic semiconductor apparatus adapted for sequential charge transfer
US4003072A (en) * 1972-04-20 1977-01-11 Sony Corporation Semiconductor device with high voltage breakdown resistance
US4011105A (en) * 1975-09-15 1977-03-08 Mos Technology, Inc. Field inversion control for n-channel device integrated circuits
US4337474A (en) 1978-08-31 1982-06-29 Mitsubishi Denki Kabushiki Kaisha Semiconductor device
US4638344A (en) * 1979-10-09 1987-01-20 Cardwell Jr Walter T Junction field-effect transistor controlled by merged depletion regions
US4698653A (en) 1979-10-09 1987-10-06 Cardwell Jr Walter T Semiconductor devices controlled by depletion regions
US4345265A (en) 1980-04-14 1982-08-17 Supertex, Inc. MOS Power transistor with improved high-voltage capability
US4868624A (en) 1980-05-09 1989-09-19 Regents Of The University Of Minnesota Channel collector transistor
US4300150A (en) 1980-06-16 1981-11-10 North American Philips Corporation Lateral double-diffused MOS transistor device
US4326332A (en) * 1980-07-28 1982-04-27 International Business Machines Corp. Method of making a high density V-MOS memory array
EP0051693B1 (de) * 1980-11-12 1985-06-19 Ibm Deutschland Gmbh Elektrisch umschaltbarer Festwertspeicher
US4324038A (en) * 1980-11-24 1982-04-13 Bell Telephone Laboratories, Incorporated Method of fabricating MOS field effect transistors
US4969028A (en) 1980-12-02 1990-11-06 General Electric Company Gate enhanced rectifier
GB2089119A (en) 1980-12-10 1982-06-16 Philips Electronic Associated High voltage semiconductor devices
US4974059A (en) 1982-12-21 1990-11-27 International Rectifier Corporation Semiconductor high-power mosfet device
JPS6016420A (ja) * 1983-07-08 1985-01-28 Mitsubishi Electric Corp 選択的エピタキシヤル成長方法
US4639761A (en) * 1983-12-16 1987-01-27 North American Philips Corporation Combined bipolar-field effect transistor resurf devices
US4568958A (en) * 1984-01-03 1986-02-04 General Electric Company Inversion-mode insulated-gate gallium arsenide field-effect transistors
FR2566179B1 (fr) * 1984-06-14 1986-08-22 Commissariat Energie Atomique Procede d'autopositionnement d'un oxyde de champ localise par rapport a une tranchee d'isolement
US5208657A (en) 1984-08-31 1993-05-04 Texas Instruments Incorporated DRAM Cell with trench capacitor and vertical channel in substrate
US4824793A (en) * 1984-09-27 1989-04-25 Texas Instruments Incorporated Method of making DRAM cell with trench capacitor
US4673962A (en) 1985-03-21 1987-06-16 Texas Instruments Incorporated Vertical DRAM cell and method
US4774556A (en) 1985-07-25 1988-09-27 Nippondenso Co., Ltd. Non-volatile semiconductor memory device
US5262336A (en) 1986-03-21 1993-11-16 Advanced Power Technology, Inc. IGBT process to produce platinum lifetime control
US4767722A (en) 1986-03-24 1988-08-30 Siliconix Incorporated Method for making planar vertical channel DMOS structures
US5034785A (en) 1986-03-24 1991-07-23 Siliconix Incorporated Planar vertical channel DMOS structure
US4716126A (en) 1986-06-05 1987-12-29 Siliconix Incorporated Fabrication of double diffused metal oxide semiconductor transistor
US4746630A (en) 1986-09-17 1988-05-24 Hewlett-Packard Company Method for producing recessed field oxide with improved sidewall characteristics
US4941026A (en) 1986-12-05 1990-07-10 General Electric Company Semiconductor devices exhibiting minimum on-resistance
JP2577330B2 (ja) 1986-12-11 1997-01-29 新技術事業団 両面ゲ−ト静電誘導サイリスタの製造方法
US5105243A (en) * 1987-02-26 1992-04-14 Kabushiki Kaisha Toshiba Conductivity-modulation metal oxide field effect transistor with single gate structure
US4821095A (en) * 1987-03-12 1989-04-11 General Electric Company Insulated gate semiconductor device with extra short grid and method of fabrication
AU601537B2 (en) 1987-03-25 1990-09-13 Kabushiki Kaisha Komatsu Seisakusho Hydraulic clutch pressure control apparatus
US4745079A (en) 1987-03-30 1988-05-17 Motorola, Inc. Method for fabricating MOS transistors having gates with different work functions
US4823176A (en) * 1987-04-03 1989-04-18 General Electric Company Vertical double diffused metal oxide semiconductor (VDMOS) device including high voltage junction exhibiting increased safe operating area
US4801986A (en) * 1987-04-03 1989-01-31 General Electric Company Vertical double diffused metal oxide semiconductor VDMOS device with increased safe operating area and method
US5164325A (en) 1987-10-08 1992-11-17 Siliconix Incorporated Method of making a vertical current flow field effect transistor
US4893160A (en) * 1987-11-13 1990-01-09 Siliconix Incorporated Method for increasing the performance of trenched devices and the resulting structure
US4914058A (en) * 1987-12-29 1990-04-03 Siliconix Incorporated Grooved DMOS process with varying gate dielectric thickness
US4967245A (en) 1988-03-14 1990-10-30 Siliconix Incorporated Trench power MOSFET device
KR0173111B1 (ko) 1988-06-02 1999-02-01 야마무라 가쯔미 트렌치 게이트 mos fet
US4961100A (en) 1988-06-20 1990-10-02 General Electric Company Bidirectional field effect semiconductor device and circuit
JPH0216763A (ja) * 1988-07-05 1990-01-19 Toshiba Corp 半導体装置の製造方法
US4853345A (en) 1988-08-22 1989-08-01 Delco Electronics Corporation Process for manufacture of a vertical DMOS transistor
US5268311A (en) 1988-09-01 1993-12-07 International Business Machines Corporation Method for forming a thin dielectric layer on a substrate
US5156989A (en) 1988-11-08 1992-10-20 Siliconix, Incorporated Complementary, isolated DMOS IC technology
US5346834A (en) 1988-11-21 1994-09-13 Hitachi, Ltd. Method for manufacturing a semiconductor device and a semiconductor memory device
US5072266A (en) 1988-12-27 1991-12-10 Siliconix Incorporated Trench DMOS power transistor with field-shaping body profile and three-dimensional geometry
US5111253A (en) 1989-05-09 1992-05-05 General Electric Company Multicellular FET having a Schottky diode merged therewith
US4992390A (en) * 1989-07-06 1991-02-12 General Electric Company Trench gate structure with thick bottom oxide
EP0450082B1 (en) 1989-08-31 2004-04-28 Denso Corporation Insulated gate bipolar transistor
US5248894A (en) 1989-10-03 1993-09-28 Harris Corporation Self-aligned channel stop for trench-isolated island
US5134448A (en) 1990-01-29 1992-07-28 Motorola, Inc. MOSFET with substrate source contact
US5242845A (en) 1990-06-13 1993-09-07 Kabushiki Kaisha Toshiba Method of production of vertical MOS transistor
US5071782A (en) 1990-06-28 1991-12-10 Texas Instruments Incorporated Vertical memory cell array and method of fabrication
US5079608A (en) * 1990-11-06 1992-01-07 Harris Corporation Power MOSFET transistor circuit with active clamp
EP0487022B1 (en) * 1990-11-23 1997-04-23 Texas Instruments Incorporated A method of simultaneously fabricating an insulated gate-field-effect transistor and a bipolar transistor
US5065273A (en) 1990-12-04 1991-11-12 International Business Machines Corporation High capacity DRAM trench capacitor and methods of fabricating same
US5168331A (en) 1991-01-31 1992-12-01 Siliconix Incorporated Power metal-oxide-semiconductor field effect transistor
JP2825004B2 (ja) * 1991-02-08 1998-11-18 インターナショナル・ビジネス・マシーンズ・コーポレーション 側壁電荷結合撮像素子及びその製造方法
CN1019720B (zh) 1991-03-19 1992-12-30 电子科技大学 半导体功率器件
US5164802A (en) 1991-03-20 1992-11-17 Harris Corporation Power vdmosfet with schottky on lightly doped drain of lateral driver fet
US5250450A (en) 1991-04-08 1993-10-05 Micron Technology, Inc. Insulated-gate vertical field-effect transistor with high current drive and minimum overlap capacitance
JP2603886B2 (ja) * 1991-05-09 1997-04-23 日本電信電話株式会社 薄層soi型絶縁ゲート型電界効果トランジスタの製造方法
US5219793A (en) 1991-06-03 1993-06-15 Motorola Inc. Method for forming pitch independent contacts and a semiconductor device having the same
KR940006702B1 (ko) 1991-06-14 1994-07-25 금성일렉트론 주식회사 모스패트의 제조방법
US5298761A (en) * 1991-06-17 1994-03-29 Nikon Corporation Method and apparatus for exposure process
JP2570022B2 (ja) 1991-09-20 1997-01-08 株式会社日立製作所 定電圧ダイオード及びそれを用いた電力変換装置並びに定電圧ダイオードの製造方法
JPH0613627A (ja) 1991-10-08 1994-01-21 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法
US5300452A (en) * 1991-12-18 1994-04-05 U.S. Philips Corporation Method of manufacturing an optoelectronic semiconductor device
US5366914A (en) 1992-01-29 1994-11-22 Nec Corporation Vertical power MOSFET structure having reduced cell area
US5554862A (en) 1992-03-31 1996-09-10 Kabushiki Kaisha Toshiba Power semiconductor device
JPH06196723A (ja) * 1992-04-28 1994-07-15 Mitsubishi Electric Corp 半導体装置及びその製造方法
US5233215A (en) 1992-06-08 1993-08-03 North Carolina State University At Raleigh Silicon carbide power MOSFET with floating field ring and floating field plate
US5430324A (en) * 1992-07-23 1995-07-04 Siliconix, Incorporated High voltage transistor having edge termination utilizing trench technology
US5281548A (en) * 1992-07-28 1994-01-25 Micron Technology, Inc. Plug-based floating gate memory
US5294824A (en) * 1992-07-31 1994-03-15 Motorola, Inc. High voltage transistor having reduced on-resistance
US5300447A (en) * 1992-09-29 1994-04-05 Texas Instruments Incorporated Method of manufacturing a minimum scaled transistor
US5597795A (en) * 1992-10-27 1997-01-28 The Procter & Gamble Company Detergent compositions inhibiting dye transfer
US5275965A (en) * 1992-11-25 1994-01-04 Micron Semiconductor, Inc. Trench isolation using gated sidewalls
US5326711A (en) 1993-01-04 1994-07-05 Texas Instruments Incorporated High performance high voltage vertical transistor and method of fabrication
US5418376A (en) 1993-03-02 1995-05-23 Toyo Denki Seizo Kabushiki Kaisha Static induction semiconductor device with a distributed main electrode structure and static induction semiconductor device with a static induction main electrode shorted structure
US5341011A (en) 1993-03-15 1994-08-23 Siliconix Incorporated Short channel trenched DMOS transistor
DE4309764C2 (de) 1993-03-25 1997-01-30 Siemens Ag Leistungs-MOSFET
KR960012585B1 (en) * 1993-06-25 1996-09-23 Samsung Electronics Co Ltd Transistor structure and the method for manufacturing the same
US5371396A (en) 1993-07-02 1994-12-06 Thunderbird Technologies, Inc. Field effect transistor having polycrystalline silicon gate junction
US5365102A (en) 1993-07-06 1994-11-15 North Carolina State University Schottky barrier rectifier with MOS trench
BE1007283A3 (nl) 1993-07-12 1995-05-09 Philips Electronics Nv Halfgeleiderinrichting met een most voorzien van een extended draingebied voor hoge spanningen.
JPH07122749A (ja) 1993-09-01 1995-05-12 Toshiba Corp 半導体装置及びその製造方法
JP3400846B2 (ja) 1994-01-20 2003-04-28 三菱電機株式会社 トレンチ構造を有する半導体装置およびその製造方法
US5429977A (en) 1994-03-11 1995-07-04 Industrial Technology Research Institute Method for forming a vertical transistor with a stacked capacitor DRAM cell
US5434435A (en) 1994-05-04 1995-07-18 North Carolina State University Trench gate lateral MOSFET
DE4417150C2 (de) * 1994-05-17 1996-03-14 Siemens Ag Verfahren zur Herstellung einer Anordnung mit selbstverstärkenden dynamischen MOS-Transistorspeicherzellen
US5405794A (en) * 1994-06-14 1995-04-11 Philips Electronics North America Corporation Method of producing VDMOS device of increased power density
US5424231A (en) 1994-08-09 1995-06-13 United Microelectronics Corp. Method for manufacturing a VDMOS transistor
US5583368A (en) * 1994-08-11 1996-12-10 International Business Machines Corporation Stacked devices
US5674766A (en) * 1994-12-30 1997-10-07 Siliconix Incorporated Method of making a trench MOSFET with multi-resistivity drain to provide low on-resistance by varying dopant concentration in epitaxial layer
US5597765A (en) * 1995-01-10 1997-01-28 Siliconix Incorporated Method for making termination structure for power MOSFET
JP3325736B2 (ja) * 1995-02-09 2002-09-17 三菱電機株式会社 絶縁ゲート型半導体装置
JP3291957B2 (ja) * 1995-02-17 2002-06-17 富士電機株式会社 縦型トレンチmisfetおよびその製造方法
US5595927A (en) * 1995-03-17 1997-01-21 Taiwan Semiconductor Manufacturing Company Ltd. Method for making self-aligned source/drain mask ROM memory cell using trench etched channel
US5592005A (en) * 1995-03-31 1997-01-07 Siliconix Incorporated Punch-through field effect transistor
US5554552A (en) 1995-04-03 1996-09-10 Taiwan Semiconductor Manufacturing Company PN junction floating gate EEPROM, flash EPROM device and method of manufacture thereof
US5744372A (en) * 1995-04-12 1998-04-28 National Semiconductor Corporation Fabrication of complementary field-effect transistors each having multi-part channel
JPH08306914A (ja) * 1995-04-27 1996-11-22 Nippondenso Co Ltd 半導体装置およびその製造方法
US5567634A (en) 1995-05-01 1996-10-22 National Semiconductor Corporation Method of fabricating self-aligned contact trench DMOS transistors
US6049108A (en) * 1995-06-02 2000-04-11 Siliconix Incorporated Trench-gated MOSFET with bidirectional voltage clamping
US5705409A (en) * 1995-09-28 1998-01-06 Motorola Inc. Method for forming trench transistor structure
US5879971A (en) * 1995-09-28 1999-03-09 Motorola Inc. Trench random access memory cell and method of formation
US5616945A (en) * 1995-10-13 1997-04-01 Siliconix Incorporated Multiple gated MOSFET for use in DC-DC converter
US6037632A (en) * 1995-11-06 2000-03-14 Kabushiki Kaisha Toshiba Semiconductor device
EP1408554B1 (de) * 1996-02-05 2015-03-25 Infineon Technologies AG Durch Feldeffekt steuerbares Halbleiterbauelement
US5895951A (en) * 1996-04-05 1999-04-20 Megamos Corporation MOSFET structure and fabrication process implemented by forming deep and narrow doping regions through doping trenches
US5719409A (en) * 1996-06-06 1998-02-17 Cree Research, Inc. Silicon carbide metal-insulator semiconductor field effect transistor
JP2891205B2 (ja) * 1996-10-21 1999-05-17 日本電気株式会社 半導体集積回路の製造方法
US6207994B1 (en) * 1996-11-05 2001-03-27 Power Integrations, Inc. High-voltage transistor with multi-layer conduction region
US6168983B1 (en) * 1996-11-05 2001-01-02 Power Integrations, Inc. Method of making a high-voltage transistor with multiple lateral conduction layers
US6011298A (en) * 1996-12-31 2000-01-04 Stmicroelectronics, Inc. High voltage termination with buried field-shaping region
KR100218260B1 (ko) * 1997-01-14 1999-09-01 김덕중 트랜치 게이트형 모스트랜지스터의 제조방법
JP3938964B2 (ja) * 1997-02-10 2007-06-27 三菱電機株式会社 高耐圧半導体装置およびその製造方法
US5877528A (en) * 1997-03-03 1999-03-02 Megamos Corporation Structure to provide effective channel-stop in termination areas for trenched power transistors
KR100225409B1 (ko) * 1997-03-27 1999-10-15 김덕중 트렌치 디-모오스 및 그의 제조 방법
US5879994A (en) * 1997-04-15 1999-03-09 National Semiconductor Corporation Self-aligned method of fabricating terrace gate DMOS transistor
US6037628A (en) * 1997-06-30 2000-03-14 Intersil Corporation Semiconductor structures with trench contacts
JP3502531B2 (ja) * 1997-08-28 2004-03-02 株式会社ルネサステクノロジ 半導体装置の製造方法
DE19740195C2 (de) * 1997-09-12 1999-12-02 Siemens Ag Halbleiterbauelement mit Metall-Halbleiterübergang mit niedrigem Sperrstrom
US6337499B1 (en) * 1997-11-03 2002-01-08 Infineon Technologies Ag Semiconductor component
US5949104A (en) * 1998-02-07 1999-09-07 Xemod, Inc. Source connection structure for lateral RF MOS devices
US5897343A (en) * 1998-03-30 1999-04-27 Motorola, Inc. Method of making a power switching trench MOSFET having aligned source regions
US5945724A (en) * 1998-04-09 1999-08-31 Micron Technology, Inc. Trench isolation region for semiconductor device
US6048772A (en) * 1998-05-04 2000-04-11 Xemod, Inc. Method for fabricating a lateral RF MOS device with an non-diffusion source-backside connection
DE19820223C1 (de) * 1998-05-06 1999-11-04 Siemens Ag Verfahren zum Herstellen einer Epitaxieschicht mit lateral veränderlicher Dotierung
US6015727A (en) * 1998-06-08 2000-01-18 Wanlass; Frank M. Damascene formation of borderless contact MOS transistors
DE19848828C2 (de) * 1998-10-22 2001-09-13 Infineon Technologies Ag Halbleiterbauelement mit kleiner Durchlaßspannung und hoher Sperrfähigkeit
DE19854915C2 (de) * 1998-11-27 2002-09-05 Infineon Technologies Ag MOS-Feldeffekttransistor mit Hilfselektrode
US6222229B1 (en) * 1999-02-18 2001-04-24 Cree, Inc. Self-aligned shield structure for realizing high frequency power MOSFET devices with improved reliability
US6351018B1 (en) * 1999-02-26 2002-02-26 Fairchild Semiconductor Corporation Monolithically integrated trench MOSFET and Schottky diode
US6204097B1 (en) * 1999-03-01 2001-03-20 Semiconductor Components Industries, Llc Semiconductor device and method of manufacture
US6188105B1 (en) * 1999-04-01 2001-02-13 Intersil Corporation High density MOS-gated power device and process for forming same
US6198127B1 (en) * 1999-05-19 2001-03-06 Intersil Corporation MOS-gated power device having extended trench and doping zone and process for forming same
US6191447B1 (en) * 1999-05-28 2001-02-20 Micro-Ohm Corporation Power semiconductor devices that utilize tapered trench-based insulating regions to improve electric field profiles in highly doped drift region mesas and methods of forming same
JP3851744B2 (ja) * 1999-06-28 2006-11-29 株式会社東芝 半導体装置の製造方法
GB9917099D0 (en) * 1999-07-22 1999-09-22 Koninkl Philips Electronics Nv Cellular trench-gate field-effect transistors
JP3971062B2 (ja) * 1999-07-29 2007-09-05 株式会社東芝 高耐圧半導体装置
US20030060013A1 (en) * 1999-09-24 2003-03-27 Bruce D. Marchant Method of manufacturing trench field effect transistors with trenched heavy body
US6222233B1 (en) * 1999-10-04 2001-04-24 Xemod, Inc. Lateral RF MOS device with improved drain structure
US6461918B1 (en) * 1999-12-20 2002-10-08 Fairchild Semiconductor Corporation Power MOS device with improved gate charge performance
US6346469B1 (en) * 2000-01-03 2002-02-12 Motorola, Inc. Semiconductor device and a process for forming the semiconductor device
US6580123B2 (en) 2000-04-04 2003-06-17 International Rectifier Corporation Low voltage power MOSFET device and process for its manufacture
US6479352B2 (en) * 2000-06-02 2002-11-12 General Semiconductor, Inc. Method of fabricating high voltage power MOSFET having low on-resistance
US6627949B2 (en) * 2000-06-02 2003-09-30 General Semiconductor, Inc. High voltage power MOSFET having low on-resistance
JP4528460B2 (ja) * 2000-06-30 2010-08-18 株式会社東芝 半導体素子
US6534828B1 (en) * 2000-09-19 2003-03-18 Fairchild Semiconductor Corporation Integrated circuit device including a deep well region and associated methods
US6362112B1 (en) * 2000-11-08 2002-03-26 Fabtech, Inc. Single step etched moat
US6870220B2 (en) * 2002-08-23 2005-03-22 Fairchild Semiconductor Corporation Method and apparatus for improved MOS gating to reduce miller capacitance and switching losses
US6677641B2 (en) * 2001-10-17 2004-01-13 Fairchild Semiconductor Corporation Semiconductor structure with improved smaller forward voltage loss and higher blocking capability
US7345342B2 (en) * 2001-01-30 2008-03-18 Fairchild Semiconductor Corporation Power semiconductor devices and methods of manufacture
US6683346B2 (en) * 2001-03-09 2004-01-27 Fairchild Semiconductor Corporation Ultra dense trench-gated power-device with the reduced drain-source feedback capacitance and Miller charge
TWI248136B (en) * 2002-03-19 2006-01-21 Infineon Technologies Ag Method for fabricating a transistor arrangement having trench transistor cells having a field electrode
JP3930436B2 (ja) * 2002-03-26 2007-06-13 株式会社東芝 半導体装置
US20030209741A1 (en) * 2002-04-26 2003-11-13 Wataru Saitoh Insulated gate semiconductor device
JP3935042B2 (ja) * 2002-04-26 2007-06-20 株式会社東芝 絶縁ゲート型半導体装置
JP4028333B2 (ja) * 2002-09-02 2007-12-26 株式会社東芝 半導体装置
JP3964819B2 (ja) * 2003-04-07 2007-08-22 株式会社東芝 絶縁ゲート型半導体装置
DE10324754B4 (de) * 2003-05-30 2018-11-08 Infineon Technologies Ag Halbleiterbauelement
US7279743B2 (en) * 2003-12-02 2007-10-09 Vishay-Siliconix Closed cell trench metal-oxide-semiconductor field effect transistor
GB0403934D0 (en) * 2004-02-21 2004-03-24 Koninkl Philips Electronics Nv Trench-gate semiconductor devices and the manufacture thereof
US7265415B2 (en) * 2004-10-08 2007-09-04 Fairchild Semiconductor Corporation MOS-gated transistor with reduced miller capacitance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1234613A (zh) * 1998-04-23 1999-11-10 国际整流器有限公司 P沟道槽型金属氧化物半导体场效应晶体管结构
US6194741B1 (en) * 1998-11-03 2001-02-27 International Rectifier Corp. MOSgated trench type power semiconductor with silicon carbide substrate and increased gate breakdown voltage and reduced on-resistance

Also Published As

Publication number Publication date
EP1803159A2 (en) 2007-07-04
KR20090075862A (ko) 2009-07-09
CN101091258A (zh) 2007-12-19
TWI393254B (zh) 2013-04-11
US20060076617A1 (en) 2006-04-13
WO2006041823A3 (en) 2007-07-26
US20070264782A1 (en) 2007-11-15
HK1112111A1 (en) 2008-08-22
TW200618280A (en) 2006-06-01
US7265415B2 (en) 2007-09-04
JP2008516451A (ja) 2008-05-15
EP1803159A4 (en) 2008-12-24
WO2006041823A2 (en) 2006-04-20
KR20070061588A (ko) 2007-06-13
US7534683B2 (en) 2009-05-19
EP1803159B1 (en) 2013-08-28
KR100929714B1 (ko) 2009-12-03
KR100919528B1 (ko) 2009-10-01

Similar Documents

Publication Publication Date Title
CN101091258B (zh) 具有减小的密勒电容的mos栅控晶体管
US9947779B2 (en) Power MOSFET having lateral channel, vertical current path, and P-region under gate for increasing breakdown voltage
CN101536163B (zh) 电荷平衡场效应晶体管
US6465843B1 (en) MOS-transistor structure with a trench-gate-electrode and a limited specific turn-on resistance and method for producing an MOS-transistor structure
CN102097327B (zh) 双通道沟槽ldmos晶体管和bcd工艺
US8890280B2 (en) Trench-type semiconductor power devices
US8188521B2 (en) Power semiconductor device
EP2342753B1 (en) Insulated gate bipolar transistor
CN103426912B (zh) 包括超结结构的半导体器件和制作方法
CN106298932A (zh) 横向超级结mosfet器件及端接结构
CN105097914B (zh) 横向扩散金属氧化物半导体器件及其制造方法
CN106024776A (zh) 具有不同沟道宽度的复合半导体器件
CN104518032A (zh) 半导体器件及其制造方法
US7910983B2 (en) MOS transistor having an increased gate-drain capacitance
CN107093622A (zh) 一种具有半绝缘多晶硅层的纵向超结双扩散金属氧化物半导体场效应管
CN107579119B (zh) 具有复合介质层纵向超结双扩散金属氧化物半导体场效应管及其制作方法
CN110021655B (zh) 一种具有阶梯n型重掺杂埋层的半超结横向双扩散金属氧化物半导体场效应管
CN116031303A (zh) 超结器件及其制作方法和电子器件
CN103378159A (zh) 具有mosfet的晶体管装置和制造方法
CN107591450B (zh) 具有复合介质层宽带隙半导体纵向超结双扩散金属氧化物半导体场效应管及其制作方法
CN203242627U (zh) 半导体部件、垂直mosfet、igbt结构和集成半导体器件
CN102412298A (zh) 半导体元件及该半导体元件的制造方法
CN204144266U (zh) 注入增强型绝缘栅双极型晶体管
CN104332496A (zh) 一种注入增强型绝缘栅双极型晶体管
CN203386759U (zh) 半导体器件

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1112111

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1112111

Country of ref document: HK

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20111102

Termination date: 20201004

CF01 Termination of patent right due to non-payment of annual fee