TWI393254B - 具有降低米勒電容之金屬氧化物半導體(mos)閘控的電晶體 - Google Patents

具有降低米勒電容之金屬氧化物半導體(mos)閘控的電晶體 Download PDF

Info

Publication number
TWI393254B
TWI393254B TW094135172A TW94135172A TWI393254B TW I393254 B TWI393254 B TW I393254B TW 094135172 A TW094135172 A TW 094135172A TW 94135172 A TW94135172 A TW 94135172A TW I393254 B TWI393254 B TW I393254B
Authority
TW
Taiwan
Prior art keywords
region
trench
gate trench
well region
gate
Prior art date
Application number
TW094135172A
Other languages
English (en)
Other versions
TW200618280A (en
Inventor
Praveen Muraleedharan Shenoy
Christopher Boguslaw Kocon
Original Assignee
Fairchild Semiconductor
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fairchild Semiconductor filed Critical Fairchild Semiconductor
Publication of TW200618280A publication Critical patent/TW200618280A/zh
Application granted granted Critical
Publication of TWI393254B publication Critical patent/TWI393254B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7831Field effect transistors with field effect produced by an insulated gate with multiple gate structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

具有降低米勒電容之金屬氧化物半導體(MOS)閘控的電晶體 發明領域
本發明一般關於半導體電力元件,且特別關於具有降低米勒電容之一種溝槽型MOS(金屬氧化物半導體)閘控電晶體。
發明背景
第1圖顯示一傳統的垂直溝槽閘型(trenched-gate)MOSFET 100之一簡化剖面圖。n-型傳導性類型的一磊晶層(epitaxial layer)104在形成汲極接觸區的n-型基底102上延伸。p-型傳導性類型的阱區(well region)106形成於磊晶層104的一上部裏。閘溝槽(gate trench)109延伸穿過阱區106且正好終止於磊晶層104和阱區106間的交界面下。閘溝槽109順著其側壁和底部與一介電層(dielectric layer)112排成一行,且被填充形成電晶體閘的多晶矽材料110。源區(source region)108位於溝槽109的各側,且沿垂直方向交疊閘(gate)110。在導通態(on-state),電流從汲極接點(drain terminal)114垂直流動,經過基底102、磊晶層104、阱區106裏沿溝槽109外壁的通道區、以及最後的源區108,流向源極接點(source terminal)116。
磊晶層104和基底102一起形成汲極區。可從圖中看出,閘110沿溝槽109底部交疊汲極區。需要最小化閘極-汲極交疊,以提升電晶體切換速度。閘極-汲極電荷Qg d 與交疊面積成正比,而與沿溝槽109底部的介電層厚度成反比例。幾種減少Qg d 的方法已被提出,包括減少溝槽寬度、沿溝槽底部使用較厚介電質、消除沿溝槽平底的閘極部分、以及將p-型阱區延長至略微深於溝槽處等。以上每種技術均有其各自的優點和缺點。一些需要一種更複雜的製程技術,而其餘的在減少Qg d 且不負面影響其餘元件特徵方面,並不太有效。
因此,一種具有改良特徵的MOS-閘控電晶體,其包括一實質降低的米勒電容(miller capacitance)且製造簡單,是令人期待的。
發明概要
依據本發明一實施例,一溝槽型MOS-閘控電晶體包括形成一第一傳導性類型的一第一區,其與一第二傳導性類型的一阱區形成一pn接面。該阱區具有一平底部分和比該平底部分更深度延伸之一部分。一閘溝槽延伸進該阱區。通道區沿該閘溝槽的外壁延伸進該阱區內。該閘溝槽具有終止於該第一區內的第一底部和終止於該阱區更深部分內的第二部分,使得在該電晶體處於導通態時,該阱區的該更深部分阻止電流流過直接定位於該阱區的該更深部分上之該等通道區。
依據本發明之再一實施例,一溝槽型MOS-閘控電晶體包括位於一矽基底上的一第一傳導性類型之一矽層。一第二傳導性類型的一阱區形成於該矽層的一上部內。一閘溝槽延伸穿過該阱區且終止於該矽層內。該第一傳導性類型的源區位於該閘溝槽的各側面。該閘溝槽被填充一多晶矽材料,至少直到且部分交疊該源區。該第二傳導性類型的一矽區沿該溝槽的一底部延伸,使得一間隙形成於該矽區和該阱區之間,當該電晶體處於一導通態時,電流流過其間隙。
依據本發明又一實施例,一溝槽型MOS-閘控電晶體如下形成。提供一第一傳導性類型之一第一區。接著一第二傳導性類型的一阱區形成於該第一區的一上部裏。一溝槽形成,其延伸穿過該阱區且終止於該第一區裏。該第二傳導性類型的摻質沿該溝槽底部的預定部分而被植入,以形成沿該溝槽底部且鄰近該阱區之區,使得在該電晶體處於導通態時,該阱區的較深部分阻止電流流過直接定位於該阱區該較深部分上之該等通道區間部分。
依據本發明之另一實施例,一溝槽型MOS-閘控電晶體如下形成。一第一傳導性類型的一磊晶層形成於一基底上。一第二傳導性類型的一阱區形成於該磊晶層的一上部內。一溝槽形成,其延伸穿過該阱區且終止於該磊晶層裏。該第二傳導性類型的摻質沿該溝槽的底部被植入,以形成沿該溝槽底部延伸之該第二傳導性類型的一區,以使一間隙形成於該第二傳導性類型的該區和該阱區之間,在該電晶體處於導通態時,一電流流過其間隙。
參看隨附附圖和後述揭示內容,將對本發明的該等和其餘實施例進行陳述。
圖式簡單說明
第1圖顯示一傳統垂直溝槽式閘型(trenched gate)MOSFET之一簡化剖面圖;第2A圖顯示依據本發明的一垂直溝槽式(trenched-gate)閘型MOSFET之一簡化剖面圖;第2B圖顯示第2A圖的垂直溝槽式閘型MOSFET之一簡化頂部佈局圖;第3圖顯示依據本發明另一實施例的一垂直溝槽式閘型MOSFET之一簡化剖面圖;第4圖顯示本發明另一實施例之一簡化頂部佈局圖,其中第2A圖和第3圖裏的原胞結構被結合;第5圖顯示第2A圖的MOSFET實施例之電流和電壓波形與習知技藝第1圖的MOSFET之電流和電壓波形的比較;第6圖顯示第3圖的MOSFET之電流和電壓波形與習知技藝第1圖的MOSFET之電流和電壓波形的比較。
較佳實施例之詳細說明
依據本發明的一實施例,藉使用位於溝槽式閘下面的一植入區,MOSFET的閘極-汲極電容被降低,其中該植入區鄰近MOSFET的阱區。植入區成為溝槽範圍,在其下植入區被形成非活性的,因為它阻礙電晶體通道對應部分裏的傳導。該實施例的一合適用途為高電壓元件,其中通道電阻(channel resistance)在導通電阻(resistance Rdson)方面對電晶體的貢獻較低。在另一實施例中,位於閘溝槽下的一植入區被形成,使得一間隙存在於植入區和阱區之間,通道電流可流過其中。在該實施例中,植入區在導通電阻方面的影響被最小化,因此該實施例的一合適用途將會為低電壓元件。該等兩個實施例在要求一緊密溝槽原胞(cell)節距(pitch)的設計中,例如一超接面(superjunction)元件或低導通電阻的緊密交替pn柱(pn pillar)節距,尤其有用。該等兩個實施例可在一單獨的MOSFET中被結合到一起。另外,當需要時,該等兩個實施例之一者可和第1圖所示的習知技藝結構相結合。
第2A圖顯示依據本發明一實施例的一垂直溝槽閘型MOSFET 200之一簡化剖面圖。n-型傳導性類型的一磊晶層204延伸越過形成汲極接觸區的n-型基底202。p-型傳導性類型的阱區206形成於磊晶層204的一上部裏。閘溝槽209延伸穿過阱區206。直接位於溝槽209下之阱區206的一部分206a比阱區206的其餘部分更深度延伸進磊晶層204,以使閘溝槽209終止於部分206a內。閘溝槽209沿著其側壁和底面與一介電層212排成一行。溝槽209被填充形成電晶體閘的多晶矽材料210。源區208位於溝槽209的各側面,且沿垂直方向交疊閘210。在另一實施例中,溝槽209被部分填充多晶矽材料,且介電質材料位於多晶矽頂上。注意一個或更多個基底202、磊晶層204、包括部分206a的阱區206、以及源區208可由晶體矽(Si)、碳化矽(SiC)、氮化鎵(GaN)、或鍺化矽(SiGe)形成。
在第2A圖中,因為閘210不交疊磊晶層204,所以在導通態時沒有通道形成於部分206a上。在第2A圖實施例的一變型中,溝槽式閘原胞為第2B圖裏簡化頂部佈局圖所示之帶狀(即,被佈置成一開放原胞組態)。帶狀溝槽式閘210垂直延伸,且源區208位於溝槽式閘型電極210的各側。如圖示,較深延伸阱部分206a沿帶狀溝槽式閘電極210的長度而週期性形成。在部分206a沒有形成之處(例如,沿虛線1-1),原胞剖面相似於第1圖的(即,閘溝槽210暢通地延伸穿過阱區206且終止於磊晶層204內,使得閘溝槽沿垂直方向交疊磊晶層204)。透過這種方式,在導通態裏,電流流動被確立(以相似於以上參看第1圖所述之一方式)沿著溝槽側壁部分,在其下較深的延伸阱部分206a並沒有形成。但是,在更深度延伸阱部分206a於閘下形成之處,電流流動被阻礙。因此,閘極-汲極交疊被對應部分206a的一總量所減少。進言之,既然總阱區206在尺寸上被增加,則閘極到源極的電容或Qg s (閘源電荷)增加。因此,Qg d /Qg s (閘汲電荷/閘源電荷)之比被進一步有利增加。故該MOSFET的切換特徵被實質改良。
在一實施例中,第2A圖的結構被如下形成。採用傳統技術將磊晶層204形成於基底202上。採用習知技術藉植入和驅動p-型摻質(dopants)的方式,阱區206形成於磊晶層204的一上部裏。接著採用傳統矽蝕刻技術藉蝕刻矽而使溝槽209形成。採用一罩層(masking layer),然後用p-型摻質選擇性植入溝槽209的底部從而形成區206a。在一實施例中,使用1×101 3 -1×101 4 cm 3 範圍內的一植入劑量和40-120KeV範圍內一植入能量。在另一實施例中,區206a在其最深點處的厚度處於0.2-0.4μm範圍內。介電層212、填充溝槽209的摻入多晶矽210、以及源區208都是採用傳統方法而形成。
第3圖顯示依據本發明另一實施例的一垂直溝槽式閘型MOSFET 300之一簡化剖面圖。除了替換更深度延伸阱部分206a,p-型區307直接形成於溝槽309下之外,MOSFET 300的剖面圖相似於第2A圖的。如第3圖所示,區307形成使得一間隙存在於阱區306和區307之間,位於溝槽309各底部拐角處。在導通態期間,電流流過這些間隙。因此,藉使用如圖示之具有間隙的區間307,閘極-汲極交疊被顯著減少且沒有阻礙電流流動。在一實施例中,藉由採用30-80KeV範圍內的一植入能量來實施一淺的硼植入穿過溝槽的底部而形成區307。在一實施例中,區307具有0.1-0.3μm範圍內的一厚度,且區307和阱區306之間的間隙處於0.1-0.3μm範圍內。如第2A圖實施例所示,一個或更多個基底302、磊晶層304、阱區306、區307、以及源區308可由晶體矽(Si)、碳化矽(SiC)、氮化鎵(GaN)、或鍺化矽(SiGe)形成。
在一帶狀原胞佈局實施例中,區307可連續沿著帶狀溝槽閘的長度而延伸。區307可沿帶狀溝槽閘而向上延伸到其端部或其餘位置,以電接觸阱區306。作為選擇,區307不進行偏壓,且因此被容許電漂浮(electrically float)。在另一實施例中,相似於第2B圖所示佈局,多個區307沿帶的長度而被週期性形成,使得沿帶的部分之原胞結構(例如,在虛線1-1處)相似於習知技藝第1圖中所示之。作為選擇,第2A圖和第3圖實施例可被結合為第4圖佈局圖所示之。在第4圖裏,區206a對應第2A圖裏的區206a,而區307對應第3圖裏的區307。如兩個箭頭所示,無電流傳導產生於區206a形成處,但是電流可流過區307形成處以及區206a和307之間。區307和206a的特別佈置並不受限於第4圖所示之。許多其他佈置也是可能。在另一實施例中,區206a和307之間的區被消除,使得沿帶之任何地方都不是相似於習知技藝第1圖裏所形成之所示原胞結構。
在本發明之一實施例中,第2A圖裏位於閘溝槽下之阱區206和區206a,以及第3圖裏位於閘溝槽下之阱區306和區307可如下形成。p-型摻質的一淺覆層植入(在活性區裏)磊晶層之步驟被實施。接著採用一罩層,使p-型摻質的一深度植入磊晶層選定區之步驟被實施。該等兩個植入步驟可按相反順序被實施。然後一溫度循環被實施以驅動該等兩種植入摻質更深入磊晶層。結果,對應淺覆層植入的一阱區和對應深度植入的預定矽區形成於磊晶層裏,使得預定矽區的最深部分深於阱區的底面。為獲得第2A圖裏的結構,上述兩個植入步驟和溫度循環需要被設計,以使驅動進摻質後,矽區鄰近阱區。作為選擇,為形成第3圖裏的結構,上述兩個植入步驟和溫度循環需要被設計,以使摻質被驅動進和閘溝槽被形成之後,一間隙形成於各矽區和阱區之間。鑒於該揭示內容,本技藝熟練人員將會瞭解怎樣設計該等兩個步驟和溫度循環,從而獲得第2A圖和3所示之結構。
在形成第2A圖裏位於閘溝槽下的阱區206和區206a,以及第3圖裏位於閘溝槽下的阱區306和區307之另一方法中,採用一罩層使p-型摻質的一淺植入磊晶層所選定區之步驟被首先實施。然後一溫度循環被進行以驅動植入摻質更深入磊晶層。接著,p-型摻質的一覆層植入(blanket implant)(在活性區裏)第一矽區被實施。一第二溫度循環再被實施以驅動植入摻質從覆層植入步驟更深入磊晶層內和驅動摻質從淺植入步驟甚至更加深入磊晶層內。結果,對應覆層植入的一阱區和對應淺植入的矽區被形成,使得矽區的最深部分深於阱區的底面。為獲得第2A圖裏的結構,上述兩個植入步驟和兩個溫度循環需要被設計,以使驅動進摻質後,矽區鄰近阱區。作為選擇,為形成第3圖裏的結構,該等兩個植入步驟和兩個溫度循環需要被設計,以使摻質被驅動進和閘溝槽被形成之後,一間隙形成於各矽區和阱區之間。和前述實施例一樣,鑒於該揭示內容,本技藝熟練人員將會瞭解怎樣設計該等兩個步驟和兩個溫度循環,從而獲得第2A圖和3所示之結構。
下列表格顯示習知技藝第1圖裏的MOSFET 100、第2A圖裏的MOSFET 200、和第3圖裏的MOSFET 300之各個Qg s 、Qg d 、和Qg d /Qg s 之比的模擬結果。貝有一6μm節距和0.6μm溝槽寬度之一600V超接面MOSFET被用於該模擬。
可以看出,MOSFET 200和300兩個均有低於習知技藝MOSFET 100的Qg d ,且兩個均有高於習知技藝MOSFET 100的Qg s 。因此比MOSFET 100的較低一Qg d /Qg s 之比也為MOSFET 200和300所獲的。第5圖和第6圖裏的模擬波形也顯示相似結果。第5圖顯示第2A圖MOSFET和習知技藝第1圖MOSFET的I (汲極電流)、V (汲極電壓)、以及V (閘極電壓),而第6圖顯示第3圖MOSFET和習知技藝第1圖MOSFET的相同參數。
不同實施例的剖面圖和頂部佈局圖或許沒按比例繪出,且同樣也無意限制對應結構佈局設計裏的可能變型。多種電晶體也可形成於包括六角形或正方形成型電晶體原胞在內之細胞架構(cellular architecture)裏。
雖然以上顯示和陳述多個具體實施例,但是本發明並不受限於此。舉例而言,可理解地是,在不脫離本發明範圍下,所示和所述結構的摻雜極性可被顛倒,及/或多種元素的摻雜濃度可被改變。同樣舉另一示例,以上所述之多種例示性垂直電晶體具有終止於漂流區內之溝槽,但是它們也可終止於更深的摻入基底內。同樣另舉一示例,本發明被顯示和陳述於垂直MOSFET實施例的內容中,但是第2A圖裏的區206a和第3圖裏的區307可被相似形成於其他溝槽式閘型結構裏,例如溝槽式閘型IGBT(絕緣閘雙極電晶體)和側向溝槽式閘型MOSFET。
因此,本發明範圍不應該參看上述描述而被決定,相反,而是應該參看所呈申請專利範圍及其等全部等效範圍而決定。
100...MOSFET(金屬氧化物半導體場效應管)
102...基底
104...磊晶層
106...阱區
108...源區
109...閘溝槽
110...多晶矽材料/閘極
112...介電層
114...汲極接點
116...源極接點
118...閘極接點
200...溝槽閘型MOSFET
202...基底
204...磊晶層
206...阱區
206a...部分/區
208...源區
209...閘溝槽
210...多晶矽材料/閘極
212...介電層
214...汲極接點
216...源極接點
218...閘極接點
300...MOSFET
302...基底
304...磊晶層
306...阱區
307...P-型區
308...源區
309...溝槽
310...多晶矽材料/閘極
312...介電層
314...汲極接點
316...源極接點
318...閘極接點
第1圖顯示一傳統垂直溝槽式閘型(trenched gate)MOSFET之一簡化剖面圖;第2A圖顯示依據本發明的一垂直溝槽式(trenched-gate)閘型MOSFET之一簡化剖面圖;第2B圖顯示第2A圖的垂直溝槽式閘型MOSFET之一簡化頂部佈局圖;第3圖顯示依據本發明另一實施例的一垂直溝槽式閘型MOSFET之一簡化剖面圖;第4圖顯示本發明另一實施例之一簡化頂部佈局圖,其中第2A圖和第3圖裏的原胞結構被結合;第5圖顯示第2A圖的MOSFET實施例之電流和電壓波形與習知技藝第1圖的MOSFET之電流和電壓波形的比較;第6圖顯示第3圖的MOSFET之電流和電壓波形與習知技藝第1圖的MOSFET之電流和電壓波形的比較。
202...基底
204...磊晶層
206...阱區
206a...部分
208...源區
209...閘溝槽
210...多晶矽材料/閘極
212...介電層
214...汲極接點
216...源極接點
218...閘極接點

Claims (16)

  1. 一種溝槽型MOS-閘控電晶體,其包含:一第一傳導性類型的一第一區;和該第一區形成一pn接面之一第二傳導性類型的一阱區,該阱區具有一平底部分和比該平底部分更深度延伸的一部分;延伸進該阱區的一閘溝槽;沿該閘溝槽的外壁之該阱區裏的通道區;該第一區裏的該第二傳導類型的一第二區;該閘溝槽的一第一底部係終止於該第二區內,該第二區係與該阱區的該平底部分隔開以於其間形成一間隙,使得在該電晶體處於一導通態時,一電流流過該間隙;該閘溝槽的一第二底部係終止於該阱區的該更深部分內,使得在該電晶體處於一導通態時,該阱區的該更深部分阻止一電流流過直接定位於該阱區的該更深部分上之該等通道區部分;以及該閘溝槽的一第三底部係終止於該第一區內。
  2. 如申請專利範圍第1項之溝槽型MOS-閘控電晶體,其進一步包含:該第一傳導性類型的一基底,該第一區係為在該基底上延伸之一磊晶層。
  3. 如申請專利範圍第1項之溝槽型MOS-閘控電晶體,其進一步包含: 位於該阱區裏之該第一傳導性類型的一源區,該源區位於該閘溝槽的一側面。
  4. 如申請專利範圍第1項之溝槽型MOS-閘控電晶體,其中該閘溝槽包括與該閘溝槽的一側壁和一底部排成一行之一介電層,且該閘溝槽係至少被部分地填充多晶矽。
  5. 如申請專利範圍第1項之溝槽型MOS-閘控電晶體,其中該阱區的該更深部分比該阱區的該平底部分約深0.2-0.4μm。
  6. 如申請專利範圍第1項之溝槽型MOS-閘控電晶體,其中該第一區和該阱區中之至少一者是由晶體矽(Si)、碳化矽(SiC)、氮化鎵(GaN)、及鍺化矽(SiGe)中之至少一者所形成。
  7. 一種溝槽型MOS-閘控電晶體,其包含:一基底;延伸橫越並接觸該基底之一第一傳導性類型的一磊晶層;形成於該磊晶層之一上部內之一第二傳導性類型的一阱區;延伸進該阱區裏的一閘溝槽,該閘溝槽具有一第一底部及一第二底部,該第一底部係終止於該磊晶層內;以及包圍該閘溝槽之該第二底部之該第二傳導性類型的一矽材料區,使得一間隙形成於該矽材料區與該阱區之間,在該電晶體處於一導通態時,一電流可流過該間 隙。
  8. 如申請專利範圍第7項之溝槽型MOS-閘控電晶體,其中該矽材料區具有約為約為0.1-0.3μm之一厚度。
  9. 如申請專利範圍第7項之溝槽型MOS-閘控電晶體,其中該閘溝槽包括與該閘溝槽的一側壁和一底部排成一行之一介電層,且該閘溝槽係至少被部分地填充多晶矽。
  10. 如申請專利範圍第7項之溝槽型MOS-閘控電晶體,其中該基底、該磊晶層及該阱區中之至少一者是由晶體矽(Si)、碳化矽(SiC)、氮化鎵(GaN)、及鍺化矽(SiGe)中之至少一者所形成。
  11. 一種溝槽型MOS-閘控電晶體,其包含:一矽材料基底;位於該基底上之一第一傳導性類型的一矽材料層;形成於該矽材料層之一上部內之一第二傳導性類型的一阱區;延伸進該阱區裏的一閘溝槽,該閘溝槽具有一第一底部及一第二底部,該第二底部係終止於該矽材料層內;該第一傳導性類型的一源區,其位於該閘溝槽之各側面,從而在該阱區內沿該閘溝槽外壁形成通道區,該閘溝槽係被填充一多晶矽材料至少直到且部分交疊該源區;以及該第二傳導性類型的一矽材料區,其包圍該閘溝槽的該第一底部,使得一間隙形成於該矽材料區和該阱區 之間,在該電晶體處於一導通態時,一電流流過其間隙。
  12. 如申請專利範圍第11項之溝槽型MOS-閘控電晶體,其中該矽材料層係為延伸於該基底上之一磊晶層。
  13. 如申請專利範圍第11項之溝槽型MOS-閘控電晶體,其中該矽材料區具有約為0.1-0.3μm的一厚度。
  14. 如申請專利範圍第11項之溝槽型MOS-閘控電晶體,其中該閘溝槽閘係為帶狀,且該矽材料區係沿該閘溝槽的一長度而部分地延伸。
  15. 如申請專利範圍第11項之溝槽型MOS-閘控電晶體,其中該阱區具有一平底部分和比該平底部分更深度延伸之一部分,使得該閘溝槽部分終止於該阱區的該更深部分內。
  16. 一種溝槽型MOS-閘控電晶體,其包含:一矽材料基底;位在該基底上的一第一傳導性類型的一矽材料層;形成該矽材料層內的一pn接面的一第二傳導性類型的一阱區;延伸進該阱區裏之一閘溝槽;位於該閘溝槽之各側面之該第一傳導性類型的一源區,以沿該閘溝槽之外壁之該阱區內形成通道區,該閘溝槽包括一至少至該源區且部份地與該源區交疊之閘電極;以及該第二傳導性類型的一矽材料區,其包圍該閘溝槽 之一底部,使得一間隙形成於該矽材料區與該阱區之間,在該電晶體處於一導通態時,一電流流過該間隙,該閘溝槽係為帶狀且該矽材料區係沿該帶狀閘溝槽之全部長度延伸,且該矽材料區係電氣連接於該阱區。
TW094135172A 2004-10-08 2005-10-07 具有降低米勒電容之金屬氧化物半導體(mos)閘控的電晶體 TWI393254B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/962,367 US7265415B2 (en) 2004-10-08 2004-10-08 MOS-gated transistor with reduced miller capacitance

Publications (2)

Publication Number Publication Date
TW200618280A TW200618280A (en) 2006-06-01
TWI393254B true TWI393254B (zh) 2013-04-11

Family

ID=36144410

Family Applications (1)

Application Number Title Priority Date Filing Date
TW094135172A TWI393254B (zh) 2004-10-08 2005-10-07 具有降低米勒電容之金屬氧化物半導體(mos)閘控的電晶體

Country Status (8)

Country Link
US (2) US7265415B2 (zh)
EP (1) EP1803159B1 (zh)
JP (1) JP2008516451A (zh)
KR (2) KR100929714B1 (zh)
CN (1) CN101091258B (zh)
HK (1) HK1112111A1 (zh)
TW (1) TWI393254B (zh)
WO (1) WO2006041823A2 (zh)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7576388B1 (en) * 2002-10-03 2009-08-18 Fairchild Semiconductor Corporation Trench-gate LDMOS structures
US7265415B2 (en) * 2004-10-08 2007-09-04 Fairchild Semiconductor Corporation MOS-gated transistor with reduced miller capacitance
DE102005024951A1 (de) * 2005-05-31 2006-12-14 Infineon Technologies Ag Halbleiterspeicherbauelement
US7400172B2 (en) * 2006-10-16 2008-07-15 Freescale Semiconductor, Inc. Miller capacitance tolerant buffer element
JP2008130896A (ja) * 2006-11-22 2008-06-05 Fuji Electric Device Technology Co Ltd 半導体装置
US7994005B2 (en) * 2007-11-01 2011-08-09 Alpha & Omega Semiconductor, Ltd High-mobility trench MOSFETs
JP4644730B2 (ja) * 2008-08-12 2011-03-02 株式会社日立製作所 半導体装置及びそれを用いた電力変換装置
US8237195B2 (en) * 2008-09-29 2012-08-07 Fairchild Semiconductor Corporation Power MOSFET having a strained channel in a semiconductor heterostructure on metal substrate
CN101807546B (zh) * 2009-02-13 2013-04-17 尼克森微电子股份有限公司 沟道式金属氧化物半导体元件及其制作方法
US8242510B2 (en) * 2010-01-28 2012-08-14 Intersil Americas Inc. Monolithic integration of gallium nitride and silicon devices and circuits, structure and method
US8525260B2 (en) * 2010-03-19 2013-09-03 Monolithic Power Systems, Inc. Super junction device with deep trench and implant
US8304828B2 (en) * 2010-03-22 2012-11-06 Great Power Semiconductor Corp. Closed cell trench power MOSFET structure
JP5531787B2 (ja) * 2010-05-31 2014-06-25 株式会社デンソー 炭化珪素半導体装置およびその製造方法
US8313995B2 (en) 2011-01-13 2012-11-20 Infineon Technologies Austria Ag Method for manufacturing a semiconductor device
JP5717661B2 (ja) 2011-03-10 2015-05-13 株式会社東芝 半導体装置とその製造方法
CN102184960B (zh) * 2011-04-22 2016-07-27 上海华虹宏力半导体制造有限公司 功率金属氧化物半导体场效应管及其形成方法
EP2765612B1 (en) 2011-09-08 2021-10-27 Tamura Corporation Ga2O3 SEMICONDUCTOR ELEMENT
EP2765610B1 (en) 2011-09-08 2018-12-26 Tamura Corporation Ga2o3 semiconductor element
EP2602829A1 (en) * 2011-12-07 2013-06-12 Nxp B.V. Trench-gate resurf semiconductor device and manufacturing method
US8785278B2 (en) 2012-02-02 2014-07-22 Alpha And Omega Semiconductor Incorporated Nano MOSFET with trench bottom oxide shielded and third dimensional P-body contact
TW201421683A (zh) * 2012-11-23 2014-06-01 Anpec Electronics Corp 具有低米勒電容之金氧半場效電晶體元件及其製作方法
TWI544635B (zh) 2014-03-20 2016-08-01 帥群微電子股份有限公司 溝槽式功率金氧半場效電晶體與其製造方法
US9443973B2 (en) * 2014-11-26 2016-09-13 Infineon Technologies Austria Ag Semiconductor device with charge compensation region underneath gate trench
DE102014117780B4 (de) 2014-12-03 2018-06-21 Infineon Technologies Ag Halbleiterbauelement mit einer Grabenelektrode und Verfahren zur Herstellung
DE102014119465B3 (de) * 2014-12-22 2016-05-25 Infineon Technologies Ag Halbleitervorrichtung mit streifenförmigen trenchgatestrukturen, transistormesas und diodenmesas
JP2017112161A (ja) * 2015-12-15 2017-06-22 三菱電機株式会社 半導体装置
JP6560141B2 (ja) * 2016-02-26 2019-08-14 トヨタ自動車株式会社 スイッチング素子
JP6560142B2 (ja) * 2016-02-26 2019-08-14 トヨタ自動車株式会社 スイッチング素子
US10032907B2 (en) * 2016-10-04 2018-07-24 Nexperia B.V. TrenchMOS
US9887287B1 (en) * 2016-12-08 2018-02-06 Cree, Inc. Power semiconductor devices having gate trenches with implanted sidewalls and related methods
CN106449419A (zh) * 2016-12-08 2017-02-22 西安电子科技大学 基于Ga2O3材料的U型栅MOSFET及其制备方法
JP6753951B2 (ja) 2017-06-06 2020-09-09 三菱電機株式会社 半導体装置および電力変換装置
CN109427886A (zh) * 2017-08-25 2019-03-05 比亚迪股份有限公司 Mosfet及制备方法、电子设备、车辆
CN109671766B (zh) * 2017-10-13 2023-06-27 联华电子股份有限公司 功率金属氧化物半导体场效晶体管
JP2019087611A (ja) * 2017-11-06 2019-06-06 トヨタ自動車株式会社 スイッチング素子とその製造方法
DE102018103973B4 (de) 2018-02-22 2020-12-03 Infineon Technologies Ag Siliziumcarbid-halbleiterbauelement
DE102018106670A1 (de) * 2018-03-21 2019-09-26 Infineon Technologies Ag Siliziumcarbid-Halbleitervorrichtung mit Graben-Gatestruktur und einem Sourcegebiet in einem oberen Bereich eines Mesaabschnitts
DE102019111308A1 (de) 2018-05-07 2019-11-07 Infineon Technologies Ag Siliziumcarbid halbleiterbauelement
CN109037337A (zh) * 2018-06-28 2018-12-18 华为技术有限公司 一种功率半导体器件及制造方法
JP7005453B2 (ja) * 2018-08-08 2022-01-21 株式会社東芝 半導体装置
DE102018124740A1 (de) 2018-10-08 2020-04-09 Infineon Technologies Ag Halbleiterbauelement mit einem sic halbleiterkörper und verfahren zur herstellung eines halbleiterbauelements
US10903322B2 (en) 2018-11-16 2021-01-26 Infineon Technologies Ag SiC power semiconductor device with integrated body diode
US10586845B1 (en) 2018-11-16 2020-03-10 Infineon Technologies Ag SiC trench transistor device and methods of manufacturing thereof
US10985248B2 (en) 2018-11-16 2021-04-20 Infineon Technologies Ag SiC power semiconductor device with integrated Schottky junction
CN110137259A (zh) * 2019-04-11 2019-08-16 深圳大学 Mosfet管及其制备方法
CN111584365B (zh) * 2020-04-29 2024-01-30 北京时代民芯科技有限公司 一种低米勒电容槽栅vdmos器件制造方法
US11961903B2 (en) * 2020-05-26 2024-04-16 Hyundai Mobis Co., Ltd. Power semiconductor device and method of fabricating the same
WO2022104074A1 (en) * 2020-11-13 2022-05-19 The Regents Of The University Of California Epitaxy-enabled substrate transfer
CN117393585B (zh) * 2023-12-07 2024-04-05 深圳市冠禹半导体有限公司 一种高驱动能力的mosfet器件及其驱动电路

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6194741B1 (en) * 1998-11-03 2001-02-27 International Rectifier Corp. MOSgated trench type power semiconductor with silicon carbide substrate and increased gate breakdown voltage and reduced on-resistance
US20030209741A1 (en) * 2002-04-26 2003-11-13 Wataru Saitoh Insulated gate semiconductor device
US20040113202A1 (en) * 2002-08-23 2004-06-17 Kocon Christopher B. Method and apparatus for improved MOS gating to reduce miller capacitance and switching losses
US20040195618A1 (en) * 2003-04-07 2004-10-07 Wataru Saito Insulated gate semiconductor device

Family Cites Families (170)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3404295A (en) 1964-11-30 1968-10-01 Motorola Inc High frequency and voltage transistor with added region for punch-through protection
US3412297A (en) 1965-12-16 1968-11-19 United Aircraft Corp Mos field-effect transistor with a onemicron vertical channel
US3497777A (en) * 1967-06-13 1970-02-24 Stanislas Teszner Multichannel field-effect semi-conductor device
US3564356A (en) * 1968-10-24 1971-02-16 Tektronix Inc High voltage integrated circuit transistor
US3660697A (en) 1970-02-16 1972-05-02 Bell Telephone Labor Inc Monolithic semiconductor apparatus adapted for sequential charge transfer
US4003072A (en) * 1972-04-20 1977-01-11 Sony Corporation Semiconductor device with high voltage breakdown resistance
US4011105A (en) * 1975-09-15 1977-03-08 Mos Technology, Inc. Field inversion control for n-channel device integrated circuits
US4337474A (en) 1978-08-31 1982-06-29 Mitsubishi Denki Kabushiki Kaisha Semiconductor device
US4638344A (en) * 1979-10-09 1987-01-20 Cardwell Jr Walter T Junction field-effect transistor controlled by merged depletion regions
US4698653A (en) 1979-10-09 1987-10-06 Cardwell Jr Walter T Semiconductor devices controlled by depletion regions
US4345265A (en) 1980-04-14 1982-08-17 Supertex, Inc. MOS Power transistor with improved high-voltage capability
US4868624A (en) 1980-05-09 1989-09-19 Regents Of The University Of Minnesota Channel collector transistor
US4300150A (en) 1980-06-16 1981-11-10 North American Philips Corporation Lateral double-diffused MOS transistor device
US4326332A (en) * 1980-07-28 1982-04-27 International Business Machines Corp. Method of making a high density V-MOS memory array
DE3070786D1 (en) * 1980-11-12 1985-07-25 Ibm Deutschland Electrically switchable read-only memory
US4324038A (en) * 1980-11-24 1982-04-13 Bell Telephone Laboratories, Incorporated Method of fabricating MOS field effect transistors
US4969028A (en) 1980-12-02 1990-11-06 General Electric Company Gate enhanced rectifier
GB2089119A (en) 1980-12-10 1982-06-16 Philips Electronic Associated High voltage semiconductor devices
US4974059A (en) 1982-12-21 1990-11-27 International Rectifier Corporation Semiconductor high-power mosfet device
JPS6016420A (ja) * 1983-07-08 1985-01-28 Mitsubishi Electric Corp 選択的エピタキシヤル成長方法
US4639761A (en) * 1983-12-16 1987-01-27 North American Philips Corporation Combined bipolar-field effect transistor resurf devices
US4568958A (en) * 1984-01-03 1986-02-04 General Electric Company Inversion-mode insulated-gate gallium arsenide field-effect transistors
FR2566179B1 (fr) * 1984-06-14 1986-08-22 Commissariat Energie Atomique Procede d'autopositionnement d'un oxyde de champ localise par rapport a une tranchee d'isolement
US5208657A (en) 1984-08-31 1993-05-04 Texas Instruments Incorporated DRAM Cell with trench capacitor and vertical channel in substrate
US4824793A (en) * 1984-09-27 1989-04-25 Texas Instruments Incorporated Method of making DRAM cell with trench capacitor
US4673962A (en) 1985-03-21 1987-06-16 Texas Instruments Incorporated Vertical DRAM cell and method
US4774556A (en) 1985-07-25 1988-09-27 Nippondenso Co., Ltd. Non-volatile semiconductor memory device
US5262336A (en) 1986-03-21 1993-11-16 Advanced Power Technology, Inc. IGBT process to produce platinum lifetime control
US4767722A (en) 1986-03-24 1988-08-30 Siliconix Incorporated Method for making planar vertical channel DMOS structures
US5034785A (en) 1986-03-24 1991-07-23 Siliconix Incorporated Planar vertical channel DMOS structure
US4716126A (en) 1986-06-05 1987-12-29 Siliconix Incorporated Fabrication of double diffused metal oxide semiconductor transistor
US4746630A (en) 1986-09-17 1988-05-24 Hewlett-Packard Company Method for producing recessed field oxide with improved sidewall characteristics
US4941026A (en) 1986-12-05 1990-07-10 General Electric Company Semiconductor devices exhibiting minimum on-resistance
JP2577330B2 (ja) 1986-12-11 1997-01-29 新技術事業団 両面ゲ−ト静電誘導サイリスタの製造方法
US5105243A (en) * 1987-02-26 1992-04-14 Kabushiki Kaisha Toshiba Conductivity-modulation metal oxide field effect transistor with single gate structure
US4821095A (en) * 1987-03-12 1989-04-11 General Electric Company Insulated gate semiconductor device with extra short grid and method of fabrication
WO1988007636A1 (en) 1987-03-25 1988-10-06 Kabushiki Kaisha Komatsu Seisakusho Hydraulic clutch pressure control apparatus
US4745079A (en) 1987-03-30 1988-05-17 Motorola, Inc. Method for fabricating MOS transistors having gates with different work functions
US4823176A (en) * 1987-04-03 1989-04-18 General Electric Company Vertical double diffused metal oxide semiconductor (VDMOS) device including high voltage junction exhibiting increased safe operating area
US4801986A (en) * 1987-04-03 1989-01-31 General Electric Company Vertical double diffused metal oxide semiconductor VDMOS device with increased safe operating area and method
US5164325A (en) 1987-10-08 1992-11-17 Siliconix Incorporated Method of making a vertical current flow field effect transistor
US4893160A (en) * 1987-11-13 1990-01-09 Siliconix Incorporated Method for increasing the performance of trenched devices and the resulting structure
US4914058A (en) * 1987-12-29 1990-04-03 Siliconix Incorporated Grooved DMOS process with varying gate dielectric thickness
US4967245A (en) 1988-03-14 1990-10-30 Siliconix Incorporated Trench power MOSFET device
KR0173111B1 (ko) 1988-06-02 1999-02-01 야마무라 가쯔미 트렌치 게이트 mos fet
US4961100A (en) 1988-06-20 1990-10-02 General Electric Company Bidirectional field effect semiconductor device and circuit
JPH0216763A (ja) * 1988-07-05 1990-01-19 Toshiba Corp 半導体装置の製造方法
US4853345A (en) 1988-08-22 1989-08-01 Delco Electronics Corporation Process for manufacture of a vertical DMOS transistor
US5268311A (en) 1988-09-01 1993-12-07 International Business Machines Corporation Method for forming a thin dielectric layer on a substrate
US5156989A (en) 1988-11-08 1992-10-20 Siliconix, Incorporated Complementary, isolated DMOS IC technology
US5346834A (en) 1988-11-21 1994-09-13 Hitachi, Ltd. Method for manufacturing a semiconductor device and a semiconductor memory device
US5072266A (en) 1988-12-27 1991-12-10 Siliconix Incorporated Trench DMOS power transistor with field-shaping body profile and three-dimensional geometry
US5111253A (en) 1989-05-09 1992-05-05 General Electric Company Multicellular FET having a Schottky diode merged therewith
US4992390A (en) * 1989-07-06 1991-02-12 General Electric Company Trench gate structure with thick bottom oxide
WO1991003842A1 (en) 1989-08-31 1991-03-21 Nippondenso Co., Ltd. Insulated gate bipolar transistor
US5248894A (en) 1989-10-03 1993-09-28 Harris Corporation Self-aligned channel stop for trench-isolated island
US5134448A (en) 1990-01-29 1992-07-28 Motorola, Inc. MOSFET with substrate source contact
US5242845A (en) 1990-06-13 1993-09-07 Kabushiki Kaisha Toshiba Method of production of vertical MOS transistor
US5071782A (en) 1990-06-28 1991-12-10 Texas Instruments Incorporated Vertical memory cell array and method of fabrication
US5079608A (en) * 1990-11-06 1992-01-07 Harris Corporation Power MOSFET transistor circuit with active clamp
DE69125794T2 (de) * 1990-11-23 1997-11-27 Texas Instruments Inc Verfahren zum gleichzeitigen Herstellen eines Feldeffekttransistors mit isoliertem Gate und eines Bipolartransistors
US5065273A (en) 1990-12-04 1991-11-12 International Business Machines Corporation High capacity DRAM trench capacitor and methods of fabricating same
US5168331A (en) 1991-01-31 1992-12-01 Siliconix Incorporated Power metal-oxide-semiconductor field effect transistor
JP2825004B2 (ja) * 1991-02-08 1998-11-18 インターナショナル・ビジネス・マシーンズ・コーポレーション 側壁電荷結合撮像素子及びその製造方法
CN1019720B (zh) 1991-03-19 1992-12-30 电子科技大学 半导体功率器件
US5164802A (en) 1991-03-20 1992-11-17 Harris Corporation Power vdmosfet with schottky on lightly doped drain of lateral driver fet
US5250450A (en) 1991-04-08 1993-10-05 Micron Technology, Inc. Insulated-gate vertical field-effect transistor with high current drive and minimum overlap capacitance
JP2603886B2 (ja) * 1991-05-09 1997-04-23 日本電信電話株式会社 薄層soi型絶縁ゲート型電界効果トランジスタの製造方法
US5219793A (en) 1991-06-03 1993-06-15 Motorola Inc. Method for forming pitch independent contacts and a semiconductor device having the same
KR940006702B1 (ko) 1991-06-14 1994-07-25 금성일렉트론 주식회사 모스패트의 제조방법
US5298761A (en) * 1991-06-17 1994-03-29 Nikon Corporation Method and apparatus for exposure process
JP2570022B2 (ja) 1991-09-20 1997-01-08 株式会社日立製作所 定電圧ダイオード及びそれを用いた電力変換装置並びに定電圧ダイオードの製造方法
JPH0613627A (ja) 1991-10-08 1994-01-21 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法
US5300452A (en) * 1991-12-18 1994-04-05 U.S. Philips Corporation Method of manufacturing an optoelectronic semiconductor device
JPH05304297A (ja) 1992-01-29 1993-11-16 Nec Corp 電力用半導体装置およびその製造方法
US5554862A (en) 1992-03-31 1996-09-10 Kabushiki Kaisha Toshiba Power semiconductor device
JPH06196723A (ja) * 1992-04-28 1994-07-15 Mitsubishi Electric Corp 半導体装置及びその製造方法
US5233215A (en) 1992-06-08 1993-08-03 North Carolina State University At Raleigh Silicon carbide power MOSFET with floating field ring and floating field plate
US5430324A (en) 1992-07-23 1995-07-04 Siliconix, Incorporated High voltage transistor having edge termination utilizing trench technology
US5281548A (en) * 1992-07-28 1994-01-25 Micron Technology, Inc. Plug-based floating gate memory
US5294824A (en) * 1992-07-31 1994-03-15 Motorola, Inc. High voltage transistor having reduced on-resistance
US5300447A (en) * 1992-09-29 1994-04-05 Texas Instruments Incorporated Method of manufacturing a minimum scaled transistor
US5597795A (en) * 1992-10-27 1997-01-28 The Procter & Gamble Company Detergent compositions inhibiting dye transfer
US5275965A (en) * 1992-11-25 1994-01-04 Micron Semiconductor, Inc. Trench isolation using gated sidewalls
US5326711A (en) 1993-01-04 1994-07-05 Texas Instruments Incorporated High performance high voltage vertical transistor and method of fabrication
US5418376A (en) 1993-03-02 1995-05-23 Toyo Denki Seizo Kabushiki Kaisha Static induction semiconductor device with a distributed main electrode structure and static induction semiconductor device with a static induction main electrode shorted structure
US5341011A (en) 1993-03-15 1994-08-23 Siliconix Incorporated Short channel trenched DMOS transistor
DE4309764C2 (de) 1993-03-25 1997-01-30 Siemens Ag Leistungs-MOSFET
KR960012585B1 (en) * 1993-06-25 1996-09-23 Samsung Electronics Co Ltd Transistor structure and the method for manufacturing the same
US5371396A (en) 1993-07-02 1994-12-06 Thunderbird Technologies, Inc. Field effect transistor having polycrystalline silicon gate junction
US5365102A (en) 1993-07-06 1994-11-15 North Carolina State University Schottky barrier rectifier with MOS trench
BE1007283A3 (nl) 1993-07-12 1995-05-09 Philips Electronics Nv Halfgeleiderinrichting met een most voorzien van een extended draingebied voor hoge spanningen.
JPH07122749A (ja) 1993-09-01 1995-05-12 Toshiba Corp 半導体装置及びその製造方法
JP3400846B2 (ja) 1994-01-20 2003-04-28 三菱電機株式会社 トレンチ構造を有する半導体装置およびその製造方法
US5429977A (en) 1994-03-11 1995-07-04 Industrial Technology Research Institute Method for forming a vertical transistor with a stacked capacitor DRAM cell
US5434435A (en) 1994-05-04 1995-07-18 North Carolina State University Trench gate lateral MOSFET
DE4417150C2 (de) * 1994-05-17 1996-03-14 Siemens Ag Verfahren zur Herstellung einer Anordnung mit selbstverstärkenden dynamischen MOS-Transistorspeicherzellen
US5405794A (en) * 1994-06-14 1995-04-11 Philips Electronics North America Corporation Method of producing VDMOS device of increased power density
US5424231A (en) 1994-08-09 1995-06-13 United Microelectronics Corp. Method for manufacturing a VDMOS transistor
US5583368A (en) * 1994-08-11 1996-12-10 International Business Machines Corporation Stacked devices
US5674766A (en) * 1994-12-30 1997-10-07 Siliconix Incorporated Method of making a trench MOSFET with multi-resistivity drain to provide low on-resistance by varying dopant concentration in epitaxial layer
US5597765A (en) * 1995-01-10 1997-01-28 Siliconix Incorporated Method for making termination structure for power MOSFET
JP3325736B2 (ja) * 1995-02-09 2002-09-17 三菱電機株式会社 絶縁ゲート型半導体装置
JP3291957B2 (ja) * 1995-02-17 2002-06-17 富士電機株式会社 縦型トレンチmisfetおよびその製造方法
US5595927A (en) * 1995-03-17 1997-01-21 Taiwan Semiconductor Manufacturing Company Ltd. Method for making self-aligned source/drain mask ROM memory cell using trench etched channel
US5592005A (en) * 1995-03-31 1997-01-07 Siliconix Incorporated Punch-through field effect transistor
US5554552A (en) * 1995-04-03 1996-09-10 Taiwan Semiconductor Manufacturing Company PN junction floating gate EEPROM, flash EPROM device and method of manufacture thereof
US5744372A (en) * 1995-04-12 1998-04-28 National Semiconductor Corporation Fabrication of complementary field-effect transistors each having multi-part channel
JPH08306914A (ja) * 1995-04-27 1996-11-22 Nippondenso Co Ltd 半導体装置およびその製造方法
US5567634A (en) 1995-05-01 1996-10-22 National Semiconductor Corporation Method of fabricating self-aligned contact trench DMOS transistors
US6049108A (en) * 1995-06-02 2000-04-11 Siliconix Incorporated Trench-gated MOSFET with bidirectional voltage clamping
US5705409A (en) * 1995-09-28 1998-01-06 Motorola Inc. Method for forming trench transistor structure
US5879971A (en) * 1995-09-28 1999-03-09 Motorola Inc. Trench random access memory cell and method of formation
US5616945A (en) * 1995-10-13 1997-04-01 Siliconix Incorporated Multiple gated MOSFET for use in DC-DC converter
US6037632A (en) * 1995-11-06 2000-03-14 Kabushiki Kaisha Toshiba Semiconductor device
EP0879481B1 (de) * 1996-02-05 2002-05-02 Infineon Technologies AG Durch feldeffekt steuerbares halbleiterbauelement
US5895951A (en) * 1996-04-05 1999-04-20 Megamos Corporation MOSFET structure and fabrication process implemented by forming deep and narrow doping regions through doping trenches
US5719409A (en) * 1996-06-06 1998-02-17 Cree Research, Inc. Silicon carbide metal-insulator semiconductor field effect transistor
JP2891205B2 (ja) * 1996-10-21 1999-05-17 日本電気株式会社 半導体集積回路の製造方法
US6207994B1 (en) * 1996-11-05 2001-03-27 Power Integrations, Inc. High-voltage transistor with multi-layer conduction region
US6168983B1 (en) * 1996-11-05 2001-01-02 Power Integrations, Inc. Method of making a high-voltage transistor with multiple lateral conduction layers
US6011298A (en) * 1996-12-31 2000-01-04 Stmicroelectronics, Inc. High voltage termination with buried field-shaping region
KR100218260B1 (ko) * 1997-01-14 1999-09-01 김덕중 트랜치 게이트형 모스트랜지스터의 제조방법
JP3938964B2 (ja) * 1997-02-10 2007-06-27 三菱電機株式会社 高耐圧半導体装置およびその製造方法
US5877528A (en) * 1997-03-03 1999-03-02 Megamos Corporation Structure to provide effective channel-stop in termination areas for trenched power transistors
KR100225409B1 (ko) * 1997-03-27 1999-10-15 김덕중 트렌치 디-모오스 및 그의 제조 방법
US5879994A (en) * 1997-04-15 1999-03-09 National Semiconductor Corporation Self-aligned method of fabricating terrace gate DMOS transistor
US6037628A (en) * 1997-06-30 2000-03-14 Intersil Corporation Semiconductor structures with trench contacts
JP3502531B2 (ja) * 1997-08-28 2004-03-02 株式会社ルネサステクノロジ 半導体装置の製造方法
DE19740195C2 (de) * 1997-09-12 1999-12-02 Siemens Ag Halbleiterbauelement mit Metall-Halbleiterübergang mit niedrigem Sperrstrom
US6337499B1 (en) * 1997-11-03 2002-01-08 Infineon Technologies Ag Semiconductor component
US5949104A (en) * 1998-02-07 1999-09-07 Xemod, Inc. Source connection structure for lateral RF MOS devices
US5897343A (en) * 1998-03-30 1999-04-27 Motorola, Inc. Method of making a power switching trench MOSFET having aligned source regions
US5945724A (en) * 1998-04-09 1999-08-31 Micron Technology, Inc. Trench isolation region for semiconductor device
DE19918198B4 (de) * 1998-04-23 2008-04-17 International Rectifier Corp., El Segundo Struktur eines P-Kanal-Graben-MOSFETs
US6048772A (en) * 1998-05-04 2000-04-11 Xemod, Inc. Method for fabricating a lateral RF MOS device with an non-diffusion source-backside connection
DE19820223C1 (de) * 1998-05-06 1999-11-04 Siemens Ag Verfahren zum Herstellen einer Epitaxieschicht mit lateral veränderlicher Dotierung
US6015727A (en) * 1998-06-08 2000-01-18 Wanlass; Frank M. Damascene formation of borderless contact MOS transistors
DE19848828C2 (de) * 1998-10-22 2001-09-13 Infineon Technologies Ag Halbleiterbauelement mit kleiner Durchlaßspannung und hoher Sperrfähigkeit
DE19854915C2 (de) * 1998-11-27 2002-09-05 Infineon Technologies Ag MOS-Feldeffekttransistor mit Hilfselektrode
US6222229B1 (en) * 1999-02-18 2001-04-24 Cree, Inc. Self-aligned shield structure for realizing high frequency power MOSFET devices with improved reliability
US6351018B1 (en) * 1999-02-26 2002-02-26 Fairchild Semiconductor Corporation Monolithically integrated trench MOSFET and Schottky diode
US6204097B1 (en) * 1999-03-01 2001-03-20 Semiconductor Components Industries, Llc Semiconductor device and method of manufacture
US6188105B1 (en) * 1999-04-01 2001-02-13 Intersil Corporation High density MOS-gated power device and process for forming same
US6198127B1 (en) * 1999-05-19 2001-03-06 Intersil Corporation MOS-gated power device having extended trench and doping zone and process for forming same
US6191447B1 (en) * 1999-05-28 2001-02-20 Micro-Ohm Corporation Power semiconductor devices that utilize tapered trench-based insulating regions to improve electric field profiles in highly doped drift region mesas and methods of forming same
JP3851744B2 (ja) * 1999-06-28 2006-11-29 株式会社東芝 半導体装置の製造方法
GB9917099D0 (en) * 1999-07-22 1999-09-22 Koninkl Philips Electronics Nv Cellular trench-gate field-effect transistors
JP3971062B2 (ja) * 1999-07-29 2007-09-05 株式会社東芝 高耐圧半導体装置
US20030060013A1 (en) * 1999-09-24 2003-03-27 Bruce D. Marchant Method of manufacturing trench field effect transistors with trenched heavy body
US6222233B1 (en) * 1999-10-04 2001-04-24 Xemod, Inc. Lateral RF MOS device with improved drain structure
US6461918B1 (en) * 1999-12-20 2002-10-08 Fairchild Semiconductor Corporation Power MOS device with improved gate charge performance
US6346469B1 (en) * 2000-01-03 2002-02-12 Motorola, Inc. Semiconductor device and a process for forming the semiconductor device
US6580123B2 (en) 2000-04-04 2003-06-17 International Rectifier Corporation Low voltage power MOSFET device and process for its manufacture
US6627949B2 (en) * 2000-06-02 2003-09-30 General Semiconductor, Inc. High voltage power MOSFET having low on-resistance
US6479352B2 (en) * 2000-06-02 2002-11-12 General Semiconductor, Inc. Method of fabricating high voltage power MOSFET having low on-resistance
JP4528460B2 (ja) 2000-06-30 2010-08-18 株式会社東芝 半導体素子
US6534828B1 (en) * 2000-09-19 2003-03-18 Fairchild Semiconductor Corporation Integrated circuit device including a deep well region and associated methods
US6362112B1 (en) * 2000-11-08 2002-03-26 Fabtech, Inc. Single step etched moat
US6677641B2 (en) * 2001-10-17 2004-01-13 Fairchild Semiconductor Corporation Semiconductor structure with improved smaller forward voltage loss and higher blocking capability
US7345342B2 (en) * 2001-01-30 2008-03-18 Fairchild Semiconductor Corporation Power semiconductor devices and methods of manufacture
US6683346B2 (en) * 2001-03-09 2004-01-27 Fairchild Semiconductor Corporation Ultra dense trench-gated power-device with the reduced drain-source feedback capacitance and Miller charge
TWI248136B (en) * 2002-03-19 2006-01-21 Infineon Technologies Ag Method for fabricating a transistor arrangement having trench transistor cells having a field electrode
JP3930436B2 (ja) * 2002-03-26 2007-06-13 株式会社東芝 半導体装置
JP3935042B2 (ja) * 2002-04-26 2007-06-20 株式会社東芝 絶縁ゲート型半導体装置
JP4028333B2 (ja) * 2002-09-02 2007-12-26 株式会社東芝 半導体装置
DE10324754B4 (de) * 2003-05-30 2018-11-08 Infineon Technologies Ag Halbleiterbauelement
US7279743B2 (en) * 2003-12-02 2007-10-09 Vishay-Siliconix Closed cell trench metal-oxide-semiconductor field effect transistor
GB0403934D0 (en) * 2004-02-21 2004-03-24 Koninkl Philips Electronics Nv Trench-gate semiconductor devices and the manufacture thereof
US7265415B2 (en) * 2004-10-08 2007-09-04 Fairchild Semiconductor Corporation MOS-gated transistor with reduced miller capacitance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6194741B1 (en) * 1998-11-03 2001-02-27 International Rectifier Corp. MOSgated trench type power semiconductor with silicon carbide substrate and increased gate breakdown voltage and reduced on-resistance
US20030209741A1 (en) * 2002-04-26 2003-11-13 Wataru Saitoh Insulated gate semiconductor device
US20040113202A1 (en) * 2002-08-23 2004-06-17 Kocon Christopher B. Method and apparatus for improved MOS gating to reduce miller capacitance and switching losses
US20040195618A1 (en) * 2003-04-07 2004-10-07 Wataru Saito Insulated gate semiconductor device

Also Published As

Publication number Publication date
EP1803159A4 (en) 2008-12-24
US7265415B2 (en) 2007-09-04
KR100929714B1 (ko) 2009-12-03
US20070264782A1 (en) 2007-11-15
EP1803159B1 (en) 2013-08-28
WO2006041823A2 (en) 2006-04-20
HK1112111A1 (en) 2008-08-22
KR20090075862A (ko) 2009-07-09
WO2006041823A3 (en) 2007-07-26
KR100919528B1 (ko) 2009-10-01
US20060076617A1 (en) 2006-04-13
US7534683B2 (en) 2009-05-19
JP2008516451A (ja) 2008-05-15
KR20070061588A (ko) 2007-06-13
EP1803159A2 (en) 2007-07-04
CN101091258A (zh) 2007-12-19
CN101091258B (zh) 2011-11-02
TW200618280A (en) 2006-06-01

Similar Documents

Publication Publication Date Title
TWI393254B (zh) 具有降低米勒電容之金屬氧化物半導體(mos)閘控的電晶體
US9761702B2 (en) Power MOSFET having planar channel, vertical current path, and top drain electrode
TWI459562B (zh) 交錯柱超接面
US6198127B1 (en) MOS-gated power device having extended trench and doping zone and process for forming same
US9461127B2 (en) Vertical power MOSFET having planar channel and its method of fabrication
US8890280B2 (en) Trench-type semiconductor power devices
US6784505B2 (en) Low voltage high density trench-gated power device with uniformly doped channel and its edge termination technique
US8330213B2 (en) Power semiconductor devices, methods, and structures with embedded dielectric layers containing permanent charges
US6849880B1 (en) Power semiconductor device
US20060281249A1 (en) Charge balance field effect transistor
CN105723516A (zh) 采用高能量掺杂剂注入技术的半导体结构
US7910983B2 (en) MOS transistor having an increased gate-drain capacitance
CN100463122C (zh) 具有低导通电阻的高电压功率mosfet
CN109346524B (zh) 一种具有阶梯浓度多晶硅侧墙结构的超结vdmos器件
CN109585445B (zh) 功率mosfet
US10014365B2 (en) Power semiconductor devices, methods, and structures with embedded dielectric layers containing permanent charges
EP1703566A1 (en) MOS device having at least two channel regions
CN115332338B (zh) 一种调节动态特性的超结vdmos器件及制备方法
CN115332340A (zh) 一种调节动态特性的超结vdmos器件及制备方法
CN102522338A (zh) 高压超结mosfet结构及p型漂移区形成方法
US20240339494A1 (en) Vertical mosfet with high short circuit withstand time capability
Vaid et al. Investigation of a power FLIMOSFET based on two-dimensional numerical simulations