CN100437940C - 非晶硅晶化设备及方法 - Google Patents

非晶硅晶化设备及方法 Download PDF

Info

Publication number
CN100437940C
CN100437940C CNB2004800050965A CN200480005096A CN100437940C CN 100437940 C CN100437940 C CN 100437940C CN B2004800050965 A CNB2004800050965 A CN B2004800050965A CN 200480005096 A CN200480005096 A CN 200480005096A CN 100437940 C CN100437940 C CN 100437940C
Authority
CN
China
Prior art keywords
laser beam
slit
crystallization system
irradiation
optical unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB2004800050965A
Other languages
English (en)
Other versions
CN1754253A (zh
Inventor
郑义振
金东范
李秀卿
姜明求
金县裁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Display Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of CN1754253A publication Critical patent/CN1754253A/zh
Application granted granted Critical
Publication of CN100437940C publication Critical patent/CN100437940C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • B23K26/0676Dividing the beam into multiple beams, e.g. multifocusing into dependently operating sub-beams, e.g. an array of spots with fixed spatial relationship or for performing simultaneously identical operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0643Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising mirrors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/066Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms by using masks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • B23K26/0732Shaping the laser spot into a rectangular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02678Beam shaping, e.g. using a mask
    • H01L21/0268Shape of mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02686Pulsed laser beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02691Scanning of a beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • H01L27/1274Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor
    • H01L27/1285Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor using control of the annealing or irradiation parameters, e.g. using different scanning direction or intensity for different transistors

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Recrystallisation Techniques (AREA)
  • Thin Film Transistor (AREA)
  • Liquid Crystal (AREA)

Abstract

一种硅晶化系统,包括光束产生器,用于产生激光束;第一和第二光学单元,用于控制来自光束产生器的激光束;和台架,用于安装平板,该平板包括将被来自光学单元的激光束多晶化的非晶硅层。第一光学单元使激光束具有横边和比该横边长的纵边,且第二光学单元使激光束具有横边和比该横边短的纵边。

Description

非晶硅晶化设备及方法
技术领域
本发明涉及一种多晶化(polyscrystallization)的系统和方法,且特别涉及一种形成薄膜晶体管阵列板的多晶硅层的系统和方法。
背景技术
通常,硅基于其结晶状态被分为非晶硅和晶体硅。由于非晶硅可以在低温下淀积形成薄膜,其经常用于形成在液晶显示屏的玻璃基板上的薄膜晶体管(TFT),该基板具有低的熔点。
然而,非晶硅薄膜具有例如低的场效应迁移率(field mobility)的缺点,因此需要具有约为30cm2/V·sec的高场效应迁移率、高频工作特性和低漏电流的多晶硅。
多晶硅薄膜的电学特性显著地受到晶粒尺寸的影响。例如,大晶粒给出较高的场效应迁移率。
有人建议利用激光束使用连续横向结晶(sequential lateral solidification,SLS)横向生长晶粒以获得大晶粒。
该技术利用了如下事实:在邻近固相区的液相区内的晶粒生长开始于液相区与固相区的界面处,并沿垂直于该界面的方向进行。在SLS技术中,激光束穿过具有多个彼此偏离排列的狭缝形透射区的掩模,并熔化非晶硅以形成具有该狭缝形状的液相区。然后,该液相非晶硅变冷以被晶化。如上所述,晶粒生长开始于液相区和固相区的界面处,该界面未被暴露于激光束,并沿垂直于该界面的方向进行,并且当晶粒在所述液相区中心汇合时晶粒停止生长。SLS可以通过沿与晶粒生长方向垂直的方向移动掩模而结晶整个薄膜。
同时,激光束具有由光学设备决定的形状和能量,该光学设备仅能产生激光束的单一形状和单一能量。因此,难以获得适合各种区域的形状和能量。
发明内容
提供了一种硅晶化系统,其包括:产生激光束的光束产生器;多个第一和第二光学单元,用于控制来自光束产生器的激光;和台架,用于安装平板,该平板包括将被来自光学单元的激光束晶化的非晶硅层,其中来自所述第一光学单元的激光束的形状与来自所述第二光学单元的激光束的形状不同。
第一光学单元可以使激光束具有横边和比该横边长的纵边,且第二光学单元可以使激光束具有横边和比该横边短的纵边。来自第一和第二光学单元的激光束可以具有矩形形状。
所述平板可以包括显示屏,该显示屏包括显示区、栅极驱动电路区和数据驱动电路区。
优选地,该显示区和栅极驱动电路区被由第一光学单元控制的激光束照射,且该数据驱动电路区被由第二光学单元控制的激光束照射。更优选地,该显示区和栅极驱动电路区通过两步照射掩模(two shot mask)被照射,且该数据驱动电路区通过多步照射掩模(multi-shot mask)被照射。
该两步照射掩模可以具有多个狭缝,用于限定透射激光束的区域并形成两列,且该两列中的狭缝可以优选地以等于该狭缝宽度的距离偏离。
该多步照射掩模可以具有多个狭缝,用于限定透射激光束的区域并形成三列或更多列,且列中的狭缝可以优选地以等于或小于该狭缝宽度一半的距离偏离。
该硅晶化系统还可以包括位置控制器以设置第一和第二光学单元。
提供了一种硅晶化系统,其包括:产生激光的光束产生器;分束器,用于将激光分为多个子束(beamlet);多个第一和第二光学单元,用于控制来自该分束器的子束;和台架,用于安装平板,该平板包括将被来自光学单元的子束晶化的非晶硅层,其中来自所述第一光学单元的子束的形状与来自所述第二光学单元的子束的形状不同。
第一光学单元可以使子束具有横边和比该横边长的纵边,且第二光学单元可以使子束具有横边和比该横边短的纵边。来自第一和第二光学单元的子束可以具有矩形形状。
所述平板可以包括显示屏,该显示屏包括显示区、栅极驱动电路区和数据驱动电路区。
优选地,该显示区和栅极驱动电路区被由第一光学单元控制的子束照射,且该数据驱动电路区被由第二光学单元控制的子束照射。更优选地,该显示区和栅极驱动电路区通过两步照射掩模被照射,且该数据驱动电路区通过多步照射掩模被照射。
该两步照射掩模可以具有多个狭缝,用于限定透射子束的区域并形成两列,且该两列中的狭缝优选地以等于该狭缝宽度的距离偏离。
该多步照射掩模可以具有多个狭缝,用于限定透射子束的区域并形成三列或更多列,且相邻列中的狭缝优选地以等于或小于该狭缝宽度一半的距离偏离。
提供了一种硅晶化方法,其包括:在基板上淀积非晶硅层,该非晶硅层具有显示区、栅极驱动电路区和数据驱动电路区;通过具有多个用于透射第一激光束的狭缝的第一掩模将第一激光束照射到显示区和栅极驱动电路区上从而晶化所述显示区和所述栅极驱动电路区上的非晶硅;通过具有多个用于透射第二激光束的狭缝的第二掩模将第二激光束照射到数据驱动电路区上从而晶化所述数据驱动电路区上的非晶硅,其中第一激光束的形状与第二激光束的形状不同。
该第一激光束可以具有横边和比该横边长的纵边,且该第二激光束可以具有横边和比该横边短的纵边。
第一和第二掩模的狭缝形成多列,且不同列中的狭缝是偏离的。优选地,第一掩模中的狭缝形成两列且第二掩模中的狭缝形成至少三列。
第一或第二激光束由单一的初始激光束选择性地产生,或者通过分束单一的初始激光束而同时产生。
附图说明
通过参照附图详细描述实施例,本发明将变得更为清楚,在附图中:
图1是根据本发明的一实施例的硅晶化系统的示意图;
图2是根据本发明的一实施例的液晶显示屏的平面图;
图3图解示出了通过照射激光束将非晶硅晶化为多晶硅的两步照射SLS工艺;
图4示出了通过两步照射SLS工艺形成的多晶硅的晶粒;
图5示出了在两步照射SLS工艺中两步照射掩模的移动;
图6示出了在多步照射SLS工艺中六步照射掩模的移动;
图7是根据本发明的另一实施例的硅晶化系统的示意图;
图8是根据本发明的一实施例的图7所示的硅晶化系统的分束器的示意图。
具体实施方式
下面将参照附图更充分地描述本发明,附图中示出了本发明的优选实施例。然而,本发明可以被实施为多种形式,且不应该理解为局限于此处提出的实施例。
在附图中,为清楚起见放大了层、膜和区的厚度。相同的数字始终指的是相同元件。应该理解,当一个元件例如层、膜、区或基板被提到是在另一个元件“上”时,它可以是直接位于该另一个元件上或者存在插入元件。相反,当一个元件被提到是“直接”在另一个元件“上”,则不存在插入元件。
下面,将参照附图描述根据本发明实施例的硅晶化的系统和方法。
参照图1到6详细描述了根据本发明一个实施例的硅晶化系统。
图1是根据本发明一实施例的硅晶化系统的示意图,且图2是根据本发明一实施例的液晶显示屏的平面图。
参照图1,根据本实施例的硅晶化系统包括产生激光束1的激光产生器10;多个光学单元20,用于控制从激光产生器10产生的激光束的形状和能量;以及位置控制器40,用于控制光学单元20的位置。该硅晶化系统还包括台架30,用于安装液晶屏100且被来自光学单元20的激光束1照射。
该光学单元20包括第一光学单元21和第二光学单元22,该第一光学单元21用于使激光束1成为具有矩形截面的形状,该矩形截面具有短的横边和长的纵边,第二光学单元22用于使激光束1成为具有矩形截面的形状,该矩形截面具有长的横边和短的纵边。该第一和第二光学单元21和22包括多个用于各种形状和尺寸的激光束1的光学子单元。
选择所述光学子单元中的一个并通过位置控制器40将其设置在光束产生器10与台架30之间。
该液晶屏100包括绝缘基板110和非晶硅层150,该非晶硅层设置在该绝缘基板110上,将通过来自光束产生器10的激光束被多晶化。液晶屏100包括显示区101和外围区,该外围区包括栅极驱动电路区102和数据驱动电路区103。该数据驱动电路区103被提供有需要高性能TFT的模数(A/D)转换器(未示出)和数模(D/A)转换器(未示出)。
根据本发明的一个实施例,显示区101和栅极驱动电路区102通过确保大产量的两步照射SLS工艺被晶化,而数据驱动电路区103通过确保高性能TFT和大产量的三步照射或更多步照射(后面称为“多步照射”)SLS工艺被晶化。
首先,参照图3到5以及图1和2描述了根据本发明一实施例的两步照射SLS工艺。
图3图解示出了通过照射激光束将非晶硅晶化为多晶硅的两步照射SLS工艺,图4示出了通过两步照射SLS工艺形成的多晶硅的晶粒,图5示出了在两步照射SLS工艺中两步照射掩模的移动;
参照图2和3,两步照射SLS工艺示出了激光束1通过包括多个具有狭缝形的透射区310的两步照射掩模300照到显示区101或栅极驱动电路区103上的非晶硅层150的曝光区。
如图5中所示,两步照射掩模300在纵向延伸,且这样激光束1优选具有与掩模300同样的形状。因此,在光束产生器10与台架30之间设置了第一光学单元21的一个光学子单元,如图1所示。
两步照射掩模300的狭缝310在横向延伸且具有宽度W,且它们形成排列在横向的两列G和H。每列中的狭缝310以预定距离彼此分开,该预定距离优选等于狭缝310的宽度W,且两列中的狭缝310以优选等于狭缝310宽度W的距离偏离。该两步照射掩模300覆盖该非晶硅层150的曝光区。
该非晶硅层150面对透射区310且被激光束照射的部分被完全熔化以形成液相区210,而以附图标记220注明的部分保持为固相。液相区210的宽度和长度等于狭缝310的宽度和长度。晶粒生长开始于液相区210与固相区220的界面230处,沿着界面230的法线方向A。生长的晶粒在液相区210的中面231汇合且晶粒生长在该处停止。
一旦曝光步骤(也称为照射)完成,该两步照射掩模300以等于狭缝310长度的距离,即等于该两步照射掩模300宽度的一半的距离,在狭缝310长度方向上移动。然后,先前步骤中的曝光区与本次曝光步骤的曝光区部分交叠。即,先前曝光区的右半部变成本次曝光区的左半部再次经历曝光,且在先前曝光区右半部的固相区220被激光束照射而变成液相区。因此,在这两个连续曝光步骤中非晶硅层的所有交叠区都被多晶化了,且在该两个曝光步骤中形成的晶粒具有等于狭缝310宽度W的宽度。
所述曝光步骤从左到右重复,且激光束从左到右扫描。在扫描到达非晶硅层150的右边缘处后,该两步照射掩模300以其长度距离向下移动,且扫描也向下移动。之后,掩模300的移动和所述扫描从右向左进行。
这样,非晶硅层150的所有区域都被多晶化了。
将参照图6以及图1和2详细描述多步照射SLS工艺。
多步照射SLS工艺通过多步照射完全晶化非晶硅层150的预定区域,优选三到六步照射。可以进行七步和更多步照射以获得高性能的TFT。术语“多步照射”在本说明书中表示三步或更多步照射。
图6示出了在多步照射SLS工艺中六步照射掩模的移动。
参照图6,六步照射掩模600具有多个狭缝形透射区610,该透射区在横向延伸并形成六列G、H、I、J、K和L。列G、H、I、J、K或L中的每个都包括一对狭缝611g和612g、611h和612h、611i和612i、611j和612j、611k和612k或611l和612l,每对狭缝以优选两倍于狭缝610宽度的预定距离彼此分开。相邻两列G、H、I、J、K和L中的狭缝610以优选等于或小于狭缝610宽度一半的预定距离相偏离,且从左到右像下降的台阶一样排列。最后一列L中的狭缝611l和第一列G中的狭缝612g也以优选等于或大于狭缝610宽度一半的预定距离偏离。列G、H、I、J、K或L中的每个所包括狭缝610的数目可以是一个、三个或更多个。
六步照射掩模600沿横向延伸,且这样激光束1优选具有与掩模600相同的形状。因此,在光束产生器10与台架30之间设置了第二光学单元22的一个光学子单元。
覆盖位于数据驱动电路区102上的非晶硅层150的曝光区的掩模600与该非晶硅层150对准,且激光束1通过该掩模600照射以进行多晶化。然后,当列G、H、I、J、K或L中的每个中的狭缝610之间的距离是狭缝610的宽度两倍时,该曝光区的三分之一被晶化。在多晶化以后,掩模600以等于狭缝610的长度,即等于掩模600宽度的六分之一的距离沿狭缝610的长度方向移动。然后,先前曝光区中右边的六分之五与本次曝光步骤中的曝光区交叠。当相邻列中的狭缝610以狭缝610宽度的一半的预定距离偏离时,在先前照射中未被曝光部分的四分之一以及在先前照射中被曝光的部分的一半被激光束1照射以多晶化。详细地说,非晶硅层150面对狭缝611k的区域包括在先前照射中未被暴露于激光束1的上半部,和在先前照射中被通过狭缝611l的激光束1照射的下半部。在本步照射中区域下半部的晶粒生长开始于位于其下面的且在先前照射中形成的晶粒的边界处,并沿向上的方向进行,该方向与晶粒生长方向相同。结果,在先前照射中形成的晶粒以等于狭缝610宽度一半的宽度向上延伸。
在六次曝光步骤中晶粒生长持续进行,且晶粒具有三倍于狭缝610宽度的宽度。多晶硅中的大晶粒使得可以获得具有高载流子迁移率的TFT。
类似地,n步照射SLS工艺形成具有等于n/2倍狭缝宽度的宽度的晶粒。
参照图7和8详细描述了根据本发明另一实施例的硅晶化系统。
图7是根据本发明的另一实施例的硅晶化系统的示意图,且图8是根据本发明的一实施例的图7所示的硅晶化系统的分束器的示意图。
参照图7,根据本实施例的硅晶化系统包括产生激光束1的激光束产生器10;分束器50,用于将来自光束产生器10的激光束1分成具有相同能量的多个子束2;多个光学单元20,用于控制来自分束器50的子束2的形状和能量;和台架30,用于安装液晶屏100且被来自光学单元20的子束2照射。
如图8所示,分束器50包括多个,例如第1到第n个设置于其中的反射镜M 1-Mn。M1-Mn中每个反射镜与激光束1行进方向呈大约45度角。第1反射镜M1部分透射激光束1以产生具有等于入射到分束器50上的激光束1能量的1/n能量的子束2,并部分反射该入射光束以产生具有入射光束1的剩余部分(1-1/n)能量的激光束。在第二反射镜到第(n-1)反射镜M2到Mn-1中,每个都部分透射从前一反射镜M1-Mn-2反射的入射激光束以产生具有等于激光束1能量1/n的能量的子束2,并部分地反射该入射光束以产生具有该入射光束能量剩余部分的输出光束。那么,来自第i个反射镜(1<i<n)的输出光束具有等于初始激光束1能量的(1-i/n)的能量。最后,第n个反射镜Mn完全反射具有初始激光束1能量1/n的能量的入射光束以产生分束2。
该光学单元20包括第一光学单元21和第二光学单元22,该第一光学单元21用于使子束2成为具有矩形截面的形状,该矩形截面具有短的横边和长的纵边,第二光学单元22用于使子束2成为具有矩形截面的形状,该矩形截面具有长的横边和短的纵边。该第一和第二光学单元21和22包括多个用于各种形状和尺寸的激光束1的光学子单元。
来自第一和第二光学单元21和22的子束2被同时照射到非晶硅层150上。例如,来自第一光学单元21的子束2通过两步照射掩模被照射到显示区101和栅极驱动电路区102,而来自第二个第一光学单元22的(多个)子束2通过多步照射掩模被照射到数据驱动电路区103上。
该硅晶化系统和方法采用多个光学单元选择性地或同时照射具有各种形状和能量的激光束,因此提高了器件产量和特性。
虽然参照优选实施例详细描述了本发明,然而本领域的技术人员应该理解,可以在不脱离所附权利要求书提出的本发明的精神和范畴的范围内,对本发明进行各种改进和替换。

Claims (27)

1、一种硅晶化系统,包括:
光束产生器,产生激光束;
第一和第二光学单元,用于控制来自所述光束产生器的激光束;和
台架,用于安装平板,该平板包括将被来自所述光学单元的激光束多晶化的非晶硅层,
其中来自所述第一光学单元的激光束的形状与来自所述第二光学单元的激光束的形状不同。
2、如权利要求1所述的硅晶化系统,其中所述第一光学单元使得激光束具有横边和比该横边长的纵边,且所述第二光学单元使得激光束具有横边和比该横边短的纵边。
3、如权利要求2所述的硅晶化系统,其中来自所述第一和第二光学单元的激光束具有矩形形状。
4、如权利要求3所述的硅晶化系统,其中所述平板包括显示屏,该显示屏包括显示区、栅极驱动电路区和数据驱动电路区。
5、如权利要求4所述的硅晶化系统,其中所述显示区和栅极驱动电路区被由第一光学单元控制的激光束照射,且数据驱动电路区被由第二光学单元控制的激光束照射。
6、如权利要求5所述的硅晶化系统,其中所述显示区和栅极驱动电路区通过两步照射掩模被照射,且所述数据驱动电路区通过多步照射掩模被照射。
7、如权利要求6所述的硅晶化系统,其中所述两步照射掩模具有多个狭缝,用于限定透射激光束的区域并形成两列,且两列中的狭缝是偏离的。
8、如权利要求7所述的硅晶化系统,其中两列中的所述狭缝以等于该狭缝宽度的距离相偏离。
9、如权利要求6所述的硅晶化系统,其中所述多步照射掩模具有多个狭缝,用于限定透射激光束的区域并形成三列或更多列,且诸列中的狭缝是偏离的。
10、如权利要求9所述的硅晶化系统,其中在相邻列中的所述狭缝以等于或小于该狭缝宽度一半的距离相偏离。
11、如权利要求1所述的硅晶化系统,还包括位置控制器,用于设置所述第一和第二光学单元。
12、一种硅晶化系统,包括:
光束产生器,产生激光束;
分束器,用于将所述激光束分成多个子束;
第一和第二光学单元,用于控制来自所述分束器的子束;和
台架,用于安装平板,该平板包括将被来自光学单元的子束多晶化的非晶硅层,
其中来自所述第一光学单元的子束的形状与来自所述第二光学单元的子束的形状不同。
13、如权利要求12所述的硅晶化系统,其中所述第一光学单元使得所述子束具有横边和比该横边长的纵边,且所述第二光学单元使得所述子束具有横边和比该横边短的纵边。
14、如权利要求13所述的硅晶化系统,其中来自第一和第二光学单元的子束具有矩形形状。
15、如权利要求14所述的硅晶化系统,其中所述平板包括显示屏,该显示屏包括显示区、栅极驱动电路区和数据驱动电路区。
16、如权利要求15所述的硅晶化系统,其中所述显示区和栅极驱动电路区被由第一光学单元控制的子束照射,且数据驱动电路区被由第二光学单元控制的子束照射。
17、如权利要求16所述的硅晶化系统,其中所述显示区和栅极驱动电路区通过两步照射掩模被照射,且所述数据驱动电路区通过多步照射掩模被照射。
18、如权利要求17所述的硅晶化系统,其中所述两步照射掩模具有多个狭缝,用于限定透射所述子束的区域并形成两列,且两列中的狭缝是偏离的。
19、如权利要求18所述的硅晶化系统,其中在两列中的所述狭缝以等于该狭缝宽度的距离相偏离。
20、如权利要求19所述的硅晶化系统,其中所述多步照射掩模具有多个狭缝,用于限定透射所述子束的区域并形成三列或更多列,且相邻列中的狭缝是偏离的。
21、如权利要求20所述的硅晶化系统,其中在相邻列中的所述狭缝以等于或小于该狭缝宽度一半的距离相偏离。
22、一种硅晶化方法,该方法包括:
在基板上淀积非晶硅层,该非晶硅层包括显示区、栅极驱动电路区和数据驱动电路区;
通过第一掩模将第一激光束照射到所述显示区和所述栅极驱动电路区上从而晶化所述显示区和所述栅极驱动电路区上的非晶硅,该第一掩模具有多个用于透射所述第一激光束的狭缝;以及
通过第二掩模将第二激光束照射到所述数据驱动电路区上从而晶化所述数据驱动电路区上的非晶硅,该第二掩模具有多个用于透射所述第二激光束的狭缝,
其中所述第一激光束的形状与所述第二激光束的形状不同。
23、如权利要求22所述的方法,其中所述第一激光束具有横边和比该横边长的纵边,且所述第二激光束具有横边和比该横边短的纵边。
24、如权利要求23所述的方法,其中所述第一和第二掩模的狭缝形成多列,且诸列中的狭缝是偏离的。
25、如权利要求24所述的方法,其中所述第一掩模的狭缝形成两列,且所述第二掩模的狭缝形成至少三列。
26、如权利要求22所述的方法,其中从单一初始激光束选择性地产生所述第一或第二激光束。
27、如权利要求22所述的方法,其中通过分束单一初始激光束同时产生所述第一和第二激光束。
CNB2004800050965A 2003-02-25 2004-02-24 非晶硅晶化设备及方法 Expired - Lifetime CN100437940C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020030011643 2003-02-25
KR1020030011643A KR100956339B1 (ko) 2003-02-25 2003-02-25 규소 결정화 시스템 및 규소 결정화 방법

Publications (2)

Publication Number Publication Date
CN1754253A CN1754253A (zh) 2006-03-29
CN100437940C true CN100437940C (zh) 2008-11-26

Family

ID=36641045

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004800050965A Expired - Lifetime CN100437940C (zh) 2003-02-25 2004-02-24 非晶硅晶化设备及方法

Country Status (6)

Country Link
US (1) US7879700B2 (zh)
JP (1) JP4564486B2 (zh)
KR (1) KR100956339B1 (zh)
CN (1) CN100437940C (zh)
TW (1) TWI342047B (zh)
WO (1) WO2004077544A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI299431B (en) * 2005-08-23 2008-08-01 Au Optronics Corp A mask for sequential lateral solidification (sls) process and a method thereof
KR20120008345A (ko) 2010-07-16 2012-01-30 삼성모바일디스플레이주식회사 레이저 조사 장치
WO2019111362A1 (ja) * 2017-12-06 2019-06-13 株式会社ブイ・テクノロジー レーザ照射装置、レーザ照射方法、および、投影マスク

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990066433A (ko) * 1998-01-26 1999-08-16 구자홍 시스템 온 패널형 액정표시장치
WO2002086954A1 (en) * 2001-04-19 2002-10-31 The Trustee Of Columbia University In The City Of New York Method and system for providing a single-scan, continuous motion sequential lateral solidification
KR20020086047A (ko) * 2001-05-11 2002-11-18 엘지.필립스 엘시디 주식회사 실리콘 결정화방법.
US20020197759A1 (en) * 2001-06-07 2002-12-26 Myoung-Su Yang Amorphous silicon crystallization method
US20030024905A1 (en) * 2001-08-03 2003-02-06 Semiconductor Energy Laboratory Co., Ltd. Laser irradiating device, laser irradiating method and manufacturing method of semiconductor device

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3722996A (en) * 1971-01-04 1973-03-27 Electromask Inc Optical pattern generator or repeating projector or the like
DE3016000A1 (de) * 1980-04-25 1981-11-05 Schwarz, Hans Werner, 6752 Winnweiler Verfahren zum kurzzeitigen aufzeichnen bzw. sichtbarmachen von in ihrer form sich stetig aendernden lichteffekten durch projektion auf eine flaeche und vorrichtung zum durchfuehren des verfahrens
US4502762A (en) * 1982-11-12 1985-03-05 Northern Telecom Limited Dual wavelength optical system
JPS61222040A (ja) * 1985-03-27 1986-10-02 Nec Corp 光ピツクアツプ装置
USRE33836E (en) * 1987-10-22 1992-03-03 Mrs Technology, Inc. Apparatus and method for making large area electronic devices, such as flat panel displays and the like, using correlated, aligned dual optical systems
JPH05226275A (ja) 1992-02-12 1993-09-03 Nippondenso Co Ltd レーザアニール装置
JP3205478B2 (ja) 1995-01-24 2001-09-04 株式会社半導体エネルギー研究所 レーザー照射システム
JP3429129B2 (ja) 1996-04-26 2003-07-22 三菱電機株式会社 低温ポリシリコン薄膜トランジスタのレーザアニーリング方法
JPH09321310A (ja) * 1996-05-31 1997-12-12 Sanyo Electric Co Ltd 半導体装置の製造方法
KR100286047B1 (ko) 1998-05-15 2001-04-16 김덕중 역톱니파를 이용한 역률 보정 회로
KR100292048B1 (ko) * 1998-06-09 2001-07-12 구본준, 론 위라하디락사 박막트랜지스터액정표시장치의제조방법
US6326286B1 (en) * 1998-06-09 2001-12-04 Lg. Philips Lcd Co., Ltd. Method for crystallizing amorphous silicon layer
KR100430231B1 (ko) * 1998-10-02 2004-07-19 엘지.필립스 엘시디 주식회사 레이저어닐장비
JP3819711B2 (ja) * 1998-10-23 2006-09-13 株式会社ルネサステクノロジ 半導体装置の製造方法
JP3194250B2 (ja) * 1998-12-25 2001-07-30 住友重機械工業株式会社 2軸レーザ加工機
JP3945951B2 (ja) * 1999-01-14 2007-07-18 日立ビアメカニクス株式会社 レーザ加工方法およびレーザ加工機
US6535535B1 (en) * 1999-02-12 2003-03-18 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method, laser irradiation apparatus, and semiconductor device
JP2000275668A (ja) * 1999-03-19 2000-10-06 Fujitsu Ltd レーザアニーリング装置、液晶表示装置及びその製造方法
JP3201382B2 (ja) 1999-04-12 2001-08-20 セイコーエプソン株式会社 半導体薄膜の製造方法
TW517260B (en) 1999-05-15 2003-01-11 Semiconductor Energy Lab Semiconductor device and method for its fabrication
JP3425392B2 (ja) 1999-05-27 2003-07-14 シャープ株式会社 半導体装置の製造方法
JP3413484B2 (ja) * 1999-11-26 2003-06-03 住友重機械工業株式会社 レーザアニーリング装置
US20020011450A1 (en) * 2000-01-14 2002-01-31 Wayne Kelly System and method for liquid filtration based on a neutral filter material
CN1191610C (zh) * 2000-02-25 2005-03-02 株式会社日立制作所 半导体集成电路器件、其制造方法和掩模的制作方法
ATE446800T1 (de) * 2000-05-12 2009-11-15 Pall Corp Filter
JP2002043245A (ja) * 2000-07-31 2002-02-08 Fujitsu Ltd 結晶性半導体薄膜の形成方法
US7115503B2 (en) * 2000-10-10 2006-10-03 The Trustees Of Columbia University In The City Of New York Method and apparatus for processing thin metal layers
KR100390522B1 (ko) 2000-12-01 2003-07-07 피티플러스(주) 결정질 실리콘 활성층을 포함하는 박막트랜지스터 제조 방법
JP2002176180A (ja) 2000-12-06 2002-06-21 Hitachi Ltd 薄膜半導体素子及びその製造方法
US6495405B2 (en) * 2001-01-29 2002-12-17 Sharp Laboratories Of America, Inc. Method of optimizing channel characteristics using laterally-crystallized ELA poly-Si films
TW521310B (en) * 2001-02-08 2003-02-21 Toshiba Corp Laser processing method and apparatus
KR100418745B1 (ko) * 2001-06-08 2004-02-19 엘지.필립스 엘시디 주식회사 실리콘 결정화방법
TW558861B (en) * 2001-06-15 2003-10-21 Semiconductor Energy Lab Laser irradiation stage, laser irradiation optical system, laser irradiation apparatus, laser irradiation method, and method of manufacturing semiconductor device
US6770546B2 (en) 2001-07-30 2004-08-03 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
JP2003151916A (ja) 2001-08-03 2003-05-23 Semiconductor Energy Lab Co Ltd レーザ照射装置およびレーザ照射方法、並びに半導体装置の作製方法
TW527732B (en) * 2001-08-21 2003-04-11 Samsung Electronics Co Ltd Masks for forming polysilicon and methods for manufacturing thin film transistor using the masks
JP3903761B2 (ja) * 2001-10-10 2007-04-11 株式会社日立製作所 レ−ザアニ−ル方法およびレ−ザアニ−ル装置
KR100390211B1 (ko) 2001-11-06 2003-07-12 주상세라스(주) 박막 증착법을 이용한 기능성 광섬유 프로브 제작방법
US6767804B2 (en) * 2001-11-08 2004-07-27 Sharp Laboratories Of America, Inc. 2N mask design and method of sequential lateral solidification
JP4394331B2 (ja) 2002-02-05 2010-01-06 シャープ株式会社 有機el素子
US6660576B2 (en) * 2002-03-11 2003-12-09 Sharp Laboratories Of America, Inc. Substrate and method for producing variable quality substrate material
US6777276B2 (en) * 2002-08-29 2004-08-17 Sharp Laboratories Of America, Inc. System and method for optimized laser annealing smoothing mask
KR100424711B1 (ko) 2002-05-15 2004-03-27 주식회사 하이닉스반도체 저전력 소스 구동 장치
JP4668508B2 (ja) 2002-05-17 2011-04-13 シャープ株式会社 半導体結晶化方法
KR100848096B1 (ko) * 2002-05-21 2008-07-24 삼성전자주식회사 다결정용 레이저 조사 장치
KR100878240B1 (ko) * 2002-09-16 2009-01-13 삼성전자주식회사 다결정용 마스크 및 이를 이용한 박막 트랜지스터의 제조방법
JP3822188B2 (ja) * 2002-12-26 2006-09-13 日立ビアメカニクス株式会社 多重ビームレーザ穴あけ加工装置
KR100646160B1 (ko) * 2002-12-31 2006-11-14 엘지.필립스 엘시디 주식회사 순차측면결정화를 위한 마스크 및 이를 이용한 실리콘결정화 방법
KR100992120B1 (ko) * 2003-03-13 2010-11-04 삼성전자주식회사 규소 결정화 시스템 및 규소 결정화 방법
TWI255961B (en) 2003-05-26 2006-06-01 Mitsubishi Electric Corp Wavelength conversion method, wavelength conversion laser, and laser processing apparatus
KR100498546B1 (ko) 2003-06-30 2005-07-01 엘지.필립스 엘시디 주식회사 레이저 조사 장비 및 그 응용 방법
US7450307B2 (en) 2003-09-09 2008-11-11 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus, laser irradiation method, and method for manufacturing semiconductor device
JP4780943B2 (ja) 2003-09-09 2011-09-28 株式会社半導体エネルギー研究所 レーザ照射装置及び半導体装置の作製方法
JP2005167084A (ja) 2003-12-04 2005-06-23 Fujitsu Ltd レーザ結晶化装置及びレーザ結晶化方法
KR101100875B1 (ko) 2003-12-11 2012-01-02 삼성전자주식회사 결정화용 레이저빔 조사 장치, 이를 이용한 결정화 방법및 이를 포함하는 박막 트랜지스터 표시판의 제조 방법
US7486856B2 (en) 2004-03-24 2009-02-03 Semiconductor Energy Laboratory Co., Ltd. Beam homogenizer and laser irradiation apparatus
KR20060131518A (ko) 2005-06-16 2006-12-20 삼성전자주식회사 레이저 결정화 시스템, 레이저 결정화 방법 및 이를 이용한액정표시장치용 박막트랜지스터 기판의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990066433A (ko) * 1998-01-26 1999-08-16 구자홍 시스템 온 패널형 액정표시장치
WO2002086954A1 (en) * 2001-04-19 2002-10-31 The Trustee Of Columbia University In The City Of New York Method and system for providing a single-scan, continuous motion sequential lateral solidification
KR20020086047A (ko) * 2001-05-11 2002-11-18 엘지.필립스 엘시디 주식회사 실리콘 결정화방법.
US20020197759A1 (en) * 2001-06-07 2002-12-26 Myoung-Su Yang Amorphous silicon crystallization method
US20030024905A1 (en) * 2001-08-03 2003-02-06 Semiconductor Energy Laboratory Co., Ltd. Laser irradiating device, laser irradiating method and manufacturing method of semiconductor device

Also Published As

Publication number Publication date
US7879700B2 (en) 2011-02-01
JP4564486B2 (ja) 2010-10-20
CN1754253A (zh) 2006-03-29
JP2006519492A (ja) 2006-08-24
KR20040076332A (ko) 2004-09-01
KR100956339B1 (ko) 2010-05-06
TW200501272A (en) 2005-01-01
WO2004077544A1 (en) 2004-09-10
US20060148165A1 (en) 2006-07-06
TWI342047B (en) 2011-05-11

Similar Documents

Publication Publication Date Title
CN1277155C (zh) 用于连续横向固化的掩模和采用它的结晶方法
KR100829466B1 (ko) 반도체 제조 장치
US7541230B2 (en) Method and apparatus for crystallizing semiconductor with laser beams
US6573163B2 (en) Method of optimizing channel characteristics using multiple masks to form laterally crystallized ELA poly-Si films
CN100377294C (zh) 单晶硅膜的制造方法
JP4211967B2 (ja) マスクを利用したシリコンの結晶化方法
KR101191404B1 (ko) 실리콘 결정화용 마스크와 이를 이용한 실리콘 결정화 방법및 표시 장치
KR100698056B1 (ko) 레이저 빔 패턴 마스크 및 이를 이용한 결정화 방법
KR100606317B1 (ko) 표시 장치와 그 제조 방법 및 제조 장치
US20090218577A1 (en) High throughput crystallization of thin films
US7399685B2 (en) Laser beam pattern mask and crystallization method using the same
KR20010029978A (ko) 반도체 박막의 제조 방법
GB2338342A (en) Method for crystallizing amorphous silicon layer and method for fabricating tft
CN100437940C (zh) 非晶硅晶化设备及方法
JP5451625B2 (ja) 母基板及びその製造方法
US20090134394A1 (en) Crystal silicon array, and manufacturing method of thin film transistor
JP2005197658A (ja) 多結晶シリコン膜の形成方法
KR100611040B1 (ko) 레이저 열처리 장치
KR20040060502A (ko) 구동회로 일체형 액정표시장치 제조 방법
JPH0945632A (ja) レーザーアニール方法及び半導体膜の溶融結晶化方法
JP2005197657A (ja) 多結晶シリコン薄膜トランジスタの多結晶シリコン膜の形成方法
US20050233224A1 (en) Method of improving polysilicon film crystallinity
JP2007201447A (ja) シリコン結晶化マスクとこれを有するシリコン結晶化装置及びシリコン結晶化方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: SAMSUNG MONITOR CO., LTD.

Free format text: FORMER OWNER: SAMSUNG ELECTRONICS CO., LTD.

Effective date: 20121029

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20121029

Address after: Gyeonggi Do, South Korea

Patentee after: SAMSUNG DISPLAY Co.,Ltd.

Address before: Gyeonggi Do, South Korea

Patentee before: Samsung Electronics Co.,Ltd.

CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20081126