JP2005167084A - レーザ結晶化装置及びレーザ結晶化方法 - Google Patents

レーザ結晶化装置及びレーザ結晶化方法 Download PDF

Info

Publication number
JP2005167084A
JP2005167084A JP2003406167A JP2003406167A JP2005167084A JP 2005167084 A JP2005167084 A JP 2005167084A JP 2003406167 A JP2003406167 A JP 2003406167A JP 2003406167 A JP2003406167 A JP 2003406167A JP 2005167084 A JP2005167084 A JP 2005167084A
Authority
JP
Japan
Prior art keywords
stage
substrate
laser
semiconductor layer
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003406167A
Other languages
English (en)
Inventor
Nobuo Sasaki
伸夫 佐々木
Tatsuya Uzuka
達也 宇塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON LASER KK
Fujitsu Ltd
Original Assignee
NIPPON LASER KK
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON LASER KK, Fujitsu Ltd filed Critical NIPPON LASER KK
Priority to JP2003406167A priority Critical patent/JP2005167084A/ja
Priority to KR1020040098937A priority patent/KR100792955B1/ko
Priority to US11/003,021 priority patent/US20050127045A1/en
Priority to TW093137400A priority patent/TWI251869B/zh
Priority to CNB2004100983485A priority patent/CN100337309C/zh
Priority to CNB2007101011499A priority patent/CN100511580C/zh
Publication of JP2005167084A publication Critical patent/JP2005167084A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • B23K26/0673Dividing the beam into multiple beams, e.g. multifocusing into independently operating sub-beams, e.g. beam multiplexing to provide laser beams for several stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0823Devices involving rotation of the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • B23K26/0853Devices involving movement of the workpiece in at least in two axial directions, e.g. in a plane
    • B23K26/0861Devices involving movement of the workpiece in at least in two axial directions, e.g. in a plane in at least in three axial directions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02678Beam shaping, e.g. using a mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02683Continuous wave laser beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02691Scanning of a beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • H01L27/1274Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor
    • H01L27/1285Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor using control of the annealing or irradiation parameters, e.g. using different scanning direction or intensity for different transistors

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

【課題】 レーザ結晶化装置及びレーザ結晶化方法に関し、CWレーザを使用した場合でもスループット高くすることができるようにすることを目的とする。
【解決手段】 レーザ結晶化装置は、半導体層が形成された基板を支持する可動のステージと、レーザ光を時分割で複数の光路33,34に振り分ける装置36と、各光路を通るレーザ光を集光してステージに支持された基板の半導体層に照射する光学装置37,38とを備えた構成とする。
【選択図】 図4

Description

本発明はレーザ結晶化装置及びレーザ結晶化方法に関する。
液晶表示装置はTFTを含むアクティブマトリックス駆動回路を含む。また、システム液晶表示装置は表示領域のまわりの周辺領域にTFTを含む電子回路を含む。低温ポリSiは、液晶表示装置のTFT及びシステム液晶表示装置の周辺領域のTFTを形成するのに適している。また、低温ポリSiは、有機ELでの画素駆動用TFTや有機ELでの周辺領域の電子回路への応用も期待されている。本発明は低温ポリSiでTFTを作るためにCWレーザ(連続発振レーザ)を用いた半導体結晶化方法及び装置に関するものである。
低温ポリSiで液晶表示装置のTFTを形成するために、従来はガラス基板に非晶質シリコン膜を形成し、ガラス基板の非晶質シリコン膜にエキシマパルスレーザを照射し、非晶質シリコンを結晶化していた。最近、ガラス基板の非晶質シリコン膜にCW固体レーザを照射し、非晶質シリコンを結晶化する結晶化方法が開発された。(例えば特許文献1、非特許文献1参照。)非晶質シリコンはレーザ光によって溶融され、その後固化して、固化した部分がポリシリコンになる。
エキシマパルスレーザによるシリコンの結晶化では、移動度が150〜300(cm2 /Vs)程度であるのに対して、CWレーザによるシリコンの結晶化では、移動度が400〜600(cm2 /Vs)程度を実現でき、高性能のポリシリコンを形成するのに有利である。
シリコンの結晶化では、非晶質シリコン膜をレーザビームでスキャンする。この場合、シリコン膜を有する基板を可動ステージに搭載し、固定のレーザビームに対してシリコン膜を動かしながらスキャンを行う。エキシマパルスレーザでは、例えば、ビームスポットが27.5cm×0.4mmのレーザビームでスキャンすることができる。一方、CW固体レーザでは、ビームスポットが小さいので、シリンドリカルレンズなどの光学系を用いて基板上に楕円状のスポットとして集光する。この場合、例えば、ビームスポットが数10μm〜数100μmとなり、楕円の長軸方向に対して垂直な方向にスキャンする。このように、CW固体レーザによる結晶化では、品質の優れたポリシリコンを得ることができるが、スループットが低いという問題があった。
特開2003−86505号公報 電子情報通信学会論文誌、VOL.J85−CNO.8、2002年8月 CWレーザではビームスポットが小さいので、1回のスキャンでは結晶化される非晶質シリコンの面積が小さいので、連続的に多数回のスキャンを行って必要な面積の非晶質シリコンを結晶化する。この場合、可動のステージにガラス基板を置き、ラスタースキャンで行い、往路におけるスキャンのビームトレースとその次の復路におけるスキャンのビームトレースとが部分的にオーバーラップするようにしている。オーバーラップ量が小さいと2つのビームトレースの間に結晶化されていない領域ができる可能性があるためにオーバーラップ量は余裕量を見込んで定めている。一方、オーバーラップ量が大きいと2つ合計のビームトレースの幅が小さくなり、スループットが低下する。
最近の研究では、ビームトレースが微小に蛇行することが分かった。一般にステージの運動は直線運動であるが、実際には直線運動をさせようとしても、微小な蛇行を伴うので、一回のスキャンで結晶化されたビームトレースは後で示すように蛇行している。蛇行があると、2つのビームトレースの間のオーバーラップ量を増加させる必要があり、そのためにスループットが低下する。
さらに、液晶表示装置の表示領域のまわりの周辺領域においての半導体層の結晶化においては、互いに直交する2つの方向でスキャンする必要がある。このために、半導体層が形成された基板を支持する可動のステージは回転する必要がある。従来のステージは、XYステージと回転ステージとを含み、基板は回転ステージに取り付けられていて、回転ステージを90度回転させる事ができ、かつ回転させれば、互いに直交する2つの方向でのスキャンを実施することができる。しかしながら、従来の回転ステージは基板の最終的な位置決めにおける角度補正のためにも設けられていて、数度の回転範囲で0.1秒から0.2秒の高精度で精密な動作を行う必要がある。この高精度化を達成するために、従来の回転ステージは90度回転するようになっていない。そこで、回転ステージが90度回転するようにステージ全体を設計しなおす必要がある。さらに、回転ステージが90度回転するように製造する場合にも、基板の最終的な位置決めのために精密な動作を行うように設計されなければならず、回転ステージのコストが高くなる。従って、互いに直交する2つの方向でスキャンする場合には、人の手で基板をもって90度回転させて回転ステージにセットし直す必要があり、作業に手がかかり、スループットが低下する。
本発明の目的は、CWレーザを使用した場合でもスループット高くすることのできるレーザ結晶化装置及びレーザ結晶化方法を提供することである。
本発明によるレーザ結晶化装置は、半導体層が形成された基板を支持する可動のステージと、レーザ光を時分割で複数の光路に振り分ける装置と、各光路を通るレーザ光を集光して該ステージに支持された基板の半導体層に照射する光学装置とを備えたことを特徴とする。
また、本発明によるレーザ結晶化方法は、CWレーザ光を時分割で少なくとも2つの光学系に振り分け、該レーザ光が振り分けられた光学系を使用して基板に形成された半導体層の第1の領域を結晶化し、次に該レーザ光が振り分けられた光学系を使用して基板に形成された半導体層の第1の領域とは離れた第2の領域を結晶化することを特徴とする。
上記レーザ結晶化装置及びレーザ結晶化方法においては、CWレーザ光を時分割で少なくとも2つの光学系に振り分け、それぞれの光学系を使用して、半導体層の異なった領域を順次に結晶化する。従って、一方向のスキャンで形成されるビームトレースと反対方向のスキャンで形成されるビームトレースとは直接にオーバーラップしなくなり、一定の方向のスキャンで形成されるビームトレースのみがオーバーラップするようにすることができる。このために、オーバーラップ量を定めるときにステージに起因するビームトレースの蛇行の影響を小さくみつもることができる。従って、CWレーザを使用した場合でもスループット高くすることができる。
さらに、本発明によるレーザ結晶化装置は、半導体層が形成された基板を支持する可動のステージと、レーザ光を該ステージに支持された基板の半導体層に照射する光学装置と、該ステージとは別に設けられ、該基板を回転させることのできる回転装置と、少なくとも該ステージと該回転装置の間で基板を搬送することのできる搬送手段とを備えたことを特徴とするものである。
この構成によれば、XYステージ上の回転ステージとは別に回転装置を設けたので、互いに直交する2つの方向でスキャンする場合には、まず半導体層が形成された基板をステージに支持して一方向のスキャンを行い、それから基板をステージから回転装置に搬送して基板を90度回転し、そして基板を回転装置からステージに搬送し、基板をステージに支持して他の方向のスキャンを行う。このようにして、互いに直交する2つの方向でスキャンを連続的に行うことができる。このため、従来的な回転範囲は限定されるが高精度のステージはそのまま使用し、90度回転する回転ステージをあらたに設けるだけで、スループットが低下することなくスキャンを行うことができる。この場合、回転ステージは90度又は90数度回転できるものであれば、0.1〜1度程度の精度のものでよく精密さは要求されない(精密さはステージの回転ステージが備えている。)
以上説明したように、本発明によれば、往路のスキャンでも、復路のスキャンでも結晶化に用いることができ、且つ蛇行があっても結晶化領域毎に往路あるいは復路のスキャンのみによる結晶化が達成され、スキャンピッチを大きくとることができるため、スループットが大幅に向上することができる。また、本発明はCWレーザによる結晶化により低温ポリシリコン−TFTのスループットを改善し、低温ポリシリコン技術のもつ高性能TFTを含む、シートコンピュータや、インテリジェントFPD、低価格のCMOSなどの開発に貢献する。
以下本発明の実施例について図面を参照して説明する。
図1は本発明の実施例による液晶表示装置を示す略断面図である。液晶表示装置10は対向する一対のガラス基板12,14の間に液晶16を挿入してなるものである。電極及び配向膜がガラス基板12,14に設けられることができる。一方のガラス基板12はTFT基板であり、他方のガラス基板14はカラーフィルタ基板である。
図2は図1のガラス基板12を示す略平面図である。ガラス基板12は表示領域18と、表示領域18のまわりの周辺領域20とを有する。表示領域18は多数の画素22を含む。図2では、1つの画素22が部分的に拡大して示されている。画素22は3原色のサブ画素領域RGBを含み、各サブ画素領域RGBにはTFT24が形成されている。周辺領域20はTFT(図示せず)を有し、周辺領域20のTFTは表示領域18のTFT24よりも密に配置されている。
図2のガラス基板12は、15型QXGA液晶表示装置を構成するものであり、2048×1536の画素22を有する。3原色のサブ画素領域RGBが並ぶ方向(水平な方向)上には2048の画素が並び、サブ画素領域RGBの数は2048×3になる。3原色のサブ画素領域RGBが並ぶ方向(水平な方向)に対して垂直な方向(垂直な方向)には1536の画素が並ぶ。半導体結晶化においては、周辺領域20では各辺に平行な方向にレーザスキャンが行われ、表示領域18では矢印A又はBの方向にレーザスキャンが行われる。
図3は図2のガラス基板12を作るためのマザーガラス26を示す略平面図である。マザーガラス26は複数のガラス基板12を採取するようになっている。図3に示す例では、1つのマザーガラス26から4つのガラス基板12を採取するようになっているが、1つのマザーガラス26から4つ以上のガラス基板12を採取することもできる。
図4は本発明の実施例のレーザ結晶化装置を示す略平面図である。図5は図4のレーザ結晶化装置を示す斜視図である。レーザ結晶化装置30は、半導体層(非晶質シリコン膜)68が形成された基板66を支持する可動のステージ62(図8)と、レーザ源32と、レーザ源32から出たレーザ光を時分割で複数の光路33,34に振り分ける装置36と、各光路33,34を通るレーザ光を集光してステージ62に支持された基板の半導体層68に照射する光学装置37,38とを備えている。装置36に入るレーザ光は、レーザ源32から直接に来るものばかりでなく、例えば図16に示されるようにハーフミラーにより同時分割されたサブビームとすることもできる。また逆に装置36からの出射光をハーフミラーで同時分割しサブビームとすることもできる。
レーザ源32はCWレーザ(連続発振レーザ)発振器を含む。半導体層68は領域1と領域2を含む。領域1と領域2は特別に区分されたものではなく、ここでは説明の都合上このように区分している。図示の実施例においては、装置36で分けられた光路33,34は互いに反対方向を向いており、ミラ−39,40が光路33,34を互いに平行に曲げる。装置36の中心とミラー39(40)の間の距離Hは変えられるようになっており、ミラー39とミラー40の間の距離、すなわち光学装置37と光学装置38の間の距離は調節可能である。ミラー39と光学装置37を第1の支持手段で一体的に支持し、ミラー40と光学装置38を第2の支持手段で一体的に支持し、第1の支持手段と第2の支持手段の相対位置を一軸ステージにより変えるようにするのが好ましい。
図6は図4及び図5の光学装置37の構成を示す側面図である。図6は図5の光学装置37の構成を示すが、光学装置38についても同様である。光学装置37は、レーザ光の光路を水平から垂直に曲げるミラー42と、ほぼ半円筒形状のシリンドリカルレンズ44と、シリンドリカルレンズ44と直交するように配置されたほぼ半円筒形状のシリンドリカルレンズ46と、凸レンズ48とからなる。ミラーは全反射誘電体多層膜から形成されるのが好ましい。この光学装置37(38)により、レーザ光のビームスポットBSは半導体層68上で楕円形状になる。また、凹レンズ50がミラー42の上流側に配置されるのが好ましい。しかし、光学装置37(38)はこれらの全ての要素を含む必要はない。
図7は図4及び図5のレーザ光を時分割で複数の光路33,34に振り分ける装置36の一例を示す平面図である。装置36はガルバノ52を含む。ガルバノ52はモータ54によって駆動されるミラーであり、モータ54は駆動手段(駆動回路)56を介して制御装置58に接続される。ステージ駆動手段(駆動回路)60も制御装置58に接続される。制御装置58はガルバノ50とステージ62を同期して動作するように制御する。ガルバノ52の代わりにポリゴンミラーとすることもできる。
ガルバノ52で反射したレーザ光はガルバノ52の位置に応じてミラー39,40へ向かう。ガルバノ52はレーザ光を交互に光路33,34に向かわせるように駆動される。図7においては、ガルバノ52はレーザ光をミラー40に反射させる位置にあり、レーザ源32から出た光はガルバノ52で反射して光路34に入り、ミラー40で反射して図6の光学装置37のミラー42へ向かう。次の時点では、ガルバノ52はレーザ光がミラー39に向かう位置に変位させられ、レーザ源32から出た光はガルバノ52で反射して光路33に入り、ミラー39で反射して光学装置38のミラー42へ向かうようになる。なお、図4及び図5においては、光路33,34は一直線上で反対方向に向くように示されているが、図7においては、光路33,34は互いに角度をなして反対方向に向くように示されている。重要なことは、ミラー39,40で反射したレーザ光が互いに平行になるようにすることである。
図8はステージ62に支持された基板66を示す斜視図である。ステージ62はXステージ62Xと、Yステージ62Yと、回転ステージ(図8には図示せぅ)を含む。Xステージ62XはX方向に移動可能に図示しないガイドに配置され、図示しない送りねじ等の駆動手段によってX方向に駆動される。Yステージ62YはXステージ62Xに設けた図示しないガイドに配置され、図示しない送りねじ等の駆動手段によってY方向に駆動される。回転ステージはYステージ62Yに回転可能に設けられ、図示しない駆動手段によって回転駆動される。
吸着テーブル64がYステージ62Y上の回転ステージに装着されている。吸着テーブル64は多数の真空吸着穴及び真空通路を有する真空吸着チャックを形成している。基板66は例えば図3に示したマザーガラス26であり、非晶質シリコンからなる半導体層68が薄膜製造プロセスにより基板66に形成されている。レーザ光LBは図6に示した光学装置37(38)により集光されて半導体層68に照射される。
レーザ光LBが一定の位置を照射する状態で、ステージ62を動かしながらスキャンをすると、半導体層68の帯状の部分がレーザ光LBで照射される。非晶質シリコンからなる半導体層68のレーザ光が照射された部分は溶融、固化され、結晶化されてポリシリコンになる。半導体層68のレーザ光が照射された帯状の部分でも半導体層68が十分に溶融する有効メルト幅があり、その両側縁部は十分に溶融しない。ここでは、有効メルト幅に含まれる半導体層68の部分をビームトレースと呼ぶ。
図9はオーバーラップしたビームトレースの例を示す図である。2つのビームトレース70がオーバーラップ量Iでオーバーラップしている。Jは有効メルト幅である。CWレーザではビームスポットが小さいので、1回のスキャンでは結晶化される半導体層68の面積が小さいので、ビームトレースをオーバーラップさせながら連続的に多数回のスキャンを行って半導体層68の必要な面積を結晶化する。
この場合、図4に示されるように、ラスタースキャンを行う。ラスタースキャンにおいては、Yステージ62YをY軸に沿った一方向(往路方向)に動かし、次に、Xステージ62XをX軸に沿った方向に動かし、次に、Yステージ62YをY軸に沿った反対の方向(復路方向)に動かす。一方向(往路方向)のスキャンにおいては半導体層68の領域1を結晶化し、反対の方向(復路方向)のスキャンにおいては半導体層68の領域2を結晶化する。
図4において、1回目のスキャンは半導体層68の領域1を矢印a1で示されるように行う。2回目のスキャンは半導体層68の領域2を矢印b1で示されるように行う。3回目のスキャンは半導体層68の領域1を矢印a2で示されるように行う。4回目のスキャンは半導体層68の領域2を矢印b2で示されるように行う。このように往復のスキャンを繰り返しながら、半導体層68の結晶化の必要な部分を結晶化する。
制御装置58はガルバノ52とステージ62を同期して動作するように制御する。往路方向のスキャンa1,a2,a3の場合には、装置36はレーザ光が光路33を通るようにし、復路方向のスキャンb1,b2の場合には、装置36はレーザ光が光路34を通るようにする。
往路方向におけるスキャンについては、ステージ62(62Y)が一方の方向a1に動くときに半導体層68に形成されるビームトレースとステージ62(62Y)が次に同じ方向a2に動くときに半導体層68に形成されるビームトレースとが互いにオーバーラップするようになっている。復路方向におけるスキャンについては、ステージ62(62Y)が一方の方向b1に動くときに半導体層68に形成されるビームトレースとステージ62(62Y)が次に同じ方向b2に動くときに半導体層68に形成されるビームトレースとが互いにオーバーラップするようになっている。つまり、図9の2つのビームトレース70は領域1(又は領域2)におけるビームトレースを示したものである。
このように、本発明は、往路と復路に同期して、交互にレーザ光を異なる光学系に切り換える機構を備え、これらの光学系はそれぞれ異なる領域を照射する集光系を備え、集光されたビームトレースをオーバーラップ状態でスキャンする機能を備えている。
一方、連続する往復方向のスキャンについては、ステージ62(62Y)が一方の方向a1に動くときに半導体層68に形成されるビームトレースとステージ62(62Y)が次の該一方の方向a1とは反対方向b1に動くときに半導体層68に形成されるビームトレースとは互いに離れている。
図10は蛇行のあるビームトレースの例を示す図である。蛇行量がKである。最近の研究では、ビームトレース70が微小に蛇行することが分かった。一般にステージ62(62Y)の運動は直線運動であるが、実際には直線運動をさせようとしても、蛇行を伴うので、一回のスキャンで結晶化されたビームトレース70は図10に示すように蛇行している。
図11は本発明のスキャンを行った場合のオーバーラップしたビームトレースの例を示す図である。例えば、図4において、ステージ62(62Y)が一方の方向a1に動くときのビームトレース70とステージ62(62Y)が次に同一の方向a2に動くときのビームトレース70を示し、2つのビームトレース70はオーバーラップ量Iで互いにオーバーラップしている。同一方向のスキャンの場合には、蛇行の位相が一致するので、オーバーラップ量を小さくできる。
図12は往復のスキャンでオーバーラップしたビームトレースの例を示す図である。例えば、図4において、ステージ62(62Y)が一方の方向a1に動くときのビームトレース70とステージ62(62Y)が反対の方向b1に動くときのビームトレース70を互いに近づけてオーバーラップさせるようにした例である。この場合、蛇行が関係なく発生するので、オーバーラップ量Iが小さいと、2つのビームトレース70の間に結晶化されない領域70Xができる可能性がある。この場合、蛇行があると、2つのビームトレース70の間のオーバーラップ量を増加させる必要があり、そのためにスループットが低下する。
実施例では、非晶質シリコンをCWレーザ照射で結晶化した。レーザはNd:YVO4のDPSSレーザとその高調波(倍波)を用いて、波長532nmのCWレーザを得た。例えば、楕円形状のビームスポットを用いて、レーザパワー2.5W、レーザスキャン速度2m/sで、膜厚が100nm程度の非晶質シリコンをスキャンした。図10に示すように1つのレーザトレース70では、有効メルト幅Jは20μmで、蛇行量Kは5μmであった。
図12に示す往復スキャンでは、蛇行量Kプラス位置合わせ余裕量を5μm程度もたせて10μm程度のオーバーラップ量Iが必要となる。蛇行がなく且つ位置合わせ余裕量もない理想的な条件でオーバーラップ量Iを0にできるケースを仮定し、これと比較すると、図12に示す往復スキャンの場合のスループットは、(20−10)/20=0.50に低下する。
これに対して、本発明を適用した図11に示すスキャンでは、往路も復路も結晶化に有効に利用でき、かつオーバーラップ量Iには蛇行量Kを見込まない片側スキャンを適用できるので、理想的な条件でオーバーラップ量Iを0にできるケースに比較すると、図11に示すスキャンの場合のスループットは、(20−5)/20=3/4=0.75に改善された。
レーザバワーの制限や非晶質シリコンの膜厚が厚いと、メルト幅は狭くなる。メルト幅が15μmの場合には、往復スキャンでは、理想的なケースに比較すると、スループットは、(15−10)/15=1/3=0.33であるが、本発明の場合にはスループットは、(15−5)/15=2/3=0.66である。
ラスタースキャンではなく、往路のみの片側スキャンまたは復路のみの片側スキャンを行うと、蛇行の位相は図11に示すように複数のスキャンのビームトレース同士で一致しているために、蛇行幅は5μmあってもオーバーラップ量は上記の位置合わせ余裕量分のみを見込んで5μmですむ。従って、図11のようにオーバーラップ量を減らすことができる。しかし、往路のみの片側スキャン(又は復路のみの片側スキャン)では、往路は結晶化に使えるものの、復路はビームをシャッタで止めておく必要があり、スキャンの半分の時間はむだにすることになり、スループットを低下させる。
図13は本発明の他の実施例のレーザ結晶化装置を示す側面図である。この実施例のレーザ結晶化装置72は、半導体層68が形成された基板66(図8参照)を支持する可動のステージ62と、レーザ源32と、レーザ源32から出たレーザ光をステージ62に支持された基板66の半導体層68に照射する光学装置37と、ステージ62とは別に設けられ、基板66を回転させることのできる回転装置74と、少なくともステージ62と回転装置74の間で基板66を搬送することのできる搬送装置76とを備えている。さらに、搬送車として形成された基板スタッカ(ホルダー)78があり、搬送装置76はステージ62と基板スタッカ(ホルダー)78の間で基板66を搬送することができる。
ステージ62はXステージ62Xと、Yステージ62Yと、回転ステージ62Rを含む。Xステージ62XはX方向に移動可能に図示しないガイドに配置され、図示しない送りねじ等の駆動手段によってX方向に駆動される。Yステージ62YはXステージ62Xに設けた図示しないガイドに配置され、図示しない送りねじ等の駆動手段によってY方向に駆動される。回転ステージ62RはYステージ62Yに回転可能に設けられ、図示しない駆動手段によって回転駆動される。吸着テーブル64(図8参照)が回転ステージ62Rに設けられている。
図14はステージ62の一例を示す斜視図である。Xステージ62Xは分割された複数のプレートからなり、低速で作動し、高精度の位置分解能を有する。Yステージ62Yは長い1つのプレートからなり、高速で作動し、比較的に低い位置分解能を有する。
回転ステージ62Rは数度の回転範囲で精密な動作を行うように作られている。すなわち、搬送装置76は基板スタッカ78から所定の姿勢で基板66を取り出して、ステージ62上に所定の姿勢で置くので、この動作の範囲では特にステージ62上で基板66を回転させる必要はない。回転ステージ62Rは基板66の位置を微調整するために設けられる。
一方、図2に示されるように、液晶表示装置の表示領域18のまわりの周辺領域20において半導体層68の結晶化を行うときには、互いに直交する2つの方向(C方向、D方向)でスキャンする必要がある。このために、基板66を90度回転させる必要がある。この場合、回転装置74がないと、人の手で基板66を回転して回転ステージ62R上に置く必要がある。さもなくば、回転ステージ62Rを90度又はそれ以上回転することができるように設計する必要があるが、高い位置分解能を有し且つ90度又はそれ以上回転できるように回転ステージ62Rを作ることは、製造コストが非常に高くなる。
回転装置74は固定台74A上に回転ステージ74Rを回転可能に搭載したものであり、回転ステージ74Rを回転させるための駆動手段を含む。真空吸着チャックが回転ステージ74Rに設けられる。回転ステージ74Rは90度又はそれ以上回転することができる。ただし、回転ステージ74Rは高精度で位置決めを行うことができるものである必要はない。
図15は図13の搬送装置76の例を示す斜視図である。搬送装置76は、ロボットとして構成され、ベース80と、矢印Eで示される垂直方向に移動可能で且つ矢印Fで示されるように回転可能なボディ82と、ボディ82に取り付けられた平行四辺形リンク84と、フォーク状のアーム86とからなる。平行四辺形リンク84は矢印Gで示されるように伸縮可能である。基板66はアーム86に載せられて搬送される。ステージ62の回転ステージ62R及び回転装置74の回転ステージ74Rはそれぞれ押し上げピン(図示せず)を有し、アーム86を回転ステージ62R又は回転ステージ74Rと基板66との間に挿入できるようになっている。
図13において、搬送装置76は、基板スタッカ78から所定の姿勢で基板66を取り出して、ステージ62上に所定の姿勢で置く。ステージ62の回転ステージ62Rは基板66の姿勢を微調整し、それから例えば周辺領域20の一辺に沿って矢印C方向に半導体層68の結晶化を行う。それから、搬送装置76は、基板66をステージ62の回転ステージ62Rから回転装置74の回転ステージ74Rへ搬送する。回転ステージ74Rは基板66とともに90度回転し、それから搬送装置76は、90度回転された基板66を回転装置74の回転ステージ74Rからステージ62の回転ステージ62Rへ搬送する。ステージ62の回転ステージ62Rは基板66の姿勢を微調整し、それから例えば周辺領域20の一辺に沿って矢印D方向に半導体層68の結晶化を行う。このようにして、簡単な構造の回転装置74を設けることにより、スループットよく半導体層の結晶化を行うことができる。
図16はレーザ結晶化装置の変形例を示す略平面図である。レーザ結晶化装置90はレーザ源32を出たレーザ光を2つのサブビームに分割するハーフミラーなどの光分割手段92を有する。レーザ結晶化装置90は、光分割手段92で分割されたサブビームの各々について、図4及び図5に示されたレーザ光を時分割で複数の光路33,34に振り分ける装置36と、各光路33,34を通るレーザ光を集光してステージ62に支持された基板の半導体層68に照射する光学装置37,38とを備えている。このようにして、同時に結晶化される半導体層68の部分を増加することができる。
図1は本発明により製造される液晶表示装置を示す略断面図である。 図2は図1のTFT基板を示す略平面図である。 図3は図2のTFT基板を作るためのマザーガラスを示す略平面図である。 図4は本発明の実施例のレーザ結晶化装置を示す略平面図である。 図5は図4のレーザ結晶化装置を示す斜視図である。 図6は図4及び図5の光学装置の構成を示す側面図である。 図7は図4及び図5のレーザ光を時分割で複数の光学路に振り分ける装置の一例を示す平面図である。 図8はステージに支持された基板を示す斜視図である。 図9はオーバーラップしたビームトレースの例を示す図である。 図10は蛇行のあるビームトレースの例を示す図である。 図11は本発明のスキャンを行った場合のオーバーラップしたビームトレースの例を示す図である。 図12は往復のスキャンでオーバーラップしたビームトレースの例を示す図である。 図13は本発明の他の実施例のレーザ結晶化装置を示す側面図である。 図14はステージの一例を示す斜視図である。 図15は図13の搬送装置の例を示す斜視図である。 図16はレーザ結晶化装置の変形例を示す略平面図である。
符号の説明
30…レーザ結晶化装置
32…レーザ源
33,34…光路
36…レーザ光を振り分ける装置
37,38…光学装置
52…ガルバノ
58…制御手段
62…ステージ
62X…Xステージ
62Y…Yステージ
62R…回転ステージ
64…吸着プレート
66…基板
68…半導体層
70…ビームトレース
74…回転装置

Claims (5)

  1. 半導体層が形成された基板を支持する可動のステージと、レーザ光を時分割で複数の光路に振り分ける装置と、各光路を通るレーザ光を集光して該ステージに支持された基板の半導体層に照射する光学装置とを備えたことを特徴とするレーザ結晶化装置。
  2. 該レーザ光を時分割で複数の光路に振り分ける装置と基板を取り付けたステージの往復運動とを同期して制御する制御手段を備えたことを特徴とする請求項1に記載のレーザ結晶化装置。
  3. 該制御手段は、該ステージが一方の方向に動くときに半導体層に形成されるビームトレースと該ステージが次に該一方の方向に動くときに半導体層に形成されるビームトレースとが互いにオーバーラップするように該レーザ光を時分割で複数の光路に振り分ける装置と該ステージを制御することを特徴とする請求項2に記載のレーザ結晶化装置。
  4. CWレーザ光を時分割で少なくとも2つの光学系に振り分け、該レーザ光が振り分けられた光学系を使用して基板に形成された半導体層の第1の領域を結晶化し、次にレーザ光が振り分けられた光学系を使用して基板に形成された半導体層の第1の領域とは離れた第2の領域を結晶化することを特徴とするレーザ結晶化方法。
  5. 半導体層が形成された基板を支持する可動のステージと、レーザ光を該ステージに支持された基板の半導体層に照射する光学装置と、該ステージとは別に設けられ、該基板を回転させることのできる回転装置と、少なくとも該ステージと該回転装置の間で基板を搬送することのできる搬送手段とを備えたことを特徴とするレーザ結晶化装置。
JP2003406167A 2003-12-04 2003-12-04 レーザ結晶化装置及びレーザ結晶化方法 Pending JP2005167084A (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2003406167A JP2005167084A (ja) 2003-12-04 2003-12-04 レーザ結晶化装置及びレーザ結晶化方法
KR1020040098937A KR100792955B1 (ko) 2003-12-04 2004-11-30 레이저 결정화 장치 및 레이저 결정화 방법
US11/003,021 US20050127045A1 (en) 2003-12-04 2004-12-02 Laser crystallization apparatus and laser crystallization method
TW093137400A TWI251869B (en) 2003-12-04 2004-12-03 Laser crystallization apparatus and laser crystallization method
CNB2004100983485A CN100337309C (zh) 2003-12-04 2004-12-03 激光结晶设备和激光结晶方法
CNB2007101011499A CN100511580C (zh) 2003-12-04 2004-12-03 激光结晶设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003406167A JP2005167084A (ja) 2003-12-04 2003-12-04 レーザ結晶化装置及びレーザ結晶化方法

Publications (1)

Publication Number Publication Date
JP2005167084A true JP2005167084A (ja) 2005-06-23

Family

ID=34650248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003406167A Pending JP2005167084A (ja) 2003-12-04 2003-12-04 レーザ結晶化装置及びレーザ結晶化方法

Country Status (5)

Country Link
US (1) US20050127045A1 (ja)
JP (1) JP2005167084A (ja)
KR (1) KR100792955B1 (ja)
CN (2) CN100337309C (ja)
TW (1) TWI251869B (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW297138B (ja) * 1995-05-31 1997-02-01 Handotai Energy Kenkyusho Kk
KR100956339B1 (ko) 2003-02-25 2010-05-06 삼성전자주식회사 규소 결정화 시스템 및 규소 결정화 방법
EP1717058B1 (de) * 2005-04-27 2010-07-28 KUM Limited Stiftspitzer
KR100947356B1 (ko) 2009-07-10 2010-03-15 주식회사 엘에스텍 도광판 제조장치 및 제조방법
KR20120008345A (ko) 2010-07-16 2012-01-30 삼성모바일디스플레이주식회사 레이저 조사 장치
KR101135537B1 (ko) * 2010-07-16 2012-04-13 삼성모바일디스플레이주식회사 레이저 조사 장치
KR101739019B1 (ko) 2010-11-01 2017-05-24 삼성디스플레이 주식회사 레이저 결정화 시스템 및 이를 이용한 표시 장치 제조 방법
KR20120048240A (ko) * 2010-11-05 2012-05-15 삼성모바일디스플레이주식회사 연속측면고상화(Sequential Lateral Solidification:SLS)를 이용한 결정화 장치, 결정화 방법 및 유기 발광 디스플레이 장치의 제조 방법
TWI581408B (zh) * 2016-04-28 2017-05-01 友達光電股份有限公司 顯示面板
CN107876968A (zh) * 2017-12-26 2018-04-06 英诺激光科技股份有限公司 一种用于平行加工的激光加工设备
CN112558315B (zh) * 2020-11-23 2022-09-02 华南师范大学 一种多路分光系统

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0897169A (ja) * 1994-09-26 1996-04-12 Semiconductor Energy Lab Co Ltd レーザー処理方法およびレーザー処理装置
JPH0950961A (ja) * 1995-05-31 1997-02-18 Semiconductor Energy Lab Co Ltd レーザー処理方法及びレーザー処理装置
JP2000164527A (ja) * 1998-11-26 2000-06-16 Matsushita Electric Ind Co Ltd レーザアニール装置
JP2000223425A (ja) * 1999-02-02 2000-08-11 Nec Corp 基板処理装置、ガス供給方法、及び、レーザ光供給方法
JP2000275668A (ja) * 1999-03-19 2000-10-06 Fujitsu Ltd レーザアニーリング装置、液晶表示装置及びその製造方法
JP2001156015A (ja) * 1999-11-26 2001-06-08 Sumitomo Heavy Ind Ltd レーザアニーリング装置
JP2001358087A (ja) * 2001-04-16 2001-12-26 Nec Corp パルスレーザ光照射装置及び照射方法
WO2002031871A1 (fr) * 2000-10-06 2002-04-18 Mitsubishi Denki Kabushiki Kaisha Procédé et dispositif de production de film de silicium polycristallin, dispositif à semi-conducteurs, et procédé de fabrication
JP2002353159A (ja) * 2001-03-23 2002-12-06 Sumitomo Heavy Ind Ltd 処理装置及び方法
JP2003077834A (ja) * 2001-09-05 2003-03-14 Matsushita Electric Ind Co Ltd 結晶化半導体膜の形成方法およびその製造装置と薄膜トランジスタの製造方法およびそれらを用いた表示装置
JP2003086505A (ja) * 2000-08-25 2003-03-20 Fujitsu Ltd 半導体装置の製造方法及び半導体製造装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6479837B1 (en) * 1998-07-06 2002-11-12 Matsushita Electric Industrial Co., Ltd. Thin film transistor and liquid crystal display unit
KR100327087B1 (ko) * 1999-06-28 2002-03-13 구본준, 론 위라하디락사 레이저 어닐링 방법
US7491972B1 (en) * 1999-06-28 2009-02-17 Hitachi, Ltd. Polysilicon semiconductor thin film substrate, method for producing the same, semiconductor device, and electronic device
JP4827276B2 (ja) * 1999-07-05 2011-11-30 株式会社半導体エネルギー研究所 レーザー照射装置、レーザー照射方法及び半導体装置の作製方法
US6737672B2 (en) * 2000-08-25 2004-05-18 Fujitsu Limited Semiconductor device, manufacturing method thereof, and semiconductor manufacturing apparatus
US7253032B2 (en) * 2001-04-20 2007-08-07 Semiconductor Energy Laboratory Co., Ltd. Method of flattening a crystallized semiconductor film surface by using a plate
JP4558262B2 (ja) * 2001-08-30 2010-10-06 シャープ株式会社 半導体装置の製造方法
KR100611040B1 (ko) * 2001-12-27 2006-08-09 엘지.필립스 엘시디 주식회사 레이저 열처리 장치
JP4030758B2 (ja) * 2001-12-28 2008-01-09 株式会社半導体エネルギー研究所 半導体装置の作製方法
TW200414280A (en) * 2002-09-25 2004-08-01 Adv Lcd Tech Dev Ct Co Ltd Semiconductor device, annealing method, annealing apparatus and display apparatus
US7405114B2 (en) * 2002-10-16 2008-07-29 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus and method of manufacturing semiconductor device
JP4515034B2 (ja) * 2003-02-28 2010-07-28 株式会社半導体エネルギー研究所 半導体装置の作製方法
KR100992120B1 (ko) * 2003-03-13 2010-11-04 삼성전자주식회사 규소 결정화 시스템 및 규소 결정화 방법

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0897169A (ja) * 1994-09-26 1996-04-12 Semiconductor Energy Lab Co Ltd レーザー処理方法およびレーザー処理装置
JPH0950961A (ja) * 1995-05-31 1997-02-18 Semiconductor Energy Lab Co Ltd レーザー処理方法及びレーザー処理装置
JP2000164527A (ja) * 1998-11-26 2000-06-16 Matsushita Electric Ind Co Ltd レーザアニール装置
JP2000223425A (ja) * 1999-02-02 2000-08-11 Nec Corp 基板処理装置、ガス供給方法、及び、レーザ光供給方法
JP2000275668A (ja) * 1999-03-19 2000-10-06 Fujitsu Ltd レーザアニーリング装置、液晶表示装置及びその製造方法
JP2001156015A (ja) * 1999-11-26 2001-06-08 Sumitomo Heavy Ind Ltd レーザアニーリング装置
JP2003086505A (ja) * 2000-08-25 2003-03-20 Fujitsu Ltd 半導体装置の製造方法及び半導体製造装置
WO2002031871A1 (fr) * 2000-10-06 2002-04-18 Mitsubishi Denki Kabushiki Kaisha Procédé et dispositif de production de film de silicium polycristallin, dispositif à semi-conducteurs, et procédé de fabrication
JP2002353159A (ja) * 2001-03-23 2002-12-06 Sumitomo Heavy Ind Ltd 処理装置及び方法
JP2001358087A (ja) * 2001-04-16 2001-12-26 Nec Corp パルスレーザ光照射装置及び照射方法
JP2003077834A (ja) * 2001-09-05 2003-03-14 Matsushita Electric Ind Co Ltd 結晶化半導体膜の形成方法およびその製造装置と薄膜トランジスタの製造方法およびそれらを用いた表示装置

Also Published As

Publication number Publication date
CN100337309C (zh) 2007-09-12
KR100792955B1 (ko) 2008-01-08
KR20050054444A (ko) 2005-06-10
CN101086954A (zh) 2007-12-12
TWI251869B (en) 2006-03-21
US20050127045A1 (en) 2005-06-16
TW200524007A (en) 2005-07-16
CN1624874A (zh) 2005-06-08
CN100511580C (zh) 2009-07-08

Similar Documents

Publication Publication Date Title
TWI258810B (en) Method and apparatus for crystallizing semiconductor with laser beams
JP2005167084A (ja) レーザ結晶化装置及びレーザ結晶化方法
JP4772261B2 (ja) 表示装置の基板の製造方法及び結晶化装置
JP2010278051A (ja) 結晶化照射方法および結晶化照射装置
US20120012760A1 (en) Laser irradiation apparatus
JP4923446B2 (ja) レーザ処理装置およびレーザ処理方法
JP2003332257A (ja) 半導体結晶化方法及び装置
TWI556284B (zh) 非週期性脈衝連續橫向結晶之系統及方法
CN213366530U (zh) 激光退火装置
JP2007053262A (ja) 半導体膜の結晶化方法およびその装置
JP2010278283A (ja) 半導体膜の製造装置及び製造方法並びに表示パネル

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050713

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050812

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051025

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110419