CN100391007C - 高击穿电压mos晶体管的结构及其制造方法 - Google Patents

高击穿电压mos晶体管的结构及其制造方法 Download PDF

Info

Publication number
CN100391007C
CN100391007C CNB200410092153XA CN200410092153A CN100391007C CN 100391007 C CN100391007 C CN 100391007C CN B200410092153X A CNB200410092153X A CN B200410092153XA CN 200410092153 A CN200410092153 A CN 200410092153A CN 100391007 C CN100391007 C CN 100391007C
Authority
CN
China
Prior art keywords
drain electrode
electrode layer
semiconductor substrate
low concentration
concentration drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB200410092153XA
Other languages
English (en)
Other versions
CN1606173A (zh
Inventor
西部荣次
八柳俊佑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Publication of CN1606173A publication Critical patent/CN1606173A/zh
Application granted granted Critical
Publication of CN100391007C publication Critical patent/CN100391007C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • H01L21/26513Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors of electrically active species
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26586Bombardment with radiation with high-energy radiation producing ion implantation characterised by the angle between the ion beam and the crystal planes or the main crystal surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/4234Gate electrodes for transistors with charge trapping gate insulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/665Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/6659Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7836Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with a significant overlap between the lightly doped extension and the gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/92Capacitors having potential barriers
    • H01L29/94Metal-insulator-semiconductors, e.g. MOS

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

一种半导体装置及其制造方法。其提高了高击穿电压MOS晶体管的工作击穿电压,同时抑制热载流子造成的饱和电流Idsat的变动。其在P型半导体衬底(1)上形成栅极绝缘膜(2)。在栅极绝缘膜(2)上形成栅电极(3)。通过将栅电极(3)作为掩模,将双电荷磷离子(31P++)进行倾斜离子注入,形成第一低浓度源极层(4a)和第一低浓度漏极层(5a)。另外,通过将磷离子(31P+)进行倾斜离子注入,形成第二低浓度源极层(4b)和第二低浓度漏极层(5b)。进而,为提高形成有第一低浓度源极层(4a)和第一低浓度漏极层(5a)、第二低浓度源极层(4b)和第二低浓度漏极层(5b)的P型半导体衬底(1)的最表面浓度,较浅地注入砷离子(75As+),形成表面注入层(4c、5c)。

Description

高击穿电压MOS晶体管的结构及其制造方法
技术领域
本发明涉及半导体装置及其制造方法,特别是涉及高击穿电压MOS晶体管的结构及其制造方法。
背景技术
图5是表示现有例的N沟道型高击穿电压MOS晶体管的结构的剖面图。在P型硅衬底50上介由栅极绝缘膜51形成栅电极52。在栅电极52的侧壁形成由绝缘膜构成的侧壁隔层53。另外,形成由N-型源极层54a和N+型源极层54b构成的源极层54,由N-型漏极层55a和N+型漏极层55b构成的漏极层55。
在该高击穿电压MOS晶体管中,通过与栅电极52邻接而设置N-型漏极层55a,在离开栅电极52的位置设置N+型漏极层55b,而减缓漏极电场,得到高的漏极击穿电压。
另外,这种高击穿电压MOS晶体管例如在以下的专利文献1中公开。
专利文献1特开平5-218070号公报
发明内容
为提高漏极击穿电压,必须减少N-型漏极层55a的形成用离子注入的剂量,降低N-型漏极层55a的杂质浓度。但是,单纯地降低N-型漏极层55a的杂质浓度,会使N-型漏极层55a的最表面的浓度变得过稀。
若这样过度地降低N-型漏极层55a的杂质浓度,向其高击穿电压MOS晶体管流通沟道电流,发生热载流子(HC),则在热载流子注入栅极绝缘膜2前后,存在高击穿电压MOS晶体管的饱和电流Idsat大幅度变动的问题。另外,存在若不降低杂质浓度则工作击穿电压(电流流向晶体管时的漏极击穿电压)恶化的问题。
图4(b)表示热载流子注入前后的源漏问电流Ids特性。晶体管的饱和电流Idsat大幅度变动是因为受到陷入(トラツプ)栅极绝缘膜2的热载流子的电荷影响使N-型漏极层55a最表面的电阻值变动。
因此,本发明提供一种使高击穿电压MOS晶体管的工作击穿电压提高,同时抑制热载流子造成的饱和电流Idsat的变动。
本发明的半导体装置具有:半导体衬底;在上述半导体衬底上介由栅极绝缘膜形成的栅电极;形成在上述半导体衬底的表面,延伸至上述栅电极下面的第一低浓度漏极层;形成在上述第一低浓度漏极层上的上述半导体衬底表面,具有比该第一低浓度漏极层浓度高的杂质的表面注入层;在上述半导体衬底的表面形成的高浓度漏极层。
并且,在上述结构基础上,还具有第二低浓度漏极层,该第二低浓度漏极层形成得比上述第一低浓度漏极层浅,比上述表面注入层深,并且具有比上述第一低浓度漏极层浓度低的杂质。
另外,本发明的半导体装置制造方法具有:在第一导电型半导体衬底上形成栅极绝缘膜的工序;在上述栅极绝缘膜上形成栅电极的工序;将上述栅电极作为掩模,以第一离子束的倾斜角将第二导电型杂质向上述半导体衬底较深地离子注入,形成第一低浓度漏极层的第一离子注入工序;将上述栅电极作为掩模,以小于上述第一离子束倾斜角的第二离子束的倾斜角将第二导电型杂质向上述半导体衬底较浅地进行离子注入,提高上述第一低浓度漏极层的表面浓度的第二离子注入工序。
另外,在上述工序的基础上,还包括:将上述栅电极作为掩模,以第三离子束的倾斜角,将第二导电型杂质向上述半导体衬底进行离子注入,形成比第一低浓度漏极层浅,并且具有低杂质浓度的第二低浓度漏极层的第三离子注入工序。
根据本发明,因为由第一低浓度漏极层衰减漏极电场,在该第一低浓度漏极层上的半导体衬底最表面上形成,具有浓度比该第一低浓度漏极层高的杂质的表面注入层,所以使高击穿电压MOS晶体管的工作击穿电压提高,同时能够抑制热载流子导致的饱和电流Idsat的变动。
附图说明
图1(a)、图1(b)、图1(c)是说明本发明实施例的半导体的装置制造方法的剖面图;
图2(a)、图2(b)是说明本发明的实施例的半导体装置的制造方法的剖面图;
图3(a)、图3(b)是表示沿高击穿电压MOS晶体管的所形成的P型半导体衬底1的最表面的杂质浓度曲线图;
图4(a)、图4(b)是表示热载流子注入前后的源漏间电流Ids的特性图;
图5是表示现有例的半导体装置的剖面图。
具体实施方式
接着,说明实施本发明的最佳方式(以下称为实施例)。参照附图说明本发明实施例的半导体装置及其制造方法。首先,参照图1和图2说明第一实施例。图1和图2是表示这种半导体装置制造方法的剖面图。
如图1(a)所示,在P型半导体衬底1(例如P型硅衬底)的表面上利用热氧化法等形成栅极绝缘膜2。在该栅极绝缘膜2上形成栅电极3。该工序中,首先,全面利用LPCVD法淀积多晶硅层,向其掺杂磷等的杂质使其低电阻化后,局部蚀刻该多晶硅层而形成栅电极3。
其次,如图1(b)所示,在以栅电极3为掩模不穿透其的条件下,通过将双电荷磷离子(31P++)进行倾斜离子注入而形成第一低浓度源极层4a和第一低浓度漏极层5a。
在该离子注入的工序中,双电荷磷离子(31P++)的离子束的倾斜角θ1以垂直方向为基准成45度,为确保源极漏极的对称性从栅电极3的左右方向进行该离子注入。若考虑高击穿电压MOS晶体管的各种图形配置,为不依赖于图形配置而确保源极漏极的对称性,使离子束相对半导体衬底旋转的同时而进行离子注入是合适。这时,可固定P型半导体衬底1而旋转照射离子束的离子枪,相反,也可固定离子束的照射方向,使P型半导体衬底1旋转。
通过该倾斜离子注入工序,离子束到达栅电极3的下方。由于第一低浓度漏极层5a延伸至栅电极3的下方,这样第一低浓度漏极层5a的宽度(载流子的漂移区域的宽度)变得更宽。因此,可不对晶体管尺寸进行设计变更而提高工作击穿电压。离子束绕垂直方向的倾斜角度最好为45度,然而不限于此,只要在35度~55度范围内就能得到一定程度的效果。
而且,为衰减漏区电场,第一低浓度漏极层5a必须形成得深,最好其加速电压为100KeV(因双电荷故实际上是200KeV),剂量为1.8×1013/cm3左右是令人满意的。
另外,如图1(c)  所示,在以栅电极3为掩模而不穿透其的条件下,通过将单电荷磷离子(31P+)进行倾斜离子注入,形成第二低浓度源极层4b和第二低浓度漏极层5b。该第二低浓度源极层4b和第二低浓度漏极层5b,与第一低浓度源极层4a和第一低浓度漏极层5a重叠而形成,并比这些层注入得浅,具有低的杂质浓度。
其离子注入条件最好是加速电压为100KeV,剂量为1×1012/cm3左右。另外,该离子注入工序与图2(b)  的双电荷磷离子(31P++)  的离子注入一样是倾斜离子注入,离子束的倾斜角θ2最好以垂直方向为基准成45度。
其次,如图2(a)所示,为提高形成有第一低浓度源极层4a和第一低浓度漏极层5a,第二低浓度源极层4b和第二低浓度漏极层5b的P型半导体衬底1最表面的浓度,在以栅电极3为掩模并不穿透其的条件下,较浅地注入砷离子(75As+),形成表面注入层4c、5c。由此,使高击穿电压MOS晶体管的工作击穿电压提高,同时抑制热载流子导致的饱和电流Idsat的变动。
其离子注入的条件最好是加速电压为70KeV,剂量为3×1012/cm3左右。并且,离子束的倾斜角θ3,最好比上述离子注入的离子束倾斜角θ1、θ2小。这是因为在栅电极3下面形成表面注入层4c、5c,可防止漏极击穿电压降低。
具体地,该离子束的倾斜角θ3最好以垂直方向为基准成7度。离子束的倾斜角θ3即使是0度附近也无妨,然而必需考虑到防止沟道效应。
其次,如图2(b)所示,在栅电极3的侧面形成侧壁隔层6。本工序中,全面利用LPCVD法淀积氧化硅膜等绝缘膜,通过将该绝缘膜进行各向异性蚀刻,在栅电极3的侧面形成侧壁隔层6。然后,向P型硅衬底1的表面高浓度地离子注入磷、砷等N型杂质,在与栅电极3的端部邻接或离开栅电极5端部的位置形成高浓度型源极层4d和高浓度漏极层5d。
该高浓度源极层4d和高浓度漏极层5d与第一低浓度源极层4a和第一低浓度漏极层5a、第二低浓度源极层4b和第二低浓度漏极层5b、表面注入层4c、5c相比浓度高。为防止受栅电极3端部的强电场影响造成漏极漏电流GIDL(Gate Induced Drain Leakage current),高浓度漏极层5d最好形成在离开栅电极3的端部位置。
图3是表示沿该高击穿电压MOS晶体管的所形成的P型半导体衬底1最表面的杂质浓度曲线图,图3(a)表示本实施例的杂质浓度曲线,图3(b)表示现有例的杂质浓度曲线。图中,CH是高击穿电压MOS晶体管的沟道区域,其右侧表示低浓度漏极层(第一低浓度漏极层5a、第二低浓度漏极层5b、表面注入层5c)的曲线。
在图3(b)的现有例中,在低浓度漏极层的端部出现杂质浓度曲线的「凹部」。在此杂质浓度突然降低,其缘于热载流子注入导致电阻、饱和电流Idsat变动。与此相对,在图3(a)的本实施例的杂质曲线中,这样的杂质浓度曲线「凹部」被消除。这是形成了表面注入层5c的效果。因此,如图4(a)所示,根据本实施例,在热载流子的注入前后,饱和电流Idsat不变动。
另外可知,相对于在图3(b)的现有例中低浓度漏极的杂质曲线急剧上升,在图3(a)的本实施例杂质曲线中平稳上升,沿P型半导体衬底1的最表面杂质浓度平稳变化。这是设置了第一低浓度漏极层5a的效果,能够防止工作击穿电压、漏极击穿电压的降低。
进而,根据本实施例,因为第一低浓度漏极层5a延伸至栅电极3的下方,所以也可得到如下效果。现在将漏极电压Vd施加到高浓度漏极层5d,将栅电压Vg施加到栅电极3。这时,施加比栅极·源极间电压Vgs高的漏极·源极间电压Vds时(Vds>Vgs),在与栅电极3下面重叠的第一低浓度漏极层5a部分的表面生成表面耗尽层。于是,流到高击穿电压MOS晶体管的沟道电流(电子电流)避免遇到第一低浓度漏极层5a的端部表面的电场集中部分,而流经其表面耗尽层下方的第一低浓度漏极层5a的深区域,因此衬底电流Isub降低,工作击穿电压提高。
另外,在本实施例中,源极侧和漏极侧具有同样的结构,然而仅向漏极侧施加高电压时,源极侧也可是仅具有N+型源极层4d的单侧高击穿电压结构。

Claims (6)

1.一种半导体装置,其特征在于,具有:半导体衬底;在上述半导体衬底上介由栅极绝缘膜形成的栅电极;形成于上述半导体衬底的表面,延伸至上述栅电极下面的第一低浓度漏极层;形成于上述第一低浓度漏极层上的上述半导体衬底表面,具有比该第一低浓度漏极层浓度高的杂质的表面注入层;在所述半导体衬底的表面形成的高浓度漏极层;具有第二低浓度漏极层,该第二低浓度漏极层形成得比所述第一低浓度漏极层浅,比所述表面注入层深,并且具有比所述第一低浓度漏极层浓度低的杂质。
2.一种半导体装置的制造方法,其特征在于,具有:在第一导电型半导体衬底上形成栅极绝缘膜的工序;在所述栅极绝缘膜上形成栅电极的工序;将所述栅电极作为掩模,以第一离子束的倾斜角,将第二导电型杂质向所述半导体衬底较深地离子注入,形成第一低浓度漏极层的第一离子注入工序;将所述栅电极作为掩模,以小于所述第一离子束倾斜角的第二离子束的倾斜角将第二导电型杂质向所述半导体衬底较浅地离子注入,提高所述第一低浓度漏极层表面浓度的第二离子注入工序;将所述栅电极作为掩模,以第三离子束的倾斜角将第二导电型杂质向所述半导体衬底离子注入,形成比第一低浓度漏极层浅且具有低杂质浓度的第二低浓度漏极层的第三离子注入工序;以及,在所述半导体衬底的表面形成的高浓度漏极层工序。
3.按照权利要求2所述的半导体装置制造方法,其特征在于,所述第一离子束倾斜角以垂直方向为基准成45度,所述第二离子束倾斜角以垂直方向为基准成7度。
4.按照权利要求2所述的半导体装置制造方法,其特征在于,在所述第一和第二离子注入工序中,离子束与所述半导体衬底相对旋转的同时照射。
5.按照权利要求2所述的半导体装置制造方法,其特征在于,所述第三离子束倾斜角以垂直方向为基准成45度。
6.按照权利要求2所述的半导体装置制造方法,其特征在于,在所述第三离子注入工序中,离子束与所述半导体衬底相对旋转的同时照射。
CNB200410092153XA 2003-10-09 2004-10-09 高击穿电压mos晶体管的结构及其制造方法 Expired - Fee Related CN100391007C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP351077/03 2003-10-09
JP2003351077A JP4408679B2 (ja) 2003-10-09 2003-10-09 半導体装置の製造方法
JP351077/2003 2003-10-09

Publications (2)

Publication Number Publication Date
CN1606173A CN1606173A (zh) 2005-04-13
CN100391007C true CN100391007C (zh) 2008-05-28

Family

ID=34542452

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB200410092153XA Expired - Fee Related CN100391007C (zh) 2003-10-09 2004-10-09 高击穿电压mos晶体管的结构及其制造方法

Country Status (5)

Country Link
US (1) US7157779B2 (zh)
JP (1) JP4408679B2 (zh)
KR (1) KR100608188B1 (zh)
CN (1) CN100391007C (zh)
TW (1) TWI245423B (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4541125B2 (ja) * 2004-12-15 2010-09-08 パナソニック株式会社 高誘電率ゲート絶縁膜を備えた電界効果トランジスタを有する半導体装置及びその製造方法
US7282415B2 (en) * 2005-03-29 2007-10-16 Freescale Semiconductor, Inc. Method for making a semiconductor device with strain enhancement
US20070013026A1 (en) * 2005-07-12 2007-01-18 Ching-Hung Kao Varactor structure and method for fabricating the same
KR100649873B1 (ko) 2005-12-28 2006-11-27 동부일렉트로닉스 주식회사 트랜지스터 및 그 제조 방법
CN101192575B (zh) * 2006-11-28 2013-03-27 中芯国际集成电路制造(上海)有限公司 改善动态随机存储器pn结漏电流的方法
KR100843024B1 (ko) * 2006-12-27 2008-07-01 주식회사 하이닉스반도체 반도체 소자의 제조방법
JP2009004493A (ja) 2007-06-20 2009-01-08 Toshiba Corp 半導体装置及びその製造方法
KR20090007053A (ko) * 2007-07-13 2009-01-16 매그나칩 반도체 유한회사 고전압 소자 및 그 제조방법
CN101452849B (zh) * 2007-12-06 2012-06-20 上海华虹Nec电子有限公司 高压晶体管制造方法
US9748383B2 (en) * 2008-02-15 2017-08-29 X-Fab Semiconductor Foundries Ag Transistor
JP2010147325A (ja) * 2008-12-19 2010-07-01 Oki Semiconductor Co Ltd 半導体装置および半導体装置の製造方法
CN102024703B (zh) * 2009-09-17 2012-07-25 中芯国际集成电路制造(上海)有限公司 掺杂的方法
JP2012204435A (ja) * 2011-03-24 2012-10-22 Toshiba Corp 不揮発性半導体記憶装置
US20160104782A1 (en) * 2014-10-08 2016-04-14 Inotera Memories, Inc. Transistor structure and method of manufacturing the same
US9978864B2 (en) * 2015-12-03 2018-05-22 Vanguard International Semiconductor Corporation Semiconductor device and method for manufacturing the same
US9853148B2 (en) * 2016-02-02 2017-12-26 Taiwan Semiconductor Manufacturing Company Ltd. Power MOSFETs and methods for manufacturing the same
JP6723775B2 (ja) * 2016-03-16 2020-07-15 エイブリック株式会社 半導体装置および半導体装置の製造方法
US10784781B2 (en) * 2017-11-29 2020-09-22 Taiwan Semiconductor Manufacturing Company, Ltd. Transistor having asymmetric threshold voltage, buck converter and method of forming semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4935379A (en) * 1984-12-27 1990-06-19 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same
JPH0418762A (ja) * 1990-05-14 1992-01-22 Hitachi Ltd 絶縁ゲート形電界効果トランジスタ
US5757045A (en) * 1996-07-17 1998-05-26 Taiwan Semiconductor Manufacturing Company Ltd. CMOS device structure with reduced risk of salicide bridging and reduced resistance via use of a ultra shallow, junction extension, ion implantation

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61216364A (ja) * 1985-03-20 1986-09-26 Fujitsu Ltd 半導体装置
JPH05218070A (ja) 1992-01-30 1993-08-27 Sanyo Electric Co Ltd Mos電界効果半導体装置
US5362982A (en) * 1992-04-03 1994-11-08 Matsushita Electric Industrial Co., Ltd. Insulated gate FET with a particular LDD structure
US5308780A (en) * 1993-07-22 1994-05-03 United Microelectronics Corporation Surface counter-doped N-LDD for high hot carrier reliability
KR100189964B1 (ko) * 1994-05-16 1999-06-01 윤종용 고전압 트랜지스터 및 그 제조방법
US5719424A (en) * 1995-10-05 1998-02-17 Micron Technology, Inc. Graded LDD implant process for sub-half-micron MOS devices
JP3772916B2 (ja) * 1996-03-07 2006-05-10 株式会社ルネサステクノロジ 半導体装置及びその製造方法
US5847428A (en) * 1996-12-06 1998-12-08 Advanced Micro Devices, Inc. Integrated circuit gate conductor which uses layered spacers to produce a graded junction
US5869866A (en) * 1996-12-06 1999-02-09 Advanced Micro Devices, Inc. Integrated circuit having sacrificial spacers for producing graded NMOS source/drain junctions possibly dissimilar from PMOS source/drain junctions
US5998274A (en) * 1997-04-10 1999-12-07 Micron Technology, Inc. Method of forming a multiple implant lightly doped drain (MILDD) field effect transistor
KR100223846B1 (ko) * 1997-05-28 1999-10-15 구본준 반도체 소자 및 그의 제조방법
TW437099B (en) * 1997-09-26 2001-05-28 Matsushita Electronics Corp Non-volatile semiconductor memory device and the manufacturing method thereof
JP3147847B2 (ja) * 1998-02-24 2001-03-19 日本電気株式会社 半導体装置及びその製造方法
US6096616A (en) * 1998-05-18 2000-08-01 Advanced Micro Devices, Inc. Fabrication of a non-ldd graded p-channel mosfet
JP4446509B2 (ja) * 1999-04-26 2010-04-07 株式会社ルネサステクノロジ 半導体装置
US6218226B1 (en) * 2000-01-21 2001-04-17 Vanguard International Semiconductor Corporation Method of forming an ESD protection device
US6589847B1 (en) * 2000-08-03 2003-07-08 Advanced Micro Devices, Inc. Tilted counter-doped implant to sharpen halo profile
US6451675B1 (en) * 2000-09-12 2002-09-17 United Microelectronics Corp. Semiconductor device having varied dopant density regions
JP3594550B2 (ja) 2000-11-27 2004-12-02 シャープ株式会社 半導体装置の製造方法
JP4030269B2 (ja) * 2001-03-06 2008-01-09 三洋電機株式会社 半導体装置とその製造方法
KR100364122B1 (en) * 2001-04-24 2002-12-11 Hynix Semiconductor Inc Method for fabricating semiconductor device
JP2003229568A (ja) * 2002-02-04 2003-08-15 Hitachi Ltd 半導体装置の製造方法および半導体装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4935379A (en) * 1984-12-27 1990-06-19 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same
JPH0418762A (ja) * 1990-05-14 1992-01-22 Hitachi Ltd 絶縁ゲート形電界効果トランジスタ
US5757045A (en) * 1996-07-17 1998-05-26 Taiwan Semiconductor Manufacturing Company Ltd. CMOS device structure with reduced risk of salicide bridging and reduced resistance via use of a ultra shallow, junction extension, ion implantation

Also Published As

Publication number Publication date
US7157779B2 (en) 2007-01-02
CN1606173A (zh) 2005-04-13
KR20050034548A (ko) 2005-04-14
US20050104138A1 (en) 2005-05-19
JP2005116892A (ja) 2005-04-28
KR100608188B1 (ko) 2006-08-09
JP4408679B2 (ja) 2010-02-03
TWI245423B (en) 2005-12-11
TW200524163A (en) 2005-07-16

Similar Documents

Publication Publication Date Title
CN100391007C (zh) 高击穿电压mos晶体管的结构及其制造方法
CN100424887C (zh) 具有注入漏漂移区的沟槽金属氧化物半导体场效应晶体管及其制造方法
CN1251330C (zh) 半导体装置及其制造方法
US7514329B2 (en) Robust DEMOS transistors and method for making the same
US7365402B2 (en) LDMOS transistor
US7629665B2 (en) Semiconductor component with a channel stop zone
CN107482061B (zh) 超结器件及其制造方法
CN101124680B (zh) 高压pmos晶体管及其制造方法
CN104637821B (zh) 超级结器件的制造方法
US20110220991A1 (en) Semiconductor device
CN108242467B (zh) Ldmos器件及其制作方法
CN210110783U (zh) 一种集成高性能的ldmos结构
CN105931983A (zh) 用于高压器件的低成本的掩膜还原方法及器件
CN105789311A (zh) 横向扩散场效应晶体管及其制造方法
CN100530689C (zh) Ldmos晶体管
EP3806161A1 (en) Silicon carbide device with an implantation tail compensation region
KR100899764B1 (ko) 반도체 소자 및 그 제조방법
CN108054202A (zh) 一种半导体结构及其形成方法
KR101019406B1 (ko) Ldmos 소자 제조 방법
CN1551369A (zh) 高耐电压的半导体器件以及制造该器件的方法
CN1331209C (zh) 半导体器件及其制造方法
KR20100067567A (ko) 반도체 소자 및 이의 제조 방법
CN1147002C (zh) 半导体器件及其制造方法
CN112349778B (zh) 一种具有hvbn结构的resurf ldmos器件
CN103377923A (zh) Mos晶体管及形成方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080528

Termination date: 20201009