WO2023127787A1 - 防振ゴム組成物および防振ゴム部材 - Google Patents

防振ゴム組成物および防振ゴム部材 Download PDF

Info

Publication number
WO2023127787A1
WO2023127787A1 PCT/JP2022/047885 JP2022047885W WO2023127787A1 WO 2023127787 A1 WO2023127787 A1 WO 2023127787A1 JP 2022047885 W JP2022047885 W JP 2022047885W WO 2023127787 A1 WO2023127787 A1 WO 2023127787A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
rubber composition
mass
parts
silica
Prior art date
Application number
PCT/JP2022/047885
Other languages
English (en)
French (fr)
Inventor
優人 渡辺
誠司 笠井
豊久 遠山
Original Assignee
住友理工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友理工株式会社 filed Critical 住友理工株式会社
Publication of WO2023127787A1 publication Critical patent/WO2023127787A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/548Silicon-containing compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
    • F16F15/08Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means with rubber springs ; with springs made of rubber and metal

Definitions

  • the present invention relates to an anti-vibration rubber composition and an anti-vibration rubber member used for anti-vibration applications in vehicles such as automobiles and trains.
  • the diene rubber which is the polymer of the anti-vibration rubber composition
  • Patent Documents 1 to 4 In order to further reduce the dynamic magnification, it is important not only to increase the dispersion of silica, but also to improve the crosslinked structure of the polymer rubber and the bondability between the silica and the polymer rubber due to the silane coupling agent.
  • silica having a large primary particle size is used, and compared to the case of using ordinary silica, it is possible to achieve a lower dynamic magnification.
  • silica having a large primary particle size is used, the interaction between silica and rubber is weakened, resulting in a problem that the durability of the vibration-isolating rubber deteriorates.
  • the present invention has been made in view of such circumstances, and provides a vibration-isolating rubber composition and a vibration-isolating rubber which are excellent in durability, capable of achieving a low dynamic magnification, and exhibiting excellent scorch resistance. provide parts.
  • the present inventors have made intensive studies in order to solve the above problems.
  • silica with a specific surface area of 13-60 m 2 /g and an average particle size of 3-10 ⁇ m.
  • the silane cup in combination with the specific silica, can enhance the durability of the anti-vibration rubber without impairing the action and effect of the silica, and can exhibit an excellent action and effect in scorch resistance.
  • An anti-vibration rubber composition comprising a diene rubber composition containing the following (A) to (C).
  • A a diene rubber;
  • B Silica having a silanol group density of 4/nm 2 or more, a BET specific surface area of 13 to 60 m 2 /g, and an average particle size of 3 to 10 ⁇ m.
  • C A silane coupling agent having a sulfide group and a mercapto group in one molecule.
  • the anti-vibration rubber composition of the present invention includes a polymer comprising a diene rubber (A), silica (B) having a specific range of silanol group density, BET specific surface area, and average particle size, and contains a silane coupling agent (C) having a sulfide group and a mercapto group. Therefore, it is possible to exhibit excellent scorch resistance while achieving high durability and low dynamic magnification.
  • the anti-vibration rubber composition (hereinafter referred to as "this anti-vibration rubber composition") which is one embodiment of the present invention is, as described above, a diene rubber containing the following (A) to (C) It consists of a composition.
  • C A silane coupling agent having a sulfide group and a mercapto group in one molecule.
  • the present anti-vibration rubber composition is a diene-based rubber composition
  • diene-based rubber (A) is used for the polymer.
  • it is a diene rubber composition as described above, it is desirable not to use a polymer other than the diene rubber (A) in the present anti-vibration rubber composition, but a small amount (less than 30% by mass of the total polymer) It is also possible to use a polymer other than the diene rubber (A).
  • diene rubber (A) As the diene rubber (A) used in the present anti-vibration rubber composition, a diene rubber containing natural rubber (NR) as a main component is preferably used.
  • the “main component” means that 50% by mass or more of the diene rubber (A) is natural rubber, preferably 80% by mass or more of the diene rubber (A), more preferably 90% by mass or more of the diene rubber (A) is natural rubber, and the diene rubber (A) includes natural rubber alone. In this way, by using natural rubber as a main component, the strength and dynamic magnification can be reduced.
  • diene rubbers other than natural rubber examples include butadiene rubber (BR), styrene-butadiene rubber (SBR), chloroprene rubber (CR), isoprene rubber (IR), acrylonitrile-butadiene rubber (NBR), ethylene- Propylene-diene rubber (EPDM), butyl rubber (IIR), chloroprene rubber (CR) and the like. These are used alone or in combination of two or more. It is desirable to use these diene-based rubbers together with natural rubber.
  • the silica (B) used in the present anti-vibration rubber composition has a silanol group density of 4/nm 2 or more, as described above. , a BET specific surface area of 13 to 60 m 2 /g and an average particle size of 3 to 10 ⁇ m. In addition, the said average particle diameter shows the average particle diameter measured by the Coulter method.
  • the silanol group density of the silica (B) is the silanol group density of the silica surface calculated by the Sears titration method.
  • the silanol group density of the silica (B) is, in detail, Sears measured by the method described in Analytical Chemistry, vol.28, No.12, 1956, 1982-1983 by GW Sears. It is calculated from the titration amount.
  • the relationship between the Sears titration amount and the amount of silanol groups is based on the following ion exchange reaction.
  • the method for calculating the silanol group density includes, for example, the loss on ignition (TG) measurement method.
  • TG loss on ignition
  • the measurement of the silanol group density by the Sears titration method described above is a method of counting only —OH on the surface of silica aggregates. Therefore, considering the state of dispersion of silica in rubber and the state of bonding with rubber, the silanol group density calculated by the Sears titration method is preferable because it is a measurement method that expresses the actual state.
  • the BET specific surface area of silica (B) is preferably 15 to 60 m 2 /g, more preferably 15 to 35 m 2 /g, from the viewpoint of achieving high durability and low dynamic magnification. is.
  • the BET specific surface area is too small, the primary particle size becomes too large and the contact area itself with the diene rubber (A) becomes small, so sufficient reinforcement cannot be obtained, and the tensile strength at break (TS ) and elongation at break (EB) tend to deteriorate.
  • the BET specific surface area is too large, the primary particle size becomes too small and the primary particles are strongly aggregated, resulting in poor dispersibility. A tendency for dynamic characteristics to deteriorate can be seen.
  • the BET specific surface area of the silica (B) can be obtained, for example, by degassing the sample at 200° C. for 15 minutes and then using a mixed gas (N 2 : 70%, He: 30%) as an adsorption gas. It can be measured with a surface area measuring device (4232-II, manufactured by Microdata).
  • reaction formulation of precipitation method silica can be prepared according to the method of depositing. Specifically, first, a predetermined amount of an aqueous solution of sodium silicate having a predetermined concentration is charged into a reaction vessel, and a mineral acid is added under predetermined conditions (one side addition reaction), or a predetermined amount of hot water is added in advance to the reaction solution. , pH and temperature are controlled while sodium silicate and mineral acid are added for a certain period of time (simultaneous addition method).
  • the precipitated silica slurry obtained by the above method is filtered through a filter capable of washing the cake (for example, a filter press, a belt filter, etc.) and washed to remove by-product electrolytes.
  • a filter capable of washing the cake for example, a filter press, a belt filter, etc.
  • the obtained silica cake is dried with a dryer.
  • this silica cake is slurried and dried by a spray dryer, but the cake may be allowed to stand and dried in a heating oven or the like.
  • the dried silica thus obtained is then pulverized to a predetermined average particle size, and if necessary, coarse particles are cut by a classifier to prepare silica.
  • This pulverization/classification operation is intended to adjust the average particle size and cut coarse particles, and the pulverization method (for example, an air flow pulverizer, an impact pulverizer, etc.) is not particularly limited.
  • the classification method for example, wind type, sieve type, etc. is not particularly limited.
  • the content of the silica (B) thus obtained is 10 to 100 parts by mass with respect to 100 parts by mass of the diene rubber (A) from the viewpoint of achieving high durability and low dynamic magnification. It is preferably 10 to 80 parts by mass from the same viewpoint.
  • silane coupling agent (C) Moreover, as the silane coupling agent (C) used in the present anti-vibration rubber composition, as described above, a silane coupling agent having a sulfide group and a mercapto group in one molecule is used. Examples of such silane coupling agents include silane coupling agents represented by the following general formula (1).
  • R 1 and R 5 are preferably functional groups having a hydroxyl group at the end of a linear hydrocarbon group having 1 to 10 carbon atoms, more preferably 2 to 4 carbon atoms. is a functional group having a hydroxyl group at the end of a straight-chain hydrocarbon group.
  • R 1 and R 5 may be the same or different.
  • R 2 and R 6 are preferably straight hydrocarbon chains having 1 to 10 carbon atoms, more preferably straight hydrocarbon chains having 2 to 4 carbon atoms.
  • R 2 and R 6 may be the same or different.
  • R 3 and R 7 are hydrocarbon chains, which may be straight or branched.
  • R 3 and R 7 are preferably straight hydrocarbon chains having 1 to 10 carbon atoms, more preferably straight hydrocarbon chains having 2 to 4 carbon atoms. R 3 and R 7 may be the same or different.
  • R 4 is a hydrocarbon group, which may be linear or branched.
  • R 4 is preferably a straight chain hydrocarbon group having 1 to 18 carbon atoms, more preferably a straight chain hydrocarbon group having 6 to 12 carbon atoms.
  • the silane coupling agent (C) represented by the general formula (1) includes m structural units (monomers) represented by the general formula (1) and n structural units (monomers). and can be obtained by random copolymerization, alternating copolymerization, block copolymerization, or graft copolymerization.
  • m is preferably an integer of 2 to 1,000
  • n is preferably an integer of 2 to 1,000.
  • GPC gel permeation chromatography
  • m:n is measured by 1 H-NMR.
  • silane coupling agent (C) a solid one can also be used, but a liquid silane coupling agent is preferable from the viewpoint of dispersibility in the rubber composition, handleability, and the like.
  • silane coupling agent (C) is a “liquid” silane coupling agent means that the silane coupling agent exhibits a viscosity of 6000 Pa ⁇ s or less at room temperature (23° C.). .
  • the viscosity can be measured using, for example, a Brookfield viscometer.
  • the content of the silane coupling agent (C) thus obtained is 0.5 parts per 100 parts by mass of the diene rubber (A) from the viewpoint of achieving high durability and low dynamic ratio. It is preferably from 1 to 10 parts by mass, and more preferably from 1 to 8 parts by mass from the same viewpoint.
  • the vibration-proof rubber composition may further contain one or more silane coupling agents other than the silane coupling agent (C).
  • the content of the other silane coupling agent is preferably 20% by mass or less with respect to the total of the silane coupling agent (C) and the other silane coupling agent. It is preferably 10% by mass or less, and more preferably 10% by mass or less. It is particularly preferable that the present anti-vibration rubber composition does not contain other silane coupling agents (the content is 0% by mass).
  • the carbon black preferably has a BET specific surface area of 10 to 150 m 2 /g, more preferably 65 to 85 m 2 /g.
  • the BET specific surface area of the carbon black is measured by, for example, degassing the sample at 200° C. for 15 minutes and then using a mixed gas (N 2 : 70%, He: 30%) as the adsorbed gas. It can be measured with an apparatus (4232-II, manufactured by Microdata).
  • Various grades of carbon black such as FEF grade, MAF grade, GPF grade, SRF grade, FT grade, and MT grade are used from the viewpoint of reinforcing properties and durability. These are used alone or in combination of two or more. Among them, FEF grade carbon black is preferably used from the above viewpoint.
  • the content thereof is preferably in the range of 0.1 to 10 parts by mass, particularly preferably 3 to 10 parts by mass, based on 100 parts by mass of the diene rubber (A), from the viewpoint of improving fatigue resistance. It is in the range of 7 parts by mass.
  • vulcanizing agent examples include sulfur (powder sulfur, precipitated sulfur, insoluble sulfur) and the like. These are used alone or in combination of two or more.
  • the amount of the vulcanizing agent compounded is preferably in the range of 0.3 to 7 parts by mass, particularly preferably in the range of 1 to 5 parts by mass, based on 100 parts by mass of the diene rubber (A). That is, if the amount of the vulcanizing agent is too small, a sufficient crosslinked structure cannot be obtained, and the dynamic magnification and resistance to settling tend to deteriorate. , the heat resistance tends to decrease.
  • vulcanization accelerator examples include thiazole-based, sulfenamide-based, thiuram-based, aldehyde-ammonia-based, aldehyde-amine-based, guanidine-based, and thiourea-based vulcanization accelerators. These are used alone or in combination of two or more. Among these, sulfenamide-based vulcanization accelerators are preferable because of their excellent cross-linking reactivity.
  • the amount thereof is preferably in the range of 0.5 to 7 parts by mass, particularly preferably 0.5 to 5 parts by mass, based on 100 parts by mass of the diene rubber (A). It is in the range of parts by mass.
  • Examples of the thiazole vulcanization accelerator include dibenzothiazyl disulfide (MBTS), 2-mercaptobenzothiazole (MBT), 2-mercaptobenzothiazole sodium salt (NaMBT), and 2-mercaptobenzothiazole zinc salt (ZnMBT). etc. These are used alone or in combination of two or more. Among these, dibenzothiazyl disulfide (MBTS) and 2-mercaptobenzothiazole (MBT) are preferably used because of their excellent cross-linking reactivity.
  • sulfenamide vulcanization accelerator examples include N-oxydiethylene-2-benzothiazolylsulfenamide (NOBS), N-cyclohexyl-2-benzothiazolylsulfenamide (CBS), Nt -Butyl-2-benzothiazolylsulfenamide (BBS), N,N'-dicyclohexyl-2-benzothiazolylsulfenamide and the like.
  • thiuram-based vulcanization accelerator examples include tetramethylthiuram disulfide (TMTD), tetraethylthiuram disulfide (TETD), tetrabutylthiuram disulfide (TBTD), tetrakis(2-ethylhexyl)thiuram disulfide (TOT), and tetrabenzylthiuram. disulfide (TBzTD) and the like.
  • vulcanization aid examples include zinc oxide (ZnO), stearic acid, magnesium oxide, and the like. These are used alone or in combination of two or more.
  • the compounding amount thereof is preferably in the range of 1 to 25 parts by mass, particularly preferably in the range of 3 to 10 parts by mass, with respect to 100 parts by mass of the diene rubber (A). is.
  • anti-aging agent examples include carbamate-based anti-aging agents, phenylenediamine-based anti-aging agents, phenol-based anti-aging agents, diphenylamine-based anti-aging agents, quinoline-based anti-aging agents, imidazole-based anti-aging agents, and waxes. can give. These are used alone or in combination of two or more.
  • the amount thereof is preferably in the range of 1 to 10 parts by mass, particularly preferably in the range of 2 to 5 parts by mass, based on 100 parts by mass of the diene rubber (A). be.
  • process oil examples include naphthenic oil, paraffinic oil, aromatic oil, and the like. These are used alone or in combination of two or more.
  • the blending amount thereof is preferably in the range of 1 to 50 parts by mass, particularly preferably in the range of 3 to 30 parts by mass, based on 100 parts by mass of the diene rubber (A). .
  • the vibration-damping rubber composition can be prepared, for example, as follows. That is, using the diene rubber (A), the characteristic silica (B), and the specific silane coupling agent (C), and if necessary, using the other materials listed above, these It can be prepared by kneading using a kneader such as a kneader, a Banbury mixer, an open roll, or a twin-screw stirrer.
  • a kneader such as a kneader, a Banbury mixer, an open roll, or a twin-screw stirrer.
  • the kneading involves kneading materials other than the vulcanizing agent and the vulcanization accelerator using a Banbury mixer at 100 to 170° C. for 3 to 10 minutes (preferably, kneading at 150 to 160° C. for 3 to 5 minutes). Then, a vulcanizing agent and a vulcanization accelerator are blended and kneaded at 30 to 80°C for 3 to 10 minutes (preferably at 30 to 60°C for 3 to 5 minutes) using an open roll. is desirable.
  • the anti-vibration rubber composition obtained in this way has excellent durability, can achieve a low dynamic magnification, and can exhibit excellent scorch resistance even in a hot and humid environment.
  • this anti-vibration rubber composition is vulcanized at a high temperature (150-170° C.) for 5-30 minutes to form a rubber anti-vibration member (vulcanized body).
  • a vibration-isolating rubber member comprising a vulcanized body of the present vibration-isolating rubber composition is preferably used as a constituent member such as an engine mount, a stabilizer bush, a suspension bush, a motor mount, a sub-frame mount, etc. used in a vehicle such as an automobile.
  • vibration control dampers for computer hard disks vibration control dampers for general home appliances such as washing machines, vibration control walls for construction in the construction and housing fields, vibration control (vibration control) dampers, etc. It can also be used for (vibration damping) devices and seismic isolation devices.
  • silica prototypes (silica (I) to (VI) ) was prepared.
  • the following silicas (VII) and (VIII) were prepared as commercially available silicas.
  • Table 1 below The measured values for silica (I) to (VIII) shown in Table 1 below are values measured according to the above method.
  • silane coupling agents (i) to (iii) were prepared as silane coupling agents.
  • Silane coupling agent (i) A silane coupling agent having a sulfide group and a mercapto group in one molecule (NXT, manufactured by Momentive Performance Materials)
  • silane coupling agent (ii) A silane coupling agent having a mercapto group in one molecule but no sulfide group (Momentive Performance Materials, A-189)
  • silane coupling agent (iii) A silane coupling agent having a mercapto group in one molecule but no sulfide group (VPSi363, manufactured by Evonik Degussa)
  • Examples 1 to 8, Comparative Examples 1 to 4 100 parts by mass of natural rubber, silica, a silane coupling agent, carbon black (manufactured by Cabot Japan Co., Ltd., Show Black N330, BET specific surface area 75 m 2 /g (value measured according to the above method)), Zinc oxide (manufactured by Sakai Chemical Industry Co., Ltd., zinc oxide type 2) 5 parts by mass, stearic acid (manufactured by NOF Corporation, bead stearic acid Sakura) 1 part by mass, anti-aging agent (manufactured by Sumitomo Chemical Co., Ltd., Antigen 6C) 2 Parts by mass, 2 parts by mass of wax (OZOACE0062, manufactured by Nippon Seiro Co., Ltd.), and 5 parts by mass of process oil (Sansen 410, manufactured by Nippon Sun Oil Co., Ltd.) were kneaded at 150° C.
  • An anti-vibration rubber composition was prepared by adding 1 part by mass of a sulfur agent (manufactured by Karuizawa Seirensho Co., Ltd., sulfur) and kneading the mixture at 60° C. for 5 minutes using an open roll.
  • a sulfur agent manufactured by Karuizawa Seirensho Co., Ltd., sulfur
  • the content ratio of silica, silane coupling agent, and carbon black content ratio relative to 100 parts by mass of natural rubber
  • silica and silane coupling used content ratio relative to 100 parts by mass of natural rubber
  • the types of agents are also shown in Tables 2 and 3 below.
  • Each anti-vibration rubber composition was press-molded and vulcanized under conditions of 150° C. for 20 minutes to prepare a rubber sheet having a thickness of 2 mm.
  • a JIS No. 5 dumbbell was punched from this rubber sheet, and using this dumbbell, tensile strength at break (TS), elongation at break (EB) and hardness (JIS A) were measured according to JIS K 6251, respectively. Those with a TS value of 18 to 28 MPa, an EB value of 450 to 700%, and a hardness (JIS A) of 40 to 50 were judged to be good.
  • the rubber compositions of Examples using the silane coupling agent (i) having a sulfide group and a mercapto group in one molecule are all excellent in initial physical properties, dynamic properties, scorch resistance, and durability. was
  • the rubber compositions of Comparative Examples 1 and 2 using only the silane coupling agents (ii) and (iii) having a mercapto group in one molecule but not a sulfide group as the silane coupling agent resulted in inferior scorch resistance compared to the rubber compositions of the examples.
  • the anti-vibration rubber composition of the present invention is preferably used as a material for structural members (rubber anti-vibration members) such as engine mounts, stabilizer bushes, suspension bushes, motor mounts, sub-frame mounts, etc. used in automobiles.
  • structural members such as engine mounts, stabilizer bushes, suspension bushes, motor mounts, sub-frame mounts, etc. used in automobiles.
  • vibration control dampers for computer hard disks vibration control dampers for general home appliances such as washing machines, vibration control walls for buildings in the construction and housing fields, vibration control (vibration control) dampers, etc.
  • It can also be used as a material for a constituent member (vibration isolator member) of a device and a seismic isolation device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Vibration Prevention Devices (AREA)
  • Springs (AREA)

Abstract

耐久性に優れ、低動倍率化を図ることができるとともに、湿熱環境下であっても優れた耐スコーチ性を示すことができる防振ゴム組成物および防振ゴム部材を提供する。 下記の(A)~(C)を含有するジエン系ゴム組成物からなる防振ゴム組成物により、課題を解決する。 (A)ジエン系ゴム。 (B)シラノール基密度が4個/nm2以上で、BET比表面積が13~60m2/gであり、かつ平均粒子径が3~10μmであるシリカ。 (C)一分子中にスルフィド基およびメルカプト基を有するシランカップリング剤。

Description

防振ゴム組成物および防振ゴム部材
 本発明は、自動車,電車等の車両等における防振用途に用いられる防振ゴム組成物および防振ゴム部材に関するものである。
 防振ゴムの技術分野においては、高耐久性、低動倍率化(動倍率〔動的ばね定数(Kd)/静的ばね定数(Ks)〕の値を小さくすること)等が要求される。これらの要求を実現するために、防振ゴム組成物のポリマーであるジエン系ゴムに、カーボンブラック、シリカといったフィラーを含有させたものや、さらに、シリカの分散性向上のためにシランカップリング剤を併用させた配合系のものが確立されている(例えば、特許文献1~4参照)。
 また、さらなる低動倍率化に向けては、シリカの高分散化とともに、ポリマーゴムの架橋構造や、シランカップリング剤によるシリカとポリマーゴムの結合性が、重要となる。
特許第3838154号公報 特開2017-8161号公報 国際公開2016/204012号公報 特開2006-199899号公報
 ここで、例えば前記特許文献4に記載の防振ゴム組成物では、一次粒子径の大きいシリカを用いており、通常のシリカを用いる場合に比べて、低動倍率化を図ることができる。
 しかしながら、一次粒子径の大きいシリカを用いると、シリカとゴムとの相互作用が弱くなるため、防振ゴムの耐久性が劣るようになるという難点がある。
 また、先に述べたような、シリカとシランカップリング剤を配合した従来の防振ゴム組成物においては、シリカ(充填材)としてカーボンブラックを用いたときに比べ、ゴム組成物がスコーチ(ゴム焼け)しやすくなるため、長期保管する際等に支障が生じる問題がある。
 さらに、前記のようにシリカとシランカップリング剤を配合した防振ゴム組成物においては、耐久性等をより高めるため、例えば、スルフィド系やメルカプト系のシランカップリング剤を用いるといった手法が検討されているが、これらの手法を適用した場合、先に述べたようなゴム組成物のスコーチがより一層進行しやすくなる(スコーチタイムが短くなる)問題がある。
 本発明は、このような事情に鑑みなされたもので、耐久性に優れ、低動倍率化を図ることができるとともに、優れた耐スコーチ性を示すことができる防振ゴム組成物および防振ゴム部材を提供する。
 本発明者らは、前記課題を解決するため鋭意研究を重ねた。その研究の過程で、大粒径シリカを用いたときのような防振ゴムの耐久性の悪化をおこさずに、大粒径シリカを用いなくても大粒径シリカと同等の低動倍率化を実現可能とするため、ゴム組成物中に配合するシリカとして、シランカップリング剤との結合基でありジエン系ゴムとの反応基であるシラノール基の密度が4個/nm2以上で、BET比表面積が13~60m2/gで、かつ平均粒子径が3~10μmであるシリカを用いることを想起した。そして、前記特定のシリカとの組み合わせにおいて、そのシリカによる作用効果を損なうことなく防振ゴムの耐久性等を高めることができ、かつ、耐スコーチ性に優れた作用効果を示すことができるシランカップリング剤について鋭意研究を重ねた。その結果、一分子中にスルフィド基およびメルカプト基の両方を有するシランカップリング剤を用いたところ、その分子構造が、メルカプト基を覆うように側鎖(スルフィド基)が作用する構造であることから、急激な加硫が阻害され、例えばメルカプト系シランカップリング剤のみを用いたとき等のようにスコーチが進行しやすくなるといった問題が解消されることを突き止めた。
 すなわち、本発明は、以下の[1]~[7]を、その要旨とする。
[1] 下記の(A)~(C)を含有するジエン系ゴム組成物からなる、防振ゴム組成物。
(A)ジエン系ゴム。
(B)シラノール基密度が4個/nm2以上で、BET比表面積が13~60m2/gであり、かつ平均粒子径が3~10μmであるシリカ。
(C)一分子中にスルフィド基およびメルカプト基を有するシランカップリング剤。
[2] 前記(C)の含有割合が、(A)100質量部に対して0.5~10質量部である、[1]に記載の防振ゴム組成物。
[3] 前記(B)の含有割合が、(A)100質量部に対して10~100質量部である、[1]または[2]に記載の防振ゴム組成物。
[4] さらに、下記の(D)を含有する、[1]~[3]のいずれかに記載の防振ゴム組成物。
(D)カーボンブラック。
[5] 前記(D)の含有割合が、(A)100質量部に対して0.1~5質量部である、[4]に記載の防振ゴム組成物。
[6] 前記(D)のBET比表面積が10~150m2/gである、[4]または[5]に記載の防振ゴム組成物。
[7] [1]~[6]のいずれかに記載の防振ゴム組成物の加硫体からなる防振ゴム部材。
 このように、本発明の防振ゴム組成物は、ジエン系ゴム(A)からなるポリマーとともに、シラノール基密度,BET比表面積,平均粒子径が特定の範囲のシリカ(B)と、一分子中にスルフィド基およびメルカプト基を有するシランカップリング剤(C)とを含有する。そのため、高耐久性および低動倍率化を達成しつつ、優れた耐スコーチ性を示すことができる。
 つぎに、本発明の実施の形態について詳しく説明する。ただし、本発明は、この実施の形態に限られるものではない。
 なお、本発明において「X~Y」(X,Yは任意の数字)と表現する場合、特にことわらない限り「X以上Y以下」の意とともに、「好ましくはXより大きい」または「好ましくはYより小さい」の意も包含する。
 また、「X以上」(Xは任意の数字)または「Y以下」(Yは任意の数字)と表現した場合、「Xより大きいことが好ましい」または「Y未満であることが好ましい」旨の意図も包含する。
 本発明の一実施形態である防振ゴム組成物(以下、「本防振ゴム組成物」という)は、先に述べたように、下記の(A)~(C)を含有するジエン系ゴム組成物からなるものである。
(A)ジエン系ゴム。
(B)シラノール基密度が4個/nm2以上、BET比表面積が13~60m2/g、かつ平均粒子径が3~10μmであるシリカ。
(C)一分子中にスルフィド基およびメルカプト基を有するシランカップリング剤。
 前記のように、本防振ゴム組成物はジエン系ゴム組成物であるため、そのポリマーにはジエン系ゴム(A)が用いられている。なお、前記のようにジエン系ゴム組成物であるため、本防振ゴム組成物においてジエン系ゴム(A)以外のポリマーは使用しないことが望ましいが、若干量(ポリマー全体の30質量%未満)であればジエン系ゴム(A)以外のポリマーを使用することも可能である。
 以下、本防振ゴム組成物の構成材料について詳しく説明する。
〔ジエン系ゴム(A)〕
 本防振ゴム組成物に用いられるジエン系ゴム(A)としては、好ましくは、天然ゴム(NR)を主成分とするジエン系ゴムが用いられる。ここで、「主成分」とは、前記ジエン系ゴム(A)の50質量%以上が天然ゴムであるものを示し、好ましくは前記ジエン系ゴム(A)の80質量%以上が、より好ましくは前記ジエン系ゴム(A)の90質量%以上が、天然ゴムであるものを示し、前記ジエン系ゴム(A)が天然ゴムのみからなるものも含める趣旨である。このように、天然ゴムを主成分とすることにより、強度や低動倍率化の点で優れるようになる。
 また、天然ゴム以外のジエン系ゴムとしては、例えば、ブタジエンゴム(BR)、スチレン-ブタジエンゴム(SBR)、クロロプレンゴム(CR)、イソプレンゴム(IR)、アクリロニトリル-ブタジエンゴム(NBR)、エチレン-プロピレン-ジエンゴム(EPDM)、ブチルゴム(IIR)、クロロプレンゴム(CR)等が挙げられる。これらは単独でもしくは二種以上併せて用いられる。なお、これらのジエン系ゴムは、天然ゴムと併用することが望ましい。
〔シリカ(B)〕
 また、本防振ゴム組成物に用いられるシリカ(B)としては、高耐久性、低動倍率化の達成等の観点から、先に述べたように、シラノール基密度が4個/nm2以上、BET比表面積が13~60m2/g、かつ平均粒子径が3~10μmであるシリカが用いられる。
 なお、前記平均粒子径は、コールター法により測定した平均粒子径を示す。
 また、前記シリカ(B)のシラノール基密度は、シアーズ滴定法により算出されるシリカ表面のシラノール基密度である。
 ここで、前記シリカ(B)のシラノール基密度は、詳しくは、G.W.シアーズによる Analytical Chemistry(アナリティカルケミストリー),vol.28,No.12,1956,1982~1983に記載の方法により測定されたシアーズ滴定量により算出されたものである。なお、シラノール基密度の算出に当たり、シアーズ滴定量とシラノール基量の関係は、以下のイオン交換反応によるものとする。
Figure JPOXMLDOC01-appb-C000001
 なお、前記シラノール基密度の算出法としては、上述のシアーズ滴定法の他、例えば、灼熱減量(TG)測定法等があげられる。前記灼熱減量(TG)測定法によるシラノール基密度の算出では、加熱減量分を全て-OHとカウントするため、ゴムとの相互作用に無関係なシリカ凝集体の微細部分および一次粒子内部の-OHもカウントされる。これに対して、上述のシアーズ滴定法によるシラノール基密度の測定は、シリカ凝集体の表面の-OHのみをカウントする方法である。したがって、ゴム中でのシリカの分散状態およびゴムとの結合状態を考慮すると、シアーズ滴定法により算出したシラノール基密度の方が、実際に近い状態を表現する測定法であるため好ましい。
 また、前記シリカ(B)のBET比表面積は、高耐久性、低動倍率化の達成等の観点から、好ましくは15~60m2/gであり、より好ましくは15~35m2/gの範囲である。
 ここで、前記BET比表面積が小さすぎると、一次粒子径が大きくなりすぎ、ジエン系ゴム(A)との接触面積自体が小さくなるため充分な補強性が得られず、破断時引っ張り強度(TS)や破断伸び(EB)が悪くなる傾向がみられ、逆にBET比表面積が大きすぎると、一次粒子径が小さくなりすぎ、一次粒子同士の凝集が強くなり、このため分散性が悪化し、動特性が悪くなる傾向がみられるようになる。
 なお、前記シリカ(B)のBET比表面積は、例えば、試料を200℃で15分間脱気した後、吸着気体として混合ガス(N2:70%、He:30%)を用いて、BET比表面積測定装置(マイクロデータ社製、4232-II)により測定することができる。
 前記のような要件を満たすシリカ(B)の調製方法としては、沈殿法シリカの反応処方があげられ、例えば、アルカリ珪酸塩水溶液(市販の珪酸ソーダ水溶液)を鉱酸で中和して沈殿シリカを析出させる方法に準じて調製することができる。具体的には、まず、所定濃度の珪酸ソーダ水溶液を所定量反応容器に張り込み、所定条件で鉱酸を添加する(片側添加反応)か、もしくは予め一定量の温水を張り込んだ反応溶液中に、pH、温度を制御しながら珪酸ソーダおよび鉱酸を一定時間添加する(同時添加方式)方法等が採用できる。つぎに、前記方法によって得られた沈殿シリカスラリーを、ケーキ洗浄が可能な濾過機(例えば、フィルタープレス、ベルトフィルター等)により濾別、洗浄して副生電界質を除去する。その後、得られたシリカケーキを乾燥機により乾燥する。一般的には、このシリカケーキをスラリー化し噴霧乾燥機により乾燥するが、ケーキのまま加熱オーブン等により静置乾燥してもよい。このようにして得た乾燥されたシリカは、続いて粉砕機により所定の平均粒子径とされ、必要に応じさらに分級機による、粗粒のカットを行うことにより、シリカの調製を行う。この粉砕・分級操作は、平均粒子径の調整・粗粒のカットを目的としており、粉砕方式(例えば、気流式粉砕機、衝撃式粉砕機等)は特に限定されるものではない。また、分級機においても同様に、分級方式(例えば、風力式、篩い式等)も特に限定されない。
 このようして得られる前記シリカ(B)の含有量は、高耐久性、低動倍率化の達成等の観点から、前記ジエン系ゴム(A)100質量部に対し、10~100質量部であることが好ましく、同様の観点から、より好ましくは10~80質量部である。
〔シランカップリング剤(C)〕
 また、本防振ゴム組成物に用いられるシランカップリング剤(C)としては、先に述べたように、一分子中にスルフィド基およびメルカプト基を有するシランカップリング剤が用いられる。このようなシランカップリング剤としては、例えば、下記の一般式(1)で表されるシランカップリング剤が挙げられる。
Figure JPOXMLDOC01-appb-C000002
 前記一般式(1)において、R1およびR5は、炭素数1~10の直鎖の炭化水素基の末端に水酸基を有する官能基であることが好ましく、より好ましくは、炭素数2~4の直鎖の炭化水素基の末端に水酸基を有する官能基である。なお、R1およびR5は、互いに同じであっても、異なっていてもよい。
 R2およびR6は、炭素数1~10の直鎖の炭化水素鎖であることが好ましく、より好ましくは、炭素数2~4の直鎖の炭化水素鎖である。なお、R2およびR6は、互いに同じであっても、異なっていてもよい。
 R3およびR7は、炭化水素鎖であり、直鎖であっても分岐していてもよい。R3およびR7は、好ましくは、炭素数1~10の直鎖の炭化水素鎖であり、より好ましくは、炭素数2~4の直鎖の炭化水素鎖である。なお、R3およびR7は、互いに同じであっても、異なっていてもよい。
 R4は炭化水素基であり、直鎖であっても分岐していてもよい。R4は、好ましくは、炭素数1~18の直鎖の炭化水素基であり、より好ましくは、炭素数6~12の直鎖の炭化水素基である。
 前記のような範囲に規定することにより、本発明の課題をより一層解決することができる。なお、R1~R7は、1H-NMRにより確認することができる。
 また、前記一般式(1)に示すシランカップリング剤(C)は、前記一般式(1)に示すm個の構造単位(単量体)と、n個の構造単位(単量体)との共重合体であり、ランダム共重合、交互共重合、ブロック共重合、グラフト共重合により得ることができる。
 そして、前記一般式(1)において、mは2~1000の整数、nは2~1000の整数であることが好ましい。
 前記一般式(1)に示すmとnとの比率は、m:n=10:90~90:10であることが好ましく、より好ましくは、m:n=20:80~80:20、さらに好ましくは、m:n=40:60~60:40である。
 前記のような範囲に規定することにより、本発明の課題をより一層解決することができる。なお、mおよびnは、ゲルパーミエーションクロマトグラフィ(GPC)により測定される。また、m:nは、1H-NMRにより測定される。
 前記シランカップリング剤(C)としては、固体のものも使用可能であるが、ゴム組成物への分散性、取り扱い性等の観点から、液状のシランカップリング剤であることが望ましい。
 ここで、前記シランカップリング剤(C)が、「液状」のシランカップリング剤であるとは、常温(23℃)で6000Pa・s以下の粘度を示すシランカップリング剤であることを意味する。前記粘度は、例えば、B型粘度計を用いて測定することができる。
 このようして得られる前記シランカップリング剤(C)の含有量は、高耐久性、低動倍率化の達成等の観点から、前記ジエン系ゴム(A)100質量部に対し、0.5~10質量部であることが好ましく、同様の観点から、より好ましくは1~8質量部である。
 なお、本防振ゴム組成物は、前記シランカップリング剤(C)以外の他のシランカップリング剤の1種または2種以上を、さらに含んでいてもよい。本発明の効果を損なわない観点から、他のシランカップリング剤の含有量は、前記シランカップリング剤(C)と他のシランカプリング剤との合計に対して、20質量%以下であることが好ましく、10質量%以下であることがより好ましい。
 本防振ゴム組成物は、他のシランカップリング剤を含まない(含有量が0質量%)ことが、特に好ましい。
 本防振ゴム組成物においては、必須成分である前記(A)~(C)とともに、カーボンブラック、加硫剤、加硫促進剤、加硫助剤、老化防止剤、プロセスオイル、ワックス等を必要に応じて適宜に配合しても差し支えない。
 本防振ゴム組成物には、前記シリカ(B)とシランカップリング剤(C)による低動倍率化等に影響を与えない範囲で、必要に応じカーボンブラックを少量含有させてもよい。このようにカーボンブラックを少量含有させると、耐疲労性のため、好ましい。
 前記カーボンブラックとしては、BET比表面積が10~150m2/gのものが好ましく、より好ましくは、BET比表面積65~85m2/gのものが用いられる。
 なお、前記カーボンブラックのBET比表面積は、例えば、試料を200℃で15分間脱気した後、吸着気体として混合ガス(N2:70%、He:30%)を用いて、BET比表面積測定装置(マイクロデータ社製、4232-II)により測定することができる。
 前記カーボンブラックのグレードは、補強性や耐久性等の観点から、FEF級,MAF級,GPF級,SRF級,FT級,MT級等の種々のグレードのカーボンブラックが用いられる。これらは単独でもしくは二種以上併せて用いられる。なかでも、前記観点から、FEF級のカーボンブラックが、好ましく用いられる。
 前記カーボンブラックを用いる場合、その含有量は、耐疲労性向上の観点から、前記ジエン系ゴム(A)100質量部に対し、0.1~10質量部の範囲が好ましく、特に好ましくは3~7質量部の範囲である。
 前記加硫剤としては、例えば、硫黄(粉末硫黄,沈降硫黄,不溶性硫黄)等があげられる。これらは単独でもしくは二種以上併せて用いられる。
 前記加硫剤の配合量は、前記ジエン系ゴム(A)100質量部に対して、0.3~7質量部の範囲が好ましく、特に好ましくは1~5質量部の範囲である。すなわち、前記加硫剤の配合量が少なすぎると、充分な架橋構造が得られず、動倍率、耐へたり性が悪化する傾向がみられ、逆に加硫剤の配合量が多すぎると、耐熱性が低下する傾向がみられるからである。
 前記加硫促進剤としては、例えば、チアゾール系,スルフェンアミド系,チウラム系,アルデヒドアンモニア系,アルデヒドアミン系,グアニジン系,チオウレア系等の加硫促進剤があげられる。これらは単独でもしくは二種以上併せて用いられる。これらのなかでも、架橋反応性に優れる点で、スルフェンアミド系加硫促進剤が好ましい。
 また、前記加硫促進剤を用いる場合、その配合量は、前記ジエン系ゴム(A)100質量部に対して、0.5~7質量部の範囲が好ましく、特に好ましくは0.5~5質量部の範囲である。
 前記チアゾール系加硫促進剤としては、例えば、ジベンゾチアジルジスルフィド(MBTS)、2-メルカプトベンゾチアゾール(MBT)、2-メルカプトベンゾチアゾールナトリウム塩(NaMBT)、2-メルカプトベンゾチアゾール亜鉛塩(ZnMBT)等があげられる。これらは単独でもしくは二種以上併せて用いられる。これらのなかでも、特に架橋反応性に優れる点で、ジベンゾチアジルジスルフィド(MBTS)、2-メルカプトベンゾチアゾール(MBT)が好適に用いられる。
 前記スルフェンアミド系加硫促進剤としては、例えば、N-オキシジエチレン-2-ベンゾチアゾリルスルフェンアミド(NOBS)、N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド(CBS)、N-t-ブチル-2-ベンゾチアゾイルスルフェンアミド(BBS)、N,N′-ジシクロヘキシル-2-ベンゾチアゾイルスルフェンアミド等があげられる。
 前記チウラム系加硫促進剤としては、例えば、テトラメチルチウラムジスルフィド(TMTD)、テトラエチルチウラムジスルフィド(TETD)、テトラブチルチウラムジスルフィド(TBTD)、テトラキス(2-エチルヘキシル)チウラムジスルフィド(TOT)、テトラベンジルチウラムジスルフィド(TBzTD)等があげられる。
 前記加硫助剤としては、例えば、亜鉛華(ZnO)、ステアリン酸、酸化マグネシウム等があげられる。これらは単独でもしくは二種以上併せて用いられる。
 また、前記加硫助剤を用いる場合、その配合量は、前記ジエン系ゴム(A)100質量部に対して、1~25質量部の範囲が好ましく、特に好ましくは3~10質量部の範囲である。
 前記老化防止剤としては、例えば、カルバメート系老化防止剤、フェニレンジアミン系老化防止剤、フェノール系老化防止剤、ジフェニルアミン系老化防止剤、キノリン系老化防止剤、イミダゾール系老化防止剤、ワックス類等があげられる。これらは単独でもしくは二種以上併せて用いられる。
 また、前記老化防止剤を用いる場合、その配合量は、前記ジエン系ゴム(A)100質量部に対して、1~10質量部の範囲が好ましく、特に好ましくは2~5質量部の範囲である。
 前記プロセスオイルとしては、例えば、ナフテン系オイル、パラフィン系オイル、アロマ系オイル等があげられる。これらは単独でもしくは二種以上併せて用いられる。
 また、前記プロセスオイルを用いる場合、その配合量は、前記ジエン系ゴム(A)100質量部に対して、1~50質量部の範囲が好ましく、特に好ましくは3~30質量部の範囲である。
〔防振ゴム組成物の調製方法〕
 本防振ゴム組成物は、例えば、つぎのようにして調製することができる。すなわち、前記ジエン系ゴム(A)と、特性のシリカ(B)と、特定のシランカップリング剤(C)を用い、さらに、必要に応じて、前記列記したその他の材料を用いて、これらをニーダー,バンバリーミキサー,オープンロール,二軸スクリュー式撹拌機等の混練機を用いて混練することにより、調製することができる。
 特に、前記混練は、加硫剤と加硫促進剤以外の材料を、バンバリーミキサーを用いて100~170℃で3~10分間混練(好ましくは、150~160℃で3~5分間混練)し、ついで、加硫剤と加硫促進剤を配合し、オープンロールを用いて30~80℃で3~10分間混練(好ましくは、30~60℃で3~5分間混練)することにより行うことが、望ましい。
 このようにして得られた本防振ゴム組成物は、耐久性に優れ、低動倍率化を図ることができるとともに、湿熱環境下であっても優れた耐スコーチ性を示すことができる。
 そして、本防振ゴム組成物は、高温(150~170℃)で5~30分間、加硫することにより防振ゴム部材(加硫体)となる。
 本防振ゴム組成物の加硫体からなる防振ゴム部材は、自動車の車両等に用いられるエンジンマウント、スタビライザブッシュ、サスペンションブッシュ、モーターマウント、サブフレームマウント等の構成部材として好ましく用いられる。
 また、前記用途以外にも、コンピューターのハードディスクの制振ダンパー、洗濯機等の一般家電製品の制振ダンパー、建築・住宅分野における建築用制震壁,制震(制振)ダンパー等の制震(制振)装置および免震装置の用途にも用いることができる。
 つぎに、実施例について比較例と併せて説明する。ただし、本発明は、これら実施例に限定されるものではない。
 まず、実施例および比較例に先立ち、シラノール基密度,BET比表面積,および平均粒子径が、それぞれ下記の表1に示す値になるよう調製したシリカの試作品(シリカ(I)~(VI))を準備した。
 また、市販のシリカとして、下記のシリカ(VII),(VIII)を準備した。
  シリカ(VII):DEGUSSA社製、ULTRASIL VN-3
  シリカ(VIII):東ソー・シリカ社製、ニップシールE75
 なお、下記の表1に示すシリカ(I)~(VIII)に対する各測定値は、前記手法に準拠して測定された値である。
Figure JPOXMLDOC01-appb-T000003
 また、シランカップリング剤として、市販品である下記のシランカップリング剤(i)~(iii)を準備した。
〔シランカップリング剤(i)〕
 一分子中にスルフィド基およびメルカプト基を有するシランカップリング剤(モメンティブ・パフォーマンス・マテリアルズ社製、NXT)
〔シランカップリング剤(ii)〕
 一分子中にメルカプト基を有するがスルフィド基を有さないシランカップリング剤(モメンティブ・パフォーマンス・マテリアルズ社製、A-189)
〔シランカップリング剤(iii)〕
 一分子中にメルカプト基を有するがスルフィド基を有さないシランカップリング剤(エボニックデグサ社製、VPSi363)
[実施例1~8、比較例1~4]
 天然ゴム100質量部と、シリカと、シランカップリング剤と、カーボンブラック(キャボットジャパン社製、ショウブラックN330、BET比表面積75m2/g(前記手法に準拠して測定された値))と、酸化亜鉛(堺化学工業社製、酸化亜鉛二種)5質量部と、ステアリン酸(日油社製、ビーズステアリン酸さくら)1質量部と、老化防止剤(住友化学社製、アンチゲン6C)2質量部と、ワックス(日本精鑞社製、OZOACE0062)2質量部と、プロセスオイル(日本サン石油社製、サンセン410)5質量部とを、バンバリーミキサーを用いて150℃で5分間混練した。このようにして得られた混練物に、加硫促進剤であるCBS(川口化学工業社製、ACCEL CZ)2質量部、およびTMTD(川口化学工業社製、ACCEL TMT)1質量部と、加硫剤(軽井沢精錬所社製、硫黄)1質量部を加え、オープンロールを用いて60℃で5分間混練することにより、防振ゴム組成物を調製した。
 なお、実施例および比較例の防振ゴム組成物において、前記の、シリカ,シランカップリング剤,カーボンブラックの含有割合(天然ゴム100質量部に対する含有割合)、および、使用したシリカ,シランカップリング剤の種類は、後記の表2および3に併せて示す。
 このようにして得られた実施例および比較例の防振ゴム組成物を用い、下記の基準にしたがって、各特性の評価を行った。その結果を、後記の表2に併せて示した。
<初期物性>
 各防振ゴム組成物を、150℃×20分間の条件でプレス成形、加硫して、厚み2mmのゴムシートを作製した。このゴムシートからJIS5号ダンベルを打ち抜き、このダンベルを用い、JIS K 6251に準拠して、破断時引っ張り強度(TS),破断伸び(EB)および硬度(JIS A)をそれぞれ測定した。
 そして、TSの値が18~28MPa、EBの値が450~700%、硬度(JIS A)が40~50であるものを、良好と判断した。
<動特性>
[静的ばね定数:Ks]
 各防振ゴム組成物を用い、円板状金具(直径60mm、厚み6mm)をゴム片(直径50mm、高さ25mm)の上下面に170℃×30分間の加硫条件でプレス、加硫接着させたテストピースを作製した。つぎに、前記テストピースを円柱軸方向に7mm圧縮させ、2回目の往きの荷重たわみ曲線から1.5mmと3.5mmのたわみ時の荷重を読み取って、静的ばね定数(Ks)を算出した。
[動的ばね定数:Kd100]
 前記テストピースを円柱軸方向に2.5mm圧縮し、この2.5mm圧縮の位置を中心に、下方から100Hzの周波数により、振幅0.05mmの定変位調和圧縮振動を与え、上方のロードセルにて動的荷重を検出して、JIS K 6394に準じて、動的ばね定数(Kd100)を算出測定した。
[動倍率:Kd100/Ks]
 動倍率は、動的ばね定数(Kd100)/静的ばね定数(Ks)の値として求めた。
 そして、その値が1.30以下であるものを良好と判断した。
<耐スコーチ性>
 各防振ゴム組成物に対し、東洋精機社製のムーニー粘度計を用い、試験温度(121℃)でのスコーチタイム(ST)を測定した。
 そして、その値が16分間以上であるものを良好と判断した。
<耐久性>
 各防振ゴム組成物を、150℃×30間分の条件でプレス成形(加硫)し、厚み2mmのゴムシートを作製した。そして、このゴムシートから、JIS3号ダンベルを打ち抜き、このダンベルを用い、JIS K 6260に準じて伸縮疲労試験を行った。
 そして、その破断時の伸縮回数を測定し、下記の基準に従い、耐久性の評価を行った。
 〇(very good):伸縮回数が30万回以上。
 ×(poor)     :伸縮回数が30万回未満。
Figure JPOXMLDOC01-appb-T000004
 前記表2の結果から、シラノール基密度が4個/nm2以上で、BET比表面積が13~60m2/gであり、かつ平均粒子径が3~10μmであるシリカ(I)~(VI)を用い、かつ、一分子中にスルフィド基およびメルカプト基を有するシランカップリング剤(i)を用いた実施例のゴム組成物は、いずれも初期物性、動特性、耐スコーチ性、耐久性に優れていた。
 これに対して、シランカップリング剤として、一分子中にメルカプト基を有するがスルフィド基を有さないシランカップリング剤(ii),(iii)のみを使用した比較例1および2のゴム組成物は、実施例のゴム組成物に比べ、耐スコーチ性に劣る結果となった。また、本発明に規定の要件を満たさないシリカ(VII),(VIII)を使用した比較例3および4のゴム組成物は、実施例のゴム組成物に比べ、所望の低動倍率化がなされない結果となった。
 上記実施例においては、本発明における具体的な形態について示したが、上記実施例は単なる例示にすぎず、限定的に解釈されるものではない。当業者に明らかな様々な変形は、本発明の範囲内であることが企図されている。
 本発明の防振ゴム組成物は、自動車の車両等に用いられるエンジンマウント、スタビライザブッシュ、サスペンションブッシュ、モーターマウント、サブフレームマウント等の構成部材(防振ゴム部材)の材料として好ましく用いられるが、それ以外にも、コンピューターのハードディスクの制振ダンパー、洗濯機等の一般家電製品の制振ダンパー、建築・住宅分野における建築用制震壁,制震(制振)ダンパー等の制震(制振)装置および免震装置の構成部材(防振ゴム部材)の材料にも用いることができる。

Claims (7)

  1.  下記の(A)~(C)を含有するジエン系ゴム組成物からなる、防振ゴム組成物。
    (A)ジエン系ゴム。
    (B)シラノール基密度が4個/nm2以上で、BET比表面積が13~60m2/gであり、かつ平均粒子径が3~10μmであるシリカ。
    (C)一分子中にスルフィド基およびメルカプト基を有するシランカップリング剤。
  2.  前記(C)の含有割合が、(A)100質量部に対して0.5~10質量部である、請求項1記載の防振ゴム組成物。
  3.  前記(B)の含有割合が、(A)100質量部に対して10~100質量部である、請求項1または2記載の防振ゴム組成物。
  4.  さらに、下記の(D)を含有する、請求項1~3のいずれか一項に記載の防振ゴム組成物。
    (D)カーボンブラック。
  5.  前記(D)の含有割合が、(A)100質量部に対して0.1~5質量部である、請求項4記載の防振ゴム組成物。
  6.  前記(D)のBET比表面積が10~150m2/gである、請求項4または5記載の防振ゴム組成物。
  7.  請求項1~6のいずれか一項に記載の防振ゴム組成物の加硫体からなる防振ゴム部材。
PCT/JP2022/047885 2021-12-27 2022-12-26 防振ゴム組成物および防振ゴム部材 WO2023127787A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021212744A JP2023096769A (ja) 2021-12-27 2021-12-27 防振ゴム組成物および防振ゴム部材
JP2021-212744 2021-12-27

Publications (1)

Publication Number Publication Date
WO2023127787A1 true WO2023127787A1 (ja) 2023-07-06

Family

ID=86998979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/047885 WO2023127787A1 (ja) 2021-12-27 2022-12-26 防振ゴム組成物および防振ゴム部材

Country Status (2)

Country Link
JP (1) JP2023096769A (ja)
WO (1) WO2023127787A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008239885A (ja) * 2007-03-28 2008-10-09 Tokai Rubber Ind Ltd 防振ゴム組成物
JP2011195807A (ja) * 2010-02-26 2011-10-06 Tokai Rubber Ind Ltd 防振ゴム組成物
JP6673351B2 (ja) * 2015-06-18 2020-03-25 株式会社ブリヂストン 防振ゴム組成物及び防振ゴム
JP2021084991A (ja) * 2019-11-29 2021-06-03 住友理工株式会社 防振ゴム組成物、防振ゴム部材、および防振ゴム用シランカップリング剤

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008239885A (ja) * 2007-03-28 2008-10-09 Tokai Rubber Ind Ltd 防振ゴム組成物
JP2011195807A (ja) * 2010-02-26 2011-10-06 Tokai Rubber Ind Ltd 防振ゴム組成物
JP6673351B2 (ja) * 2015-06-18 2020-03-25 株式会社ブリヂストン 防振ゴム組成物及び防振ゴム
JP2021084991A (ja) * 2019-11-29 2021-06-03 住友理工株式会社 防振ゴム組成物、防振ゴム部材、および防振ゴム用シランカップリング剤

Also Published As

Publication number Publication date
JP2023096769A (ja) 2023-07-07

Similar Documents

Publication Publication Date Title
JP2009256576A (ja) 防振ゴム組成物
JP7285258B2 (ja) 防振ゴム組成物およびその製造方法、ならびに防振ゴム部材
WO2011016545A1 (ja) 防振ゴム組成物
JP5376884B2 (ja) 防振ゴム組成物
JP6657491B1 (ja) 防振ゴム組成物および防振ゴム部材
JP2011195807A (ja) 防振ゴム組成物
JP2019178199A (ja) 電気自動車用防振ゴム組成物および電気自動車用防振ゴム部材
JP6644962B1 (ja) 防振ゴム組成物および防振ゴム部材
WO2023127787A1 (ja) 防振ゴム組成物および防振ゴム部材
JP7409936B2 (ja) 防振ゴム組成物および防振ゴム部材
JP5568493B2 (ja) 防振ゴム組成物
EP1975197B1 (en) Antivibration rubber composition
JP5465317B2 (ja) 防振ゴム組成物およびそれを用いた防振ゴム
JP2020090665A (ja) 防振ゴム用ゴム組成物および防振ゴム
JP5968191B2 (ja) 防振ゴム組成物
JP6546570B2 (ja) 防振ゴム組成物および防振ゴム
JP7405593B2 (ja) 防振ゴム用ゴム組成物および防振ゴム
JP7355682B2 (ja) 防振ゴム組成物およびその製造方法、ならびに防振ゴム部材
WO2023127786A1 (ja) 防振ゴム組成物および防振ゴム部材
JP2008208204A (ja) 防振ゴム組成物およびそれを用いた防振ゴム
WO2022186025A1 (ja) 難燃性防振ゴム組成物および難燃性防振ゴム部材
WO2024004854A1 (ja) 防振ゴム組成物および防振ゴム部材
WO2023054341A1 (ja) 防振ゴム組成物および防振ゴム部材
JP2023145863A (ja) 防振ゴム組成物及び防振ゴム
JP2024041336A (ja) 防振ゴム組成物及び防振ゴム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22916010

Country of ref document: EP

Kind code of ref document: A1