WO2022254284A1 - 二次電池、電子機器及び飛行体 - Google Patents

二次電池、電子機器及び飛行体 Download PDF

Info

Publication number
WO2022254284A1
WO2022254284A1 PCT/IB2022/054820 IB2022054820W WO2022254284A1 WO 2022254284 A1 WO2022254284 A1 WO 2022254284A1 IB 2022054820 W IB2022054820 W IB 2022054820W WO 2022254284 A1 WO2022254284 A1 WO 2022254284A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
layer
active material
electrode active
electrolyte
Prior art date
Application number
PCT/IB2022/054820
Other languages
English (en)
French (fr)
Inventor
吉富修平
荻田香
村椿将太郎
川月惇史
三上真弓
門馬洋平
掛端哲弥
山崎舜平
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Priority to KR1020237044709A priority Critical patent/KR20240016321A/ko
Priority to US18/562,562 priority patent/US20240266594A1/en
Priority to CN202280036466.XA priority patent/CN117355971A/zh
Priority to JP2023525126A priority patent/JPWO2022254284A1/ja
Publication of WO2022254284A1 publication Critical patent/WO2022254284A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/44Alloys based on cadmium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/46Alloys based on magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0045Room temperature molten salts comprising at least one organic ion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • One aspect of the present invention relates to a secondary battery, an electronic device, and an aircraft.
  • Another aspect of the present invention relates to an article, method, or manufacturing method.
  • the invention relates to a process, machine, manufacture, or composition of matter.
  • One embodiment of the present invention relates to a semiconductor device, a display device, a light-emitting device, a power storage device, a lighting device, an electronic device, or a manufacturing method thereof.
  • electronic equipment refers to all devices having a secondary battery, including electro-optical devices having a secondary battery, information terminal devices having a secondary battery, and the like.
  • Solid electrolytes are broadly classified into organic and inorganic systems.
  • Patent Document 1 discloses a secondary battery having a sulfide solid electrolyte or an oxide solid electrolyte.
  • Non-Patent Documents 1 to 3 describe changes in the crystal structure of lithium cobaltate.
  • Motohashi, T.; et al "Electronic phase diagram of the layered cobalt oxide system Li x CoO (0.0 ⁇ x ⁇ 1.0)", Physical Review B, 80 (16); 165114 Zhaohui Chen et al, “Staging Phase Transitions in Lix CoO 2", Journal of The Electrochemical Society, 2002, 149 (12) A1604-A1609 Belsky, A.; et al. , “New developments in the Inorganic Crystal Structure Database (ICSD): Accessibility in support of materials research and design", Acta Cryst. , (2002) B58 364-369.
  • ICSD Inorganic Crystal Structure Database
  • Patent Document 1 the volume change (expansion/shrinkage) of the negative electrode active material layer is large, and the bondability between the negative electrode active material layer and the solid electrolyte layer decreases, and the lithium ion transfer resistance at the interface between the layers increases.
  • a non-aqueous electrolyte battery having an intervening layer between the negative electrode active material layer and the solid electrolyte layer has been proposed.
  • Patent Document 1 describes that the intervening layer is made of a polymer containing a lithium salt or an ionic liquid.
  • interfacial contact between the negative electrode active material layer and the intervening layer or between the solid electrolyte layer and the intervening layer becomes a problem. Interfacial contact is sometimes described as interfacial resistance.
  • an object of one embodiment of the present invention is to improve contact at an interface in a secondary battery, for example, an interface between an active material and an electrolyte.
  • an object of one embodiment of the present invention is to provide a secondary battery with improved safety.
  • an object of one embodiment of the present invention is to provide a flexible secondary battery.
  • one embodiment of the present invention includes a positive electrode layer, a negative electrode layer, and an electrolyte layer positioned between the positive electrode layer and the negative electrode layer, wherein the positive electrode layer contains a positive electrode active material and a first It has a solid electrolyte, the negative electrode layer has a negative electrode active material and a second solid electrolyte, the electrolyte layer has a third solid electrolyte and an ionic liquid, and the ionic liquid fills voids in the electrolyte layer, specifically A secondary battery in which the voids of the third solid electrolyte are impregnated.
  • Another aspect of the invention has a positive electrode layer, a negative electrode layer, and an electrolyte layer positioned between the positive electrode layer and the negative electrode layer, the positive electrode layer having a positive electrode active material and a first solid electrolyte, and a negative electrode layer has a negative electrode active material and a second solid electrolyte, the electrolyte layer has a third solid electrolyte, the positive electrode layer, the negative electrode layer and the electrolyte layer have an ionic liquid, and the ionic liquid is the voids of the electrolyte layer Specifically, it is a secondary battery in which the voids of the third solid electrolyte are impregnated.
  • Another aspect of the invention has a positive electrode layer, a negative electrode layer, and an electrolyte layer positioned between the positive electrode layer and the negative electrode layer, the positive electrode layer having a positive electrode active material and a first solid electrolyte, and a negative electrode layer has a negative electrode active material and a second solid electrolyte, the electrolyte layer has a first electrolyte layer to a third electrolyte layer, the first electrolyte layer to the third electrolyte layer have an ionic liquid,
  • the ionic liquid is a secondary battery in which the voids of the second electrolyte layer, specifically the voids of the third solid electrolyte of the second electrolyte layer, are impregnated with the ionic liquid.
  • Another aspect of the invention has a positive electrode layer, a negative electrode layer, and an electrolyte layer positioned between the positive electrode layer and the negative electrode layer, the positive electrode layer having a positive electrode active material and a first solid electrolyte, and a negative electrode layer has a negative electrode active material and a second solid electrolyte, the electrolyte layer has a first electrolyte layer and a second electrolyte layer, the first electrolyte layer and the second electrolyte layer have an ionic liquid,
  • the ionic liquid is a secondary battery in which the voids of the second electrolyte layer, specifically the voids of the third solid electrolyte of the second electrolyte layer, are impregnated with the ionic liquid.
  • the positive electrode active material preferably has a composite oxide having a layered rock salt-type crystal structure, a spinel-type crystal structure, or an olivine-type crystal structure.
  • the positive electrode active material having a layered rock salt crystal structure preferably contains lithium cobaltate or nickel-manganese-lithium cobaltate.
  • the negative electrode active material preferably contains silicon, tin, gallium, aluminum, germanium, lead, antimony, bismuth, silver, zinc, cadmium, or indium.
  • the negative electrode active material preferably contains a carbon material.
  • An electronic device a wristwatch-type electronic device, or an aircraft includes the secondary battery of one embodiment of the present invention.
  • a secondary battery with good interfacial resistance can be provided.
  • a secondary battery with improved safety can be provided.
  • a bendable secondary battery can be provided.
  • 1A and 1B are diagrams illustrating a secondary battery of one embodiment of the present invention.
  • 2A and 2B are diagrams illustrating a secondary battery of one embodiment of the present invention.
  • FIG. 3 illustrates a secondary battery of one embodiment of the present invention.
  • 4A and 4B are diagrams illustrating a secondary battery of one embodiment of the present invention.
  • 5A to 5C are diagrams illustrating a method for manufacturing a secondary battery of one embodiment of the present invention.
  • 6A to 6D illustrate a method for manufacturing a secondary battery of one embodiment of the present invention.
  • 7A to 7D illustrate a method for manufacturing a secondary battery of one embodiment of the present invention.
  • 8A and 8B illustrate a method for manufacturing a secondary battery of one embodiment of the present invention.
  • FIG. 9A and 9B illustrate a method for manufacturing a secondary battery of one embodiment of the present invention.
  • FIG. 10 illustrates a secondary battery manufacturing apparatus of one embodiment of the present invention.
  • FIG. 11 is a flowchart illustrating a method for manufacturing an electrolyte layer of a secondary battery of one embodiment of the present invention.
  • 12A and 12B illustrate a heating step of the electrolyte layer of the secondary battery of one embodiment of the present invention.
  • 13A and 13B are cross-sectional views of the positive electrode active material, and FIGS. 13C to 13F are part of cross-sectional views of the positive electrode active material.
  • FIG. 14 is an example of a TEM image in which the orientation of the crystals is approximately the same.
  • FIG. 15A is an example of an STEM image in which the crystal orientations are approximately matched.
  • FIG. 15B is the FFT pattern of the region of the rock salt type crystal structure RS.
  • FIG. 15C is the FFT pattern of the region of the layered rocksalt type crystal structure LRS.
  • FIG. 16 is a diagram for explaining the crystal structure of the positive electrode active material.
  • FIG. 17 is a diagram for explaining the crystal structure of a conventional positive electrode active material.
  • 18A and 18B are cross-sectional views of the positive electrode active material, and FIGS. 18C1 and 18C2 are part of cross-sectional views of the positive electrode active material.
  • FIG. 19 shows an XRD pattern calculated from the crystal structure.
  • FIG. 20 shows an XRD pattern calculated from the crystal structure.
  • FIG. 19 shows an XRD pattern calculated from the crystal structure.
  • 21 is a cross-sectional view of a positive electrode active material.
  • 22A to 22C are diagrams illustrating a method for manufacturing a positive electrode active material.
  • 23A and 23B are diagrams illustrating a laminated secondary battery of one embodiment of the present invention.
  • 24A to 24C illustrate a method for manufacturing a laminated secondary battery of one embodiment of the present invention.
  • 25A and 25B are diagrams illustrating a bent secondary battery of one embodiment of the present invention.
  • 26A and 26B are diagrams illustrating a secondary battery of one embodiment of the present invention.
  • 27A and 27B are diagrams illustrating a bent secondary battery of one embodiment of the present invention.
  • 28A to 28C are diagrams illustrating a wristwatch-type electronic device of one embodiment of the present invention.
  • 29A to 29G are diagrams illustrating a wristwatch-type electronic device of one embodiment of the present invention.
  • 30A to 30C are diagrams illustrating a wristwatch-type electronic device of one embodiment of the present invention.
  • FIG. 31 is a diagram illustrating a wristwatch-type electronic device of one embodiment of the present invention.
  • 32A and 32B are perspective views showing an example of an aircraft according to one aspect of the present invention.
  • FIG. 32C is a cross-sectional view showing an example of an aircraft of one aspect of the present invention.
  • 33A and 33B are perspective views showing an example of an aircraft according to one aspect of the present invention.
  • 34A to 34C are diagrams illustrating a coin-type secondary battery of one embodiment of the present invention.
  • 35A to 35D are diagrams illustrating a cylindrical secondary battery of one embodiment of the present invention.
  • 36A to 36C are diagrams illustrating the appearance of a secondary battery pack of one embodiment of the present invention.
  • 37A to 37C are diagrams illustrating the appearance of a secondary battery pack of one embodiment of the present invention.
  • 38A to 38C are diagrams explaining an example of application to an electric vehicle (EV).
  • 39A to 39D are diagrams illustrating an example of a vehicle.
  • 40A to 40C are diagrams illustrating an example of a vehicle.
  • 41A to 41E are diagrams illustrating examples of electronic devices.
  • FIG. 42 is a diagram illustrating an example of electronic equipment.
  • 43A and 43B are planar SEM images of the first sheet-like electrolyte layer.
  • 44A and 44B are planar SEM images of the second sheet-like electrolyte layer.
  • 45A and 45B are plane SEM images of the state in which the voids of the second sheet-like electrolyte layer are impregnated with the ionic liquid.
  • the terms “above” and “below” do not limit the positional relationship between components to be directly above or below. Also, the terms “above” or “below” are not intended to limit contact.
  • the expression “active material layer B on current collector A” does not require that the active material layer B be formed on the current collector A in contact with each other, and the current collector A and the active material Other components may be included between B.
  • ordinal numbers such as “first” and “second” in this specification and the like are added to avoid confusion of constituent elements, and do not indicate the order or ranking of the order of steps or the order of stacking.
  • a term that is not given an ordinal number in this specification etc. may be given an ordinal number in the scope of claims.
  • it may be given a different ordinal number in the scope of claims.
  • the ordinal number may be omitted in the scope of claims and the like.
  • lithium metal is used for the negative electrode as a secondary battery including a positive electrode and a positive electrode active material
  • the secondary battery of one embodiment of the present invention is not limited to this.
  • Other materials such as graphite and lithium titanate may be used for the negative electrode.
  • the material for the negative electrode is not particularly limited as long as one embodiment of the present invention is a positive electrode, a positive electrode active material, or the like.
  • the electrolyte layer refers to a region that electrically insulates the positive electrode and the negative electrode and has lithium ion conductivity.
  • An electrolyte layer sandwiched between a positive electrode and a negative electrode may be identified as a layer.
  • a semi-solid battery is a battery in which at least one of an electrolyte layer, a positive electrode, and a negative electrode contains a semi-solid material, and particularly preferably has an electrolyte layer using a semi-solid material.
  • Semi-solid means that it has the properties of a solid such as a small volume change, but also has properties close to those of a liquid having fluidity, etc., and does not mean that the content of solid materials is 50%. Whether the above properties are exhibited by a single material or by a plurality of materials, they are referred to as semi-solid materials.
  • a gel-like material is a semi-solid material because a single material can exhibit the above properties.
  • a porous solid material impregnated (also referred to as infiltration) with a liquid material may be called a semi-solid material if it exhibits the above properties.
  • the positive electrode and the negative electrode may be collectively referred to as electrodes.
  • space groups are expressed using Short notation of international notation (or Hermann-Mauguin notation). Crystal planes and crystal directions are expressed using Miller indices. Individual planes indicating crystal planes are indicated using ( ). Space groups, crystal planes, and crystal orientations are indicated by a bar above the numbers in terms of crystallography. - (minus sign) may be attached and expressed. In addition, individual orientations that indicate directions within the crystal are [ ], collective orientations that indicate all equivalent directions are ⁇ >, individual planes that indicate crystal planes are ( ), and collective planes that have equivalent symmetry are ⁇ ⁇ to express each.
  • the trigonal crystal represented by the space group R-3m is generally represented by a composite hexagonal lattice of hexagonal crystals for ease of understanding of the structure, and (hkl) as well as (hkl) is used as the Miller index. There is where i is -(h+k).
  • particles are not limited to spheres with circular cross-sectional shapes, and include elliptical, rectangular, trapezoidal, triangular, square with rounded corners, and asymmetrical cross-sectional shapes. Further, the shapes of the plurality of particles do not have to be the same, and each particle may have an irregular shape.
  • the theoretical capacity of the positive electrode active material refers to the amount of electricity when all lithium that can be intercalated and desorbed is desorbed from the positive electrode active material.
  • LiCoO 2 has a theoretical capacity of 274 mAh/g
  • LiNiO 2 has a theoretical capacity of 275 mAh/g
  • LiMn 2 O 4 has a theoretical capacity of 148 mAh/g.
  • the amount of lithium that can be inserted and detached remains in the positive electrode active material is expressed by x in the composition formula of the positive electrode active material, for example, x in Li x CoO 2 , or Li x MO 2 It is shown by x in the inside.
  • the value of x indicates the lithium occupancy in Li x CoO 2 or Li x MO 2 .
  • Co in Li x CoO 2 is an example of a transition metal, and can be read as Li x MO 2 (M indicates a transition metal) as appropriate.
  • x (theoretical capacity ⁇ charge capacity)/theoretical capacity.
  • LiCoO 2 as a positive electrode active material
  • LiCoO 2 as a positive electrode active material
  • x 0.2
  • a small x in Li x CoO 2 means, for example, 0.1 ⁇ x ⁇ 0.24.
  • the term “discharging is completed” refers to a state in which the voltage is 3.0 V or 2.5 V or less at a current of 100 mA/g or less, for example.
  • the charge capacity and/or discharge capacity used to calculate x in Li x CoO 2 is preferably measured under conditions where there is no or little influence of short circuit and/or decomposition of the electrolyte.
  • the charge capacity and/or discharge capacity when there is a sudden change in capacity that appears to be a short circuit should not be used to calculate x.
  • the space group of the crystal structure is identified by X-ray diffraction (XRD), electron diffraction, neutron diffraction and the like. Therefore, in this specification and the like, belonging to a certain space group, belonging to a certain space group, or being in a certain space group can be rephrased as being identified by a certain space group.
  • XRD X-ray diffraction
  • the term “homogeneous” refers to a phenomenon in which, in a solid composed of a plurality of elements (eg, A, B, and C), an element (eg, A) is distributed in a specific region with similar characteristics. If the concentrations of elements (for example, A) in specific regions are substantially the same, it can be said to be homogeneous. For example, if the difference in concentration of an element (for example, A) between specific regions is within 10%, it can be said to be homogeneous.
  • Specific regions in the active material include, for example, the surface layer portion, the surface, the convex portion, the concave portion, the inside, and the like.
  • the positive electrode active material may be expressed as a composite oxide, a positive electrode material, a positive electrode material, a positive electrode material for a secondary battery, and the like.
  • the positive electrode active material of one embodiment of the present invention preferably contains an additive element, and the positive electrode active material containing the additive element may be expressed as a compound, a composition, or a composite.
  • a positive electrode active material of one embodiment of the present invention has a stable crystal structure even at high voltage. Since the crystal structure of the positive electrode active material is stable in a charged state, it is possible to suppress a decrease in discharge capacity due to repeated charging and discharging.
  • a short circuit in a secondary battery may not only cause problems in the charging operation and/or discharging operation of the secondary battery, but may also cause heat generation and ignition.
  • the positive electrode active material of one embodiment of the present invention suppresses short-circuit current even at high charging voltage. Therefore, a secondary battery having both high discharge capacity and safety can be obtained.
  • the electrolyte layer comprises a solid material and a liquid material.
  • an example of an electrolyte layer, which is one embodiment of the present invention, and a secondary battery or the like including the electrolyte layer will be described.
  • FIG. 1A is a schematic cross-sectional view of a secondary battery 100 of one embodiment of the present invention.
  • the secondary battery 100 has a positive electrode layer 106 , an electrolyte layer 103 and a negative electrode layer 107 .
  • the positive electrode layer 106 has a positive electrode current collector 101 and a positive electrode active material layer 102 .
  • the negative electrode layer 107 has a negative electrode current collector 105 and a negative electrode active material layer 104 .
  • FIG. 1B is a schematic cross-sectional view of the secondary battery 100 of one embodiment of the present invention, and shows a structure in which the negative electrode active material layer 104 is not required unlike FIG. 1A.
  • the negative electrode active material layer 104 can be omitted.
  • the electrolyte layer 103 may be spaced apart from the negative electrode current collector 105 by a certain distance. This is to ensure a region where lithium is deposited on the negative electrode current collector 105 .
  • electrolyte layer 103 comprises solid and liquid materials.
  • the electrolyte layer 103 has a function of moving carrier ions. Lithium ions, sodium ions, or the like can be used as carrier ions.
  • the electrolyte layer 103 has carrier ion conductivity and exhibits a function of moving carrier ions.
  • the electrolyte layer 103 is preferably made of a solid material with high carrier ion conductivity.
  • the lithium ion conductivity of the solid material used for the electrolyte layer 103 is preferably 0.1 mS/cm or more and 20 mS/cm or less at room temperature.
  • the electrolyte layer 103 preferably contains a liquid material with high carrier ion conductivity in addition to the solid material.
  • the lithium ion conductivity of the liquid material used for the electrolyte layer 103 is preferably 0.1 mS/cm or more and 20 mS/cm or less at room temperature.
  • the electrolyte layer 103 preferably contains more solid material than liquid material.
  • a solid electrolyte is preferably used as the solid material in order to satisfy the above lithium ion conductivity.
  • a specific example of the solid electrolyte will be described later.
  • an ionic liquid as the liquid material.
  • a specific example of the ionic liquid will be described later.
  • the electrolyte layer 103 may contain a lithium salt.
  • the electrolyte layer 103 when the electrolyte layer 103 contains an ionic liquid as a solvent, it preferably contains a lithium salt as a solute.
  • the solid material is preferable because it can retain the liquid material.
  • voids may occur in a fired solid material, and the liquid material is likely to be impregnated into the voids and easily retained in the voids.
  • a liquid material preferably has a low viscosity when impregnating a solid material.
  • the viscosity of the liquid material is high after being retained in the solid material.
  • a highly viscous state is sometimes referred to as a gel state.
  • the gel state can also be said to be a material form intermediate between solid and liquid.
  • the liquid material is removed from the electrolyte layer 103. It can prevent seepage.
  • the ratio of the solid material to the liquid material in the electrolyte layer 103 is not particularly limited as long as the above-described retention structure is satisfied. Percentages of solid and liquid materials can be defined using volume percentages.
  • the solid material is preferably 70% by volume or more and 95% by volume or less, preferably 80% by volume or more and 93% by volume or less in the electrolyte layer 103 . Since the liquid material in the electrolyte layer 103 accounts for the rest, it is preferably 5% by volume or more and 30% by volume or less, preferably 7% by volume or more and 20% by volume or less.
  • the lithium salt may be dissolved in the liquid material, the above ratio may be satisfied while the lithium salt is dissolved in the liquid material.
  • the electrolyte layer 103 satisfying the above proportions can be said to comprise a semi-solid material.
  • An electrolyte layer 103 having a semi-solid material may be referred to as a semi-solid electrolyte layer.
  • a secondary battery having such a semi-solid electrolyte layer is preferable because it is flexible.
  • the transference number of lithium ions is an index similar to the lithium ion conductivity, and indicates the ease of movement of lithium ions.
  • carrier ions eg lithium ions
  • lithium ions can move between the solid material and the liquid material.
  • lithium ions can move only through the solid material.
  • lithium ions can move only through the liquid material.
  • the solid material and the liquid material are present in the electrolyte layer
  • one or both of the solid material and the liquid material may also be present in the positive electrode layer.
  • the interfacial resistance between the electrolyte layer and the positive electrode layer can be kept lower than when an intervening layer is present.
  • one or both of the solid material and liquid material may be present in the negative electrode layer.
  • the interfacial resistance between the electrolyte layer and the negative electrode layer can be kept lower than when an intervening layer is present.
  • the positive electrode slurry or the negative electrode slurry may be mixed with one or both of the solid material and the liquid material. If the active material can be held by one or both of a solid material and a liquid material, the binder for the positive electrode layer or the negative electrode layer can be eliminated or reduced. Furthermore, if the conductivity can be secured by the solid material, the conductive aid for the positive electrode layer or the negative electrode layer can be eliminated or reduced.
  • the solid material of the positive electrode layer or the negative electrode layer may have a shape different from that of the solid material of the electrolyte layer.
  • the electrolyte layer is preferably a solid material having voids, but the positive electrode layer or negative electrode layer may be a particulate solid material. When the positive electrode layer or the negative electrode layer does not have a liquid material, it is particularly preferable to use a particulate solid material.
  • the solid material of the positive electrode layer or the negative electrode layer may be different from the solid material of the electrolyte layer, but the same material is preferable in terms of interfacial resistance suppression.
  • the liquid material of the positive electrode layer or the negative electrode layer may be in a different state from the liquid material of the electrolyte layer.
  • the electrolyte layer is preferably in a gel state, but the positive electrode layer or negative electrode layer may be a liquid material.
  • the liquid material of the positive electrode layer or the negative electrode layer may be different from the liquid material of the electrolyte layer, but it is preferable to use the same material in consideration of interfacial resistance suppression, and only the state should be different.
  • the secondary battery can be completed by injecting the liquid material after assembling the secondary battery. .
  • the solid material and the liquid material existing in the electrolyte layer move to the positive electrode layer or the negative electrode layer due to the press process or the like for assembling the secondary battery.
  • the solid material and the liquid material seep out from the electrolyte layer and the solid material and the liquid material of the positive electrode layer or the negative electrode layer are the same as the solid material and the liquid material of the electrolyte layer.
  • the solid material and the liquid material used for the electrolyte layer which is one embodiment of the present invention, the solid material retains the liquid material, so that leakage of the solid material and the liquid material from the secondary battery can be suppressed.
  • the condition that the ratio of the solid electrolyte is higher than the ionic liquid is limited to the electrolyte layer, and when one or both of the solid electrolyte and the ionic liquid are present in the positive electrode layer or the negative electrode layer, the above condition may not be satisfied.
  • the ratio of the solid electrolyte is higher than that of the ionic liquid, but in the positive electrode layer or the negative electrode layer, the ratio of the ionic liquid may be higher than the ratio of the solid electrolyte.
  • the positive electrode layer or the negative electrode layer may contain the ionic liquid and not contain the solid electrolyte.
  • the solid electrolyte may be present in the positive electrode layer or the negative electrode layer, and the ionic liquid may not be present.
  • the liquid material may be held by the solid material, and this state may be referred to as a semi-solid state.
  • the solid material is preferably an inorganic material in order to hold the liquid material by the solid material, but an organic material can also be applied to the solid material. If a gel-like material having no mobility is used as the organic material, it becomes possible to hold the liquid material and exhibit a semi-solid state.
  • the liquid material preferably has a viscosity that allows it to be retained by the solid material, and for example, a highly viscous gel-like material can be applied.
  • a gel-like ionic liquid can be applied.
  • the viscosity of the liquid material is preferably such that it is difficult to leak out from the electrolyte layer 103 and the like if it is filled at least when it is completed as the electrolyte layer 103, and it is not necessary to be filled when it is a starting material. That is, the viscosity of the liquid material may be changed. For example, if a liquid material with low viscosity is used as the starting material, it is easy to impregnate the voids. After that, in order to maintain the state held by the solid material, it is preferable to increase the viscosity of the liquid material at least when the electrolyte layer 103 is formed or when the secondary battery is completed.
  • the liquid material is subjected to a gelling process using a heating process, which is a process for producing the electrolyte layer, etc., and the viscosity of the liquid material is increased after the heating process. Also, the viscosity of the liquid material may be reduced by using a heating process when the solid material and the liquid material are mixed.
  • a heating process which is a process for producing the electrolyte layer, etc.
  • Another material may also be added to adjust the viscosity of the liquid material as the starting material.
  • the viscosity of the liquid material can be controlled.
  • organic solvents ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate, chloroethylene carbonate, vinylene carbonate, ⁇ -butyrolactone, ⁇ -valerolactone, dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), methyl formate, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, propyl propionate, methyl butyrate, 1,3-dioxane, 1,4-dioxane, dimethoxyethane (DME), dimethyl sulfoxide, diethyl One or more selected from ether, methyl diglyme, acetonitrile, benzonitrile,
  • Lithium salts such as LiPF6 , LiClO4 , LiBF4 , Li ( C2F5SO2 ) 2N , Li( CF3SO2 ) 2N , Li( SO2F ) 2N , lithium bis(oxalate)borate
  • LiPF6 LiPF6
  • LiClO4 LiBF4
  • Li ( C2F5SO2 ) 2N Li( CF3SO2 ) 2N
  • Li( SO2F ) 2N Li( SO2F ) 2N
  • lithium bis(oxalate)borate Li
  • the starting material for the solid electrolyte is often in the form of particles.
  • the particle shape includes a circular shape or a perfect circular shape when viewed from one cross section.
  • the shape of the solid electrolyte changes through the firing process, that is, the heating process, or the mixing process for the starting material. That is, the solid electrolyte may have a shape different from the particle shape.
  • a different shape includes an uneven shape or an elliptical shape when viewed from one cross section. That is, the shape of the solid material in the electrolyte layer 103 of the secondary battery 100 is not limited to particles, and the effects of the present application can be obtained even if the shape is various.
  • a change in shape as described above can also occur in the active material.
  • starting materials for active materials are often in particulate form.
  • the shape changes due to the firing process, that is, the heating process, or the mixing process for the starting materials. That is, the active material may have a shape different from the particle shape.
  • the active material in the positive electrode active material layer 102 is not limited to a particle shape.
  • the active material in the negative electrode active material layer 104 is not limited to a particle shape. The effect of the present application can be obtained even if the active material has various shapes.
  • FIG. 2A shows a schematic cross-sectional view of the secondary battery 100 of one embodiment of the present invention.
  • FIG. 2A shows a configuration having a negative electrode active material layer 104 as shown in FIG. 1A.
  • the negative electrode active material layer 104 can be omitted as shown in FIG. 1B.
  • the positive electrode active material layer 102 has at least a positive electrode active material 111 and a solid electrolyte 113 .
  • the positive electrode active material 111 and the solid electrolyte 113 are shown in a particle shape in FIG. 2A, they are not limited to the particle shape. Since the positive electrode active material layer 102 includes the solid electrolyte 113, the secondary battery 100 can operate even if the positive electrode active material layer 102 does not include an ionic liquid. Furthermore, as shown in FIG. 2A, since the solid electrolyte 113 exists continuously from the electrolyte layer 103 to the positive electrode active material layer 102, the interfacial resistance between the layers can be suppressed.
  • the solid electrolyte 113 included in the positive electrode active material layer 102 is preferably made of the same material as the solid electrolyte 113 included in the electrolyte layer 103. It is preferable that one be particulate and the other be sintered to have different shapes.
  • a sintered body includes a state in which particles are bonded to each other, and voids may occur between the particles.
  • the positive electrode active material layer 102 may have a conductive aid, the conductive aid is omitted in FIG. 2A. Since the positive electrode active material layer 102 has the solid electrolyte 113, it is possible to eliminate the need for a conductive aid. Although the positive electrode active material layer 102 may have a binder, the binder is omitted in FIG. 2A. Since the positive electrode active material layer 102 has the solid electrolyte 113, it is possible to eliminate the need for a binder.
  • the positive electrode active material layer 102 may contain an ionic liquid instead of the solid electrolyte 113 or may contain an ionic liquid in addition to the solid electrolyte 113 .
  • the ionic liquid included in the positive electrode active material layer 102 is preferably the same material as the ionic liquid included in the electrolyte layer 103, and one may be in a gel state and the other in a liquid state.
  • the negative electrode active material layer 104 has at least a negative electrode active material 117 and a solid electrolyte 113 .
  • the negative electrode active material 117 and the solid electrolyte 113 are shown in a particle shape in FIG. 2A, they are not limited to the particle shape. Since the negative electrode active material layer 104 contains the solid electrolyte 113, the secondary battery 100 can operate even if the negative electrode active material layer 104 does not contain an ionic liquid. Furthermore, as shown in FIG. 2A, since the solid electrolyte 113 exists continuously from the electrolyte layer 103 to the negative electrode active material layer 104, the interfacial resistance between the layers can be suppressed.
  • the solid electrolyte 113 included in the negative electrode active material layer 104 is preferably made of the same material as the solid electrolyte 113 included in the electrolyte layer 103. It is preferable that one be particulate and the other be sintered to have different shapes.
  • a sintered body includes a state in which particles are bonded to each other, and voids may occur between the particles.
  • the negative electrode active material layer 104 may contain a conductive aid, but the conductive aid is omitted in FIG. 2A. Since the negative electrode active material layer 104 has the solid electrolyte 113, it is possible to eliminate the need for a conductive aid. Further, the negative electrode active material layer 104 may have a binder, but the binder is omitted in FIG. 2A. Since the negative electrode active material layer 104 has the solid electrolyte 113, it is possible to eliminate the need for a binder.
  • the negative electrode active material layer 104 may contain an ionic liquid instead of the solid electrolyte 113 or may contain an ionic liquid in addition to the solid electrolyte 113 .
  • the ionic liquid included in the negative electrode active material layer 104 is preferably the same material as the ionic liquid included in the electrolyte layer 103, and one may be in a gel state and the other in a liquid state.
  • the electrolyte layer 103 has a solid electrolyte 113 as a solid material and an ionic liquid 118 as a liquid material.
  • FIG. 2B shows an enlarged schematic diagram of a partial region 114 of the electrolyte layer 103 .
  • the solid electrolyte 113 is preferably a sintered body.
  • part of the solid electrolyte 113 in the electrolyte layer 103 may have a particle shape.
  • the sintered solid electrolyte 113 also has voids.
  • the voids can be formed according to the firing conditions of the solid electrolyte.
  • the electrolyte layer 103 can be fired under conditions that reduce voids.
  • the gap is filled with the ionic liquid 118, it is not necessarily reduced.
  • the viscosity of the ionic liquid 118 may be controlled.
  • the voids When increasing the proportion of the ionic liquid 118 in the electrolyte layer 103, the voids also increase.
  • the firing process may be carried out in a state in which an organic material having a melting point lower than the sintering temperature is mixed. In the firing process, voids can be formed corresponding to the organic material that has melted and disappeared.
  • One aspect of the present invention includes controlling and increasing the voids instead of decreasing the voids.
  • Regions with ionic liquid 118 in FIG. 2B correspond to voids. Note that it is preferable that the filled ionic liquid 118 is gelled in order to suppress a short circuit between the positive electrode and the negative electrode.
  • the electrolyte layer 103 may be processed into a sheet through a process such as pressing.
  • the electrolyte layer 103 may have a plurality of particulate solid electrolytes. In other words, even if the electrolyte layer 103 does not have a sintered body but has a solid electrolyte in the form of a plurality of particles, the electrolyte layer 103 can have voids between the particles.
  • the thickness of the sheet-like electrolyte layer 103 is 1 ⁇ m or more and 100 ⁇ m or less, preferably 1 ⁇ m or more and 50 ⁇ m or less, and more preferably 1 ⁇ m or more and 20 ⁇ m or less.
  • the positions of the voids in the electrolyte layer 103 may be controlled. If the voids are connected from the positive electrode layer to the negative electrode layer and appear like holes, dendrites or the like generated in the negative electrode layer increase the possibility of short-circuiting the secondary battery. Therefore, it is preferable to control so that the positions of the voids are shifted from each other so that the holes are not formed in the electrolyte layer 103 .
  • the voids are filled with the liquid material, it is possible to suppress the short circuit of the secondary battery caused by dendrites and the like by increasing the viscosity of the liquid material.
  • the ratio of voids may be controlled.
  • the voids in the center of the electrolyte layer 103 may be made higher than the voids in the electrolyte layer 103 closer to the positive electrode layer or the negative electrode layer.
  • the ratio of voids in the electrolyte layer 103 should be decreased as it approaches the negative electrode layer.
  • the electrolyte layer 103 may have a laminated structure, and two or more, preferably three or more electrolyte layers may be laminated. In the case of the three-layer structure, the ratio of voids in the electrolyte layer arranged in the center can be made different from the ratio of voids in the electrolyte layers arranged above and below it. Such an electrolyte layer 103 can suppress the above-described short circuit of the secondary battery. Further, a separator may be arranged instead of the centrally arranged electrolyte layer.
  • the electrolyte layer 103 in the form of a sheet.
  • a sheet-like electrolyte layer is also suitable for the above laminated structure.
  • a separator may be arranged in addition to the electrolyte layer 103 in order to suppress the above-described short circuit of the secondary battery.
  • the solid electrolyte 113 holds the ionic liquid 118 in the electrolyte layer 103 .
  • the ionic liquid 118 impregnates the solid electrolyte 113 .
  • Such an electrolyte layer 103 is preferable because the ionic liquid 118 does not seep out.
  • the electrolyte layer 103 may be referred to as a semi-solid electrolyte layer.
  • the solid electrolyte 113 may be a solid material, and the ionic liquid 118 may be a liquid material.
  • the electrolyte layer 103 may have a binder.
  • the solid electrolyte 113 becomes easier to retain the ionic liquid 118 .
  • the binder is omitted in FIGS. 2A and 2B.
  • FIG. 2A shows boundaries between layers, clear boundaries may not be observed in the secondary battery 100 in some cases.
  • the boundary between the electrolyte layer 103 and the positive electrode layer 106 becomes ambiguous. This is because part of the positive electrode active material 111 enters the electrolyte layer 103 and part of the solid electrolyte 113 enters the positive electrode layer 106 .
  • part of the negative electrode active material 117 may enter the electrolyte layer 103 and part of the solid electrolyte 113 may enter the negative electrode layer 107, and the boundary between the electrolyte layer 103 and the negative electrode layer 107 becomes ambiguous.
  • FIG. 3 shows a schematic cross-sectional view of a secondary battery 100 of one embodiment of the present invention.
  • FIG. 3 shows a configuration having a negative electrode active material layer 104, as shown in FIG. 1A.
  • the negative electrode active material layer 104 can be omitted as shown in FIG. 1B.
  • the ionic liquid 118 is positioned throughout the secondary battery 100, unlike FIG. 2A.
  • the secondary battery 100 is formed through steps such as injecting the ionic liquid 118. As shown in FIG. can be located throughout. In this case, the ionic liquid should not be gelled, or should be gelled after injection.
  • FIGS. 2A and 2B Other configurations are the same as in FIGS. 2A and 2B.
  • the solid electrolyte 113 retains the ionic liquid 118.
  • FIG. In other words, the ionic liquid 118 impregnates the solid electrolyte 113 at least in the electrolyte layer 103 .
  • Such an electrolyte layer 103 is preferable because the ionic liquid 118 does not seep out.
  • the electrolyte layer 103 may be referred to as a semi-solid electrolyte layer.
  • the solid electrolyte 113 may be a solid material
  • the ionic liquid 118 may be a liquid material.
  • FIG. 4A shows a schematic cross-sectional view of the secondary battery 100 of one embodiment of the present invention.
  • FIG. 4 shows a configuration having a negative electrode active material layer 104, as shown in FIG. 1A.
  • the negative electrode active material layer 104 can be omitted as shown in FIG. 1B.
  • the solid electrolyte 113 is located only in the center of the electrolyte layer 103, and regions without the solid electrolyte 113 are provided on the positive electrode layer side and the negative electrode layer side. have.
  • the electrolyte layer 103 having such a structure can be classified into a first electrolyte layer 103a, a second electrolyte layer 103b, and a third electrolyte layer 103c according to the content of the solid electrolyte 113.
  • FIG. Such a structure is sometimes referred to as a laminated structure
  • FIG. 4A illustrates the case where the electrolyte layer 103 has a three-layer laminated structure.
  • FIG. 4B shows a secondary battery 100 having an electrolyte layer 103 with a two-layer laminate structure.
  • a gel-like ionic liquid or the like is used for the first electrolyte layer 103a located in the region without the solid electrolyte 113 and the third electrolyte layer 103c located in the region without the solid electrolyte 113.
  • a gel-like ionic liquid or the like may be used for the first electrolyte layer 103a that does not have the solid electrolyte 113 .
  • FIG. 2A, 2B, and 3 Other configurations are the same as those in FIGS. 2A, 2B, and 3.
  • FIG. 2A, 2B, and 3 Other configurations are the same as those in FIGS. 2A, 2B, and 3.
  • the solid electrolyte 113 retains the ionic liquid 118.
  • the ionic liquid 118 impregnates the solid electrolyte 113 at least in the electrolyte layer 103 .
  • Such an electrolyte layer 103 is preferable because the ionic liquid 118 does not seep out.
  • the electrolyte layer 103 may be referred to as a semi-solid electrolyte layer.
  • the solid electrolyte 113 may be a solid material, and the ionic liquid 118 may be a liquid material.
  • FIGS. 4A and 4B show boundary lines between layers, a clear boundary line may not be confirmed in the secondary battery 100 as in FIG. 2A and the like.
  • a highly conductive material such as a metal such as stainless steel, gold, platinum, aluminum, copper, or titanium, or an alloy thereof can be used. Moreover, it is preferable that the material used for the positive electrode current collector does not elute at the potential of the positive electrode.
  • an aluminum alloy added with an element that improves heat resistance such as silicon, titanium, neodymium, scandium, or molybdenum, can be used.
  • a metal element that forms silicide by reacting with silicon may be used.
  • Metal elements that react with silicon to form silicide include zirconium, titanium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, cobalt, and nickel.
  • the shape of the current collector may be foil, plate, sheet, net, punching metal, expanded metal, or the like. It may also have a layer of carbon black or graphene as an undercoat.
  • a current collector having a thickness of 5 ⁇ m or more and 30 ⁇ m or less is preferably used.
  • the term "foil-like" means that the thickness is 1 ⁇ m or more and 100 ⁇ m or less, preferably 5 ⁇ m or more and 30 ⁇ m or less.
  • the positive electrode current collector 101 and the negative electrode current collector 105 are preferably made of a material that is resistant to corrosion by LiFSI.
  • a material that is resistant to corrosion by LiFSI FSI is an abbreviation for bis(fluorosulfonyl)imide anion
  • titanium and titanium compounds are preferred because they are resistant to corrosion. Titanium, a titanium compound, or aluminum coated with carbon is also preferred.
  • the positive electrode active material 111 included in the positive electrode layer 106 for example, a composite oxide having a layered rock salt crystal structure, a spinel crystal structure, or an olivine crystal structure can be used.
  • a composite oxide having a layered rock salt crystal structure, a spinel crystal structure, or an olivine crystal structure can be used.
  • lithium cobaltate, lithium nickelate, lithium cobaltate in which cobalt is partially replaced with manganese lithium cobaltate in which cobalt is partially replaced by nickel, nickel-manganese-lithium cobaltate, lithium iron phosphate , lithium ferrate, lithium manganate, and other composite oxides containing lithium and a transition metal can be used.
  • the material does not necessarily contain lithium as long as it functions as a positive electrode active material, and V 2 O 5 , Cr 2 O 5 , MnO 2 or the like may be used.
  • an element capable of undergoing charge/discharge reaction by alloying/dealloying reaction with lithium can be used.
  • materials containing at least one of silicon, tin, gallium, aluminum, germanium, lead, antimony, bismuth, silver, zinc, cadmium, indium, etc. can be used.
  • Such an element has a larger capacity than carbon, and silicon in particular has a high theoretical capacity of 4200 mAh/g. Therefore, it is preferable to use silicon for the negative electrode active material. Compounds containing these elements may also be used.
  • SiO silicon monoxide, sometimes expressed as SiO X , where x is preferably 0.2 or more and 1.5 or less
  • elements capable of undergoing charge/discharge reactions by alloying/dealloying reactions with lithium, compounds containing such elements, and the like are sometimes referred to as alloy-based materials.
  • Silicon nanoparticles can be used as the negative electrode active material containing silicon.
  • the median diameter (D50) of the silicon nanoparticles is 5 nm or more and less than 1 ⁇ m, preferably 10 nm or more and 300 nm or less, more preferably 10 nm or more and 100 nm or less.
  • Silicon nanoparticles may have crystallinity.
  • the silicon nanoparticles may have a crystalline region and an amorphous region.
  • silicon monoxide particles may be included in silicon monoxide particles.
  • Silicon monoxide may be amorphous.
  • Particles of silicon monoxide may be carbon-coated. These particles can be mixed with graphite to form a negative electrode active material.
  • carbon material graphite, graphitizable carbon (soft carbon), non-graphitizable carbon (hard carbon), carbon nanotubes, graphene, carbon black, and the like may be used. These carbon materials preferably contain fluorine. A carbon material containing fluorine can also be called a particulate or fibrous fluorinated carbon material. When the carbon material is measured by X-ray photoelectron spectroscopy, the concentration of fluorine is preferably 1 atomic% (sometimes referred to as at%) or more with respect to the total concentration of fluorine, oxygen, lithium and carbon. .
  • the volume of the negative electrode active material may change during charging and discharging, but by disposing an organic compound having fluorine such as a fluorinated carbonate ester between the negative electrode active materials, the volume change occurs during charging and discharging. It is also slippery and suppresses cracks, so it has the effect of improving cycle characteristics. It is important that the organic compound containing fluorine exists between the plurality of negative electrode active materials.
  • Examples of graphite include artificial graphite and natural graphite.
  • Examples of artificial graphite include mesocarbon microbeads (MCMB), coke-based artificial graphite, and pitch-based artificial graphite.
  • MCMB mesocarbon microbeads
  • Spherical graphite having a spherical shape can be used here as the artificial graphite.
  • MCMB may have a spherical shape and are preferred.
  • MCMB is also relatively easy to reduce its surface area and may be preferred.
  • Examples of natural graphite include flake graphite and spherical natural graphite.
  • Graphite exhibits a potential as low as lithium metal when lithium ions are intercalated into graphite (at the time of formation of a lithium-graphite intercalation compound) (0.05 V or more and 0.3 V or less vs. Li/Li + ). This allows the lithium ion secondary battery to exhibit a high operating voltage. Furthermore, graphite is preferable because it has advantages such as relatively high capacity per unit volume, relatively small volume expansion, low cost, and high safety compared to lithium metal.
  • titanium dioxide TiO2
  • lithium titanium oxide Li4Ti5O12
  • lithium -graphite intercalation compound LixC6
  • niobium pentoxide Nb2O5
  • oxide Oxides such as tungsten (WO 2 ) and molybdenum oxide (MoO 2 ) can be used.
  • Li 2.6 Co 0.4 N 3 exhibits a large charge/discharge capacity (900 mAh/g, 1890 mAh/cm 3 ) and is preferable.
  • lithium ions are contained in the negative electrode active material, so that it can be combined with materials such as V 2 O 5 and Cr 3 O 8 that do not contain lithium ions as the positive electrode active material, which is preferable.
  • materials such as V 2 O 5 and Cr 3 O 8 that do not contain lithium ions as the positive electrode active material, which is preferable.
  • a composite nitride of lithium and a transition metal can be used as the negative electrode active material by preliminarily desorbing the lithium ions contained in the positive electrode active material.
  • a material that causes a conversion reaction can also be used as the negative electrode active material.
  • transition metal oxides such as cobalt oxide (CoO), nickel oxide (NiO), and iron oxide (FeO) that do not form an alloy with lithium may be used as the negative electrode active material.
  • the conversion reaction further includes oxides such as Fe 2 O 3 , CuO, Cu 2 O, RuO 2 and Cr 2 O 3 , sulfides such as CoS 0.89 , NiS and CuS, Zn 3 N 2 and Cu 3 N. , Ge 3 N 4 and other nitrides, NiP 2 , FeP 2 and CoP 3 and other phosphides, and FeF 3 and BiF 3 and other fluorides.
  • Lithium can also be used as the negative electrode active material.
  • foil-shaped lithium can be provided on the negative electrode current collector.
  • lithium may be provided on the negative electrode current collector by a vapor phase method such as a vapor deposition method or a sputtering method.
  • lithium may be deposited on the negative electrode current collector by an electrochemical method in a solution containing lithium ions.
  • the same materials as the conductive aid and binder that the positive electrode active material layer can have can be used.
  • the current collector copper or the like can be used in addition to the same material as the positive electrode current collector.
  • the negative electrode current collector it is preferable to use a material that does not alloy with carrier ions such as lithium.
  • a negative electrode without a negative electrode active material can be used as another form of the negative electrode.
  • a negative electrode that does not have a negative electrode active material lithium can be deposited on the negative electrode current collector during charging, and lithium can be eluted from the negative electrode current collector during discharging. Therefore, in a state other than a fully discharged state, the negative electrode collector has lithium on it.
  • a film for uniform deposition of lithium may be provided on the negative electrode current collector.
  • a film for uniform deposition of lithium for example, a solid electrolyte having lithium ion conductivity can be used, and an electrolyte layer can be arranged on the negative electrode current collector.
  • the solid electrolyte a sulfide-based solid electrolyte, an oxide-based solid electrolyte, a halide-based solid electrolyte, a polymer-based solid electrolyte, or the like can be used.
  • the polymer solid electrolyte is suitable as a film for uniform deposition of lithium because it is relatively easy to form a uniform film on the negative electrode current collector.
  • a sulfide-based solid electrolyte, an oxide-based solid electrolyte, a halide-based solid electrolyte, and a polymer-based solid electrolyte will be described later.
  • a negative electrode current collector having unevenness can be used.
  • the concave portions of the negative electrode current collector become cavities in which lithium contained in the negative electrode current collector is easily deposited, so that when lithium is deposited, it is suppressed to form a dendrite shape. can do.
  • Solid electrolyte can be given as a solid material used for the electrolyte layer or the like of one embodiment of the present invention.
  • Solid electrolytes include oxide-based, sulfide-based, and halide-based solid electrolytes, and a solid electrolyte in which these are mixed may be used for the electrolyte layer and the like.
  • materials having a perovskite crystal structure La2 /3- xLi3xTiO3 , etc.
  • materials having a NASICON crystal structure Li1+ XAlXTi2 -X ( PO4 ) 3 , etc.)
  • materials having a garnet-type crystal structure Li 7 La 3 Zr 2 O 12 (LLZO) or Li 6.25 La 3 Zr 2 Al 0.25 O 12 (LLZAO), etc.
  • materials having a LISICON-type crystal structure Li14ZnGe4O16 etc. ) , oxide glass ( Li3PO4 - Li4SiO4 , 50Li4SiO4.50Li3BO3 etc.
  • Oxide-based solid electrolytes have the advantage of being heat resistant and more stable in the atmosphere than sulfide-based solid electrolytes, which will be described later.
  • sulfide-based solid electrolytes As sulfide-based solid electrolytes, thiolysicone-based (Li 10 GeP 2 S 12 , Li 3.25 Ge 0.25 P 0.75 S 4 , etc.), sulfide glass (70Li 2 S, 30P 2 S 5 , 30Li 2 S ⁇ 26B 2 S 3 ⁇ 44LiI, 63Li 2 S ⁇ 36SiS 2 ⁇ 1Li 3 PO 4 , 57Li 2 S ⁇ 38SiS 2 ⁇ 5Li 4 SiO 4 , 50Li 2 S ⁇ 50GeS 2, etc.), or sulfide crystallized glass (Li 7 P3S11 , Li3.25P0.95S4 , etc. ) .
  • a sulfide-based solid electrolyte has advantages such as being a material with high conductivity, being able to be synthesized at a low temperature, and being relatively soft so that a conductive path is easily maintained even
  • halide-based solid electrolytes examples include LiAlCl 4 , Li 3 InBr 6 , LiF, LiCl, LiBr, and LiI.
  • a mixed material in which pores of porous aluminum oxide or porous silica are filled with a solid electrolyte can also be used. That is, a solid electrolyte mixed with a ceramic material may be used for the electrolyte layer or the like.
  • a solid electrolyte is used to explain that it is solid, it is sufficient if the ionic liquid can be held by a non-fluid material, and the ionic liquid may be held by a polymer material.
  • a configuration in which an ionic liquid is retained by a polymer material may also be referred to as a semi-solid.
  • the electrolyte layer 103 of the secondary battery 100 in this case is sometimes called a semi-solid electrolyte layer.
  • a polymer material used for the electrolyte layer or the like of one embodiment of the present invention includes a lithium ion conductive polymer.
  • a lithium ion conductive polymer is sometimes referred to as a polymer-based solid electrolyte.
  • Examples of lithium ion conductive polymers that can be used include polyethylene oxide (PEO), derivatives having polyethylene oxide as the main chain, polypropylene oxide, polyacrylic acid esters, polymethacrylic acid esters, polysiloxane, and polyphosphazene.
  • the above solid electrolyte may be mixed with a graphene compound or graphene. Since the graphene compound has excellent physical properties of high flexibility and high mechanical strength, it can impart high flexibility and high mechanical strength to the solid electrolyte.
  • the graphene compound includes multilayer graphene, graphene oxide, multilayer graphene oxide, multi-graphene oxide, and the like.
  • a graphene compound refers to a compound that contains carbon, has a shape such as a plate shape or a sheet shape, and has a two-dimensional structure formed of six-membered carbon rings. A two-dimensional structure formed by the six-membered carbon ring is sometimes called a carbon sheet.
  • the graphene compound may have functional groups. Also, the graphene compound preferably has a bent shape. Also, the graphene compound may be rolled up like carbon nanofibers.
  • Graphene oxide includes carbon and oxygen, has a sheet-like shape, and has a functional group, particularly an epoxy group, a carboxy group, or a hydroxy group.
  • An ionic liquid can be used as a liquid material used for the electrolyte layer or the like of one embodiment of the present invention. An ionic liquid will be explained.
  • An ionic liquid is sometimes referred to as a room-temperature molten salt, and has cations and anions.
  • Cations include imidazolium-based, ammonium-based, pyrrolidinium-based, piperidinium-based, pyridinium-based or phosphonium-based basic skeletons.
  • a cation having an imidazolium-based basic skeleton can provide an ionic liquid with a lower viscosity than a cation having an ammonium-based basic skeleton.
  • a low viscosity tends to increase the conductivity of carrier ions.
  • the viscosity and the like of the ionic liquid can be controlled by the alkyl group and the like of the side chain of the cation.
  • the ionic liquid of one embodiment of the present invention has an imidazolium-based cation represented by General Formula (G1).
  • R 1 represents an alkyl group having 1 to 10 carbon atoms
  • R 2 to R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
  • R 5 is an alkyl group having 1 to 6 carbon atoms, or an ether group having a main chain composed of two or more atoms selected from C, O, Si, N, S, and P, a thioether group, or represents siloxane.
  • a ⁇ represents an anion, preferably FSI or TFSI, which will be described later.
  • the ionic liquid of one embodiment of the present invention has a pyridinium-based cation represented by General Formula (G2).
  • R 6 is an alkyl group having 1 to 6 carbon atoms, or a main chain composed of two or more atoms selected from C, O, Si, N, S, and P.
  • R 7 to R 11 each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • R8 or R9 may represent a hydroxyl group.
  • a ⁇ represents an anion, preferably FSI or TFSI, which will be described later.
  • the ionic liquid of one embodiment of the present invention may have a quaternary ammonium cation, for example, a quaternary ammonium cation represented by General Formula (G3).
  • G3 a quaternary ammonium cation represented by General Formula (G3).
  • R 28 to R 31 each independently represent an alkyl group having 1 to 20 carbon atoms, a methoxy group, a methoxymethyl group, a methoxyethyl group, or a hydrogen atom.
  • a ⁇ represents an anion, preferably FSI or TFSI, which will be described later.
  • the ionic liquid of one embodiment of the present invention has a cation represented by General Formula (G4).
  • R 12 and R 17 each independently represent an alkyl group having 1 or more and 3 or less carbon atoms.
  • R 13 to R 16 each independently represent either a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • a ⁇ represents an anion, preferably FSI or TFSI, which will be described later.
  • the ionic liquid of one embodiment of the present invention has a cation represented by General Formula (G5).
  • R 18 and R 24 each independently represent an alkyl group having 1 or more and 3 or less carbon atoms.
  • R 19 to R 23 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • a ⁇ represents an anion, preferably FSI or TFSI, which will be described later.
  • the ionic liquid of one embodiment of the present invention has a cation represented by General Formula (G6).
  • n and m are 1 or more and 3 or less, ⁇ is 0 or more and 6 or less, ⁇ is 0 or more and 6 or less, and X or Y is a substituent having 1 or more carbon atoms.
  • 4 or less linear or side-chain alkyl group, a linear or side-chain alkoxy group having 1 to 4 carbon atoms, or a linear or side-chain alkoxy group having 1 to 4 carbon atoms represents an alkoxyalkyl group.
  • a ⁇ represents an anion, preferably FSI or TFSI, which will be described later.
  • the ionic liquid of one embodiment of the present invention has a tertiary sulfonium cation represented by General Formula (G7).
  • R 25 to R 27 each independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or a phenyl group.
  • R 25 to R 27 each independently have a main chain composed of two or more atoms selected from C, O, Si, N, S and P.
  • a ⁇ represents an anion, preferably FSI or TFSI, which will be described later.
  • the ionic liquid of one embodiment of the present invention has a quaternary phosphonium cation represented by General Formula (G8) below.
  • R 32 to R 35 each independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or a phenyl group.
  • R 32 to R 35 each independently have a main chain composed of two or more atoms selected from C, O, Si, N, S and P atoms.
  • a ⁇ represents an anion, preferably FSI or TFSI, which will be described later.
  • Structural Formula (G1) Specific examples include Structural Formulas (111) to (174).
  • Structural formula (111) is the 1-ethyl-3-methylimidazolium cation, abbreviated EMI.
  • Structural formula (113) is the 1-butyl-3-methylimidazolium cation, abbreviated BMI.
  • General Formula (G2) Specific examples include Structural Formulas (701) to (719).
  • General Formula (G4) examples include Structural Formulas (501) to (520).
  • General Formula (G5) Specific examples include Structural Formulas (601) to (630).
  • General Formula (G6) Specific examples include Structural Formulas (301) to (309) and Structural Formulas (401) to (419).
  • Structural Formulas (301) to (309) and Structural Formulas (401) to (419) show examples in which m is 1 in General Formula (G6), but Structural Formula (301) In Structural Formulas (309) to (401) to Structural Formulas (419), m may be replaced with 2 or 3.
  • Anions include halide ions, tetrafluoroborate, hexafluorophosphate, bis(trifluoromethylsulfonyl)amide, bis(fluorosulfonyl)imide, and the like.
  • Specific anions include monovalent amide anions, monovalent methide anions, fluorosulfonate anions, perfluoroalkylsulfonate anions, tetrafluoroborate anions, perfluoroalkylborate anions, hexafluorophosphate anions, One or more selected from fluoroalkylphosphate anions, tetrafluoroborate anions, and the like can be used.
  • a monovalent amide anion is represented by the general formula ( CnF2n +1SO2 ) 2N- (where n is 0 or more and 3 or less) .
  • bis(fluorosulfonyl)imide anion When n is 0, the above general formula is called a bis(fluorosulfonyl)imide anion and represented by the following structural formula (H11).
  • the abbreviation for bis(fluorosulfonyl)imide anion is FSI or FSA.
  • n 1, the above general formula is called a bis(trifluoromethanesulfonyl)imide anion and represented by the following structural formula (H12).
  • the abbreviation for bis(trifluoromethanesulfonyl)imide anion is TFSI or TFSA.
  • one of the monovalent cyclic amide-based anions is called 4,4,5,5-tetrafluoro-1,3,2-dithiazolidinetetraoxide anion and is represented by the following structural formula (H13). .
  • the monovalent methide anion is represented by the general formula ( CnF2n +1SO2 ) 3C- (where n is 0 or more and 3 or less).
  • One of the monovalent cyclic methide anions is called 4,4,5,5-tetrafluoro-2-[(trifluoromethyl)sulfonyl]-1,3-dithiolane tetraoxide anion, and has the following structural formula: (H14).
  • the fluoroalkylsulfonate anion is represented by the general formula ( CmF2m +1SO3 ) - (m is 0 or more and 4 or less).
  • the above general formula is a fluorosulfonate anion
  • m is 1,2,3,4
  • the above general formula is a perfluoroalkylsulfonate anion
  • the fluoroalkylborate anion is represented by the general formula ⁇ BFn ( CmHkF2m +1-k ) 4-n ⁇ - (n is 0 or more and 3 or less, m is 1 or more and 4 or less, and k is 0 or more and 2m or less). be done.
  • the fluoroalkyl phosphate anion is represented by the general formula ⁇ PFn ( CmHkF2m +1-k ) 6-n ⁇ - (n is 0 or more and 5 or less, m is 1 or more and 4 or less, k is 0 or more and 2m or less). be done.
  • the ionic liquid of one embodiment of the present invention can have one or a plurality of anions selected from the above-described anions.
  • ionic liquid is a liquid composed only of ions, it has a strong electrostatic interaction, exhibits nonvolatility, thermal stability, and high heat resistance.
  • a secondary battery using the ionic liquid does not ignite in the temperature range in which it is used, and is excellent in safety.
  • Organic solvent can be used as a liquid material used for the electrolyte layer or the like of one embodiment of the present invention.
  • a mixed material of an organic solvent and an ionic liquid is preferably used as a liquid material used for the electrolyte layer or the like of one embodiment of the present invention.
  • An organic solvent will be explained.
  • An aprotic organic solvent may be used as the organic solvent of one embodiment of the present invention.
  • the organic solvent may have a fluorinated carbonate, a cyclic carbonate, or the like.
  • fluorinated carbonates include fluorinated cyclic carbonates.
  • a fluorinated cyclic carbonate has a high flash point and can improve the safety of secondary batteries.
  • fluorinated cyclic carbonate fluorinated ethylene carbonate
  • fluorinated ethylene carbonate for example, monofluoroethylene carbonate (fluoroethylene carbonate, FEC, F1EC), difluoroethylene carbonate (DFEC, F2EC), trifluoroethylene carbonate (F3EC), or tetrafluoroethylene carbonate ( F4EC) or the like
  • FEC fluorinated ethylene carbonate
  • FEC fluorinated ethylene carbonate
  • FEC fluoroethylene carbonate
  • F1EC difluoroethylene carbonate
  • DFEC difluoroethylene carbonate
  • F3EC trifluoroethylene carbonate
  • F4EC tetrafluoroethylene carbonate
  • FEC monofluoroethylene carbonate
  • F4EC tetrafluoroethylene carbonate
  • One of the fluorinated cyclic carbonates of one aspect of the present invention is difluoroethylene carbonate, abbreviated F2EC.
  • a cyclic carbonate having a cyano group can also be used as the organic solvent of one embodiment of the present invention.
  • the ionic liquids or organic solvents described above may be gelled. By gelling, exudation from the electrolyte layer 103 can be suppressed.
  • the gelling agent can be selected according to methods such as chemical gelation treatment or physical gelation treatment.
  • a gelling agent used for chemical gelling treatment preferably contains a polymer and a cross-linking agent.
  • a gelling agent is added to and mixed with the ionic liquid or organic solvent described above. At that time, the temperature is 75° C. or higher and 100° C. or lower, preferably 85° C. or higher and 95° C. or lower. Then, a gelled ionic liquid or a gelled organic solvent can be obtained.
  • poly(dimethylaminoethyl methacrylate) can be used as the polymer, and N,N,N',N'-tetra(trifluoromethanesulfonyl)-dodecane-1,12- Diamines can be used.
  • the polymer has a crosslinked structure due to the crosslinker, and the ionic liquid or organic solvent is retained in the crosslinked structure, resulting in a gel state.
  • LiTFSI Li(CF 3 SO 2 ) 2 N
  • LiBETI Li(C 2 F 5 SO 2 ) 2 N
  • LiFSI Li(SO 2 F) 2 N
  • LiPF 6 , LiBF 4 , LiClO 4 or the like can be used as another lithium salt containing halogen.
  • LiBOB may also be used as a halogen-free lithium salt.
  • lithium salts may be used alone, or may be used as a mixture of the above.
  • a metal material such as aluminum or a resin material can be used as an exterior body of the secondary battery.
  • resin materials include rubber materials. Rubber includes natural rubber and synthetic rubber. Synthetic rubbers include rubber materials such as styrene-butadiene rubber (SBR), styrene-isoprene-styrene rubber, acrylonitrile-butadiene rubber, butadiene rubber, and ethylene-propylene-diene copolymers.
  • SBR styrene-butadiene rubber
  • SBR styrene-isoprene-styrene rubber
  • acrylonitrile-butadiene rubber butadiene rubber
  • ethylene-propylene-diene copolymers ethylene-propylene-diene copolymers.
  • the exterior body included in the secondary battery is preferably in the form of a film.
  • the exterior body that can be formed into a film shape preferably has a material such as polyethylene, polypropylene, polycarbonate, ionomer, polyamide, or the like.
  • a highly flexible metal thin film made of aluminum, stainless steel, copper, nickel, or the like, for the exterior body that can be formed into a film shape.
  • the exterior body that can be formed into a film shape may have a laminated structure. It is said that the first layer has a material such as polyethylene, polypropylene, polycarbonate, ionomer, polyamide, etc., and the second layer has a highly flexible metal thin film such as aluminum, stainless steel, copper, nickel, etc. good.
  • an insulating synthetic resin film such as a polyamide-based resin or a polyester-based resin on the outer surface of the exterior body.
  • a secondary battery having an electrolyte layer of one embodiment of the present invention is preferable because it is flexible.
  • the outer package using the insulating synthetic resin film described above is suitable for a curved secondary battery or a secondary battery that changes between a bent state and an extended state. Since the ionic liquid is held in the solid electrolyte, it is suppressed from seeping out even when the secondary battery is bent. Further, even when the ionic liquid seeps out, the above-described exterior body, particularly the exterior body having a laminated structure, can suppress the leakage of the ionic liquid from the secondary battery.
  • the positive electrode layer 106 and the negative electrode layer 107 may have a binder.
  • the electrolyte layer 103 may also have a binder.
  • the binder it is preferable to use rubber materials such as styrene-butadiene rubber (SBR), styrene-isoprene-styrene rubber, acrylonitrile-butadiene rubber, butadiene rubber, and ethylene-propylene-diene copolymer. Fluororubber can also be used as the binder.
  • a binder it is preferable to use, for example, a water-soluble polymer.
  • Polysaccharides for example, can be used as the water-soluble polymer.
  • cellulose derivatives such as carboxymethyl cellulose (CMC), methyl cellulose, ethyl cellulose, hydroxypropyl cellulose, diacetyl cellulose, regenerated cellulose, and starch can be used. Further, it is more preferable to use these water-soluble polymers together with the aforementioned rubber material.
  • polystyrene polyvinyl butyral (PVB), polymethyl acrylate, polymethyl methacrylate (polymethyl methacrylate, PMMA), sodium polyacrylate, polyvinyl alcohol (PVA), polyethylene oxide (PEO), polypropylene oxide , polyimide, polyvinyl chloride, polytetrafluoroethylene, polyethylene, polypropylene, polyisobutylene, polyethylene terephthalate, nylon, polyvinylidene fluoride (PVDF), polyacrylonitrile (PAN), ethylene propylene diene polymer, polyvinyl acetate, nitrocellulose, etc. It is preferable to use one or more selected.
  • the positive electrode layer 106 and the negative electrode layer 107 may contain a conductive aid.
  • Carbon materials such as acetylene black (AB), carbon nanotubes, graphene, and fullerene can be used as conductive aids.
  • Graphene is flaky and has excellent electrical properties of high electrical conductivity and excellent physical properties of mechanical strength. Therefore, by using graphene as a conductive additive, contact points or contact areas between active materials can be increased.
  • Graphene includes monolayer graphene or multilayer graphene having 2 to 100 layers.
  • Single-layer graphene refers to a one-atom-layer sheet of carbon molecules with ⁇ bonds.
  • the ionic liquid used in describing the example fabrication process may have a lithium salt.
  • An ionic liquid having a lithium salt is sometimes referred to as a lithium liquid electrolyte or a lithium ion electrolyte.
  • a positive electrode layer 106 is provided as shown in FIG. 5A.
  • the positive electrode layer 106 is obtained by applying a slurry containing a dispersion medium, a positive electrode active material 111, a solid electrolyte 113, and the like onto the positive electrode current collector 101 .
  • the dispersion medium and the like are removed from the slurry to form the positive electrode active material layer 102 .
  • the solid electrolyte 113 may become particulate when not subjected to the firing process, and may form a sintered body when subjected to the firing process.
  • cathode layer 106 has particulate solid electrolyte 113 .
  • An electrolyte layer 103 is provided as shown in FIG. 5B.
  • the electrolyte layer 103 has a solid electrolyte 113 and an ionic liquid 118 .
  • the electrolyte layer 103 processed into a sheet shape. This is sometimes referred to as a sheet-like electrolyte layer.
  • a sheet-like electrolyte layer is arranged on the positive electrode layer 106, and a pressing process is performed. Note that the pressing step may be performed after the negative electrode layer 107 , which will be described later, is placed on the electrolyte layer 103 . Heat may be applied during the pressing step.
  • FIG. 5B the boundary lines of each layer are shown in FIG. 5B, a clear boundary may not be confirmed due to the pressing process.
  • a negative electrode layer 107 is provided.
  • the negative electrode layer 107 is obtained by applying a slurry containing a dispersion medium, a negative electrode active material 117, a solid electrolyte 113 and the like on the negative electrode current collector 105 .
  • the dispersion medium and the like are removed from the slurry to form the negative electrode active material layer 104 .
  • the negative electrode layer 107 has a particulate solid electrolyte 113 .
  • a negative electrode layer 107 is placed on the electrolyte layer 103 and a pressing process is performed. Heat may be applied during the pressing step. Although the boundary lines of each layer are shown in FIG. 5C, a clear boundary may not be confirmed due to the pressing process.
  • the pressing process described with reference to FIG. 5C can also serve as the pressing process described with reference to FIG. 5B, the pressing process described with reference to FIG. 5B can be omitted.
  • the solid electrolyte 113 holds the ionic liquid 118 in the electrolyte layer 103 .
  • the ionic liquid 118 impregnates the solid electrolyte 113 at least in the electrolyte layer 103 .
  • Such an electrolyte layer 103 is preferable because the ionic liquid 118 does not seep out.
  • the electrolyte layer 103 may be referred to as a semi-solid electrolyte layer.
  • the solid electrolyte 113 may be a solid material, and the ionic liquid 118 may be a liquid material.
  • a positive electrode layer 106 is provided as shown in FIG. 6A.
  • the positive electrode layer 106 is obtained by applying a slurry containing a dispersion medium, a positive electrode active material 111, a solid electrolyte 113, and the like onto the positive electrode current collector 101 .
  • the dispersion medium and the like are removed from the slurry to form the positive electrode active material layer 102 .
  • the solid electrolyte 113 may become particulate when not subjected to the firing process, and may form a sintered body when subjected to the firing process.
  • cathode layer 106 has particulate solid electrolyte 113 .
  • An electrolyte layer 103 is provided as shown in FIG. 6B.
  • the electrolyte layer 103 has the solid electrolyte 113 and is processed into a sheet. It is preferable to make the solid electrolyte 113 into a sintered body through a sintering process because it is easy to retain the ionic liquid 118 described later.
  • a sheet-like electrolyte layer is arranged on the positive electrode layer 106, and a pressing process is performed. Note that the pressing step may be performed after the negative electrode layer 107 , which will be described later, is placed on the electrolyte layer 103 . Heat may be applied during the pressing step. Although the boundary lines of each layer are shown in FIG. 6B, a clear boundary may not be confirmed due to the pressing process.
  • a negative electrode layer 107 is provided.
  • the negative electrode layer 107 is obtained by applying a slurry containing a dispersion medium, a negative electrode active material 117, a solid electrolyte 113 and the like on the negative electrode current collector 105 .
  • the dispersion medium and the like are removed from the slurry to form the negative electrode active material layer 104 .
  • the negative electrode layer 107 has a particulate solid electrolyte 113 .
  • a negative electrode layer 107 is placed on the electrolyte layer 103 and a pressing process is performed. Heat may be applied during the pressing step.
  • FIG. 6C shows the boundary line of each layer, a clear boundary may not be confirmed due to the pressing process.
  • the pressing process described with reference to FIG. 6C can also serve as the pressing process illustrated with reference to FIG. 6B, the pressing process described with reference to FIG. 6B can be omitted.
  • an ionic liquid 118 is injected.
  • the injection of the ionic liquid 118 is preferably performed under a vacuum atmosphere or a reduced pressure atmosphere.
  • Gelation treatment may be performed on the implanted ionic liquid 118 .
  • heating it is preferable to use the heating performed in the above pressing step. That is, the gelling treatment may proceed while pressing.
  • the solid electrolyte 113 holds the ionic liquid 118 in the electrolyte layer 103 .
  • the ionic liquid 118 impregnates the solid electrolyte 113 at least in the electrolyte layer 103 .
  • Such an electrolyte layer 103 is preferable because the ionic liquid 118 does not seep out.
  • the electrolyte layer 103 may be referred to as a semi-solid electrolyte layer.
  • the solid electrolyte 113 may be a solid material, and the ionic liquid 118 may be a liquid material.
  • a cathode layer 106 is provided as shown in FIG. 7A.
  • the positive electrode layer 106 is obtained by applying a slurry containing a dispersion medium, a positive electrode active material 111, a solid electrolyte 113, and the like onto the positive electrode current collector 101 .
  • the dispersion medium and the like are removed from the slurry to form the positive electrode active material layer 102 .
  • the solid electrolyte 113 may become particulate when not subjected to the firing process, and may form a sintered body when subjected to the firing process.
  • cathode layer 106 has particulate solid electrolyte 113 .
  • a first electrolyte layer 103a is provided as shown in FIG. 7B.
  • the first electrolyte layer 103a is a layer containing the gelled ionic liquid 118a and does not contain a solid electrolyte.
  • a first electrolyte layer 103 a is disposed on the cathode layer 106 . If the first electrolyte layer 103a is a layer containing a gelled ionic liquid, it may have adhesiveness, and a pressing step can be omitted. Of course, you may implement a press process. Note that the pressing step may be performed after laminating up to the third electrolyte layer 103c described later or after placing the negative electrode layer 107 on the third electrolyte layer 103c. Heat may be applied during the pressing step. Although the boundary lines of each layer are shown in FIG. 7B, clear boundaries may not be confirmed due to the pressing process.
  • a second electrolyte layer 103b is provided as shown in FIG. 7C.
  • the second electrolyte layer 103b has a solid electrolyte 113, and a sheet electrolyte layer is preferably used.
  • a sheet electrolyte layer is preferably used.
  • a sintered body may be obtained by carrying out a sintering step when processing into a sheet.
  • a sheet electrolyte layer is placed on the first electrolyte layer 103a.
  • the first electrolyte layer 103a is a layer containing a gelled ionic liquid, it may have adhesiveness, and a pressing step can be omitted. Of course, a pressing process may be performed, and heat may be applied during the pressing process.
  • FIG. 7C the boundary lines of each layer are shown in FIG. 7C, a clear boundary may not be confirmed due to the pressing process.
  • a third electrolyte layer 103c is prepared.
  • a layer similar to the first electrolyte layer 103a can be used for the third electrolyte layer 103c, and a layer containing the gelled ionic liquid 118b is preferably used.
  • a third electrolyte layer 103c is disposed on the second electrolyte layer 103b. If the third electrolyte layer 103c is a layer containing a gelled ionic liquid, it may have adhesiveness, and a pressing step can be omitted. Of course, a pressing process may be performed, and heat may be applied during the pressing process. Although the boundary lines of each layer are shown in FIG. 7C, a clear boundary may not be confirmed due to the pressing process.
  • a negative electrode layer 107 is provided.
  • the negative electrode layer 107 is obtained by applying a slurry containing a dispersion medium, a negative electrode active material 117, a solid electrolyte 113 and the like on the negative electrode current collector 105 .
  • the dispersion medium and the like are removed from the slurry to form the negative electrode active material layer 104 .
  • the negative electrode layer 107 has a particulate solid electrolyte 113 .
  • a negative electrode layer 107 is arranged on the third electrolyte layer 103c, and a pressing process is performed. Heat may be applied during the pressing step.
  • FIG. 7D shows the boundary line of each layer, a clear boundary may not be confirmed due to the pressing process.
  • a part of the ionic liquid 118a may be impregnated into the voids of the solid electrolyte 113 of the second electrolyte layer 103b by the steps shown in FIG. 7D and the like. Part of the ionic liquid 118b may impregnate the voids of the solid electrolyte 113 included in the second electrolyte layer 103b.
  • the solid electrolyte 113 holds the ionic liquid 118 a or 118 b in the electrolyte layer 103 .
  • the solid electrolyte 113 is impregnated with the ionic liquid 118a or the ionic liquid 118b.
  • Such an electrolyte layer 103 is preferable because the ionic liquid 118a or the ionic liquid 118b does not seep out.
  • the electrolyte layer 103 may be referred to as a semi-solid electrolyte layer.
  • the solid electrolyte 113 may be a solid material, and the ionic liquid 118a or the ionic liquid 118b may be a liquid material.
  • a secondary battery having layers up to the second electrolyte layer 103b is prepared.
  • a negative electrode layer 107 is provided.
  • the negative electrode layer 107 is obtained by applying a slurry containing a dispersion medium, a negative electrode active material 117, a solid electrolyte 113 and the like on the negative electrode current collector 105 .
  • the dispersion medium and the like are removed from the slurry to form the negative electrode active material layer 104 .
  • the negative electrode layer 107 has a particulate solid electrolyte 113 .
  • a negative electrode layer 107 is arranged on the second electrolyte layer 103b, and a pressing process is performed. Heat may be applied during the pressing step. Although the boundary lines of each layer are shown in FIG. 8B, a clear boundary may not be confirmed due to the pressing process. Also, by the steps shown in FIG. 8B and the like, a part of the ionic liquid 118a can be impregnated into the voids of the solid electrolyte 113 of the second electrolyte layer 103b.
  • the solid electrolyte 113 holds part of the ionic liquid 118a in the second electrolyte layer 103b. In other words, part of the ionic liquid 118 a is impregnated into the solid electrolyte 113 at least in the electrolyte layer 103 . Such an electrolyte layer 103 is preferable because the ionic liquid 118a does not seep out.
  • the electrolyte layer 103 may be referred to as a semi-solid electrolyte layer.
  • the solid electrolyte 113 may be a solid material, and the ionic liquid 118 may be a liquid material.
  • a structure A is prepared by laminating up to the second electrolyte layer 103b according to the secondary battery manufacturing process 3 described above. Further, as shown in FIG. 9A, a structure B in which the negative electrode layer 107 and the third electrolyte layer 103c are laminated is prepared. Then, the structure A and the structure B are pasted together as indicated by the white arrows.
  • a pressing process is performed after bonding. Heat may be applied during the pressing step. Although the boundary lines of each layer are shown in FIG. 9B, a clear boundary may not be confirmed due to the pressing process. 9B and the like, part of the ionic liquid 118a or part of the ionic liquid 118b can be impregnated into the voids of the solid electrolyte 113 of the first electrolyte layer 103a.
  • the solid electrolyte 113 holds part of the ionic liquid 118 a and part of the ionic liquid 118 b in the electrolyte layer 103 .
  • the solid electrolyte 113 is impregnated with a portion of the ionic liquid 118a and a portion of the ionic liquid 118b.
  • Such an electrolyte layer 103 is preferable because the ionic liquid 118a or the ionic liquid 118b does not seep out.
  • the electrolyte layer 103 may be referred to as a semi-solid electrolyte layer.
  • the solid electrolyte 113 may be a solid material, and the ionic liquid 118a or the ionic liquid 118b may be a liquid material.
  • This embodiment can be used in combination with other embodiments.
  • step 310 of applying slurry on at least the positive electrode current collector 101 step 320 of drying the slurry to form the positive electrode active material layer 102 , and
  • step 330 of superimposing the electrolyte layer 103 the positive electrode current collector 101 on which the positive electrode active material layer 102 is formed is placed together with the electrolyte layer 103 by a pair of pressure rolls (a first pressure roll 325 and a second pressure roll 326). ) can be performed.
  • the manufacturing apparatus has a delivery mechanism 311 (also referred to as an unwinder), and a first bobbin 312 around which the positive electrode current collector 101 is wound is installed in the delivery mechanism 311 .
  • the rotation of the roller 313 is used to move the positive electrode current collector 101, and slurry is applied onto one surface of the positive electrode current collector 101 by the first slurry applying means 314a.
  • the slurry has at least a dispersant, a positive electrode active material and a solid electrolyte.
  • the rollers 313 are paired and can also press when passing between them.
  • a slot die coater, a lip coater, a blade coater, a reverse coater, a gravure coater, or the like can be used as the first slurry applying means 314a, for example.
  • the number of rollers for inverting the positive electrode current collector 101 may be increased depending on the type of coater used.
  • a method such as a dip method or a spray method can also be used as the first slurry adhering means 314a.
  • the slurry is applied while heating the first slurry applying means 314a.
  • the slurry is preferably applied in a heated state.
  • the slurry applied on the positive electrode current collector 101 is dried in a heating chamber 321 a having an inlet 322 , an outlet 323 and a drying means 324 .
  • the positive electrode active material layer 102 can be formed on the positive electrode current collector 101 .
  • the intake port 322 and the exhaust port 323 are preferably installed on the ceiling (also referred to as the top surface) of the heating chamber 321a, but they may be installed on the wall surface (also referred to as the side surface) or the floor surface (also referred to as the bottom surface) of the heating chamber 321a.
  • the drying means 324 one or a combination of two or more selected from warm air heating, lamp heating, induction heating, air blowing, etc. can be used.
  • Step 320 shows an example in which the slurry is naturally cooled after drying, and no cooling means is installed, but cooling means may be installed in or near the heating chamber 321a for forced cooling.
  • a first electrolyte layer 103a and a second electrolyte layer 103b are formed on the cathode active material layer 102 by a second slurry deposition means 314b. It is preferable that the first electrolyte layer 103 a and the second electrolyte layer 103 b be prepared as a laminate and then formed over the positive electrode active material layer 102 . Alternatively, a plurality of adhesion means corresponding to the second slurry adhesion means 314b may be provided, and the first electrolyte layer 103a and the second electrolyte layer 103b may be formed on the positive electrode active material layer 102 in this order.
  • the negative electrode current collector 105 is also processed.
  • the second bobbin 405 around which the negative electrode current collector 105 is wound is installed in the delivery mechanism 315, and the rotation of the roller 316 is used to apply the slurry onto one surface of the negative electrode current collector 105 by the third slurry adhering means 314c. Apply the slurry to the
  • the slurry has at least a dispersion medium, a negative electrode active material and a solid electrolyte.
  • the rollers 316 are paired and can also press as they pass between them.
  • a slot die coater, a lip coater, a blade coater, a reverse coater, a gravure coater, or the like can be used as the third slurry applying means 314c, for example.
  • the number of rollers for inverting the negative electrode current collector 105 may be increased depending on the type of coater used.
  • a method such as a dip method or a spray method can also be used as the third slurry adhering means 314c.
  • the slurry is applied while heating the third slurry applying means 314c.
  • the slurry is preferably applied in a heated state.
  • the slurry applied on the negative electrode current collector 105 is dried in the heating chamber 321b.
  • the heating chamber 321b may have the same configuration as the heating chamber 321a.
  • the negative electrode active material layer 104 can be formed on the negative electrode current collector 105 .
  • the slurry may be naturally cooled, or forced cooling may be performed by installing a cooling means in or near the heating chamber 321b.
  • step 340 slurry is applied onto the negative electrode active material layer 104 by the fourth slurry applying means 314d and passed through the heating chamber 321c to form the third electrolyte layer 103c.
  • step 340 is reached.
  • the heating chamber 321c may have the same configuration as the heating chamber 321a.
  • a slot die coater, lip coater, blade coater, reverse coater, gravure coater, or the like can be used as the fourth slurry applying means 314d.
  • the number of rollers for inverting the negative electrode current collector 105 may be increased depending on the type of coater used.
  • a method such as a dip method or a spray method can also be used as the fourth slurry adhering means 314d.
  • the slurry is applied while heating the fourth slurry applying means 314d.
  • the slurry is preferably applied in a heated state.
  • step 340 the positive electrode current collector 101 and the negative electrode current collector 105 are overlapped and pressed using rotation of a pair of pressure rolls (first pressure roll 325 and second pressure roll 326). conduct. It may be heated during pressing. This step may temporarily melt (solate) the ionic liquid or the like in the electrolyte layer. The molten ionic liquid or the like can be impregnated into the adjacent positive electrode layer or negative electrode layer.
  • the laminate is wound onto a second bobbin 328 installed on a winding mechanism 327 (also called a winder). Then, it is cut into a desired shape by a cutting means such as a laser cut or a cutter (not shown).
  • FIG. 10 shows an example in which the laminated body is wound, it may be cut into a desired shape by laser cutting or a cutting means such as a cutter (not shown) without being wound.
  • a secondary battery can be manufactured.
  • An electrolyte source, a binder, a plasticizer, and a solvent are prepared as shown in step S50 of FIG.
  • LLZAO powder is prepared as an electrolyte source.
  • Polyvinyl butyral (PVB) is prepared as a binder.
  • Dioctyl phthalate (DOP) is prepared as a plasticizer.
  • NMP N-methyl-2-pyrrolidone
  • the above-mentioned materials such as polyvinyl alcohol (PVA) may be used as the binder, and acrylic resin may be used as the binder.
  • PVA polyvinyl alcohol
  • acrylic resin may be used as the binder.
  • a phthalate ester can be used as a plasticizer.
  • DMP dimethyl phthalate
  • DEP diethyl phthalate
  • DBP dibutyl phthalate
  • NMP one or more selected from water, dimethylformamide (DMF) and the like may be used.
  • step S52 of FIG. 11 the above materials are mixed to obtain slurry as shown in step S54.
  • the materials shown in step S50 may be individually mixed prior to the mixing shown in step S52.
  • Step S52 can mix, for example using a rotation-revolution mixer.
  • the rotation speed can be between 1000 rpm and 3000 rpm.
  • the rotation time can be 1 minute or more and 10 minutes or less. Mixing using the mixer may be performed not once but two or more times.
  • the slurry is applied to the substrate for coating.
  • the base material for coating it is preferable to use a material from which the sheet-like electrolyte layer is easily peeled off, such as a silicone base material.
  • a release agent or the like may be applied to the surface of the substrate for coating in order to facilitate peeling.
  • the slurry is dried using a drying furnace or the like.
  • the drying temperature should be 25° C. or higher and 200° C. or lower, preferably 45° C. or higher and 85° C. or lower. Solvents and the like contained in the slurry are removed by drying.
  • the electrolyte layer sheet is peeled off from the coating substrate.
  • the peeling in step S56 may be called separating the electrolyte layer sheet from the substrate for coating.
  • the electrolyte layer that is not pressed, that is, the electrolyte layer before pressing is preferably peeled off from the coating substrate.
  • An electrolyte layer that is not pressed may be referred to as an unpressed electrolyte layer.
  • pressing is performed after drying.
  • a roll press machine can be used for pressing.
  • the gap of the roll press is set to be, for example, 50% or more and 70% or less of the film thickness of the unpressed electrolyte layer.
  • the gap of the roll press is 60 ⁇ m or more and 100 ⁇ m or less, preferably 70 ⁇ m or more and 85 ⁇ m or less.
  • a first sheet-like electrolyte layer can be obtained.
  • the first sheet-like electrolyte layer preferably has a thickness of 100 ⁇ m or more and 150 ⁇ m or less, preferably 120 ⁇ m or more and 140 ⁇ m or less.
  • Voids can be confirmed in the first sheet-like electrolyte layer from an SEM (scanning electron microscope) observation image or the like. Further, from the SEM observation image, etc., it can be confirmed that the LLZAO powder, which is the solid electrolyte, is connected to each other via the binder in the first sheet-like electrolyte layer.
  • the first sheet-like electrolyte layer is heated.
  • the heating temperature is 1000° C. or higher and 1300° C. or lower, preferably 1100° C. or higher and 1250° C. or lower.
  • the heating atmosphere is preferably an atmosphere containing oxygen, but may be an atmosphere containing oxygen and an inert gas, or an atmosphere containing an inert gas.
  • FIG. 12A and 12B show the state of the first sheet-like electrolyte layer during heating.
  • the first sheet-like electrolyte layer 125 is heated while being punched into a circular shape.
  • FIG. 12A is a schematic top view, in which a first sheet-like electrolyte layer 125 is placed on an alumina substrate 126 . Between the alumina substrate 126 and the first sheet-like electrolyte layer 125 is a region 128 in which LLZAO powder is dispersed. In order to suppress sticking between the alumina substrate 126 and the first sheet-like electrolyte layer 125, LLZAO powder may be sprinkled.
  • FIG. 12B is a schematic cross-sectional view, and a region 128 where the LLZAO powder is dispersed can be confirmed between the alumina substrate 126 and the first sheet-like electrolyte layer 125 .
  • a substrate 129 opposed to the alumina substrate 126 is placed using a gap maintaining material 130 so as to cover it.
  • An alumina substrate may also be used for the substrate 129 .
  • the LLZAO powder is preferably dispersed on the upper surface of the first sheet-like electrolyte layer 125, and the dispersed area is defined as the area 128b.
  • a second sheet-like electrolyte layer is obtained. Since the second sheet-like electrolyte layer undergoes a heating process, it may shrink more than the first sheet-like electrolyte layer. For example, when the first sheet-like electrolyte layer is punched into a circular shape with a diameter of 12 mm, the second sheet-like electrolyte layer shrinks into a circular shape with a diameter of 10 mm.
  • the second sheet-like electrolyte layer preferably has a thickness of 80 ⁇ m or more and 120 ⁇ m or less, preferably 90 ⁇ m or more and 110 ⁇ m or less, and the thickness is also smaller than that of the first sheet-like electrolyte layer.
  • LLZAO which is a solid electrolyte
  • the binder may not be observed in the second sheet-like electrolyte layer from the SEM observation image or the like. For example, it is considered that the binder or the like is removed by heating in step S60.
  • the second sheet-like electrolyte layer thus obtained can be used as the solid material of the electrolyte layer 103 shown in the above embodiment and the like.
  • This embodiment can be used in combination with other embodiments.
  • FIGS. 13E and 13F show enlarged views of the vicinity of CD in FIG. 13A.
  • the positive electrode active material 200 has a surface layer portion 200a and an inner portion 200b.
  • the dashed line indicates the boundary between the surface layer portion 200a and the inner portion 200b.
  • An example of the grain boundary 201 is shown by a dashed line in FIG. 13B.
  • the surface layer portion 200a of the positive electrode active material 200 is, for example, within 50 nm from the surface toward the inside, more preferably within 35 nm from the surface toward the inside, and still more preferably within 20 nm from the surface toward the inside. It refers to a region within 10 nm, most preferably within 10 nm from the surface toward the inside. Surfaces caused by cracks and/or cracks may also be referred to as surfaces. Surface layer 200a is synonymous with near-surface, near-surface region, or shell.
  • a region deeper than the surface layer portion 200a of the positive electrode active material is called an inner portion 200b.
  • Interior 200b is synonymous with interior region or core.
  • the surface of the positive electrode active material 200 means the surface of the composite oxide including the surface layer portion 200a, the inner portion 200b, the convex portion 203, and the like. It is assumed that the cathode active material 200 does not contain chemically adsorbed carbonates, hydroxyl groups, and the like after fabrication. Also, the positive electrode active material 200 does not include an electrolyte, a binder, a conductive material attached to the positive electrode active material 200, or a compound derived from these.
  • the surface of the positive electrode active material 200 in a cross-sectional STEM (scanning transmission electron microscope) image or the like is a boundary between a region in which an electron beam coupling image is observed and a region in which an electron beam coupling image is not observed, and is a metal having an atomic number larger than that of lithium.
  • the surface of the positive electrode active material 200 may be determined in combination with the results of analysis with a higher spatial resolution, such as electron energy loss spectroscopy (EELS), for the surface in a cross-sectional STEM image or the like.
  • EELS electron energy loss spectroscopy
  • the crystal grain boundary 201 is, for example, a portion where the positive electrode active materials 200 adhere to each other, a portion where the crystal orientation changes inside the positive electrode active material 200, that is, a discontinuous repetition of bright lines and dark lines in an STEM image or the like.
  • a crystal defect means a defect observable in a cross-sectional TEM (transmission electron microscope), a cross-sectional STEM image, or the like, that is, a structure in which another element enters between lattices, a cavity, or the like.
  • the grain boundary 201 can be said to be one of planar defects.
  • the vicinity of the grain boundary 201 means a region within 10 nm from the grain boundary 201 .
  • the positive electrode active material 200 contains lithium, a transition metal M, oxygen, and an additive element A.
  • the positive electrode active material 200 has a compound oxide (LiMO 2 ) containing lithium and a transition metal M to which an additive element A is added.
  • the positive electrode active material to which the additive element A is added is sometimes called a composite oxide.
  • a positive electrode active material for a lithium ion secondary battery needs to contain a transition metal capable of being oxidized and reduced in order to maintain charge neutrality even when lithium ions are intercalated and deintercalated.
  • cobalt is preferably mainly used as the transition metal M responsible for an oxidation-reduction reaction.
  • one or more selected from nickel and manganese may be used.
  • cobalt accounts for 75 atomic % or more, preferably 90 atomic % or more, and more preferably 95 atomic % or more of the transition metal M included in the positive electrode active material 200, synthesis is relatively easy, handling is easy, and excellent cycle characteristics can be obtained. It is preferable because it has many advantages.
  • nickel such as lithium nickel oxide (LiNiO 2 ) is the transition metal M
  • x is small in Li x CoO 2
  • the stability is superior compared to composite oxides in which x is the majority. This is probably because cobalt is less affected by strain due to the Jahn-Teller effect than nickel.
  • the Jahn-Teller effect in transition metal compounds varies in strength depending on the number of electrons in the d-orbital of the transition metal.
  • the raw material becomes cheaper than when cobalt is abundant. It is preferable because it may increase the discharge capacity per weight.
  • the additive element A included in the positive electrode active material 200 includes magnesium, fluorine, nickel, aluminum, titanium, zirconium, vanadium, iron, manganese, chromium, niobium, arsenic, zinc, silicon, sulfur, phosphorus, boron, bromine, and beryllium. It is preferable to use one or two or more selected from.
  • the additive element A is preferably less than 25 atomic %, more preferably less than 10 atomic %, and even more preferably less than 5 atomic % relative to the transition metal (when there are two or more transition metals, the total).
  • the positive electrode active material 200 includes lithium cobalt oxide to which magnesium and fluorine are added, magnesium, lithium cobalt oxide to which fluorine and titanium are added, magnesium, lithium cobalt oxide to which fluorine and aluminum are added, magnesium, fluorine and nickel. It can have lithium cobaltate doped, lithium cobaltate doped with magnesium, fluorine, nickel and aluminum, and the like.
  • additive elements A further stabilize the crystal structure of the positive electrode active material 200 as described later.
  • the additive element A is a part of the raw material of the positive electrode active material, but is called an additive element because its concentration is lower than that of the main component.
  • the additive element A does not necessarily contain magnesium, fluorine, nickel, aluminum, titanium, zirconium, vanadium, iron, manganese, chromium, niobium, arsenic, zinc, silicon, sulfur, phosphorus, boron, bromine, or beryllium. good.
  • the positive electrode active material 200 substantially does not contain manganese, the above advantages of being relatively easy to synthesize, easy to handle, and having excellent cycle characteristics are enhanced.
  • the weight of manganese contained in the positive electrode active material 200 is preferably, for example, 600 ppm or less, more preferably 100 ppm or less.
  • the manganese weight can be analyzed using, for example, GD-MS (glow discharge mass spectrometry).
  • ⁇ Crystal structure> A change in crystal structure due to x in Li x CoO 2 will be described with reference to FIGS. 14 to 20 while comparing a conventional positive electrode active material and the positive electrode active material 200 of one embodiment of the present invention.
  • the value of x indicates how much lithium that can be intercalated and deintercalated remains in the lithium cobaltate, and can be said to be the lithium occupancy in Li x CoO 2 .
  • Co is an example of a transition metal, and cobalt may be read as a transition metal M, and a cobalt site may be read as a transition metal M site, as appropriate.
  • the layered rock salt crystal structure belonging to the space group R-3m which is possessed by a composite oxide containing lithium and a transition metal M such as cobalt, means that cations and anions are It has a rock-salt type ion arrangement that is alternately arranged, and the transition metal M and lithium are regularly arranged to form a two-dimensional plane, so it is a crystal structure that allows two-dimensional diffusion of lithium.
  • defects such as lack of cations or anions may be present.
  • the layered rock salt type crystal structure may have a structure in which the lattice of the rock salt type crystal structure is distorted.
  • the rock salt type crystal structure refers to a structure having a cubic crystal structure including space group Fm-3m, in which cations and anions are alternately arranged. In addition, there may be a lack of cations or anions.
  • the layered rock salt crystal structure has two types of cation sites. occupy.
  • the layered structure in which the two-dimensional planes of cations and the two-dimensional planes of anions are alternately arranged is the same for both the rock salt type crystal structure and the layered rock salt type crystal structure.
  • the bright spots of the electron beam diffraction pattern corresponding to the crystal plane forming this two-dimensional plane when the central spot (transmission spot) is set to the origin 000, the bright spot closest to the central spot is ideal.
  • the rock salt type crystal structure has the (111) plane
  • the layered rock salt type crystal structure has the (003) plane, for example.
  • the bright spots on the (003) plane of LiCoO2 are the bright spots on the (111) plane of MgO. Observed at about half the distance. Therefore, when the analysis region has two phases, for example, MgO with a rock salt crystal structure and LiCoO 2 with a layered rock salt crystal structure, the electron beam diffraction pattern shows bright spots with strong brightness and bright spots with weak brightness. Alternating crystal planes are present. Bright spots that are common to the rock salt crystal structure and the layered rock salt crystal structure have high brightness, and bright spots that occur only in the layered rock salt crystal structure have low brightness.
  • the layered rock salt crystal structure and the anions of the rock salt crystal structure have a cubic close-packed structure (face-centered cubic lattice structure).
  • the O3' type crystal structure described later is also presumed to have a cubic close-packed structure of anions. Therefore, when the layered rock salt type crystal structure and the rock salt type crystal structure are in contact with each other, there exists a crystal plane in which the direction of the cubic close-packed structure composed of anions is aligned.
  • the anions in the ⁇ 111 ⁇ planes of the cubic crystal structure have a triangular lattice.
  • the crystal structure of the layered rock salt type belongs to the space group R-3m and has a rhombohedral structure. has a hexagonal lattice.
  • the triangular lattice of the cubic ⁇ 111 ⁇ planes has the same atomic arrangement as the hexagonal lattice of the (0001) planes of the layered rocksalt crystal structure. It can be said that the orientation of the cubic close-packed structure is aligned when both lattices are consistent.
  • the space group of the layered rock salt type crystal structure and the later-described O3' type crystal structure is R-3m
  • the space group Fm-3m of the rock salt type crystal structure (the space group Fm-3m is a general rock salt type is the space group of the crystal structure)
  • the Miller indices of the crystal planes satisfying the above conditions are different between the layered rocksalt type crystal structure and the O3′ type crystal structure, and the rocksalt type crystal structure.
  • the layered rocksalt crystal structure, the O3′ crystal structure, and the rocksalt crystal structure when the directions of the cubic close-packed structures composed of anions are aligned, the orientation of the crystals is approximately the same. , there is a case to say.
  • the fact that the orientation of the crystals is approximately the same in the two regions is due to TEM images, STEM (scanning transmission electron microscope) images, HAADF-STEM (high angle scattering annular dark field scanning transmission electron microscope) images, and ABF-STEM (annular bright field) images. It can be determined from scanning transmission electron microscope) images, electron beam diffraction patterns, FFT patterns such as TEM images and STEM images. XRD, electron beam diffraction, neutron beam diffraction, etc. can also be used as materials for determination.
  • FIG. 14 shows an example of a TEM image in which the orientations of the circled layered rock salt crystal structure LRS and the circled rock salt crystal structure RS roughly match.
  • Such TEM images, STEM images, HAADF-STEM images, ABF-STEM images, and the like provide images that reflect the crystal structure.
  • a contrast derived from a crystal plane can be obtained.
  • the contrast derived from the (0003) plane is a bright band (bright strip or bright band). lines) and dark bands (dark strips, or dark lines). Therefore, repetition of bright lines and dark lines is observed in the TEM image, and when the angle between the bright lines (for example, L RS and L LRS shown in FIG.
  • the crystal plane 14 is 5 degrees or less, or 2.5 degrees or less, the crystal plane is roughly It can be determined that they match, that is, that the crystal orientations roughly match. Similarly, when the angle between the dark lines is 5 degrees or less, or 2.5 degrees or less, it can be determined that the crystal orientations are approximately the same.
  • ABF-STEM In ABF-STEM, the smaller the atomic number, the brighter the element is observed, but since it is the same as HAADF-STEM in that a contrast corresponding to the atomic number can be obtained, the ABF-STEM image is similar to the HAADF-STEM image. orientation can be determined.
  • FIG. 15A shows an example of an STEM image in which the orientations of the layered rock salt type crystal structure LRS indicated by the square and the orientation of the rock salt type crystal structure RS indicated by the square approximately match.
  • FIG. 15B shows the FFT of the region of the rock salt type crystal structure RS
  • FIG. 15C shows the FFT of the region of the layered rock salt type crystal structure LRS.
  • the left side of FIGS. 15B and 15C shows the composition
  • the right side of the composition shows the JCPDS card number, and the d value and angle calculated therefrom. Measured values are shown on the right.
  • the spots marked with an O are the 0th diffraction order.
  • the spot labeled A in FIG. 15B originates from the cubic 11-1 reflection.
  • the spots marked with A in FIG. 15C are derived from the 0003 reflection of the layered rock salt type crystal structure. From FIG. 15B and FIG. 15C, it can be seen that the orientation of the 11-1 reflection of the cubic crystal and the orientation of the 0003 reflection of the layered rocksalt crystal structure approximately match. That is, it can be seen that the straight line passing through AO in FIG. 15B and the straight line passing through AO in FIG. 15C are substantially parallel.
  • the terms "substantially coincident” and “substantially parallel” as used herein mean that the angle formed by each straight line is 5 degrees or less, or 2.5 degrees or less.
  • the ⁇ 0003> orientation of the layered rock salt type crystal structure and the rock salt type crystal structure may approximately match the ⁇ 11-1> orientation of At this time, it is preferable that these reciprocal lattice points are spot-like, that is, not continuous with other reciprocal lattice points.
  • the fact that the reciprocal lattice points are spot-like and are not continuous with other reciprocal lattice points means that the crystallinity is high.
  • the layered rocksalt type A spot not derived from the 0003 reflection of the layered rock salt type crystal structure may be observed on a reciprocal lattice space different from the orientation of the 0003 reflection of the crystal structure.
  • the spot labeled B in FIG. 15C originates from the 1014 reflection of the layered rocksalt crystal structure. This is an angle of 52° or more and 56° or less from the orientation of the reciprocal lattice point (A in FIG. 15C) derived from the 0003 reflection of the layered rock salt crystal structure (that is, ⁇ AOB is 52° or more and 56° or less). ), and d may be observed at a location of 0.19 nm or more and 0.21 nm or less. Note that this index is an example, and does not necessarily have to match this index. For example, they may be equivalent reciprocal lattice points.
  • a spot not derived from the cubic 11-1 reflection may be observed on a reciprocal lattice space different from the orientation in which the cubic 11-1 reflection is observed.
  • the spot labeled B in FIG. 15B is from the cubic 200 reflection. This is a diffraction spot at an angle of 54° or more and 56° or less (that is, ⁇ AOB is 54° or more and 56° or less) from the orientation of the cubic 11-1-derived reflection (A in FIG. 15B). is sometimes observed.
  • this index is an example, and does not necessarily have to match this index. For example, they may be equivalent reciprocal lattice points.
  • the (0003) plane and its equivalent plane and the (10-14) plane and its equivalent plane appear as crystal planes. known to be easy. Therefore, by carefully observing the shape of the positive electrode active material with an SEM or the like, the observation sample is prepared with an FIB or the like so that the (0003) plane can be easily observed, for example, the electron beam is [12-10] incident in the TEM or the like. Thin section processing is possible. When it is desired to judge the coincidence of crystal orientation, it is preferable to thin the crystal so that the (0003) plane of the layered rock salt type crystal structure can be easily observed.
  • the crystal structure has a layered rock salt type crystal structure belonging to the space group R-3m.
  • the conventional positive electrode active material shown in FIG. 17 is lithium cobalt oxide (LiCoO 2 ) that does not have additive element A in particular.
  • non-patent documents 1 to 3 describe changes in the crystal structure of lithium cobalt oxide that does not contain the additive element A.
  • the crystal structure has lithium occupying octahedral sites, and there are three CoO 2 layers in the unit cell. Therefore, this crystal structure is sometimes called an O3 type crystal structure.
  • the CoO 2 layer is a layer in which an octahedral structure in which six oxygen atoms are coordinated to cobalt continues in a plane in a state of shared edges. This is sometimes referred to as a layer composed of octahedrons of cobalt and oxygen.
  • the crystal structure has a layered rock salt type crystal structure belonging to the space group R-3m.
  • the crystal structure has lithium occupying octahedral sites and three CoO 2 layers in the unit cell.
  • Lithium cobalt oxide which has a layered rock salt crystal structure, has a high discharge capacity, a two-dimensional lithium ion diffusion path, and is suitable for lithium ion insertion/extraction reactions. Excellent material. Therefore, in the positive electrode active material 200 of one embodiment of the present invention, the inside 200b that occupies most of the volume is preferably lithium cobaltate having a layered rock salt crystal structure.
  • the surface layer portion 200a of the lithium cobalt oxide used in the positive electrode active material 200 of one embodiment of the present invention is a layer (for example, It preferably has a function of reinforcing the layer structure of CoO 2 layer) so that it does not break. That is, the surface layer portion 200 a preferably functions as a barrier film for the positive electrode active material 200 . Alternatively, the surface layer portion 200 a preferably reinforces the positive electrode active material 200 . Reinforcement includes suppressing structural changes in the surface layer portion 200 a and the inner portion 200 b of the positive electrode active material 200 and/or suppressing oxidative decomposition of the electrolyte on the surface of the positive electrode active material 200 .
  • the surface layer portion 200a preferably has a crystal structure different from that of the inner portion 200b.
  • the surface layer portion 200a preferably has a more stable composition and crystal structure at room temperature (25° C.) than the inner portion 200b.
  • the surface layer portion 200a preferably has at least a rock salt crystal structure. It is more preferable that the entire surface layer portion 200a has a rock salt crystal structure, but the structure is not limited to this.
  • the surface layer portion 200a may have both a rock salt type crystal structure and a layered rock salt type crystal structure.
  • the surface layer portion 200a is a region where lithium ions are first desorbed during charging, and is a region where the lithium concentration tends to be lower than that in the inner portion 200b.
  • atoms (for example, oxygen) forming lithium cobaltate are present in a state in which bonds are cut from the surface, which is the surface layer portion 200a, due to detachment of lithium ions. That is, the surface layer portion 200a is more likely to become unstable than the inner portion 200b, and can be said to be a region where deterioration of the crystal structure is more likely to occur.
  • the layer structure consisting of octahedrons of cobalt and oxygen in the inner portion 200b is difficult to break. can do. Breaking of the layer structure includes deviation of the edge of the layer structure composed of octahedrons of cobalt and oxygen, and the deviation can be suppressed if the surface layer portion 200a is sufficiently stable.
  • the surface layer portion 200a should have a stable composition or a stable crystal structure.
  • the additive element A includes two or more elements having different concentration distributions, such as additive element X and additive element Y, which will be described later.
  • the fact that the surface layer portion 200a has the additive element A includes that the concentration of the additive element A present in the surface layer portion 200a is higher than the concentration of the additive element A present in the inner portion 200b.
  • the concentration of the additive element is high and low.
  • the additive element A has a concentration gradient in the surface layer portion 200a, or the additive element A has a concentration gradient from the surface layer portion 200a to the inner portion 200b. is included.
  • the concentration distributions indicating the concentration gradient are different from each other. More preferably, the peak position indicating the maximum value of the additive element X concentration and the peak position indicating the maximum value of the additive element Y concentration are preferably different.
  • the maximum value of concentration is sometimes referred to as peak top, and the maximum value of concentration is sometimes referred to as peak.
  • the additive element X selected from the additive elements A preferably has a concentration distribution that increases from the inside 200b toward the surface, as shown by the gradation in FIG. 13C.
  • the peak top of the additive element X is preferably present in the surface layer portion 200a.
  • the additive element X preferably has a concentration distribution such that the peak top is located in a region of 0.5 nm or more and 10 nm or less from the surface toward the inside.
  • the additive element Y selected from the additive elements A preferably has a concentration gradient as indicated by hatching in FIG. 13D and has a peak top in a region deeper than the peak top in FIG. is one or more elements selected from aluminum, manganese, and the like.
  • the peak top of the additional element Y may exist in the surface layer portion 200a or may exist deeper than the surface layer portion 200a.
  • the additive element Y preferably has a concentration distribution such that the peak top is located in a region of 5 nm or more and 30 nm or less from the surface toward the inside.
  • the position of the peak top of additive element Y is preferably different from the position of the peak top of additive element X.
  • the concentration distribution of the additive element Y is preferably different from the concentration distribution of the additive element X.
  • a magnesium ion which is one of the additional elements X, is divalent, and is more stable at lithium sites than at cobalt sites in the layered rock salt crystal structure, so it easily enters lithium sites. That is, when magnesium is present at an appropriate concentration in the lithium sites of the surface layer portion 200a, the layered rock salt crystal structure of the inner portion 200b can be easily maintained. It is presumed that this is because the magnesium present in the lithium sites in the surface layer portion 200a functions as a pillar supporting the CoO 2 layers.
  • the presence of magnesium in lithium cobaltate can suppress desorption of oxygen around magnesium even when x in Li x CoO 2 is, for example, 0.24 or less.
  • the presence of magnesium can be expected to increase the density of lithium cobaltate. Further, when the magnesium concentration of the surface layer portion 200a is higher than that of the inner portion 200b, it can be expected that the corrosion resistance to hydrofluoric acid generated by the decomposition of the electrolytic solution is improved.
  • the amount of magnesium contained in the entire positive electrode active material 200 is appropriate.
  • the number of atoms of magnesium is preferably 0.001 to 0.1 times the number of cobalt atoms, more preferably more than 0.01 times and less than 0.04 times, and still more preferably about 0.02 times.
  • the amount of magnesium contained in the entire positive electrode active material 200 is obtained by performing elemental analysis of the entire positive electrode active material 200 using, for example, GD-MS, ICP-MS (inductively coupled plasma mass spectrometry), or the like. It may be a value, or it may be based on the value of the blending of raw materials in the process of manufacturing the positive electrode active material 200 .
  • nickel which is one of the additive elements X, can exist at both the cobalt site and the lithium site. When it exists in the cobalt site, the oxidation-reduction potential becomes lower than that of cobalt, which leads to an increase in discharge capacity, which is preferable.
  • the amount of nickel contained in the entire positive electrode active material 200 is appropriate.
  • the number of nickel atoms in the positive electrode active material 200 is more than 0% and preferably 7.5% or less, preferably 0.05% or more and 4% or less, and 0.1% or more and 2% or less. is preferred, and 0.2% or more and 1% or less is more preferred.
  • it is preferably more than 0% and 4% or less.
  • it is preferably more than 0% and 2% or less.
  • 0.05% or more and 7.5% or less is preferable.
  • 0.05% or more and 2% or less is preferable.
  • 0.1% or more and 7.5% or less is preferable.
  • the amount of nickel shown here may be, for example, a value obtained by elemental analysis of the entire positive electrode active material using GD-MS, ICP-MS, or the like, or It may be based on the value of the raw material formulation.
  • Aluminum which is one of the additive elements Y, can be present at cobalt sites in the layered rock salt type crystal structure. Since aluminum is a trivalent typical element and does not change its valence, lithium around aluminum does not easily move during charging and discharging. Therefore, aluminum and lithium around it function as pillars and can suppress changes in the crystal structure. Aluminum also has the effect of suppressing the elution of surrounding transition metals M and improving the continuous charge resistance. In addition, since the Al--O bond is stronger than the Co--O bond, detachment of oxygen around aluminum can be suppressed. These effects improve thermal stability. Therefore, if aluminum is included as the additive element Y, the safety of the secondary battery can be improved. Further, the positive electrode active material 200 whose crystal structure does not easily collapse even after repeated charging and discharging can be obtained.
  • the amount of aluminum contained in the entire positive electrode active material 200 is appropriate.
  • the number of aluminum atoms contained in the entire positive electrode active material 200 is preferably 0.05% or more and 4% or less, preferably 0.1% or more and 2% or less, or 0.3% or more and 1.5% or more. % or less is more preferable. Alternatively, 0.05% or more and 2% or less is preferable. Alternatively, 0.1% or more and 4% or less is preferable.
  • the amount of the entire positive electrode active material 200 referred to here may be, for example, a value obtained by performing elemental analysis of the entire positive electrode active material 200 using GD-MS, ICP-MS, or the like. It may be based on the value of the raw material composition in the process of manufacturing the active material 200 .
  • Fluorine which is one of the additive elements X, is a monovalent anion, and if part of the oxygen in the surface layer portion 200a is substituted with fluorine, the lithium desorption energy becomes small. This is because the change in the valence of cobalt ions due to desorption of lithium changes from trivalent to tetravalent when fluorine is not present, and from divalent to trivalent when fluorine is present, resulting in different oxidation-reduction potentials. Therefore, when a part of oxygen is substituted with fluorine in the surface layer portion 200a, it can be said that desorption and insertion of lithium ions in the vicinity of fluorine occur smoothly.
  • lithium cobalt oxide containing fluorine when used in a secondary battery, charge/discharge characteristics, current characteristics, and the like can be improved. Further, the presence of fluorine in the surface layer portion 200a having the surface which is the portion in contact with the electrolytic solution can effectively improve the corrosion resistance to hydrofluoric acid. Also, as will be described later, when the melting point of fluorides such as lithium fluoride is lower than the melting point of other additive element A sources, it functions as a fluxing agent (also referred to as a fluxing agent) that lowers the melting point of other additive element A sources. I can.
  • Titanium oxide which is one of the additive elements X, is known to have superhydrophilicity. Therefore, by using the positive electrode active material 200 including titanium oxide in the surface layer portion 200a, wettability to a highly polar solvent may be improved. When used as a secondary battery, the interface between the positive electrode active material 200 and the highly polar electrolyte solution is in good contact, and an increase in internal resistance may be suppressed.
  • phosphorus which is one of the additive elements X
  • it may suppress short circuits when the state of x in Li x CoO 2 is kept small.
  • it preferably exists in the surface layer portion 200a as a compound containing phosphorus and oxygen.
  • the positive electrode active material 200 contains phosphorus
  • hydrogen fluoride generated by decomposition of the electrolyte reacts with phosphorus, which is preferable because the concentration of hydrogen fluoride in the electrolyte can be reduced.
  • hydrolysis may generate hydrogen fluoride.
  • hydrogen fluoride may be generated due to the reaction between polyvinylidene fluoride (PVDF), which is used as a component of the positive electrode, and alkali. Corrosion of the current collector may be suppressed by lowering the concentration of hydrogen fluoride in the electrolyte. In addition, it may be possible to suppress deterioration in adhesiveness due to insolubilization of PVDF.
  • PVDF polyvinylidene fluoride
  • the positive electrode active material 200 contains phosphorus together with magnesium, because the stability in the state where x in Li x CoO 2 is small is extremely high.
  • the number of phosphorus atoms is preferably 1% or more and 20% or less, more preferably 2% or more and 10% or less, and even more preferably 3% or more and 8% or less of the number of cobalt atoms.
  • it is preferably 1% or more and 10% or less.
  • 1% or more and 8% or less is preferable.
  • it is preferably 2% or more and 20% or less.
  • 2% or more and 8% or less is preferable.
  • 3% or more and 20% or less is preferable.
  • the number of atoms of magnesium is preferably 0.1% or more and 10% or less, more preferably 0.5% or more and 5% or less, and more preferably 0.7% or more and 4% or less of the number of cobalt atoms.
  • 0.1% or more and 5% or less is preferable.
  • 0.1% or more and 4% or less is preferable.
  • 0.5% or more and 10% or less is preferable.
  • 0.5% or more and 4% or less is preferable.
  • 0.7% or more and 10% or less is preferable.
  • 0.7% or more and 5% or less is preferable.
  • concentrations of phosphorus and magnesium shown here may be, for example, values obtained by performing elemental analysis of the entire positive electrode active material 200 using GC-MS, ICP-MS, or the like. It may also be based on the values of the raw material formulations during the manufacturing process.
  • the positive electrode active material 200 has cracks, phosphorus, more specifically, a compound containing phosphorus and oxygen is present inside the positive electrode active material with the cracks on the surface, for example, the embedded portion 202 shown in FIG. 13B. , the progress of cracks can be suppressed.
  • the concentration distribution of the additive element X and the additive element Y are different, so that the crystal structure of a wider region can be stabilized, which is preferable.
  • the positive electrode active material 200 contains both magnesium and nickel, which are part of the additional element X, and aluminum, which is one of the additional elements Y, the amount of the positive electrode active material 200 is higher than when only one of the additional elements X and Y is contained. The crystal structure of a wide region can be stabilized.
  • the additive element X such as magnesium can sufficiently stabilize the surface, so the additive element Y such as aluminum is not essential for the surface. do not have. Rather, it is preferable for aluminum to be widely distributed in a deep region, for example, a region having a depth of 5 nm or more and 50 nm or less from the surface, because the crystal structure of a wider region can be stabilized.
  • the effects of the respective additive elements A are synergistic and can contribute to further stabilization of the surface layer portion 200a and the inner portion 200b.
  • the effect of making the crystal structure stable is high, which is preferable.
  • the surface layer portion 200a is occupied only by the additive element A and the compound of oxygen, it becomes difficult to insert and extract lithium, which is not preferable.
  • the surface layer portion 200a it is not preferable for the surface layer portion 200a to be occupied only by a structure in which MgO, MgO and NiO(II) are in a solid solution, and/or a structure in which MgO and CoO(II) are in a solid solution. Therefore, the surface layer portion 200a must contain at least cobalt, also contain lithium in a discharged state, and must have a lithium intercalation/deintercalation path.
  • the surface layer portion 200a preferably has a higher concentration of cobalt than magnesium.
  • the ratio A Mg /A Co between the number of atoms A Mg of magnesium and the number of atoms A Co of cobalt is preferably 0.62 or more.
  • the concentration of cobalt in the surface layer portion 200a is higher than that of nickel.
  • the surface layer portion 200a preferably has a higher concentration of cobalt than aluminum. Further, it is preferable that the concentration of cobalt in the surface layer portion 200a is higher than that of fluorine.
  • the surface layer portion 200a preferably has a higher concentration of magnesium than nickel.
  • the number of atoms of nickel is preferably 1/6 or less of the number of atoms of magnesium.
  • Some of the additive elements A are preferably present randomly and sparsely in the inner portion 200b, although the concentration in the surface layer portion 200a is preferably higher than that in the inner portion 200b.
  • magnesium and aluminum are present at appropriate concentrations in the lithium sites in the interior 200b, there is an effect that the layered rock salt type crystal structure is likely to be maintained in the same manner as described above.
  • nickel is present in the inside 200b at an appropriate concentration, it is possible to suppress the displacement of the layer composed of octahedrons of cobalt and oxygen (for example, a CoO 2 layer) due to charging and discharging in the same manner as described above.
  • both magnesium and nickel are present, there is a possibility that divalent magnesium can exist more stably near divalent nickel, so a synergistic effect of suppressing the elution of magnesium can be expected.
  • the crystal structure changes continuously from the inside 200b toward the surface due to the concentration gradient of the additive element A as described above.
  • the crystal orientations of the surface layer portion 200a and the inner portion 200b substantially match.
  • the crystal structure toward the surface layer portion 200a that is, the surface
  • the orientation of the surface layer portion 200a having the features of the rock salt type crystal structure, or both of the rock salt type crystal structure and the layered rock salt type crystal structure, and the inner portion 200b of the layered rock salt type crystal structure roughly match. preferable.
  • the positive electrode active material 200 of one embodiment of the present invention has the distribution and/or the crystal structure of the additional element A as described above in a discharged state, the crystal in a state where x in Li x CoO 2 is small
  • the structure is different from conventional positive electrode active materials.
  • x is small means that 0.1 ⁇ x ⁇ 0.24.
  • FIG. 17 shows changes in the crystal structure of a conventional positive electrode active material.
  • P2/m monoclinic O1
  • P2/m monoclinic O1
  • conventional lithium cobaltate has a crystal structure of space group R-3m.
  • This structure can also be said to be a structure in which a CoO 2 structure such as a trigonal O1 type and a LiCoO 2 structure such as R-3m(O3) are alternately laminated. Therefore, this crystal structure is sometimes called an H1-3 type crystal structure.
  • the H1-3 type crystal structure has twice the number of cobalt atoms per unit cell as other structures.
  • the c-axis of the H1-3 type crystal structure is shown in a figure where the c-axis of the H1-3 type crystal structure is 1/2 of the unit cell in order to facilitate comparison with other crystal structures.
  • the coordinates of cobalt and oxygen in the unit cell are Co (0, 0, 0.42150 ⁇ 0.00016), O1 (0, 0, 0.27671 ⁇ 0.00045), O2(0, 0, 0.11535 ⁇ 0.00045).
  • O1 and O2 are each oxygen atoms.
  • Which unit cell should be used to express the crystal structure of lithium cobalt oxide can be determined, for example, by Rietveld analysis of an XRD pattern. In this case, a unit cell with a small GOF (goodness of fit) value should be adopted.
  • conventional lithium cobalt oxide has an H1-3 type crystal structure and an R -3m(O3) structure and the crystal structure change (that is, non-equilibrium phase change) are repeated.
  • these two crystal structures have a large difference in volume.
  • the difference in volume between the H1-3 type crystal structure and the R-3m(O3) type crystal structure in the discharged state is more than 3.5%, typically 3.9%. That's it.
  • the crystal structure of the conventional lithium cobaltate collapses. Collapse of the crystal structure causes deterioration of cycle characteristics. This is because the collapse of the crystal structure reduces the number of sites where lithium can stably exist and makes it difficult to intercalate and deintercalate lithium.
  • Lithium cobaltate used for the positive electrode active material 200 of one embodiment of the present invention changes its crystal structure during discharge when x is 1 in Li x CoO 2 and charge when x is 0.24 or less. less than lithium. Specifically, as indicated by the dotted line in FIG. 16, there is almost no displacement of the CoO 2 layer between the R-3m(O3) in the discharged state and the crystal structure of the O3′ type. Also, the change in volume when compared per cobalt atom can be reduced. Specifically, the difference in volume per cobalt atom of the same number between the R-3m(O3) in the discharged state and the O3' type crystal structure is 2.5% or less, more specifically 2.2% or less, typically It is typically 1.8%. Therefore, in the positive electrode active material 200 of one embodiment of the present invention, even when charging such that x becomes 0.24 or less and discharging such that x becomes 1 are repeated, the crystal structure does not easily collapse, and excellent cycle characteristics are obtained. can be realized.
  • the crystal structure in which x is 0.24 or less in Li x CoO 2 is different from that of the conventional positive electrode active material, and the crystal is in a discharged state in which x is 1. Changes from the structure are suppressed.
  • the positive electrode active material 200 of one embodiment of the present invention also suppresses a change in volume when the number of cobalt atoms is the same. Therefore, the crystal structure of the positive electrode active material 200 does not easily collapse even when charging and discharging are repeated such that x becomes 0.24 or less. Therefore, the positive electrode active material 200 is prevented from decreasing in discharge capacity during charge-discharge cycles.
  • lithium cobalt oxide used for the positive electrode active material 200 of one embodiment of the present invention can have a more stable crystal structure than conventional lithium cobalt oxide when x in Li x CoO 2 is 0.24 or less. Therefore, in the positive electrode active material 200 of one embodiment of the present invention, when x in Li x CoO 2 is maintained at 0.24 or less, short circuits are unlikely to occur, and the safety of the secondary battery is improved. Further, more lithium can be stably used than in a conventional positive electrode active material; therefore, the positive electrode active material 200 of one embodiment of the present invention has high discharge capacity per weight and per volume. Therefore, with the use of the positive electrode active material 200 of one embodiment of the present invention, a secondary battery with high discharge capacity per weight and per volume can be manufactured.
  • the coordinates of cobalt and oxygen in the unit cell are Co (0, 0, 0.5), O (0 , 0, x) and 0.20 ⁇ x ⁇ 0.25.
  • ions of cobalt, nickel, magnesium, etc. occupy six oxygen-coordinated positions. Note that a light element such as lithium may occupy the 4-coordinate position of oxygen in some cases.
  • the positive electrode active material 200 of one embodiment of the present invention sometimes had an O3′-type crystal structure when x in Li x CoO 2 was 0.15 to 0.24. It is presumed that even if it exceeds 24 and is 0.27 or less, it has an O3' type crystal structure. However, since the crystal structure is affected not only by x in Li x CoO 2 but also by the number of charge/discharge cycles, charge/discharge current, temperature, electrolyte, etc., x is not necessarily limited to the above range.
  • not all of the inside 200b of the positive electrode active material 200 may have the O3' type crystal structure. It may contain other crystal structures, or may be partially amorphous.
  • the state in which x in Li x CoO 2 is small can be rephrased as the state of being charged at a high charging voltage.
  • a charging voltage of 4.6 V or more based on the potential of lithium metal can be said to be a high charging voltage.
  • the charging voltage is expressed based on the potential of lithium metal.
  • the positive electrode active material 200 of one embodiment of the present invention is preferable because the crystal structure can be maintained even when the positive electrode active material 200 is charged at a high charging voltage, for example, a voltage of 4.6 V or higher in a 25° C. environment. Further, when charged at a higher charging voltage, for example, a voltage of 4.65 V to 4.7 V in an environment of 25° C., the positive electrode active material 200 of one embodiment of the present invention can have an O3′ type crystal structure, which is preferable. can be rephrased.
  • the positive electrode active material 200 of one embodiment of the present invention H1-3 type crystals may be observed when the charging voltage is further increased.
  • the crystal structure is affected by the number of charge-discharge cycles, charge-discharge current, electrolyte, etc. Therefore, when the charge voltage is lower, for example, even if the charge voltage is 4.5 V or more and less than 4.6 V in an environment of 25 ° C. , the positive electrode active material 200 of one embodiment of the present invention can have an O3′ crystal structure in some cases.
  • the voltage of the secondary battery is lowered by the potential of the graphite.
  • the potential of graphite is about 0.05 V to 0.2 V with respect to the potential of lithium metal. Therefore, in the case of a secondary battery using graphite as a negative electrode active material, it has a similar crystal structure at a voltage obtained by subtracting the potential of graphite from the above voltage.
  • lithium is shown to exist at all lithium sites with equal probability, but this is not restrictive. It may exist unevenly at some lithium sites, or may have symmetry such as monoclinic O1 (Li 0.5 CoO 2 ) shown in FIG. 17, for example.
  • the lithium distribution can be analyzed, for example, by neutron diffraction.
  • the crystal structure of the O3′ type is similar to the crystal structure of the CdCl 2 type, although it has lithium randomly between the layers.
  • the crystal structure similar to this CdCl2 type is close to the crystal structure when lithium nickelate is charged to Li0.06NiO2 , but pure lithium cobaltate or a layered rock salt type positive electrode active material containing a large amount of cobalt is known not to normally adopt a CdCl2 - type crystal structure.
  • the concentration gradient of the additive element A is the same at multiple locations on the surface layer portion 200 a of the positive electrode active material 200 .
  • the reinforcement derived from the additive element A exists homogeneously in the surface layer portion 200a. Even if a part of the surface layer portion 200a is reinforced, if there is an unreinforced portion, stress may concentrate on the unreinforced portion. If the stress concentrates on a portion of the positive electrode active material 200, defects such as cracks may occur there, leading to cracking of the positive electrode active material and a decrease in discharge capacity.
  • FIG. 13E shows an example of the distribution of the additional element X near C-D in FIG. 13A
  • FIG. 13F shows an example of the distribution of the additional element Y near C-D.
  • the (001) oriented surface may have a different distribution of the additive element A than the other surfaces.
  • the (001) oriented surface and its surface layer portion 200a are portions where the concentration distribution or peak top of one or more selected from the additive element X and the additive element Y is shallower from the surface compared to other oriented surfaces. may exist in Alternatively, the (001) oriented surface and its surface layer portion 200a may have a lower concentration of one or more elements selected from the additional element X and the additional element Y than the other oriented surfaces.
  • the (001) oriented surface and its surface layer portion 200a may have one or more elements selected from the additive element X and the additive element Y below the lower limit of detection.
  • the (001) plane where the CoO2 layer exists on the surface is relatively stable.
  • the main diffusion paths of lithium ions during charging and discharging are not exposed on the (001) plane.
  • the surface other than the (001) orientation and the surface layer portion 200a are important regions for maintaining the diffusion path of lithium ions, and at the same time, they are the regions where lithium ions are first desorbed, so they tend to be unstable. Therefore, it is important to reinforce the surface other than the (001) orientation and the surface layer portion 200a in order to maintain the crystal structure of the positive electrode active material 200 as a whole.
  • the distribution of the additive element A on the surface other than the (001) plane and the surface layer portion 200a thereof be as shown in FIGS. 13C and 13D.
  • the concentration of the additive element A may be low or absent as described above.
  • the additive element A spreads mainly through the diffusion path of lithium ions. Therefore, the distribution of the additive element A on the surface other than the (001) plane and the surface layer portion 200a thereof can be easily controlled within a preferable range.
  • the surface of the positive electrode active material 200 is smooth and has few irregularities, but not all of the positive electrode active material 200 is necessarily so.
  • a composite oxide having an R-3m layered rocksalt type crystal structure is prone to slip on a plane parallel to the (001) plane, for example, a plane in which lithium is arranged. For example, when the (001) plane exists as shown in FIG. 18A, there is a possibility that slipping occurs parallel to the (001) plane as indicated by the arrow in FIG. .
  • the additive element A may not be present on the surface and its surface layer 200a newly generated as a result of the slipping, or may be below the detection limit.
  • E-F in FIG. 18B are examples of the surface newly generated as a result of slipping and its surface layer portion 200a.
  • FIGS. 18C1 and 18C2 show enlarged views of the vicinity of EF. In FIGS. 18C1 and 18C2, the additional element X and the additional element Y are not distributed unlike FIGS. 13C to 13F.
  • At least part of the additive element A included in the positive electrode active material 200 of one embodiment of the present invention is more preferably unevenly distributed in and around the grain boundaries 201 in addition to the distribution described above.
  • uneven distribution means that the concentration of an element in a certain region is different from that in another region. It is synonymous with segregation, precipitation, non-uniformity, unevenness, or a mixture of high-concentration locations and low-concentration locations.
  • the concentration of magnesium in the grain boundary 201 of the positive electrode active material 200 and its vicinity is higher than in other regions of the interior 200b.
  • the fluorine concentration in the grain boundary 201 and its vicinity is preferably higher than that in other regions of the interior 200b.
  • the nickel concentration in the grain boundary 201 and its vicinity is higher than that in the other regions of the interior 200b.
  • the aluminum concentration in the grain boundary 201 and its vicinity is higher than that in other regions of the interior 200b.
  • the grain boundary 201 is one of plane defects. Therefore, like the surface, it tends to be unstable and the crystal structure tends to start changing. Therefore, if the additive element A concentration at and near the grain boundary 201 is high, the change in crystal structure can be more effectively suppressed.
  • the magnesium concentration and the fluorine concentration at and near the grain boundaries 201 are high, even if cracks are generated along the grain boundaries 201 of the positive electrode active material 200 of one embodiment of the present invention, the cracks may cause surface damage. Magnesium concentration and fluorine concentration increase in the vicinity. Therefore, the corrosion resistance to hydrofluoric acid can be improved even in the positive electrode active material after cracks have occurred.
  • the median diameter (D50) is preferably 1 ⁇ m or more and 100 ⁇ m or less, more preferably 2 ⁇ m or more and 40 ⁇ m or less, and even more preferably 5 ⁇ m or more and 30 ⁇ m or less. Alternatively, it is preferably 1 ⁇ m or more and 40 ⁇ m or less.
  • it is preferably 1 ⁇ m or more and 30 ⁇ m or less. Alternatively, it is preferably 2 ⁇ m or more and 100 ⁇ m or less. Alternatively, it is preferably 2 ⁇ m or more and 30 ⁇ m or less. Alternatively, it is preferably 5 ⁇ m or more and 100 ⁇ m or less. Alternatively, it is preferably 5 ⁇ m or more and 40 ⁇ m or less.
  • a certain positive electrode active material is the positive electrode active material 200 of one embodiment of the present invention that has an O3′-type crystal structure when x in Li x CoO 2 is small depends on whether x in Li x CoO 2 is small. It can be determined by analyzing a positive electrode having a positive electrode active material using XRD, electron beam diffraction, neutron diffraction, electron spin resonance (ESR), nuclear magnetic resonance (NMR), or the like.
  • XRD can analyze the symmetry of the transition metal M such as cobalt that the positive electrode active material has with high resolution, can compare the crystallinity level and crystal orientation, and can analyze the periodic strain and crystallite size of the lattice. It is preferable in that sufficient accuracy can be obtained even if the positive electrode obtained by disassembling the secondary battery is measured as it is.
  • powder XRD provides a diffraction peak that reflects the crystal structure of the inside 200 b of the positive electrode active material 200 that occupies most of the volume of the positive electrode active material 200 .
  • the positive electrode active material 200 of one embodiment of the present invention is characterized by little change in crystal structure between when x in Li x CoO 2 is 1 and when x is 0.24 or less. If the crystal structure with a large change in crystal structure accounts for 50% or more, it is not preferable because it cannot withstand high-voltage charging and discharging.
  • the O3' type crystal structure may not be obtained only by adding the additive element A.
  • the O3′ type crystal structure accounts for 60% or more and cases where the H1-3 type crystal structure accounts for 50% or more.
  • the crystal structure of the H1-3 type or the trigonal O1 type is formed. may occur. Therefore, in order to determine whether the material is the positive electrode active material 200 of one embodiment of the present invention, analysis of the crystal structure such as XRD and information such as charge capacity or charge voltage are necessary.
  • the positive electrode active material in which x is small may undergo a change in crystal structure when exposed to air.
  • the crystal structure of the O3' type may change to the crystal structure of the H1-3 type. Therefore, it is preferable to handle all samples to be analyzed for crystal structure in an inert atmosphere such as an argon atmosphere.
  • Whether or not the distribution of additive element A in a certain positive electrode active material is in the state described above can be determined, for example, by XPS, energy dispersive X-ray spectroscopy (EDX), EPMA. (electron probe microanalysis) or the like can be used for determination.
  • the crystal structure of the surface layer portion 200a, the crystal grain boundaries 201, and the like can be analyzed by electron beam diffraction of a cross section of the positive electrode active material 200, or the like.
  • High-voltage charging can determine whether a certain complex oxide is the positive electrode active material 200 of one embodiment of the present invention.
  • a coin cell (CR2032 type, diameter 20 mm, height 3.2 mm) may be produced by using the composite oxide for the positive electrode and lithium metal for the negative electrode (also referred to as the counter electrode), and high voltage charging may be performed.
  • the positive electrode can be prepared by coating a positive electrode current collector made of aluminum foil with a slurry obtained by mixing a positive electrode active material, a conductive material, and a binder.
  • Lithium metal can be used as the counter electrode.
  • the potential of the secondary battery and the potential of the positive electrode are different. Voltage and potential in this specification and the like are the potential of the positive electrode unless otherwise specified.
  • LiPF 6 lithium hexafluorophosphate
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • VC 2 wt % vinylene carbonate
  • the cathode can and the anode can can be made of stainless steel (SUS).
  • the coin cell prepared under the above conditions is kept constant at a current value of 10 mA / g up to an arbitrary voltage (for example, 4.5 V, 4.55 V, 4.6 V, 4.65 V, 4.7 V, 4.75 V or 4.8 V). current charging.
  • an arbitrary voltage for example, 4.5 V, 4.55 V, 4.6 V, 4.65 V, 4.7 V, 4.75 V or 4.8 V.
  • the ambient temperature in which the coin cells are placed is 25°C or 45°C.
  • the coin cell is dismantled in an argon atmosphere glove box and the positive electrode is taken out to obtain a positive electrode active material with an arbitrary charge capacity.
  • XRD can be performed in a sealed container with an argon atmosphere.
  • the charging and discharging conditions for the multiple times may be different from the charging conditions described above.
  • charging is constant current charging at a current value of 100 mA/g to an arbitrary voltage (eg, 4.6 V, 4.65 V, 4.7 V, 4.75 V or 4.8 V), and then the current value becomes 10 mA/g.
  • the battery can be charged at a constant voltage up to 100 mA/g and discharged at a constant current of 2.5 V and 100 mA/g.
  • constant current discharge can be performed at 2.5 V and a current value of 100 mA/g.
  • XRD XRD
  • the device and conditions for XRD measurement are not particularly limited. For example, it can be measured using the following apparatus and conditions.
  • XRD device D8 ADVANCE manufactured by Bruker AXS X-ray source: Cu Output: 40KV, 40mA Slit width: Div. Slit, 0.5° Detector: LynxEye Scanning method: 2 ⁇ / ⁇ continuous scan Measurement range (2 ⁇ ): 15° to 90° Step width (2 ⁇ ): 0.01° setting Counting time: 1 second/step Sample table rotation: 15 rpm
  • the measurement sample is powder, it can be set by placing the sample in a glass sample holder, or by sprinkling the sample on a greased silicone non-reflective plate.
  • the sample to be measured is a positive electrode
  • the positive electrode can be attached to the substrate with a double-sided tape, and the positive electrode active material layer can be set according to the measurement surface required by the device.
  • Figs. 19 and 20 show ideal powder XRD patterns with CuK ⁇ 1 rays calculated from models of the O3' type crystal structure and the H1-3 type crystal structure.
  • the patterns of LiCoO 2 (O3) and CoO 2 (O1) are one of the modules of Materials Studio (BIOVIA) based on crystal structure information obtained from ICSD (Inorganic Crystal Structure Database) (see Non-Patent Document 3). Made using Reflex Powder Diffraction.
  • the pattern of the H1-3 type crystal structure was similarly created from the crystal structure information described in Non-Patent Document 3.
  • the crystal structure pattern of the O3′ type was estimated from the XRD pattern of the positive electrode active material of one embodiment of the present invention, and TOPAS ver. 3 (Crystal structure analysis software manufactured by Bruker) was used for fitting, and an XRD pattern was created in the same manner as the others.
  • the positive electrode active material 200 of one embodiment of the present invention has an O3′-type crystal structure when x in Li x CoO 2 is small; It may contain other crystal structures, or may be partially amorphous.
  • the O3′ type crystal structure is preferably 50% or more, more preferably 60% or more, and even more preferably 66% or more. If the O3′ type crystal structure is 50% or more, more preferably 60% or more, and still more preferably 66% or more, the positive electrode active material can have sufficiently excellent cycle characteristics.
  • the O3' type crystal structure is preferably 35% or more, more preferably 40% or more, and 43% when Rietveld analysis is performed. It is more preferable that it is above.
  • each diffraction peak after charging is sharp, that is, the half width is narrow.
  • the half-value width varies depending on the XRD measurement conditions or the value of 2 ⁇ even for peaks generated from the same crystal phase.
  • the half width is preferably 0.2 ° or less, more preferably 0.15 ° or less, and 0.12 ° or less. More preferred. Note that not all peaks necessarily satisfy this requirement. If some of the peaks satisfy this requirement, it can be said that the crystallinity of the crystal phase is high. High crystallinity contributes to stabilization of the crystal structure after charging.
  • the crystallite size of the O3′ type crystal structure of the positive electrode active material 200 is reduced to only about 1/20 of LiCoO 2 (O3) in the discharged state. Therefore, even under the same XRD measurement conditions as for the positive electrode before charging/discharging, when x in Li x CoO 2 is small, a clear O3′-type crystal structure peak can be observed.
  • the crystallite size is small and the peak is broad and small. The crystallite size can be obtained from the half width of the XRD peak.
  • XPS X-ray photoelectron spectroscopy
  • K ⁇ rays of monochromatic aluminum K ⁇ rays of monochromatic aluminum are used as the X-ray source
  • a region from the surface to a depth of about 2 to 8 nm typically 5 nm or less
  • the concentration of each element can be quantitatively analyzed for a region that is about half the depth of the surface layer portion 200a.
  • the bonding state of elements can be analyzed by narrow scan analysis.
  • the quantitative accuracy of XPS is often about ⁇ 1 atomic %, and the detection limit is about 1 atomic % although it depends on the element.
  • the concentration of one or more elements selected from the additive element A is preferably higher in the surface layer portion 200a than in the inner portion 200b.
  • concentration of one or more elements selected from the additive element A in the surface layer portion 200 a is preferably higher than the average of the entire positive electrode active material 200 . Therefore, for example, the concentration of one or more additional elements A selected from the surface layer portion 200a measured by XPS or the like is the average addition amount of the entire positive electrode active material 200 measured by ICP-MS, GD-MS or the like. It can be said that the concentration higher than that of the element A is preferable.
  • the concentration of magnesium in at least a part of the surface layer portion 200 a measured by XPS or the like is higher than the concentration of magnesium in the entire positive electrode active material 200 .
  • the concentration of nickel in at least part of the surface layer portion 200 a is higher than the nickel concentration in the entire positive electrode active material 200 .
  • the concentration of aluminum in at least part of the surface layer portion 200 a is higher than the concentration of aluminum in the entire positive electrode active material 200 .
  • the concentration of fluorine in at least a portion of the surface layer portion 200 a is higher than the concentration of fluorine in the entire positive electrode active material 200 .
  • the surface and the surface layer portion 200a of the positive electrode active material 200 of one embodiment of the present invention do not contain carbonates, hydroxyl groups, and the like that are chemically adsorbed after the positive electrode active material 200 is manufactured. In addition, it does not include the electrolytic solution, the binder, the conductive material, or the compounds derived from these that adhere to the surface of the positive electrode active material 200 . Therefore, when quantifying the elements contained in the positive electrode active material, correction may be made to exclude carbon, hydrogen, excess oxygen, excess fluorine, etc. that can be detected by surface analysis such as XPS. For example, in XPS, it is possible to separate the types of bonds by analysis, and correction may be performed to exclude binder-derived C—F bonds.
  • the sample such as the positive electrode active material and the positive electrode active material layer is washed in order to remove the electrolyte solution, binder, conductive material, or compounds derived from these adhered to the surface of the positive electrode active material. may be performed. At this time, lithium may dissolve into the solvent or the like used for washing.
  • the concentration of additive element A may be compared in terms of the ratio with cobalt.
  • the ratio to cobalt it is possible to reduce the influence of chemically adsorbed carbonic acid or the like after the production of the positive electrode active material, which is preferable.
  • the atomic ratio Mg/Co of magnesium and cobalt according to XPS analysis is preferably 0.4 or more and 1.5 or less.
  • Mg/Co by ICP-MS analysis is preferably 0.001 or more and 0.06 or less.
  • the concentration of lithium and cobalt is preferably higher than that of each additive element A in the surface layer portion 200a in order to sufficiently secure the lithium intercalation and deintercalation paths. It is said that the concentration of lithium and cobalt in the surface layer portion 200a is preferably higher than the concentration of one or more additive elements A selected from the additive elements A possessed by the surface layer portion 200a measured by XPS or the like. be able to.
  • the concentration of cobalt in at least a portion of the surface layer portion 200a measured by XPS or the like is preferably higher than the concentration of magnesium in at least a portion of the surface layer portion 200a measured by XPS or the like.
  • the lithium concentration is preferably higher than the magnesium concentration.
  • the concentration of cobalt is preferably higher than the concentration of nickel.
  • the lithium concentration is preferably higher than the nickel concentration.
  • it is preferable that the concentration of cobalt is higher than that of aluminum.
  • the lithium concentration is preferably higher than the aluminum concentration.
  • the concentration of cobalt is preferably higher than that of fluorine.
  • the concentration of lithium is preferably higher than that of fluorine.
  • the additive element Y such as aluminum is distributed widely in a deep region, for example, a region having a depth of 5 nm or more and 50 nm or less from the surface. Therefore, although the additive element Y including aluminum is detected in the analysis of the entire positive electrode active material 200 using ICP-MS, GD-MS, etc., it is more preferable that this is below the lower limit of detection in XPS or the like.
  • the number of magnesium atoms is preferably 0.4 times or more and 1.2 times or less, and more preferably 0.65 times or more and 1 times the number of cobalt atoms. 0 times or less is more preferable.
  • the number of nickel atoms is preferably 0.15 times or less, more preferably 0.03 to 0.13 times the number of cobalt atoms.
  • the number of aluminum atoms is preferably 0.12 times or less, more preferably 0.09 times or less, relative to the number of cobalt atoms.
  • the number of fluorine atoms is preferably 0.3 to 0.9 times, more preferably 0.1 to 1.1 times, the number of cobalt atoms.
  • monochromatic aluminum K ⁇ rays can be used as the X-ray source.
  • the extraction angle may be set to 45°, for example.
  • it can be measured using the following apparatus and conditions.
  • Measurement spectrum wide scan, narrow scan for each detected element
  • the peak indicating the binding energy between fluorine and another element is preferably 682 eV or more and less than 685 eV, more preferably about 684.3 eV. This value is different from both 685 eV, which is the binding energy of lithium fluoride, and 686 eV, which is the binding energy of magnesium fluoride. That is, in the case where the positive electrode active material 200 of one embodiment of the present invention contains fluorine, it is preferably a bond other than lithium fluoride and magnesium fluoride.
  • the peak indicating the binding energy between magnesium and another element is preferably 1302 eV or more and less than 1304 eV, more preferably about 1303 eV. This value is different from 1305 eV, which is the binding energy of magnesium fluoride, and is close to the binding energy of magnesium oxide. That is, in the case where the positive electrode active material 200 of one embodiment of the present invention contains magnesium, it is preferably a bond other than magnesium fluoride.
  • the additive element A contained in the positive electrode active material 200 preferably has a concentration gradient. Further, it is more preferable that the concentration distribution or the position of the peak top differs depending on the additive element A.
  • a concentration distribution includes a concentration gradient.
  • the concentration distribution of additive element A can be evaluated by, for example, exposing a cross section of the positive electrode active material 200 by FIB (Focused Ion Beam) or the like and analyzing the cross section using EDX, EPMA (electron probe microanalysis) or the like.
  • EDX measurements measuring while scanning the inside of the area and evaluating the inside of the area two-dimensionally is called surface analysis.
  • surface analysis measuring while linearly scanning to evaluate the distribution of the atomic concentration in the positive electrode active material.
  • line analysis measuring while linearly scanning to evaluate the distribution of the atomic concentration in the positive electrode active material.
  • extraction of linear region data from EDX surface analysis is sometimes called line analysis.
  • measuring a certain area without scanning is called point analysis.
  • the concentration of the additive element A can be semi-quantitatively analyzed in the surface layer portion 200a, the inner portion 200b, the vicinity of the crystal grain boundary 201, and the like of the positive electrode active material 200. Further, by EDX-ray analysis, the concentration distribution or peak top of additive element A can be analyzed. In addition, the analysis of thinning a sample like STEM-EDX can analyze the concentration distribution in the depth direction from the surface to the center of the positive electrode active material in a specific region without being greatly affected by the distribution in the depth direction. , is more preferred.
  • the concentration of each additive element A, particularly the additive element X, in the surface layer portion 200a is preferably higher than that in the inner portion 200b.
  • the magnesium concentration in the surface layer portion 200a is preferably higher than that in the inner portion 200b.
  • the peak top of the magnesium concentration in the surface layer portion 200a preferably exists at a depth of 3 nm toward the center from the surface of the positive electrode active material 200, and may exist at a depth of 1 nm. More preferably, it exists up to a depth of 0.5 nm. Further, it is preferable that the concentration distribution of magnesium has a concentration gradient such that the position 1 nm away from the peak top attenuates to 60% or less of the peak top.
  • concentration gradient that attenuates to 30% or less of the peak top at a position shifted by 2 nm from the peak top.
  • the displaced position may be displaced from the peak top to the surface side or may be displaced to the inner side.
  • the concentration gradient may exist at a position shifted either to the surface side or to the inner side.
  • the distribution of fluorine preferably overlaps with the distribution of magnesium.
  • the difference between the peak top of the fluorine concentration and the peak top of the magnesium concentration is preferably within 10 nm, more preferably within 3 nm, and even more preferably within 1 nm.
  • the peak top of the fluorine concentration in the surface layer portion 200a preferably exists at a depth of 3 nm toward the center from the surface of the positive electrode active material 200, and may exist at a depth of 1 nm. More preferably, it exists up to a depth of 0.5 nm. Further, it is preferable that the peak top of the fluorine concentration is located slightly closer to the surface side than the peak top of the magnesium concentration, because the resistance to hydrofluoric acid increases. For example, the fluorine concentration peak top is more preferably 0.5 nm or more closer to the surface than the magnesium concentration peak top, and more preferably 1.5 nm or more closer to the surface.
  • the nickel concentration peak top of the surface layer portion 200a preferably exists at a depth of 3 nm from the surface toward the center of the positive electrode active material 200, and the depth is 1 nm. It is more preferable to exist by up to, and more preferably to exist by 0.5 nm in depth.
  • the distribution of nickel preferably overlaps with the distribution of magnesium.
  • the difference between the peak top of the magnesium concentration and the position of the peak top of the magnesium concentration is preferably within 10 nm, more preferably within 3 nm, and even more preferably within 1 nm.
  • the peak top of the concentration of magnesium, nickel, or fluorine is closer to the surface than the peak top of the aluminum concentration of the surface layer portion 200a when subjected to EDX-ray analysis. is preferred.
  • the aluminum concentration peak top preferably exists at a depth of 0.5 nm or more and 50 nm or less, more preferably 5 nm or more and 50 nm or less, from the surface toward the center of the positive electrode active material 200 .
  • the ratio (Mg/Co) of the number of atoms of magnesium Mg and cobalt Co at the peak top of the magnesium concentration is 0.05 or more and 0.6 or less. It is preferably 0.1 or more and 0.4 or less.
  • the atomic ratio (Al/Co) of aluminum Al and cobalt Co at the peak top of the aluminum concentration is preferably 0.05 or more and 0.6 or less, more preferably 0.1 or more and 0.45 or less.
  • the atomic number ratio (Ni/Co) of nickel Ni and cobalt Co at the peak top of the nickel concentration is preferably 0 or more and 0.2 or less, more preferably 0.01 or more and 0.1 or less.
  • the atomic ratio (F/Co) of fluorine F to cobalt Co at the peak top of the fluorine concentration is preferably 0 or more and 1.6 or less, more preferably 0.1 or more and 1.4 or less.
  • the surface of the positive electrode active material 200 in the EDX-ray analysis result can be estimated as follows, for example.
  • the point at which the amount detected in the interior 200b is 1/2 is defined as the surface.
  • the surface can be estimated using the detected amount of oxygen. Specifically, first, the average value O ave of the oxygen concentration is obtained from the region where the detected amount of oxygen in the interior 200b is stable. At this time, if oxygen O background , which is considered to be due to chemisorption or background, is detected in a region that can be clearly judged to be outside the surface, O background can be subtracted from the measured value to obtain the average oxygen concentration O ave . can. It can be estimated that the measurement point showing the value of 1/2 of this average value O ave , that is, the measurement value closest to 1/2 O ave , is the surface of the positive electrode active material.
  • the surface can also be estimated in the same manner as described above by using the detected amount of cobalt. Alternatively, it can be similarly estimated using the sum of detected amounts of a plurality of transition metals. Detected amounts of transition metals such as cobalt are less susceptible to chemisorption, making them suitable for surface estimation.
  • the ratio (A/Co) between the additive element A and cobalt Co in the vicinity of the grain boundary 201 is preferably 0.020 or more and 0.50 or less. Furthermore, 0.025 or more and 0.30 or less are preferable. Furthermore, 0.030 or more and 0.20 or less are preferable. Or 0.020 or more and 0.30 or less are preferable. Or 0.020 or more and 0.20 or less are preferable. Alternatively, it is preferably 0.025 or more and 0.50 or less. Alternatively, it is preferably 0.025 or more and 0.20 or less. Or 0.030 or more and 0.50 or less are preferable. Or 0.030 or more and 0.30 or less are preferable.
  • the additive element X is magnesium
  • the positive electrode active material 200 when the positive electrode active material 200 is subjected to line analysis or surface analysis, the atomic number ratio (Mg/Co) of magnesium and cobalt in the vicinity of the crystal grain boundary 201 is 0.020 or more and 0.020 or more. 50 or less is preferred.
  • 0.025 or more and 0.30 or less are preferable.
  • 0.030 or more and 0.20 or less are preferable.
  • 0.020 or more and 0.30 or less are preferable.
  • 0.020 or more and 0.20 or less are preferable.
  • it is preferably 0.025 or more and 0.50 or less.
  • it is preferably 0.025 or more and 0.20 or less.
  • 0.030 or more and 0.50 or less are preferable.
  • 0.030 or more and 0.30 or less are preferable.
  • ⁇ EPMA ⁇ EPMA electron probe microanalysis
  • Surface analysis can analyze the distribution of each element.
  • one or more elements selected from the additive element A preferably have a concentration gradient, similar to the EDX analysis results. . Further, it is more preferable that the depth from the surface of the concentration peak differs depending on the additive element A. The preferred range of the concentration peak of each additive element A is also the same as in the case of EDX.
  • EPMA analyzes a region from the surface to a depth of about 1 ⁇ m. Therefore, the quantitative value of each element may differ from the measurement results obtained using other analytical methods. For example, when the surface analysis of the positive electrode active material 200 is performed by EPMA, the concentration of each additive element A existing in the surface layer portion 200a may be lower than the result of XPS.
  • the positive electrode active material 200 of one embodiment of the present invention may exhibit a characteristic voltage change during charging.
  • a change in voltage can be read from a dQ/dV curve obtained by differentiating the capacity (Q) by the voltage (V) from the charge curve (dQ/dV).
  • Q capacity
  • V charge curve
  • a non-equilibrium phase change means a phenomenon that causes a nonlinear change in physical quantity.
  • the positive electrode active material 200 of one embodiment of the present invention may have a broad peak near 4.55 V in the dQ/dV curve.
  • the peak around 4.55 V reflects the change in voltage during the phase change from the O3 type to the O3' type. Therefore, the broadness of this peak means less change in the energy required for lithium to be abstracted, ie less change in the crystal structure, than when the peak is sharp. The smaller these changes are, the less the effect of displacement and volume change of the CoO 2 layer is, which is preferable.
  • the half width of the first peak is 0.10 V or more. and sufficiently broad, it is preferable.
  • the half width of the first peak is defined as the first peak and the first peak when the minimum value of the dQ/dV value appearing at 4.3 V or more and 4.5 V or less is taken as the first minimum value.
  • the average value HWHM 1 with the minimum value, and the average of the first peak and the second minimum value when the minimum value of the dQ/dV value appearing between 4.6 V and 4.8 V is taken as the second minimum value
  • Charging for obtaining the dQ/dV curve can be constant current charging at 10 mA/g up to 4.9 V, for example. Moreover, when obtaining the dQ/dV of the initial charge, it is preferable to discharge the battery to 2.5 V at 100 mA/g before the measurement, and then start the charging.
  • the setting of the data capturing interval during charging can be, for example, a setting of capturing the voltage and current at intervals of 1 second or when the voltage fluctuates by 1 mV.
  • the charge capacity is the sum of the current value and time.
  • the difference between the n-th and n+1-th data of the charge capacity data is taken as the n-th value of the capacity change dQ.
  • the difference between the n-th and (n+1)-th data of the voltage data is taken as the n-th value of the voltage change dV.
  • dQ/dV may be obtained from a moving average of a certain number of intervals for the difference in voltage and charge capacity.
  • the number of sections can be 500, for example.
  • the average value of dQ from nth to n+500th is calculated, and similarly the average value of dV from nth to n+500th is calculated.
  • dQ (average of 500)/dV (average of 500) can be defined as dQ/dV.
  • moving average values of 500 sections can be used.
  • the charging and discharging conditions for the multiple times may be different from the above charging conditions.
  • charging is performed at an arbitrary voltage (eg, 4.6 V, 4.65 V, 4.7 V, 4.75 V or 4.8 V), constant current charging at 100 mA / g, and then constant voltage until the current value reaches 10 mA / g.
  • Charge and discharge can be constant current discharge at 2.5 V and 100 mA/g.
  • the phase changes from the O3 type to the O3' type, and the O3 type at this time is about 0.3 in x in Li x CoO 2 . It has the same symmetry as the O3 type with x 1 described in FIG. 17, but the distance between the CoO 2 layers is slightly different.
  • the positive electrode active material 200 of one embodiment of the present invention preferably contains cobalt and contains nickel and magnesium as the additive element A.
  • some Co 3+ is preferably replaced by Ni 3+ and some Li + is replaced by Mg 2+ .
  • the Ni 3+ may be reduced to Ni 2+ .
  • part of Li + may be replaced with Mg 2+ , and along with this, Co 3+ near Mg 2+ may be reduced to Co 2+ .
  • part of Co 3+ may be replaced with Mg 2+ , and along with this, Co 3+ in the vicinity of Mg 2+ may be oxidized to become Co 4+ .
  • the positive electrode active material 200 preferably contains any one or more of Ni 2+ , Ni 3+ , Co 2+ and Co 4+ .
  • the spin density due to at least one of Ni 2+ , Ni 3+ , Co 2+ , and Co 4+ per weight of the positive electrode active material 200 is 2.0 ⁇ 10 17 spins/g or more and 1.0 ⁇ 10 21 spins. /g or less.
  • the crystal structure becomes stable particularly in a charged state, which is preferable. Note that if the magnesium concentration is too high, the spin density due to one or more of Ni 2+ , Ni 3+ , Co 2+ and Co 4+ may decrease.
  • the spin density in the positive electrode active material can be analyzed using, for example, an electron spin resonance method (ESR: Electron Spin Resonance).
  • ESR Electron Spin Resonance
  • the positive electrode active material 200 of one embodiment of the present invention preferably has a smooth surface with few unevenness.
  • the fact that the surface is smooth and has little unevenness indicates that the effect of the flux, which will be described later, is sufficiently exhibited, and the surfaces of the additive element A source and the composite oxide are melted. Therefore, this is one factor indicating that the additive element A has a good distribution in the surface layer portion 200a.
  • Good distribution means, for example, that the concentration distribution of the additive element A in the surface layer portion 200a is uniform.
  • the fact that the surface is smooth and has few irregularities can be determined from, for example, a cross-sectional SEM image or a cross-sectional TEM image of the positive electrode active material 200, the specific surface area of the positive electrode active material 200, or the like.
  • the surface smoothness can be quantified from a cross-sectional SEM image of the positive electrode active material 200 as follows.
  • the positive electrode active material 200 is processed by FIB or the like to expose the cross section. At this time, it is preferable to cover the positive electrode active material 200 with a protective film, a protective agent, or the like.
  • the surface roughness of the positive electrode active material is at least the surface roughness of 400 nm on the periphery.
  • the root mean square (RMS) surface roughness which is an index of roughness, is less than 3 nm, preferably less than 1 nm, more preferably less than 0.5 nm. (RMS).
  • Image processing software for noise processing, interface extraction, etc. is not particularly limited, but for example, "ImageJ" can be used.
  • the spreadsheet software is not particularly limited, but for example, Microsoft Office Excel can be used.
  • the smoothness of the surface of the positive electrode active material 200 can also be quantified from the ratio between the actual specific surface area S R measured by the constant volume gas adsorption method and the ideal specific surface area S i . can.
  • the ideal specific surface area Si is obtained by calculation assuming that all the positive electrode active materials have the same diameter as D50, the same weight, and an ideal sphere shape.
  • the median diameter (D50) can be measured with a particle size distribution meter or the like using a laser diffraction/scattering method.
  • the specific surface area can be measured by, for example, a specific surface area measuring device using a gas adsorption method based on a constant volume method.
  • the ratio S R / S i between the ideal specific surface area A i obtained from the median diameter (D50) and the actual specific surface area S R is 2.1 or less. is preferred.
  • the smoothness of the surface can be quantified from the cross-sectional SEM image of the positive electrode active material 200 by the following method.
  • a surface SEM image of the positive electrode active material 200 is acquired.
  • a conductive coating may be applied as a pretreatment for observation.
  • the viewing plane is preferably perpendicular to the electron beam.
  • a grayscale image contains luminance (brightness information).
  • a dark part has a low number of gradations, and a bright part has a high number of gradations.
  • the brightness change can be quantified in association with the number of gradations.
  • Such numerical values are called grayscale values.
  • a histogram is a three-dimensional representation of the gradation distribution in a target area, and is also called a luminance histogram. Acquiring the luminance histogram makes it possible to visually understand and evaluate the unevenness of the positive electrode active material.
  • the difference between the maximum and minimum grayscale values is preferably 120 or less, more preferably 115 or less, and 70 or more and 115 or less. is more preferred.
  • the standard deviation of gray scale values is preferably 11 or less, more preferably 8 or less, and even more preferably 4 or more and 8 or less.
  • Distribution of the additive element A including magnesium included in the surface layer portion of the positive electrode active material 200 of one embodiment of the present invention may change slightly during repeated charging and discharging. For example, the distribution of the additive element A may become better, and the electron conduction resistance may decrease. Therefore, the electrical resistance, that is, the resistance component R (0.1 s) having a fast response measured by the current pause method may decrease at the beginning of the charge/discharge cycle.
  • the resistance component R (0.1 s) with a faster response measured by the current rest method is higher at the n+1 charge than at the n charge. may be lower.
  • the discharge capacity of the (n+1)th discharge is higher than the discharge capacity of the nth discharge.
  • n 1, that is, when the first charge and the second charge are compared, the increase in the charge capacity of the second charge can be due to the fact that the positive electrode active material does not particularly contain an additive element. The following are preferred. However, it is not limited to this as long as it is the initial stage of the charge/discharge cycle.
  • the charge/discharge capacity is about the same as the rated capacity, for example, 97% or more of the rated capacity, it can be said to be the initial stage of the charge/discharge cycle.
  • the cathode active material 200 may have depressions, cracks, depressions, V-shaped cross-sections, and the like. These are one of the defects, and repeated charging and discharging may cause elution of the transition metal M, collapse of the crystal structure, cracking of the main body, desorption of oxygen, and the like. However, if the embedding portion 202 as shown in FIG. 13B is present so as to embed them, the elution of the transition metal M can be suppressed. Therefore, the positive electrode active material 200 can have excellent reliability and cycle characteristics.
  • the positive electrode active material 200 may have a convex portion 203 as a region where the additive element A is unevenly distributed, as shown in FIG. 13B.
  • the additive element A contained in the positive electrode active material 200 is excessive, there is a possibility that the insertion and extraction of lithium may be adversely affected. In addition, when used as a secondary battery, there is a risk of causing an increase in internal resistance, a decrease in charge/discharge capacity, and the like. On the other hand, if it is insufficient, it may not be distributed over the entire surface layer portion 200a, and the effect of suppressing the deterioration of the crystal structure may be insufficient. As described above, the additive element A needs to have an appropriate concentration in the positive electrode active material 200, but the adjustment is not easy.
  • the positive electrode active material 200 has a region where the additive element A is unevenly distributed, part of the excess additive element A is removed from the inside 200b of the positive electrode active material 200, and the appropriate additive element A is removed from the inside 200b. concentration.
  • This makes it possible to suppress an increase in internal resistance, a decrease in charge/discharge capacity, and the like when used as a secondary battery.
  • the ability to suppress an increase in the internal resistance of a secondary battery is an extremely favorable characteristic particularly in charging and discharging at a large current, for example, charging and discharging at 400 mA/g or more.
  • the positive electrode active material 200 having a region where the additive element A is unevenly distributed it is allowed to mix the additive element A in excess to some extent in the manufacturing process. Therefore, the margin in production is widened, which is preferable.
  • the positive electrode active material when the positive electrode active material is charged at 4.5 V or higher, or charged and discharged at a high temperature, such as an environmental temperature of 45 ° C. or higher, progressive defects that progress from the surface to the inside occur. Sometimes. A phenomenon in which defects progress to form holes in the positive electrode active material can also be called pitting corrosion, and holes generated by this phenomenon are also called pits in this specification.
  • FIG. 21 shows a schematic cross-sectional view of a positive electrode active material 51 having pits. A crystal plane 55 parallel to the arrangement of cations is also shown. Since FIG. 21 is a cross-sectional view, the pits 54 and 58 are shown as holes, but the shape of these openings is deep and groove-like rather than circular. In addition, as shown by pits 54 and 58, unlike recesses 52, they tend to occur parallel to the arrangement of lithium ions.
  • 53 and 56 indicate surface layer portions of the positive electrode active material 51 where the additive element A is present.
  • the additive element A is less than 53 and 56 or below the lower limit of detection, and it is presumed that the function of the barrier film is reduced.
  • the crystal structure of the composite oxide collapses in the vicinity of the formation of the pits, resulting in a crystal structure different from that of the layered rock salt type. Since the collapse of the crystal structure hinders the diffusion and release of lithium ions, which are carrier ions, pits are considered to be a factor in deterioration of cycle characteristics.
  • the source of pits may be point defects. It is thought that point defects in the positive electrode active material change with repeated charging and discharging, and are chemically or electrochemically eroded by the surrounding electrolyte or the like, or are caused by deterioration of the material. This deterioration does not occur uniformly on the surface of the positive electrode active material, but occurs locally intensively.
  • cracks 57 in FIG. 21 defects such as cracks (also called fissures) may occur due to expansion and contraction of the positive electrode active material due to charging and discharging.
  • cracks and pits are different. Immediately after the production of the positive electrode active material, there are cracks but no pits.
  • a pit can be said to be a hole through which several layers of the transition metal M and oxygen are removed by charging and discharging under a high voltage condition of 4.5 V or higher or a high temperature (45 ° C. or higher), for example, a place where the transition metal M is eluted. It can also be said.
  • a crack refers to a crack caused by a new surface or a crystal grain boundary 201 caused by applying physical pressure, for example. Cracks may occur due to expansion and contraction of the positive electrode active material due to charging and discharging. In addition, cracks and/or pits may occur from cavities inside the positive electrode active material.
  • the positive electrode active material 200 it is preferable to first synthesize a composite oxide containing lithium and a transition metal, and then to mix the additive element A source and perform heat treatment.
  • the concentration of the additive element A in the surface layer portion 200a is difficult to raise. Further, after synthesizing a composite oxide containing lithium and transition metal M, if only the source of the additive element A is mixed and no heating is performed, the additive element simply adheres to the composite oxide without forming a solid solution. Without sufficient heating, it is difficult to distribute the additive element A well. Therefore, it is preferable to mix the additive element A source after synthesizing the composite oxide, and to perform the heat treatment. The heat treatment after mixing the additive element A source is sometimes called annealing.
  • the annealing temperature is too high, cation mixing will occur, increasing the possibility of additional element A, eg magnesium, entering the transition metal M site.
  • additional element A eg magnesium
  • Magnesium present in the transition metal M site has no effect of maintaining the R-3m layered rock salt type crystal structure when x in Li x CoO 2 is small.
  • adverse effects such as reduction of cobalt to bivalence and transpiration or sublimation of lithium may occur.
  • the melting point is lower than that of the composite oxide containing lithium and transition metal M, it can be said that the material functions as a flux.
  • fluorine compounds such as lithium fluoride are suitable.
  • This heating may be referred to as initial heating.
  • lithium is desorbed from a part of the surface layer portion 200a of the composite oxide containing lithium and the transition metal M, so that the distribution of the additive element A is further improved.
  • initial heating facilitates the distribution of the additive element A to differ due to the following mechanism.
  • initial heating desorbs lithium from a part of the surface layer portion 200a.
  • a composite oxide containing lithium having the lithium-deficient surface layer portion 200a and a transition metal M, and an additive element A source such as a nickel source, an aluminum source, and a magnesium source are mixed and heated.
  • an additive element A source such as a nickel source, an aluminum source, and a magnesium source
  • magnesium is a typical divalent element
  • nickel, a transition metal tends to become a divalent ion. Therefore, a rock salt type phase containing Mg 2+ and Ni 2+ and Co 2+ reduced due to lack of lithium is formed in a part of the surface layer portion 200a.
  • nickel is likely to form a solid solution and diffuses into the interior 200b when the surface layer portion 200a is a composite oxide containing layered rock salt type lithium and a transition metal M. In this case, it tends to remain on the surface layer portion 200a.
  • the Me-O distance in rock salt type Ni0.5Mg0.5O is 0.209 nm
  • the Me-O distance in rock salt type MgO is 0.211 nm.
  • the Me--O distance of spinel-type NiAl2O4 is 0.20125 nm
  • the Me--O distance of spinel-type MgAl2O4 is 0.20125 nm. 202 nm. The Me-O distance exceeds 0.2 nm in both cases.
  • the bonding distance between metals other than lithium and oxygen is shorter than the above.
  • the Al-O distance in layered rock salt LiAlO 2 is 0.1905 nm (Li-O distance is 0.211 nm).
  • the Co-O distance in the layered rock salt LiCoO 2 is 0.1.9224 nm (the Li-O distance is 0.20916 nm).
  • the ionic radius of hexacoordinated aluminum is 0.0535 nm
  • the ionic radius of hexacoordinated oxygen is 0.14 nm.
  • their sum is 0.1935 nm.
  • the initial heating can be expected to have the effect of increasing the crystallinity of the layered rock salt type crystal structure of the interior 200b.
  • the initial heating does not necessarily have to be performed.
  • the atmosphere, temperature, time, and the like in other heating steps, such as annealing it may be possible to produce the positive electrode active material 200 having the O3′ type when x in Li x CoO 2 is small.
  • Step S11 In step S11 shown in FIG. 22A, a lithium source (Li source) and a transition metal M source (M source) are prepared as starting materials of lithium and transition metal M, respectively.
  • Li source Li source
  • M source transition metal M source
  • the lithium source it is preferable to use a compound containing lithium.
  • a compound containing lithium for example, lithium carbonate, lithium hydroxide, lithium nitrate, lithium fluoride, or the like can be used.
  • the lithium source preferably has a high purity, and for example, a material with a purity of 99.99% or higher is preferably used.
  • the transition metal M can be selected from elements listed in groups 4 to 13 of the periodic table, and at least one of manganese, cobalt, and nickel is used, for example.
  • the transition metal M when only cobalt is used, when only nickel is used, when two kinds of cobalt and manganese are used, when two kinds of cobalt and nickel are used, or when three kinds of cobalt, manganese and nickel are used.
  • LCO lithium cobalt oxide
  • NCM nickel-cobalt-lithium manganate
  • the transition metal M source it is preferable to use a compound containing the transition metal M.
  • oxides or hydroxides of the metals exemplified as the transition metal M can be used.
  • Cobalt oxide, cobalt hydroxide, and the like can be used as the cobalt source.
  • Manganese oxide, manganese hydroxide, or the like can be used as a manganese source.
  • nickel source nickel oxide, nickel hydroxide, or the like can be used.
  • an aluminum source although it is not a transition metal, and if it is an aluminum source, aluminum oxide, aluminum hydroxide, or the like can be used.
  • the transition metal M source preferably has a high purity. (99.999%) or more is preferably used. Impurities in the positive electrode active material can be controlled by using a high-purity material. As a result, the capacity of the secondary battery is increased and/or the reliability of the secondary battery is improved.
  • the transition metal M source is highly crystalline, for example having single crystal grains.
  • TEM transmission electron microscope
  • STEM scanning transmission electron microscope
  • HAADF-STEM high angle scattering annular dark field scanning transmission electron microscope
  • ABF-STEM annular Bright field scanning transmission electron microscope
  • XRD X-ray diffraction
  • the method for evaluating the crystallinity described above can be applied not only to the transition metal M source, but also to other crystallinity evaluations.
  • the two or more transition metal M sources when using two or more transition metal M sources, it is preferable to prepare the two or more transition metal M sources at a ratio (mixing ratio) that allows the two or more transition metal sources to form a layered rock salt type crystal structure.
  • Step S12 the lithium source and the transition metal M source are pulverized and mixed to produce a mixed material. Grinding and mixing can be dry or wet. The wet method is preferred because it can be pulverized into smaller pieces.
  • a solvent if the method is wet. Examples of solvents that can be used include ketones such as acetone, alcohols such as ethanol and isopropanol, ethers, dioxane, acetonitrile, and N-methyl-2-pyrrolidone (NMP). It is more preferable to use an aprotic solvent that is less likely to react with lithium. In this embodiment, dehydrated acetone with a purity of 99.5% or higher is used.
  • the lithium source and the transition metal M source are mixed with dehydrated acetone with a purity of 99.5% or more and with a water content of 10 ppm or less, followed by pulverization and mixing.
  • dehydrated acetone with the above purity, possible impurities can be reduced.
  • a ball mill, a bead mill, or the like can be used as means for mixing.
  • a ball mill it is preferable to use aluminum oxide balls or zirconium oxide balls as grinding media. Zirconium oxide balls are preferable because they emit less impurities.
  • the peripheral speed should be 100 mm/s or more and 2000 mm/s or less in order to suppress contamination from the media. In this embodiment, the peripheral speed is 838 mm/s (rotational speed: 400 rpm, ball mill diameter: 40 mm).
  • Step S13 the mixed material is heated.
  • the heating temperature is preferably 800°C or higher and 1100°C or lower, more preferably 900°C or higher and 1000°C or lower, and still more preferably about 950°C. If the temperature is too low, decomposition and melting of the lithium source and transition metal M source may be insufficient. On the other hand, if the temperature is too high, defects may occur due to evaporation of lithium from the lithium source and/or excessive reduction of the metal used as the transition metal M source. For example, when cobalt is used as the transition metal M, excessive reduction of cobalt changes the valence of cobalt from trivalent to divalent, which may induce oxygen defects and the like.
  • the heating time is preferably 1 hour or more and 100 hours or less, preferably 2 hours or more and 20 hours or less.
  • the heating rate is preferably 80° C./h or more and 250° C./h or less, although it depends on the reaching temperature of the heating temperature. For example, when heating at 1000° C. for 10 hours, the temperature should be raised at 200° C./h.
  • the heating atmosphere is preferably an atmosphere containing little water such as dry air, for example, an atmosphere with a dew point of -50°C or less, more preferably -80°C or less. In this embodiment mode, heating is performed in an atmosphere with a dew point of -93°C.
  • the concentrations of impurities such as CH 4 , CO, CO 2 and H 2 in the heating atmosphere should each be 5 ppb (parts per billion) or less.
  • An atmosphere containing oxygen is preferable as the heating atmosphere.
  • the heating atmosphere there is a method of continuously introducing dry air into the reaction chamber.
  • the flow rate of dry air is preferably 10 L/min.
  • the process by which oxygen continues to be introduced into the reaction chamber and is flowing through the reaction chamber is referred to as flow.
  • the heating atmosphere is an atmosphere containing oxygen
  • a method that does not flow may be used.
  • the reaction chamber may be decompressed and then filled with oxygen to prevent the oxygen from entering or exiting the reaction chamber. This is called purging.
  • the reaction chamber may be evacuated to -970 hPa and then filled with oxygen to 50 hPa.
  • Cooling after heating may be natural cooling, but it is preferable that the cooling time from the specified temperature to room temperature is within 10 hours or more and 50 hours or less. However, cooling to room temperature is not necessarily required, and cooling to a temperature that the next step allows is sufficient.
  • Heating in this step may be performed by a rotary kiln or a roller hearth kiln. Heating by a rotary kiln can be performed while stirring in either a continuous system or a batch system.
  • the crucible or sheath used for heating is preferably made of a highly heat-resistant material such as alumina (aluminum oxide), mullite/cordierite, magnesia, or zirconia.
  • alumina aluminum oxide
  • mullite/cordierite mullite/cordierite
  • magnesia or zirconia
  • the purity of the crucible or sheath made of alumina is 99% or more, preferably 99.5% or more.
  • a crucible made of aluminum oxide with a purity of 99.9% is used.
  • the crucible or sheath is heated with a lid. Volatilization or sublimation of the material can be prevented.
  • the material may be pulverized and sieved as necessary.
  • it may be recovered after being moved from the crucible to a mortar.
  • a mortar made of aluminum oxide is a material that does not easily release impurities.
  • a mortar made of aluminum oxide with a purity of 90% or higher, preferably 99% or higher is used. Note that the same heating conditions as in step S13 can be applied to the later-described heating process other than step S13.
  • a composite oxide (LiMO 2 ) having a transition metal M can be obtained in step S14 shown in FIG. 22A.
  • the oxide is called a cobalt-containing composite oxide and represented by LiCoO 2 .
  • the composite oxide may be produced by the coprecipitation method.
  • a composite oxide may also be produced by a hydrothermal method.
  • step S15 the composite oxide is heated. Since the composite oxide is first heated, the heating in step S15 may be called initial heating. Alternatively, since the heating is performed before step S20 described below, it may be called preheating or pretreatment.
  • lithium Due to the initial heating, lithium is desorbed from part of the surface layer portion 200a of the composite oxide as described above. Further, the effect of increasing the crystallinity of the inner portion 200b can be expected. Impurities may be mixed in the lithium source and/or the transition metal M prepared in step S11 or the like. It is possible to reduce impurities from the composite oxide completed in step 14 by initial heating.
  • the initial heating has the effect of smoothing the surface of the composite oxide.
  • smooth surface means that the surface is less uneven, the complex oxide is overall rounded, and the corners are rounded. Furthermore, a state in which there are few foreign substances adhering to the surface is called smooth. Foreign matter is considered to be a cause of unevenness, and it is preferable that foreign matter does not adhere to the surface.
  • This initial heating does not require the provision of a lithium compound source. Alternatively, it is not necessary to prepare the additive element A source. Alternatively, it is not necessary to prepare a material that functions as a flux.
  • the heating conditions described in step S13 can be selected and implemented. Supplementing the heating conditions, the heating temperature in this step should be lower than the temperature in step S13 in order to maintain the crystal structure of the composite oxide. Also, the heating time in this step is preferably shorter than the time in step S13 in order to maintain the crystal structure of the composite oxide. For example, heating may be performed at a temperature of 700° C. to 1000° C. for 2 hours to 20 hours.
  • the effect of increasing the crystallinity of the inner portion 200b is, for example, the effect of relieving strain, displacement, etc. resulting from the difference in shrinkage of the composite oxide produced in step S13.
  • Heating in step S13 may cause a temperature difference between the surface and the inside of the composite oxide. Differences in temperature can induce differential shrinkage. It is also considered that the difference in shrinkage occurs due to the difference in fluidity between the surface and the inside due to the temperature difference.
  • the energy associated with the differential shrinkage gives differential internal stress to the composite oxide.
  • the difference in internal stress is also called strain, and the energy is sometimes called strain energy. It is considered that the internal stress is removed by the initial heating in step S15, and in other words the strain energy is homogenized by the initial heating in step S15. When the strain energy is homogenized, the strain of the composite oxide is relaxed. Therefore, the surface of the composite oxide may become smooth after step S15. It is also called surface-improved. In other words, after step S15, the shrinkage difference occurring in the composite oxide is relaxed, and the surface of the composite oxide becomes smooth.
  • the differential shrinkage may cause micro-shifts, such as crystal shifts, in the composite oxide. It is preferable to perform this step also in order to reduce the deviation. Through this step, it is possible to uniform the misalignment of the composite oxide. If the deviation is made uniform, the surface of the composite oxide may become smooth. It is also called that the crystal grains are aligned. In other words, after step S15, it is considered that the deviation of crystals and the like generated in the composite oxide is alleviated and the surface of the composite oxide becomes smooth.
  • a complex oxide having a smooth surface can be said to have a surface roughness of at least 10 nm or less when surface irregularity information is quantified from measurement data in one section of the complex oxide.
  • One cross section is, for example, a cross section acquired during STEM observation.
  • step S14 a composite oxide containing lithium, transition metal M, and oxygen synthesized in advance may be used in step S14.
  • steps S11 to S13 can be omitted.
  • step S15 By performing step S15 on a complex oxide synthesized in advance, a complex oxide with a smooth surface can be obtained.
  • initial heating may reduce the amount of lithium in the composite oxide.
  • Lithium in which the additional element A has been reduced which will be described in the next step S20, etc., may easily enter the composite oxide.
  • the additive element A may be added to the composite oxide having a smooth surface within the range where a layered rock salt type crystal structure can be obtained.
  • the additive element A can be added evenly. Therefore, it is preferable to add the additive element A after the initial heating. The step of adding the additive element A will be described with reference to FIGS. 22B and 22C.
  • step S21 shown in FIG. 22B an additive element A source (A source) to be added to the composite oxide is prepared.
  • a lithium source may be prepared together with the additive element A source.
  • Additive element A includes nickel, cobalt, magnesium, calcium, chlorine, fluorine, aluminum, manganese, titanium, zirconium, yttrium, vanadium, iron, chromium, niobium, lanthanum, hafnium, zinc, silicon, sulfur, phosphorus, boron, and arsenic.
  • One or more selected from bromine and beryllium can also be used as the additive element. However, since bromine and beryllium are elements that are toxic to living organisms, it is preferable to use the additive elements described above.
  • the additive element A source can be called a magnesium source.
  • Magnesium fluoride, magnesium oxide, magnesium hydroxide, magnesium carbonate, or the like can be used as the magnesium source.
  • the additive element A source can be called a fluorine source.
  • the fluorine source include lithium fluoride, magnesium fluoride, aluminum fluoride, titanium fluoride, cobalt fluoride, nickel fluoride, zirconium fluoride, vanadium fluoride, manganese fluoride, iron fluoride, and chromium fluoride.
  • niobium fluoride, zinc fluoride, calcium fluoride, sodium fluoride, potassium fluoride, barium fluoride, cerium fluoride, lanthanum fluoride (LaF 3 ), sodium aluminum hexafluoride, or the like can be used.
  • lithium fluoride is preferable because it has a relatively low melting point of 848° C. and is easily melted in a heating step to be described later.
  • Magnesium fluoride can be used as both a fluorine source and a magnesium source. Lithium fluoride can also be used as a lithium source. Another lithium source that can be used in step S21 is lithium carbonate.
  • the fluorine source may be a gas, and fluorine (F 2 ), carbon fluoride, sulfur fluoride, oxygen fluoride, or the like may be used and mixed in the atmosphere in the heating step described later. Also, a plurality of fluorine sources as described above may be used.
  • lithium fluoride (LiF) is prepared as a fluorine source
  • magnesium fluoride (MgF 2 ) is prepared as a fluorine source and a magnesium source.
  • LiF:MgF 2 65:35 (molar ratio) or in the vicinity thereof
  • the melting point is lowered and the gel effect is maximized.
  • the amount of lithium fluoride increases, there is a concern that the amount of lithium becomes excessive and the cycle characteristics deteriorate.
  • the term “near” means a value larger than 0.9 times and smaller than 1.1 times the value.
  • the amount of magnesium added is preferably more than 0.1 atomic % and 3 atomic % or less, more preferably 0.5 atomic % or more and 2 atomic % or less, and 0.5 atomic % or more1 Atomic % or less is more preferable.
  • the amount of magnesium added is 0.1 atomic % or less, the initial discharge capacity is high, but the discharge capacity drops sharply due to repeated charging and discharging with a high charge depth.
  • the amount of magnesium added is more than 0.1 atomic % and 3 atomic % or less, both initial discharge characteristics and charge/discharge cycle characteristics are good even after repeated charge/discharge with a high charge depth.
  • the amount of magnesium added exceeds 3 atomic %, both the initial discharge capacity and charge/discharge cycle characteristics tend to gradually deteriorate.
  • step S22 shown in FIG. 22B the magnesium source and the fluorine source are pulverized and mixed. This step can be performed by selecting from the pulverization and mixing conditions described in step S12.
  • a heating step may be performed after step S22, if necessary.
  • the heating process can be performed by selecting from the heating conditions described in step S13.
  • the heating time is preferably 2 hours or longer, and the heating temperature is preferably 800° C. or higher and 1100° C. or lower.
  • step S23 shown in FIG. 22B the material pulverized and mixed as described above can be recovered to obtain the additive element A source (A source).
  • the additive element A source shown in step S23 has a plurality of starting materials and can be called a mixture.
  • the median diameter (D50) is preferably 600 nm or more and 20 ⁇ m or less, more preferably 1 ⁇ m or more and 10 ⁇ m or less. Even when one kind of material is used as the additive element A source, the median diameter (D50) is preferably 600 nm or more and 20 ⁇ m or less, more preferably 1 ⁇ m or more and 10 ⁇ m or less.
  • Step S21 A process different from that in FIG. 22B will be described with reference to FIG. 22C.
  • step S21 shown in FIG. 22C four types of additive element A sources to be added to the composite oxide are prepared. That is, FIG. 22C differs from FIG. 22B in the type of additive element A source.
  • a lithium source may be prepared together with the additive element A source.
  • a magnesium source (Mg source), a fluorine source (F source), a nickel source (Ni source), and an aluminum source (Al source) are prepared as four types of additive element A sources. Note that the magnesium source and fluorine source can be selected from the compounds and the like described in FIG. 22B. As a nickel source, nickel oxide, nickel hydroxide, or the like can be used. Aluminum oxide, aluminum hydroxide, and the like can be used as the aluminum source.
  • Steps S22 and S23 shown in FIG. 22C are the same as the steps described in FIG. 22B.
  • step S31 shown in FIG. 22A the composite oxide and the additive element A source (A source) are mixed.
  • the mixing in step S31 is preferably performed under milder conditions than the mixing in step S12 so as not to destroy the composite oxide.
  • the number of revolutions is smaller or the time is shorter than the mixing in step S12.
  • the conditions for the dry method are milder than those for the wet method.
  • a ball mill, bead mill, or the like can be used for mixing.
  • zirconium oxide balls it is preferable to use, for example, zirconium oxide balls as media.
  • dry mixing is performed at 150 rpm for 1 hour using a ball mill using zirconium oxide balls with a diameter of 1 mm.
  • the mixing is performed in a dry room with a dew point of -100°C or higher and -10°C or lower.
  • step S32 of FIG. 22A the mixed materials are recovered to obtain a mixture 903.
  • a method of adding lithium fluoride as a fluorine source and magnesium fluoride as a magnesium source to a composite oxide that has undergone initial heating afterward is described.
  • the invention is not limited to the above method.
  • a magnesium source, a fluorine source, and the like can be added to the lithium source and the transition metal M source at the stage of step S11, ie, the stage of the starting material of the composite oxide.
  • LiMO 2 doped with magnesium and fluorine can be obtained by heating in step S13. In this case, there is no need to separate the steps S11 to S14 from the steps S21 to S23. It can be said that it is a simple and highly productive method.
  • a composite oxide to which magnesium and fluorine are added in advance may also be used. If a composite oxide to which magnesium and fluorine are added is used, steps S11 to S32 and step S20 can be omitted. It can be said that it is a simple and highly productive method.
  • a magnesium source and a fluorine source or a magnesium source, a fluorine source, a nickel source, and an aluminum source may be further added according to step S20 to the composite oxide to which magnesium and fluorine have been added in advance.
  • step S33 the mixture 903 is heated.
  • the heating conditions described in step S13 can be selected and implemented.
  • the heating time is preferably 2 hours or more.
  • the heating temperature is supplemented here.
  • the lower limit of the heating temperature in step S33 must be at least the temperature at which the reaction between the composite oxide (LiMO 2 ) and the additive element A source proceeds.
  • the temperature at which the reaction proceeds may be any temperature at which interdiffusion of elements possessed by LiMO 2 and the additive element A source occurs, and may be lower than the melting temperature of these materials. Taking oxides as an example, it is known that solid-phase diffusion occurs from 0.757 times the melting temperature T m (Tamman temperature T d ). Therefore, the heating temperature in step S33 may be 500° C. or higher.
  • the reaction proceeds more easily.
  • the eutectic point of LiF and MgF2 is around 742°C, so the lower limit of the heating temperature in step S33 is preferably 742°C or higher.
  • a mixture 903 obtained by mixing LiCoO 2 :LiF:MgF 2 100:0.33:1 (molar ratio) has an endothermic peak near 830° C. in differential scanning calorimetry (DSC measurement). is observed. Therefore, the lower limit of the heating temperature is more preferably 830° C. or higher.
  • the upper limit of the heating temperature is less than the decomposition temperature of LiMO 2 (the decomposition temperature of LiCoO 2 is 1130° C.). At temperatures near the decomposition temperature, there is concern that LiMO 2 will decompose, albeit in a very small amount. Therefore, it is more preferably 1000° C. or lower, more preferably 950° C. or lower, and even more preferably 900° C. or lower.
  • the heating temperature in step S33 is preferably 500° C. or higher and 1130° C. or lower, more preferably 500° C. or higher and 1000° C. or lower, even more preferably 500° C. or higher and 950° C. or lower, and further preferably 500° C. or higher and 900° C. or lower. preferable.
  • the temperature is preferably 742°C or higher and 1130°C or lower, more preferably 742°C or higher and 1000°C or lower, even more preferably 742°C or higher and 950°C or lower, and even more preferably 742°C or higher and 900°C or lower.
  • the temperature is preferably 800° C. to 1100° C., preferably 830° C.
  • the heating temperature in step S33 is preferably lower than that in step S13.
  • some materials such as LiF which is a fluorine source may function as a flux.
  • the heating temperature can be lowered to below the decomposition temperature of the composite oxide (LiMO 2 ), for example, 742 ° C. or higher and 950 ° C. or lower, and the additive element A including magnesium is distributed in the surface layer, and good characteristics are obtained.
  • a positive electrode active material can be produced.
  • LiF has a lower specific gravity in a gaseous state than oxygen
  • LiF may volatilize or sublime by heating, and the volatilization reduces LiF in the mixture 903 .
  • the function as a flux is weakened. Therefore, it is necessary to heat while suppressing volatilization or sublimation of LiF.
  • LiF is not used as a fluorine source or the like, there is a possibility that Li on the surface of LiMO 2 reacts with F of the fluorine source to generate LiF, which volatilizes or sublimates. Therefore, even if a fluoride having a higher melting point than LiF is used, it is necessary to similarly suppress volatilization or sublimation.
  • the mixture 903 in an atmosphere containing LiF, that is, to heat the mixture 903 in a state where the partial pressure of LiF in the heating furnace is high.
  • Such heating can suppress volatilization or sublimation of LiF in the mixture 903 .
  • the heating in this step is preferably performed so that the mixtures 903 do not adhere to each other. If the mixture 903 adheres to each other during heating, the contact area with oxygen in the atmosphere is reduced, and the diffusion path of the additive element A (e.g., fluorine) is inhibited, so that the additive element A (e.g., magnesium and fluorine) distribution may deteriorate.
  • the additive element A e.g., fluorine
  • the additive element A for example, fluorine
  • the additive element A for example, fluorine
  • heating by a rotary kiln it is preferable to heat by controlling the flow rate of the oxygen-containing atmosphere in the kiln. For example, it is preferable to reduce the flow rate of the oxygen-containing atmosphere, or to stop the flow of the atmosphere after first purging the atmosphere and introducing the oxygen atmosphere into the kiln.
  • Flowing oxygen may volatilize or sublimate the fluorine source, which is not preferable for maintaining surface smoothness.
  • the mixture 903 can be heated in an atmosphere containing LiF, for example, by placing a lid on the container containing the mixture 903 .
  • the heating time varies depending on conditions such as the heating temperature, the size of LiMO 2 in step S14, and the composition. Lower temperatures or shorter times may be more preferable for smaller LiMO 2 than for larger LiMO 2 .
  • the heating temperature is preferably 600° C. or higher and 950° C. or lower, for example.
  • the heating time is, for example, preferably 3 hours or longer, more preferably 10 hours or longer, and even more preferably 60 hours or longer.
  • the cooling time after heating is, for example, 10 hours or more and 50 hours or less.
  • the heating temperature is preferably 600° C. or higher and 950° C. or lower.
  • the heating time is, for example, preferably 1 hour or more and 10 hours or less, more preferably about 2 hours.
  • the cooling time after heating is, for example, 10 hours or more and 50 hours or less.
  • step S34 shown in FIG. 22A the heated material is collected and, if necessary, pulverized to obtain the positive electrode active material 200.
  • FIG. At this time, it is preferable to further screen the recovered positive electrode active material 200 .
  • the positive electrode active material 200 of one embodiment of the present invention can be manufactured.
  • the positive electrode active material of one embodiment of the present invention has a smooth surface.
  • This embodiment can be used in combination with other embodiments.
  • FIG. 23A and 23B show an example of an external view of an example of a laminated secondary battery 100.
  • FIG. 23A and 23B have a positive electrode layer 106, a negative electrode layer 107, an electrolyte layer 103, an outer package 509, a positive lead electrode 510 and a negative lead electrode 511.
  • FIG. 23A and 23B have a positive electrode layer 106, a negative electrode layer 107, an electrolyte layer 103, an outer package 509, a positive lead electrode 510 and a negative lead electrode 511.
  • a positive electrode layer 106 and a negative electrode layer 107 are provided.
  • the positive electrode active material layer 102 is formed on one surface of the positive electrode current collector.
  • the positive electrode active material layer 102 may be formed on the other surface of the positive electrode current collector.
  • the positive electrode layer 106 has a region where the positive electrode current collector is partially exposed (hereinafter referred to as a tab region), and the tab region is referred to as a positive electrode tab 501 .
  • the negative electrode active material layer 104 is formed over one surface of the negative electrode current collector.
  • the negative electrode active material layer 104 may be formed on the other surface of the negative electrode current collector.
  • the negative electrode layer 107 has a region where the negative electrode current collector is partially exposed, that is, a tab region, and the tab region is referred to as a negative electrode tab 504 .
  • the area and shape of each tab region are not limited to the example shown in FIG. 24A.
  • FIG. 24B shows the negative electrode layer 107, the electrolyte layer 103 and the positive electrode layer 106 stacked.
  • the area of the electrolyte layer 103 is preferably larger than the areas of the negative electrode layer 107 and the positive electrode layer 106 .
  • FIG. 24B shows a configuration example in which five sets of negative electrodes and four sets of positive electrodes are stacked.
  • the positive electrode tabs 501 are joined together, and the positive lead electrode 510 is joined to the outermost tab region.
  • For joining for example, ultrasonic welding or the like may be used.
  • bonding between the negative electrode tabs 504 and bonding of the negative electrode lead electrode 511 to the tab region on the outermost surface are performed.
  • the negative electrode layer 107, the electrolyte layer 103, and the positive electrode layer 106 are placed on the package 509, and the package 509 is bent at the portions indicated by broken lines. After that, the outer peripheral portion of the exterior body 509 is adhered.
  • the area used for gluing is referred to as the gluing area.
  • thermocompression bonding or the like may be used.
  • the ionic liquid into the exterior body 509 from an inlet provided in the exterior body 509 . It is preferable to introduce a liquid material such as an ionic liquid under a reduced pressure atmosphere or an inert atmosphere. And finally, the inlet is joined. In this manner, the laminated secondary battery 100 can be manufactured.
  • the solid electrolyte holds the ionic liquid in the electrolyte layer 103 .
  • the ionic liquid impregnates the solid electrolyte.
  • Such an electrolyte layer 103 is preferable because the ionic liquid does not seep out.
  • This embodiment can be used in combination with other embodiments.
  • secondary battery 100 can be bent after forming the above-described laminated secondary battery 100 . That is, secondary battery 100 has flexibility.
  • FIG. 25A shows secondary battery 100 in a bent configuration.
  • FIG. 25A shows a configuration in which the secondary battery 100 having the positive electrode layer 106, the electrolyte layer 103, and the negative electrode layer 107 is bent toward the positive electrode layer 106 side.
  • the secondary battery 100 may have a curved shape toward the negative electrode layer 107 .
  • the electrolyte layer 103 which is one embodiment of the present invention, is suitable for the curved secondary battery 100 because an electrolyte such as an ionic liquid does not leak out.
  • the curved shape includes a shape having an arc-shaped portion in one cross section of the secondary battery 100 .
  • a minimum unit constituting a secondary battery is referred to as a battery unit, and the battery unit has a positive electrode layer 106 , an electrolyte layer 103 and a negative electrode layer 107 .
  • the secondary battery 100 of one embodiment of the present invention may have a plurality of battery units. That is, the secondary battery 100 may have a configuration in which a plurality of such battery units are stacked.
  • the electrolyte layer 103 which is one embodiment of the present invention, is suitable for stacking units because an electrolyte such as an ionic liquid does not leak out.
  • FIG. 25A Although one battery unit is illustrated in FIG. 25A, a structure in which a plurality of battery units are stacked may be used.
  • FIG. 25A does not show the exterior body.
  • the radius of curvature 1802 of the layer closer to the center of curvature 1800, for example the positive electrode layer 106 is larger than the radius of curvature 1804 of the layer farther from the center of curvature 1800, for example the negative electrode layer 107. become smaller.
  • the thickness of the layer having a small radius of curvature, for example, the positive electrode layer 106 is preferably smaller than that of the negative electrode layer 107 .
  • FIG. 25B when the secondary battery 100 is bent as shown in FIG. 25A, compressive stress is applied to the surface of the positive electrode layer 106 and tensile stress is applied to the surface of the negative electrode layer 107 as indicated by arrows.
  • a layer with a smaller radius of curvature, such as the positive electrode layer 106 may be thicker than the negative electrode layer 107 in order to relieve compressive stress.
  • the recesses and protrusions are formed on the surface of the exterior body 1805 and are like patterns. Note that, as can be seen from a cross section of the exterior body 1805, when the exterior body is provided with a convex portion, a recessed portion is also formed at the same time, and when the exterior body is provided with a recessed portion, the convex portion is also formed at the same time. That is, it is not necessary to form both recesses and protrusions on the exterior body, and by providing one of them, the other is formed at the same time.
  • the armor 1805 can relieve the compressive stress and tensile stress described above. That is, the secondary battery 100 can be deformed within a range in which the radius of curvature of the outer package on the side closer to the center of curvature is 30 mm or more, preferably 10 mm or more.
  • a bonding region 1807 is a region where the exterior body 1805 is bonded by thermocompression bonding or the like.
  • An adhesive layer 1803 may be positioned between the outer bodies 1805 in the adhesive region 1807 .
  • concave portions or convex portions provided on the upper and lower sides of the exterior body 1805 may overlap each other. Since the concave portions or the convex portions overlap each other, the concave portions or the convex portions may be formed in the exterior body 1805 again when the exterior body is adhered. Adhesion strength can be increased by such a configuration.
  • 26A shows secondary battery 100 having space 1810 in a region 1808 which is an end portion of package 1805 and is not adhesive region 1807.
  • FIG. 26A shows secondary battery 100 having space 1810 in a region 1808 which is an end portion of package 1805 and is not adhesive region 1807.
  • a region 1808 that is the end of the outer package 1805 and is not the adhesive region 1807 shows the secondary battery 100 having the ionic liquid 118 .
  • the ionic liquid 118 is retained in the electrolyte layer 103, it is conceivable that it leaks out in the case of a bent secondary battery.
  • the region 1808 in FIG. 26B may have a space with the ionic liquid 118. Since the adhesive strength of the exterior body 1805 is high, the ionic liquid 118 does not leak out of the exterior body 1805 .
  • the shape of the curved secondary battery 100 is not limited to a simple arc shape in a cross-sectional view, and may be a shape partially having an arc shape.
  • the above-described exterior body having concave portions or convex portions can also be applied to the secondary battery 100 shown in FIGS. 27A and 27B, and a plurality of stacked battery units can be applied.
  • the radius of curvature of the outer package closest to the center of curvature is within a range of 10 mm or more, preferably 30 mm or more. can bend the secondary battery.
  • the solid electrolyte holds the ionic liquid in the electrolyte layer 103 .
  • the ionic liquid impregnates the solid electrolyte.
  • Such an electrolyte layer 103 is preferable because the ionic liquid does not seep out.
  • This embodiment can be used in combination with other embodiments.
  • the secondary battery of one embodiment of the present invention is bendable (also referred to as having flexibility). That is, the secondary battery of one embodiment of the present invention can be flexible.
  • the secondary battery of one embodiment of the present invention can be fixed while being bent. Further, the secondary battery of one embodiment of the present invention can be changed from a bent state.
  • FIG. 28A shows a wristwatch-type electronic device 70 .
  • a wristwatch-type electronic device 70 includes a frame 71 (the frame is also referred to as a case), a display section 72, a belt 21, a buckle 27, a sensor 74, an operation button 77, and the like.
  • the wristwatch-type electronic device 70 can run various applications such as mobile telephony, e-mail, text reading and writing, music playback, Internet communication, or computer games.
  • a belt 21 is a part for wearing the watch on the wrist, and is also called a band, a strap, or a bracelet.
  • the display section 72 may be provided with a curved display surface. Display can be performed along a curved display surface.
  • the display unit 72 also includes a touch sensor, and the touch sensor can be arranged along the curved display surface.
  • the application can be operated by touching the touch sensor with a finger or a stylus. For example, by touching an icon 73 displayed on the display unit 72, an application associated with the icon can be activated.
  • the operation button 77 can have various functions such as power on/off operation, wireless communication on/off operation, manner mode execution/cancellation, and power saving mode execution/cancellation.
  • the functions of the operation buttons 77 can be freely set by the operating system incorporated in the wristwatch-type electronic device 70 .
  • the wristwatch-type electronic device 70 is capable of performing standardized short-range wireless communication. For example, by intercommunicating with a headset capable of wireless communication, hands-free communication is also possible.
  • a wristwatch-type electronic device 70 has an antenna for mutual communication. An antenna can be provided on the display unit 72 or the belt 21 .
  • the watch-type electronic device 70 preferably has a sensor 74 .
  • the sensor 74 for example, it is preferable to mount a fingerprint sensor, a pulse sensor, a human body sensor such as a body temperature sensor, a touch sensor, a pressure sensor, an acceleration sensor, or the like.
  • the sensor 74 can be mounted at a position overlapping the display section 72 . Also, the sensor 74 can be mounted on the belt 21 .
  • FIG. 28A illustrates a configuration in which the sensor 74 is mounted on the belt 21.
  • the sensor 74 preferably has an LED and a photodiode, and the heartbeat can be recognized by irradiating the capillaries with light from the LED and detecting it with the photodiode. Therefore, the belt 21 has an opening 23 in the area overlapping the sensor 74 .
  • a wristwatch-type electronic device 70 includes a secondary battery 100 of one embodiment of the present invention.
  • the secondary battery 100 of one embodiment of the present invention the secondary battery can be mounted so as to overlap with the display portion 72 . It is possible to arrange the secondary battery along the curve of the display section 72 .
  • the secondary battery 100 of one embodiment of the present invention can be mounted on the belt 21 . It is possible to arrange the secondary battery 100 along the curve of the belt 21 . When arranged on the belt 21 , the installation area is larger than that of the display section 72 , so the secondary battery 100 can be made larger, which is preferable.
  • the secondary battery 100 may be divided into at least two regions with the sensor 74 in between.
  • the charging operation of the secondary battery 100 can be performed by wireless power supply or wired power supply.
  • FIG. 28B shows a cross-sectional schematic diagram of the belt 21 in which the secondary battery 100 is incorporated.
  • the belt 21 is provided with a cavity 25, and the secondary battery 100 may be placed in the cavity. Furthermore, a sensor 74 can be arranged in the cavity. Belt 21 at a position overlapping sensor 74 has opening 23 . The opening 23 is also called a window.
  • the belt 21 is made of stainless material, leather material, resin material, or the like, and has at least a lower portion 21a, a middle portion 21b, and an upper portion 21c in order to provide a hollow portion 25 therein.
  • the lower portion 21a can be joined to the upper portion 21c via the middle portion 21b.
  • a part of the lead electrode 32 of the secondary battery 100 can protrude from the central portion 21b and be exposed to the outside. That is, after fixing the lead electrode 32 of the secondary battery 100 to the middle portion 21b, it is preferable to fix the lower portion 21a and the upper portion 21c to the middle portion 21b.
  • the lead electrodes 32 are electrically connected to terminals of electronic equipment, other circuit boards, or the like.
  • the belt 21 has holes 26a, 26b and 26c penetrating in the width direction.
  • a hole 26a provided on the side of the lead electrode 32 is for connection with a housing (case) of the electronic device using, for example, a spring bar or the like.
  • the hole 26b is for connecting the belt 21 and the buckle 27 together.
  • the hole 26c is for connecting the buckle 27 to the housing (case) of the electronic device.
  • the wristwatch-type electronic device 70 can be worn by bending the belt 21 along the arm.
  • [Modification 1] A form in which the belt 21 can be bent or stretched along the arm will be described.
  • the thickness of the belt 21 forming the cavity 25 may become thinner than the thickness of other portions.
  • a protective member for protecting the surface of secondary battery 100 inside belt 21 it is preferable to arrange a protective member for protecting the surface of secondary battery 100 inside belt 21 .
  • FIG. 29A is a schematic cross-sectional view of belt 21 to which a protective member is applied.
  • 29B is a schematic cross-sectional view of the belt 21 in the width direction.
  • FIGS. 29A and 29B show a plate portion 35a and a plate portion 35b that serve as protective members.
  • the secondary battery 100 is provided inside the belt 21 while being sandwiched between the plate portions 35a and 35b.
  • FIG. 29C is an enlarged view of the area enclosed by the dashed line in FIG. 29A. As shown in FIG. 29C, it is preferable that the plate portions 35a and 35b are large in the length direction so that their ends are located outside the secondary battery 100. As shown in FIG. Moreover, as shown in FIG. 29B, the plate portion 35a and the plate portion 35b are preferably larger than the secondary battery 100 in width.
  • the secondary battery 100 is not fixed to the plate portions 35a and 35b. That is, when the belt 21 is bent, it is preferable that the secondary battery 100, the plate portion 35a, and the plate portion 35b shift and deform independently.
  • FIG. 29D is a schematic cross-sectional view when the belt 21 is bent so that the plate portion 35b faces inward
  • FIG. 29E is an enlarged view of the area enclosed by the dashed line in FIG. 29D.
  • the secondary battery 100 is provided so that the neutral plane of the upper portion 21 c of the belt 21 is positioned substantially at the center of the secondary battery 100 . Therefore, when the belt 21 is bent, the relative position between the end of the secondary battery 100 and the upper portion 21c of the belt 21 hardly changes.
  • the plate portion 35a positioned on the outer side of the bend is deformed so that its end portion is separated from the inner wall of the upper portion 21c of the belt 21.
  • the plate portion 35b positioned on the inside of the bend deforms such that its end portion approaches the inner wall of the upper portion 21c of the belt 21. As shown in FIG.
  • 29F and 29G show the case where the plate portion 35b is bent outward. At this time, the end of the plate portion 35a slides closer to the inner wall of the upper portion 21c of the belt 21, and the end of the plate portion 35b slides away from the inner wall of the upper portion 21c of the belt 21. As shown in FIG.
  • a connection configuration between the display unit 72 and the secondary battery 100 in the wristwatch-type electronic device 70 will be described with reference to FIG.
  • FIG. 30A shows the wristwatch-type electronic device 70 viewed from the terminal 93 and terminal 94 sides.
  • a wristwatch-type electronic device 70 has a display section 72 .
  • FIG. 30B shows a frame 71 to which the secondary battery 100 included in the belt 21 is connected.
  • FIG. 30C is a diagram obtained by rotating FIG. 30B by 180 degrees.
  • the frame 71 has a frame-like shape with which the wristwatch-type electronic device 70 is engaged.
  • Three terminals 91 and 92 are provided on the inner surface of the frame 71 .
  • a wristwatch-type electronic device 70 has a frame 71 provided with three terminals 93 and 94 .
  • Three terminals 91 provided on the inner surface of the frame 71 are provided at positions that come into contact with terminals 93 when the electronic device is attached.
  • the terminal 92 is provided at a position in contact with the terminal 94 .
  • a case 75 is attached to the outer surface of the frame 71 .
  • Lead electrodes 32 of the secondary battery 100 are joined to a pair of terminal portions of the case 75 .
  • a circuit board (not shown) is provided in the case 75 .
  • Three terminals 91 provided on the frame 71 are electrically connected to a positive electrode terminal, a negative electrode terminal, and a temperature information output terminal of a circuit board (not shown), respectively.
  • a terminal 92 is a portion that connects an operation button and a terminal 94 of the wristwatch-type electronic device 70 .
  • Terminals 94 may be physical buttons or electrodes.
  • the terminal 92 may be made of a movable member so that the terminal 94 is pushed through the terminal 92 when an operation button is pushed.
  • the terminal 92 may be an electrical switch and may have a function of transmitting an electrical signal indicating continuity or discontinuity to the terminal 94 when an operation button is pressed. .
  • the frame 71 a material that can withstand molding of the exterior body can be used.
  • Various materials can be used, such as plastics, metals, alloys, glass, wood, and the like.
  • Such a secondary battery 100 can be used as a main power source or an auxiliary power source by attaching it to a wristwatch-type electronic device 70 .
  • the secondary battery 100 preferably has a power receiving mechanism such as a power receiving terminal or an antenna capable of wirelessly receiving power.
  • a power receiving mechanism such as a power receiving terminal or an antenna capable of wirelessly receiving power.
  • the wristwatch-type electronic device 70 has a power receiving function, the power received by the wristwatch-type electronic device 70 is sent to the secondary battery 100 via the terminal 91 to charge the secondary battery 100 . You may
  • the wristwatch-type electronic device 70 has a communication function with a smartphone or the like.
  • the wristwatch-type electronic device 70 can communicate via an antenna when it has the function of wirelessly communicating.
  • a chip-type antenna, a coil-type antenna, or the like may be used as the antenna. In the case of a coil-type antenna, it should be arranged on the belt 21 .
  • a chip-type antenna or a coil-type antenna can also be arranged in the display section 72 .
  • LTE Long Term Evolution
  • GSM Global System for Mobile Communication: registered trademark
  • EDGE Enhanced Data Rates for GSM Evolution
  • CDMA2000 Codes Division 2000
  • W-CDMA registered trademark
  • specifications standardized by IEEE such as Wi-Fi (registered trademark), Bluetooth (registered trademark), and ZigBee (registered trademark).
  • 3G Third generation mobile communication system
  • 4G fourth generation mobile communication system
  • 5G fifth generation mobile communication system
  • ITU International Telecommunication Union
  • FIG. 31C shows a view in which FIG. 30A is rotated 180 degrees.
  • the wristwatch-type electronic device 70 may have a plurality of sensors.
  • the sensor 89 may be provided on the back side of the wristwatch-type electronic device 70, that is, on the arm side.
  • the sensor 74 arranged on the belt 21 can be omitted.
  • a sensor 89 enables measurement related to health management such as heart rate.
  • the sensor 89 preferably has an LED and a photodiode, and the heartbeat can be recognized by irradiating the capillaries with light from the LED and detecting it with the photodiode.
  • the data acquired by the sensor can be stored in the wristwatch type electronic device 70 .
  • Data can also be transmitted to the smartphone via the communication mechanism of the wristwatch-type electronic device 70 .
  • FIG. 32A is a perspective view showing an example of an aircraft. Moreover, FIG. 32B is a perspective view explaining the inside of the main wing part of FIG. 32A.
  • Air vehicle 8900 shown in FIG. 32A has main wing section 8901 , propeller 8902 , vertical stabilizer section 8903 , horizontal stabilizer section 8904 , controller 8905 , and solar panel 8906 .
  • Solar panels are sometimes called solar modules.
  • Air vehicle 8900 may have a skid.
  • the skid may be attached to the lower surface of the main wing portion 8901, for example. Also, wheels may be attached to the bottom of the skid.
  • the aircraft 8900 also has a secondary battery 8907 inside the main wing portion 8901 as shown in FIG. 32B.
  • FIG. 32B shows an example in which a plurality of secondary batteries 8907 having a substantially rectangular upper surface shape are arranged inside the main wing portion 8901 .
  • FIG. 32B shows a state in which the plurality of secondary batteries 8907 are arranged in a line inside the main wing portion 8901, but the plurality of secondary batteries 8907 may be arranged in a plurality of rows.
  • the top surface shape of the secondary battery 8907 is not limited to a quadrangle, and various shapes such as a polygon other than a quadrangle, a polygon with rounded corners, a circle, an ellipse, and an L shape are possible.
  • FIG. 32C is a cross-sectional view taken along dashed-dotted line A1-A2 shown in FIGS. 32A and 32B.
  • solar panel 8906 is provided to be embedded in the surface of housing 8911 of main wing 8901 .
  • Solar panel 8906 has an area that contacts housing 8911, for example.
  • the solar panel 8906 is embedded in the housing 8911, the light receiving portion of the solar panel 8906 has a region exposed to the outside.
  • FIG. 32C shows an example in which the solar panel 8906 is embedded in the housing 8911, but the solar panel 8906 may be provided on the outer surface of the housing 8911.
  • the secondary battery 8907 is provided along the inner wall 8912 of the housing 8911 of the main wing portion 8901 .
  • the secondary battery 8907 has, for example, a region that contacts the inner wall 8912 .
  • a secondary battery of one embodiment of the present invention can be used as the secondary battery 8907, and the electrolyte layer 103 is preferable because the ionic liquid 118 does not seep out.
  • a bendable (which may also be referred to as having flexibility) secondary battery is preferably used as the secondary battery 8907.
  • the main wing portion 8901 may deform in response to an external force during flight of the aircraft 8900 . It is preferable to use a flexible secondary battery as the secondary battery 8907 because the secondary battery 8907 can be deformed according to the deformation of the main wing portion 8901 .
  • a secondary battery having flexibility by using a thin film for the exterior body of the secondary battery, it is possible to reduce the weight and size of the secondary battery. Since the weight of the flying object 8900 can be reduced, the electric power required for flight of the flying object 8900 can be reduced. In addition, since the size of the secondary battery can be reduced, the energy density per volume of the secondary battery can be increased, and the flight distance of the flying object 8900 per volume of the secondary battery can be increased.
  • FIGS. 33A and 33B are perspective views showing an example of an aircraft
  • FIG. 33B is a perspective view explaining the inside of the main wing portion of FIG. 33A.
  • solar panels 8906 are provided along the smooth upper surface of main wing section 8901 .
  • a solar cell module provided on a flexible substrate may be used as the solar panel 8906 .
  • the secondary battery 8907 is provided along the inner wall of the housing of the main wing section 8901 .
  • a flexible secondary battery is preferably used as the secondary battery 8907 shown in FIG. 33B.
  • the main wing portion 8901 can have various shapes, and thus the flight performance of the aircraft 8900 may be improved.
  • Control device 8905 is preferably arranged at a position opposite to solar panel 8906 with main wing 8901 interposed therebetween.
  • the control device 8905 may be arranged on the lower surface side of the main wing portion 8901 .
  • the temperature of the solar panel 8906 may rise while it receives sunlight and generates power.
  • a main wing portion 8901 of the aircraft 8900 may have insulation.
  • the heat insulator may be provided along the inner wall 8912 of the housing 8911 or embedded in the housing 8911, for example. By providing the heat insulating material, the influence of temperature on the inside of the housing 8911 from the outside can be reduced.
  • the secondary battery 8907 When the secondary battery 8907 is operated at a high temperature, deterioration of the secondary battery 8907, for example, reduction in discharge capacity may occur. In addition, the output characteristics of the secondary battery 8907 may deteriorate at low temperatures. By reducing the temperature fluctuation inside the housing 8911, the life of the secondary battery can be extended. Moreover, the operation of the secondary battery can be stabilized.
  • Air vehicle 8900 has a power control circuit.
  • the power control circuit has a function of controlling charging and discharging of the secondary battery 8907 .
  • the power control circuit preferably has a function of measuring at least one of the amount of light received and the amount of power generated by the solar panel 8906 .
  • Electric power generated by the solar panel 8906 is charged to the secondary battery 8907 through the power control circuit.
  • the power control circuit preferably has a function of measuring the remaining amount of the secondary battery 8907 .
  • the controller 8905 has the function of controlling the flight of the aircraft 8900 .
  • Controller 8905 may control the flight of vehicle 8900 by controlling the rotation of propeller 8902, for example.
  • the power control circuit has a function of supplying power stored in the secondary battery 8907 to the propeller 8902 .
  • the power control circuit preferably has the function of converting direct current to alternating current.
  • At least part of the power control circuitry is preferably located in controller 8905 . Also, part of the power control circuit may be provided inside the housing 8911 of the main wing portion 8901 .
  • a protection circuit corresponding to each of the plurality of secondary batteries 8907 may be provided as part of the power control circuit.
  • the protection circuit has a function of suppressing one or more of overcharge, overdischarge, charge overcurrent, discharge overcurrent, and short circuit of the secondary battery.
  • the power control circuit preferably has a cell balance circuit that equalizes charging rates of the plurality of secondary batteries 8907 .
  • charging the secondary battery 8907 with power generated by the solar panel 8906 and supplying power from the secondary battery 8907 to the propeller 8902 may be performed at the same time.
  • the flying object 8900 has an antenna.
  • the flying object 8900 has a function of wireless communication using an antenna.
  • a plurality of antennas may be provided in the flying object 8900 .
  • a multi-beam antenna can be used as the antenna.
  • Air vehicle 8900 can function, for example, as a radio base station.
  • Air vehicle 8900 can, for example, fly in the stratosphere and provide a stratospheric platform. Also, the air vehicle 8900 can communicate with a base station installed on the ground. Also, each of the plurality of air vehicles 8900 may form a base station. In such cases, it is preferable to communicate between multiple aircraft. Also, the flying object 8900 may have a function of sending and receiving signals to and from an artificial satellite. Air vehicle 8900 can provide wireless communication services from a stratospheric platform to user terminals on the ground. Here, the user terminal is, for example, a smart phone. Air vehicle 8900 may orbit over an area of interest for which wireless communication service is provided.
  • LTE Long Term Evolution
  • GSM Global System for Mobile Communication: registered trademark
  • EDGE Enhanced Data Rates for GSM Evolution
  • CDMA2000 Code Division 0 Registered WDMA 0 Multiplication
  • 3G Third generation mobile communication system
  • 4G fourth generation mobile communication system
  • 5G fifth generation mobile communication system
  • ITU International Telecommunication Union
  • the controller 8905 may have an imaging device.
  • the flying object 8900 can photograph the air, the ground, or the sky while flying using an imaging device.
  • the controller 8905 controls sensors (force, displacement, position, velocity, acceleration, angular velocity, number of rotations, distance, light, liquid, magnetism, temperature, chemical substances, sound, time, hardness, electric field, current, voltage, power, radiation , flow rate, humidity, gradient, vibration, odor or infrared).
  • FIG. 34A is an exploded perspective view of a coin-type (single-layer flat type) secondary battery
  • FIG. 34B is an external view
  • FIG. 34C is a cross-sectional view thereof.
  • Coin-type secondary batteries are mainly used in small electronic devices. In this specification and the like, coin-type batteries include button-type batteries.
  • FIG. 34A for the sake of clarity, a schematic diagram is used so that the overlapping of members (vertical relationship and positional relationship) can be understood. Therefore, FIG. 34A and FIG. 34B are not completely matched corresponding diagrams.
  • positive electrode 304, negative electrode 307, spacer 342, and washer 332 are stacked. These are sealed with a negative electrode can 302 and a positive electrode can 301 .
  • a gasket for sealing is not shown in FIG. 34A.
  • the spacer 342 and the washer 332 are used to protect the inside or fix the position inside the can when the positive electrode can 301 and the negative electrode can 302 are crimped. Spacers 342 and washers 332 are made of stainless steel or an insulating material.
  • a positive electrode 304 has a laminated structure in which a positive electrode active material layer 306 is formed on a positive electrode current collector 305 .
  • FIG. 34B is a perspective view of a completed coin-type secondary battery.
  • a positive electrode can 301 which also serves as a positive electrode terminal
  • a negative electrode can 302 which also serves as a negative electrode terminal
  • the positive electrode 304 is formed of a positive electrode current collector 305 and a positive electrode active material layer 306 provided so as to be in contact therewith.
  • the negative electrode 307 is formed of a negative electrode current collector 308 and a negative electrode active material layer 309 provided so as to be in contact therewith.
  • the negative electrode 307 is not limited to a laminated structure, and a lithium metal foil or an alloy foil of lithium and aluminum may be used.
  • the active material layer of each of the positive electrode 304 and the negative electrode 307 used in the coin-type secondary battery 100 may be formed only on one side.
  • the positive electrode can 301 and the negative electrode can 302 are made of metals such as nickel, aluminum, titanium, etc., which are corrosion-resistant to the electrolytic solution, alloys thereof, and alloys of these and other metals (for example, stainless steel). can be done. In addition, it is preferable to coat with nickel, aluminum, or the like in order to prevent corrosion due to an electrolytic solution or the like.
  • the positive electrode can 301 and the negative electrode can 302 are electrically connected to the positive electrode 304 and the negative electrode 307, respectively.
  • the positive electrode can 304, the negative electrode 307, and the negative electrode can 302 are stacked in this order with the positive electrode can 301 facing down, and the positive electrode can 301 and the negative electrode can 302 are crimped via a gasket 303 to form a coin-shaped electrode.
  • a secondary battery 100 is manufactured.
  • the coin-shaped secondary battery 100 with high capacity, high charge/discharge capacity, and excellent cycle characteristics can be obtained.
  • a cylindrical secondary battery 616 has a positive electrode cap (battery lid) 601 on its top surface and battery cans (armor cans) 602 on its side and bottom surfaces.
  • the positive electrode cap 601 and the battery can (outer can) 602 are insulated by a gasket (insulating packing) 610 .
  • FIG. 35B is a diagram schematically showing a cross section of a cylindrical secondary battery.
  • the cylindrical secondary battery shown in FIG. 35B has a positive electrode cap (battery cover) 601 on the top surface and battery cans (armor cans) 602 on the side and bottom surfaces.
  • the positive electrode cap and the battery can (outer can) 602 are insulated by a gasket (insulating packing) 610 .
  • a battery element in which a strip-shaped positive electrode 604 and a strip-shaped negative electrode 606 are wound with an electrolyte layer 605 interposed therebetween is provided inside a hollow columnar battery can 602 .
  • the battery element is wound around the central axis.
  • Battery can 602 is closed at one end and open at the other end.
  • the battery can 602 may be made of a metal such as nickel, aluminum, or titanium that is resistant to corrosion by the electrolyte, an alloy thereof, or an alloy of these metals with other metals (for example, stainless steel). can.
  • the battery element in which the positive electrode, the negative electrode and the electrolyte layer are wound is sandwiched between a pair of insulating plates 608 and 609 facing each other.
  • a non-aqueous electrolyte (not shown) is filled inside the battery can 602 in which the battery element is provided. The same non-aqueous electrolyte as used in coin-type secondary batteries can be used.
  • FIGS. 35A to 35D illustrate the secondary battery 616 in which the height of the cylinder is greater than the diameter of the cylinder, but the invention is not limited to this.
  • the diameter of the cylinder may be a secondary battery that is larger than the height of the cylinder. With such a configuration, for example, the size of the secondary battery can be reduced.
  • a positive electrode terminal (positive collector lead) 603 is connected to the positive electrode 604
  • a negative electrode terminal (negative collector lead) 607 is connected to the negative electrode 606 .
  • a metal material such as aluminum can be used for both the positive electrode terminal 603 and the negative electrode terminal 607 .
  • the positive electrode terminal 603 and the negative electrode terminal 607 are resistance welded to the safety valve mechanism 613 and the bottom of the battery can 602, respectively.
  • the safety valve mechanism 613 is electrically connected to the positive electrode cap 601 via a PTC element (Positive Temperature Coefficient) 611 .
  • the safety valve mechanism 613 disconnects the electrical connection between the positive electrode cap 601 and the positive electrode 604 when the increase in internal pressure of the battery exceeds a predetermined threshold.
  • the PTC element 611 is a thermal resistance element whose resistance increases when the temperature rises, and the increase in resistance limits the amount of current to prevent abnormal heat generation.
  • Barium titanate (BaTiO 3 ) semiconductor ceramics or the like can be used for the PTC element.
  • FIG. 35C shows an example of an electrical storage system 615.
  • FIG. A power storage system 615 includes a plurality of secondary batteries 616 .
  • the positive electrode of each secondary battery contacts and is electrically connected to a conductor 624 separated by an insulator 625 .
  • Conductor 624 is electrically connected to control circuit 620 via wiring 623 .
  • a negative electrode of each secondary battery is electrically connected to the control circuit 620 through a wiring 626 .
  • a protection circuit or the like that prevents overcharge or overdischarge can be applied as the control circuit 620 .
  • FIG. 35D shows an example of an electrical storage system 615.
  • FIG. A power storage system 615 includes a plurality of secondary batteries 616 that are sandwiched between a conductive plate 628 and a conductive plate 614 .
  • the plurality of secondary batteries 616 are electrically connected to the conductive plates 628 and 614 by wirings 627 .
  • the plurality of secondary batteries 616 may be connected in parallel, may be connected in series, or may be connected in series after being connected in parallel.
  • a plurality of secondary batteries 616 may be connected in series after being connected in parallel.
  • a temperature control device may be provided between the secondary batteries 616 .
  • the secondary battery 616 When the secondary battery 616 is overheated, it can be cooled by the temperature control device, and when the secondary battery 616 is too cold, it can be heated by the temperature control device. Therefore, the performance of power storage system 615 is less likely to be affected by the outside air temperature.
  • the power storage system 615 is electrically connected to the control circuit 620 via wiring 621 and wiring 622 .
  • the wiring 621 is electrically connected to the positive electrodes of the plurality of secondary batteries 616 through the conductive plate 628
  • the wiring 622 is electrically connected to the negative electrodes of the plurality of secondary batteries 616 through the conductive plate 614 .
  • FIG. 36 A structural example of a secondary battery is described with reference to FIGS. 36 and 37.
  • FIG. 36 A structural example of a secondary battery is described with reference to FIGS. 36 and 37.
  • a secondary battery 913 shown in FIG. 36A has a wound body 950 provided with a terminal 951 and a terminal 952 inside a housing 930 .
  • the wound body 950 is immersed in the electrolytic solution inside the housing 930 .
  • the terminal 952 is in contact with the housing 930, and the terminal 951 is not in contact with the housing 930 by using an insulating material or the like.
  • the housing 930 is shown separately for the sake of convenience. exist.
  • a metal material such as aluminum
  • a resin material can be used as the housing 930.
  • the housing 930 shown in FIG. 36A may be made of a plurality of materials.
  • a housing 930a and a housing 930b are attached together, and a wound body 950 is provided in a region surrounded by the housings 930a and 930b.
  • An insulating material such as an organic resin can be used for the housing 930a.
  • a material such as an organic resin for the surface on which the antenna is formed shielding of the electric field by the secondary battery 913 can be suppressed.
  • an antenna may be provided inside the housing 930a.
  • a metal material, for example, can be used as the housing 930b.
  • the wound body 950 has a negative electrode 931 , a positive electrode 932 and an electrolyte layer 933 .
  • the wound body 950 is a wound body in which the negative electrode 931 and the positive electrode 932 are laminated with the electrolyte layer 933 interposed therebetween, and the laminated sheet is wound. Note that the negative electrode 931, the positive electrode 932, and the electrolyte layer 933 may be stacked in multiple layers.
  • a secondary battery 913 having a wound body 950a as shown in FIGS. 37A to 37C may be used.
  • a wound body 950 a shown in FIG. 37A has a negative electrode 931 , a positive electrode 932 , and an electrolyte layer 933 .
  • the negative electrode 931 has a negative electrode active material layer 931a.
  • the positive electrode 932 has a positive electrode active material layer 932a.
  • the secondary battery 913 can have high capacity, high charge/discharge capacity, and excellent cycle characteristics.
  • the electrolyte layer 933 has a wider width than the negative electrode active material layer 931a and the positive electrode active material layer 932a, and is wound so as to overlap with the negative electrode active material layer 931a and the positive electrode active material layer 932a.
  • the width of the negative electrode active material layer 931a is wider than that of the positive electrode active material layer 932a.
  • the wound body 950a having such a shape is preferable because of its good safety and productivity.
  • negative electrode 931 is electrically connected to terminal 951 .
  • Terminal 951 is electrically connected to terminal 911a.
  • the positive electrode 932 is electrically connected to the terminal 952 .
  • Terminal 952 is electrically connected to terminal 911b.
  • the casing 930 covers the wound body 950 a and the electrolytic solution to form the secondary battery 913 .
  • the housing 930 is preferably provided with a safety valve, an overcurrent protection element, and the like.
  • the safety valve is a valve that opens the interior of housing 930 at a predetermined internal pressure in order to prevent battery explosion.
  • secondary battery 913 may have a plurality of wound bodies 950a. By using a plurality of wound bodies 950a, the secondary battery 913 with higher charge/discharge capacity can be obtained.
  • the description of the secondary battery 913 illustrated in FIGS. 36A to 36C can be referred to.
  • FIG. 38 is used to show an example of application to an electric vehicle (EV).
  • EV electric vehicle
  • the electric vehicle is provided with first batteries 1301a and 1301b as secondary batteries for main driving, and a second battery 1311 that supplies power to an inverter 1312 that starts a motor 1304.
  • the second battery 1311 is also called cranking battery (also called starter battery).
  • the second battery 1311 only needs to have a high output and does not need a large capacity so much, and the capacity of the second battery 1311 is smaller than that of the first batteries 1301a and 1301b.
  • the internal structure of the first battery 1301a may be a wound type or a laminated type. Further, the all-solid-state battery of Embodiment 5 may be used as the first battery 1301a. By using the all-solid-state battery of Embodiment 5 for the first battery 1301a, the capacity can be increased, the safety can be improved, and the size and weight can be reduced.
  • This embodiment mode shows an example in which two first batteries 1301a and 1301b are connected in parallel, but three or more batteries may be connected in parallel. Further, if the first battery 1301a can store sufficient electric power, the first battery 1301b may be omitted. A large amount of electric power can be extracted by forming a battery pack including a plurality of secondary batteries. A plurality of secondary batteries may be connected in parallel, may be connected in series, or may be connected in series after being connected in parallel. A plurality of secondary batteries is also called an assembled battery.
  • a secondary battery for vehicle has a service plug or a circuit breaker that can cut off high voltage without using a tool in order to cut off power from a plurality of secondary batteries.
  • the power of the first batteries 1301a and 1301b is mainly used to rotate the motor 1304, but is also used to supply 42V in-vehicle components (electric power steering 1307, heater 1308, defogger 1309, etc.) via the DCDC circuit 1306. to power the The first battery 1301a is also used to rotate the rear motor 1317 when the rear wheel has the rear motor 1317 .
  • the second battery 1311 supplies power to 14V vehicle-mounted components (audio 1313, power window 1314, lamps 1315, etc.) through the DCDC circuit 1310.
  • the first battery 1301a will be described with reference to FIG. 38A.
  • FIG. 38A shows an example in which nine prismatic secondary batteries 1300 are used as one battery pack 1415 .
  • Nine square secondary batteries 1300 are connected in series, one electrode is fixed by a fixing portion 1413 made of an insulator, and the other electrode is fixed by a fixing portion 1414 made of an insulator.
  • an example of fixing by fixing portions 1413 and 1414 is shown; Since it is assumed that the vehicle is subject to vibration or shaking from the outside (road surface, etc.), it is preferable to fix a plurality of secondary batteries using fixing portions 1413 and 1414, a battery housing box, and the like.
  • One electrode is electrically connected to the control circuit portion 1320 through a wiring 1421 .
  • the other electrode is electrically connected to the control circuit section 1320 by a wiring 1422 .
  • a memory circuit including a transistor including an oxide semiconductor may be used for the control circuit portion 1320 .
  • a charge control circuit or a battery control system including a memory circuit including a transistor using an oxide semiconductor is sometimes called a BTOS (battery operating system or battery oxide semiconductor).
  • oxides include In-M-Zn oxide (element M is aluminum, gallium, yttrium, copper, vanadium, beryllium, boron, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, A metal oxide such as one or more selected from hafnium, tantalum, tungsten, and magnesium is preferably used.
  • In-M-Zn oxides that can be applied as oxides are preferably CAAC-OS (C-Axis Aligned Crystal Oxide Semiconductor) and CAC-OS (Cloud-Aligned Composite Oxide Semiconductor).
  • a CAAC-OS is an oxide semiconductor that includes a plurality of crystal regions, and the c-axes of the plurality of crystal regions are oriented in a specific direction. Note that the specific direction is the thickness direction of the CAAC-OS film, the normal direction to the formation surface of the CAAC-OS film, or the normal direction to the surface of the CAAC-OS film.
  • a crystalline region is a region having periodicity in atomic arrangement. If the atomic arrangement is regarded as a lattice arrangement, the crystalline region is also a region with a uniform lattice arrangement.
  • CAAC-OS has a region where a plurality of crystal regions are connected in the a-b plane direction, and the region may have strain.
  • the strain refers to a portion where the orientation of the lattice arrangement changes between a region with a uniform lattice arrangement and another region with a uniform lattice arrangement in a region where a plurality of crystal regions are connected. That is, CAAC-OS is an oxide semiconductor that is c-axis oriented and has no obvious orientation in the ab plane direction.
  • a CAC-OS is, for example, one structure of a material in which elements constituting a metal oxide are unevenly distributed with a size of 0.5 nm or more and 10 nm or less, preferably 1 nm or more and 3 nm or less, or in the vicinity thereof.
  • one or more metal elements are unevenly distributed in the metal oxide, and the region having the metal element has a size of 0.5 nm or more and 10 nm or less, preferably 1 nm or more and 3 nm or less, or a size in the vicinity thereof.
  • the mixed state is also called a mosaic shape or a patch shape.
  • CAC-OS is a structure in which the material is separated into a first region and a second region to form a mosaic shape, and the first region is distributed in the film (hereinafter, also referred to as a cloud shape). ). That is, CAC-OS is a composite metal oxide in which the first region and the second region are mixed.
  • the atomic ratios of In, Ga, and Zn to the metal elements constituting the CAC-OS in the In—Ga—Zn oxide are represented by [In], [Ga], and [Zn], respectively.
  • the first region is a region where [In] is larger than [In] in the composition of the CAC-OS film.
  • the second region is a region where [Ga] is greater than [Ga] in the composition of the CAC-OS film.
  • the first region is a region in which [In] is larger than [In] in the second region and [Ga] is smaller than [Ga] in the second region.
  • the second region is a region in which [Ga] is larger than [Ga] in the first region and [In] is smaller than [In] in the first region.
  • the first region is a region containing indium oxide, indium zinc oxide, or the like as a main component.
  • the second region is a region containing gallium oxide, gallium zinc oxide, or the like as a main component. That is, the first region can be rephrased as a region containing In as a main component. Also, the second region can be rephrased as a region containing Ga as a main component.
  • a region containing In as the main component (first 1 region) and a region containing Ga as a main component (second region) are unevenly distributed and can be confirmed to have a mixed structure.
  • the conductivity attributed to the first region and the insulation attributed to the second region complementarily act to provide a switching function (on/off function).
  • a switching function on/off function
  • CAC-OS a part of the material has a conductive function
  • a part of the material has an insulating function
  • the whole material has a semiconductor function.
  • Oxide semiconductors have various structures and each has different characteristics.
  • An oxide semiconductor of one embodiment of the present invention includes two or more of an amorphous oxide semiconductor, a polycrystalline oxide semiconductor, an a-like OS, a CAC-OS, an nc-OS, and a CAAC-OS. may
  • control circuit portion 1320 can be used in a high-temperature environment, it is preferable to use a transistor using an oxide semiconductor.
  • the control circuit portion 1320 may be formed using unipolar transistors.
  • a transistor using an oxide semiconductor for a semiconductor layer has an operating ambient temperature of ⁇ 40° C. or more and 150° C. or less, which is wider than that of single crystal Si, and changes in characteristics are smaller than those of a single crystal even when the secondary battery is heated.
  • the off-state current of a transistor using an oxide semiconductor is below the lower limit of measurement regardless of the temperature even at 150° C. However, the off-state current characteristics of a single crystal Si transistor are highly dependent on temperature.
  • a single crystal Si transistor has an increased off-current and does not have a sufficiently large current on/off ratio.
  • the control circuitry 1320 can improve safety. Further, by combining the positive electrode active material 200 obtained in Embodiment 1 with a secondary battery in which the positive electrode is used, a synergistic effect of safety can be obtained.
  • the control circuit portion 1320 using a memory circuit including a transistor using an oxide semiconductor can also function as an automatic control device of a secondary battery against 10 causes of instability such as a micro-short.
  • Functions that eliminate the causes of instability in 10 items include overcharge prevention, overcurrent prevention, overheat control during charging, cell balance in the assembled battery, overdischarge prevention, fuel gauge, and charging according to temperature.
  • Automatic voltage and current amount control, charge current amount control according to the degree of deterioration, micro-short abnormal behavior detection, and micro-short abnormality prediction, among others, the control circuit unit 1320 has at least one of these functions. In addition, it is possible to miniaturize the automatic control device of the secondary battery.
  • a micro-short refers to a minute short circuit inside a secondary battery. It refers to a phenomenon in which a small amount of short-circuit current flows in the part. Since a large voltage change occurs in a relatively short time and even at a small location, the abnormal voltage value may affect subsequent estimation.
  • micro-shorts One of the causes of micro-shorts is that the non-uniform distribution of the positive electrode active material caused by repeated charging and discharging causes local concentration of current in a part of the positive electrode and a part of the negative electrode, or causes a secondary current to occur. It is said that the micro-short circuit is caused by the generation of side reactants due to the reaction.
  • control circuit unit 1320 detects not only the micro-short circuit but also the terminal voltage of the secondary battery and manages the charging/discharging state of the secondary battery. For example, both the output transistor of the charging circuit and the cut-off switch can be turned off almost simultaneously to prevent overcharging.
  • FIG. 38B shows an example of a block diagram of the battery pack 1415 shown in FIG. 38A.
  • the control circuit unit 1320 includes a switch unit 1324 including at least a switch for preventing overcharge and a switch for preventing overdischarge, a control circuit 1322 for controlling the switch unit 1324, a voltage measurement unit for the first battery 1301a, have
  • the control circuit unit 1320 is set with an upper limit voltage and a lower limit voltage of the secondary battery to be used, and limits the upper limit of the current from the outside, the upper limit of the output current to the outside, and the like.
  • the range from the lower limit voltage to the upper limit voltage of the secondary battery is within the voltage range recommended for use.
  • the control circuit unit 1320 controls the switch unit 1324 to prevent over-discharging and over-charging, it can also be called a protection circuit.
  • control circuit 1322 detects a voltage that is likely to cause overcharging
  • the switch of the switch section 1324 is turned off to cut off the current.
  • a PTC element may be provided in the charging/discharging path to provide a function of interrupting the current according to the temperature rise.
  • the control circuit section 1320 also has an external terminal 1325 (+IN) and an external terminal 1326 (-IN).
  • the switch portion 1324 can be formed by combining an n-channel transistor and a p-channel transistor.
  • the switch unit 1324 is not limited to a switch having a Si transistor using single crystal silicon. indium), SiC (silicon carbide), ZnSe (zinc selenide), GaN (gallium nitride), GaO x (gallium oxide; x is a real number greater than 0), and the like.
  • a memory element using an OS transistor can be freely arranged by stacking it on a circuit using a Si transistor or the like, integration can be easily performed.
  • an OS transistor can be manufactured using a manufacturing apparatus similar to that of a Si transistor, it can be manufactured at low cost. That is, the control circuit portion 1320 using an OS transistor can be stacked on the switch portion 1324 and integrated into one chip. Since the volume occupied by the control circuit section 1320 can be reduced, miniaturization is possible.
  • the first batteries 1301a and 1301b mainly supply power to 42V system (high voltage system) in-vehicle equipment, and the second battery 1311 supplies power to 14V system (low voltage system) in-vehicle equipment.
  • the second battery 1311 is often adopted as a lead-acid battery because of its cost advantage.
  • Lead-acid batteries have the drawback of being more susceptible to deterioration due to a phenomenon called sulfation, which is more self-discharging than lithium-ion secondary batteries.
  • Using a lithium-ion secondary battery as the second battery 1311 has the advantage of being maintenance-free.
  • the second battery 1311 that starts the inverter becomes inoperable, the second battery 1311 is lead-free in order to prevent the motor from being unable to start even if the first batteries 1301a and 1301b have remaining capacity.
  • power is supplied from the first battery to the second battery and charged so as to always maintain a fully charged state.
  • the second battery 1311 may use a lead-acid battery, an all-solid battery, or an electric double layer capacitor.
  • the all-solid-state battery of Embodiment 5 may be used.
  • Regenerative energy generated by the rotation of the tire 1316 is sent to the motor 1304 via the gear 1305 and charged to the second battery 1311 via the control circuit section 1321 from the motor controller 1303 and the battery controller 1302 .
  • the battery controller 1302 charges the first battery 1301 a through the control circuit unit 1320 .
  • the battery controller 1302 charges the first battery 1301b through the control circuit unit 1320 . In order to efficiently charge the regenerated energy, it is desirable that the first batteries 1301a and 1301b be capable of rapid charging.
  • the battery controller 1302 can set the charging voltage and charging current of the first batteries 1301a and 1301b.
  • the battery controller 1302 can set charging conditions according to the charging characteristics of the secondary battery to be used and perform rapid charging.
  • the outlet of the charger or the connection cable of the charger is electrically connected to the battery controller 1302 .
  • Electric power supplied from an external charger charges the first batteries 1301 a and 1301 b via the battery controller 1302 .
  • Some chargers are provided with a control circuit and do not use the function of the battery controller 1302. In order to prevent overcharging, the first batteries 1301a and 1301b are charged via the control circuit unit 1320. is preferred.
  • the connection cable or the connection cable of the charger is provided with a control circuit.
  • the control circuit section 1320 is sometimes called an ECU (Electronic Control Unit).
  • the ECU is connected to a CAN (Controller Area Network) provided in the electric vehicle.
  • CAN is one of serial communication standards used as an in-vehicle LAN.
  • the ECU includes a microcomputer.
  • the ECU uses a CPU or a GPU.
  • External chargers installed at charging stands and the like include 100V outlets, 200V outlets, three-phase 200V and 50kW, and the like. Also, the battery can be charged by receiving power supply from an external charging facility by a non-contact power supply method or the like.
  • the secondary battery of the present embodiment described above uses the positive electrode active material 200 obtained in the first embodiment. Furthermore, by using graphene as a conductive agent, even if the electrode layer is thickened and the amount supported is increased, the decrease in capacity can be suppressed and the high capacity can be maintained. realizable. To provide a vehicle which is effective especially for a secondary battery used in a vehicle and has a long cruising distance, specifically, a traveling distance of 500 km or more per charge without increasing the weight ratio of the secondary battery to the total weight of the vehicle. be able to.
  • the operating voltage of the secondary battery can be increased by using the positive electrode active material 200 described in Embodiment 1, and as the charging voltage increases, it can be used. Capacity can be increased.
  • the positive electrode active material 200 described in Embodiment 1 for the positive electrode it is possible to provide a vehicle secondary battery having excellent cycle characteristics.
  • a next-generation clean energy vehicle such as a hybrid vehicle (HV), an electric vehicle (EV), or a plug-in hybrid vehicle (PHV)
  • HV hybrid vehicle
  • EV electric vehicle
  • PHS plug-in hybrid vehicle
  • agricultural machinery, motorized bicycles including electric assist bicycles, motorcycles, electric wheelchairs, electric carts, small or large ships, submarines, aircraft such as fixed wing aircraft and rotary wing aircraft, rockets, artificial satellites, space probes
  • the secondary battery can also be mounted on transportation vehicles such as planetary probes and spacecraft.
  • the secondary battery of one embodiment of the present invention can be a high-capacity secondary battery. Therefore, the secondary battery of one embodiment of the present invention is suitable for miniaturization and weight reduction, and can be suitably used for transportation vehicles.
  • FIG. 39A illustrates a transport vehicle using an aspect of the present invention.
  • a vehicle 2001 shown in FIG. 39A is an electric vehicle that uses an electric motor as a power source for running. Alternatively, it is a hybrid vehicle in which an electric motor and an engine can be appropriately selected and used as power sources for running.
  • an example of the secondary battery described in Embodiment 4 is installed at one place or at a plurality of places.
  • a car 2001 shown in FIG. 39A has a battery pack 2200, and the battery pack has a secondary battery module to which a plurality of secondary batteries are connected. Furthermore, it is preferable to have a charging control device electrically connected to the secondary battery module.
  • the vehicle 2001 can charge the secondary battery of the vehicle 2001 by receiving power from an external charging facility by a plug-in system, a contactless power supply system, or the like.
  • the charging method and the standard of the connector may be appropriately performed by a predetermined method such as CHAdeMO (registered trademark) or Combo.
  • the secondary battery may be a charging station provided in a commercial facility, or may be a household power source.
  • plug-in technology can charge a power storage device mounted on the automobile 2001 by power supply from the outside. Charging can be performed by converting AC power into DC power via a conversion device such as an ACDC converter.
  • the power receiving device can be mounted on a vehicle, and power can be supplied from a power transmission device on the ground in a non-contact manner for charging.
  • this non-contact power supply system it is possible to charge the vehicle not only while the vehicle is stopped but also while the vehicle is running by installing the power transmission device on the road or the outer wall.
  • power may be transmitted and received between two vehicles.
  • a solar battery may be provided on the exterior of the vehicle, and the secondary battery may be charged while the vehicle is stopped and while the vehicle is running.
  • An electromagnetic induction method or a magnetic resonance method can be used for such contactless power supply.
  • FIG. 39B shows a large transport vehicle 2002 with electrically controlled motors as an example of a transport vehicle.
  • the secondary battery module of the transportation vehicle 2002 has a maximum voltage of 170 V, for example, a four-cell unit of secondary batteries having a nominal voltage of 3.0 V or more and 5.0 V or less, and 48 cells connected in series. Except for the number of secondary batteries forming the secondary battery module of the battery pack 2201, the function is the same as that of FIG. 39A, so the explanation is omitted.
  • FIG. 39C shows, as an example, a large transport vehicle 2003 with electrically controlled motors.
  • the secondary battery module of the transportation vehicle 2003 has a maximum voltage of 600 V, for example, a hundred or more secondary batteries with a nominal voltage of 3.0 V or more and 5.0 V or less connected in series.
  • a secondary battery using the positive electrode active material 200 described in Embodiment 1 as a positive electrode a secondary battery with excellent rate characteristics and charge/discharge cycle characteristics can be manufactured, and the performance of the transportation vehicle 2003 can be improved. And it can contribute to longer life.
  • 39A except that the number of secondary batteries constituting the secondary battery module of the battery pack 2202 is different, description thereof will be omitted.
  • FIG. 39D shows an aircraft 2004 having an engine that burns fuel as an example. Since the aircraft 2004 shown in FIG. 39D has wheels for takeoff and landing, it can be said to be part of a transportation vehicle, and a secondary battery module is configured by connecting a plurality of secondary batteries, and the secondary battery module and charging It has a battery pack 2203 including a controller.
  • the secondary battery module of the aircraft 2004 has a maximum voltage of 32V, for example, eight 4V secondary batteries connected in series. Except for the number of secondary batteries forming the secondary battery module of the battery pack 2203, the function is the same as that of FIG. 39A, so the explanation is omitted.
  • FIG. 40A illustrates an example of an electric bicycle using the power storage device of one embodiment of the present invention.
  • the power storage device of one embodiment of the present invention can be applied to an electric bicycle 8700 illustrated in FIG. 40A.
  • a power storage device of one embodiment of the present invention includes, for example, a plurality of storage batteries and a protection circuit.
  • Electric bicycle 8700 includes power storage device 8702 .
  • the power storage device 8702 can supply electricity to a motor that assists the driver.
  • the power storage device 8702 is portable, and is shown removed from the bicycle in FIG. 40B.
  • the power storage device 8702 includes a plurality of storage batteries 8701 included in the power storage device of one embodiment of the present invention, and the remaining battery power and the like can be displayed on a display portion 8703 .
  • the power storage device 8702 also includes a control circuit 8704 capable of controlling charging of the secondary battery or detecting an abnormality, an example of which is shown in Embodiment 6.
  • the control circuit 8704 is electrically connected to the positive and negative electrodes of the storage battery 8701 .
  • a small solid secondary battery may be provided in the control circuit 8704 .
  • a small solid secondary battery in the control circuit 8704, power can be supplied to hold data in the memory circuit included in the control circuit 8704 for a long time.
  • a synergistic effect of safety can be obtained.
  • the secondary battery in which the positive electrode active material 200 obtained in Embodiment 1 is used for the positive electrode and the control circuit 8704 can greatly contribute to the elimination of accidents such as fire caused by the secondary battery.
  • FIG. 40C illustrates an example of a two-wheeled vehicle using the power storage device of one embodiment of the present invention.
  • a scooter 8600 shown in FIG. The power storage device 8602 can supply electricity to the turn signal lights 8603 .
  • the power storage device 8602 containing a plurality of secondary batteries each using the positive electrode active material 200 obtained in Embodiment 1 for a positive electrode can have a high capacity and can contribute to miniaturization.
  • the scooter 8600 shown in FIG. 40C can store a power storage device 8602 in the underseat storage 8604 .
  • the power storage device 8602 can be stored in the underseat storage 8604 even if the underseat storage 8604 is small.
  • a secondary battery which is one embodiment of the present invention, in an electronic device
  • electronic devices that implement secondary batteries include television devices (also referred to as televisions or television receivers), monitors for computers, digital cameras, digital video cameras, digital photo frames, mobile phones (mobile phones, Also referred to as a mobile phone device), a portable game machine, a personal digital assistant, a sound reproducing device, a large game machine such as a pachinko machine, and the like.
  • Portable information terminals include notebook personal computers, tablet terminals, electronic book terminals, mobile phones, and the like.
  • FIG. 41A shows an example of a mobile phone.
  • a mobile phone 2100 includes a display unit 2102 incorporated in a housing 2101, operation buttons 2103, an external connection port 2104, a speaker 2105, a microphone 2106, and the like.
  • the mobile phone 2100 has a secondary battery 2107 .
  • the secondary battery 2107 By including the secondary battery 2107 in which the positive electrode active material 200 described in Embodiment 1 is used for the positive electrode, the capacity can be increased, and a structure that can cope with the space saving associated with the downsizing of the housing is realized. can be done.
  • the mobile phone 2100 is capable of running a variety of applications such as mobile telephony, e-mail, text viewing and composition, music playback, Internet communication, computer games, and the like.
  • the operation button 2103 can have various functions such as time setting, power on/off operation, wireless communication on/off operation, manner mode execution/cancellation, and power saving mode execution/cancellation.
  • the operating system installed in the mobile phone 2100 can freely set the functions of the operation buttons 2103 .
  • mobile phone 2100 is capable of performing short-range wireless communication that is standardized. For example, by intercommunicating with a headset capable of wireless communication, hands-free communication is also possible.
  • the mobile phone 2100 has an external connection port 2104 and can directly exchange data with another information terminal via a connector. Also, charging can be performed via the external connection port 2104 . Note that the charging operation may be performed by wireless power supply without using the external connection port 2104 .
  • Mobile phone 2100 preferably has a sensor.
  • sensors for example, a fingerprint sensor, a pulse sensor, a human body sensor such as a body temperature sensor, a touch sensor, a pressure sensor, an acceleration sensor, etc. are preferably mounted.
  • Unmanned aerial vehicle 2300 may also be referred to as a drone.
  • Unmanned aerial vehicle 2300 has a secondary battery 2301 that is one embodiment of the present invention, a camera 2303, and an antenna (not shown).
  • Unmanned aerial vehicle 2300 can be remotely operated via an antenna.
  • a secondary battery using the positive electrode active material 200 obtained in Embodiment 1 as a positive electrode has a high energy density and is highly safe, so that it can be used safely for a long time. It is suitable as a secondary battery to be mounted.
  • FIG. 41C shows an example of a robot.
  • a robot 6400 shown in FIG. 41C includes a secondary battery 6409, an illuminance sensor 6401, a microphone 6402, an upper camera 6403, a speaker 6404, a display unit 6405, a lower camera 6406 and an obstacle sensor 6407, a moving mechanism 6408, an arithmetic device, and the like.
  • a microphone 6402 has a function of detecting a user's speech, environmental sounds, and the like. Also, the speaker 6404 has a function of emitting sound. Robot 6400 can communicate with a user using microphone 6402 and speaker 6404 .
  • the display unit 6405 has a function of displaying various information.
  • the robot 6400 can display information desired by the user on the display unit 6405 .
  • the display portion 6405 may include a touch panel. Further, the display unit 6405 may be a detachable information terminal, and by installing it at a fixed position of the robot 6400, charging and data transfer are possible.
  • An upper camera 6403 and a lower camera 6406 have a function of capturing images around the robot 6400 .
  • the obstacle sensor 6407 can detect the presence or absence of an obstacle in the direction in which the robot 6400 moves forward using the movement mechanism 6408 .
  • the robot 6400 uses an upper camera 6403, a lower camera 6406, and an obstacle sensor 6407 to recognize the surrounding environment and can move safely.
  • the robot 6400 includes a secondary battery 6409 according to one embodiment of the present invention and a semiconductor device or an electronic component in its internal region.
  • a secondary battery using the positive electrode active material 200 obtained in Embodiment 1 as a positive electrode has a high energy density and is highly safe. It is suitable as the secondary battery 6409 to
  • a satellite 6800 has a body 6801 , a solar panel 6802 , an antenna 6803 and a secondary battery 6805 .
  • Solar panels are sometimes called solar modules.
  • Solar panel 6802 is irradiated with sunlight to generate power necessary for satellite 6800 to operate. However, less power is generated, for example, in situations where the solar panel is not illuminated by sunlight, or where the amount of sunlight illuminated by the solar panel is low. Thus, the power required for satellite 6800 to operate may not be generated.
  • a secondary battery 6805 may be provided in the satellite 6800 so that the satellite 6800 can operate even when the generated power is low.
  • Satellite 6800 may generate a signal.
  • the signal is transmitted via antenna 6803 and can be received by, for example, a ground-based receiver or other satellite.
  • the position of the receiver that received the signal can be determined.
  • artificial satellite 6800 can constitute, for example, a satellite positioning system.
  • satellite 6800 may be configured with sensors.
  • artificial satellite 6800 can have a function of detecting sunlight that hits and is reflected by an object provided on the ground.
  • the artificial satellite 6800 can have a function of detecting thermal infrared rays emitted from the earth's surface by adopting a configuration having a thermal infrared sensor.
  • artificial satellite 6800 can function as an earth observation satellite, for example.
  • FIG. 41E shows an example of a cleaning robot.
  • the cleaning robot 6300 has a display unit 6302 arranged on the top surface of a housing 6301, a plurality of cameras 6303 arranged on the side surfaces, a brush 6304, an operation button 6305, a secondary battery 6306, various sensors, and the like.
  • the cleaning robot 6300 is provided with tires, a suction port, and the like.
  • the cleaning robot 6300 can run by itself, detect dust 6310, and suck the dust from a suction port provided on the bottom surface.
  • the cleaning robot 6300 can analyze images captured by the camera 6303 and determine the presence or absence of obstacles such as walls, furniture, or steps. Further, when an object such as wiring that is likely to get entangled in the brush 6304 is detected by image analysis, the rotation of the brush 6304 can be stopped.
  • the cleaning robot 6300 includes a secondary battery 6306 according to one embodiment of the present invention and a semiconductor device or an electronic component in its internal region.
  • a secondary battery using the positive electrode active material 200 obtained in Embodiment 1 as a positive electrode has a high energy density and is highly safe. It is suitable as the secondary battery 6306 to be mounted.
  • FIG. 42 shows an example of wireless earphones. Although a wireless earphone having a pair of main bodies 4100a and 4100b is illustrated here, they are not necessarily a pair.
  • the main bodies 4100 a and 4100 b have a driver unit 4101 , an antenna 4102 and a secondary battery 4103 .
  • a display portion 4104 may be provided.
  • a case 4110 has a secondary battery 4111 . Moreover, it is preferable to have a board on which circuits such as a wireless IC and a charging control IC are mounted, and a charging terminal. Further, it may have a display portion, buttons, and the like.
  • the main bodies 4100a and 4100b can wirelessly communicate with other electronic devices such as smartphones. As a result, sound data and the like sent from other electronic devices can be reproduced by the main bodies 4100a and 4100b. Also, if the main bodies 4100a and 4100b have microphones, the sound acquired by the microphones can be sent to another electronic device, and the sound data processed by the electronic device can be sent back to the main bodies 4100a and 4100b for reproduction. As a result, it can be used as a translator, for example.
  • the secondary battery 4111 included in the case 4110 can charge the secondary battery 4103 included in the main body 4100a.
  • the secondary batteries 4111 and 4103 the coin-shaped secondary battery, the cylindrical secondary battery, or the like described in the above embodiment can be used.
  • a secondary battery in which the positive electrode active material 200 obtained in Embodiment 1 is used as a positive electrode has a high energy density.
  • the electrolyte layer 103 of one embodiment of the present invention was manufactured according to the method described in Embodiment 3 and the like.
  • a first sheet-like electrolyte layer was obtained.
  • Planar SEM images of the first sheet-like electrolyte layer are shown in FIGS. 43A and 43B.
  • the SEM observation in this example was performed using a scanning electron microscope S4800 manufactured by Hitachi High-Tech Co., Ltd. under the observation condition of an acceleration voltage of 5 kV. It is an image taken at a setting of 5000 times in the area where the
  • the film thickness of the first sheet-like electrolyte layer is about 130 ⁇ m.
  • FIG. 43B a region where the LLZAO 10 are connected to each other via the binder 11 and a gap 12 were confirmed.
  • the first sheet-like electrolyte layer was heated according to step S60 of FIG. 11 to obtain a second sheet-like electrolyte as in step S61.
  • the heating temperature was 1200° C., and the heating atmosphere was air.
  • four pieces of the first sheet-like electrolyte layer having a size of 12 mm were punched out and placed on an alumina plate.
  • LLZAO powder was sprinkled on the alumina plate and the four first sheet-like electrolyte layers so that the alumina plate and the first sheet-like electrolyte layers would not adhere to each other.
  • a gap preserving material was prepared to arrange an alumina plate also above the first sheet-like electrolyte layer.
  • FIGS. 44A and 44B Planar SEM images of the second sheet-like electrolyte layer are shown in FIGS. 44A and 44B.
  • FIG. 44A is an image taken with a magnification setting of 500 times
  • FIG. 44B is an image taken with a setting of 5000 times in the area marked with a square in FIG. 44A. It can be seen from FIG. 44A that the film thickness of the second sheet-like electrolyte layer is about 100 ⁇ m.
  • FIG. 44B it was confirmed from FIG. 44B that the binder was removed and the LLZAO 10 was bonded together to form a sintered body.
  • voids 12 were confirmed in the sintered body.
  • FIG. 45A is an image taken at a magnification of 500 times
  • FIG. 45B is an image taken at a setting of 5000 times in the area marked with a square in FIG. 45A. It can be seen from FIG.
  • the film thickness of the second sheet-like electrolyte layer is about 100 ⁇ m.
  • LLZAO10 was confirmed from FIG. 45B, and the ionic liquid 15 was further confirmed.
  • the results of SEM-EDX analysis for measurement points 1 and 2 shown in FIG. 45B are shown in the table below, and the concentration of each element is shown in atomic % (at %).
  • the first layer was confirmed in the voids of the second sheet-like electrolyte layer.
  • nitrogen, fluorine, sulfur, and other elements unique to the ionic liquid used in this example were detected. From these results, it was found that when LLZAO is impregnated with an ionic liquid, the ionic liquid is impregnated into the pores of the sintered body, and even after washing with an organic solvent, the ionic liquid remains in the pores.
  • lanthanum, zirconium, and aluminum which are commonly detected at measurement points 1 and 2, are elements specific to LLZAO.
  • Another element, carbon, is an element contained in the ionic liquid.
  • Oxygen is an element derived from both the ionic liquid and LLZAO.
  • 100 Secondary battery, 101: Positive electrode current collector, 102: Positive electrode active material layer, 103a: First electrolyte layer, 103b: Second electrolyte layer, 103c: Third electrolyte layer, 103: Electrolyte layer, 104 : negative electrode active material layer, 105: negative electrode current collector, 106: positive electrode layer, 107: negative electrode layer, 111: positive electrode active material, 113: solid electrolyte, 117: negative electrode active material, 118: ionic liquid

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

活物質と電解質との界面接触が良好な二次電池を提供する。 正極層と、負極層と、正極層及び負極層の間に位置する電解質層とを有し、正極層は正極活物質及び第1の固体電解質を有し、負極層は負極活物質及び第2の固体電解質を有し、電解質層は第3の固体電解質及びイオン液体を有し、イオン液体は、第3の固体電解質の空隙に含浸される、二次電池である。二次電池は折り曲げ可能である。

Description

二次電池、電子機器及び飛行体
本発明の一態様は、二次電池、電子機器及び飛行体に関する。
また、本発明の一様態は、物、方法、又は、製造方法に関する。又は、本発明は、プロセス、マシン、マニュファクチャ、又は、組成物(コンポジション・オブ・マター)に関する。本発明の一態様は、半導体装置、表示装置、発光装置、蓄電装置、照明装置、電子機器又はそれらの製造方法に関する。
なお、本明細書中において電子機器とは、二次電池を有する装置全般を指し、二次電池を有する電気光学装置、二次電池を有する情報端末装置などが含まれる。
近年、リチウムイオン二次電池、リチウムイオンキャパシタ、空気電池等、種々の蓄電装置の開発が盛んに行われている。特に高出力、高容量であるリチウムイオン二次電池は半導体産業の発展と併せて急速にその需要が拡大し、充電可能なエネルギーの供給源として現代の情報化社会に不可欠なものとなっている。
現在使用されているほとんどのリチウムイオン電池には、極性を有する有機溶媒にリチウム塩を溶解した電解液(有機電解液ともいう)が用いられている。しかしこの有機溶媒は可燃性であるため、これを用いた二次電池には発火や引火の危険が伴う。
自動車等に用いられる大型の二次電池では、信頼性、特に安全性への要求が高い。そこで正極と負極の間に電解液でなく固体電解質を有する固体電池が検討されている。固体電解質は有機系と無機系に大別される。
無機系の固体電解質として、例えば特許文献1には硫化物系固体電解質又は酸化物系固体電解質を有する二次電池が開示されている。また非特許文献1乃至非特許文献3にはコバルト酸リチウムの結晶構造の変化について記載されている。
特開2012−14892号公報
Motohashi,T.et al,"Electronic phase diagram of the layered cobalt oxide system Li▲x▼CoO▲2▼(0.0≦x≦1.0)",Physical Review B,80(16);165114 Zhaohui Chen et al,"Staging Phase Transitions in Li▲x▼CoO▲2▼",Journal of The Electrochemical Society,2002,149(12)A1604−A1609 Belsky,A.et al.,"New developments in the Inorganic Crystal Structure Database(ICSD):accessibility in support of materials research and design",Acta Cryst.,(2002)B58 364−369.
特許文献1では、負極活物質層の体積変化(膨張・収縮)が大きく、負極活物質層と固体電解質層との接合性が低下して両層の界面でのリチウムイオン移動抵抗が上昇することを鑑み、負極活物質層と固体電解質層との間に介在層を備えた非水電解質電池が提案されている。特許文献1では当該介在層がリチウム塩を含有した高分子(ポリマー)、又はイオン液体からなると記載されている。
しかしながら介在層を備えると、負極活物質層と介在層、又は固体電解質層と介在層における界面接触が問題になる。界面接触は界面抵抗と記すことがある。
そこで本発明の一態様では、二次電池における界面、例えば活物質と電解質との界面の接触を良好にすることを課題の一とする。又は本発明の一態様は、安全性の向上した二次電池を提供することを課題の一とする。又は本発明の一態様は、曲がる二次電池を提供することを課題の一とする。
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。また、これら課題は互いに独立したものと考えられ、本発明の一態様は、これらの課題の全てを解決する必要はない。さらに本明細書等である明細書、図面、及び請求項の記載から、これら以外の課題を抽出することが可能である。
上記課題を解決するために、本発明の一態様は、正極層と、負極層と、正極層及び負極層の間に位置する電解質層とを有し、正極層は正極活物質及び第1の固体電解質を有し、負極層は負極活物質及び第2の固体電解質を有し、電解質層は第3の固体電解質及びイオン液体を有し、イオン液体は、電解質層の空隙、具体的には第3の固体電解質の空隙に含浸される、二次電池である。
本発明の別態様は、正極層と、負極層と、正極層及び負極層の間に位置する電解質層とを有し、正極層は正極活物質及び第1の固体電解質を有し、負極層は負極活物質及び第2の固体電解質を有し、電解質層は第3の固体電解質を有し、正極層、負極層及び電解質層は、イオン液体を有し、イオン液体は、電解質層の空隙、具体的には第3の固体電解質の空隙に含浸される、二次電池である。
本発明の別態様は、正極層と、負極層と、正極層及び負極層の間に位置する電解質層とを有し、正極層は正極活物質及び第1の固体電解質を有し、負極層は負極活物質及び第2の固体電解質を有し、電解質層は第1の電解質層乃至第3の電解質層を有し、第1の電解質層乃至第3の電解質層はイオン液体を有し、イオン液体は、第2の電解質層の空隙、具体的には第2の電解質層が有する第3の固体電解質の空隙に含浸される、二次電池である。
本発明の別態様は、正極層と、負極層と、正極層及び負極層の間に位置する電解質層とを有し、正極層は正極活物質及び第1の固体電解質を有し、負極層は負極活物質及び第2の固体電解質を有し、電解質層は第1の電解質層及び第2の電解質層を有し、第1の電解質層及び第2の電解質層はイオン液体を有し、イオン液体は、第2の電解質層の空隙、具体的には第2の電解質層が有する第3の固体電解質の空隙に含浸される、二次電池である。
本発明の態様のいずれか一において、正極活物質は、層状岩塩型の結晶構造、スピネル型の結晶構造、又はオリビン型の結晶構造を有する複合酸化物を有すると好ましい。
本発明の態様のいずれか一において、層状岩塩型の結晶構造を有する正極活物質は、コバルト酸リチウム又はニッケル−マンガン−コバルト酸リチウムを有すると好ましい。
本発明の態様のいずれか一において、負極活物質は、シリコン、スズ、ガリウム、アルミニウム、ゲルマニウム、鉛、アンチモン、ビスマス、銀、亜鉛、カドミウム、又はインジウムを有すると好ましい。
本発明の態様のいずれか一において、負極活物質は、炭素材料を有すると好ましい。
本発明の一態様の二次電池を有する電子機器、腕時計型の電子機器、又は飛行体である。
本発明の一態様により、界面抵抗が良好な二次電池を提供することができる。又は本発明の一態様により、安全性の向上した二次電池を提供することができる。又は本発明の一態様により、曲がる二次電池を提供することができる。
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。また、これら効果は互いに独立したものと考えられ、本発明の一態様は、これらの効果の全てを奏する必要はない。さらに本明細書等の記載から、これら以外の効果を抽出することが可能である。
図1A及び図1Bは本発明の一態様の二次電池を説明する図である。
図2A及び図2Bは本発明の一態様の二次電池を説明する図である。
図3は本発明の一態様の二次電池を説明する図である。
図4A及び図4Bは本発明の一態様の二次電池を説明する図である。
図5A乃至図5Cは本発明の一態様の二次電池の作製方法を説明する図である。
図6A乃至図6Dは本発明の一態様の二次電池の作製方法を説明する図である。
図7A乃至図7Dは本発明の一態様の二次電池の作製方法を説明する図である。
図8A及び図8Bは本発明の一態様の二次電池の作製方法を説明する図である。
図9A及び図9Bは本発明の一態様の二次電池の作製方法を説明する図である。
図10は本発明の一態様の二次電池の製造装置を説明する図である。
図11は本発明の一態様の二次電池の電解質層の作製方法を説明するフローである。
図12A及び図12Bは本発明の一態様の二次電池の電解質層の加熱工程を説明する図である。
図13A及び図13Bは正極活物質の断面図、図13C乃至図13Fは正極活物質の断面図の一部である。
図14は結晶の配向が概略一致しているTEM像の例である。
図15Aは結晶の配向が概略一致しているSTEM像の例である。図15Bは岩塩型の結晶構造RSの領域のFFTパターンである。図15Cは層状岩塩型の結晶構造LRSの領域のFFTパターンである。
図16は正極活物質の結晶構造を説明する図である。
図17は従来の正極活物質の結晶構造を説明する図である。
図18A及び図18Bは正極活物質の断面図、図18C1及び図18C2は正極活物質の断面図の一部である。
図19は結晶構造から計算されるXRDパターンを示す図である。
図20は結晶構造から計算されるXRDパターンを示す図である。
図21は正極活物質の断面図である。
図22A乃至図22Cは正極活物質の作製方法を説明する図である。
図23A及び図23Bは本発明の一態様のラミネート型の二次電池を説明する図である。
図24A乃至図24Cは本発明の一態様のラミネート型の二次電池の作製方法を説明する図である。
図25A及び図25Bは本発明の一態様の曲げられた二次電池について説明する図である。
図26A及び図26Bは本発明の一態様の二次電池を説明する図である。
図27A及び図27Bは本発明の一態様の曲げられた二次電池について説明する図である。
図28A乃至図28Cは本発明の一態様の腕時計型の電子機器について説明する図である。
図29A乃至図29Gは本発明の一態様の腕時計型の電子機器について説明する図である。
図30A乃至図30Cは本発明の一態様の腕時計型の電子機器について説明する図である。
図31は本発明の一態様の腕時計型の電子機器について説明する図である。
図32A及び図32Bは本発明の一態様の飛行体の一例を示す斜視図である。図32Cは、本発明の一態様の飛行体の一例を示す断面図である。
図33A及び図33Bは、本発明の一態様の飛行体の一例を示す斜視図である。
図34A乃至図34Cは、本発明の一態様のコイン型二次電池を説明する図である。
図35A乃至図35Dは、本発明の一態様の円筒型二次電池を説明する図である。
図36A乃至図36Cは、本発明の一態様の二次電池パックの外観を示す図である。
図37A乃至図37Cは、本発明の一態様の二次電池パックの外観を示す図である。
図38A乃至図38Cは電気自動車(EV)に適用する例を説明する図である。
図39A乃至図39Dは車両の一例を説明する図である。
図40A乃至図40Cは車両の一例を説明する図である。
図41A乃至図41Eは電子機器の一例を説明する図である。
図42は電子機器の一例を説明する図である。
図43A及び図43Bは第1のシート状電解質層の平面SEM像である。
図44A及び図44Bは第2のシート状電解質層の平面SEM像である。
図45A及び図45Bは第2のシート状電解質層の空隙にイオン液体が含浸した状態の平面SEM像である。
実施の形態について、図面を用いて詳細に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。なお、以下に説明する発明の構成において、同一部分又は同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その説明の繰り返しは省略することがある。
また、図面等において示す各構成の、位置、大きさ、範囲などは、発明の理解を容易とするため、実際の位置、大きさ、範囲などを表していない場合がある。このため、本明細書等に開示された発明は、必ずしも、図面等に開示された位置、大きさ、範囲などに限定されない。
本明細書等において「上」又は「下」の用語は、構成要素の位置関係が直上又は直下であることを限定するものではない。また「上」又は「下」の用語は、接していることを限定するものではない。例えば、「集電体A上の活物質層B」の表現であれば、集電体Aの上に活物質層Bが互いに接して形成されている必要はなく、集電体Aと活物質Bとの間に他の構成要素を含んでもよい。
本明細書等における「第1」、「第2」等の序数詞は、構成要素の混同を避けるために付すものであり、工程順又は積層順などの順番又は順位を示すものではない。また、本明細書等において序数詞が付されていない用語であっても、構成要素の混同を避けるため、特許請求の範囲において序数詞が付される場合がある。また、本明細書等において序数詞が付されている用語であっても、特許請求の範囲において異なる序数詞が付される場合がある。また、本明細書等において序数詞が付されている用語であっても、特許請求の範囲などにおいて序数詞を省略する場合がある。
本明細書等において、正極及び正極活物質を用いた二次電池として、負極にリチウム金属を用いる例を示す場合があるが、本発明の一態様の二次電池はこれに限らない。負極に他の材料、例えば黒鉛、チタン酸リチウム等を用いてもよい。本発明の一態様が正極及び正極活物質等であれば、負極の材料は何ら限定されない。
本明細書等において電解質層とは、正極と負極を電気的に絶縁し、かつリチウムイオン導電性を有する領域をいう。正極と負極に挟持された電解質層は層のように確認されることがある。
本明細書等において半固体電池とは、電解質層、正極、負極の少なくとも一に、半固体材料を有する電池であり、特に半固体材料を用いた電解質層を有するとよい。半固体とは、体積変化が小さいといった固体の性質を有しつつも、流動性を有する液体に近い性質等も持ち合わせることを意味し、固体材料の含有割合が50%であることは意味しない。上記性質を、単一の材料によって発現する場合でも、複数の材料によって発現する場合であっても半固体材料と呼ぶ。例えばゲル状の材料は、単一の材料で上記性質を発現できるため半固体材料となる。また複数の材料として、例えば液体材料を多孔質の固体材料に含浸(浸潤とも記す)させたものが上記性質を呈すれば、半固体材料と呼んでもよい。
本明細書等において、正極と負極をあわせて電極と呼ぶ場合がある。
本明細書等では空間群は国際表記(又はHermann−Mauguin記号)のShort notationを用いて表記する。またミラー指数を用いて結晶面及び結晶方向を表記する。結晶面を示す個別面は( )を用いて表記する。空間群、結晶面、及び結晶方向の表記は、結晶学上、数字の上にバーを付すが、本明細書等では書式の制約上、数字の上にバーを付す代わりに、数字の前に−(マイナス符号)を付して表現する場合がある。また、結晶内の方向を示す個別方位は[ ]で、等価な方向すべてを示す集合方位は< >で、結晶面を示す個別面は( )で、等価な対称性を有する集合面は{ }でそれぞれ表現する。また空間群R−3mで表される三方晶は、構造の理解のしやすさのため、一般に六方晶の複合六方格子で表され、ミラー指数として(hkl)だけでなく(hkil)を用いることがある。ここでiは−(h+k)である。
本明細書等において、粒子とは断面形状が円をなす球形に限定されず、粒子の断面形状が楕円形、長方形、台形、三角形、角が丸まった四角形、非対称の形状などが含まれる。また複数の粒子の形状は揃っていなくともよく、個々の粒子は不定形であってもよい。
本明細書等において、正極活物質の理論容量とは、挿入脱離可能なリチウムが、正極活物質から全て脱離したときの電気量をいう。例えば、LiCoOの理論容量は274mAh/g、LiNiOの理論容量は275mAh/g、LiMnの理論容量は148mAh/gである。
本明細書等において、挿入脱離可能なリチウムが、正極活物質中にどの程度残っているかを、正極活物質の組成式中のx、例えばLiCoO中のx、又はLiMO中のxで示す。xの値はLiCoO、又はLiMOにおけるリチウム占有率を示している。なお本明細書等においてLiCoOのCoは遷移金属の一例であり、適宜LiMO(Mは遷移金属を示す)と読み替えることができる。二次電池中の正極活物質の場合、x=(理論容量−充電容量)/理論容量とすることができる。例えばLiCoOを正極活物質に用いた二次電池を219.2mAh/gまで充電した場合、Li0.2CoO又はx=0.2ということができる。LiCoO中のxが小さいとは、例えば0.1<x≦0.24をいう。
合成したコバルト酸リチウムが化学量論比をおよそ満たす場合、LiCoOでありx=1である。またLiCoOを正極に用いた二次電池の放電が終了した場合も、LiCoO又はx=1といってよい。ここでいう放電が終了したとは、例えば100mA/g以下の電流で、電圧が3.0V又は2.5V以下となった状態をいう。
LiCoO中のxの算出に用いる充電容量及び/又は放電容量は、短絡及び/又は電解質の分解の影響がないか、少ない条件で計測することが好ましい。例えば短絡とみられる急激な容量の変化が生じたときの充電容量及び/又は放電容量はxの算出に使用してはならない。
本明細書等において、結晶構造の空間群はX線回折(XRD)、電子線回折、中性子線回折等によって同定される。そのため本明細書等において、ある空間群に帰属する、ある空間群に属する、又はある空間群であるとは、ある空間群に同定されると言い換えることができる。
本明細書等において、陰イオンがABCABCのように3層が互いにずれて積み重なる構造であれば、立方最密充填構造と呼ぶ。そのため陰イオンは厳密な立方格子でなくてもよい。同時に現実の結晶は必ず欠陥を有するため、分析結果が必ずしも理論通りでなくてよい。例えば電子線回折又は透過電子顕微鏡(TEM)像等の高速フーリエ変換(FFT)では、理論上の位置と若干異なる位置にスポットが現れてもよい。
本明細書等において、均質とは、複数の元素(例えばA,B,C)からなる固体において、ある元素(例えばA)が特定の領域に同様の特徴を有して分布する現象をいう。なお特定の領域同士の元素(例えばA)の濃度が実質的に同一であれば均質といってよい。例えば特定領域同士の元素(例えばA)の濃度の差が10%以内であれば均質といってよい。活物質において特定の領域は例えば、表層部、表面、凸部、凹部、内部などが挙げられる。
本明細書等において、正極活物質を複合酸化物、正極材、正極材料、二次電池用正極材、等と表現する場合がある。また本明細書等において、本発明の一態様の正極活物質は、添加元素を有すると好ましく、添加元素を有する正極活物質を、化合物、組成物、複合体と表現してもよい。
二次電池の充電電圧の上昇に伴い、正極の電圧は一般的に上昇する。本発明の一態様の正極活物質は、高い電圧においても安定な結晶構造を有する。充電状態において正極活物質の結晶構造が安定であることにより、充放電の繰り返しに伴う放電容量の低下を抑制することができる。
二次電池におけるショートは二次電池の充電動作及び/又は放電動作における不具合を引き起こすのみでなく、発熱及び発火を招く恐れがある。安全な二次電池を実現するためには、高い充電電圧においてもショートが抑制されることが好ましい。本発明の一態様の正極活物質は、高い充電電圧においてもショート電流が抑制される。そのため高い放電容量と安全性とを両立した二次電池とすることができる。
(実施の形態1)
本発明の一態様において、電解質層は固体材料及び液体材料を有する。本実施の形態では、本発明の一態様である電解質層と、これを有する二次電池等の例について説明する。
図1Aは本発明の一態様の二次電池100の断面模式図である。二次電池100は、正極層106と、電解質層103と、負極層107を有する。正極層106は正極集電体101と、正極活物質層102とを有する。負極層107は負極集電体105と、負極活物質層104とを有する。
図1Bは本発明の一態様の二次電池100の断面模式図であって、図1Aと異なり、負極活物質層104が不要となる構成を示す。例えば負極集電体105にリチウムを有する金属箔を用いる場合等、負極活物質層104を不要とすることができる。電解質層103は負極集電体105と一定の距離を離して配置してもよい。負極集電体105にリチウムが析出する領域を確保するためである。
図1A及び図1Bにおいて、電解質層103は固体材料及び液体材料を有する。
電解質層103は、キャリアイオンを移動させる機能を有する。キャリアイオンとしてリチウムイオン、又はナトリウムイオン等を適用することができる。電解質層103はキャリアイオン導電性があり、キャリアイオンを移動させる機能を発現する。具体的には電解質層103はキャリアイオン伝導度の高い固体材料を用いるとよい。例えば、電解質層103に用いられる固体材料のリチウムイオン伝導率が室温で0.1mS/cm以上20mS/cm以下であるとよい。また電解質層103は固体材料に加えて、キャリアイオン伝導度の高い液体材料を有するとよい。例えば、電解質層103に用いられる液体材料のリチウムイオン伝導率が室温で0.1mS/cm以上20mS/cm以下であるとよい。なお、固体材料のリチウムイオン伝導率が液体材料のリチウムイオン伝導率よりも高い場合、電解質層103は固体材料を液体材料より多く含有するとよい。
上記リチウムイオン伝導率を満たすため、固体材料として固体電解質を用いると好ましい。固体電解質について具体例は後述する。
上記リチウムイオン伝導率を満たすため、液体材料としてイオン液体を用いると好ましい。イオン液体について具体例は後述する。
さらに電解質層103はリチウム塩を有するとよい。例えば電解質層103において、イオン液体を溶媒として有する場合、リチウム塩を溶質として有すると好ましい。
固体材料及び液体材料を有する電解質層103において、固体材料が液体材料を保持することができ好ましい。例えば焼成した固体材料に空隙が生じることがあるが、液体材料は当該空隙に含浸されやすく、当該空隙に保持しやすいといえる。
さらに液体材料の粘性を制御することで、固体材料に含浸しやすくなり、保持されやすくなる。例えば液体材料は固体材料に含浸するときは粘性が低いと好ましい。また固体材料に保持された後は、液体材料の粘性が高い方が好ましい。粘性の高い状態をゲル状態と記すことがある。ゲル状態とは、固体と液体の中間の物質形態ともいえる。
上記固体材料が液体材料を保持した構成、つまり固体材料が液体材料を含浸した構成を有することにより、固体材料と液体材料とが単純に混合された構成と比べて、液体材料が電解質層103から浸み出すことを抑制できる。
このような構成により、電解質層等にある液体材料が漏れにくい二次電池を提供することができ、安全性が向上する。
上記保持する構成を満たせば、電解質層103における固体材料と液体材料の割合は特に限定されないが、固体材料の割合が液体材料の割合よりも多いと保持しやすく好ましい。固体材料と液体材料の割合は体積%を用いて定めることができる。例えば固体材料は、電解質層103において70体積%以上95体積%以下、好ましくは80体積%以上93体積%以下となると好ましい。電解質層103における液体材料は残りを占めるため5体積%以上30体積%以下、好ましくは7体積%以上20体積%以下が好ましい。なお液体材料にはリチウム塩が溶解している場合があるが、液体材料にリチウム塩が溶解している状態で上記割合を満たせばよい。
上記の割合を満たす電解質層103は半固体材料を有するといってよい。半固体材料を有する電解質層103は半固体電解質層と記すことがある。このような半固体電解質層を有する二次電池は曲げやすく好ましい。
固体材料として固体電解質を用い、液体材料としてイオン液体を用いる場合、互いのリチウムイオンの輸率を比較すると、固体電解質の方がイオン液体よりも高いことが多い。そのため固体電解質の割合はイオン液体よりも高い方が好ましく、この条件を満たすと電解質層103にてリチウムイオンの移動が滞ることが抑制される。リチウムイオンの輸率はリチウムイオン伝導率と同様な指標であり、リチウムイオンの移動しやすさを示す。
固体材料が液体材料を含浸した構成において、キャリアイオンである例えばリチウムイオンは固体材料及び液体材料を移動することが可能である。また固体材料が液体材料を含浸した構成において、リチウムイオンは固体材料のみを移動することも可能である。また固体材料が液体材料を含浸した構成において、リチウムイオンは液体材料のみを移動することも可能である。
固体材料及び液体材料が電解質層に存在する場合を説明したが、固体材料及び液体材料の一又は双方が正極層にも存在してもよい。固体材料及び液体材料の一又は双方が電解質層と正極層とに存在することで、介在層が存在する場合と比較して、電解質層と正極層の界面抵抗を低く抑えることができる。また固体材料及び液体材料の一又は双方が、負極層にも存在してもよい。固体材料及び液体材料の一又は双方が電解質層と負極層とに存在することで、介在層が存在する場合と比較して、電解質層と負極層の界面抵抗を低く抑えることができる。固体材料及び液体材料の一又は双方が正極層又は負極層に存在させる場合、正極スラリー又は負極スラリーに、固体材料及び液体材料の一又は双方を混合してもよい。固体材料及び液体材料の一又は双方により活物質を保持することができれば、正極層又は負極層のバインダを不要又は少なくすることができる。さらに固体材料により導電性を確保できれば、正極層又は負極層の導電助剤を不要又は少なくすることができる。
正極層又は負極層が有する固体材料は、電解質層の固体材料と異なる形状であってもよい。電解質層は空隙を有する固体材料が好ましいが、正極層又は負極層は粒子状の固体材料であってもよい。正極層又は負極層では液体材料を有さない場合、特に粒子状の固体材料であるとよい。正極層又は負極層が有する固体材料は、電解質層の固体材料と異なる材料でもよいが、界面抵抗抑制を踏まえると同じ材料の方が好ましい。
正極層又は負極層が有する液体材料は、電解質層の液体材料と異なる状態であってもよい。電解質層はゲル状態とすると好ましいが、正極層又は負極層は液体材料であってもよい。正極層又は負極層が有する液体材料は、電解質層の液体材料と異なる材料でもよいが、界面抵抗抑制を踏まえると同じ材料を用いると好ましく、状態のみ異ならせるとよい。
正極層又は負極層が有する液体材料が、電解質層の液体材料と同じ材料でかつ液体状態の場合、二次電池を組み立てた後に液体材料を注入する方法によって、二次電池を完成させることができる。
また二次電池を組み立てるプレス工程等に起因して、電解質層に存在していた固体材料及び液体材料が正極層又は負極層に移動する可能性もある。このような場合、固体材料及び液体材料が電解質層より浸み出た構成ともいえ、正極層又は負極層の固体材料及び液体材料は電解質層の固体材料及び液体材料と同じものとなる。本発明の一態様である電解質層に用いられた固体材料及び液体材料であれば、固体材料が液体材料を保持するため、固体材料及び液体材料が二次電池から漏れ出ることを抑制できる。
また固体電解質の割合がイオン液体よりも高いという条件は電解質層に限ったものであり、正極層又は負極層に固体電解質及びイオン液体の一又は双方が存在する場合、上記条件を満たさなくともよい。たとえば電解質層では、固体電解質の割合がイオン液体よりも高いが、正極層又は負極層ではイオン液体の割合が固体電解質の割合より高くてもよい。また正極層又は負極層ではイオン液体が存在し、固体電解質は存在しない場合でもよい。また正極層又は負極層では固体電解質が存在し、イオン液体が存在しない場合でもよい。
正極層又は負極層にて固体材料及び液体材料を有する場合、固体材料によって液体材料を保持させた状態であってもよく、この状態を半固体状態と記すことがある。
電解質層、正極層及び負極層のいずれにおいても、固体材料によって液体材料を保持させるには、固体材料は無機材料であると好ましいが、固体材料に有機材料を適用することもできる。有機材料としては動性のないゲル状の材料を用いれば、液体材料を保持することが可能となり、半固体状態を呈することができる。
また液体材料は、固体材料に保持される程度の粘性を有するとよく、例えば粘性の高いゲル状のものを適用できる。液体材料としてイオン液体を用いた場合、ゲル状のイオン液体を適用することができる。
また液体材料の粘性は、少なくとも電解質層103として完成した時に満たせば電解質層103等から浸み出しにくく好ましく、出発材料のときに満たす必要はない。すなわち液体材料の粘性を変化させてもよい。例えば出発材料の時に粘性が低い液体材料を用いると、空隙に含浸しやすい。その後、固体材料に保持された状態を維持するために、少なくとも電解質層103を形成したとき、または二次電池を完成させたときに液体材料の粘性を高くするとよい。具体的には電解質層等の作製工程である加熱工程を利用して液体材料にゲル化処理を実施し、当該加熱工程後に液体材料の粘性が高まればよい。また固体材料と液体材料とを混合する際の加熱工程を利用して液体材料の粘性を低下させてもよい。
また出発材料のとき液体材料の粘性を調整するために、別の材料を加えてもよい。例えばイオン液体に有機溶媒を混合することで、液体材料の粘度を制御することができる。有機溶媒として、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート、クロロエチレンカーボネート、ビニレンカーボネート、γ−ブチロラクトン、γ−バレロラクトン、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ギ酸メチル、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、酪酸メチル、1,3−ジオキサン、1,4−ジオキサン、ジメトキシエタン(DME)、ジメチルスルホキシド、ジエチルエーテル、メチルジグライム、アセトニトリル、ベンゾニトリル、テトラヒドロフラン、スルホラン、スルトン等から選ばれた一以上を用いることができる。
またイオン液体に添加するリチウム塩の量を制御することで、液体材料の粘度を制御することもできる。リチウム塩として、LiPF、LiClO、LiBF、Li(CSON、Li(CFSON、Li(SOF)N、リチウムビス(オキサレート)ボレート(Li(C、LiBOB)等から選ばれた一以上を用いることができる。
固体材料として固体電解質を用いる場合、固体電解質の出発材料は粒子形状であることが多い。粒子形状とは一断面から見たときに、円又は真円となる形状を含む。しかしながら、出発材料に対する焼成工程、つまり加熱工程、又は混合工程を経ることで、固体電解質の形状が変化する。すなわち、固体電解質は粒子形状とは異なる形状となることがある。異なる形状とは一断面から見たときに、凹凸がある形状又は楕円形状を含む。すなわち、二次電池100の電解質層103における固体材料は粒子形状に限定されず、多様な形状であっても本願の効果を奏することができる。
上述したような形状の変化は、活物質材料でも生じうる。例えば、活物質材料の出発材料は粒子形状であることが多い。しかしながら、出発材料に対する焼成工程、つまり加熱工程、又は混合工程を経ることで形状が変化する。すなわち、活物質は粒子形状とは異なる形状となることがある。すなわち、正極活物質層102における活物質材料は粒子形状に限定されない。また負極活物質層104における活物質材料は粒子形状に限定されない。活物質材料が多様な形状であっても本願の効果を奏することができる。
図2Aには本発明の一態様の二次電池100の断面模式図を示す。図2Aは、図1Aに示したように、負極活物質層104を有する構成を示す。勿論図2Aにおいて、図1Bに示したように負極活物質層104を不要とすることができる。
図2Aにおいて、正極活物質層102は正極活物質111と、固体電解質113を少なくとも有する。図2Aでは正極活物質111及び固体電解質113は粒子形状で示すが、粒子形状に限定されない。正極活物質層102は固体電解質113を有するため、正極活物質層102がイオン液体を有さなくとも二次電池100として動作可能である。さらに図2Aに示すように、電解質層103から正極活物質層102にかけて固体電解質113が連続的に存在するため、互いの層における界面抵抗を抑制することができる。なお、正極活物質層102が有する固体電解質113は、電解質層103が有する固体電解質113と同じ材料を用いると好ましく、一方を粒子状、他方を焼結体として形状を異ならせるとよい。焼結体とは粒子同士が結合した状態が含まれ、当該粒子同士の間に空隙が生じることがある。
正極活物質層102は導電助剤を有してもよいが、図2Aでは導電助剤を省略する。正極活物質層102が固体電解質113を有するため、導電助剤を不要にすることも可能である。また正極活物質層102はバインダを有してもよいが、図2Aではバインダを省略する。正極活物質層102が固体電解質113を有するため、バインダを不要にすることも可能である。
また正極活物質層102では、固体電解質113に代えてイオン液体を有してもよいし、また固体電解質113に加えてイオン液体を有してもよい。なお、正極活物質層102が有するイオン液体は、電解質層103が有するイオン液体と同じ材料を用いると好ましく、一方をゲル状態、他方を液体状態として状態を異ならせてもよい。
図2Aにおいて、負極活物質層104は負極活物質117と、固体電解質113を少なくとも有する。図2Aでは負極活物質117及び固体電解質113は粒子形状で示すが、粒子形状に限定されない。負極活物質層104は固体電解質113を有するため、負極活物質層104がイオン液体を有さなくとも二次電池100として動作可能である。さらに図2Aに示すように、電解質層103から負極活物質層104にかけて、固体電解質113が連続的に存在するため、互いの層における界面抵抗を抑制することができる。なお、負極活物質層104が有する固体電解質113は、電解質層103が有する固体電解質113と同じ材料を用いると好ましく、一方を粒子状、他方を焼結体として形状を異ならせるとよい。焼結体とは粒子同士が結合した状態が含まれ、当該粒子同士の間に空隙が生じることがある。
負極活物質層104は導電助剤を有してもよいが、図2Aでは導電助剤を省略する。負極活物質層104が固体電解質113を有するため、導電助剤を不要にすることも可能である。また負極活物質層104はバインダを有してもよいが、図2Aではバインダを省略する。負極活物質層104が固体電解質113を有するため、バインダを不要にすることも可能である。
また負極活物質層104では、固体電解質113に代えてイオン液体を有してもよいし、また固体電解質113に加えてイオン液体を有してもよい。なお、負極活物質層104が有するイオン液体は、電解質層103が有するイオン液体と同じ材料を用いると好ましく、一方をゲル状態、他方を液体状態として状態を異ならせてもよい。
図2Aにおいて、電解質層103は固体材料として固体電解質113を有し、液体材料としてイオン液体118を有する。図2Bには電解質層103の一部の領域114の拡大模式図を示す。図2Bに示す通り、固体電解質113は焼結体をなすことがよい。また電解質層103では一部の固体電解質113が粒子形状を有していてもよい。
図2Bに示す通り、焼結体となった固体電解質113は空隙も有する。また空隙は、固体電解質の焼成条件等に従って形成することが可能である。例えば正極と負極との間におけるショートを抑制するために、電解質層103に対しては空隙を低減させるような焼成条件とすることが可能である。ただし本発明では空隙にイオン液体118を充填させるために、必ずしも低減させるものではない。空隙におけるショートを抑制するためには、例えばイオン液体118の粘性等を制御すればよい。
電解質層103におけるイオン液体118の割合を増やす場合、空隙も増やすことになる。空隙を増やすために、焼結温度以下の融点をもつ有機材料を混合した状態で焼成工程を実施してもよい。焼成工程において、溶融して消失した有機材料に対応した空隙を形成することができる。このように空隙を低減させるのではなく空隙を制御しつつ増やすことも本発明の一態様に含まれる。
図2Bにおいてイオン液体118がある領域は、空隙に対応する。なお正極と負極との間におけるショートを抑制するために、充填されたイオン液体118がゲル化していると好ましい。
電解質層103はプレス等の工程を経てシート状に加工してもよい。粒子形状の固体電解質を複数有する電解質層103としてもよい。すなわち焼結体とせずに、複数の粒子形状の固体電解質を有する場合でも、電解質層103は粒子の間に空隙を有することが可能である。
シート状の電解質層103の膜厚は、1μm以上100μm以下、好ましくは1μm以上50μm以下、さらに好ましくは1μm以上20μm以下がよい。
電解質層103において、空隙の位置を制御してもよい。空隙が正極層から負極層に向かって繋がり、孔のように生じてしまうと、例えば負極層で生じる樹状突起(デンドライト)等により二次電池がショートする可能性が高まる。そのため、電解質層103には当該孔が生じないように空隙の位置が互いにずれるように制御するとよい。
上述したが、空隙には液体材料が充填されているため、当該液体材料の粘性等を高くすることによっても、デンドライト等に起因した二次電池のショートを抑制することもできる。
電解質層103において、空隙の割合を制御してもよい。例えば電解質層103の中心の空隙を、正極層又は負極層に近い側の電解質層103の空隙の割合より高くするとよい。負極層で生じるデンドライトを抑制する場合、電解質層103の空隙の割合は、負極層に近くなるにつれて低くするとよい。
電解質層103は積層構造としてもよく、2層以上、好ましくは3層以上の電解質層を積層するとよい。3層構造の場合、中心に配置される電解質層の空隙の割合と、その上下に配置される電解質層の空隙の割合を異ならせることができる。このような電解質層103により、上述した二次電池のショートを抑制することができる。さらに中心に配置された電解質層に代えて、セパレータを配置してもよい。
再掲するが、電解質層103はシート状のものを用意すると好ましい。シート状の電解質層は上記積層構造にも好適である。シート状の電解質層103とするには、液体材料よりもゲル状態のイオン液体を有する方が、形状を維持できるため好ましい。
上述した二次電池のショートを抑制するために、電解質層103に加えてセパレータを配置してもよい。
図2A及び図2Bに示すように、電解質層103において、固体電解質113がイオン液体118を保持している。別言すると、電解質層103において、イオン液体118は固体電解質113に含浸している。このような電解質層103はイオン液体118が浸みだすことがなく好ましい。当該電解質層103を半固体電解質層と記すことがある。なお、上述したとおり固体電解質113は固体材料であればよく、イオン液体118は液体材料であればよい。
また電解質層103はバインダを有してもよい。固体電解質113がイオン液体118を保持しやすくなる。ただし図2A及び図2Bではバインダを省略する。
なお図2Aにおいて、各層の境界線があるように示したが、二次電池100において明確な境界線が確認できないことがある。例えばシート状の電解質層103を、正極層106と貼り合わせる際、プレスを行うと電解質層103と正極層106との境界が曖昧となる。一部の正極活物質111は電解質層103へ入り込み、一部の固体電解質113は正極層106へ入り込むためである。同様に、一部の負極活物質117は電解質層103へ入り込み、一部の固体電解質113は負極層107へ入り込むことがあり、電解質層103と負極層107との境界も曖昧となる。
図3には本発明の一態様の二次電池100の断面模式図を示す。図3は、図1Aに示したように、負極活物質層104を有する構成を示す。勿論図3において、図1Bに示したように負極活物質層104を省略することができる。
図3に示した二次電池100は、図2Aと異なり、イオン液体118が二次電池100全体に位置する。正極層106、電解質層103及び負極層107を積層したのちに、イオン液体118を注入する等の工程を経て二次電池100を形成すると、図3に示すようにイオン液体118が二次電池100全体に位置することができる。この場合、イオン液体はゲル化しない、又は注入後にゲル化処理を実施するとよい。
その他の構成は図2A及び図2Bと同様である。
図2A及び図3は共通して、少なくとも電解質層103において、固体電解質113がイオン液体118を保持している。別言すると、少なくとも電解質層103において、イオン液体118は固体電解質113に含浸している。このような電解質層103はイオン液体118が浸みだすことがなく好ましい。当該電解質層103を半固体電解質層と記すことがある。なお、上述したとおり固体電解質113は固体材料であればよく、イオン液体118は液体材料であればよい。
なお図3において、図2A等と同様に二次電池100において明確な境界線が確認できないことがある。
図4Aには本発明の一態様の二次電池100の断面模式図を示す。図4は、図1Aに示したように、負極活物質層104を有する構成を示す。勿論図4において、図1Bに示したように負極活物質層104を省略することができる。
図4Aに示した二次電池100は、図2A等と異なり、固体電解質113が電解質層103の中心のみに位置し、正極層側及び負極層側には、固体電解質113を有さない領域を有する。このような構造を有する電解質層103は、固体電解質113の含有割合に応じて、第1の電解質層103a、第2の電解質層103b、及び第3の電解質層103cと区分けることができる。このような構造を積層構造と記すことがあり、図4Aは電解質層103が三層の積層構造を有する場合を例示している。
電解質層103は二層以上の積層構造を適用できる。図4Bには、二層の積層構造を有する電解質層103を有する二次電池100を示す。
図4Aにおいて、固体電解質113を有さない領域に位置する第1の電解質層103a、及び固体電解質113を有さない領域に位置する第3の電解質層103cは、ゲル状のイオン液体等を用いるとよい。図4Bにおいて、固体電解質113を有さない第1の電解質層103aは、ゲル状のイオン液体等を用いればよい。
その他の構成は図2A、図2B、及び図3と同様である。
図2A、図3、図4A及び図4Bは共通して、少なくとも電解質層103において、固体電解質113がイオン液体118を保持している。別言すると、少なくとも電解質層103において、イオン液体118は固体電解質113に含浸している。このような電解質層103はイオン液体118が浸みだすことがなく好ましい。当該電解質層103を半固体電解質層と記すことがある。なお、上述したとおり固体電解質113は固体材料であればよく、イオン液体118は液体材料であればよい。
なお図4A及び図4Bにおいて、各層の境界線があるように示したが、図2A等と同様に二次電池100において明確な境界線が確認できないことがある。
次に図1乃至図4に示された二次電池100の各部材について説明する。
<集電体>
正極集電体101及び負極集電体105はそれぞれ、ステンレス、金、白金、アルミニウム、銅、チタン等の金属、及びこれらの合金など、導電性が高い材料を用いることができる。また正極集電体に用いる材料は、正極の電位で溶出しないことが好ましい。また、シリコン、チタン、ネオジム、スカンジウム、モリブデンなどの耐熱性を向上させる元素が添加されたアルミニウム合金を用いることができる。また、シリコンと反応してシリサイドを形成する金属元素で形成してもよい。シリコンと反応してシリサイドを形成する金属元素としては、ジルコニウム、チタン、ハフニウム、バナジウム、ニオブ、タンタル、クロム、モリブデン、タングステン、コバルト、ニッケル等がある。集電体は、箔状、板状、シート状、網状、パンチングメタル状、エキスパンドメタル状等の形状を適宜用いることができる。またアンダーコートとしてカーボンブラック又はグラフェンの層を有していてもよい。集電体は、厚みが5μm以上30μm以下のものを用いるとよい。なお箔状とは厚みが1μm以上100μm以下、好ましくは5μm以上30μm以下であることを言う。
また、特にリチウム塩としてLiFSI(FSIはビス(フルオロスルホニル)イミドアニオンの略称である)を用いる場合は、正極集電体101及び負極集電体105はLiFSIによって腐食されにくい材料であることが好ましい。例えばチタン及びチタン化合物は腐食されにくく好ましい。またチタン、チタン化合物又はアルミニウムにカーボンコートをしたものも同様に好ましい。
<活物質>
正極層106が有する正極活物質111としては、例えば層状岩塩型の結晶構造、スピネル型の結晶構造、オリビン型の結晶構造を有する複合酸化物を用いることができる。例えば、コバルト酸リチウム、ニッケル酸リチウム、コバルトの一部がマンガンで置換されたコバルト酸リチウム、コバルトの一部がニッケルで置換されたコバルト酸リチウム、ニッケル−マンガン−コバルト酸リチウム、リン酸鉄リチウム、鉄酸リチウム、マンガン酸リチウム等のリチウムと遷移金属を有する複合酸化物を用いることができる。また正極活物質として機能する材料であれば必ずしもリチウムを有さなくてもよく、V、Cr、MnO等を用いてもよい。
その他の正極活物質は、後述する。
負極層107が有する負極活物質117としては、リチウムとの合金化・脱合金化反応により充放電反応を行うことが可能な元素を用いることができる。例えば、シリコン、スズ、ガリウム、アルミニウム、ゲルマニウム、鉛、アンチモン、ビスマス、銀、亜鉛、カドミウム、インジウム等のうち少なくとも一つを含む材料を用いることができる。このような元素は炭素と比べて容量が大きく、特にシリコンは理論容量が4200mAh/gと高い。このため、負極活物質にシリコンを用いることが好ましい。また、これらの元素を有する化合物を用いてもよい。例えば、SiO(一酸化シリコンであり、SiOと表すこともある、xは0.2以上1.5以下が好ましい)、MgSi、MgGe、SnO、SnO、MgSn、SnS、VSn、FeSn、CoSn、NiSn、CuSn、AgSn、AgSb、NiMnSb、CeSb、LaSn、LaCoSn、CoSb、InSb、SbSn等がある。ここで、リチウムとの合金化・脱合金化反応により充放電反応を行うことが可能な元素、及び該元素を有する化合物等を合金系材料と呼ぶ場合がある。
シリコンを有する負極活物質としてシリコンナノ粒子を用いることができる。シリコンナノ粒子のメディアン径(D50)は5nm以上1μm未満、好ましくは10nm以上300nm以下、さらに好ましくは10nm以上100nm以下である。シリコンナノ粒子は結晶性を有してもよい。また、シリコンナノ粒子が、結晶性を有する領域と、非晶質の領域とを有してもよい。
シリコンを有する負極活物質として、一酸化シリコンの粒子内にシリコンの結晶粒を一又は複数有する形態でもよい。一酸化シリコンは非晶質であってもよい。一酸化シリコンの粒子をカーボンコートしてもよい。この粒子を黒鉛と混合して負極活物質とすることができる。
炭素材料としては、黒鉛、易黒鉛化性炭素(ソフトカーボン)、難黒鉛化性炭素(ハードカーボン)、カーボンナノチューブ、グラフェン、カーボンブラック等を用いればよい。これらの炭素材料にフッ素を含ませることが好ましい。フッ素を含ませた炭素材料は、粒子状又は繊維状のフッ素化炭素材料とも呼べる。炭素材料をX線光電子分光により測定する場合において、フッ素の濃度は、フッ素、酸素、リチウム及び炭素の濃度の合計に対して、1atomic%(at%と記すことがある)以上であることが好ましい。
また、負極活物質は、充放電で体積変化が生じる場合があるが、負極活物質同士の間にフッ素化炭酸エステルなどのフッ素を有する有機化合物を配置させることで充放電時に体積変化が生じても滑りやすく、クラックを抑制するため、サイクル特性が向上するという効果がある。複数の負極活物質の間にはフッ素を有する有機化合物が存在していることが重要である。
黒鉛としては、人造黒鉛又は天然黒鉛等が挙げられる。人造黒鉛としては例えば、メソカーボンマイクロビーズ(MCMB)、コークス系人造黒鉛、ピッチ系人造黒鉛等が挙げられる。ここで人造黒鉛として、球状の形状を有する球状黒鉛を用いることができる。例えば、MCMBは球状の形状を有する場合があり、好ましい。また、MCMBはその表面積を小さくすることが比較的容易であり、好ましい場合がある。天然黒鉛としては例えば、鱗片状黒鉛、球状化天然黒鉛等が挙げられる。
黒鉛はリチウムイオンが黒鉛に挿入されたとき(リチウム−黒鉛層間化合物の生成時)にリチウム金属と同程度に低い電位を示す(0.05V以上0.3V以下 vs.Li/Li)。これにより、リチウムイオン二次電池は高い作動電圧を示すことができる。さらに、黒鉛は、単位体積当たりの容量が比較的高い、体積膨張が比較的小さい、安価である、リチウム金属に比べて安全性が高い等の利点を有するため、好ましい。
また、負極活物質として、二酸化チタン(TiO)、リチウムチタン酸化物(LiTi12)、リチウム−黒鉛層間化合物(Li)、五酸化ニオブ(Nb)、酸化タングステン(WO)、酸化モリブデン(MoO)等の酸化物を用いることができる。
また、負極活物質として、リチウムと遷移金属の複窒化物である、LiN型構造をもつLi3−xN(M=Co、Ni、Cu)を用いることができる。例えば、Li2.6Co0.4は大きな充放電容量(900mAh/g、1890mAh/cm)を示し好ましい。
リチウムと遷移金属の複窒化物を用いると、負極活物質中にリチウムイオンを含むため、正極活物質としてリチウムイオンを含まないV、Cr等の材料と組み合わせることができ好ましい。なお、正極活物質にリチウムイオンを含む材料を用いる場合でも、あらかじめ正極活物質に含まれるリチウムイオンを脱離させることで、負極活物質としてリチウムと遷移金属の複窒化物を用いることができる。
また、コンバージョン反応が生じる材料を負極活物質として用いることもできる。例えば、酸化コバルト(CoO)、酸化ニッケル(NiO)、酸化鉄(FeO)等の、リチウムとの合金を作らない遷移金属酸化物を負極活物質に用いてもよい。コンバージョン反応は、さらに、Fe、CuO、CuO、RuO、Cr等の酸化物、CoS0.89、NiS、CuS等の硫化物、Zn、CuN、Ge等の窒化物、NiP、FeP、CoP等のリン化物、FeF、BiF等のフッ化物でも起こる。
また、負極活物質としてリチウムを用いることもできる。負極活物質としてリチウムを用いる場合、負極集電体上に箔状のリチウムを設けることができる。また、負極集電体上にリチウムを蒸着法及びスパッタリング法などの気相法によって設けてもよい。また、リチウムイオンを含有する溶液の中で、負極集電体上にリチウムを電気化学的手法によって析出させてもよい。
負極活物質層が有することのできる導電助剤及びバインダとしては、正極活物質層が有することのできる導電助剤及びバインダと同様の材料を用いることができる。
また、集電体として、正極集電体と同様の材料に加え、銅なども用いることができる。なお負極集電体は、リチウム等のキャリアイオンと合金化しない材料を用いることが好ましい。
また、負極の別の形態として、負極活物質を有さない負極を用いることができる。負極活物質を有さない負極を用いた二次電池では、充電時において負極集電体上にリチウムが析出し、放電時において該負極集電体上のリチウムが溶出することができる。そのため、完全放電状態以外においては、負極集電体上にリチウムを有する形態となる。
負極活物質を有さない負極を用いる場合、負極集電体上にリチウムの析出を均一化するための膜を有してもよい。リチウムの析出を均一化するための膜として、例えばリチウムイオン伝導性を有する固体電解質を用いることができ、負極集電体上に電解質層を配置することができる。
固体電解質として、硫化物系固体電解質、酸化物系固体電解質、ハロゲン化物系固体電解質、及び高分子系固体電解質などを用いることができる。なかでも、高分子系固体電解質は負極集電体上に均一に膜形成することが比較的容易であるため、リチウムの析出を均一化するための膜として好適である。硫化物系固体電解質、酸化物系固体電解質、ハロゲン化物系固体電解質、及び高分子系固体電解質については後述する。
また、負極活物質を有さない負極を用いる場合、凹凸を有する負極集電体を用いることができる。凹凸を有する負極集電体を用いる場合、負極集電体の凹部は負極集電体が有するリチウムが析出し易い空洞となるため、リチウムが析出する際に、デンドライト状の形状となることを抑制することができる。
<固体電解質>
本発明の一態様の電解質層等に用いられる固体材料として固体電解質が挙げられる。固体電解質には酸化物系、硫化物系、又はハロゲン化物系があり、これらを混合した固体電解質を電解質層等に用いてもよい。
酸化物系固体電解質として、ペロブスカイト型結晶構造を有する材料(La2/3−xLi3xTiO等)、NASICON型結晶構造を有する材料(Li1+XAlTi2−X(PO等)、ガーネット型結晶構造を有する材料(LiLaZr12(LLZO)、又はLi6.25LaZrAl0.2512(LLZAO)等)、LISICON型結晶構造を有する材料(Li14ZnGe16等)、酸化物ガラス(LiPO−LiSiO、50LiSiO・50LiBO等)、又は酸化物結晶化ガラス(Li1.07Al0.69Ti1.46(PO、Li1.5Al0.5Ge1.5(PO等)等の材料が挙げられる。酸化物系固体電解質は熱に強く、加えて後述の硫化物系固体電解質より大気中で安定であるといった利点がある。
硫化物系固体電解質として、チオリシコン系(Li10GeP12、Li3.25Ge0.250.75等)、硫化物ガラス(70LiS・30P、30LiS・26B・44LiI、63LiS・36SiS・1LiPO、57LiS・38SiS・5LiSiO、50LiS・50GeS等)、又は硫化物結晶化ガラス(Li11、Li3.250.95等)等の材料が挙げられる。硫化物系固体電解質は、高い伝導度を有する材料がある、低い温度で合成可能、また比較的やわらかいため充放電を経ても導電経路が保たれやすい等の利点がある。
ハロゲン化物系固体電解質として、LiAlCl、LiInBr、LiF、LiCl、LiBr、LiI等が挙げられる。
本発明の一態様の電解質層等に用いられる固体材料として固体電解質を、ポーラス酸化アルミニウム又はポーラスシリカの細孔に充填した混合材料も用いることができる。すなわち固体電解質にセラミックス材料を混合したものを電解質層等に用いてもよい。
固体電解質を用いて固体であることを説明したが、流動性のない材料でイオン液体を保持できればよく、ポリマー材料によってイオン液体を保持してもよい。ポリマー材料によってイオン液体を保持した構成も半固体と呼ぶことがある。この場合の二次電池100の電解質層103を半固体電解質層と呼ぶことがある。
本発明の一態様の電解質層等に用いられるポリマー材料として、リチウムイオン導電性ポリマーが挙げられる。リチウムイオン導電性ポリマーを高分子系固体電解質と記すことがある。リチウムイオン導電性ポリマーとしては例えば、ポリエチレンオキシド(PEO)、主鎖としてポリエチレンオキシドを有する誘導体、ポリプロピレンオキシド、ポリアクリル酸エステル、ポリメタクリル酸エステル、ポリシロキサン、ポリフォスファゼン等を用いることができる。
本発明の一態様の電解質層等において、上述した固体電解質にグラフェン化合物又はグラフェンを混合してもよい。グラフェン化合物は、高い柔軟性及び高い機械的強度を有するという優れた物理特性を有するため、固体電解質に高い柔軟性及び高い機械的強度を付与することができる。
グラフェン化合物とは、多層グラフェン、酸化グラフェン、多層酸化グラフェン、マルチ酸化グラフェン等を含む。グラフェン化合物とは、炭素を有し、平板状、シート状等の形状を有し、炭素6員環で形成された二次元的構造を有するものをいう。該炭素6員環で形成された二次元的構造は炭素シートと呼ぶ場合がある。グラフェン化合物は官能基を有してもよい。またグラフェン化合物は屈曲した形状を有することが好ましい。またグラフェン化合物は丸まってカーボンナノファイバーのようになっていてもよい。
酸化グラフェンとは、炭素と、酸素を有し、シート状の形状を有し、官能基、特にエポキシ基、カルボキシ基又はヒドロキシ基を有するものをいう。
<イオン液体>
本発明の一態様の電解質層等に用いられる液体材料としてイオン液体を用いることができる。イオン液体について説明する。
イオン液体は、常温溶融塩と記すこともあり、カチオンとアニオンを有する。カチオンは、イミダゾリウム系、アンモニウム系、ピロリジニウム系、ピペリジニウム系、ピリジニウム系又はホスホニウム系の基本骨格を含む。イミダゾリウム系の基本骨格を有するカチオンは、アンモニウム系の基本骨格を有するカチオンに比べて低粘度なイオン液体を提供でき。粘度が低いとキャリアイオンの伝導性が高まる傾向にある。さらにカチオンの側鎖のアルキル基等により、イオン液体の粘度等を制御することができる。
<カチオンの一般式>
本発明の一態様のイオン液体のカチオンについて説明する。
本発明の一態様のイオン液体は、一般式(G1)で表されるイミダゾリウム系のカチオンを有する。
Figure JPOXMLDOC01-appb-C000001
上記一般式(G1)において、Rは炭素数が1以上10以下のアルキル基を表し、R乃至Rはそれぞれ独立に、水素原子又は炭素数が1以上4以下のアルキル基を表し、Rは炭素数が1以上6以下のアルキル基、又はC、O、Si、N、S、Pの原子から選択された2つ以上で構成される主鎖を有するエーテル基、チオエーテル基、又はシロキサンを表す。上記一般式(G1)において、Aはアニオンを示し、後述するFSI又はTFSIであることが好ましい。
本発明の一態様のイオン液体は、一般式(G2)で表されるピリジニウム系のカチオンを有する。
Figure JPOXMLDOC01-appb-C000002
上記一般式(G2)において、Rは、炭素数が1以上6以下のアルキル基、又はC、O、Si、N、S、Pの原子から選択された2つ以上で構成される主鎖を有する。R乃至R11は、それぞれ独立に、水素原子又は炭素数が1以上4以下のアルキル基を表す。またR又はRは水酸基を表すことがある。上記一般式(G2)において、Aはアニオンを示し、後述するFSI又はTFSIであることが好ましい。
本発明の一態様のイオン液体は、四級アンモニウムカチオンを有してもよく、例えば一般式(G3)で表される四級アンモニウムカチオンを有する。
Figure JPOXMLDOC01-appb-C000003
上記一般式(G3)中、R28乃至R31は、それぞれ独立に、炭素数が1以上20以下のアルキル基、メトキシ基、メトキシメチル基、メトキシエチル基、又は水素原子のいずれかを表す。上記一般式(G3)において、Aはアニオンを示し、後述するFSI又はTFSIであることが好ましい。
本発明の一態様のイオン液体は、一般式(G4)で表されるカチオンを有する。
Figure JPOXMLDOC01-appb-C000004
上記一般式(G4)中、R12及びR17は、それぞれ独立に、炭素数が1以上3以下のアルキル基を表す。R13乃至R16は、それぞれ独立に、水素原子又は炭素数が1以上3以下のアルキル基のいずれかを表す。上記一般式(G4)において、Aはアニオンを示し、後述するFSI又はTFSIであることが好ましい。
本発明の一態様のイオン液体は、一般式(G5)で表されるカチオンを有する。
Figure JPOXMLDOC01-appb-C000005
上記一般式(G5)中、R18及びR24は、それぞれ独立に、炭素数が1以上3以下のアルキル基を表す。R19乃至R23は、それぞれ独立に、水素原子又は炭素数が1以上3以下のアルキル基を表す。上記一般式(G5)において、Aはアニオンを示し、後述するFSI又はTFSIであることが好ましい。
本発明の一態様のイオン液体は、一般式(G6)で表されるカチオンを有する。
Figure JPOXMLDOC01-appb-C000006
上記一般式(G6)中、n及びmは1以上3以下であり、αは0以上6以下であり、βは0以上6以下であり、X又はYは、置換基として炭素数が1以上4以下の直鎖状若しくは側鎖状のアルキル基、炭素数が1以上4以下の直鎖状若しくは側鎖状のアルコキシ基、又は炭素数が1以上4以下の直鎖状若しくは側鎖状のアルコキシアルキル基を表す。上記一般式(G6)において、Aはアニオンを示し、後述するFSI又はTFSIであることが好ましい。
本発明の一態様のイオン液体は、一般式(G7)で表される三級スルホニウムカチオンを有する。
Figure JPOXMLDOC01-appb-C000007
上記一般式(G7)中、R25乃至R27は、それぞれ独立に、水素原子、炭素数が1以上4以下のアルキル基、又はフェニル基を表す。またR25乃至R27は、それぞれ独立に、C、O、Si、N、S、Pの原子から選択された2つ以上で構成される主鎖を有する。一般式(G7)において、Aはアニオンを示し、後述するFSI又はTFSIであることが好ましい。
本発明の一態様のイオン液体は、下記一般式(G8)で表される四級ホスホニウムカチオンを有する。
Figure JPOXMLDOC01-appb-C000008
上記一般式(G8)中、R32乃至R35は、それぞれ独立に、水素原子、又は炭素数が1以上4以下のアルキル基、又はフェニル基を表す。またR32乃至R35は、それぞれ独立に、C、O、Si、N、S、Pの原子から選択された2つ以上で構成される主鎖を有する。一般式(G8)において、Aはアニオンを示し、後述するFSI又はTFSIであることが好ましい。
<カチオン>
上記一般式(G1)のカチオンの具体例として、例えば構造式(111)乃至構造式(174)が挙げられる。構造式(111)は1−エチル−3メチルイミダゾリウムカチオンであり、略称はEMIである。構造式(113)は1−ブチル−3メチルイミダゾリウムカチオンであり、略称はBMIである。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
上記一般式(G2)のカチオンの具体例として、例えば構造式(701)乃至構造式(719)が挙げられる。
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
上記一般式(G4)のカチオンの具体例として、例えば構造式(501)乃至構造式(520)が挙げられる。
Figure JPOXMLDOC01-appb-C000017
上記一般式(G5)のカチオンの具体例として、例えば構造式(601)乃至構造式(630)が挙げられる。
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
上記一般式(G6)のカチオンの具体例として、例えば構造式(301)乃至構造式(309)、及び構造式(401)乃至構造式(419)が挙げられる。
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
また、構造式(301)乃至構造式(309)、及び構造式(401)乃至構造式(419)には、一般式(G6)において、mが1の例を示すが、構造式(301)乃至構造式(309)、及び構造式(401)乃至構造式(419)において、mを2、または3に替えても構わない。
また、上記一般式(G7)のカチオンの具体例として、例えば構造式(201)乃至構造式(215)が挙げられる。
Figure JPOXMLDOC01-appb-C000022
<アニオン>
本発明の一態様のイオン液体のアニオンについて説明する。アニオンは、ハロゲン化物イオン、テトラフルオロボレート、ヘキサフルオロホスフェート、ビス(トリフルオロメチルスルホニル)アミド、又はビス(フルオロスルホニル)イミド等があげられる。
具体的なアニオンには、一価のアミド系アニオン、一価のメチド系アニオン、フルオロスルホン酸アニオン、パーフルオロアルキルスルホン酸アニオン、テトラフルオロボレートアニオン、パーフルオロアルキルボレートアニオン、ヘキサフルオロホスフェートアニオン、パーフルオロアルキルホスフェートアニオン、及びテトラフルオロボレートアニオン等から選ばれた一以上を用いることができる。
一価のアミド系アニオンは、一般式(C2n+1SO(nは0以上3以下)で表される。
nが0のとき、上記一般式はビス(フルオロスルホニル)イミドアニオンと呼ばれ、下記構造式(H11)で表される。ビス(フルオロスルホニル)イミドアニオンの略称はFSI又はFSAである。
Figure JPOXMLDOC01-appb-C000023
nが1のとき、上記一般式はビス(トリフルオロメタンスルホニル)イミドアニオンと呼ばれ、下記構造式(H12)で表される。ビス(トリフルオロメタンスルホニル)イミドアニオンの略称はTFSI又はTFSAである。
Figure JPOXMLDOC01-appb-C000024
また一価の環状のアミド系アニオンの一つに、4,4,5,5−テトラフルオロ−1,3,2−ジチアゾリジンテトラオキシドアニオンと呼ばれ、下記構造式(H13)で表される。
Figure JPOXMLDOC01-appb-C000025
一価のメチド系アニオンは、一般式(C2n+1SO(nは0以上3以下)で表される。
一価の環状のメチド系アニオンの一つに、4,4,5,5−テトラフルオロ−2−[(トリフルオロメチル)スルホニル]−1,3−ジチオランテトラオキシドアニオンと呼ばれ、下記構造式(H14)で表される。
Figure JPOXMLDOC01-appb-C000026
フルオロアルキルスルホン酸アニオンは、一般式(C2m+1SO(mは0以上4以下)で表される。
mが0の場合、上記一般式はフルオロスルホン酸アニオンであり、mが1,2,3,4の場合、上記一般式はパーフルオロアルキルスルホン酸アニオンである。
フルオロアルキルボレートアニオンは、一般式{BF(C2m+1−k4−n(nは0以上3以下、mが1以上4以下、kが0以上2m以下)で表される。
フルオロアルキルホスフェートアニオンは、一般式{PF(C2m+1−k6−n(nは0以上5以下、mは1以上4以下、kは0以上2m以下)で表される。
本発明の一態様のイオン液体は、上述したアニオンから選ばれた一又は複数有することができる。
このようなイオン液体は、イオンのみからなる液体であるため、静電的な相互作用が強く、不揮発性、熱安定性を示し、耐熱性が高い。当該イオン液体を用いた二次電池は、使用する温度範囲で引火することがなく安全性に優れる。
<有機溶媒>
本発明の一態様の電解質層等に用いられる液体材料として有機溶媒を用いることができる。本発明の一態様の電解質層等に用いられる液体材料として有機溶媒とイオン液体との混合材料を用いるとよい。有機溶媒について説明する。
本発明の一態様の有機溶媒としては、非プロトン性有機溶媒を用いてもよい。再掲するが例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート、クロロエチレンカーボネート、ビニレンカーボネート、γ−ブチロラクトン、γ−バレロラクトン、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ギ酸メチル、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、酪酸メチル、1,3−ジオキサン、1,4−ジオキサン、ジメトキシエタン(DME)、ジメチルスルホキシド、ジエチルエーテル、メチルジグライム、アセトニトリル、ベンゾニトリル、テトラヒドロフラン、スルホラン、スルトン等から選ばれた一以上を用いることができる。
さらに有機溶媒は、フッ素化炭酸エステル、又は環状カルボネート等を有してもよい。フッ素化炭酸エステルの例としてフッ素化環状カーボネートがある。フッ素化環状カーボネートは引火点が高く、二次電池の安全性を高めることができる。
フッ素化環状カーボネートとして、フッ化エチレンカーボネート、例えば、モノフルオロエチレンカーボネート(炭酸フルオロエチレン、FEC、F1EC)、ジフルオロエチレンカーボネート(DFEC、F2EC)、トリフルオロエチレンカーボネート(F3EC)、又はテトラフルオロエチレンカーボネート(F4EC)等を用いることができる。なお、DFECには、シス−4,5、トランス−4,5等の異性体がある。
本発明の一態様のフッ素化環状カーボネートの一つは、モノフルオロエチレンカーボネートであり、略称はFECである。
本発明の一態様のフッ素化環状カーボネートの一つは、テトラフルオロエチレンカーボネートであり、略称はF4ECである。
本発明の一態様のフッ素化環状カーボネートの一つは、ジフルオロエチレンカーボネートであり、略称はF2ECである。
フッ素化環状カーボネートについて説明したが、本発明の一態様の有機溶媒はシアノ基を有する環状カーボネートを用いることもできる。
<ゲル化剤>
上述したイオン液体又は有機溶媒をゲル化してもよい。ゲル化することで電解質層103からの浸み出しを抑制できる。ゲル化剤は化学ゲル化処理又は物理ゲル化処理等の方法に従って選択することができる。化学ゲル化処理に用いられるゲル化剤は、高分子と架橋剤を有するとよい。
上述したイオン液体又は有機溶媒にゲル化剤を添加して混合する。その際、75℃以上100℃以下、好ましくは85℃以上95℃以下で加熱する。するとゲル化したイオン液体又はゲル化した有機溶媒を得ることができる。
具体的なゲル化剤として、高分子にポリ(ジメチルアミノエチルメタクリレート)を用いることができ、架橋剤にN,N,N’,N’−テトラ(トリフルオロメタンスルホニル)−ドデカン−1,12−ジアミンを用いることができる。架橋剤により高分子が架橋構造を有し、当該架橋構造にイオン液体、又は有機溶媒が保持されることでゲル状態となる。
<リチウム塩>
本発明の一態様の電解質層等に用いられるリチウム塩は、ハロゲンを有するリチウム塩が好ましい。さらに含フッ素イミドリチウム塩であると好ましい。含フッ素イミドリチウム塩として、Li(CFSON(以下、「LiTFSI」、又は「LiTFSA」と記すことがある。)、Li(CSON(以下、「LiBETI」と記すことがある。)、又はLi(SOF)N(以下、「LiFSI」又は「LiFSA」と記すことがある。)等を用いることができる。
またハロゲンを有する別のリチウム塩としてLiPF、LiBF、LiClO等を用いることができる。
さらにはハロゲンを含まないリチウム塩としてLiBOBを用いてもよい。
これらのリチウム塩は単独で使用してもよいし、上述したものを混合して用いてもよい。
<外装体>
本発明の一態様の二次電池が有する外装体について説明する。二次電池が有する外装体としては、例えばアルミニウムなどの金属材料又は樹脂材料を用いることができる。樹脂材料としてゴム材料などがある。ゴムには天然ゴムと合成ゴムがある。合成ゴムには、スチレン−ブタジエンゴム(SBR)、スチレン−イソプレン−スチレンゴム、アクリロニトリル−ブタジエンゴム、ブタジエンゴム、エチレン−プロピレン−ジエン共重合体などのゴム材料がある。
また二次電池が有する外装体は、フィルム形状であるとよい。フィルム形状を可能とする外装体は、例えばポリエチレン、ポリプロピレン、ポリカーボネート、アイオノマー、ポリアミド等の材料を有するとよい。またフィルム形状を可能とする外装体は、アルミニウム、ステンレス、銅、ニッケル等の可撓性に優れた金属薄膜を用いるとよい。
さらに、フィルム形状を可能とする外装体は、積層構造を有してもよい。第1の層には、ポリエチレン、ポリプロピレン、ポリカーボネート、アイオノマー、ポリアミド等の材料を有し、第2の層には、アルミニウム、ステンレス、銅、ニッケル等の可撓性に優れた金属薄膜を有するとよい。
さらに外装体の外面は、ポリアミド系樹脂、ポリエステル系樹脂等の絶縁性の合成樹脂膜を設けるとよい。当該外面の構成を上記第1の層及び第2の層の積層構造に適用すると、三層構造のフィルムを用いることができる。
本発明の一態様の電解質層を有する二次電池は、曲げやすく好ましい。上述した絶縁性の合成樹脂膜を用いた外装体は、曲がった二次電池、又は曲げた状態と伸ばした状態とに変化する二次電池に好適である。イオン液体は固体電解質に保持されるため、二次電池を曲げた状態等でも浸み出すことが抑制される。またイオン液体が浸み出した場合であっても、上述した外装体、特に積層構造を有する外装体はイオン液体が二次電池から漏れ出ることを抑制できる。
<バインダ>
図1乃至図4では図示しなかったが、正極層106及び負極層107はバインダを有してもよい。さらに電解質層103もバインダを有してもよい。バインダとしては、例えば、スチレン−ブタジエンゴム(SBR)、スチレン−イソプレン−スチレンゴム、アクリロニトリル−ブタジエンゴム、ブタジエンゴム、エチレン−プロピレン−ジエン共重合体などのゴム材料を用いることが好ましい。またバインダとして、フッ素ゴムを用いることができる。
また、バインダとしては、例えば水溶性の高分子を用いることが好ましい。水溶性の高分子としては、例えば多糖類などを用いることができる。多糖類としては、カルボキシメチルセルロース(CMC)、メチルセルロース、エチルセルロース、ヒドロキシプロピルセルロース、ジアセチルセルロース、再生セルロースなどのセルロース誘導体、及び澱粉などを用いることができる。また、これらの水溶性の高分子を、前述のゴム材料と併用すると、さらに好ましい。
または、バインダとしては、ポリスチレン、ポリビニルブチラール(PVB)、ポリアクリル酸メチル、ポリメタクリル酸メチル(ポリメチルメタクリレート、PMMA)、ポリアクリル酸ナトリウム、ポリビニルアルコール(PVA)、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド、ポリイミド、ポリ塩化ビニル、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、ポリイソブチレン、ポリエチレンテレフタレート、ナイロン、ポリフッ化ビニリデン(PVDF)、ポリアクリロニトリル(PAN)、エチレンプロピレンジエンポリマー、ポリ酢酸ビニル、ニトロセルロース等から選ばれた一以上を用いることが好ましい。
バインダは上記のうち複数を組み合わせて使用してもよい。
<導電材(導電助剤)>
図1乃至図4では図示しなかったが、正極層106及び負極層107は導電助剤を有してもよい。導電助剤としては、アセチレンブラック(AB)、カーボンナノチューブ、グラフェン、フラーレンといった炭素材料を用いることができる。
グラフェンは薄片状であり、高い導電性を有するという優れた電気特性、及び機械的強度という優れた物理特性を有する。そのため、グラフェンを、導電助剤として用いることにより、活物質同士の接触点又は接触面積を増大させることができる。
グラフェンは、単層グラフェン、又は2層以上100層以下の多層グラフェンを含む。単層グラフェンとは、π結合を有する1原子層の炭素分子のシートのことをいう。
<作製工程1>
図1乃至図4等に示した二次電池100の作製工程例を説明する。作製工程例を説明する際に用いられるイオン液体はリチウム塩を有してもよい。リチウム塩を有するイオン液体をリチウム液体電解液又はリチウムイオン電解質と記すことがある。
図5Aに示すように正極層106を用意する。正極層106は正極集電体101上に、分散媒、正極活物質111及び固体電解質113等を有するスラリーを塗工したものである。当該スラリーから分散媒等が除去されて、正極活物質層102となる。焼成工程を経ていない場合、固体電解質113は粒子状となり、焼成工程を経た場合、固体電解質113は焼結体をなすことがある。図5Aにおいて、正極層106は粒子状の固体電解質113を有する。
図5Bに示すように電解質層103を用意する。電解質層103は固体電解質113及びイオン液体118を有する。焼成工程を経て、固体電解質113を焼結体とすると、イオン液体118を保持しやすく好ましい。さらに、シート状に加工された電解質層103を用いるとよい。これをシート状電解質層と記すことがある。シート状電解質層を正極層106上に配置し、プレス工程を実施する。なおプレス工程は、後述する負極層107を電解質層103上に配置した後に実施してもよい。プレス工程の際、熱を加えてもよい。図5Bでは各層の境界線を示すが、プレス工程を経ることで明確な境界が確認できないことがある。
図5Cに示すように、負極層107を用意する。負極層107は負極集電体105上に、分散媒、負極活物質117及び固体電解質113等を有するスラリーを塗工したものである。当該スラリーから分散媒等が除去されて、負極活物質層104となる。図5Cにおいて、負極層107は粒子状の固体電解質113を有する。
負極層107を電解質層103上に配置し、プレス工程を実施する。プレス工程の際、熱を加えてもよい。図5Cでは各層の境界線を示すが、プレス工程を経ることで明確な境界が確認できないことがある。
図5Cで説明したプレス工程は、図5Bで説明したプレス工程と兼ねることができるため、図5Bで説明したプレス工程は省略できる。
本作製工程を経て得られた二次電池は、電解質層103において、固体電解質113がイオン液体118を保持している。別言すると、少なくとも電解質層103において、イオン液体118は固体電解質113に含浸している。このような電解質層103はイオン液体118が浸みだすことがなく好ましい。当該電解質層103を半固体電解質層と記すことがある。なお、上述したとおり固体電解質113は固体材料であればよく、イオン液体118は液体材料であればよい。
<作製工程2>
作製工程1とは異なる二次電池100の作製工程例を説明する。
図6Aに示すように正極層106を用意する。正極層106は正極集電体101上に、分散媒、正極活物質111及び固体電解質113等を有するスラリーを塗工したものである。当該スラリーから分散媒等が除去されて、正極活物質層102となる。焼成工程を経ていない場合、固体電解質113は粒子状となり、焼成工程を経た場合、固体電解質113は焼結体をなすことがある。図6Aにおいて、正極層106は粒子状の固体電解質113を有する。
図6Bに示すように電解質層103を用意する。この段階では電解質層103は固体電解質113を有した状態であって、シート状に加工されている。焼成工程を経て、固体電解質113を焼結体とすると、後述するイオン液体118を保持しやすく好ましい。シート状電解質層を正極層106上に配置し、プレス工程を実施する。なおプレス工程は、後述する負極層107を電解質層103上に配置した後に実施してもよい。プレス工程の際、熱を加えてもよい。図6Bでは各層の境界線を示すが、プレス工程を経ることで明確な境界が確認できないことがある。
図6Cに示すように、負極層107を用意する。負極層107は負極集電体105上に、分散媒、負極活物質117及び固体電解質113等を有するスラリーを塗工したものである。当該スラリーから分散媒等が除去されて、負極活物質層104となる。図6Cにおいて、負極層107は粒子状の固体電解質113を有する。
負極層107を電解質層103上に配置し、プレス工程を実施する。プレス工程の際、熱を加えてもよい。図6Cでは各層の境界線を示すが、プレス工程を経ることで明確な境界が確認できないことがある。
図6Cで説明したプレス工程は、図6Bで説明したプレス工程と兼ねることができるため、図6Bで説明したプレス工程は省略できる。
その後、図6Dに示すように、イオン液体118を注入する。イオン液体118を注入する際、真空雰囲気又は減圧雰囲気下で行うとよい。
注入されたイオン液体118に対してゲル化処理を行ってもよい。ゲル化処理に加熱を用いる場合は、上記プレス工程で実施する加熱を用いるとよい。すなわち、プレスしながらゲル化処理を進行させてもよい。
本作製工程を経て得られた二次電池は、電解質層103において、固体電解質113がイオン液体118を保持している。別言すると、少なくとも電解質層103において、イオン液体118は固体電解質113に含浸している。このような電解質層103はイオン液体118が浸みだすことがなく好ましい。当該電解質層103を半固体電解質層と記すことがある。なお、上述したとおり固体電解質113は固体材料であればよく、イオン液体118は液体材料であればよい。
<作製工程3>
作製工程1及び作製工程2とは異なる二次電池100の作製工程例を説明する。
図7Aに示すように正極層106を用意する。正極層106は正極集電体101上に、分散媒、正極活物質111及び固体電解質113等を有するスラリーを塗工したものである。当該スラリーから分散媒等が除去されて、正極活物質層102となる。焼成工程を経ていない場合、固体電解質113は粒子状となり、焼成工程を経た場合、固体電解質113は焼結体をなすことがある。図7Aにおいて、正極層106は粒子状の固体電解質113を有する。
図7Bに示すように第1の電解質層103aを用意する。第1の電解質層103aはゲル化されたイオン液体118aを有する層であって、固体電解質を有さないと好ましい。第1の電解質層103aを正極層106上に配置する。第1の電解質層103aがゲル化したイオン液体を有する層であれば、粘着性を有する場合があり、プレス工程を不要とすることができる。勿論プレス工程を実施してもよい。なおプレス工程は、後述する第3の電解質層103cまで積層した後、又は負極層107を第3の電解質層103c上に配置した後に実施してもよい。プレス工程の際、熱を加えてもよい。図7Bでは各層の境界線を示すが、プレス工程を経ることで明確な境界が確認できないことがある。
図7Cに示すように第2の電解質層103bを用意する。第2の電解質層103bは固体電解質113を有するものであり、シート状電解質層を用いるとよい。焼成工程を経て、固体電解質113を焼結体とすると、シート状への加工が容易となる。またシート状へ加工する際に焼成工程を実施して、焼結体としてもよい。シート状電解質層を第1の電解質層103a上に配置する。第1の電解質層103aがゲル化したイオン液体を有する層であれば、粘着性を有する場合があり、プレス工程を不要とすることができる。勿論プレス工程を行ってもよく、プレス工程の際、熱を加えてもよい。図7Cでは各層の境界線を示すが、プレス工程を経ることで明確な境界が確認できないことがある。
さらに図7Cに示すように第3の電解質層103cを用意する。第3の電解質層103cは第1の電解質層103aと同様なものを用いることができ、ゲル化されたイオン液体118bを有する層を用いるとよい。第3の電解質層103cを第2の電解質層103b上に配置する。第3の電解質層103cがゲル化したイオン液体を有する層であれば、粘着性を有する場合があり、プレス工程を不要とすることができる。勿論プレス工程を行ってもよく、プレス工程の際、熱を加えてもよい。図7Cでは各層の境界線を示すが、プレス工程を経ることで明確な境界が確認できないことがある。
図7Dに示すように、負極層107を用意する。負極層107は負極集電体105上に、分散媒、負極活物質117及び固体電解質113等を有するスラリーを塗工したものである。当該スラリーから分散媒等が除去されて、負極活物質層104となる。図7Dにおいて、負極層107は粒子状の固体電解質113を有する。
負極層107を第3の電解質層103c上に配置し、プレス工程を実施する。プレス工程の際、熱を加えてもよい。図7Dでは各層の境界線を示すが、プレス工程を経ることで明確な境界が確認できないことがある。また図7D等に示す工程により、イオン液体118aの一部が、第2の電解質層103bが有する固体電解質113の空隙へ含浸することがある。またイオン液体118bの一部が、第2の電解質層103bが有する固体電解質113の空隙へ含浸することがある。
本作製工程を経て得られた二次電池は、電解質層103において、固体電解質113がイオン液体118a又はイオン液体118bを保持している。別言すると、少なくとも電解質層103において、イオン液体118a又はイオン液体118bは固体電解質113に含浸している。このような電解質層103はイオン液体118a又はイオン液体118bが浸みだすことがなく好ましい。当該電解質層103を半固体電解質層と記すことがある。なお、上述したとおり固体電解質113は固体材料であればよく、イオン液体118a又はイオン液体118bは液体材料であればよい。
<作製工程4>
作製工程1乃至作製工程3とは異なる二次電池100の作製工程例を説明する。
図8Aに示すように、上述した二次電池の作製工程3にしたがい、第2の電解質層103bまでを積層したものを用意する。
図8Bに示すように、負極層107を用意する。負極層107は負極集電体105上に、分散媒、負極活物質117及び固体電解質113等を有するスラリーを塗工したものである。当該スラリーから分散媒等が除去されて、負極活物質層104となる。図8Bにおいて、負極層107は粒子状の固体電解質113を有する。
負極層107を第2の電解質層103b上に配置し、プレス工程を実施する。プレス工程の際、熱を加えてもよい。図8Bでは各層の境界線を示すが、プレス工程を経ることで明確な境界が確認できないことがある。また図8B等に示す工程により、イオン液体118aの一部が、第2の電解質層103bが有する固体電解質113の空隙へ含浸することもできる。
本作製工程を経て得られた二次電池は、第2の電解質層103bにおいて、固体電解質113がイオン液体118aの一部を保持している。別言すると、少なくとも電解質層103において、イオン液体118aの一部は固体電解質113に含浸している。このような電解質層103はイオン液体118aが浸みだすことがなく好ましい。当該電解質層103を半固体電解質層と記すことがある。なお、上述したとおり固体電解質113は固体材料であればよく、イオン液体118は液体材料であればよい。
<作製工程5>
作製工程1乃至作製工程4とは異なる二次電池100の作製工程例を説明する。
図9Aに示すように、上述した二次電池の作製工程3にしたがい、第2の電解質層103bまでを積層した構造物Aを用意する。また図9Aに示すように、負極層107と第3の電解質層103cとが積層した構造物Bを用意する。そして構造物A及び構造物Bを白抜き矢印で示すように貼り合わせる。
図9Bに示すように、貼り合わせた後にプレス工程を実施する。プレス工程の際、熱を加えてもよい。図9Bでは各層の境界線を示すが、プレス工程を経ることで明確な境界が確認できないことがある。また図9B等に示す工程により、イオン液体118aの一部、又はイオン液体118bの一部が、第1の電解質層103aが有する固体電解質113の空隙へ含浸することができる。
本作製工程を経て得られた二次電池は、電解質層103において、固体電解質113がイオン液体118aの一部、及びイオン液体118bの一部を保持している。別言すると、少なくとも電解質層103において、イオン液体118aの一部、及びイオン液体118bの一部が固体電解質113に含浸している。このような電解質層103はイオン液体118a又はイオン液体118bが浸みだすことがなく好ましい。当該電解質層103を半固体電解質層と記すことがある。なお、上述したとおり固体電解質113は固体材料であればよく、イオン液体118a又はイオン液体118bは液体材料であればよい。
本実施の形態は、他の実施の形態と組み合わせて用いることができる。
(実施の形態2)
上述した作製工程は、ロールツーロール方式の製造装置などによって連続的に行うことが望ましい。ロールツーロール方式は上述した作製工程1乃至5に適用できるが、本実施の形態では、図10に示す製造装置を用いて作製工程5に示した作製工程を説明する。
図10に示す製造装置を用いて、少なくとも正極集電体101上にスラリーを塗布する工程310と、スラリーを乾燥させて正極活物質層102を形成する工程320と、正極活物質層102上に電解質層103を重ね合わせる工程330と、正極活物質層102が形成された正極集電体101を電解質層103とともに一対の加圧ロール(第1の加圧ロール325、第2の加圧ロール326)の間を通過させる工程340と、を実施することができる。
上記工程310について説明する。図10に示すように製造装置は送り出し機構311(アンワインダーともいう)を有し、当該送り出し機構311に、正極集電体101が巻かれた第1のボビン312を設置する。ローラ313の回転を利用して正極集電体101を移動させ、第1のスラリー付着手段314aによって、正極集電体101の一方の面上にスラリーを塗布する。スラリーは少なくとも分散剤、正極活物質及び固体電解質を有する。ローラ313は対になっており、間を通過する際にプレスも可能である。
第1のスラリー付着手段314aとしては、例えば、スロットダイコータ、リップコータ、ブレードコータ、リバースコータ、グラビアコータなどを用いることができる。なお、用いるコータの種類によって、正極集電体101を反転させるためのローラを増やしてもよい。また、第1のスラリー付着手段314aとして、ディップ法又はスプレー法などの手法を用いることもできる。また、用いる材料によっては第1のスラリー付着手段314aを加熱しながらスラリーを塗布する。スラリーは加熱された状態で塗布されるとよい。
工程320では、吸気口322、排気口323、及び乾燥手段324を有する加熱室321aにおいて、正極集電体101上に塗布されたスラリーを乾燥させる。スラリーを乾燥させることにより、正極集電体101上に、正極活物質層102を形成することができる。吸気口322、排気口323は加熱室321aの天井(上面とも記す)に設置すると好ましいが、これらは加熱室321aの壁面(側面とも記す)又は床面(底面とも記す)に設置してもよい。乾燥手段324としては、温風加熱、ランプ加熱、誘導加熱、送風などから選ばれた一又は二以上組み合わせた方法を用いることができる。
工程320では、スラリーの乾燥後に自然冷却させる例を示しており冷却手段は設置していないが、強制的に冷却するために加熱室321a内又はその近傍に冷却手段を設置してもよい。
工程330では、正極活物質層102上に、第2のスラリー付着手段314bによって第1の電解質層103a及び第2の電解質層103bを形成する。第1の電解質層103a及び第2の電解質層103bを積層体として用意してから、正極活物質層102上に形成するとよい。また第2のスラリー付着手段314bに相当する付着手段を複数設置して、第1の電解質層103a、及び第2の電解質層103bの順に、正極活物質層102上に形成してもよい。
また、正極集電体101の処理と並行して、負極集電体105にも処理を行う。負極集電体105が巻かれた第2のボビン405を送り出し機構315に設置し、ローラ316の回転を利用して、第3のスラリー付着手段314cによって、負極集電体105の一方の面上にスラリーを塗布する。スラリーは少なくとも分散媒、負極活物質及び固体電解質を有する。ローラ316は対になっており、間を通過する際にプレスも可能である。
第3のスラリー付着手段314cとしては、例えば、スロットダイコータ、リップコータ、ブレードコータ、リバースコータ、グラビアコータなどを用いることができる。なお、用いるコータの種類によって、負極集電体105を反転させるためのローラを増やしてもよい。また第3のスラリー付着手段314cとして、ディップ法又はスプレー法などの手法を用いることもできる。また、用いる材料によっては第3のスラリー付着手段314cを加熱しながらスラリーを塗布する。スラリーは加熱された状態で塗布されるとよい。
次いで、加熱室321bにおいて、負極集電体105上に塗布されたスラリーを乾燥させる。加熱室321bは加熱室321aと同様の構成を有すればよい。スラリーを乾燥させることにより、負極集電体105上に負極活物質層104を形成することができる。そして、スラリーの乾燥後に自然冷却させてもよいし、冷却手段を加熱室321b内又はその近傍に設置して強制的に冷却してもよい。
次いで、負極活物質層104上に、第4のスラリー付着手段314dによってスラリーを塗布して、加熱室321cを通過させて、第3の電解質層103cを形成する。そしてローラ406を通過した後、工程340に進む。加熱室321cは加熱室321aと同様の構成を有すればよい。
第4のスラリー付着手段314dとしては、例えば、スロットダイコータ、リップコータ、ブレードコータ、リバースコータ、グラビアコータなどを用いることができる。なお、用いるコータの種類によって、負極集電体105を反転させるためのローラを増やしてもよい。また第4のスラリー付着手段314dとして、ディップ法又はスプレー法などの手法を用いることもできる。また、用いる材料によっては第4のスラリー付着手段314dを加熱しながらスラリーを塗布する。スラリーは加熱された状態で塗布されるとよい。
工程340では、一対の加圧ロール(第1の加圧ロール325、第2の加圧ロール326)の回転を利用して、正極集電体101を負極集電体105と重ねあわせてプレスを行う。プレスの際に加熱してもよい。この工程によって電解質層が有するイオン液体等が一時的に溶融(ゾル化)されることがある。溶融したイオン液体等は、隣接する正極層又は負極層へ含浸することができる。
最後に、巻き取り機構327(ワインダーともいう)に設置された第2のボビン328に、積層体を巻き取る。そして、図示していないレーザーカット又はカッターなどの切断手段により、所望の形状に切断する。
また、図10では積層体を巻き取る例を示したが、巻き取らずに図示していないレーザーカット、又はカッターなどの切断手段により、所望の形状に切断してもよい。
以上の工程により、二次電池を作製することができる。
本実施の形態は、他の実施の形態と適宜組み合わせて実施することが可能である。
(実施の形態3)
本実施の形態では、本発明の一態様の電解質層をシート状に加工する工程について説明する。シート状に加工された電解質層はハンドリングしやすく、生産性を向上させることができ好ましい。
図11のステップS50に示すように電解質源、バインダ、可塑剤、及び溶媒を用意する。電解質源として、LLZAOの粉末を用意する。バインダとしてポリビニルブチラール(PVB)を用意する。可塑剤としてフタル酸ジオクチル(DOP)を用意する。溶媒としてN−メチル−2−ピロリドン(NMP)を用意する。
PVB以外に、バインダとして前述した材料、例えばポリビニルアルコール(PVA)等を用いてもよく、さらにバインダとしてアクリル樹脂を用いてもよい。可塑剤としてDOP以外に、フタル酸エステルを用いることができ、例えばジメチルフタレート(DMP)、ジエチルフタレート(DEP)、又はジブチルフタレート(DBP)等から選ばれた一以上を用いるとよい。溶媒としてNMP以外に、水、ジメチルホルムアミド(DMF)等から選ばれた一以上を用いてもよい。
図11のステップS52に示すように、上述した材料を混合し、ステップS54に示すように、スラリーを得る。ステップS52に示す混合の前に、ステップS50に示した材料をそれぞれ独立して混合しておいてもよい。ステップS52は、例えば自転公転ミキサーを用いて混合することができる。回転スピードは1000rpm以上3000rpm以下とすることができる。回転時間は1分以上10分以下とすることができる。上記ミキサーを用いた混合は、1回ではなく2回以上実施してもよい。
図11のステップS54に示すように、上記スラリーを塗工用基材に塗工する。塗工用基材には、シート状の電解質層が剥がれやすい材質、たとえばシリコーン基材を用いるとよい。また、剥がしやすくするために塗工用基材表面に離型剤などを塗布してもよい。
図11のステップS55に示すように、スラリーに対して乾燥炉等を用いて乾燥を行う。乾燥時の温度は25℃以上200℃以下、好ましくは45℃以上85℃以下とすればよい。乾燥によりスラリーが有していた溶媒等が除去されている。
図11のステップS56に示すように、塗工用基材から電解質層シートを剥離する。ステップS56の剥離は塗工用基材から電解質層シートを分離すると呼んでもよい。なおプレスしていない電解質層、つまりプレス前の電解質層を塗工用基板から剥離するとよい。プレスしていない電解質層を未プレスの電解質層と記すことがある。
図11のステップS58に示すように、乾燥の後にプレスを行う。プレスにはロールプレス機を用いることができる。ロールプレス機のギャップは、未プレスの電解質層の膜厚の例えば50%以上70%以下となるように設定する。たとえば未プレスの電解質層の膜厚が140μmの場合、ロールプレス機のギャップを60μm以上100μm以下、好ましくは70μm以上85μm以下とする。
図11のステップS59に示すように、第1のシート状電解質層を得ることができる。第1のシート状電解質層は、100μm以上150μm以下、好ましくは120μm以上140μm以下の膜厚を有するとよい。SEM(走査電子顕微鏡)観察像等から、第1のシート状電解質層に空隙を確認することができる。またSEM観察像等から、第1のシート状電解質層において、固体電解質であるLLZAOの粉末がバインダを介して互いに繋がっている様子を確認することができる。
図11のステップS60に示すように、第1のシート状電解質層に対して加熱を行う。加熱温度は1000℃以上1300℃以下、好ましくは1100℃以上1250℃以下とする。加熱雰囲気は酸素を含む雰囲気が好ましいが、酸素及び不活性ガスを有する雰囲気、又は不活性ガスを有する雰囲気でもよい。
図12A及び図12Bには加熱時の第1のシート状電解質層の様子を示す。第1のシート状電解質層125は円形状に打ち抜いた状態で加熱する。図12Aは上面模式図であって、アルミナ基板126上に第1のシート状電解質層125が置かれている。アルミナ基板126と第1のシート状電解質層125との間には、LLZAO粉末を散布した領域128がある。アルミナ基板126と第1のシート状電解質層125が固着することを抑制するために、LLZAO粉末を散布するとよい。
図12Bは断面模式図であって、アルミナ基板126と、第1のシート状電解質層125との間に、LLZAO粉末を散布した領域128が確認できる。アルミナ基板126に対向する基板129を、ギャップ保持材130を利用して、蓋をするように配置する。基板129もアルミナ基板を用いるとよい。さらに、第1のシート状電解質層125の上面にもLLZAO粉末を散布するとよく、当該散布領域を領域128bとする。
図11のステップS61に示すように、第2のシート状電解質層を得る。第2のシート状電解質層は加熱工程を経るため、第1のシート状電解質層より収縮していることがある。例えば第1のシート状電解質層を直径12mmの円形状に打ち抜いた場合、第2のシート状電解質層は直径10mmの円形状に収縮する。第2のシート状電解質層は、80μm以上120μm以下、好ましくは90μm以上110μm以下の膜厚を有するとよく、膜厚も第1のシート状電解質層に対して減少する。
第2のシート状電解質層に対するSEM観察等から、固体電解質であるLLZAOは焼結体となった様子が確認でき、第2のシート状電解質層には空隙が確認される。またSEM観察像等から、第2のシート状電解質層ではバインダが確認されないことがある。例えばステップS60の加熱によりバインダ等は除去されると考えられる。
このようにして得られた第2のシート状電解質層を、上記実施の形態等に示した電解質層103の固体材料として用いることができる。
本実施の形態は、他の実施の形態と組み合わせて用いることができる。
(実施の形態4)
本実施の形態では、本発明の一態様の二次電池に用いることのできる正極活物質及びその作製方法について説明する。
[正極活物質]
図13A及び図13Bは本発明の一態様の二次電池に用いることのできる正極活物質200の断面図である。図13A中のA−B付近を拡大した図を図13C及び図13Dに示す。図13A中のC−D付近を拡大した図を図13E及び図13Fに示す。
図13A乃至図13Fに示すように、正極活物質200は、表層部200aと、内部200bを有する。これらの図中に破線で表層部200aと内部200bの境界を示す。また図13Bに一点破線で結晶粒界201の一例を示す。
本明細書等において、正極活物質200の表層部200aとは、例えば、表面から内部に向かって50nm以内、より好ましくは表面から内部に向かって35nm以内、さらに好ましくは表面から内部に向かって20nm以内、最も好ましくは表面から内部に向かって10nm以内の領域をいう。ひび及び/又はクラックにより生じた面も表面といってよい。表層部200aは、表面近傍、表面近傍領域又はシェルと同義である。
また正極活物質の表層部200aより深い領域を、内部200bと呼ぶ。内部200bは、内部領域又はコアと同義である。
また正極活物質200の表面とは、上記表層部200a、内部200b、及び凸部203等を含む複合酸化物の表面をいうこととする。正極活物質200は、作製後に化学吸着した炭酸塩、ヒドロキシ基等が含まれないとする。また正極活物質200には、当該正極活物質200に付着した電解質、バインダ、導電材、又はこれら由来の化合物も含まれないとする。また断面STEM(走査型透過電子顕微鏡)像等における正極活物質200の表面とは、電子線の結合像が観察される領域と、観察されない領域の境界であって、リチウムより原子番号の大きな金属元素の原子核に由来する輝点が確認される領域の最も外側とする。断面STEM像等における表面は、より空間分解能の高い分析、例えば電子エネルギー損失分光法(Electron Energy Loss Spectroscopy,EELS)等の分析結果と併せて正極活物質200の表面を判断してもよい。
また結晶粒界201とは、例えば正極活物質200同士が固着している部分、正極活物質200内部で結晶方位が変わる部分、つまりSTEM像等における明線と暗線の繰り返しが不連続になった部分、結晶欠陥を多く含む部分、結晶構造が乱れている部分等をいう。また結晶欠陥とは断面TEM(透過型電子顕微鏡)、断面STEM像等で観察可能な欠陥、つまり格子間に他の元素が入り込んだ構造、空洞等をいうこととする。結晶粒界201は、面欠陥の一つといえる。また結晶粒界201の近傍とは、結晶粒界201から10nm以内の領域をいうこととする。
<含有元素>
正極活物質200は、リチウムと、遷移金属Mと、酸素と、添加元素Aと、を有する。又は正極活物質200はリチウムと遷移金属Mを有する複合酸化物(LiMO)に添加元素Aが加えられたものを有する。ただし複合酸化物の組成は厳密にLi:M:O=1:1:2に限定されるものではない。また添加元素Aが添加された正極活物質も複合酸化物という場合がある。
リチウムイオン二次電池の正極活物質は、リチウムイオンが挿入脱離しても電荷中性を保つために、酸化還元が可能な遷移金属を有する必要がある。本発明の一態様の正極活物質200は酸化還元反応を担う遷移金属Mとして主にコバルトを用いることが好ましい。コバルトに加えて、ニッケル及びマンガンから選ばれる一又は二以上用いてもよい。正極活物質200が有する遷移金属Mのうち、コバルトが75原子%以上、好ましくは90原子%以上、さらに好ましくは95原子%以上であると、合成が比較的容易で取り扱いやすく優れたサイクル特性を有するなど利点が多く好ましい。
また正極活物質200の遷移金属Mのうちコバルトが75原子%以上、好ましくは90原子%以上、さらに好ましくは95原子%以上であると、ニッケル酸リチウム(LiNiO)等のニッケルが遷移金属Mの過半を占めるような複合酸化物と比較して、LiCoO中のxが小さいときの安定性がより優れる。これはニッケルよりもコバルトの方が、ヤーン・テラー効果による歪みの影響が小さいためと考えられる。遷移金属化合物におけるヤーン・テラー効果は、遷移金属のd軌道の電子の数により、その効果の強さが異なる。ニッケル酸リチウム等の8面体配位の低スピンニッケル(III)が過半を占めるような層状岩塩型の複合酸化物は、ヤーン・テラー効果の影響が大きく、ニッケルと酸素の8面体からなる層に歪みが生じやすい。そのため充放電サイクルにおいて結晶構造の崩れが生じる懸念が高まる。またニッケルイオンはコバルトイオンと比較してイオン半径が大きく、リチウムイオンの大きさに近い。そのためニッケル酸リチウムのようにニッケルが過半を占めるような層状岩塩型の複合酸化物ではニッケルとリチウムのカチオンミキシングが生じやすいという課題がある。
一方、正極活物質200が有する遷移金属Mとしてニッケルを33原子%以上、好ましくは60原子%以上、さらに好ましくは80原子%以上用いると、コバルトが多い場合と比較して原料が安価になる場合があり、また重量あたりの放電容量が増加する場合があり好ましい。
正極活物質200が有する添加元素Aとしては、マグネシウム、フッ素、ニッケル、アルミニウム、チタン、ジルコニウム、バナジウム、鉄、マンガン、クロム、ニオブ、ヒ素、亜鉛、ケイ素、硫黄、リン、ホウ素、臭素、及びベリリウムから選ばれた一又は二以上を用いることが好ましい。また添加元素Aは、遷移金属に対して(遷移金属が2以上ある場合は和に対して)25原子%未満が好ましく、10原子%未満がより好ましく、5原子%未満がさらに好ましい。
つまり正極活物質200は、マグネシウム及びフッ素が添加されたコバルト酸リチウム、マグネシウム、フッ素及びチタンが添加されたコバルト酸リチウム、マグネシウム、フッ素及びアルミニウムが添加されたコバルト酸リチウム、マグネシウム、フッ素及びニッケルが添加されたコバルト酸リチウム、マグネシウム、フッ素、ニッケル及びアルミニウムが添加されたコバルト酸リチウム、等を有することができる。
これらの添加元素Aが、後述するように正極活物質200が有する結晶構造をより安定化させる。なお本明細書等において添加元素Aは、正極活物質の原料の一部であるが、主成分より濃度が小さいため添加元素と呼ぶ。
なお添加元素Aとして、必ずしもマグネシウム、フッ素、ニッケル、アルミニウム、チタン、ジルコニウム、バナジウム、鉄、マンガン、クロム、ニオブ、ヒ素、亜鉛、ケイ素、硫黄、リン、ホウ素、臭素、又はベリリウムを含まなくてもよい。
例えばマンガンを実質的に含まない正極活物質200とすると、合成が比較的容易で取り扱いやすく、優れたサイクル特性を有するといった上記の利点がより大きくなる。正極活物質200に含まれるマンガンの重量は例えば600ppm以下、より好ましくは100ppm以下であることが好ましい。マンガンの重量は例えばGD−MS(グロー放電質量分析法)を用いて分析することができる。
<結晶構造>
図14乃至図20を用いて、LiCoO中のxによる結晶構造の変化について、従来の正極活物質と本発明の一態様の正極活物質200を比較しながら説明する。なおxの値は挿入脱離可能なリチウムが、コバルト酸リチウム中にどの程度残っているかを示すものであり、LiCoOにおけるリチウム占有率と言える。なお、Coは遷移金属の一例であり、適宜コバルトを遷移金属M、コバルトサイトを遷移金属Mサイトと読み替えてもよい。
なお本明細書等において、リチウムと、コバルトをはじめとする遷移金属Mとを含む複合酸化物が有する、空間群R−3mに帰属する層状岩塩型の結晶構造とは、陽イオンと陰イオンが交互に配列する岩塩型のイオン配列を有し、遷移金属Mとリチウムが規則配列して二次元平面を形成するため、リチウムの二次元的拡散が可能である結晶構造をいう。なお陽イオン又は陰イオンの欠損等の欠陥があってもよい。また、層状岩塩型の結晶構造は、厳密に言えば、岩塩型の結晶構造の格子が歪んだ構造となっている場合がある。
また岩塩型の結晶構造とは、空間群Fm−3mをはじめとする立方晶系の結晶構造を有し、陽イオンと陰イオンが交互に配列している構造をいう。なお陽イオン又は陰イオンの欠損があってもよい。
また層状岩塩型の結晶構造と岩塩型の結晶構造の特徴の両方を有することは、電子線回折、TEM像、断面STEM像等によって判断することができる。
岩塩型の結晶構造は陽イオンのサイトに区別がないが、層状岩塩型の結晶構造は陽イオンのサイトが2種あり、1つはリチウムが大半を占有し、もう1つは遷移金属Mが占有する。陽イオンの二次元平面と陰イオンの二次元平面とが交互に配列する積層構造は、岩塩型の結晶構造も層状岩塩型の結晶構造も同じである。この二次元平面を形成する結晶面に対応する電子線回折パターンの輝点の中で、中心のスポット(透過斑点)を原点000とした際、中心のスポットに最も近い輝点は、理想的な状態の岩塩型の結晶構造では例えば(111)面、層状岩塩型の結晶構造では例えば(003)面になる。例えば岩塩型の結晶構造のMgOと層状岩塩型の結晶構造のLiCoOの電子線回折パターンを比較する場合、LiCoOの(003)面の輝点は、MgOの(111)面の輝点の距離の半分程度の距離に観察される。そのため分析領域に、例えば岩塩型の結晶構造のMgOと層状岩塩型の結晶構造のLiCoOの2相を有する場合、電子線回折パターンでは、強い輝度の輝点と、弱い輝度の輝点とが交互に配列する結晶面が存在する。岩塩型の結晶構造と層状岩塩型の結晶構造で共通する輝点は強い輝度となり、層状岩塩型の結晶構造のみで生じる輝点は弱い輝度となる。
また断面STEM像等では、層状岩塩型の結晶構造をc軸に垂直な方向から観察したとき、強い輝度で観察される層と、弱い輝度で観察される層が交互に観察される。岩塩型の結晶構造は陽イオンのサイトに区別がないためこのような特徴はみられない。岩塩型の結晶構造と層状岩塩型の結晶構造の両方の特徴を有する結晶構造の場合、特定の結晶方位から観察すると、断面STEM像等では強い輝度で観察される層と、弱い輝度で観察される層が交互に観察され、弱い輝度で観察される層はリチウム層に相当し、リチウム層の一部にリチウムより原子番号の大きい金属が存在する。
層状岩塩型の結晶構造、及び岩塩型の結晶構造の陰イオンは立方最密充填構造(面心立方格子構造)をとる。後述するO3’型の結晶構造も、陰イオンは立方最密充填構造をとると推定される。そのため層状岩塩型の結晶構造と岩塩型の結晶構造が接するとき、陰イオンにより構成される立方最密充填構造の向きが揃う結晶面が存在する。
又は、以下のように説明することもできる。立方晶の結晶構造の{111}面における陰イオンは三角格子を有する。層状岩塩型の結晶構造は空間群R−3mであって、菱面体構造であるが、構造の理解を容易にするため一般に複合六方格子で表現され、層状岩塩型の結晶構造の(0001)面は六角格子を有する。立方晶{111}面の三角格子は、層状岩塩型の結晶構造の(0001)面の六角格子と同様の原子配列を有する。両者の格子が整合性を持つことを、立方最密充填構造の向きが揃うということができる。
ただし、層状岩塩型の結晶構造及び後述のO3’型の結晶構造の空間群はR−3mであり、岩塩型の結晶構造の空間群Fm−3m(空間群Fm−3mは一般的な岩塩型の結晶構造の空間群である)とは異なるため、上記の条件を満たす結晶面のミラー指数は層状岩塩型の結晶構造及びO3’型の結晶構造と、岩塩型の結晶構造とでは異なる。本明細書では、層状岩塩型の結晶構造、O3’型の結晶構造及び岩塩型の結晶構造において、陰イオンにより構成される立方最密充填構造の向きが揃うとき、結晶の配向が概略一致する、と言う場合がある。
なお結晶の配向が二つの領域で概略一致することは、TEM像、STEM(走査透過電子顕微鏡)像、HAADF−STEM(高角散乱環状暗視野走査透過電子顕微鏡)像、ABF−STEM(環状明視野走査透過電子顕微鏡)像、電子線回折パターン、TEM像及びSTEM像等のFFTパターン等から判断することができる。XRD、電子線回折、中性子線回折等も判断の材料にすることができる。
図14に、丸を付した層状岩塩型の結晶構造LRSと、丸を付した岩塩型の結晶構造RSの配向が概略一致しているTEM像の例を示す。このようなTEM像、並びにSTEM像、HAADF−STEM像、及びABF−STEM像等では、結晶構造を反映した像が得られる。
例えばTEMの高分解能像等では、結晶面に由来するコントラストが得られる。電子線の回折及び干渉によって、例えば層状岩塩型の結晶構造の複合六方格子のc軸と垂直方向に電子線が入射した場合、(0003)面に由来するコントラストが明るい帯(明るいストリップ、又は明線)と暗い帯(暗いストリップ、又は暗線)の繰り返しとして得られる。そのためTEM像において明線と暗線の繰り返しが観察され、明線同士(例えば図14に示すLRSとLLRS)の角度が5度以下、又は2.5度以下である場合、結晶面が概略一致している、すなわち結晶の配向が概略一致していると判断することができる。同様に、暗線同士の角度が5度以下、又は2.5度以下である場合も、結晶の配向が概略一致していると判断することができる。
またHAADF−STEM像では、原子番号に比例したコントラストが得られ、原子番号が大きい元素ほど明るく観察される。例えば空間群R−3mに属する層状岩塩型のコバルト酸リチウムの場合、コバルト(原子番号27)が最も原子番号が大きいため、コバルト原子の位置で電子線が強く散乱され、コバルト原子の配列が明線もしくは強い輝度の点の配列として観察される。そのため層状岩塩型の結晶構造を有するコバルト酸リチウムをc軸と垂直方向に観察した場合、c軸と垂直方向にコバルト原子の配列が明線もしくは強い輝度の点の配列として観察され、リチウム原子、酸素原子の配列は暗線もしくは輝度の低い領域として観察される。コバルト酸リチウムの添加物元素としてフッ素(原子番号9)及びマグネシウム(原子番号12)を有する場合も同様である。
そのためHAADF−STEM像において、結晶構造の異なる二つの領域で明線と暗線の繰り返しが観察され、明線同士の角度が5度以下、又は2.5度以下である場合、原子の配列が概略一致している、すなわち結晶の配向が概略一致していると判断することができる。同様に、暗線同士の角度が5度以下、又は2.5度以下である場合も、結晶の配向が概略一致していると判断することができる。
なおABF−STEMでは原子番号が小さい元素ほど明るく観察されるが、原子番号に応じたコントラストが得られる点ではHAADF−STEMと同様であるため、ABF−STEM像はHAADF−STEM像と同様に結晶の配向を判断することができる。
図15Aに四角を付した層状岩塩型の結晶構造LRSと、四角を付した岩塩型の結晶構造RSの配向が概略一致しているSTEM像の例を示す。岩塩型の結晶構造RSの領域のFFTを図15Bに、層状岩塩型の結晶構造LRSの領域のFFTを図15Cに示す。図15B及び図15Cの左に組成、組成の右側にJCPDSのカードナンバーを示し、及びこれから計算されるd値及び角度を示す。右に実測値を示す。Oを付したスポットは0次回折である。
図15BでAを付したスポットは立方晶の11−1反射に由来するものである。図15CでAを付したスポットは層状岩塩型の結晶構造の0003反射に由来するものである。図15B及び図15Cから、立方晶の11−1反射の方位と、層状岩塩型の結晶構造の0003反射の方位と、が概略一致していることがわかる。すなわち図15BのAOを通る直線と、図15CのAOを通る直線と、が概略平行であることがわかる。ここでいう概略一致及び概略平行とは、各直線のなす角度が5度以下、又は2.5度以下であることをいう。
このようにFFT及び電子線回折では、層状岩塩型の結晶構造と岩塩型の結晶構造の配向が概略一致していると、層状岩塩型の結晶構造の〈0003〉方位と、岩塩型の結晶構造の〈11−1〉方位と、が概略一致する場合がある。このとき、これらの逆格子点はスポット状であること、つまり他の逆格子点と連続していないことが好ましい。逆格子点がスポット状で、他の逆格子点と連続していないことは、結晶性が高いことを意味する。
また、上述のように立方晶の11−1反射の方位と、層状岩塩型の結晶構造の0003反射の方位と、が概略一致している場合、電子線の入射方位によっては、層状岩塩型の結晶構造の0003反射の方位とは異なる逆格子空間上に、層状岩塩型の結晶構造の0003反射由来ではないスポットが観測されることがある。例えば図15CでBを付したスポットは、層状岩塩型の結晶構造の1014反射に由来するものである。これは、層状岩塩型の結晶構造の0003反射由来の逆格子点(図15CのA)の方位から、52°以上56°以下の角度であり(すなわち∠AOBが52°以上56°以下であり)、dが0.19nm以上0.21nm以下の箇所に観測されることがある。なおこの指数は一例であり、必ずしもこれに一致している必要は無い。例えば、それぞれにおける等価な逆格子点でも良い。
同様に立方晶の11−1反射が観測された方位とは別の逆格子空間上に、立方晶の11−1反射由来ではないスポットが観測されることがある。例えば、図15BでBを付したスポットは、立方晶の200反射に由来するものである。これは、立方晶の11−1由来の反射(図15BのA)の方位から、54°以上56°以下の角度である(すなわち∠AOBが54°以上56°以下である)箇所に回折スポットが観測されることがある。なおこの指数は一例であり、必ずしもこれに一致している必要は無い。例えば、それぞれにおける等価な逆格子点でも良い。
なお、コバルト酸リチウムをはじめとする層状岩塩型の結晶構造の正極活物質は、(0003)面及びこれと等価な面、並びに(10−14)面及びこれと等価な面が結晶面として現れやすいことが知られている。そのため正極活物質の形状をSEM等でよく観察することで、(0003)面が観察しやすいように、例えばTEM等において電子線が[12−10]入射となるように観察サンプルをFIB等で薄片加工することが可能である。結晶の配向の一致について判断したいときは、層状岩塩型の結晶構造の(0003)面が観察しやすいよう薄片化することが好ましい。
≪LiCoO中のxが1のとき≫
図17に、放電状態、つまりLiCoOのxが1のとき(x=1のとき)の、従来のコバルト酸リチウムが有する結晶構造を示す。当該結晶構造は空間群R−3mに帰属する層状岩塩型の結晶構造を有する。図17に示す従来の正極活物質は、特に添加元素Aを有さないコバルト酸リチウム(LiCoO)である。特に添加元素Aを有さないコバルト酸リチウムの結晶構造の変化は非特許文献1乃至非特許文献3等に述べられている。
さらにこの結晶構造はリチウムが8面体(Octahedral)サイトを占有し、ユニットセル中にCoO層が3層存在する。そのためこの結晶構造をO3型結晶構造と呼ぶ場合がある。なお、CoO層とはコバルトに酸素が6配位した8面体構造が、稜共有の状態で平面に連続した構造をなした層である。これをコバルトと酸素の8面体からなる層、という場合もある。図17において、x=1のときの結晶構造にはR−3m(O3)を付す。
図16に、放電状態、つまりLiCoOのxが1のとき(x=1のとき)の、本発明の一態様の正極活物質200に用いられるコバルト酸リチウムが有する結晶構造を示す。当該結晶構造は、空間群R−3mに帰属する層状岩塩型の結晶構造を有する。この結晶構造はリチウムが8面体サイトを占有し、ユニットセル中にCoO層が3層存在する。図16においても、x=1のときの結晶構造にはR−3m(O3)を付す。
層状岩塩型の結晶構造を有するコバルト酸リチウムは、放電容量が高く、二次元的なリチウムイオンの拡散経路を有し、リチウムイオンの挿入/脱離反応に適しており、二次電池の正極活物質として優れる。そのため、本発明の一態様の正極活物質200において、体積の大半を占める内部200bが層状岩塩型の結晶構造を有するコバルト酸リチウムであることが好ましい。
本発明の一態様の正極活物質200に用いられるコバルト酸リチウムの表層部200aは、充電により正極活物質200からリチウムが抜けても、内部200bにあるコバルトと酸素の8面体からなる層(例えばCoO層)の層構造が壊れないよう補強する機能を有することが好ましい。すなわち表層部200aが、正極活物質200のバリア膜として機能することが好ましい。または当該表層部200aが正極活物質200を補強することが好ましい。補強するとは、正極活物質200の表層部200a及び内部200bの構造変化を抑制すること、及び/又は電解質が正極活物質200の表面で酸化分解されることを抑制することが含まれる。
そのため本発明の一態様の正極活物質200に用いられるコバルト酸リチウムでは、表層部200aが内部200bと異なる結晶構造を有していることが好ましい。具体的には、表層部200aは、内部200bよりも室温(25℃)で安定な組成及び結晶構造であることが好ましい。例えば、表層部200aは、少なくとも岩塩型の結晶構造を有することが好ましい。表層部200aの全体が岩塩型の結晶構造であるとより好ましいが、これには限定されない。例えば表層部200aは、岩塩型の結晶構造と層状岩塩型の結晶構造の両方を有していてもよい。
ここで表層部200aについて説明する。表層部200aは充電時にリチウムイオンが最初に脱離する領域であり、内部200bよりもリチウム濃度が低くなりやすい領域である。また表層部200aである表面では、リチウムイオンが脱離することにより、コバルト酸リチウムをなす原子(例えば酸素)が、結合が切断された状態で存在しているともいえる。すなわち表層部200aは内部200bより不安定になりやすく、結晶構造の劣化が始まりやすい領域といえる。そのため、少なくとも表層部200aを十分に安定にできれば、LiCoO中のxが小さいとき(例えばxが0.24以下)でも、内部200bのコバルトと酸素の8面体からなる層構造を壊れにくくすることができる。なお層構造が壊れるとは、コバルトと酸素の8面体からなる層構造の端がずれてくることが含まれ、表層部200aが十分安定であれば当該ずれを抑制することができる。
表層部200aを安定にするには、表層部200aが安定な組成又は安定な結晶構造となればよく、そのために、表層部200aは添加元素Aを有することが好ましい。添加元素Aは後述する添加元素X、添加元素Yといった濃度分布が異なる二以上の元素を有することがより好ましい。また表層部200aが添加元素Aを有するとは、表層部200aに存在する添加元素Aの濃度が、内部200bに存在する添加元素Aの濃度より高いことが含まれる。また添加元素の濃度に高低がある様子は、表層部200aにて添加元素Aが濃度勾配を有している、又は表層部200aから内部200bに向かって添加元素Aが濃度勾配を有していることが含まれる。また濃度勾配を有する添加元素Xと、濃度勾配を有する添加元素Yの場合、濃度勾配を示す濃度分布が互いに異なっているとよい。さらに好ましくは、添加元素Xの濃度の最大値を示すピーク位置と、添加元素Yの濃度の最大値を示すピーク位置が異なっていると好ましい。濃度の最大値をピークトップと記すことがあり、濃度の極大値をピークと記すことがある。
例えば添加元素Aから選ばれた添加元素Xは図13Cにグラデーションで示すように、内部200bから表面に向かって高くなる濃度分布を有することが好ましく、具体的にはマグネシウム、フッ素、ニッケル、チタン、ケイ素、リン、ホウ素、カルシウム等から選ばれた一以上の元素である。添加元素Xのピークトップは、表層部200aに存在しているとよい。例えば添加元素Xは、ピークトップが表面から内部に向かって0.5nm以上10nm以下の領域に位置するような濃度分布を有することが好ましい。
添加元素Aから選ばれた添加元素Yは図13Dにハッチの濃さで示すような濃度勾配を有し、かつ図13Cのピークトップよりも深い領域にピークトップを有することが好ましく、具体的にはアルミニウム、マンガン等から選ばれた一以上の元素である。添加元素Yのピークトップは、表層部200aに存在してもよいし、表層部200aより深くに存在してもよい。例えば添加元素Yは、ピークトップが表面から内部に向かって5nm以上30nm以下の領域に位置するような濃度分布を有することが好ましい。添加元素Yのピークトップの位置は、添加元素Xのピークトップの位置と異なるとよい。さらに添加元素Yの濃度分布は、添加元素Xの濃度分布と異なるとよい。
例えば添加元素Xの一つであるマグネシウムイオンは2価で、当該マグネシウムイオンは、層状岩塩型の結晶構造におけるコバルトサイトよりもリチウムサイトに存在する方が安定なため、リチウムサイトに入りやすい。すなわちマグネシウムが表層部200aのリチウムサイトに適切な濃度で存在することで、内部200bの層状岩塩型の結晶構造を保持しやすくなる。これは表層部200aにてリチウムサイトに存在するマグネシウムが、CoO層同士を支える柱として機能するためと推測される。またコバルト酸リチウムにマグネシウムが存在することで、LiCoO中のxが例えば0.24以下の状態においてもマグネシウムの周囲の酸素の脱離を抑制することができる。またマグネシウムが存在することでコバルト酸リチウムの密度が高くなることが期待できる。また表層部200aのマグネシウム濃度が内部200bより高いと、電解液が分解して生じたフッ酸に対する耐食性が向上することも期待できる。
マグネシウムは、適切な濃度であれば充放電に伴うリチウムの挿入及び脱離に悪影響を及ぼさず上記のメリットを享受できる。しかしマグネシウムが過剰であるとリチウムの挿入及び脱離に悪影響が出る恐れがある。さらに結晶構造の安定化への効果が小さくなってしまう場合がある。これはマグネシウム濃度が高くなると、マグネシウムはリチウムサイトに加えてコバルトサイトにも入るようになるためと考えられる。加えてマグネシウムが、リチウムサイトにも置換せず、かつコバルトサイトにも置換せずに、マグネシウム化合物(酸化物又はフッ化物等)となって正極活物質の表面等に偏析し、二次電池の抵抗成分となる恐れがある。また正極活物質のマグネシウム濃度が高くなるのに伴って放電容量が減少することがある。これはリチウムサイトにマグネシウムが入りすぎ、充放電に寄与するリチウム量が減少するためと考えられる。
そのため、正極活物質200全体が有するマグネシウムは適切な量であることが好ましい。例えばマグネシウムの原子数はコバルトの原子数の0.001倍以上0.1倍以下が好ましく、0.01倍より大きく0.04倍未満がより好ましく、0.02倍程度がさらに好ましい。ここでいう正極活物質200全体が有するマグネシウムの量とは、例えばGD−MS、ICP−MS(誘導結合プラズマ質量分析)等を用いて正極活物質200の全体の元素分析を行って得られた値であってもよいし、正極活物質200の作製の過程における原料の配合の値に基づいたものであってもよい。
また添加元素Xの一つであるニッケルは、コバルトサイトとリチウムサイトのどちらにも存在しうる。コバルトサイトに存在する場合、コバルトと比較して酸化還元電位が低くなるため放電容量増加につながり好ましい。
またニッケルがリチウムサイトに存在する場合、充放電に伴う、コバルトと酸素の8面体からなる層(例えばCoO層)のずれが抑制される。また充放電に伴う体積の変化が抑制される。また弾性係数が大きくなる、つまり硬くなる。これはリチウムサイトに存在するニッケルも、CoO層同士を支える柱として機能するためと推測される。そのため特に高温、例えば45℃以上の環境下での充電状態において、結晶構造がより安定になることが期待でき好ましい。
一方でニッケルが過剰であるとヤーン・テラー効果による歪みの影響が強まる恐れが生じる。またニッケルが過剰であるとリチウムの挿入及び脱離に悪影響が出る恐れがある。
そのため正極活物質200全体が有するニッケルが適切な量であることが好ましい。例えば正極活物質200が有するニッケルの原子数は、コバルトの原子数の0%を超えて7.5%以下が好ましく、0.05%以上4%以下が好ましく、0.1%以上2%以下が好ましく、0.2%以上1%以下がより好ましい。または0%を超えて4%以下が好ましい。または0%を超えて2%以下が好ましい。または0.05%以上7.5%以下が好ましい。または0.05%以上2%以下が好ましい。または0.1%以上7.5%以下が好ましい。または0.1%以上4%以下が好ましい。ここで示すニッケルの量は例えば、GD−MS、ICP−MS等を用いて正極活物質の全体の元素分析を行って得られた値であってもよいし、正極活物質の作製の過程における原料の配合の値に基づいてもよい。
また添加元素Yの一つであるアルミニウムは、層状岩塩型の結晶構造におけるコバルトサイトに存在しうる。アルミニウムは3価の典型元素であり価数が変化しないため、充放電の際もアルミニウム周辺のリチウムは移動しにくい。そのためアルミニウムとその周辺のリチウムが柱として機能し、結晶構造の変化を抑制しうる。またアルミニウムは周囲の遷移金属Mの溶出を抑制し、連続充電耐性を向上する効果がある。またAl−Oの結合はCo−O結合よりも強いため、アルミニウムの周囲の酸素の脱離を抑制することができる。これらの効果により、熱安定性が向上する。そのため添加元素Yとしてアルミニウムを有すると、二次電池に用いたときの安全性を向上できる。また充放電を繰り返しても結晶構造が崩れにくい正極活物質200とすることができる。
一方でアルミニウムが過剰であるとリチウムの挿入及び脱離に悪影響が出る恐れがある。
そのため正極活物質200全体が有するアルミニウムが適切な量であることが好ましい。例えば正極活物質200の全体が有するアルミニウムの原子数は、コバルトの原子数の0.05%以上4%以下が好ましく、0.1%以上2%以下が好ましく、0.3%以上1.5%以下がより好ましい。又は0.05%以上2%以下が好ましい。又は0.1%以上4%以下が好ましい。ここでいう正極活物質200全体が有する量とは例えば、GD−MS、ICP−MS等を用いて正極活物質200の全体の元素分析を行って得られた値であってもよいし、正極活物質200の作製の過程における原料の配合の値に基づいてもよい。
また添加元素Xの一つであるフッ素は1価の陰イオンであり、表層部200aにおいて酸素の一部がフッ素に置換されていると、リチウム脱離エネルギーが小さくなる。これは、リチウム脱離に伴うコバルトイオンの価数の変化が、フッ素を有さない場合は3価から4価、フッ素を有する場合は2価から3価となり、酸化還元電位が異なることによる。そのため表層部200aにおいて酸素の一部がフッ素に置換されていると、フッ素近傍のリチウムイオンの脱離及び挿入がスムースに起きやすいと言える。そのためフッ素を有するコバルト酸リチウムを二次電池に用いたときに充放電特性、電流特性等を向上させることができる。また電解液に接する部分である表面を有する表層部200aにフッ素が存在することで、フッ酸に対する耐食性を効果的に向上させることができる。また後述するが、フッ化リチウムをはじめとするフッ化物の融点が、他の添加元素A源の融点より低い場合、その他の添加元素A源の融点を下げる融剤(フラックス剤ともいう)として機能しうる。
また添加元素Xの一つであるチタンの酸化物は超親水性を有することが知られている。そのため、表層部200aにチタン酸化物を有する正極活物質200とすることで、極性の高い溶媒に対して濡れ性がよくなる可能性がある。二次電池としたときに正極活物質200と、極性の高い電解液との界面の接触が良好となり、内部抵抗の上昇を抑制できる可能性がある。
また添加元素Xの一つであるリンを表層部200aに有すると、LiCoO中のxが小さい状態を保持した場合において、ショートを抑制できる場合があり好ましい。例えばリンと酸素を含む化合物として表層部200aに存在することが好ましい。
正極活物質200がリンを有する場合には、電解質の分解により発生したフッ化水素とリンが反応し、電解質中のフッ化水素濃度を低下できる可能性があり好ましい。
リチウム塩としてLiPFを有する場合、加水分解により、フッ化水素が発生する恐れがある。また、正極の構成要素として用いられるポリフッ化ビニリデン(PVDF)とアルカリとの反応によりフッ化水素が発生する恐れもある。電解質中のフッ化水素濃度が低下することにより、集電体の腐食を抑制できる場合がある。また、PVDFの不溶化による接着性の低下を抑制できる場合がある。
正極活物質200がマグネシウムと共にリンを有すると、LiCoO中のxが小さい状態における安定性が極めて高くなり好ましい。正極活物質200がリンを有する場合、リンの原子数は、コバルトの原子数の1%以上20%以下が好ましく、2%以上10%以下がより好ましく、3%以上8%以下がさらに好ましい。又は1%以上10%以下が好ましい。又は1%以上8%以下が好ましい。又は2%以上20%以下が好ましい。又は2%以上8%以下が好ましい。又は3%以上20%以下が好ましい。又は3%以上10%以下が好ましい。加えてマグネシウムの原子数は、コバルトの原子数の0.1%以上10%以下が好ましく、0.5%以上5%以下がより好ましく、0.7%以上4%以下がより好ましい。又は0.1%以上5%以下が好ましい。又は0.1%以上4%以下が好ましい。又は0.5%以上10%以下が好ましい。又は0.5%以上4%以下が好ましい。又は0.7%以上10%以下が好ましい。又は0.7%以上5%以下が好ましい。ここで示すリン及びマグネシウムの濃度は例えば、GC−MS、ICP−MS等を用いて正極活物質200の全体の元素分析を行って得られた値であってもよいし、正極活物質200の作製の過程における原料の配合の値に基づいてもよい。
また正極活物質200がクラックを有する場合、クラックを表面とした正極活物質の内部、例えば図13Bに示す埋め込み部202にリン、より具体的には例えばリンと酸素を含む化合物が存在することにより、クラックの進行が抑制されうる。
さらに表層部200aにマグネシウムとニッケルを併せて有する場合、2価のニッケルの近くでは2価のマグネシウムがより安定に存在できる可能性がある。そのためLiCoO中のxが小さい状態でもマグネシウムの溶出が抑制されうる。そのため表層部200aの安定化に寄与しうる。
また添加元素Aを、添加元素Xと添加元素Yのような組み合わせにすると、添加元素Xの濃度分布と添加元素Yの濃度分布とが異なるため、より広い領域の結晶構造を安定化でき好ましい。例えば正極活物質200は添加元素Xの一部であるマグネシウム及びニッケルと、添加元素Yの一であるアルミニウムと、を共に有すると、添加元素Xと添加元素Yの一方しか有さない場合よりも広い領域の結晶構造を安定化できる。このように正極活物質200が添加元素Xと添加元素Yを併せて有する場合は、表面の安定化はマグネシウム等の添加元素Xによって十分に果たせるため、アルミニウムなどの添加元素Yは表面に必須ではない。むしろアルミニウムは深い領域、例えば表面からの深さが5nm以上50nm以内の領域に広く分布する方が、より広い領域の結晶構造を安定化でき好ましい。
上記のように複数の添加元素Aを有すると、それぞれの添加元素Aの効果が相乗し表層部200a及び内部200bのさらなる安定化に寄与しうる。特にマグネシウム、ニッケル及びアルミニウムを有すると安定な結晶構造とする効果が高く好ましい。
ただし表層部200aが添加元素Aと酸素の化合物のみで占められると、リチウムの挿入脱離が難しくなってしまうため好ましくない。例えば表層部200aが、MgO、MgOとNiO(II)が固溶した構造、及び/又はMgOとCoO(II)が固溶した構造のみで占められるのは好ましくない。そのため表層部200aは少なくともコバルトを有し、放電状態においてはリチウムも有し、リチウムの挿入脱離の経路を有している必要がある。
リチウムの挿入脱離の経路を確保するために、表層部200aはマグネシウムよりもコバルトの濃度が高いことが好ましい。例えばマグネシウムの原子数AMgとコバルトの原子数ACoの比AMg/ACoは0.62以上であることが好ましい。また表層部200aはニッケルよりもコバルトの濃度が高いことが好ましい。また表層部200aはアルミニウムよりもコバルトの濃度が高いことが好ましい。また表層部200aはフッ素よりもコバルトの濃度が高いことが好ましい。
さらにニッケルが多すぎるとリチウムの拡散を阻害する恐れがあるため、表層部200aはニッケルよりもマグネシウムの濃度が高いことが好ましい。例えばニッケルの原子数はマグネシウムの原子数の1/6以下であることが好ましい。
また添加元素Aの一部、特にマグネシウム、ニッケル及びアルミニウムは、内部200bよりも表層部200aの濃度が高いことが好ましいものの、内部200bにもランダムかつ希薄に存在することが好ましい。マグネシウム及びアルミニウムが内部200bのリチウムサイトに適切な濃度で存在すると、上記と同様に層状岩塩型の結晶構造を保持しやすいといった効果がある。またニッケルが内部200bに適切な濃度で存在すると、上記と同様に充放電に伴う、コバルトと酸素の8面体からなる層(例えばCoO層)のずれが抑制されうる。またマグネシウムとニッケルを併せて有する場合も、2価のニッケルの近くでは2価のマグネシウムがより安定に存在できる可能性があるため、マグネシウムの溶出を抑制する相乗効果が期待できる。
また上述のような添加元素Aの濃度勾配に起因して、内部200bから、表面に向かって結晶構造が連続的に変化することが好ましい。または表層部200aと内部200bの結晶の配向が概略一致していることが好ましい。
例えば層状岩塩型の結晶構造を有する内部200bから、岩塩型の結晶構造、又は岩塩型の結晶構造と層状岩塩型の結晶構造の両方の特徴を有する表層部200a(つまり表面)に向かって結晶構造が連続的に変化することが好ましい。または岩塩型の結晶構造、又は岩塩型の結晶構造と層状岩塩型の結晶構造の両方の特徴を有する表層部200aと、層状岩塩型の結晶構造の内部200bの配向が概略一致していることが好ましい。
≪LiCoO中のxが小さい状態≫
本発明の一態様の正極活物質200は、放電状態において上述のような添加元素Aの分布及び/又は結晶構造を有することに起因して、LiCoO中のxが小さい状態での結晶構造が、従来の正極活物質と異なる。なおここでxが小さいとは、0.1<x≦0.24をいうこととする。
まず、従来の正極活物質の結晶構造の変化を図17に示す。従来のコバルト酸リチウムは、LiCoOのxが0.5程度とき(x=0.5程度のとき)リチウムの対称性が高まり、単斜晶系の空間群P2/mに帰属する結晶構造を有することが知られている。この構造はユニットセル中にCoO層が1層存在する。そのためO1型、又は単斜晶O1型と呼ぶ場合がある。図17において、x=0.5のときの結晶構造にはP2/m(単斜晶O1)を付す。
またLiCoOのxが0のとき(x=0のとき)の従来のコバルト酸リチウムは、三方晶系の空間群P−3m1の結晶構造を有し、ユニットセル中にはCoO層が1層存在する。そのためこの結晶構造を、O1型、又は三方晶O1型と呼ぶ場合がある。また三方晶を複合六方格子に変換し、六方晶O1型と呼ぶ場合もある。図17において、x=0のときの結晶構造にはP−3m1(三方晶O2))を付す。
またLiCoOのxが0.24程度のとき(x=0.24程度のとき)の従来のコバルト酸リチウムは、空間群R−3mの結晶構造を有する。この構造は、三方晶O1型のようなCoOの構造と、R−3m(O3)のようなLiCoOの構造と、が交互に積層された構造ともいえる。そのためこの結晶構造を、H1−3型結晶構造と呼ぶ場合がある。図17において、x=0.12のときの結晶構造にはR−3m(H1−3)を付す。
なお、実際にはH1−3型結晶構造は、ユニットセルあたりのコバルト原子の数が他の構造の2倍となっている。しかし図17をはじめ本明細書では、他の結晶構造と比較しやすくするためH1−3型結晶構造のc軸をユニットセルの1/2にした図で示すこととする。
H1−3型結晶構造は一例として、非特許文献3に記載があるように、ユニットセルにおけるコバルトと酸素の座標を、Co(0、0、0.42150±0.00016)、O1(0、0、0.27671±0.00045)、O2(0、0、0.11535±0.00045)と表すことができる。O1及びO2はそれぞれ酸素原子である。コバルト酸リチウムが有する結晶構造をいずれのユニットセルを用いて表すべきかは、例えばXRDパターンのリートベルト解析により判断することができる。この場合はGOF(goodness of fit)の値が小さくなるユニットセルを採用すればよい。
LiCoO中のxが0.24以下になるような充電と、xが1になるような放電とを繰り返すと、従来のコバルト酸リチウムはH1−3型結晶構造と、放電状態のR−3m(O3)の構造と、の間で結晶構造の変化(つまり非平衡な相変化)を繰り返すことになる。
しかしながら、これらの2つの結晶構造は、CoO層のずれが大きい。図17に点線及び矢印で示すように、H1−3型結晶構造では、CoO層が放電状態のR−3m(O3)から大きくずれている。このようなダイナミックな構造変化は、結晶構造の安定性に悪影響を与えうる。
さらにこれらの2つの結晶構造は体積の差も大きい。同数のコバルト原子あたりで比較した場合、H1−3型結晶構造と、放電状態のR−3m(O3)型結晶構造の体積の差は3.5%を超え、代表的には3.9%以上である。
加えて、H1−3型結晶構造が有する、三方晶O1型のようなCoO層が連続した構造は不安定である可能性が高い。
そのため、xが0.24以下になるような充電と、xが1になるような放電とを繰り返すと従来のコバルト酸リチウムの結晶構造は崩れていく。結晶構造の崩れが、サイクル特性の悪化を引き起こす。これは、結晶構造が崩れることで、リチウムが安定して存在できるサイトが減少し、またリチウムの挿入脱離が難しくなるためである。
一方図16に示す本発明の一態様の正極活物質200では、x=0.2程度のとき、三方晶系の空間群R−3mに帰属される結晶構造を有する。これはCoO層の対称性がO3と同じである。よって、この結晶構造をO3’型の結晶構造と呼ぶこととする。図16において、x=0.2の時の結晶構造にはR−3m(O3’)を付す。
本発明の一態様の正極活物質200に用いられるコバルト酸リチウムは、LiCoO中のxが1の放電と、xが0.24以下となる充電における結晶構造の変化が従来のコバルト酸リチウムよりも少ない。具体的には、図16中に点線で示すように、放電状態のR−3m(O3)と、O3’型の結晶構造とではCoO層のずれがほとんどない。またコバルト原子あたりで比較した場合の体積の変化を小さくすることができる。具体的には、放電状態のR−3m(O3)と、O3’型の結晶構造の同数のコバルト原子あたりの体積の差は2.5%以下、より詳細には2.2%以下、代表的には1.8%である。よって、本発明の一態様の正極活物質200は、xが0.24以下になるような充電と、xが1になるような放電とを繰り返しても結晶構造が崩れにくく、優れたサイクル特性を実現することができる。
このように本発明の一態様の正極活物質200では、LiCoO中のxが0.24以下の結晶構造が従来の正極活物質と異なり、xが1になるような放電状態の結晶構造からの変化が抑制されている。また同数のコバルト原子あたりで比較した場合の体積の変化も本発明の一態様の正極活物質200では抑制されている。そのため正極活物質200は、xが0.24以下になるような充電と、放電とを繰り返しても結晶構造が崩れにくい。そのため、正極活物質200は充放電サイクルにおける放電容量の低下が抑制される。また、本発明の一態様の正極活物質200に用いられるコバルト酸リチウムは、LiCoO中のxが0.24以下の状態において従来のコバルト酸リチウムよりも安定な結晶構造を取り得る。よって、本発明の一態様の正極活物質200は、LiCoO中のxが0.24以下の状態を保持した場合において、ショートが生じづらく、二次電池の安全性が向上する。また従来の正極活物質よりも多くのリチウムを安定して利用できるため、本発明の一態様の正極活物質200は重量あたり及び体積あたりの放電容量が大きい。そのため本発明の一態様の正極活物質200を用いることで、重量あたり及び体積あたりの放電容量の高い二次電池を作製できる。
本発明の一態様の正極活物質200に用いられるコバルト酸リチウムが有するO3’型の結晶構造は、ユニットセルにおけるコバルトと酸素の座標を、Co(0,0,0.5)、O(0,0,x)、0.20≦x≦0.25の範囲内で示すことができる。またユニットセルの格子定数は、a軸は0.2797≦a≦0.2837(nm)が好ましく、0.2807≦a≦0.2827(nm)がより好ましく、代表的にはa=0.2817(nm)である。c軸は1.3681≦c≦1.3881(nm)が好ましく、1.3751≦c≦1.3811(nm)がより好ましく、代表的にはc=1.3781(nm)である。
O3’型の結晶構造は、コバルト、ニッケル、マグネシウム等のイオンが酸素6配位位置を占める。なおリチウムなどの軽元素は酸素4配位位置を占める場合がありうる。
本発明の一態様の正極活物質200では、LiCoO中のxが0.15以上0.24以下のときO3’型の結晶構造を有する場合があることが確認され、xが0.24を超えて0.27以下でもO3’型の結晶構造を有すると推定されている。しかし結晶構造はLiCoO中のxだけでなく充放電サイクル数、充放電電流、温度、電解質等の影響を受けるため、必ずしも上記のxの範囲に限定されない。
そのため正極活物質200はLiCoO中のxが0.1を超えて0.24以下のとき、正極活物質200の内部200bのすべてがO3’型の結晶構造でなくてもよい。他の結晶構造を含んでいてもよいし、一部が非晶質であってもよい。
またLiCoO中のxが小さくするには、一般的には高い充電電圧で充電する必要がある。そのためLiCoO中のxが小さい状態を、高い充電電圧で充電した状態と言い換えることができる。例えばリチウム金属の電位を基準として4.6V以上の電圧で、25℃の環境下でCC/CV充電すると、従来の正極活物質ではH1−3型結晶構造が現れる。そのためリチウム金属の電位を基準として4.6V以上の充電電圧は高い充電電圧ということができる。また本明細書等において、特に言及しない場合、充電電圧はリチウム金属の電位を基準として表すとする。
そのため本発明の一態様の正極活物質200は、高い充電電圧、例えば25℃環境下において4.6V以上の電圧で充電しても、結晶構造を保持できるため好ましい、と言い換えることができる。またより高い充電電圧、例えば25℃環境下において4.65V以上4.7V以下の電圧で充電したとき、本発明の一態様の正極活物質200はO3’型の結晶構造を取り得るため好ましい、と言い換えることができる。
本発明の一態様の正極活物質200は、さらに充電電圧を高めるとH1−3型結晶が観測される場合がある。また上述したように結晶構造は充放電サイクル数、充放電電流、電解質等の影響を受けるため、充電電圧がより低い場合、例えば充電電圧が25℃環境下において4.5V以上4.6V未満でも、本発明の一態様の正極活物質200はO3’型の結晶構造を取り得る場合が有る。
なお、二次電池において例えば負極活物質として黒鉛を用いる場合、上記よりも黒鉛の電位の分だけ二次電池の電圧が低下する。黒鉛の電位はリチウム金属の電位を基準として0.05V乃至0.2V程度である。そのため負極活物質として黒鉛を用いた二次電池の場合は、上記の電圧から黒鉛の電位を差し引いた電圧のとき同様の結晶構造を有する。
また図16のO3’型の結晶構造ではリチウムが全てのリチウムサイトに等しい確率で存在するように示したが、これに限らない。一部のリチウムサイトに偏って存在していてもよいし、例えば図17に示す単斜晶O1(Li0.5CoO)のような対称性を有していてもよい。リチウムの分布は、例えば中性子回折により分析することができる。
またO3’型の結晶構造は、層間にランダムにリチウムを有するもののCdCl型の結晶構造に類似する結晶構造であるということもできる。このCdCl型に類似した結晶構造は、ニッケル酸リチウムをLi0.06NiOまで充電したときの結晶構造と近いが、純粋なコバルト酸リチウム、又はコバルトを多く含む層状岩塩型の正極活物質では、通常CdCl型の結晶構造を取らないことが知られている。
また添加元素Aの濃度勾配は、正極活物質200の表層部200aの複数個所において同じような勾配であることが好ましい。つまり添加元素Aに由来する補強が表層部200aに均質に存在することが好ましい。表層部200aの一部に補強があっても、補強のない部分が存在すれば、ない部分に応力が集中する恐れがある。正極活物質200の一部に応力が集中すると、そこからクラック等の欠陥が生じ、正極活物質の割れ及び放電容量の低下につながる恐れがある。
ただし必ずしも、正極活物質200の表層部200a全てにおいて添加元素Aが同じような濃度勾配を有していなくてもよい。図13AのC−D付近の添加元素Xの分布の例を図13Eに、C−D付近の添加元素Yの分布の例を図13Fに示す。
ここで、C−D付近はR−3mの層状岩塩型の結晶構造を有し、表面は(001)配向であるとする。(001)配向した表面は、その他の表面と添加元素Aの分布が異なっていてもよい。例えば、(001)配向した表面とその表層部200aは、添加元素X及び添加元素Yから選ばれた一又は二以上の濃度分布又はピークトップが、その他の配向面と比較して表面から浅い部分に存在していてもよい。または、(001)配向した表面とその表層部200aは、その他の配向面と比較して添加元素X及び添加元素Yから選ばれた一又は二以上の濃度が低くてもよい。又は、(001)配向した表面とその表層部200aは、添加元素X及び添加元素Yから選ばれた一又は二以上が検出下限以下であってもよい。
R−3mの層状岩塩型の結晶構造では、(001)面に平行に陽イオンが配列している。これはCoO層と、リチウム層と、が(001)面と平行に交互に積層した構造であるということができる。そのためリチウムイオンの拡散経路も(001)面と平行な方向に存在する。
CoO層は比較的安定であるため、CoO層が表面に存在する(001)面は比較的安定である。(001)面には充放電におけるリチウムイオンの主な拡散経路は露出していない。
一方、(001)配向以外の表面ではリチウムイオンの拡散経路が露出している。そのため(001)配向以外の表面及び表層部200aは、リチウムイオンの拡散経路を保つために重要な領域であると同時に、リチウムイオンが最初に脱離する領域であるため不安定になりやすい。そのため(001)配向以外の表面及び表層部200aを補強することが、正極活物質200全体の結晶構造を保つためには重要である。
そのため本発明の別の一態様の正極活物質200では、(001)以外の面及びその表層部200aの添加元素Aの分布が図13C及び図13Dに示すような分布となっていると好ましい。一方、(001)面及びその表層部200aでは上述のように添加元素Aの濃度は低くてもよいし、又はなくてもよい。
後の実施の形態で説明する、純度の高いLiCoOを作製した後に、添加元素Aを後から混合して加熱する作製方法は、主にリチウムイオンの拡散経路を介して添加元素Aが広がる。そのため(001)以外の面及びその表層部200aの添加元素Aの分布を好ましい範囲にしやすい。
また、正極活物質200の表面はなめらかで凹凸が少ないことが好ましいが、必ずしも、正極活物質200の全てがそうでなくてもよい。R−3mの層状岩塩型の結晶構造を有する複合酸化物は、(001)面に平行な面、例えばリチウムが配列した面においてスリップが生じやすい。例えば図18Aのように(001)面が存在する場合は、プレス等の工程を経ることで図18B中に矢印で示したように(001)面と平行にスリップが起こり、変形する場合がある。
この場合、スリップした結果新たに生じた表面及びその表層部200aには、添加元素Aが存在しないか、検出下限以下である場合がある。図18B中のE−Fはスリップした結果新たに生じた表面及びその表層部200aの例である。E−F付近を拡大した図を図18C1及び図18C2に示す。図18C1及び図18C2では、図13C乃至図13Fと異なり添加元素X及び添加元素Yが分布しない。
しかしスリップは(001)面に平行に生じやすいため、新たに生じた表面及びその表層部200aは(001)配向となりやすい。この場合リチウムイオンの拡散経路が露出せず、比較的安定であるため、添加元素Aが存在しないか、検出下限以下であっても問題がほとんどない。
なお上述のように、組成がLiCoO、結晶構造がR−3mの層状岩塩型を有する複合酸化物では、(001)面と平行にコバルトが配列する。またHAADF−STEM像では、LiCoOのうち原子番号の最も大きいコバルトの輝度が最も高くなる。そのためHAADF−STEM像において、輝度の高い原子の配列はコバルトの配列と考えてよい。この輝度の高い配列の繰り返しは、結晶縞又は格子縞と同義である。
≪結晶粒界≫
本発明の一態様の正極活物質200が有する添加元素Aは、上記のような分布に加え、少なくとも一部は結晶粒界201及びその近傍に偏在していることがより好ましい。
なお本明細書等において、偏在とはある領域における元素の濃度が他の領域と異なることをいう。偏析、析出、不均一、偏り、又は濃度が高い箇所と濃度が低い箇所が混在する、と同義である。
例えば正極活物質200の結晶粒界201及びその近傍のマグネシウム濃度が、内部200bの他の領域よりも高いことが好ましい。また結晶粒界201及びその近傍のフッ素濃度も内部200bの他の領域より高いことが好ましい。また結晶粒界201及びその近傍のニッケル濃度も内部200bの他の領域より高いことが好ましい。また結晶粒界201及びその近傍のアルミニウム濃度も内部200bの他の領域より高いことが好ましい。
結晶粒界201は面欠陥の一つである。そのため表面と同様不安定になりやすく結晶構造の変化が始まりやすい。そのため、結晶粒界201及びその近傍の添加元素A濃度が高ければ、結晶構造の変化をより効果的に抑制することができる。
また、結晶粒界201及びその近傍のマグネシウム濃度及びフッ素濃度が高い場合、本発明の一態様の正極活物質200の結晶粒界201に沿ってクラックが生じた場合でも、クラックにより生じた表面の近傍でマグネシウム濃度及びフッ素濃度が高くなる。そのためクラックが生じた後の正極活物質においてもフッ酸に対する耐食性を高めることができる。
<粒径>
本発明の一態様の正極活物質200の粒径は、大きすぎるとリチウムの拡散が難しくなる、集電体に塗工したときに活物質層の表面が粗くなりすぎる、等の問題がある。一方、小さすぎると、集電体への塗工時に活物質層を担持しにくくなる、電解液との反応が過剰に進む等の問題点も生じる。そのため、メディアン径(D50)が、1μm以上100μm以下が好ましく、2μm以上40μm以下であることがより好ましく、5μm以上30μm以下がさらに好ましい。または1μm以上40μm以下が好ましい。または1μm以上30μm以下が好ましい。または2μm以上100μm以下が好ましい。または2μm以上30μm以下が好ましい。または5μm以上100μm以下が好ましい。または5μm以上40μm以下が好ましい。
<分析方法>
ある正極活物質が、LiCoO中のxが小さいときO3’型の結晶構造を有する本発明の一態様の正極活物質200であるか否かは、LiCoO中のxが小さい正極活物質を有する正極を、XRD、電子線回折、中性子回折、電子スピン共鳴(ESR)、核磁気共鳴(NMR)等を用いて解析することで判断できる。
特にXRDは、正極活物質が有するコバルト等の遷移金属Mの対称性を高分解能で解析できる、結晶性の高さ及び結晶の配向性を比較できる、格子の周期性歪み及び結晶子サイズの解析ができる、二次電池を解体して得た正極をそのまま測定しても十分な精度を得られる、等の点で好ましい。XRDのなかでも粉体XRDでは、正極活物質200の体積の大半を占める正極活物質200の内部200bの結晶構造を反映した回折ピークが得られる。
本発明の一態様の正極活物質200は、これまで述べたようにLiCoO中のxが1のときと、0.24以下のときで結晶構造の変化が少ないことが特徴である。結晶構造の変化が大きな結晶構造が50%以上を占める場合、高電圧の充放電に耐えられないため好ましくない。
また添加元素Aを添加するだけではO3’型の結晶構造をとらない場合があることに注意が必要である。例えばマグネシウム及びフッ素を有するコバルト酸リチウム、又はマグネシウム及びアルミニウムを有するコバルト酸リチウム、という点で共通していても、添加元素Aの濃度及び分布次第で、LiCoO中のxが0.24以下でO3’型の結晶構造が60%以上になる場合と、H1−3型結晶構造が50%以上を占める場合と、がある。
また本発明の一態様の正極活物質200でも、xが0.1以下など小さすぎる場合、又は充電電圧が4.9Vを超えるような条件ではH1−3型又は三方晶O1型の結晶構造が生じる場合もある。そのため、本発明の一態様の正極活物質200であるか否かを判断するには、XRDをはじめとする結晶構造についての解析と、充電容量又は充電電圧等の情報が必要である。
また、xが小さい状態の正極活物質は、大気に触れると結晶構造の変化を起こす場合がある。例えばO3’型の結晶構造からH1−3型結晶構造に変化する場合がある。そのため、結晶構造の分析に供するサンプルはすべてアルゴン雰囲気等の不活性雰囲気でハンドリングすることが好ましい。
またある正極活物質が有する添加元素Aの分布が、上記で説明したような状態であるか否かは、例えばXPS、エネルギー分散型X線分光法(EDX:Energy Dispersive X−ray Spectroscopy)、EPMA(電子プローブ微小分析)等を用いて解析することで判断できる。
また表層部200a、結晶粒界201等の結晶構造は、正極活物質200の断面の電子線回折等で分析することができる。
≪充電方法≫
ある複合酸化物が、本発明の一態様の正極活物質200であるか否かは、高電圧充電を行うことにより判断できる。例えば、正極に当該複合酸化物を用い、負極(対極とも記す)にリチウム金属を用いてコインセル(CR2032タイプ、直径20mm高さ3.2mm)を作製し、高電圧充電を行えばよい。
より具体的には、正極には、正極活物質、導電材及びバインダを混合したスラリーを、アルミニウム箔の正極集電体に塗工したものを用いることができる。
対極にはリチウム金属を用いることができる。なお対極にリチウム金属以外の材料を用いたときは、二次電池の電位と正極の電位が異なる。本明細書等における電圧及び電位は、特に言及しない場合、正極の電位である。
電解液が有する電解質には、1mol/Lの六フッ化リン酸リチウム(LiPF)を用い、電解液には、エチレンカーボネート(EC)とジエチルカーボネート(DEC)がEC:DEC=3:7(体積比)、ビニレンカーボネート(VC)が2wt%で混合されたものを用いることができる。
正極缶及び負極缶には、ステンレス(SUS)で形成されているものを用いることができる。
上記条件で作製したコインセルを、任意の電圧(例えば4.5V、4.55V、4.6V、4.65V、4.7V、4.75V又は4.8V)まで、電流値10mA/gで定電流充電する。正極活物質の相変化を観測するためには、このような小さい電流値で充電を行うことが望ましい。コインセルを配する環境温度は25℃又は45℃とする。このようにして充電した後に、コインセルをアルゴン雰囲気のグローブボックス中で解体して正極を取り出せば、任意の充電容量の正極活物質を得られる。この後に各種分析を行う際、外界成分との反応を抑制するため、アルゴン雰囲気で密封することが好ましい。例えばXRDは、アルゴン雰囲気の密閉容器内に封入して行うことができる。また充電完了後、速やかに正極を取り出し分析に供することが好ましい。具体的には充電完了後1時間以内が好ましく、30分以内がより好ましい。
また複数回充放電した後の充電状態の結晶構造を分析する場合、該複数回の充放電条件は上記の充電条件と異なっていてもよい。例えば充電は任意の電圧(例えば4.6V、4.65V、4.7V、4.75V又は4.8V)まで、電流値100mA/gで定電流充電し、その後電流値が10mA/gとなるまで定電圧充電し、放電は2.5V、100mA/gで定電流放電とすることができる。
さらに複数回充放電した後の放電状態の結晶構造を分析する場合も、例えば2.5V、電流値100mA/gで定電流放電とすることができる。
≪XRD≫
XRD測定の装置及び条件は特に限定されない。例えば下記のような装置及び条件で測定することができる。
XRD装置 :Bruker AXS社製、D8 ADVANCE
X線源 :Cu
出力 :40KV、40mA
スリット幅 :Div.Slit、0.5°
検出器:LynxEye
スキャン方式 :2θ/θ連続スキャン
測定範囲(2θ) :15°以上90°以下
ステップ幅(2θ) :0.01°設定
計数時間 :1秒間/ステップ
試料台回転 :15rpm
測定サンプルが粉末の場合は、ガラスのサンプルフォルダーに入れる、又はグリースを塗ったシリコン無反射板にサンプルを振りかける、等の手法でセッティングすることができる。測定サンプルが正極の場合は、正極を基板に両面テープで貼り付け、正極活物質層を装置の要求する測定面に合わせてセッティングすることができる。
O3’型の結晶構造と、H1−3型結晶構造のモデルから計算される、CuKα1線による理想的な粉末XRDパターンを図19及び図20に示す。また比較のためLiCoO中のx=1のLiCoO O3と、H1−3型、及びx=0の三方晶O1の結晶構造から計算される理想的なXRDパターンも示す。なお、LiCoO(O3)及びCoO(O1)のパターンはICSD(Inorganic Crystal Structure Database)(非特許文献3参照)より入手した結晶構造情報からMaterials Studio(BIOVIA)のモジュールの一つである、Reflex Powder Diffractionを用いて作成した。2θの範囲は15°から75°とし、Step size=0.01、波長λ1=1.540562×10−10m、λ2は設定なし、Monochromatorはsingleとした。H1−3型結晶構造のパターンは非特許文献3に記載の結晶構造情報から同様に作成した。O3’型の結晶構造のパターンは本発明の一態様の正極活物質のXRDパターンから結晶構造を推定し、TOPAS ver.3(Bruker社製結晶構造解析ソフトウェア)を用いてフィッティングし、他と同様にXRDパターンを作成した。
図19に示すように、O3’型の結晶構造では、2θ=19.25±0.12°(19.13°以上19.37°未満)、及び2θ=45.47±0.10°(45.37°以上45.57°未満)に回折ピークが出現する。
しかし図20に示すように、H1−3型結晶構造及び三方晶O1ではこれらの位置にピークは出現しない。そのため、LiCoO中のxが小さい状態で2θ=19.25±0.12°(19.13°以上19.37°未満)、及び2θ=45.47±0.10°(45.37°以上45.57°未満)に回折ピークが出現することは、本発明の一態様の正極活物質200の特徴であるといえる。
これは、x=1と、x≦0.24の結晶構造で、XRDの回折ピークが出現する位置が近いということもできる。より具体的には、x=1と、x≦0.24の結晶構造の主な回折ピークのうち2θが42°以上46°以下に出現するピークについて、2θの差が、0.7°以下、より好ましくは0.5°以下であるということができる。
なお、本発明の一態様の正極活物質200はLiCoO中のxが小さいときO3’型の結晶構造を有するが、すべてがO3’型の結晶構造でなくてもよい。他の結晶構造を含んでいてもよいし、一部が非晶質であってもよい。ただし、XRDパターンについてリートベルト解析を行ったとき、O3’型の結晶構造が50%以上であることが好ましく、60%以上であることがより好ましく、66%以上であることがさらに好ましい。O3’型の結晶構造が50%以上、より好ましくは60%以上、さらに好ましくは66%以上あれば、十分にサイクル特性に優れた正極活物質とすることができる。
また、測定開始から100サイクル以上の充放電を経ても、リートベルト解析を行ったときO3’型の結晶構造が35%以上であることが好ましく、40%以上であることがより好ましく、43%以上であることがさらに好ましい。
またXRDパターンにおける回折ピークの鋭さは結晶性の高さを示す。そのため、充電後の各回折ピークは鋭い、すなわち半値幅が狭い方が好ましい。半値幅は、同じ結晶相から生じたピークでも、XRDの測定条件又は2θの値によっても異なる。上述した測定条件の場合は、2θ=43°以上46°以下に観測されるピークにおいて、半値幅は例えば0.2°以下が好ましく、0.15°以下がより好ましく、0.12°以下がさらに好ましい。なお必ずしも全てのピークがこの要件を満たしていなくてもよい。一部のピークがこの要件を満たせば、その結晶相の結晶性が高いことがいえる。高い結晶性は充電後の結晶構造の安定化に寄与する。
また、正極活物質200が有するO3’型の結晶構造の結晶子サイズは、放電状態のLiCoO(O3)の1/20程度までしか低下しない。そのため、充放電前の正極と同じXRDの測定条件であっても、LiCoO中のxが小さいとき明瞭なO3’型の結晶構造のピークが確認できる。一方従来のLiCoOでは、一部がO3’型の結晶構造に似た構造を取りえたとしても、結晶子サイズが小さくなり、ピークはブロードで小さくなる。結晶子サイズは、XRDピークの半値幅から求めることができる。
≪XPS≫
X線光電子分光(XPS)では、無機酸化物の場合で、X線源として単色化アルミニウムのKα線を用いると、表面から2乃至8nm程度(代表的には5nm以下)の深さまでの領域の分析が可能であるため、表層部200aの深さに対して約半分の領域について、各元素の濃度を定量的に分析することができる。また、ナロースキャン分析をすれば元素の結合状態を分析することができる。なおXPSの定量精度は多くの場合±1原子%程度、検出下限は元素にもよるが約1原子%である。
本発明の一態様の正極活物質200は、添加元素Aから選ばれた一又は二以上の濃度が内部200bよりも表層部200aにおいて高いことが好ましい。これは表層部200aにおける添加元素Aから選ばれた一又は二以上の濃度が、正極活物質200全体の平均よりも高いことが好ましい、と同義である。そのため例えば、XPS等で測定される表層部200aから選ばれた一又は二以上の添加元素Aの濃度が、ICP−MS、あるいはGD−MS等で測定される正極活物質200全体の平均の添加元素Aの濃度よりも高いことが好ましい、ということができる。例えばXPS等で測定される表層部200aの少なくとも一部のマグネシウムの濃度が、正極活物質200全体のマグネシウム濃度よりも高いことが好ましい。また表層部200aの少なくとも一部のニッケルの濃度が、正極活物質200全体のニッケル濃度よりも高いことが好ましい。また表層部200aの少なくとも一部のアルミニウムの濃度が、正極活物質200全体のアルミニウム濃度よりも高いことが好ましい。また表層部200aの少なくとも一部のフッ素の濃度が、正極活物質200全体のフッ素濃度よりも高いことが好ましい。
なお本発明の一態様の正極活物質200の表面及び表層部200aには、正極活物質200作製後に化学吸着した炭酸塩、ヒドロキシ基等は含まないとする。また正極活物質200の表面に付着した電解液、バインダ、導電材、又はこれら由来の化合物も含まないとする。そのため正極活物質が有する元素を定量するときは、XPSをはじめとする表面分析で検出されうる炭素、水素、過剰な酸素、過剰なフッ素等を除外する補正をしてもよい。例えば、XPSでは結合の種類を解析で分離することが可能であり、バインダ由来のC−F結合を除外する補正をおこなってもよい。
さらに各種分析に供する前に、正極活物質の表面に付着した電解液、バインダ、導電材、又はこれら由来の化合物を除くために、正極活物質及び正極活物質層等の試料に対して洗浄等を行ってもよい。このとき洗浄に用いる溶媒等にリチウムが溶け出す場合があるが、たとえその場合であっても、添加元素Aは溶け出しにくいため、添加元素Aの原子数比に影響があるものではない。
また添加元素Aの濃度は、コバルトとの比で比較してもよい。コバルトとの比を用いることにより、正極活物質を作製後に化学吸着した炭酸等の影響を減じて比較することができ好ましい。例えばXPSの分析によるマグネシウムとコバルトの原子数の比Mg/Coは、0.4以上1.5以下であることが好ましい。一方ICP−MSの分析によるMg/Coは0.001以上0.06以下であることが好ましい。
同様に正極活物質200は、十分にリチウムの挿入脱離の経路を確保するために、表層部200aにおいて各添加元素Aよりもリチウム及びコバルトの濃度が高いことが好ましい。これはXPS等で測定される表層部200aが有する添加元素Aから選ばれた一又は二以上の各添加元素Aの濃度よりも、表層部200aのリチウム及びコバルトの濃度が高いことが好ましい、ということができる。例えばXPS等で測定される表層部200aの少なくとも一部のマグネシウムの濃度よりも、XPS等で測定される表層部200aの少なくとも一部のコバルトの濃度が高いことが好ましい。同様にマグネシウムの濃度よりも、リチウムの濃度が高いことが好ましい。またニッケルの濃度よりも、コバルトの濃度が高いことが好ましい。同様にニッケルの濃度よりも、リチウムの濃度が高いことが好ましい。またアルミニウムよりもコバルトの濃度が高いことが好ましい。同様にアルミニウムの濃度よりも、リチウムの濃度が高いことが好ましい。またフッ素よりもコバルトの濃度が高いことが好ましい。同様にフッ素よりもリチウムの濃度が高いことが好ましい。
さらにアルミニウムをはじめとする添加元素Yは深い領域、例えば表面からの深さが5nm以上50nm以内の領域に広く分布する方がより好ましい。そのため、ICP−MS、GD−MS等を用いた正極活物質200全体の分析ではアルミニウムをはじめとする添加元素Yが検出されるものの、XPS等ではこれが検出下限以下であると、より好ましい。
さらに本発明の一態様の正極活物質200についてXPS分析をしたとき、コバルトの原子数に対して、マグネシウムの原子数は0.4倍以上1.2倍以下が好ましく、0.65倍以上1.0倍以下がより好ましい。またコバルトの原子数に対して、ニッケルの原子数は0.15倍以下が好ましく、0.03倍以上0.13倍以下がより好ましい。またコバルトの原子数に対して、アルミニウムの原子数は0.12倍以下が好ましく、0.09倍以下がより好ましい。またコバルトの原子数に対して、フッ素の原子数は0.3倍以上0.9倍以下が好ましく、0.1倍以上1.1倍以下がより好ましい。
XPS分析を行う場合には例えば、X線源として単色化アルミニウムKα線を用いることができる。また、取出角は例えば45°とすればよい。例えば下記の装置及び条件で測定することができる。
測定装置 :PHI 社製QuanteraII
X線源 :単色化Al Kα(1486.6eV)
検出領域 :100μmφ
検出深さ :約4~5nm(取出角45°)
測定スペクトル :ワイドスキャン,各検出元素のナロースキャン
また本発明の一態様の正極活物質200についてXPS分析したとき、フッ素と他の元素の結合エネルギーを示すピークは682eV以上685eV未満であることが好ましく、684.3eV程度であることがさらに好ましい。これは、フッ化リチウムの結合エネルギーである685eV、及びフッ化マグネシウムの結合エネルギーである686eVのいずれとも異なる値である。つまり、本発明の一態様の正極活物質200がフッ素を有する場合、フッ化リチウム及びフッ化マグネシウム以外の結合であることが好ましい。
さらに、本発明の一態様の正極活物質200についてXPS分析したとき、マグネシウムと他の元素の結合エネルギーを示すピークは、1302eV以上1304eV未満であることが好ましく、1303eV程度であることがさらに好ましい。これは、フッ化マグネシウムの結合エネルギーである1305eVと異なる値であり、酸化マグネシウムの結合エネルギーに近い値である。つまり、本発明の一態様の正極活物質200がマグネシウムを有する場合、フッ化マグネシウム以外の結合であることが好ましい。
≪EDX≫
正極活物質200が有する添加元素Aは濃度勾配を有していることが好ましい。また添加元素Aによって、濃度分布又はピークトップの位置が異なっていることがより好ましい。濃度分布には濃度勾配が含まれる。添加元素Aの濃度分布は例えば、FIB(Focused Ion Beam)等により正極活物質200の断面を露出させ、その断面をEDX、EPMA(電子プローブ微小分析)等を用いて分析することで評価できる。
EDX測定のうち、領域内を走査しながら測定し、領域内を2次元に評価することを面分析と呼ぶ。また線状に走査しながら測定し、原子濃度について正極活物質内の分布を評価することを線分析と呼ぶ。さらにEDXの面分析から、線状の領域のデータを抽出したものを線分析と呼ぶ場合もある。またある領域について走査せずに測定することを点分析と呼ぶ。
EDX面分析(例えば元素マッピング)により、正極活物質200の表層部200a、内部200b及び結晶粒界201近傍等における、添加元素Aの濃度を半定量的に分析することができる。また、EDX線分析により、添加元素Aの濃度分布又はピークトップを分析することができる。またSTEM−EDXのようにサンプルを薄片化する分析は、奥行き方向の分布の影響をあまり受けずに、特定の領域における正極活物質の表面から中心に向かった深さ方向の濃度分布を分析でき、より好適である。
そのため本発明の一態様の正極活物質200についてEDX面分析又はEDX点分析したとき、表層部200aの各添加元素A、特に添加元素Xの濃度が、内部200bのそれよりも高いことが好ましい。
例えば添加元素Xとしてマグネシウムを有する正極活物質200についてEDX面分析又はEDX点分析したとき、表層部200aのマグネシウム濃度が、内部200bのマグネシウム濃度よりも高いことが好ましい。またEDX線分析をしたとき、表層部200aのマグネシウム濃度のピークトップは、正極活物質200の表面から中心に向かった深さ3nmまでに存在することが好ましく、深さ1nmまでに存在することがより好ましく、深さ0.5nmまでに存在することがさらに好ましい。またマグネシウムの濃度分布はピークトップから1nmずれた位置でピークトップの60%以下に減衰するような濃度勾配を有することが好ましい。またピークトップから2nmずれた位置でピークトップの30%以下に減衰するような濃度勾配を有することが好ましい。ずれた位置とは、ピークトップから表面側にずれてもよいし、内部側にずれてもよい。上記濃度勾配は表面側又は内部側のいずれか一方にずれた位置に存在すればよい。
また添加元素Xとしてマグネシウム及びフッ素を有する正極活物質200では、フッ素の分布は、マグネシウムの分布と重畳することが好ましい。例えばフッ素濃度のピークトップと、マグネシウム濃度のピークトップの位置の差が10nm以内であると好ましく、3nm以内であるとより好ましく、1nm以内であるとさらに好ましい。
またEDX線分析をしたとき、表層部200aのフッ素濃度のピークトップは、正極活物質200の表面から中心に向かった深さ3nmまでに存在することが好ましく、深さ1nmまでに存在することがより好ましく、深さ0.5nmまでに存在することがさらに好ましい。またフッ素濃度のピークトップはマグネシウムの濃度のピークトップよりもわずかに表面側に存在すると、フッ酸への耐性が増してより好ましい。例えばフッ素濃度のピークトップはマグネシウムの濃度のピークトップよりも0.5nm以上表面側であるとより好ましく、1.5nm以上表面側であるとさらに好ましい。
また添加元素Xとしてニッケルを有する正極活物質200では、表層部200aのニッケル濃度のピークトップは、正極活物質200の表面から中心に向かった深さ3nmまでに存在することが好ましく、深さ1nmまでに存在することがより好ましく、深さ0.5nmまでに存在することがさらに好ましい。またマグネシウム及びニッケルを有する正極活物質200では、ニッケルの分布は、マグネシウムの分布と重畳することが好ましい。例えばマグネシウム濃度のピークトップと、マグネシウム濃度のピークトップの位置の差が10nm以内であると好ましく、3nm以内であるとより好ましく、1nm以内であるとさらに好ましい。
また正極活物質200が添加元素Yとしてアルミニウムを有する場合は、EDX線分析をしたとき、表層部200aのアルミニウム濃度のピークトップよりも、マグネシウム、ニッケル又はフッ素の濃度のピークトップが表面に近いことが好ましい。例えばアルミニウム濃度のピークトップは正極活物質200の表面から中心に向かった深さ0.5nm以上50nm以下に存在することが好ましく、深さ5nm以上50nm以下に存在することがより好ましい。
また正極活物質200についてEDX線分析、面分析又は点分析をしたとき、マグネシウム濃度のピークトップにおけるマグネシウムMgとコバルトCoの原子数の比(Mg/Co)は0.05以上0.6以下が好ましく、0.1以上0.4以下がより好ましい。アルミニウム濃度のピークトップにおけるアルミニウムAlとコバルトCoの原子数の比(Al/Co)は0.05以上0.6以下が好ましく、0.1以上0.45以下がより好ましい。ニッケル濃度のピークトップにおけるニッケルNiとコバルトCoの原子数の比(Ni/Co)は0以上0.2以下が好ましく、0.01以上0.1以下がより好ましい。フッ素濃度のピークトップにおけるフッ素FとコバルトCoの原子数の比(F/Co)は0以上1.6以下が好ましく、0.1以上1.4以下がより好ましい。
なおEDX線分析結果における正極活物質200の表面は、例えば以下のように推定することができる。正極活物質200の内部200bにおいて均一に存在する元素、例えば酸素又はコバルトについて、内部200bの検出量の1/2となった点を表面とする。
正極活物質200は複合酸化物であるので、酸素の検出量を用いて表面を推定することができる。具体的には、まず内部200bの酸素の検出量が安定している領域から酸素濃度の平均値Oaveを求める。このとき明らかに表面より外と判断できる領域に化学吸着又はバックグラウンドによると考えられる酸素Obackgroundが検出される場合は、測定値からObackgroundを減じて酸素濃度の平均値Oaveとすることができる。この平均値Oaveの1/2の値、つまり1/2Oaveに最も近い測定値を示した測定点を、正極活物質の表面であると推定することができる。
またコバルトの検出量を用いても上記と同様に表面を推定することができる。又は複数の遷移金属の検出量の和を用いて同様に推定することもできる。コバルトをはじめとする遷移金属の検出量は化学吸着の影響を受けにくい点で、表面の推定に好適である。
また正極活物質200について線分析又は面分析をしたとき、結晶粒界201近傍における添加元素AとコバルトCoの比(A/Co)は0.020以上0.50以下が好ましい。さらには0.025以上0.30以下が好ましい。さらには0.030以上0.20以下が好ましい。又は0.020以上0.30以下が好ましい。又は0.020以上0.20以下が好ましい。又は0.025以上0.50以下が好ましい。又は0.025以上0.20以下が好ましい。又は0.030以上0.50以下が好ましい。又は0.030以上0.30以下が好ましい。
例えば添加元素Xがマグネシウムのとき、正極活物質200について線分析又は面分析をしたとき、結晶粒界201近傍におけるマグネシウムとコバルトの原子数の比(Mg/Co)は、0.020以上0.50以下が好ましい。さらには0.025以上0.30以下が好ましい。さらには0.030以上0.20以下が好ましい。又は0.020以上0.30以下が好ましい。又は0.020以上0.20以下が好ましい。又は0.025以上0.50以下が好ましい。又は0.025以上0.20以下が好ましい。又は0.030以上0.50以下が好ましい。又は0.030以上0.30以下が好ましい。
≪EPMA≫
EPMA(電子プローブ微小分析)も元素の定量が可能である。面分析ならば各元素の分布を分析することができる。
本発明の一態様の正極活物質200の断面についてEPMA面分析をしたとき、EDXの分析結果と同様に、添加元素Aから選ばれた一又は二以上が濃度勾配を有していることが好ましい。また添加元素Aによって、濃度ピークの表面からの深さが異なっていることがより好ましい。各添加元素Aの濃度ピークの好ましい範囲も、EDXの場合と同様である。
ただしEPMAでは表面から1μm程度の深さまでの領域を分析する。そのため、各元素の定量値が他の分析法を用いた測定結果と異なる場合がある。例えば正極活物質200の表面分析をEPMAで行ったとき、表層部200aに存在する各添加元素Aの濃度が、XPSの結果より低くなる場合がある。
≪充電曲線とdQ/dV曲線≫
本発明の一態様の正極活物質200は、充電していくとき特徴的な電圧の変化が表れることがある。電圧の変化は、充電曲線から容量(Q)を電圧(V)で微分(dQ/dV)することで得られるdQ/dV曲線から読み取ることができる。例えばdQ/dV曲線におけるピークの前後では、非平衡な相変化が起き、結晶構造が大きく変わっていると考えられる。なお本明細書等において、非平衡な相変化とは、物理量の非線形変化を起こす現象をいうこととする。
本発明の一態様の正極活物質200は、dQ/dV曲線において、4.55V付近にブロードなピークを有する場合がある。4.55V付近のピークは、O3型からO3’型へと相変化する際の電圧の変化を反映している。そのためこのピークがブロードであることは、ピークが鋭い場合よりもリチウムが引き抜かれるのに必要なエネルギーの変化が少ない、すなわち結晶構造の変化が少ないことを意味する。これらの変化は少ない方が、CoO層のずれ及び体積の変化の影響が少なく、好ましい。
より具体的には、充電曲線のdQ/dV曲線において、4.5V以上4.6V以下に現れる最大値を第1のピークとしたとき、第1のピークの半値幅が0.10V以上であると十分にブロードであるといえ、好ましい。本明細書等において第1のピークの半値幅は、4.3V以上4.5V以下に現れるdQ/dV値の最小値を第1の最小値としたときの、第1のピークと第1の最小値との平均値HWHMと、4.6V以上4.8V以下に現れるdQ/dV値の最小値を第2の最小値としたときの第1のピークと第2の最小値との平均値HWHMと、の差とする。
dQ/dV曲線を取得する際の充電は、例えば4.9Vまで10mA/gで定電流充電とすることができる。また初回充電のdQ/dVを取得するときは、測定前に100mA/gで2.5Vまで放電したのちに上記充電を開始することが好ましい。
充電時のデータ取り込み間隔の設定は、例えば1秒間隔又は1mVの電圧変動があったときの電圧及び電流を取り込む設定とすることができる。電流値と時間を積算した値を充電容量とする。
上記充電容量のデータの、n番目とn+1番目データの差分を、容量の変化dQのn番目の値とする。同様に上記電圧データの、n番目とn+1番目データの差分を、電圧の変化dVのn番目の値とする。
ただし上記のデータを用いると微細なノイズの影響が大きいため、電圧及び充電容量の差分について、ある区間数の移動平均からdQ/dVを求めてもよい。区間数は例えば500とすることができる。
具体的には、dQのn番目からn+500番目までの平均値を算出し、同様にdVのn番目からn+500番目までの平均値を算出する。dQ(500個平均)/dV(500個平均)を、dQ/dVとすることができる。dQ/dV曲線における横軸の電圧も、同じように区間数500の移動平均の値を用いることができる。なお上記のような区間数500の移動平均を用いる場合は、最後から501番目のデータから最後のデータはノイズの影響が大きくなるため、dQ/dV曲線には用いないことが好ましい。
また複数回充放電した後のdQ/dV曲線を分析する場合、該複数回の充放電条件は上記の充電条件と異なっていてもよい。例えば充電は任意の電圧(例えば4.6V、4.65V、4.7V、4.75V又は4.8V)、100mA/gで定電流充電し、その後電流値が10mA/gとなるまで定電圧充電し、放電は2.5V、100mA/gで定電流放電とすることができる。
なお、4.55V付近においてO3型からO3’型へと相変化するが、このときのO3型はLiCoO中のxが0.3程度である。これは図17で説明したx=1のO3型と同じ対称性を有するが、CoO層間の距離は若干異なる。本明細書等において、xの大きさの異なるO3型を区別する場合、x=1のO3型をO3(2θ=18.85)、x=0.3程度のO3型をO3(2θ=18.57)ということとする。これは、XRD測定において2θが19°付近に現れるピークの位置が、CoO層間距離と対応するためである。
≪放電曲線とdQ/dV曲線≫
また、本発明の一態様の正極活物質200は、高電圧で充電した後、例えば40mA/g以下の低い電流で放電すると、放電終了間近に特徴的な電圧の変化が表れることがある。この変化は、放電曲線から求めたdQ/dV曲線において、3.9V前後に出現するピークよりも低電圧で、3.5Vまでの範囲に、少なくとも1つのピークが存在することで明瞭に確かめることができる。
≪ESR≫
本発明の一態様の正極活物質200はコバルトを有し、添加元素Aとしてニッケル及びマグネシウムを有することが好ましい。その結果一部のCo3+がNi3+に置換され、また一部のLiがMg2+に置換されることが好ましい。LiがMg2+に置換されることに伴い、当該Ni3+は還元されて、Ni2+になることがある。また、一部のLiがMg2+に置換され、それに伴いMg2+近傍のCo3+が還元されてCo2+になる場合がある。また、一部のCo3+がMg2+に置換され、それに伴いMg2+近傍のCo3+が酸化されてCo4+になる場合がある。
したがって正極活物質200は、Ni2+、Ni3+、Co2+及びCo4+のいずれか一以上を有することが好ましい。また、正極活物質200の重量当たりのNi2+、Ni3+、Co2+及びCo4+のいずれか一以上に起因するスピン密度が、2.0×1017spins/g以上1.0×1021spins/g以下であることが好ましい。前述のスピン密度を有する正極活物質200とすることで、特に充電状態での結晶構造が安定となり好ましい。なお、マグネシウム濃度が高すぎると、Ni2+、Ni3+、Co2+及びCo4+のいずれか一以上に起因するスピン密度が低くなる場合がある。
正極活物質中のスピン密度は、例えば、電子スピン共鳴法(ESR:Electron Spin Resonance)などを用いて分析することができる。
≪表面粗さと比表面積≫
本発明の一態様の正極活物質200は、表面がなめらかで凹凸が少ないことが好ましい。表面がなめらかで凹凸が少ないことは、後述する融剤の効果が十分に発揮されて、添加元素A源と複合酸化物の表面が溶融したことを示す。そのため表層部200aにおける添加元素Aの分布が良好であることを示す一つの要素である。分布が良好であるとは、例えば表層部200aにおける添加元素Aの濃度の分布が均一であることをいう。
表面がなめらかで凹凸が少ないことは、例えば正極活物質200の断面SEM像又は断面TEM像、正極活物質200の比表面積等から判断することができる。
例えば以下のように、正極活物質200の断面SEM像から表面のなめらかさを数値化することができる。
まず正極活物質200をFIB等により加工して断面を露出させる。このとき保護膜、保護剤等で正極活物質200を覆うことが好ましい。次に保護膜等と正極活物質200との界面のSEM像を撮影する。該SEM像に画像処理ソフトでノイズ処理を行う。例えばガウスぼかし(σ=2)を行った後、二値化を行う。さらに画像処理ソフトで界面抽出を行う。さらに自動選択ツール等で保護膜等と正極活物質200との界面ラインを選択し、データを表計算ソフト等に抽出する。表計算ソフト等の機能を用いて、回帰曲線(二次回帰)から補正を行い、傾き補正後データからラフネス算出用パラメータを求め、標準偏差を算出した二乗平均平方根表面粗さ(RMS)を求める。また、この表面粗さは、正極活物質は少なくとも外周の400nmにおける表面粗さである。
本実施の形態の正極活物質200の表面においては、ラフネスの指標である二乗平均平方根(RMS)表面粗さは3nm未満、好ましくは1nm未満、さらに好ましくは0.5nm未満の二乗平均平方根表面粗さ(RMS)であることが好ましい。
なおノイズ処理、界面抽出等を行う画像処理ソフトについては特に限定されないが、例えば「ImageJ」を用いることができる。また表計算ソフト等についても特に限定されないが、例えばMicrosoft Office Excelを用いることができる。
また例えば、定容法によるガス吸着法にて測定した実際の比表面積Sと、理想的な比表面積Sとの比からも、正極活物質200の表面のなめらかさを数値化することができる。
理想的な比表面積Sは、すべての正極活物質の直径がD50と同じであり、重量が同じであり、形状は理想的な球であるとして計算して求める。
メディアン径(D50)は、レーザ回折・散乱法を用いた粒度分布計等によって測定することができる。比表面積は、例えば定容法によるガス吸着法を用いた比表面積測定装置等によって測定することができる。
本発明の一態様の正極活物質200は、メディアン径(D50)から求めた理想的な比表面積Aと、実際の比表面積Sの比S/Sが2.1以下であることが好ましい。
又は、下記のような方法によっても正極活物質200の断面SEM像から表面のなめらかさを数値化することができる。
まず正極活物質200の表面SEM像を取得する。このとき観察前処理として導電性コーティングを施してもよい。観察面は電子線と垂直であることが好ましい。複数のサンプルを比較する場合は測定条件及び観察面積を同じとする。
次に画像処理ソフト(例えば「ImageJ」)を用いて上記のSEM像を例えば8ビットに変換した画像(これをグレースケール画像と呼ぶ)を取得する。グレースケール画像は輝度(明るさ情報)を含んでいる。例えば8ビットのグレースケール画像では、輝度を2の8乗=256階調で表すことができる。暗い部分は階調数が低くなり、明るい部分は階調数が高くなる。階調数と関連付けて輝度変化を数値化することができる。当該数値をグレースケール値と呼ぶ。グレースケール値を取得することで正極活物質の凹凸を数値として評価することが可能となる。
さらに対象領域の輝度変化をヒストグラムで表すことも可能となる。ヒストグラムとは対象領域における階調分布を立体的に示したもので、輝度ヒストグラムとも呼ぶ。輝度ヒストグラムを取得することで正極活物質の凹凸を視覚的にわかりやすく、評価することが可能となる。
本発明の一態様の正極活物質200は、上記グレースケール値の最大値と最小値との差が120以下であることが好ましく、115以下であることがより好ましく、70以上115以下であることがさらに好ましい。またグレースケール値の標準偏差は、11以下となることが好ましく、8以下であることがより好ましく、4以上8以下であることがさらに好ましい。
≪電流休止法≫
本発明の一態様の正極活物質200が表層部に有するマグネシウムをはじめとする添加元素Aは、充放電を繰り返す過程で分布が若干変化する場合がある。例えば添加元素Aの分布がより良好になり、電子伝導抵抗が低下する場合がある。そのため充放電サイクルの初期において電気的な抵抗、すなわち電流休止法により測定される応答が速い抵抗成分R(0.1s)が下がる場合がある。
例えばn(nは1より大きい整数)回目の充電と、n+1回目の充電を比較したとき、電流休止法により測定される応答が速い抵抗成分R(0.1s)がn回目よりもn+1回目で低くなる場合がある。これに伴い、n回目の放電容量よりも、n+1回目の放電容量が高い場合がある。nが1の場合、つまり初回充電と2回目の充電を比較したとき、2回目の充電容量が大きくなることは、特に添加元素を含まない正極活物質でもありうるため、nは例えば2以上10以下であることが好ましい。ただし充放電サイクルの初期であればこれに限らない。定格容量と同程度、例えば定格容量の97%以上の充放電容量を有する場合は充放電サイクルの初期ということができる。
<追加の特徴>
正極活物質200は凹部、クラック、窪み、断面V字形などを有する場合がある。これらは欠陥の一つであり、充放電を繰り返すとこれらから遷移金属Mの溶出、結晶構造の崩れ、本体の割れ、酸素の脱離などが生じる恐れがある。しかこれらを埋め込むように図13Bに示すような埋め込み部202が存在すると、遷移金属Mの溶出などを抑制することができる。そのため信頼性及びサイクル特性の優れた正極活物質200とすることができる。
また正極活物質200は添加元素Aが偏在する領域として図13Bに示すように凸部203を有していてもよい。
上述したように正極活物質200が有する添加元素Aは、過剰であるとリチウムの挿入及び脱離に悪影響が出る恐れがある。また二次電池としたときに内部抵抗の上昇、充放電容量の低下等を招く恐れもある。一方、不足であると表層部200a全体に分布せず、結晶構造の劣化を抑制する効果が不十分になる恐れがある。このように添加元素Aは正極活物質200において適切な濃度である必要があるが、その調整は容易ではない。
そのため正極活物質200が、添加元素Aが偏在する領域を有していると、過剰な添加元素Aの一部が正極活物質200の内部200bから除かれ、内部200bにおいて適切な添加元素Aの濃度とすることができる。これにより二次電池としたときの内部抵抗の上昇、充放電容量の低下等を抑制することができる。二次電池の内部抵抗の上昇を抑制できることは、特に大電流での充放電、例えば400mA/g以上での充放電において極めて好ましい特性である。
また添加元素Aが偏在している領域を有する正極活物質200では、作製工程においてある程度過剰に添加元素Aを混合することが許容される。そのため生産におけるマージンが広くなり好ましい。
また正極活物質は、4.5V以上で充電するような条件、又は高温、例えば環境温度45℃以上の環境で充放電することにより、表面から内部に向かって深くまで進む進行性の欠陥が生じる場合がある。正極活物質において欠陥が進行して穴を形成する現象を孔食(Pitting Corrosion)とも呼ぶことができ、この現象で発生した穴を本明細書ではピットとも呼ぶ。
図21にピットを有する正極活物質51の断面模式図を示す。陽イオンの配列と平行な結晶面55を併せて示した。図21は断面図であるためピット54及びピット58を穴として示しているが、これらの開口形状は円ではなく奥行きがあり溝のような形状を有する。またピット54及びピット58に示すように、凹部52と異なりリチウムイオンの配列と平行に生じやすい。
また正極活物質51のうち添加元素Aの存在する表層部を53及び56で示す。ピットが生じた表層部は添加元素Aが53及び56よりも少ないか検出下限以下であり、バリア膜の機能が減じていると予想される。またピットができる近傍では複合酸化物の結晶構造が崩れ、層状岩塩型とは異なった結晶構造になると考えられる。結晶構造が崩れるとキャリアイオンであるリチウムイオンの拡散及び放出を阻害するため、ピットはサイクル特性劣化の要因と考えられる。
ピットの発生源は点欠陥の可能性がある。正極活物質が有する点欠陥が充放電を繰り返すことで変化し、周囲の電解質等によって化学的又は電気化学的に侵食されるか、若しくは材質が劣化して生じると考えられる。この劣化は、正極活物質の表面で均一に発生するのではなく、局部的に集中して生じる。
また、図21のクラック57に示すように、充放電による正極活物質の膨張及び収縮によりクラック(割れ目とも呼ぶ)などの欠陥が発生する場合もある。本明細書において、クラックとピットは異なる。正極活物質の作製直後にクラックは存在してもピットは存在しない。ピットは、例えば4.5V以上の高電圧条件又は高温(45℃以上)下で充放電することにより、遷移金属M及び酸素が何層分か抜けた穴とも言え、遷移金属Mが溶出した箇所ともいえる。クラックは例えば物理的な圧力が加えられることで生じる新たな面、或いは結晶粒界201が起因となって生じた割れ目を指す。充放電による正極活物質の膨張及び収縮によりクラックが発生する場合もある。また、クラック及び/又は正極活物質内部の空洞からピットが発生する場合もある。
[正極活物質の作製方法]
先の実施の形態で説明したような添加元素Aの分布、組成、及び/又は結晶構造を有する正極活物質200を作製する方法について説明する。
正極活物質200の作製工程において、まずリチウムと遷移金属を有する複合酸化物を合成し、その後添加元素A源を混合して加熱処理を行うことが好ましい。
遷移金属M源と、リチウム源と同時に添加元素A源を混合して、添加元素Aと、リチウムと遷移金属Mを有する複合酸化物を合成する方法では、表層部200aの添加元素Aの濃度を高めることが難しい。またリチウムと遷移金属Mを有する複合酸化物を合成した後、添加元素A源を混合するのみで加熱を行わなければ、添加元素は複合酸化物に固溶することなく付着するのみである。十分な加熱を経なければ、やはり添加元素Aを良好に分布させることが難しい。そのため複合酸化物を合成してから添加元素A源を混合し、加熱処理を行うことが好ましい。この添加元素A源を混合した後の加熱処理をアニールという場合がある。
しかしながらアニールの温度が高すぎると、カチオンミキシングが生じて添加元素A、例えばマグネシウムが遷移金属Mサイトに入る可能性が高まる。遷移金属Mサイトに存在するマグネシウムは、LiCoO中のxが小さいときR−3mの層状岩塩型の結晶構造を保つ効果がない。さらに、加熱処理の温度が高すぎると、コバルトが還元されて2価になってしまう、リチウムが蒸散又は昇華するなどの悪影響も懸念される。
そこで添加元素A源と共に、融剤として機能する材料を混合することが好ましい。リチウムと遷移金属Mを有する複合酸化物より融点が低ければ、融剤として機能する材料といえる。例えばフッ化リチウムをはじめとするフッ素化合物が好適である。融剤を加えることで、添加元素A源と、リチウムと遷移金属Mを有する複合酸化物の融点降下が起こる。融点降下させることでカチオンミキシングが生じにくい温度で、添加元素Aを良好に分布させることが容易となる。
さらにリチウムと遷移金属Mを有する複合酸化物を合成した後、添加元素Aを混合する前にも加熱を行うとより好ましい。この加熱を初期加熱という場合がある。
初期加熱により、リチウムと遷移金属Mを有する複合酸化物の表層部200aの一部からリチウムが脱離する影響で、添加元素Aの分布がさらに良好になる。
より詳細には以下のような機序で、初期加熱により添加元素Aによって分布を異ならせやすくなると考えられる。まず初期加熱により表層部200aの一部からリチウムが脱離する。次にこのリチウムが欠乏した表層部200aを有するリチウムと遷移金属Mを有する複合酸化物と、ニッケル源、アルミニウム源、マグネシウム源をはじめとする添加元素A源を混合し加熱する。添加元素Aのうちマグネシウムは2価の典型元素であり、ニッケルは遷移金属であるが2価のイオンになりやすい。そのため表層部200aの一部に、Mg2+及びNi2+と、リチウムの欠乏により還元されたCo2+と、を有する岩塩型の相が形成される。
添加元素Aのうちニッケルは、表層部200aが層状岩塩型のリチウムと遷移金属Mを有する複合酸化物の場合は固溶しやすく内部200bまで拡散するが、表層部200aの一部が岩塩型の場合は表層部200aにとどまりやすい。
またこれらの岩塩型では、金属Meと酸素の結合距離(Me−O距離)が層状岩塩型よりも長くなる傾向にある。
例えば岩塩型Ni0.5Mg0.5OにおけるMe−O距離は0.209nm、岩塩型MgOにおけるMe−O距離は0.211nmである。また仮に表層部200aの一部にスピネル型の相が形成されたとしても、スピネル型NiAlのMe−O距離は0.20125nm、スピネル型MgAlのMe−O距離は0.202nmである。いずれもMe−O距離は0.2nmを超える。
一方、層状岩塩型では、リチウム以外の金属と酸素の結合距離は上記より短い。例えば層状岩塩型LiAlOにおけるAl−O距離は0.1905nm(Li−O距離は0.211nm)である。また層状岩塩型LiCoOにおけるCo−O距離は0.1.9224nm(Li−O距離は0.20916nm)である。
なおシャノンのイオン半径(Shannon et al.,Acta A 32(1976)751.)によれば、6配位のアルミニウムのイオン半径は0.0535nm、6配位の酸素のイオン半径は0.14nmであり、これらの和は0.1935nmである。
以上から、アルミニウムは、岩塩型よりも層状岩塩型のリチウム以外のサイトでより安定に存在すると考えられる。そのため、アルミニウムは表層部200aの中でも岩塩型の相を有する表面に近い領域よりも、層状岩塩型を有するより深い領域、及び/又は内部200bに分布しやすい。
また初期加熱により、内部200bの層状岩塩型の結晶構造の結晶性を高める効果も期待できる。
しかし、必ずしも初期加熱は行わなくてもよい。他の加熱工程、例えばアニールにおいて、雰囲気、温度、時間等を制御することで、LiCoO中のxが小さいときにO3’型を有する正極活物質200を作製できる場合がある。
初期加熱を経る正極活物質200の作製フローの一例について、図22A乃至図22Cを用いて説明する。
<ステップS11>
図22Aに示すステップS11では、出発材料であるリチウム及び遷移金属Mの材料として、それぞれリチウム源(Li源)及び遷移金属M源(M源)を準備する。
リチウム源としては、リチウムを有する化合物を用いると好ましく、例えば炭酸リチウム、水酸化リチウム、硝酸リチウム、又はフッ化リチウム等を用いることができる。リチウム源は純度が高いと好ましく、例えば純度が99.99%以上の材料を用いるとよい。
遷移金属Mは、周期表に示す4族乃至13族に記載された元素から選ぶことができ、例えば、マンガン、コバルト、及びニッケルのうち少なくとも一以上を用いる。遷移金属Mとして、コバルトのみを用いる場合、ニッケルのみを用いる場合、コバルトとマンガンの2種を用いる場合、コバルトとニッケルの2種を用いる場合、又は、コバルト、マンガン、ニッケルの3種を用いる場合がある。コバルトのみを用いる場合、得られる正極活物質はコバルト酸リチウム(LCO)を有し、コバルト、マンガン、及びニッケルの3種を用いる場合、得られる正極活物質はニッケル−コバルト−マンガン酸リチウム(NCM)を有する。
遷移金属M源としては、上記遷移金属Mを有する化合物を用いると好ましく、例えば上記遷移金属Mとして例示した金属の酸化物、又は例示した金属の水酸化物等を用いることができる。コバルト源であれば、酸化コバルト、水酸化コバルト等を用いることができる。マンガン源であれば、酸化マンガン、水酸化マンガン等を用いることができる。ニッケル源であれば、酸化ニッケル、水酸化ニッケル等を用いることができる。遷移金属ではないがアルミニウム源を用いることも可能であり、アルミニウム源であれば、酸化アルミニウム、水酸化アルミニウム等を用いることができる。
遷移金属M源は純度が高いと好ましく、例えば純度が3N(99.9%)以上、好ましくは4N(99.99%)以上、より好ましくは4N5(99.995%)以上、さらに好ましくは5N(99.999%)以上の材料を用いるとよい。高純度の材料を用いることで、正極活物質の不純物を制御することができる。その結果、二次電池の容量が高まり、及び/又は二次電池の信頼性が向上する。
加えて、遷移金属M源の結晶性が高いと好ましく、例えば単結晶粒を有するとよい。遷移金属M源の結晶性の評価としては、TEM(透過電子顕微鏡)像、STEM(走査透過電子顕微鏡)像、HAADF−STEM(高角散乱環状暗視野走査透過電子顕微鏡)像、ABF−STEM(環状明視野走査透過電子顕微鏡)像等による判断、又はX線回折(XRD)、電子線回折、中性子線回折等の判断がある。なお、上記の結晶性の評価に関する手法は、遷移金属M源だけではなく、その他の結晶性の評価にも適用することができる。
また、2以上の遷移金属M源を用いる場合、当該2以上の遷移金属M源が層状岩塩型の結晶構造をとりうるような割合(混合比)で用意すると好ましい。
<ステップS12>
次に、図22Aに示すステップS12として、リチウム源及び遷移金属M源を粉砕及び混合して、混合材料を作製する。粉砕及び混合は、乾式又は湿式で行うことができる。湿式はより小さく解砕することができるため好ましい。湿式で行う場合は、溶媒を準備する。溶媒としてはアセトン等のケトン、エタノール及びイソプロパノール等のアルコール、エーテル、ジオキサン、アセトニトリル、N−メチル−2−ピロリドン(NMP)等を用いることができる。リチウムと反応が起こりにくい、非プロトン性溶媒を用いることがより好ましい。本実施の形態では、純度が99.5%以上の脱水アセトンを用いることとする。水分含有量を10ppm以下まで抑えた、純度が99.5%以上の脱水アセトンにリチウム源及び遷移金属M源を混合して、解砕及び混合を行うと好適である。上記のような純度の脱水アセトンを用いることで、混入しうる不純物を低減することができる。
混合等の手段にはボールミル、又はビーズミル等を用いることができる。ボールミルを用いる場合は、粉砕メディアとして酸化アルミニウムボール又は酸化ジルコニウムボールを用いるとよい。酸化ジルコニウムボールは不純物の排出が少なく好ましい。また、ボールミル、又はビーズミル等を用いる場合、メディアからのコンタミネーションを抑制するために、周速を、100mm/s以上2000mm/s以下とするとよい。本実施の形態では、周速838mm/s(回転数400rpm、ボールミルの直径40mm)として実施する。
<ステップS13>
次に、図22Aに示すステップS13として、上記混合材料を加熱する。加熱温度は、800℃以上1100℃以下で行うことが好ましく、900℃以上1000℃以下で行うことがより好ましく、950℃程度がさらに好ましい。温度が低すぎると、リチウム源及び遷移金属M源の分解及び溶融が不十分となるおそれがある。一方温度が高すぎると、リチウム源からリチウムが蒸散する、及び/又は遷移金属M源として用いる金属が過剰に還元される、などが原因となり欠陥が生じるおそれがある。当該欠陥とは、例えば遷移金属Mとしてコバルトを用いる場合、過剰に還元されるとコバルトが3価から2価へ変化し、酸素欠陥などを誘発することがある。
加熱時間は短すぎるとLiMOが合成されないが、長すぎると生産性が低下する。例えば加熱時間は1時間以上100時間以下とするとよく、2時間以上20時間以下とすることが好ましい。
昇温レートは、加熱温度の到達温度によるが、80℃/h以上250℃/h以下がよい。例えば1000℃で10時間加熱する場合、昇温は200℃/hとするとよい。
加熱雰囲気は、乾燥空気等の水が少ない雰囲気で行うことが好ましく、例えば露点が−50℃以下、より好ましくは露点が−80℃以下の雰囲気がよい。本実施の形態においては、露点−93℃の雰囲気にて、加熱を行うこととする。また材料中に混入しうる不純物を抑制するためには、加熱雰囲気におけるCH、CO、CO、及びH等の不純物濃度を、それぞれ5ppb(parts per billion)以下にするとよい。
加熱雰囲気として酸素を有する雰囲気が好ましい。例えば反応室に乾燥空気を導入し続ける方法がある。この場合、乾燥空気の流量は10L/minとすることが好ましい。酸素を反応室へ導入し続け、酸素が反応室内を流れている方法をフローと呼ぶ。
加熱雰囲気を、酸素を有する雰囲気とする場合、フローさせないやり方でもよい。例えば反応室を減圧してから酸素を充填し、当該酸素が反応室から出入りしないようにする方法でもよく、これをパージと呼ぶ。例えば反応室を−970hPaまで減圧してから、50hPaまで酸素を充填すればよい。
加熱後の冷却は自然放冷でよいが、規定温度から室温までの降温時間が10時間以上50時間以下に収まると好ましい。ただし、必ずしも室温までの冷却は要せず、次のステップが許容する温度まで冷却されればよい。
本工程の加熱は、ロータリーキルン又はローラーハースキルンによる加熱を行ってもよい。ロータリーキルンによる加熱は、連続式、バッチ式いずれの場合でも攪拌しながら加熱することができる。
加熱の際に用いる、るつぼ又はさやは、アルミナ(酸化アルミニウム)製、ムライト・コーディライト製、マグネシア製、ジルコニア製等の耐熱性が高い材料を有すると好ましい。さらに酸化アルミニウムは不純物が混入しづらい材料のため、アルミナ製のるつぼ又はさやの純度は99%以上、好ましくは99.5%以上となる。本実施の形態においては、純度が99.9%の酸化アルミニウム製のるつぼを用いる。るつぼ又はさやには蓋を配して加熱すると好ましい。材料の揮発又は昇華を防ぐことができる。
加熱が終わったあと、必要に応じで粉砕し、さらにふるいを実施してもよい。加熱後の材料を回収する際に、るつぼから乳鉢へ移動させたのち回収してもよい。また、当該乳鉢は酸化アルミニウム製の乳鉢を用いると好適である。酸化アルミニウム製の乳鉢は不純物を放出しにくい材質である。具体的には、純度が90%以上、好ましくは純度が99%以上の酸化アルミニウムの乳鉢を用いる。なお、ステップS13以外の後述の加熱の工程においても、ステップS13と同等の加熱条件を適用できる。
<ステップS14>
以上の工程により、図22Aに示すステップS14で遷移金属Mを有する複合酸化物(LiMO)を得ることができる。複合酸化物は、LiMOで表されるリチウム複合酸化物の結晶構造を有すればよく、その組成が厳密にLi:M:O=1:1:2に限定されるものではない。遷移金属Mとしてコバルトを用いた場合、コバルトを有する複合酸化物と称し、LiCoOで表される。組成については厳密にLi:Co:O=1:1:2に限定されるものではない。
ステップS11乃至ステップS14のように固相法で複合酸化物を作製する例を示したが、共沈法で複合酸化物を作製してもよい。また水熱法で複合酸化物を作製してもよい。
<ステップS15>
次に、図22Aに示すステップS15として、上記複合酸化物を加熱する。複合酸化物に対する最初の加熱のため、ステップS15の加熱を初期加熱と呼ぶことがある。又は以下に示すステップS20の前に加熱するものであるため、予備加熱又は前処理と呼ぶことがある。
初期加熱により、上述したように複合酸化物の表層部200aの一部からリチウムが脱離する。また内部200bの結晶性を高める効果が期待できる。またステップS11等で準備したリチウム源及び/又は遷移金属Mには、不純物が混入していることがある。ステップ14で完成した複合酸化物から不純物を低減させることが、初期加熱によって可能である。
さらに初期加熱を経ることで、複合酸化物の表面がなめらかになる効果がある。表面がなめらかとは、凹凸が少なく、複合酸化物が全体的に丸みを帯び、さらに角部が丸みを帯びる様子をいう。さらに、表面へ付着した異物が少ない状態をなめらかと呼ぶ。異物は凹凸の要因となると考えられ、表面へ付着しない方が好ましい。
この初期加熱には、リチウム化合物源を用意しなくてよい。又は、添加元素A源を用意しなくてよい。又は、融剤として機能する材料を用意しなくてよい。
本工程の加熱時間は短すぎると十分な効果が得られないが、長すぎると生産性が低下する。例えばステップS13で説明した加熱条件から選択して実施することができる。当該加熱条件に補足すると、本工程の加熱温度は、複合酸化物の結晶構造を維持するため、ステップS13の温度より低くするとよい。また本工程の加熱時間は、複合酸化物の結晶構造を維持するため、ステップS13の時間より短くするとよい。例えば700℃以上1000℃以下の温度で、2時間以上20時間以下の加熱を行うとよい。
また内部200bの結晶性を高める効果とは、例えばステップS13で作製した複合酸化物が有する収縮差等に由来する歪み、ずれ等を緩和する効果である。
上記複合酸化物は、ステップS13の加熱によって、複合酸化物の表面と内部に温度差が生じることがある。温度差が生じると収縮差が誘発されることがある。温度差により、表面と内部の流動性が異なるため収縮差が生じるとも考えられる。収縮差に関連するエネルギーは、複合酸化物に内部応力の差を与えてしまう。内部応力の差は歪みとも称され、当該エネルギーを歪みエネルギーと呼ぶことがある。内部応力はステップS15の初期加熱により除去され、別言すると歪みエネルギーはステップS15の初期加熱により均質化されると考えられる。歪みエネルギーが均質化されると複合酸化物の歪みが緩和される。そのためステップS15を経ると複合酸化物の表面がなめらかになる可能性がある。表面が改善されたとも称する。別言すると、ステップS15を経ると複合酸化物に生じた収縮差が緩和され、複合酸化物の表面がなめらかになると考えられる。
また収縮差は上記複合酸化物にミクロなずれ、例えば結晶のずれを生じさせることがある。当該ずれを低減するためにも、本工程を実施するとよい。本工程を経ると、上記複合酸化物のずれを均一化させることが可能である。ずれが均一化されると、複合酸化物の表面がなめらかになる可能性がある。結晶粒の整列が行われたとも称する。別言すると、ステップS15を経ると複合酸化物に生じた結晶等のずれが緩和され、複合酸化物の表面がなめらかになると考えられる。
表面がなめらかな複合酸化物を正極活物質として用いると、二次電池として充放電した際の劣化が少なくなり、正極活物質の割れを防ぐことができる。
複合酸化物の表面がなめらかな状態は、複合酸化物の一断面において、表面の凹凸情報を測定データより数値化したとき、少なくとも10nm以下の表面粗さを有するということができる。一断面は、例えばSTEM観察の際に取得する断面である。
なお、ステップS14としてあらかじめ合成されたリチウム、遷移金属M及び酸素を有する複合酸化物を用いてもよい。この場合、ステップS11乃至ステップS13を省略することができる。あらかじめ合成された複合酸化物に対してステップS15を実施することで、表面がなめらかな複合酸化物を得ることができる。
初期加熱により複合酸化物のリチウムが減少する場合が考えらえる。次のステップS20等で説明する添加元素Aが減少したリチウムのおかげで複合酸化物に入りやすくなる可能性がある。
<ステップS20>
層状岩塩型の結晶構造をとりうる範囲で、表面がなめらかな複合酸化物に添加元素Aを加えてもよい。表面がなめらかな複合酸化物に添加元素Aを加えると、添加元素Aをムラなく添加することができる。よって、初期加熱後に添加元素Aを添加する順が好ましい。添加元素Aを添加するステップについて、図22B、及び図22Cを用いて説明する。
<ステップS21>
図22Bに示すステップS21では、複合酸化物に添加する添加元素A源(A源)を用意する。添加元素A源と合わせて、リチウム源を準備してもよい。
添加元素Aとしては、ニッケル、コバルト、マグネシウム、カルシウム、塩素、フッ素、アルミニウム、マンガン、チタン、ジルコニウム、イットリウム、バナジウム、鉄、クロム、ニオブ、ランタン、ハフニウム、亜鉛、ケイ素、硫黄、リン、ホウ素、及びヒ素から選ばれる一又は二以上を用いることができる。また、添加元素として、臭素、及びベリリウムから選ばれる一又は二以上を用いることもできる。ただし、臭素、及びベリリウムについては、生物に対し毒性を有する元素であるため、先に述べた添加元素を用いる方が好適である。
添加元素Aにマグネシウムを選んだとき、添加元素A源はマグネシウム源と呼ぶことができる。当該マグネシウム源としては、フッ化マグネシウム、酸化マグネシウム、水酸化マグネシウム、又は炭酸マグネシウム等を用いることができる。また上述したマグネシウム源を複数用いてもよい。
添加元素Aにフッ素を選んだとき、添加元素A源はフッ素源と呼ぶことができる。当該フッ素源としては、例えばフッ化リチウム、フッ化マグネシウム、フッ化アルミニウム、フッ化チタン、フッ化コバルト、フッ化ニッケル、フッ化ジルコニウム、フッ化バナジウム、フッ化マンガン、フッ化鉄、フッ化クロム、フッ化ニオブ、フッ化亜鉛、フッ化カルシウム、フッ化ナトリウム、フッ化カリウム、フッ化バリウム、フッ化セリウム、フッ化ランタン(LaF)、又は六フッ化アルミニウムナトリウム等を用いることができる。なかでも、フッ化リチウムは融点が848℃と比較的低く、後述する加熱工程で溶融しやすいため好ましい。
フッ化マグネシウムはフッ素源としてもマグネシウム源としても用いることができる。またフッ化リチウムはリチウム源としても用いることができる。ステップS21に用いられるその他のリチウム源は炭酸リチウムがある。
またフッ素源は気体でもよく、フッ素(F)、フッ化炭素、フッ化硫黄、又はフッ化酸素等を用い、後述する加熱工程において雰囲気中に混合させてもよい。また上述したフッ素源を複数用いてもよい。
本実施の形態では、フッ素源としてフッ化リチウム(LiF)を準備し、フッ素源及びマグネシウム源としてフッ化マグネシウム(MgF)を準備する。フッ化リチウムとフッ化マグネシウムは、LiF:MgF=65:35(モル比)及びその近傍で混合すると融点を下ゲル効果が最も高くなる。一方、フッ化リチウムが多くなると、リチウムが過剰になりすぎサイクル特性が悪化する懸念がある。そのため、フッ化リチウムとフッ化マグネシウムのモル比は、LiF:MgF=x:1(0≦x≦1.9)であることが好ましく、LiF:MgF=x:1(0.1≦x≦0.5)がより好ましく、LiF:MgF=x:1(x=0.33及びその近傍)がさらに好ましい。なお本明細書等において近傍とは、その値の0.9倍より大きく1.1倍より小さい値とする。
同時に、マグネシウムの添加量は、LiCoOを基準にして0.1原子%を超えて3原子%以下が好ましく、0.5原子%以上2原子%以下がより好ましく、0.5原子%以上1原子%以下がさらに好ましい。マグネシウムの添加量が0.1原子%以下であると、初回の放電容量は高いものの充電深度が高くなるような充放電を繰り返すことで急激に放電容量が低下する。マグネシウムの添加量が0.1原子%を超えて3原子%以下の場合は、充電深度が高くなるような充放電を繰り返しても初回放電特性及び充放電サイクル特性共に良好である。一方、マグネシウムの添加量が3原子%を超えると初回の放電容量、充放電サイクル特性ともに徐々に悪化する傾向がある。
<ステップS22>
次に、図22Bに示すステップS22では、マグネシウム源及びフッ素源を粉砕及び混合する。本工程は、ステップS12で説明した粉砕及び混合の条件から選択して実施することができる。
必要に応じてステップS22の後に加熱工程を行ってもよい。加熱工程はステップS13で説明した加熱条件から選択して実施することができる。加熱時間は2時間以上が好ましく、加熱温度は800℃以上1100℃以下が好ましい。
<ステップS23>
次に、図22Bに示すステップS23では、上記で粉砕、混合した材料を回収して、添加元素A源(A源)を得ることができる。なお、ステップS23に示す添加元素A源は、複数の出発材料を有するものであり、混合物と呼ぶことができる。
上記混合物の粒径は、メディアン径(D50)が600nm以上20μm以下であることが好ましく、1μm以上10μm以下であることがより好ましい。添加元素A源として、一種の材料を用いた場合においても、メディアン径(D50)が600nm以上20μm以下であることが好ましく、1μm以上10μm以下であることがより好ましい。
このような微粉化された混合物(添加元素Aが1種の場合も含む)であると、後の工程で複合酸化物と混合したときに、複合酸化物の表面に混合物を均一に付着させやすい。複合酸化物の表面に添加元素A源等の混合物が均一に付着していると、加熱後に複合酸化物の表層部に均一にフッ素及びマグネシウムを分布又は拡散させやすいため好ましい。フッ素及びマグネシウムが分布した領域を表層部と呼ぶこともできる。表層部にフッ素及びマグネシウムが含まれない領域があると、充電状態においてO3’型の結晶構造になりにくいおそれがある。なおフッ素を用いて説明したが、フッ素は塩素でもよく、これらを含むものとしてハロゲンと読み替えることができる。
<ステップS21>
図22Bとは異なる工程について図22Cを用いて説明する。図22Cに示すステップS21では、複合酸化物に添加する添加元素A源を4種用意する。すなわち図22Cは図22Bとは添加元素A源の種類が異なる。添加元素A源と合わせて、リチウム源を準備してもよい。
4種の添加元素A源として、マグネシウム源(Mg源)、フッ素源(F源)、ニッケル源(Ni源)、及びアルミニウム源(Al源)を準備する。なお、マグネシウム源及びフッ素源は図22Bで説明した化合物等から選択することができる。ニッケル源としては、酸化ニッケル、水酸化ニッケル等を用いることができる。アルミニウム源としては、酸化アルミニウム、水酸化アルミニウム、等を用いることができる。
<ステップS22>及び<ステップS23>
次に、図22Cに示すステップS22及びステップS23は、図22Bで説明したステップと同様である。
<ステップS31>
次に、図22Aに示すステップS31では、複合酸化物と、添加元素A源(A源)とを混合する。リチウム、遷移金属M及び酸素を有する複合酸化物中の遷移金属Mの原子数Mと、添加元素Aが有するマグネシウムの原子数Mgとの比は、M:Mg=100:y(0.1≦y≦6)であることが好ましく、M:Mg=100:y(0.3≦y≦3)であることがより好ましい。
ステップS31の混合は、複合酸化物を破壊させないためにステップS12の混合よりも穏やかな条件とすることが好ましい。例えば、ステップS12の混合よりも回転数が少ない、又は時間が短い条件とすることが好ましい。また湿式よりも乾式のほうが穏やかな条件であると言える。混合には例えばボールミル、ビーズミル等を用いることができる。ボールミルを用いる場合は、例えばメディアとして酸化ジルコニウムボールを用いることが好ましい。
本実施の形態では、直径1mmの酸化ジルコニウムボールを用いたボールミルで、150rpm、1時間、乾式で混合することとする。また該混合は、露点が−100℃以上−10℃以下のドライルームで行うこととする。
<ステップS32>
次に、図22AのステップS32において、上記で混合した材料を回収し、混合物903を得る。回収の際、必要に応じて解砕した後にふるいを実施してもよい。
なお、本実施の形態では、フッ素源としてフッ化リチウム、及びマグネシウム源としてフッ化マグネシウムを、初期加熱を経た複合酸化物にあとから添加する方法について説明している。しかしながら、本発明は上記方法に限定されない。ステップS11の段階、つまり複合酸化物の出発材料の段階でマグネシウム源及びフッ素源等をリチウム源及び遷移金属M源へ添加することができる。その後ステップS13で加熱してマグネシウム及びフッ素が添加されたLiMOを得ることができる。この場合は、ステップS11乃至ステップS14の工程と、ステップS21乃至ステップS23の工程を分ける必要がない。簡便で生産性が高い方法であるといえる。
また、あらかじめマグネシウム及びフッ素が添加された複合酸化物を用いてもよい。マグネシウム及びフッ素が添加された複合酸化物を用いれば、ステップS11乃至ステップS32、及びステップS20の工程を省略することができる。簡便で生産性が高い方法であるといえる。
又は、あらかじめマグネシウム及びフッ素が添加された複合酸化物に対して、ステップS20に従いさらにマグネシウム源及びフッ素源、又はマグネシウム源、フッ素源、ニッケル源、及びアルミニウム源を添加してもよい。
<ステップS33>
次に、図22Aに示すステップS33では、混合物903を加熱する。ステップS13で説明した加熱条件から選択して実施することができる。加熱時間は2時間以上が好ましい。
ここで加熱温度について補足する。ステップS33の加熱温度の下限は、複合酸化物(LiMO)と添加元素A源との反応が進む温度以上である必要がある。反応が進む温度とは、LiMOと添加元素A源との有する元素の相互拡散が起きる温度であればよく、これらの材料の溶融温度よりも低くてもよい。酸化物を例にして説明するが、溶融温度Tの0.757倍(タンマン温度T)から固相拡散が起こることがわかっている。そのため、ステップS33における加熱温度としては、500℃以上であればよい。
勿論、混合物903の少なくとも一部が溶融する温度以上であると、より反応が進みやすい。例えば、添加元素A源として、LiF及びMgFを有する場合、LiFとMgFの共融点は742℃付近であるため、ステップS33の加熱温度の下限は742℃以上とすると好ましい。
また、LiCoO:LiF:MgF=100:0.33:1(モル比)となるように混合して得られた混合物903は、示差走査熱量測定(DSC測定)において830℃付近に吸熱ピークが観測される。よって、加熱温度の下限は830℃以上がより好ましい。
加熱温度は高い方が反応が進みやすく、加熱時間が短く済み、生産性が高く好ましい。
加熱温度の上限はLiMOの分解温度(LiCoOの分解温度は1130℃)未満とする。分解温度の近傍の温度では、微量ではあるがLiMOの分解が懸念される。そのため、1000℃以下であるとより好ましく、950℃以下であるとさらに好ましく、900℃以下であるとさらに好ましい。
これらを踏まえると、ステップS33における加熱温度としては、500℃以上1130℃以下が好ましく、500℃以上1000℃以下がより好ましく、500℃以上950℃以下がさらに好ましく、500℃以上900℃以下がさらに好ましい。また、742℃以上1130℃以下が好ましく、742℃以上1000℃以下がより好ましく、742℃以上950℃以下がさらに好ましく、742℃以上900℃以下がさらに好ましい。また、800℃以上1100℃以下、830℃以上1130℃以下が好ましく、830℃以上1000℃以下がより好ましく、830℃以上950℃以下がさらに好ましく、830℃以上900℃以下がさらに好ましい。なおステップS33における加熱温度は、ステップ13よりも低いとよい。
さらに混合物903を加熱する際、フッ素源等に起因するフッ素又はフッ化物の分圧を適切な範囲に制御することが好ましい。
本実施の形態で説明する作製方法では、一部の材料、例えばフッ素源であるLiFが融剤として機能する場合がある。この機能により加熱温度を複合酸化物(LiMO)の分解温度未満、例えば742℃以上950℃以下にまで低温化でき、表層部にマグネシウムをはじめとする添加元素Aを分布させ、良好な特性の正極活物質を作製できる。
しかし、LiFは酸素よりも気体状態での比重が軽いため、加熱によりLiFが揮発又は昇華する可能性があり、揮発すると混合物903中のLiFが減少してしまう。すると融剤としての機能が弱くなってしまう。よって、LiFの揮発又は昇華を抑制しつつ、加熱する必要がある。なお、フッ素源等としてLiFを用いなかったとしても、LiMO表面のLiとフッ素源のFが反応して、LiFが生じ、揮発又は昇華する可能性もある。そのため、LiFより融点が高いフッ化物を用いたとしても、同じように揮発又は昇華の抑制が必要である。
そこで、LiFを含む雰囲気で混合物903を加熱すること、すなわち、加熱炉内のLiFの分圧が高い状態で混合物903を加熱することが好ましい。このような加熱により混合物903中のLiFの揮発又は昇華を抑制することができる。
本工程の加熱は、混合物903同士が固着しないように加熱すると好ましい。加熱中に混合物903同士が固着すると、雰囲気中の酸素との接触面積が減る、及び添加元素A(例えばフッ素)が拡散する経路を阻害することにより、表層部への添加元素A(例えばマグネシウム及びフッ素)の分布が悪化する可能性がある。
また、添加元素A(例えばフッ素)が表層部に均一に分布するとなめらかで凹凸が少ない正極活物質を得られると考えられている。そのため本工程でステップS15の加熱を経た、表面がなめらかな状態を維持する又はより一層なめらかになるためには、混合物903同士が固着しない方がよい。
また、ロータリーキルンによって加熱する場合は、キルン内の酸素を含む雰囲気の流量を制御して加熱することが好ましい。例えば酸素を含む雰囲気の流量を少なくする、最初に雰囲気をパージしキルン内に酸素雰囲気を導入した後は雰囲気のフローはしない、等が好ましい。酸素をフローするとフッ素源が揮発又は昇華する可能性があり、表面のなめらかさを維持するためには好ましくない。
ローラーハースキルンによって加熱する場合は、例えば混合物903の入った容器に蓋を配することでLiFを含む雰囲気で混合物903を加熱することができる。
加熱時間について補足する。加熱時間は、加熱温度、ステップS14のLiMOの大きさ、及び組成等の条件により変化する。LiMOが小さい場合は、大きい場合よりも低い温度又は短い時間がより好ましい場合がある。
図22AのステップS14の複合酸化物(LiMO)のメディアン径(D50)が12μm程度の場合、加熱温度は、例えば600℃以上950℃以下が好ましい。加熱時間は例えば3時間以上が好ましく、10時間以上がより好ましく、60時間以上がさらに好ましい。なお、加熱後の降温時間は、例えば10時間以上50時間以下とすることが好ましい。
一方、ステップS14の複合酸化物(LiMO)のメディアン径(D50)が5μm程度の場合、加熱温度は例えば600℃以上950℃以下が好ましい。加熱時間は例えば1時間以上10時間以下が好ましく、2時間程度がより好ましい。なお、加熱後の降温時間は、例えば10時間以上50時間以下とすることが好ましい。
<ステップS34>
次に、図22Aに示すステップS34では、加熱した材料を回収し、必要に応じて解砕して、正極活物質200を得る。このとき、回収された正極活物質200をさらに、ふるいにかけると好ましい。以上の工程により、本発明の一態様の正極活物質200を作製することができる。本発明の一態様の正極活物質は表面がなめらかである。
本実施の形態は、他の実施の形態と組み合わせ用いることができる。
(実施の形態5)
本実施の形態では、先の実施の形態で説明した二次電池の形態例について説明する。
<ラミネート型二次電池>
ラミネート型の二次電池100の例について、外観図の一例を図23A及び図23Bに示す。図23A及び図23Bは、正極層106、負極層107、電解質層103、外装体509、正極リード電極510及び負極リード電極511を有する。
<ラミネート型二次電池の作製方法>
図23Aに外観図を示すラミネート型二次電池の作製方法の一例について、図24B及び図24Cを用いて説明する。
図24Aに示すように、正極層106及び負極層107を用意する。正極層106において、正極活物質層102が正極集電体の一面に形成されている。正極活物質層102は正極集電体の他面に形成されていてもよい。また、正極層106は正極集電体が一部露出した領域(以下、タブ領域という)を有し、当該タブ領域を正極タブ501と記す。負極層107において、負極活物質層104は負極集電体の一面に形成されている。負極活物質層104は負極集電体の他面に形成されていてもよい。また、負極層107は負極集電体が一部露出した領域、すなわちタブ領域を有し、当該タブ領域を負極タブ504と記す。各タブ領域の面積及び形状は、図24Aに示す例に限られない。
次に、負極層107、電解質層103及び正極層106を積層する。図24Bに積層された負極層107、電解質層103及び正極層106を示す。電解質層103の面積は、負極層107、及び正極層106の面積より大きいとよい。図24Bでは負極を5組、正極を4組積層した構成例を示す。次に、正極タブ501同士の接合と、最表面のタブ領域への正極リード電極510の接合を行う。接合には、例えば超音波溶接等を用いればよい。同様に、負極タブ504同士の接合と、最表面のタブ領域への負極リード電極511の接合を行う。
次に、図24Cに示すように、外装体509上に、負極層107、電解質層103及び正極層106を配置し、外装体509を破線で示した部分で折り曲げる。その後、外装体509の外周部を接着する。接着に用いられた領域を接着領域と記す。接着には例えば熱圧着等を用いればよい。
次に、外装体509に設けられた導入口から、イオン液体を外装体509の内側へ注入することも可能である。イオン液体等の液体材料の導入は、減圧雰囲気下、または不活性雰囲気下で行うことが好ましい。そして最後に、導入口を接合する。このようにして、ラミネート型の二次電池100を作製することができる。
上記実施の形態で説明したように本発明の一態様の二次電池は、電解質層103において、固体電解質がイオン液体を保持している。別言すると、少なくとも電解質層103において、イオン液体は固体電解質に含浸している。このような電解質層103はイオン液体が浸みだすことがなく好ましい。
本実施の形態は、他の実施の形態と組み合わせ用いることができる。
(実施の形態6)
本実施の形態では、先の実施の形態で説明した二次電池の形態例について説明する。
例えば上述したラミネート型の二次電池100とした後に、曲げることができる。すなわち二次電池100は可撓性を有する。
図25Aに、曲げた形態の二次電池100を示す。図25Aには正極層106、電解質層103、及び負極層107を有する二次電池100が、正極層106側に曲がった形態を示す。勿論、二次電池100は負極層107側に曲がった形態を有することができる。本発明の一態様である電解質層103はイオン液体など電解液が漏れ出ることがないため、曲がった形態の二次電池100に好適である。なお曲がった形態とは、二次電池100の一断面において、円弧状となる部分を有する形状が含まれる。
二次電池を構成する最小単位を電池ユニットと記し、電池ユニットは正極層106、電解質層103、及び負極層107を有するものとする。本発明の一態様の二次電池100は、当該電池ユニットは複数有してもよい。すなわち二次電池100は当該電池ユニットが複数積層された構成を有してもよい。本発明の一態様である電解質層103はイオン液体など電解液が漏れ出ることがないため、ユニットを積層する場合に好適である。
図25Aでは一の電池ユニットを図示したが、電池ユニットが複数積層された構成であってもよい。
なお、二次電池100は外装体なども有するが、上記実施の形態で説明した外装体であれば、曲がった電池ユニットに追従することができる。よって、図25Aでは外装体を図示しない。
次に曲がった状態について詳述する。図25Aに示すように二次電池100は、曲率中心1800に近い側の層、例えば正極層106の曲率半径1802は、曲率中心1800から遠い側の層、例えば負極層107の曲率半径1804よりも小さくなる。曲げやすくするために、曲率半径が小さくなる層、例えば正極層106は、負極層107より厚みを小さくするとよい。
図25Bに示すが、図25Aのとおりに二次電池100を曲げると、矢印で示すように、正極層106の表面には圧縮応力がかかり、負極層107の表面には引っ張り応力がかかる。圧縮応力を緩和するために、曲率半径が小さくなる層、例えば正極層106は、負極層107より厚みを大きくしてもよい。
上述した圧縮応力及び引っ張り応力を緩和させる一形態として、外装体に凹部と凸部を設けた構成を、図26A及び図26Bを用いて説明する。
凹部と凸部は外装体1805の表面に形成されるものであり、模様のようなものとなる。なお、外装体1805の一断面で確認することができるが、外装体に凸部を設けると、凹部も同時に形成され、外装体に凹部を設けると、凸部も同時に形成される。すなわち外装体に凹部と凸部をともに形成する必要はなく、いずれか一方を設けることで他方は同時に形成される。
外装体1805により、上述した圧縮応力及び引っ張り応力を緩和させることができる。すなわち二次電池100は曲率中心に近い側の外装体の曲率半径が30mm以上好ましくは10mm以上となる範囲で変形することができる。
図26A及び図26Bに示した外装体1805の端部は、接着領域1807を有する。接着領域1807では熱圧着等により外装体1805が接着された領域である。接着領域1807において、外装体1805の間には、接着層1803が位置するとよい。
接着領域1807では、外装体1805の上下に設けられた凹部同士又は凸部同士が重なるとよい。凹部同士又は凸部同士が重なるために、外装体の接着時に改めて凹部又は凸部を外装体1805に形成してもよい。このような構成により接着強度を高めることができる。
図26Aでは外装体1805の端部であって、接着領域1807ではない領域1808は空間1810を有する二次電池100を示す。
図26Bでは外装体1805の端部であって、接着領域1807ではない領域1808はイオン液体118を有する二次電池100を示す。イオン液体118は電解質層103で保持されているが、曲げる形状の二次電池の場合、漏れ出すことが考えられる。なお、イオン液体118で満たされない場合、図26Bの領域1808はイオン液体118と空間を有する構成もある。外装体1805の接着力が高いため、イオン液体118が外装体1805から漏れ出すことはない。
曲がった形態の二次電池100の形状は、断面視において単純な円弧状に限定されず、一部が円弧を有する形状でもよい。例えば図27Aに示す形状、又は図27Bに示す波状、又はS字形状などとすることもできる。図27A及び図27Bに示した二次電池100にも上述した凹部又は凸部を有する外装体を適用でき、複数積層された電池ユニットを適用することができる。
図27A又は図27Bに示すように、二次電池100の曲面が複数の曲率中心を有する形状となる場合は、曲率中心に最も近い外装体の曲率半径が、10mm以上好ましくは30mm以上となる範囲で二次電池を曲げることができる。
本発明の一態様の二次電池は、電解質層103において、固体電解質がイオン液体を保持している。別言すると、少なくとも電解質層103において、イオン液体は固体電解質に含浸している。このような電解質層103はイオン液体が浸みだすことがなく好ましい。
本実施の形態は、他の実施の形態と組み合わせ用いることができる。
(実施の形態7)
本実施の形態では、二次電池を有する電子機器について説明する。
上述したとおり、本発明の一態様の二次電池は折り曲げ可能(可撓性を有すると呼称してもよい)である。すなわち、本発明の一態様の二次電池は、可撓性を持たせることができる。本発明の一態様の二次電池は、曲げられた状態で固定することが可能である。また本発明の一態様の二次電池二次電池は、曲げた状態から可変することも可能である。
[構成例1]
本発明の一態様として、腕時計型の電子機器に二次電池を搭載する場合を説明する。
図28Aに腕時計型の電子機器70を示す。腕時計型の電子機器70は、フレーム71(フレームはケースとも記す)、表示部72、ベルト21、バックル27、センサ74、操作ボタン77などを備える。腕時計型の電子機器70は、移動電話、電子メール、文章閲覧及び作成、音楽再生、インターネット通信、又はコンピュータゲームなどの種々のアプリケーションを実行することができる。
ベルト21とは時計を腕に装着するための部品であり、バンド、ストラップ又はブレスとも呼ばれる。
表示部72はその表示面が湾曲して設けられていてもよい。湾曲した表示面に沿って表示を行うことができる。また、表示部72はタッチセンサを備え、タッチセンサは湾曲した表示面に沿って配置することができる。また上記アプリケーションは、指又はスタイラスなどでタッチセンサに触れることで操作することができる。例えば、表示部72に表示されたアイコン73に触れることで、当該アイコンに関連づいたアプリケーションを起動することができる。
操作ボタン77は、電源のオン、オフ動作、無線通信のオン、オフ動作、マナーモードの実行及び解除、省電力モードの実行及び解除など、様々な機能を持たせることができる。操作ボタン77の機能は、腕時計型の電子機器70に組み込まれたオペレーティングシステムにより、自由に設定することができる。
腕時計型の電子機器70は、通信規格された近距離無線通信を実行することが可能である。例えば無線通信可能なヘッドセットと相互通信することによって、ハンズフリーで通話することもできる。腕時計型の電子機器70は、相互通信のためのアンテナを有する。アンテナは表示部72又はベルト21に設けることができる。
腕時計型の電子機器70はセンサ74を有することが好ましい。センサ74として例えば、指紋センサ、脈拍センサ、体温センサ等の人体センサ、タッチセンサ、加圧センサ、加速度センサ等が搭載されることが好ましい。
センサ74は、表示部72と重なる位置に搭載することができる。またセンサ74は、ベルト21に搭載することができる。図28Aではベルト21にセンサ74を搭載した構成を例示する。
センサ74はLED及びフォトダイオードを有するとよく、当該LEDから毛細血管に光を照射し、フォトダイオードで検知することで心拍を認識することができる。そのためセンサ74と重なる領域において、ベルト21は開口部23を有する。
腕時計型の電子機器70には、本発明の一態様の二次電池100を有している。本発明の一態様の二次電池100を用いることで、表示部72と重なる位置に二次電池を搭載することができる。表示部72の湾曲に沿って二次電池を配置することが可能である。
また本発明の一態様の二次電池100を用いることで、ベルト21に二次電池を搭載することができる。ベルト21の湾曲に沿って二次電池100を配置することが可能である。ベルト21に配置する場合、表示部72よりも設置面積が大きいため二次電池100を大きくすることができ好ましい。
さらにベルト21にはセンサ74が搭載される場合、二次電池100はセンサ74を間にして、少なくとも2つの領域に分かれていてもよい。
二次電池100の充電動作は無線給電又は有線給電により行うことが可能である。
図28Bは、二次電池100が組み込まれたベルト21の断面模式図を示す。
ベルト21は空洞部25が設けられており、当該空洞に二次電池100を配置すればよい。さらに当該空洞にはセンサ74を配置することができる。センサ74と重なる位置のベルト21は開口部23を有する。開口部23は窓とも呼ぶ。
ベルト21は、ステンレス材料、革材料、又は樹脂材料等を有しており、ベルト21は空洞部25を設けるために、少なくとも下部21a、中部21b、及び上部21cを有する。下部21aは中部21bを介して上部21cと接合することができる。
二次電池100が有するリード電極32の一部は、中部21bから突出して外部に露出することができる。すなわち二次電池100のリード電極32を中部21bに固定した後、下部21a及び上部21cを中部21bに固定するとよい。
リード電極32は、電子機器の端子、又は他の回路基板等と電気的に接続される。
また、ここでは一例として、ベルト21は、幅方向に貫通する孔26a、26b及び26cを有する例を示している。リード電極32側に設けられた孔26aは、例えばバネ棒等を用いて電子機器の筐体(ケース)と接続するためのものである。また、孔26bは、ベルト21とバックル27とを接続するためのものである。また孔26cは、バックル27が電子機器の筐体(ケース)と接続するためのものである。
図28Cに示すように、ベルト21を腕に沿って曲げることで、腕時計型の電子機器70を装着することができる。
[変形例1]
ベルト21を腕に沿って曲げたり、伸ばせる形態を説明する。ベルト21を腕に沿って曲げるとき、空洞部25をなすベルト21の厚さは、他の部分の厚さよりも薄くなる場合がある。このとき、外部から局所的に大きな力が、ベルト21の表面に垂直な向きにかかった場合には、二次電池100が変形してしまう、又は破損してしまう恐れもある。そこで、二次電池100の表面を保護する保護部材を、ベルト21の内部に配置することが好ましい。
図29Aは、保護部材が適用されたベルト21の断面模式図である。また、図29Bは、ベルト21の幅方向の断面模式図である。図29A及び図29Bでは、保護部材となる板部35a及び板部35bを示している。図29A及び図29Bに示すように、二次電池100は、板部35a及び板部35bに挟まれた状態で、ベルト21内に設けられている。
図29Cは、図29A中の破線で囲った領域を拡大した図である。図29Cに示すように、板部35a及び板部35bは、その端部が二次電池100よりも外側に位置するように、長さ方向に大きいことが好ましい。また図29Bに示すように、板部35a及び板部35bは、二次電池100幅よりも大きいことが好ましい。
ここで、ベルト21を曲げて使用するとき、二次電池100と、板部35a及び板部35bとが固定されていないことが好ましい。すなわち、ベルト21を曲げたときに、二次電池100、板部35a、及び板部35bが、それぞれずれることで独立に変形することが好ましい。
図29Dは、ベルト21を板部35bが内側になるように曲げたときの断面模式図であり、図29Eは、図29D中の破線で囲った領域の拡大図である。
このとき、ベルト21の上部21cの中立面が、二次電池100の概略中央部に位置するように、二次電池100が設けられている。そのため、ベルト21を曲げたときに、二次電池100の端部と、ベルト21の上部21cとの相対的な位置はほとんど変化しない。一方、曲げの外側に位置する板部35aは、その端部がベルト21の上部21cの内壁から離れるように変形する。また、曲げの内側に位置する板部35bは、その端部がベルト21の上部21cの内壁に近づくように変形する。
また、図29F及び図29Gは、板部35bが外側になるように曲げたときを示している。このとき、板部35aの端部はベルト21の上部21cの内壁に近づくようにスライドし、板部35bの端部は、ベルト21の上部21cの内壁から遠ざかるようにスライドする。
このように、ベルト21を曲げていない状態で、板部35aの端部、及び板部35bの端部と、ベルト21の上部21cとの間に隙間を設けることにより、板部35a又は板部35bの端部とベルト21の上部21cとが接触することなく、小さな力でベルト21を曲げることができる。
ここで、板部35a及び板部35bの長さを異ならせることにより、ベルト21を曲げすぎることを防止する機能を実現することができる。
図30を用いて腕時計型の電子機器70における表示部72と二次電池100の接続構成を説明する。
図30Aには、端子93及び端子94側から見たときの腕時計型の電子機器70を示す。腕時計型の電子機器70は表示部72を有する。また、図30Bに、ベルト21が有する二次電池100が接続されたフレーム71を示している。また図30Cは、図30Bを180度回転させた図である。
フレーム71は、腕時計型の電子機器70が係合する枠状の形状を有している。フレーム71の内側の面には、3つの端子91と、端子92が設けられている。
腕時計型の電子機器70は、フレーム71に3つの端子93と、端子94が設けられている。フレーム71の内側の面に設けられた3つの端子91は、電子機器を取り付けたときに、端子93と接触する位置に設けられている。また、同様に端子92は、端子94と接触する位置に設けられている。
フレーム71の外側の面には、ケース75が取り付けられている。またケース75が有する一対の端子部に、二次電池100のリード電極32が接合されている。ケース75内には、回路基板(図示しない)が設けられている。フレーム71に設けられた3つの端子91は、それぞれ回路基板(図示しない)の正極用端子、負極用端子、及び温度情報の出力用の端子と電気的に接続される。
端子92は、操作ボタンと、腕時計型の電子機器70が有する端子94とを接続する部分である。端子94は物理ボタンであってもよいし、電極であってもよい。端子94が物理ボタンのとき、端子92を可動な部材で構成し、操作ボタンを押すなどしたときに、端子92を介して端子94が押されるようにすればよい。また、端子94が電極である場合、端子92を電気的なスイッチとし、操作ボタンを押すなどしたときに、導通又は非導通を示す電気信号を端子94に伝達する機能を有していればよい。
フレーム71としては、外装体の成型に耐える材料を用いることができる。例えばプラスチック、金属、合金、ガラス、木材等、様々な材料を用いることができる。
このような二次電池100は、腕時計型の電子機器70に取り付けることで、主電源、又は補助電源として用いることができる。
なお、図示しないが、二次電池100は受電用の端子、又は無線で受電可能なアンテナ等の、受電機構を有していることが好ましい。又は、腕時計型の電子機器70が受電機能を有している場合、腕時計型の電子機器70で受電した電力を、端子91を介して二次電池100に送ることにより、二次電池100を充電してもよい。
腕時計型の電子機器70はスマートフォンなどとの通信機能を有していると好ましい。通信機能が無線で行われる場合、無線で通信する機能を有する場合、腕時計型の電子機器70はアンテナを介して通信を行うことができる。アンテナはチップ型アンテナ又はコイル型アンテナ等を用いればよい。コイル型アンテナの場合、ベルト21に配置するとよい。勿論表示部72にチップ型アンテナ又はコイル型アンテナを配置することもできる。
腕時計型の電子機器70が有する通信プロトコル又は通信技術として、LTE(Long Term Evolution)、GSM(Global System for Mobile Communication:登録商標)、EDGE(Enhanced Data Rates for GSM Evolution)、CDMA2000(Code Division Multiple Access 2000)、W−CDMA(登録商標)などの通信規格、又はWi−Fi(登録商標)、Bluetooth(登録商標)、ZigBee(登録商標)等のIEEEにより通信規格化された仕様を用いることができる。また、国際電気通信連合(ITU)が定める第3世代移動通信システム(3G)、第4世代移動通信システム(4G)、又は第5世代移動通信システム(5G)などを用いることもできる。
また図31Cには、図30Aを180度回転させた図を示す。腕時計型の電子機器70はセンサを複数有してもよい。たとえば腕時計型の電子機器70の裏面、すなわち腕側にも、センサ89が設けられてもよい。この場合、ベルト21に配置したセンサ74を省略することができる。
センサ89により心拍数等の健康管理に関する計測を可能にする。例えば、センサ89はLED及びフォトダイオードを有するとよく、当該LEDから毛細血管に光を照射し、フォトダイオードで検知することで心拍を認識することができる。
センサにより取得したデータは、腕時計型の電子機器70に格納することができる。また腕時計型の電子機器70が有する通信用機構を介してスマートフォンへデータを送信することができる。
本実施の形態の内容は他の実施の形態の内容と自由に組み合わせることができる。
(実施の形態8)
本実施の形態では、二次電池の応用例について説明する。
図32Aは、飛行体の一例を示す斜視図である。また、図32Bは、図32Aの主翼部の内部を説明する斜視図である。
図32Aに示す飛行体8900は、主翼部8901と、プロペラ8902と、垂直尾翼部8903と、水平尾翼部8904と、制御装置8905と、ソーラーパネル8906と、を有する。ソーラーパネルは、太陽電池モジュールと呼ばれる場合がある。
飛行体8900はスキッドを有してもよい。スキッドは例えば、主翼部8901の下面に装着されていればよい。また、スキッドの下部に車輪が装着されていてもよい。
また、飛行体8900は、図32Bに示すように主翼部8901の内部に二次電池8907を有する。図32Bには、主翼部8901の内部に、概略四角形の上面形状を有する二次電池8907が複数配置される例を示す。図32Bにおいては、複数の二次電池8907が主翼部8901の内部において一列に配列する様子を示すが、複数の二次電池8907が複数列、配列されてもよい。また二次電池8907の上面形状は、四角形に限定されず、例えば、四角形以外の多角形、角が丸まった多角形、円形、楕円形、L字型、等の様々な形状を取り得る。
図32Cは、図32A及び図32Bに示す一点鎖線A1−A2の断面図である。
図32Cにおいて、ソーラーパネル8906は、主翼部8901の筐体8911の表面に埋め込まれるように設けられる。ソーラーパネル8906は例えば、筐体8911に接する領域を有する。ソーラーパネル8906が筐体8911に埋め込まれるように設けられる場合には、ソーラーパネル8906の受光部は、外側に露出する領域を有する。また、図32Cにおいては、ソーラーパネル8906が筐体8911に埋め込まれるように設けられる例を示すが、ソーラーパネル8906は、筐体8911において、外側の表面上に設けられてもよい。
また、図32Cにおいて、二次電池8907は、主翼部8901の筐体8911の内壁8912に沿って設けられる。二次電池8907は例えば、内壁8912に接する領域を有する。
二次電池8907として、本発明の一態様の二次電池を用いることができ、電解質層103はイオン液体118が浸みだすことがなく好ましい。
二次電池8907として、折り曲げ可能(可撓性を有すると呼称してもよい)な二次電池を用いることが好ましい。主翼部8901は、飛行体8900の飛行の際に外力に応じて変形する場合がある。二次電池8907として可撓性を有する二次電池を用いることにより、主翼部8901の変形に合わせて二次電池8907が変形することができるため、好ましい。また、可撓性を有する二次電池においては、二次電池の外装体に薄いフィルムを用いることにより二次電池の重量化、及び二次電池の小型化が可能となる。飛行体8900の軽量化が可能となるため、飛行体8900の飛行に要する電力を低減することができる。また、二次電池の小型化が可能となるため、二次電池の体積当たりのエネルギー密度を高めることができ、二次電池の体積当たりの飛行体8900の飛行距離を長くすることができる。
可撓性を有する二次電池は折り曲げが可能なため、図33A及び図33Bに示すように、主翼部8901の上面及び下面をなめらかな曲面とすることができる。図33Aは、飛行体の一例を示す斜視図であり、図33Bは、図33Aの主翼部の内部を説明する斜視図である。
図33Aにおいて、ソーラーパネル8906は、主翼部8901の滑らかな上面に沿って設けられる。ソーラーパネル8906として、フレキシブルな基板上に設けられた太陽電池モジュールを用いてもよい。
図33Bにおいて、二次電池8907は、主翼部8901の筐体の内壁に沿って設けられる。図33Bに示す二次電池8907として、可撓性を有する二次電池を用いることが好ましい。
二次電池8907として可撓性を有する二次電池を用いることにより、主翼部8901を様々な形状とすることができるため、飛行体8900の飛行性能が向上する場合がある。
制御装置8905は、主翼部8901を挟んで、ソーラーパネル8906とは反対の位置に配置されることが好ましい。例えば、ソーラーパネル8906が主翼部8901の上面側に配置される場合には、制御装置8905を主翼部8901の下面側に配置すればよい。ソーラーパネル8906では、太陽光を受光して発電している期間には、温度が上昇する場合がある。制御装置8905を、主翼部8901を挟んで反対の位置に配置することにより、制御装置8905の温度上昇を抑制し、制御装置が有する各機器、及び各回路の動作を安定に行うことができる場合がある。
飛行体8900の主翼部8901は、断熱材を有していてもよい。断熱材は例えば筐体8911の内壁8912に沿って、あるいは筐体8911に埋め込むように設ければよい。断熱材を設けることにより、外界からの筐体8911の内部への温度の影響を小さくすることができる。
ソーラーパネル8906と二次電池8907との間に断熱材を配置することにより、ソーラーパネル8906から二次電池8907への熱の影響を小さくできる場合がある。
二次電池8907を高い温度において動作させる場合には、二次電池8907の劣化、例えば放電容量の減少が生じる場合がある。また、二次電池8907は、低温において出力特性が低下する場合がある。筐体8911の内部の温度変動を小さくすることにより、二次電池の寿命を長くすることができる。また、二次電池の動作を安定させることができる。
飛行体8900において、ソーラーパネル8906が発電する電力は二次電池8907に蓄電されることが好ましい。飛行体8900は、電力制御回路を有する。電力制御回路は、二次電池8907の充電及び放電を制御する機能を有する。また、電力制御回路は、ソーラーパネル8906の受光量及び発電量の少なくとも一方を計測する機能を有することが好ましい。ソーラーパネル8906が発電する電力は、電力制御回路を介して二次電池8907に充電される。電力制御回路は、二次電池8907の残量を計測する機能を有することが好ましい。
制御装置8905は、飛行体8900の飛行を制御する機能を有する。制御装置8905は例えば、プロペラ8902の回転を制御することにより、飛行体8900の飛行を制御することができる。
電力制御回路は、二次電池8907に蓄電された電力をプロペラ8902に供給する機能を有する。電力制御回路は、直流を交流に変換する機能を有することが好ましい。
電力制御回路の少なくとも一部は、制御装置8905に配置されることが好ましい。また、電力制御回路の一部が主翼部8901の筐体8911の内部に設けられてもよい。例えば電力制御回路の一部として、複数の二次電池8907のそれぞれに対応した保護回路が設けられてもよい。保護回路は例えば二次電池の過充電、過放電、充電過電流、放電過電流、及び短絡の一以上を抑制する機能を有する。また、直列に接続された複数の二次電池8907を有する場合、電力制御回路は、複数の二次電池8907のそれぞれの充電率を揃えるセルバランス回路を有することが好ましい。
なお、飛行体8900において、ソーラーパネル8906が発電する電力の二次電池8907への充電と、二次電池8907からプロペラ8902への電力の供給と、は同時に行われる場合がある。
また、飛行体8900は、アンテナを有する。飛行体8900はアンテナを用いて無線通信を行う機能を有する。飛行体8900においてアンテナは複数設けられてもよい。アンテナとして例えば、マルチビームアンテナを用いることができる。
飛行体8900は例えば、無線基地局として機能することができる。
飛行体8900は例えば、成層圏を飛行して、成層圏プラットフォームを提供することができる。また、飛行体8900は地上に設置された基地局と通信することができる。また、複数の飛行体8900がそれぞれ、基地局を形成してもよい。そのような場合には、複数の飛行体の間で通信を行うことが好ましい。また、飛行体8900は人工衛星との間において、信号の授受を行う機能を有してもよい。飛行体8900は成層圏プラットフォームから、地上のユーザ端末に無線通信サービスを提供することができる。ここで、ユーザ端末とは例えば、スマートフォンである。飛行体8900は、無線通信サービスを提供する対象エリアの上空を旋回する場合がある。通信プロトコル又は通信技術として、LTE(Long Term Evolution)、GSM(Global System for Mobile Communication:登録商標)、EDGE(Enhanced Data Rates for GSM Evolution)、CDMA2000(Code Division Multiple Access 2000)、W−CDMA(登録商標)などの通信規格化された仕様を用いることができる。また、国際電気通信連合(ITU)が定める第3世代移動通信システム(3G)、第4世代移動通信システム(4G)、又は第5世代移動通信システム(5G)などを用いることもできる。
制御装置8905は、撮像装置を有してもよい。飛行体8900は、撮像装置を用いて飛行する空中、あるいは地上、あるいは上空を撮影することができる。
制御装置8905は、センサ(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、におい又は赤外線を測定する機能を含むもの)を有してもよい。
本実施の形態の内容は他の実施の形態の内容と自由に組み合わせることができる。
(実施の形態9)
本実施の形態では、先の実施の形態で説明した二次電池の複数種類の形状の例について説明する。
[コイン型二次電池]
コイン型の二次電池の一例について説明する。図34Aはコイン型(単層偏平型)の二次電池の分解斜視図であり、図34Bは、外観図であり、図34Cは、その断面図である。コイン型の二次電池は主に小型の電子機器に用いられる。本明細書等において、コイン型電池は、ボタン型電池を含む。
図34Aでは、わかりやすくするために部材の重なり(上下関係、及び位置関係)がわかるように模式図としている。従って図34Aと図34Bは完全に一致する対応図とはしていない。
図34Aでは、正極304、負極307、スペーサ342、ワッシャー332を重ねている。これらを負極缶302と正極缶301で封止している。なお、図34Aにおいて、封止のためのガスケットは図示していない。スペーサ342、ワッシャー332は、正極缶301と負極缶302を圧着する際に、内部を保護又は缶内の位置を固定するために用いられている。スペーサ342、ワッシャー332はステンレス又は絶縁材料を用いる。
正極集電体305上に正極活物質層306が形成された積層構造を正極304としている。
図34Bは、完成したコイン型の二次電池の斜視図である。
コイン型の二次電池100は、正極端子を兼ねた正極缶301と負極端子を兼ねた負極缶302とが、ポリプロピレン等で形成されたガスケット303で絶縁シールされている。正極304は、正極集電体305と、これと接するように設けられた正極活物質層306により形成される。また、負極307は、負極集電体308と、これに接するように設けられた負極活物質層309により形成される。また、負極307は、積層構造に限定されず、リチウム金属箔又はリチウムとアルミニウムの合金箔を用いてもよい。
なお、コイン型の二次電池100に用いる正極304及び負極307は、それぞれ活物質層は片面のみに形成すればよい。
正極缶301、負極缶302には、電解液に対して耐食性のあるニッケル、アルミニウム、チタン等の金属、又はこれらの合金、及びこれらと他の金属との合金(例えばステンレス鋼等)を用いることができる。また、電解液などによる腐食を防ぐため、ニッケル及びアルミニウム等を被覆することが好ましい。正極缶301は正極304と、負極缶302は負極307とそれぞれ電気的に接続する。
図34Cに示すように、正極缶301を下にして正極304、負極307、負極缶302をこの順で積層し、正極缶301と負極缶302とをガスケット303を介して圧着してコイン形の二次電池100を製造する。
上記の構成を有することで、高容量、且つ、充放電容量が高く、且つ、サイクル特性に優れたコイン型の二次電池100とすることができる。
[円筒型二次電池]
円筒型の二次電池の例について図35Aを参照して説明する。円筒型の二次電池616は、図35Aに示すように、上面に正極キャップ(電池蓋)601を有し、側面及び底面に電池缶(外装缶)602を有している。これら正極キャップ601と電池缶(外装缶)602とは、ガスケット(絶縁パッキン)610によって絶縁されている。
図35Bは、円筒型の二次電池の断面を模式的に示した図である。図35Bに示す円筒型の二次電池は、上面に正極キャップ(電池蓋)601を有し、側面及び底面に電池缶(外装缶)602を有している。これら正極キャップと電池缶(外装缶)602とは、ガスケット(絶縁パッキン)610によって絶縁されている。
中空円柱状の電池缶602の内側には、帯状の正極604と負極606とが電解質層605を間に挟んで捲回された電池素子が設けられている。図示しないが、電池素子は中心軸を中心に捲回されている。電池缶602は、一端が閉じられ、他端が開いている。電池缶602には、電解液に対して耐腐食性のあるニッケル、アルミニウム、チタン等の金属、又はこれらの合金、及びこれらと他の金属との合金(例えば、ステンレス鋼等)を用いることができる。また、電解液による腐食を防ぐため、ニッケル及びアルミニウム等を電池缶602に被覆することが好ましい。電池缶602の内側において、正極、負極及び電解質層が捲回された電池素子は、対向する一対の絶縁板608、絶縁板609により挟まれている。また、電池素子が設けられた電池缶602の内部は、非水電解液(図示せず)が注入されている。非水電解液は、コイン型の二次電池と同様のものを用いることができる。
円筒型の蓄電池に用いる正極及び負極は捲回するため、集電体の両面に活物質を形成することが好ましい。なお図35A乃至図35Dでは円筒の直径よりも円筒の高さの方が大きい二次電池616を図示したが、これに限らない。円筒の直径が、円筒の高さよりも大きい二次電池としてもよい。このような構成により、例えば二次電池の小型化を図ることができる。
正極活物質200を正極604に用いることで、高容量、且つ、充放電容量が高く、且つ、サイクル特性に優れた円筒型の二次電池616とすることができる。
正極604には正極端子(正極集電リード)603が接続され、負極606には負極端子(負極集電リード)607が接続される。正極端子603及び負極端子607は、ともにアルミニウムなどの金属材料を用いることができる。正極端子603は安全弁機構613に、負極端子607は電池缶602の底にそれぞれ抵抗溶接される。安全弁機構613は、PTC素子(Positive Temperature Coefficient)611を介して正極キャップ601と電気的に接続されている。安全弁機構613は電池の内圧の上昇が所定の閾値を超えた場合に、正極キャップ601と正極604との電気的な接続を切断するものである。また、PTC素子611は温度が上昇した場合に抵抗が増大する熱感抵抗素子であり、抵抗の増大により電流量を制限して異常発熱を防止するものである。PTC素子には、チタン酸バリウム(BaTiO)系半導体セラミックス等を用いることができる。
図35Cは蓄電システム615の一例を示す。蓄電システム615は複数の二次電池616を有する。それぞれの二次電池の正極は、絶縁体625で分離された導電体624に接触し、電気的に接続されている。導電体624は配線623を介して、制御回路620に電気的に接続されている。また、それぞれの二次電池の負極は、配線626を介して制御回路620に電気的に接続されている。制御回路620として、過充電又は過放電を防止する保護回路等を適用することができる。
図35Dは、蓄電システム615の一例を示す。蓄電システム615は複数の二次電池616を有し、複数の二次電池616は、導電板628及び導電板614の間に挟まれている。複数の二次電池616は、配線627により導電板628及び導電板614と電気的に接続される。複数の二次電池616は、並列接続されていてもよいし、直列接続されていてもよいし、並列に接続された後さらに直列に接続されていてもよい。複数の二次電池616を有する蓄電システム615を構成することで、大きな電力を取り出すことができる。
複数の二次電池616が、並列に接続された後、さらに直列に接続されてもよい。
複数の二次電池616の間に温度制御装置を有していてもよい。二次電池616が過熱されたときは、温度制御装置により冷却し、二次電池616が冷えすぎているときは温度制御装置により加熱することができる。そのため蓄電システム615の性能が外気温に影響されにくくなる。
また、図35Dにおいて、蓄電システム615は制御回路620に配線621及び配線622を介して電気的に接続されている。配線621は導電板628を介して複数の二次電池616の正極に、配線622は導電板614を介して複数の二次電池616の負極に、それぞれ電気的に接続される。
[二次電池の他の構造例]
二次電池の構造例について図36及び図37を用いて説明する。
図36Aに示す二次電池913は、筐体930の内部に端子951と端子952が設けられた捲回体950を有する。捲回体950は、筐体930の内部で電解液中に浸される。端子952は、筐体930に接し、端子951は、絶縁材などを用いることにより筐体930に接していない。なお、図36Aでは、便宜のため、筐体930を分離して図示しているが、実際は、捲回体950が筐体930に覆われ、端子951及び端子952が筐体930の外に延在している。筐体930としては、金属材料(例えばアルミニウムなど)又は樹脂材料を用いることができる。
なお、図36Bに示すように、図36Aに示す筐体930を複数の材料によって形成してもよい。例えば、図36Bに示す二次電池913は、筐体930aと筐体930bが貼り合わされており、筐体930a及び筐体930bで囲まれた領域に捲回体950が設けられている。
筐体930aとしては、有機樹脂など、絶縁材料を用いることができる。特に、アンテナが形成される面に有機樹脂などの材料を用いることにより、二次電池913による電界の遮蔽を抑制できる。なお、筐体930aによる電界の遮蔽が小さければ、筐体930aの内部にアンテナを設けてもよい。筐体930bとしては、例えば金属材料を用いることができる。
さらに、捲回体950の構造について図36Cに示す。捲回体950は、負極931と、正極932と、電解質層933と、を有する。捲回体950は、電解質層933を挟んで負極931と、正極932が重なり合って積層され、該積層シートを捲回させた捲回体である。なお、負極931と、正極932と、電解質層933と、の積層を、さらに複数重ねてもよい。
また、図37A乃至図37Cに示すような捲回体950aを有する二次電池913としてもよい。図37Aに示す捲回体950aは、負極931と、正極932と、電解質層933と、を有する。負極931は負極活物質層931aを有する。正極932は正極活物質層932aを有する。
実施の形態1で得られる正極活物質200を正極932に用いることで、高容量、且つ、充放電容量が高く、且つ、サイクル特性に優れた二次電池913とすることができる。
電解質層933は、負極活物質層931a及び正極活物質層932aよりも広い幅を有し、負極活物質層931a及び正極活物質層932aと重畳するように捲回されている。また正極活物質層932aよりも負極活物質層931aの幅が広いことが安全性の点で好ましい。またこのような形状の捲回体950aは安全性及び生産性がよく好ましい。
図37Bに示すように、負極931は端子951と電気的に接続される。端子951は端子911aと電気的に接続される。また正極932は端子952と電気的に接続される。端子952は端子911bと電気的に接続される。
図37Cに示すように、筐体930により捲回体950a及び電解液が覆われ、二次電池913となる。筐体930には安全弁、過電流保護素子等を設けることが好ましい。安全弁は、電池破裂を防止するため、筐体930の内部が所定の内圧で開放する弁である。
図37Bに示すように二次電池913は複数の捲回体950aを有していてもよい。複数の捲回体950aを用いることで、より充放電容量の大きい二次電池913とすることができる。図37A及び図37Bに示す二次電池913の他の要素は、図36A乃至図36Cに示す二次電池913の記載を参酌することができる。
(実施の形態10)
本実施の形態では、図38を用いて電気自動車(EV)に適用する例を示す。
図38Cに示すように電気自動車には、メインの駆動用の二次電池として第1のバッテリ1301a、1301bと、モータ1304を始動させるインバータ1312に電力を供給する第2のバッテリ1311が設置されている。第2のバッテリ1311はクランキングバッテリー(スターターバッテリーとも呼ばれる)とも呼ばれる。第2のバッテリ1311は高出力できればよく、大容量はそれほど必要とされず、第2のバッテリ1311の容量は第1のバッテリ1301a、1301bと比較して小さい。
第1のバッテリ1301aの内部構造は、捲回型であってもよいし、積層型であってもよい。また、第1のバッテリ1301aは、実施の形態5の全固体電池を用いてもよい。第1のバッテリ1301aに実施の形態5の全固体電池を用いることで高容量とすることができ、安全性が向上し、小型化、軽量化することができる。
本実施の形態では、第1のバッテリ1301a、1301bを2つ並列に接続させている例を示しているが3つ以上並列に接続させてもよい。また、第1のバッテリ1301aで十分な電力を貯蔵できるのであれば、第1のバッテリ1301bはなくてもよい。複数の二次電池を有する電池パックを構成することで、大きな電力を取り出すことができる。複数の二次電池は、並列接続されていてもよいし、直列接続されていてもよいし、並列に接続された後、さらに直列に接続されていてもよい。複数の二次電池を組電池とも呼ぶ。
また、車載用の二次電池において、複数の二次電池からの電力を遮断するため、工具を使わずに高電圧を遮断できるサービスプラグ又はサーキットブレーカを有しており、第1のバッテリ1301aに設けられる。
また、第1のバッテリ1301a、1301bの電力は、主にモータ1304を回転させることに使用されるが、DCDC回路1306を介して42V系の車載部品(電動パワステ1307、ヒーター1308、デフォッガ1309など)に電力を供給する。後輪にリアモータ1317を有している場合にも、第1のバッテリ1301aがリアモータ1317を回転させることに使用される。
また、第2のバッテリ1311は、DCDC回路1310を介して14V系の車載部品(オーディオ1313、パワーウィンドウ1314、ランプ類1315など)に電力を供給する。
また、第1のバッテリ1301aについて、図38Aを用いて説明する。
図38Aでは9個の角型二次電池1300を一つの電池パック1415としている例を示している。また、9個の角型二次電池1300を直列接続し、一方の電極を絶縁体からなる固定部1413で固定し、もう一方の電極を絶縁体からなる固定部1414で固定している。本実施の形態では固定部1413、1414で固定する例を示しているが電池収容ボックス(筐体とも呼ぶ)に収納させる構成としてもよい。車両は外部(路面など)から振動又は揺れが加えられることを想定されているため、固定部1413、1414及び電池収容ボックスなどで複数の二次電池を固定することが好ましい。また、一方の電極は配線1421によって制御回路部1320に電気的に接続されている。他方の電極は配線1422によって制御回路部1320に電気的に接続されている。
また、制御回路部1320は、酸化物半導体を用いたトランジスタを含むメモリ回路を用いてもよい。酸化物半導体を用いたトランジスタを含むメモリ回路を有する充電制御回路、又は電池制御システムを、BTOS(Battery operating system、又はBattery oxide semiconductor)と呼称する場合がある。
酸化物半導体として機能する金属酸化物を用いることが好ましい。例えば、酸化物として、In−M−Zn酸化物(元素Mは、アルミニウム、ガリウム、イットリウム、銅、バナジウム、ベリリウム、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、又はマグネシウムから選ばれた一種、又は複数種)等の金属酸化物を用いるとよい。特に、酸化物として適用できるIn−M−Zn酸化物は、CAAC−OS(C−Axis Aligned Crystal Oxide Semiconductor)、CAC−OS(Cloud−Aligned Composite Oxide Semiconductor)であることが好ましい。また、酸化物として、In−Ga酸化物、In−Zn酸化物を用いてもよい。CAAC−OSは、複数の結晶領域を有し、当該複数の結晶領域はc軸が特定の方向に配向している酸化物半導体である。なお、特定の方向とは、CAAC−OS膜の厚さ方向、CAAC−OS膜の被形成面の法線方向、又はCAAC−OS膜の表面の法線方向である。また、結晶領域とは、原子配列に周期性を有する領域である。なお、原子配列を格子配列とみなすと、結晶領域とは、格子配列の揃った領域でもある。さらに、CAAC−OSは、a−b面方向において複数の結晶領域が連結する領域を有し、当該領域は歪みを有する場合がある。なお、歪みとは、複数の結晶領域が連結する領域において、格子配列の揃った領域と、別の格子配列の揃った領域と、の間で格子配列の向きが変化している箇所を指す。つまり、CAAC−OSは、c軸配向し、a−b面方向には明らかな配向をしていない酸化物半導体である。また、CAC−OSとは、例えば、金属酸化物を構成する元素が、0.5Nm以上10nm以下、好ましくは、1nm以上3nm以下、又はその近傍のサイズで偏在した材料の一構成である。なお、以下では、金属酸化物において、一つ又は複数の金属元素が偏在し、該金属元素を有する領域が、0.5Nm以上10nm以下、好ましくは、1nm以上3nm以下、又はその近傍のサイズで混合した状態をモザイク状、又はパッチ状ともいう。
さらに、CAC−OSとは、第1の領域と、第2の領域と、に材料が分離することでモザイク状となり、当該第1の領域が、膜中に分布した構成(以下、クラウド状ともいう。)である。つまり、CAC−OSは、当該第1の領域と、当該第2の領域とが、混合している構成を有する複合金属酸化物である。
ここで、In−Ga−Zn酸化物におけるCAC−OSを構成する金属元素に対するIn、Ga、及びZnの原子数比のそれぞれを、[In]、[Ga]、及び[Zn]と表記する。例えば、In−Ga−Zn酸化物におけるCAC−OSにおいて、第1の領域は、[In]が、CAC−OS膜の組成における[In]よりも大きい領域である。また、第2の領域は、[Ga]が、CAC−OS膜の組成における[Ga]よりも大きい領域である。又は、例えば、第1の領域は、[In]が、第2の領域における[In]よりも大きく、且つ、[Ga]が、第2の領域における[Ga]よりも小さい領域である。また、第2の領域は、[Ga]が、第1の領域における[Ga]よりも大きく、且つ、[In]が、第1の領域における[In]よりも小さい領域である。
具体的には、上記第1の領域は、インジウム酸化物、インジウム亜鉛酸化物などが主成分である領域である。また、上記第2の領域は、ガリウム酸化物、ガリウム亜鉛酸化物などが主成分である領域である。つまり、上記第1の領域を、Inを主成分とする領域と言い換えることができる。また、上記第2の領域を、Gaを主成分とする領域と言い換えることができる。
なお、上記第1の領域と、上記第2の領域とは、明確な境界が観察できない場合がある。
例えば、In−Ga−Zn酸化物におけるCAC−OSでは、エネルギー分散型X線分光法(EDX:Energy Dispersive X−ray spectroscopy)を用いて取得したEDXマッピングにより、Inを主成分とする領域(第1の領域)と、Gaを主成分とする領域(第2の領域)とが、偏在し、混合している構造を有することが確認できる。
CAC−OSをトランジスタに用いる場合、第1の領域に起因する導電性と、第2の領域に起因する絶縁性とが、相補的に作用することにより、スイッチングさせる機能(On/Offさせる機能)をCAC−OSに付与することができる。つまり、CAC−OSとは、材料の一部では導電性の機能と、材料の一部では絶縁性の機能とを有し、材料の全体では半導体としての機能を有する。導電性の機能と絶縁性の機能とを分離させることで、双方の機能を最大限に高めることができる。よって、CAC−OSをトランジスタに用いることで、高いオン電流(Ion)、高い電界効果移動度(μ)、及び良好なスイッチング動作を実現することができる。
酸化物半導体は、多様な構造をとり、それぞれが異なる特性を有する。本発明の一態様の酸化物半導体は、非晶質酸化物半導体、多結晶酸化物半導体、a−like OS、CAC−OS、nc−OS、CAAC−OSのうち、二種以上を有していてもよい。
また、高温環境下で使用可能であるため、制御回路部1320は酸化物半導体を用いるトランジスタを用いることが好ましい。プロセスを簡略なものとするため、制御回路部1320は単極性のトランジスタを用いて形成してもよい。半導体層に酸化物半導体を用いるトランジスタは、動作周囲温度が単結晶Siよりも広く−40℃以上150℃以下であり、二次電池が加熱しても特性変化が単結晶に比べて小さい。酸化物半導体を用いるトランジスタのオフ電流は、150℃であっても温度によらず測定下限以下であるが、単結晶Siトランジスタのオフ電流特性は、温度依存性が大きい。例えば、150℃では、単結晶Siトランジスタはオフ電流が上昇し、電流オン/オフ比が十分に大きくならない。制御回路部1320は、安全性を向上することができる。また、実施の形態1で得られる正極活物質200を正極に用いた二次電池と組み合わせることで安全性についての相乗効果が得られる。
酸化物半導体を用いたトランジスタを含むメモリ回路を用いた制御回路部1320は、マイクロショート等の10項目の不安定性の原因に対し、二次電池の自動制御装置として機能させることもできる。10項目の不安定性の原因を解消する機能としては、過充電の防止、過電流の防止、充電時過熱制御、組電池でのセルバランス、過放電の防止、残量計、温度に応じた充電電圧及び電流量自動制御、劣化度に応じた充電電流量制御、マイクロショート異常挙動検知、マイクロショートに関する異常予測などが挙げられ、そのうちの少なくとも一つの機能を制御回路部1320が有する。また、二次電池の自動制御装置の超小型化が可能である。
また、マイクロショートとは、二次電池の内部の微小な短絡のことを指しており、二次電池の正極と負極が短絡して充放電不可能の状態になるというほどではなく、微小な短絡部でわずかに短絡電流が流れてしまう現象を指している。比較的短時間、且つ、わずかな箇所であっても大きな電圧変化が生じるため、その異常な電圧値がその後の推定に影響を与える恐れがある。
マイクロショートの原因の一つは、充放電が複数回行われることによって、正極活物質の不均一な分布により、正極の一部と負極の一部で局所的な電流の集中が生じ、又は副反応による副反応物の発生によりミクロな短絡が生じていると言われている。
また、マイクロショートの検知だけでなく、制御回路部1320は、二次電池の端子電圧を検知し、二次電池の充放電状態を管理するとも言える。例えば、過充電を防ぐために充電回路の出力トランジスタと遮断用スイッチの両方をほぼ同時にオフ状態とすることができる。
また、図38Aに示す電池パック1415のブロック図の一例を図38Bに示す。
制御回路部1320は、少なくとも過充電を防止するスイッチと、過放電を防止するスイッチを含むスイッチ部1324と、スイッチ部1324を制御する制御回路1322と、第1のバッテリ1301aの電圧測定部と、を有する。制御回路部1320は、使用する二次電池の上限電圧と下限電圧が設定されており、外部からの電流上限、及び外部への出力電流の上限などを制限している。二次電池の下限電圧以上上限電圧以下の範囲内は、使用が推奨されている電圧範囲内であり、その範囲外となるとスイッチ部1324が作動し、保護回路として機能する。また、制御回路部1320は、スイッチ部1324を制御して過放電及び過充電を防止するため、保護回路とも呼べる。例えば、過充電となりそうな電圧を制御回路1322で検知した場合にスイッチ部1324のスイッチをオフ状態とすることで電流を遮断する。さらに充放電経路中にPTC素子を設けて温度の上昇に応じて電流を遮断する機能を設けてもよい。また、制御回路部1320は、外部端子1325(+IN)と、外部端子1326(−IN)とを有している。
スイッチ部1324は、nチャネル型のトランジスタ及びpチャネル型のトランジスタを組み合わせて構成することができる。スイッチ部1324は、単結晶シリコンを用いるSiトランジスタを有するスイッチに限定されず、例えば、Ge(ゲルマニウム)、SiGe(シリコンゲルマニウム)、GaAs(ガリウムヒ素)、GaAlAs(ガリウムアルミニウムヒ素)、InP(リン化インジウム)、SiC(シリコンカーバイド)、ZnSe(セレン化亜鉛)、GaN(窒化ガリウム)、GaO(酸化ガリウム;xは0より大きい実数)などを有するパワートランジスタでスイッチ部1324を形成してもよい。また、OSトランジスタを用いた記憶素子は、Siトランジスタを用いた回路上などに積層することで自由に配置可能であるため、集積化を容易に行うことができる。またOSトランジスタは、Siトランジスタと同様の製造装置を用いて作製することが可能であるため、低コストで作製可能である。即ち、スイッチ部1324上にOSトランジスタを用いた制御回路部1320を積層し、集積化することで1チップとすることもできる。制御回路部1320の占有体積を小さくすることができるため、小型化が可能となる。
第1のバッテリ1301a、1301bは、主に42V系(高電圧系)の車載機器に電力を供給し、第2のバッテリ1311は14V系(低電圧系)の車載機器に電力を供給する。第2のバッテリ1311は鉛蓄電池がコスト上有利のため採用されることが多い。鉛蓄電池はリチウムイオン二次電池と比べて自己放電が大きく、サルフェーションとよばれる現象により劣化しやすい欠点がある。第2のバッテリ1311をリチウムイオン二次電池とすることでメンテナンスフリーとするメリットがあるが、長期間の使用、例えば3年以上となると、製造時には判別できない異常発生が生じる恐れがある。特にインバータを起動する第2のバッテリ1311が動作不能となると、第1のバッテリ1301a、1301bに残容量があってもモータを起動させることができなくなることを防ぐため、第2のバッテリ1311が鉛蓄電池の場合は、第1のバッテリから第2のバッテリに電力を供給し、常に満充電状態を維持するように充電されている。
本実施の形態では、第1のバッテリ1301aと第2のバッテリ1311の両方にリチウムイオン二次電池を用いる一例を示す。第2のバッテリ1311は鉛蓄電池、全固体電池、又は電気二重層キャパシタを用いてもよい。例えば、実施の形態5の全固体電池を用いてもよい。第2のバッテリ1311に実施の形態5の全固体電池を用いることで高容量とすることができ、小型化、軽量化することができる。
また、タイヤ1316の回転による回生エネルギーは、ギア1305を介してモータ1304に送られ、モータコントローラ1303及びバッテリーコントローラ1302から制御回路部1321を介して第2のバッテリ1311に充電される。又はバッテリーコントローラ1302から制御回路部1320を介して第1のバッテリ1301aに充電される。又はバッテリーコントローラ1302から制御回路部1320を介して第1のバッテリ1301bに充電される。回生エネルギーを効率よく充電するためには、第1のバッテリ1301a、1301bが急速充電可能であることが望ましい。
バッテリーコントローラ1302は第1のバッテリ1301a、1301bの充電電圧及び充電電流などを設定することができる。バッテリーコントローラ1302は、用いる二次電池の充電特性に合わせて充電条件を設定し、急速充電することができる。
また、図示していないが、外部の充電器と接続させる場合、充電器のコンセント又は充電器の接続ケーブルは、バッテリーコントローラ1302に電気的に接続される。外部の充電器から供給された電力はバッテリーコントローラ1302を介して第1のバッテリ1301a、1301bに充電する。また、充電器によっては、制御回路が設けられており、バッテリーコントローラ1302の機能を用いない場合もあるが、過充電を防ぐため制御回路部1320を介して第1のバッテリ1301a、1301bを充電することが好ましい。また、接続ケーブル又は充電器の接続ケーブルに制御回路を備えている場合もある。制御回路部1320は、ECU(Electronic Control Unit)と呼ばれることもある。ECUは、電動車両に設けられたCAN(Controller Area Network)に接続される。CANは、車内LANとして用いられるシリアル通信規格の一つである。また、ECUは、マイクロコンピュータを含む。また、ECUは、CPU又はGPUを用いる。
充電スタンドなどに設置されている外部の充電器は、100Vコンセント、200Vコンセント、3相200V且つ50kWなどがある。また、非接触給電方式等により外部の充電設備から電力供給を受けて、充電することもできる。
急速充電を行う場合、短時間での充電を行うためには、高電圧での充電に耐えうる二次電池が望まれている。
また、上述した本実施の形態の二次電池は、実施の形態1で得られる正極活物質200を用いている。さらに、導電助剤としてグラフェンを用い、電極層を厚くして担持量を高くしても容量低下を抑え、高容量を維持することが相乗効果として大幅に電気特性が向上された二次電池を実現できる。特に車両に用いる二次電池に有効であり、車両全重量に対する二次電池の重量の割合を増加させることなく、航続距離が長い、具体的には一充電走行距離が500km以上の車両を提供することができる。
特に上述した本実施の形態の二次電池は、実施の形態1で説明した正極活物質200を用いることで二次電池の動作電圧を高くすることができ、充電電圧の増加に伴い、使用できる容量を増加させることができる。また、実施の形態1で説明した正極活物質200を正極に用いることでサイクル特性に優れた車両用の二次電池を提供することができる。
次に、本発明の一態様である二次電池を車両、代表的には輸送用車両に実装する例について説明する。
また、二次電池を車両に搭載すると、ハイブリッド車(HV)、電気自動車(EV)、又はプラグインハイブリッド車(PHV)等の次世代クリーンエネルギー自動車を実現できる。また、農業機械、電動アシスト自転車を含む原動機付自転車、自動二輪車、電動車椅子、電動カート、小型又は大型船舶、潜水艦、固定翼機及び回転翼機等の航空機、ロケット、人工衛星、宇宙探査機、惑星探査機、宇宙船などの輸送用車両に二次電池を搭載することもできる。本発明の一態様の二次電池は高容量の二次電池とすることができる。そのため本発明の一態様の二次電池は、小型化、軽量化に適しており、輸送用車両に好適に用いることができる。
図39A乃至図39Dにおいて、本発明の一態様を用いた輸送用車両を例示する。図39Aに示す自動車2001は、走行のための動力源として電気モータを用いる電気自動車である。又は、走行のための動力源として電気モータとエンジンを適宜選択して用いることが可能なハイブリッド自動車である。二次電池を車両に搭載する場合、実施の形態4で示した二次電池の一例を一箇所又は複数個所に設置する。図39Aに示す自動車2001は、電池パック2200を有し、電池パックは、複数の二次電池を接続させた二次電池モジュールを有する。さらに二次電池モジュールに電気的に接続する充電制御装置を有すると好ましい。
また、自動車2001は、自動車2001が有する二次電池にプラグイン方式及び非接触給電方式等により外部の充電設備から電力供給を受けて、充電することができる。充電に際しては、充電方法及びコネクタの規格等はCHAdeMO(登録商標)又はコンボ等の所定の方式で適宜行えばよい。二次電池は、商用施設に設けられた充電ステーションでもよく、また家庭の電源であってもよい。例えば、プラグイン技術によって、外部からの電力供給により自動車2001に搭載された蓄電装置を充電することができる。充電は、ACDCコンバータ等の変換装置を介して、交流電力を直流電力に変換して行うことができる。
また、図示しないが、受電装置を車両に搭載し、地上の送電装置から電力を非接触で供給して充電することもできる。この非接触給電方式の場合には、道路又は外壁に送電装置を組み込むことで、停車中に限らず走行中に充電を行うこともできる。また、この非接触給電の方式を利用して、2台の車両どうしで電力の送受電を行ってもよい。さらに、車両の外装部に太陽電池を設け、停車時及び走行時に二次電池の充電を行ってもよい。このような非接触での電力の供給には、電磁誘導方式又は磁界共鳴方式を用いることができる。
図39Bは、輸送用車両の一例として電気により制御するモータを有した大型の輸送車2002を示している。輸送車2002の二次電池モジュールは、例えば公称電圧3.0V以上5.0V以下の二次電池を4個セルユニットとし、48セルを直列に接続した170Vの最大電圧とする。電池パック2201の二次電池モジュールを構成する二次電池の数などが違う以外は、図39Aと同様な機能を備えているので説明は省略する。
図39Cは、一例として電気により制御するモータを有した大型の輸送車両2003を示している。輸送車両2003の二次電池モジュールは、例えば公称電圧3.0V以上5.0V以下の二次電池を百個以上直列に接続した600Vの最大電圧とする。実施の形態1で説明した正極活物質200を正極用いた二次電池を用いることで、レート特性及び充放電サイクル特性の良好な二次電池を製造することができ、輸送車両2003の高性能化及び長寿命化に寄与することができる。また、電池パック2202の二次電池モジュールを構成する二次電池の数などが違う以外は、図39Aと同様な機能を備えているので説明は省略する。
図39Dは、一例として燃料を燃焼するエンジンを有した航空機2004を示している。図39Dに示す航空機2004は、離着陸用の車輪を有しているため、輸送車両の一部とも言え、複数の二次電池を接続させて二次電池モジュールを構成し、二次電池モジュールと充電制御装置とを含む電池パック2203を有している。
航空機2004の二次電池モジュールは、例えば4Vの二次電池を8個直列に接続した32Vの最大電圧とする。電池パック2203の二次電池モジュールを構成する二次電池の数などが違う以外は、図39Aと同様な機能を備えているので説明は省略する。
本実施の形態の内容は、他の実施の形態の内容と適宜組み合わせることができる。
(実施の形態11)
本実施の形態では、二輪車、自転車等の車両に本発明の一態様である蓄電装置を搭載する例を示す。
図40Aは、本発明の一態様の蓄電装置を用いた電動自転車の一例である。図40Aに示す電動自転車8700に、本発明の一態様の蓄電装置を適用することができる。本発明の一態様の蓄電装置は例えば、複数の蓄電池と、保護回路と、を有する。
電動自転車8700は、蓄電装置8702を備える。蓄電装置8702は、運転者をアシストするモータに電気を供給することができる。また、蓄電装置8702は、持ち運びができ、図40Bに自転車から取り外した状態を示している。また、蓄電装置8702は、本発明の一態様の蓄電装置が有する蓄電池8701が複数内蔵されており、そのバッテリ残量などを表示部8703で表示できるようにしている。また蓄電装置8702は、実施の形態6に一例を示した二次電池の充電制御又は異常検知が可能な制御回路8704を有する。制御回路8704は、蓄電池8701の正極及び負極と電気的に接続されている。また、制御回路8704に小型の固体二次電池を設けてもよい。小型の固体二次電池を制御回路8704に設けることで制御回路8704の有するメモリ回路のデータを長時間保持することに電力を供給することもできる。また、実施の形態1で得られる正極活物質200を正極に用いた二次電池と組み合わせることで安全性についての相乗効果が得られる。実施の形態1で得られる正極活物質200を正極に用いた二次電池及び制御回路8704は、二次電池による火災等の事故撲滅に大きく寄与することができる。
図40Cは、本発明の一態様の蓄電装置を用いた二輪車の一例である。図40Cに示すスクータ8600は、蓄電装置8602、サイドミラー8601、方向指示灯8603を備える。蓄電装置8602は、方向指示灯8603に電気を供給することができる。また、実施の形態1で得られる正極活物質200を正極に用いた二次電池を複数収納された蓄電装置8602は高容量とすることができ、小型化に寄与することができる。
図40Cに示すスクータ8600は、座席下収納8604に、蓄電装置8602を収納することができる。蓄電装置8602は、座席下収納8604が小型であっても、座席下収納8604に収納することができる。
本実施の形態の内容は、他の実施の形態内容と適宜組み合わせることができる。
(実施の形態12)
本実施の形態では、本発明の一態様である二次電池を電子機器に実装する例について説明する。二次電池を実装する電子機器として、例えば、テレビジョン装置(テレビ、又はテレビジョン受信機ともいう)、コンピュータ用などのモニタ、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機(携帯電話、携帯電話装置ともいう)、携帯型ゲーム機、携帯情報端末、音響再生装置、パチンコ機などの大型ゲーム機などが挙げられる。携帯情報端末としてはノート型パーソナルコンピュータ、タブレット型端末、電子書籍端末、携帯電話機などがある。
図41Aは、携帯電話機の一例を示している。携帯電話機2100は、筐体2101に組み込まれた表示部2102の他、操作ボタン2103、外部接続ポート2104、スピーカ2105、マイク2106などを備えている。なお、携帯電話機2100は、二次電池2107を有している。実施の形態1で説明した正極活物質200を正極に用いた二次電池2107を備えることで高容量とすることができ、筐体の小型化に伴う省スペース化に対応できる構成を実現することができる。
携帯電話機2100は、移動電話、電子メール、文章閲覧及び作成、音楽再生、インターネット通信、コンピュータゲームなどの種々のアプリケーションを実行することができる。
操作ボタン2103は、時刻設定のほか、電源のオン、オフ動作、無線通信のオン、オフ動作、マナーモードの実行及び解除、省電力モードの実行及び解除など、様々な機能を持たせることができる。例えば、携帯電話機2100に組み込まれたオペレーティングシステムにより、操作ボタン2103の機能を自由に設定することもできる。
また、携帯電話機2100は、通信規格された近距離無線通信を実行することが可能である。例えば無線通信可能なヘッドセットと相互通信することによって、ハンズフリーで通話することもできる。
また、携帯電話機2100は外部接続ポート2104を備え、他の情報端末とコネクタを介して直接データのやりとりを行うことができる。また外部接続ポート2104を介して充電を行うこともできる。なお、充電動作は外部接続ポート2104を介さずに無線給電により行ってもよい。
携帯電話機2100はセンサを有することが好ましい。センサとして例えば、指紋センサ、脈拍センサ、体温センサ等の人体センサ、タッチセンサ、加圧センサ、加速度センサ、等が搭載されることが好ましい。
図41Bは複数のローター2302を有する無人航空機2300である。無人航空機2300はドローンと呼ばれることもある。無人航空機2300は、本発明の一態様である二次電池2301と、カメラ2303と、アンテナ(図示しない)を有する。無人航空機2300はアンテナを介して遠隔操作することができる。実施の形態1で得られる正極活物質200を正極に用いた二次電池は高エネルギー密度であり、安全性が高いため、長期間に渡って長時間の安全な使用ができ、無人航空機2300に搭載する二次電池として好適である。
図41Cは、ロボットの一例を示している。図41Cに示すロボット6400は、二次電池6409、照度センサ6401、マイクロフォン6402、上部カメラ6403、スピーカ6404、表示部6405、下部カメラ6406及び障害物センサ6407、移動機構6408、演算装置等を備える。
マイクロフォン6402は、使用者の話し声及び環境音等を検知する機能を有する。また、スピーカ6404は、音声を発する機能を有する。ロボット6400は、マイクロフォン6402及びスピーカ6404を用いて、使用者とコミュニケーションをとることが可能である。
表示部6405は、種々の情報の表示を行う機能を有する。ロボット6400は、使用者の望みの情報を表示部6405に表示することが可能である。表示部6405は、タッチパネルを搭載していてもよい。また、表示部6405は取り外しのできる情報端末であっても良く、ロボット6400の定位置に設置することで、充電及びデータの受け渡しを可能とする。
上部カメラ6403及び下部カメラ6406は、ロボット6400の周囲を撮像する機能を有する。また、障害物センサ6407は、移動機構6408を用いてロボット6400が前進する際の進行方向における障害物の有無を察知することができる。ロボット6400は、上部カメラ6403、下部カメラ6406及び障害物センサ6407を用いて、周囲の環境を認識し、安全に移動することが可能である。
ロボット6400は、その内部領域に本発明の一態様に係る二次電池6409と、半導体装置又は電子部品を備える。実施の形態1で得られる正極活物質200を正極に用いた二次電池は高エネルギー密度であり、安全性が高いため、長期間に渡って長時間の安全な使用ができ、ロボット6400に搭載する二次電池6409として好適である。
図41Dには、人工衛星6800一例を示している。人工衛星6800は、機体6801と、ソーラーパネル6802と、アンテナ6803と、二次電池6805と、を有する。ソーラーパネルは、太陽電池モジュールと呼ばれる場合がある。
ソーラーパネル6802に太陽光が照射されることにより、人工衛星6800が動作するために必要な電力が生成される。しかしながら、たとえばソーラーパネルに太陽光が照射されない状況、またはソーラーパネルに照射される太陽光の光量が少ない状況では、生成される電力が少なくなる。よって、人工衛星6800が動作するために必要な電力が生成されない可能性がある。生成される電力が少ない状況下であっても人工衛星6800を動作させるために、人工衛星6800に二次電池6805を設けるとよい。
人工衛星6800は、信号を生成することができる。当該信号は、アンテナ6803を介して送信され、たとえば地上に設けられた受信機、または他の人工衛星が受信することができる。人工衛星6800が送信した信号を受信することにより、たとえば当該信号を受信した受信機の位置を測定することができる。以上より、人工衛星6800は、たとえば衛星測位システムを構成することができる。
または、人工衛星6800は、センサを有する構成とすることができる。たとえば、可視光センサを有する構成とすることにより、人工衛星6800は、地上に設けられている物体に当たって反射された太陽光を検出する機能を有することができる。または、熱赤外センサを有する構成とすることにより、人工衛星6800は、地表から放出される熱赤外線を検出する機能を有することができる。以上より、人工衛星6800は、たとえば地球観測衛星としての機能を有することができる。
図41Eは、掃除ロボットの一例を示している。掃除ロボット6300は、筐体6301上面に配置された表示部6302、側面に配置された複数のカメラ6303、ブラシ6304、操作ボタン6305、二次電池6306、各種センサなどを有する。図示されていないが、掃除ロボット6300には、タイヤ、吸い込み口等が備えられている。掃除ロボット6300は自走し、ゴミ6310を検知し、下面に設けられた吸い込み口からゴミを吸引することができる。
例えば、掃除ロボット6300は、カメラ6303が撮影した画像を解析し、壁、家具又は段差などの障害物の有無を判断することができる。また、画像解析により、配線などブラシ6304に絡まりそうな物体を検知した場合は、ブラシ6304の回転を止めることができる。掃除ロボット6300は、その内部領域に本発明の一態様に係る二次電池6306と、半導体装置又は電子部品を備える。実施の形態1で得られる正極活物質200を正極に用いた二次電池は高エネルギー密度であり、安全性が高いため、長期間に渡って長時間の安全な使用ができ、掃除ロボット6300に搭載する二次電池6306として好適である。
図42はワイヤレスイヤホンの例を示している。ここでは一対の本体4100a及び本体4100bを有するワイヤレスイヤホンを図示するが、必ずしも一対でなくてもよい。
本体4100a及び4100bは、ドライバユニット4101、アンテナ4102、二次電池4103を有する。表示部4104を有していてもよい。また無線用IC等の回路が載った基板、充電用端子等を有することが好ましい。またマイクを有していてもよい。
ケース4110は、二次電池4111を有する。また無線用IC、充電制御IC等の回路が載った基板、充電用端子を有することが好ましい。また表示部、ボタン等を有していてもよい。
本体4100a及び4100bは、スマートフォン等の他の電子機器と無線で通信することができる。これにより他の電子機器から送られた音データ等を本体4100a及び4100bで再生することができる。また本体4100a及び4100bがマイクを有すれば、マイクで取得した音を他の電子機器に送り、該電子機器により処理をした後の音データ再び本体4100a及び4100bに送って再生することができる。これにより、例えば翻訳機として用いることもできる。
またケース4110が有する二次電池4111から、本体4100aが有する二次電池4103に充電を行うことができる。二次電池4111及び二次電池4103としては先の実施の形態のコイン型二次電池、円筒形二次電池等を用いることができる。実施の形態1で得られる正極活物質200を正極に用いた二次電池は高エネルギー密度であり、二次電池4103及び二次電池4111に用いることで、ワイヤレスイヤホンの小型化に伴う省スペース化に対応できる構成を実現することができる。
本実施の形態は、他の実施の形態と適宜組み合わせて実施することが可能である。
本実施例では、上記実施の形態3等に示した方法にしたがい、本発明の一態様の電解質層103を作製した。
まず図11のステップS50乃至ステップS58にしたがって、第1のシート状電解質層を得た。第1のシート状電解質層の平面SEM像を図43A及び図43Bに示す。本実施例におけるSEM観察は、日立ハイテク社製走査電子顕微鏡装置S4800を用い、観察条件は加速電圧5kVとし、図43Aは倍率500倍の設定で撮影した像、図43Bは図43Aに四角を付した領域において5000倍の設定で撮影した像である。
図43Aより第1のシート状電解質層の膜厚は約130μmであると分かる。また図43BよりLLZAO10同士がバインダ11を介して繋がっている領域と、空隙12が確認された。
次に図11のステップS60にしたがって第1のシート状電解質層を加熱し、ステップS61のように第2のシート状電解質を得た。加熱温度は1200℃、加熱雰囲気は空気とした。加熱する際、上記実施の形態3で示したように、第1のシート状電解質層を12mmφの大きさに打ち抜いたものを4つ用意し、アルミナ板上に配置させた。アルミナ板と第1のシート状電解質層が固着しないように、アルミナ板上と、4つの第1のシート状電解質層上に、LLZAO粉末を散布しておいた。第1のシート状電解質層の上方にもアルミナ板を配置するためギャップ保持材を用意した。
第2のシート状電解質層の平面SEM像を図44A及び図44Bに示す。図44Aは倍率500倍の設定で撮影した像、図44Bは図44Aに四角を付した領域において5000倍の設定で撮影した像である。図44Aより第2のシート状電解質層の膜厚は約100μmであると分かる。また図44Bよりバインダが除去され、LLZAO10の同士が結合して焼結体となったことが確認された。なお当該焼結体には空隙12が確認された。
次いで、第2のシート状電解質層に、リチウム塩が混合されたイオン液体、具体的にはEMI−FSIに対して、LiFSIをモル濃度が2.15mol/Lとなるように溶解させた溶液を、真空装置の差圧計が−100kPaを示す真空雰囲気下で1時間かけて含浸させた。このようなイオン液体を含浸させた後、有機溶媒で洗浄して平面SEM観察を行った。図45Aは倍率500倍の設定で撮影した像、図45Bは図45Aに四角を付した領域において5000倍の設定で撮影した像である。図45Aより第2のシート状電解質層の膜厚は約100μmであると分かる。また図45BよりLLZAO10が確認され、さらに上記イオン液体15が確認された。次に図45Bに示した測定箇所1,2に対するSEM−EDX分析を行った結果を下表に示し、各元素の濃度を原子%(at%)で示す。
Figure JPOXMLDOC01-appb-T000027
図45Bより、第2のシート状電解質層の空隙に第1の層が確認された。第1の層に対応した測定箇所1のEDX分析結果によれば、窒素、フッ素、硫黄などの本実施例に用いたイオン液体特有の元素が検出された。これらよりイオン液体をLLZAOに含浸させると、イオン液体は焼結体の空隙に含浸され、さらに有機溶媒で洗浄しても空隙にイオン液体が残留することがわかった。なお、測定箇所1,2に共通して検出されたランタン、ジルコニウム、アルミニウムは,LLZAO特有の元素である。その他の元素である炭素はイオン液体に含まれていた元素である。また酸素はイオン液体、LLZAOともに由来する元素である。
このように固体電解質であるLLZAOが焼結体をなすと空隙が生じ、当該空隙にイオン液体が含浸することが確認できた。
100:二次電池、101:正極集電体、102:正極活物質層、103a:第1の電解質層、103b:第2の電解質層、103c:第3の電解質層、103:電解質層、104:負極活物質層、105:負極集電体、106:正極層、107:負極層、111:正極活物質、113:固体電解質、117:負極活物質、118:イオン液体

Claims (11)

  1.  正極層と、負極層と、前記正極層及び前記負極層の間に位置する電解質層とを有し、
     前記正極層は正極活物質及び第1の固体電解質を有し、
     前記負極層は負極活物質及び第2の固体電解質を有し、
     前記電解質層は第3の固体電解質及びイオン液体を有し、
     前記イオン液体は、前記第3の固体電解質の空隙に含浸される、二次電池。
  2.  正極層と、負極層と、前記正極層及び前記負極層の間に位置する電解質層とを有し、
     前記正極層は正極活物質及び第1の固体電解質を有し、
     前記負極層は負極活物質及び第2の固体電解質を有し、
     前記電解質層は第3の固体電解質を有し、
     前記正極層、前記負極層及び前記電解質層は、イオン液体を有し、
     前記イオン液体は、前記第3の固体電解質の空隙に含浸される、二次電池。
  3.  正極層と、負極層と、前記正極層及び前記負極層の間に位置する電解質層とを有し、
     前記正極層は正極活物質及び第1の固体電解質を有し、
     前記負極層は負極活物質及び第2の固体電解質を有し、
     前記電解質層は第1の電解質層乃至第3の電解質層を有し、
     前記第1の電解質層乃至前記第3の電解質層はイオン液体を有し、
     前記第2の電解質層は、第3の固体電解質を有し、
     前記イオン液体は、前記第3の固体電解質の空隙に含浸される、二次電池。
  4.  正極層と、負極層と、前記正極層及び前記負極層の間に位置する電解質層とを有し、
     前記正極層は正極活物質及び第1の固体電解質を有し、
     前記負極層は負極活物質及び第2の固体電解質を有し、
     前記電解質層は第1の電解質層及び第2の電解質層を有し、
     前記第1の電解質層及び前記第2の電解質層はイオン液体を有し、
     前記第2の電解質層は、第3の固体電解質を有し、
     前記イオン液体は、前記第3の固体電解質の空隙に含浸される、二次電池。
  5.  請求項1乃至請求項4のいずれか一において、
     前記正極活物質は、層状岩塩型の結晶構造、スピネル型の結晶構造、又はオリビン型の結晶構造を有する複合酸化物を有する、二次電池。
  6.  請求項5において、
     前記層状岩塩型の結晶構造を有する正極活物質は、コバルト酸リチウム又はニッケル−マンガン−コバルト酸リチウムを有する、二次電池。
  7.  請求項1乃至請求項6のいずれか一において、
     前記負極活物質は、シリコン、スズ、ガリウム、アルミニウム、ゲルマニウム、鉛、アンチモン、ビスマス、銀、亜鉛、カドミウム、又はインジウムを有する、二次電池。
  8.  請求項1乃至請求項6のいずれか一において、
     前記負極活物質は、炭素材料を有する、二次電池。
  9.  請求項1乃至請求項8のいずれか一に記載された二次電池を有する電子機器。
  10.  請求項1乃至請求項8のいずれか一に記載された二次電池をベルトに有する、腕時計型の電子機器。
  11.  請求項1乃至請求項8のいずれか一に記載された二次電池を有する、飛行体。
PCT/IB2022/054820 2021-06-02 2022-05-24 二次電池、電子機器及び飛行体 WO2022254284A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020237044709A KR20240016321A (ko) 2021-06-02 2022-05-24 이차 전지, 전자 기기, 및 비행체
US18/562,562 US20240266594A1 (en) 2021-06-02 2022-05-24 Secondary battery, electronic device, and flying object
CN202280036466.XA CN117355971A (zh) 2021-06-02 2022-05-24 二次电池、电子设备及飞行体
JP2023525126A JPWO2022254284A1 (ja) 2021-06-02 2022-05-24

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021093253 2021-06-02
JP2021-093253 2021-06-02

Publications (1)

Publication Number Publication Date
WO2022254284A1 true WO2022254284A1 (ja) 2022-12-08

Family

ID=84323928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2022/054820 WO2022254284A1 (ja) 2021-06-02 2022-05-24 二次電池、電子機器及び飛行体

Country Status (5)

Country Link
US (1) US20240266594A1 (ja)
JP (1) JPWO2022254284A1 (ja)
KR (1) KR20240016321A (ja)
CN (1) CN117355971A (ja)
WO (1) WO2022254284A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115832424A (zh) * 2023-02-16 2023-03-21 北京科技大学 适用于有机正极的铝离子电池电解质、电池及其制备工艺

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117855575A (zh) * 2024-01-19 2024-04-09 高能时代(深圳)新能源科技有限公司 一种固态电池及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008243736A (ja) * 2007-03-28 2008-10-09 Arisawa Mfg Co Ltd リチウムイオン二次電池およびその製造方法
WO2019151363A1 (ja) * 2018-02-05 2019-08-08 富士フイルム株式会社 固体電解質含有シート、全固体二次電池用電極シート、全固体二次電池、電子機器及び電気自動車、並びに、これらの製造方法
JP2021018860A (ja) * 2019-07-18 2021-02-15 日本特殊陶業株式会社 蓄電デバイス

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012014892A (ja) 2010-06-30 2012-01-19 Sumitomo Electric Ind Ltd 非水電解質電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008243736A (ja) * 2007-03-28 2008-10-09 Arisawa Mfg Co Ltd リチウムイオン二次電池およびその製造方法
WO2019151363A1 (ja) * 2018-02-05 2019-08-08 富士フイルム株式会社 固体電解質含有シート、全固体二次電池用電極シート、全固体二次電池、電子機器及び電気自動車、並びに、これらの製造方法
JP2021018860A (ja) * 2019-07-18 2021-02-15 日本特殊陶業株式会社 蓄電デバイス

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115832424A (zh) * 2023-02-16 2023-03-21 北京科技大学 适用于有机正极的铝离子电池电解质、电池及其制备工艺
CN115832424B (zh) * 2023-02-16 2023-04-11 北京科技大学 适用于有机正极的铝离子电池电解质、电池及其制备工艺

Also Published As

Publication number Publication date
US20240266594A1 (en) 2024-08-08
JPWO2022254284A1 (ja) 2022-12-08
KR20240016321A (ko) 2024-02-06
CN117355971A (zh) 2024-01-05

Similar Documents

Publication Publication Date Title
JP7566840B2 (ja) リチウムイオン二次電池
WO2022254284A1 (ja) 二次電池、電子機器及び飛行体
CN113165908A (zh) 正极活性物质及二次电池
WO2022229776A1 (ja) 二次電池、および電子機器
WO2022200908A1 (ja) 電池、電子機器および車両
WO2021260487A1 (ja) 二次電池、二次電池の作製方法、電子機器、及び車両
JP2022045353A (ja) 二次電池の作製方法、および二次電池
WO2022248968A1 (ja) 電池、電子機器、蓄電システムおよび移動体
WO2023281346A1 (ja) 正極活物質
JP2022173119A (ja) 正極活物質
WO2023031729A1 (ja) 正極および正極の作製方法
WO2023209474A1 (ja) 正極活物質、リチウムイオン電池、電子機器、および車両
WO2023073480A1 (ja) リチウムイオン電池
WO2023052900A1 (ja) 蓄電装置および車両
WO2023209475A1 (ja) 正極活物質、正極、二次電池、電子機器および車両
WO2022243782A1 (ja) 正極活物質の作製方法、正極、リチウムイオン二次電池、移動体、蓄電システム、及び電子機器
WO2024074938A1 (ja) 二次電池
WO2023012579A1 (ja) リチウムイオン電池
WO2023242669A1 (ja) リチウムイオン二次電池
WO2022189889A1 (ja) 複合酸化物の作製方法、正極、リチウムイオン二次電池、電子機器、蓄電システム、及び移動体
WO2022034414A1 (ja) 二次電池、電子機器、車両、及び正極活物質の作製方法
WO2024170994A1 (ja) 正極活物質、リチウムイオン二次電池、電子機器、車両および複合酸化物の作製方法
WO2022130100A1 (ja) イオン液体、二次電池、電子機器および車両
WO2022038451A1 (ja) 正極活物質の作製方法、および二次電池の作製方法
WO2022038448A1 (ja) 電極の作製方法、二次電池、電子機器および車両

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22815442

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023525126

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280036466.X

Country of ref document: CN

Ref document number: 18562562

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20237044709

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22815442

Country of ref document: EP

Kind code of ref document: A1