WO2022200908A1 - 電池、電子機器および車両 - Google Patents

電池、電子機器および車両 Download PDF

Info

Publication number
WO2022200908A1
WO2022200908A1 PCT/IB2022/052240 IB2022052240W WO2022200908A1 WO 2022200908 A1 WO2022200908 A1 WO 2022200908A1 IB 2022052240 W IB2022052240 W IB 2022052240W WO 2022200908 A1 WO2022200908 A1 WO 2022200908A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
battery
voltage
active material
discharge capacity
Prior art date
Application number
PCT/IB2022/052240
Other languages
English (en)
French (fr)
Inventor
山崎舜平
掛端哲弥
門馬洋平
米田祐美子
栗城和貴
高橋辰義
福島邦宏
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Priority to JP2023508135A priority Critical patent/JPWO2022200908A1/ja
Priority to DE112022001653.1T priority patent/DE112022001653T5/de
Priority to CN202280020100.3A priority patent/CN117043989A/zh
Priority to US18/550,769 priority patent/US20240170667A1/en
Priority to KR1020237034018A priority patent/KR20230160287A/ko
Publication of WO2022200908A1 publication Critical patent/WO2022200908A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4285Testing apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/446Initial charging measures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/109Primary casings; Jackets or wrappings characterised by their shape or physical structure of button or coin shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • One aspect of the present invention relates to batteries, electronic devices, and vehicles.
  • One aspect of the invention relates to an article, method, or method of manufacture.
  • one aspect of the invention relates to a process, machine, manufacture, or composition of matter.
  • one embodiment of the present invention relates to a semiconductor device, a display device, a light-emitting device, a power storage device, a lighting device, an electronic device, or a manufacturing method thereof.
  • the battery in this specification includes a secondary battery.
  • the power storage device includes a stationary device having a battery function, such as a household storage battery.
  • electronic equipment refers to all devices having batteries, and includes, for example, electro-optical devices having batteries, information terminal devices having batteries, and the like.
  • lithium ion secondary batteries lithium ion capacitors
  • air batteries air batteries
  • all-solid-state batteries high-power, high-capacity lithium-ion secondary batteries (also known as lithium-ion batteries) has expanded rapidly with the development of the semiconductor industry. has become indispensable.
  • X-ray diffraction is one of techniques used to analyze the crystal structure of the positive electrode active material.
  • XRD data can be analyzed by using ICSD (Inorganic Crystal Structure Database) introduced in Non-Patent Document 4.
  • JP 2019-179758 A WO2020/026078 pamphlet JP 2020-140954 A
  • Lithium ion secondary batteries and positive electrode active materials used therein still have room for improvement in various aspects such as charge/discharge capacity, cycle characteristics, reliability, safety, and cost.
  • An object of the present invention is to provide a positive electrode active material or a composite oxide that is used in a lithium ion secondary battery to suppress a decrease in charge/discharge capacity during charge/discharge cycles. Another object is to provide a positive electrode active material or a composite oxide whose crystal structure does not easily collapse even after repeated charging and discharging. Another object is to provide a positive electrode active material or a composite oxide with high charge/discharge capacity. Another object is to provide a secondary battery with high safety and reliability.
  • Another object of the present invention is to provide a positive electrode active material, a composite oxide, a secondary battery, or a manufacturing method thereof.
  • One aspect of the present invention is a battery comprising a positive electrode and a negative electrode, wherein the positive electrode of the battery is used as the positive electrode of a test battery in which the negative electrode is made of lithium metal, and the test battery is operated at 25°C or 45°C. After constant current charging at 200 mA/g until the voltage reaches 4.6 V under the environment, constant voltage charging is performed at a voltage of 4.6 V until the charging current reaches 20 mA/g, and then the voltage reaches 2.5 V.
  • a charge-discharge cycle that discharges at a constant current of 200 mA / g is repeated 50 times, and when the discharge capacity is measured for each cycle, the value of the discharge capacity measured at the 50th cycle is A battery that satisfies 90% or more and less than 100% of the maximum discharge capacity.
  • Another aspect of the invention is a battery comprising a positive electrode and a negative electrode, wherein the positive electrode of the battery is used as the positive electrode of a test battery in which the negative electrode is lithium metal, the test battery being operated at 25°C or 45°C.
  • a charge-discharge cycle was repeated 50 times, and the discharge capacity was measured for each cycle.
  • the value of discharge capacity measured in 1 satisfies 90% or more and less than 100% of the maximum value of discharge capacity during all 50 cycles.
  • Another aspect of the invention is a battery comprising a positive electrode and a negative electrode, wherein the positive electrode of the battery is used as the positive electrode of a test battery in which the negative electrode is lithium metal, the test battery being operated at 25°C or 45°C.
  • constant current charging at 100 mA/g until the voltage reaches 4.6 V in the environment
  • constant voltage charging is performed at a voltage of 4.6 V until the charging current reaches 10 mA/g, and then the voltage reaches 2.5 V.
  • the value of the discharge capacity measured at the 50th cycle is A battery that satisfies 90% or more and less than 100% of the maximum capacity.
  • Another aspect of the present invention is a battery comprising a positive electrode and a negative electrode, wherein the positive electrode of the battery is used as the positive electrode of a test battery whose negative electrode is lithium metal, and the test battery is subjected to 4.
  • constant-current charging at 200 mA/g until the voltage reaches 65 V
  • constant-voltage charging at 4.65 V until the charging current reaches 20 mA/g
  • charging at 200 mA/g until the voltage reaches 2.5 V.
  • the value of the discharge capacity measured at the 50th cycle is the maximum value of the discharge capacity in all 50 cycles. It is a battery that satisfies 90% or more and less than 100% of
  • Another aspect of the present invention is a battery comprising a positive electrode and a negative electrode, wherein the positive electrode of the battery is used as the positive electrode of a test battery whose negative electrode is lithium metal, and the test battery is subjected to 4.
  • constant voltage charging is performed at a voltage of 4.65 V until the charging rate reaches 0.05 C
  • a charge-discharge cycle of constant current discharge at a discharge rate of 0.5 C until a voltage of 2.5 V is repeated 50 times, and when the discharge capacity is measured for each cycle, the discharge measured at the 50th cycle
  • Another aspect of the present invention is a battery comprising a positive electrode and a negative electrode, wherein the positive electrode of the battery is used as the positive electrode of a test battery whose negative electrode is lithium metal, and the test battery is subjected to 4. After constant current charging at 100 mA/g until the voltage reaches 65 V, constant voltage charging at 4.65 V until the charging current reaches 10 mA/g, and then constant voltage charging until the voltage reaches 2.5 V at 100 mA/g. When a constant current discharge charge/discharge cycle is repeated 50 times and the discharge capacity is measured for each cycle, the value of the discharge capacity measured at the 50th cycle is the maximum value of the discharge capacity in all 50 cycles. A battery that satisfies 90% or more and less than 100%.
  • Another aspect of the present invention is a battery comprising a positive electrode and a negative electrode, wherein the positive electrode of the battery is used as the positive electrode of a test battery whose negative electrode is lithium metal, and the test battery is subjected to 4.
  • constant current charging at 200 mA/g to a voltage of 7 V
  • constant voltage charging to a voltage of 4.7 V until the charging current reaches 20 mA/g
  • charging to a voltage of 2.5 V at 200 mA/g.
  • the value of the discharge capacity measured at the 50th cycle is the maximum value of the discharge capacity in all 50 cycles. It is a battery that satisfies 90% or more and less than 100% of
  • Another aspect of the present invention is a battery comprising a positive electrode and a negative electrode, wherein the positive electrode of the battery is used as the positive electrode of a test battery whose negative electrode is lithium metal, and the test battery is subjected to 4.
  • constant voltage charging is performed at a voltage of 4.7 V until the charging rate reaches 0.05 C
  • a charge-discharge cycle of constant current discharge at a discharge rate of 0.5 C until a voltage of 2.5 V is repeated 50 times, and when the discharge capacity is measured for each cycle, the discharge measured at the 50th cycle
  • Another aspect of the present invention is a battery comprising a positive electrode and a negative electrode, wherein the positive electrode of the battery is used as the positive electrode of a test battery whose negative electrode is lithium metal, and the test battery is subjected to 4.
  • the positive electrode of the battery is used as the positive electrode of a test battery whose negative electrode is lithium metal, and the test battery is subjected to 4.
  • the discharge capacity is measured at the 50th cycle. It is preferable that the value of the discharge capacity obtained satisfies 90% or more and less than 100% of the maximum value of the discharge capacity during all 50 cycles.
  • the value of the discharge capacity measured at the 50th cycle satisfies 95% or more of the maximum value of the discharge capacity during all 50 cycles.
  • Another aspect of the present invention is a battery comprising a positive electrode and a negative electrode, wherein the positive electrode of the battery is used as the positive electrode of a test battery whose negative electrode is lithium metal, and the test battery is subjected to 4.
  • constant voltage charging is performed at a voltage of 4.65 V until the charging rate reaches 0.05 C
  • a charge-discharge cycle of constant current discharge at a discharge rate of 0.5 C until a voltage of 2.5 V is repeated 50 times, and when the discharge capacity is measured for each cycle, the discharge measured at the 50th cycle
  • a battery whose capacity satisfies 85% or more and less than 100% of the maximum discharge capacity during all 50 cycles.
  • Another aspect of the present invention is a battery comprising a positive electrode and a negative electrode, wherein the positive electrode of the battery is used as the positive electrode of a test battery whose negative electrode is lithium metal, and the test battery is subjected to 4. After constant current charging at 100 mA/g until the voltage reaches 65 V, constant voltage charging at 4.65 V until the charging current reaches 10 mA/g, and then constant voltage charging until the voltage reaches 2.5 V at 100 mA/g. When a constant current discharge charge/discharge cycle is repeated 50 times and the discharge capacity is measured for each cycle, the value of the discharge capacity measured at the 50th cycle is the maximum value of the discharge capacity in all 50 cycles. It is a battery that satisfies 85% or more and less than 100% of
  • Another aspect of the present invention is a battery comprising a positive electrode and a negative electrode, wherein the positive electrode of the battery is used as the positive electrode of a test battery whose negative electrode is lithium metal, and the test battery is subjected to 4.
  • constant voltage charging is performed at a voltage of 4.7 V until the charging rate reaches 0.05 C
  • a charge-discharge cycle of constant current discharge at a discharge rate of 0.5 C until a voltage of 2.5 V is repeated 50 times, and when the discharge capacity is measured for each cycle, the discharge measured at the 50th cycle
  • a battery whose capacity satisfies 80% or more and less than 100% of the maximum discharge capacity during all 50 cycles.
  • Another aspect of the present invention is a battery comprising a positive electrode and a negative electrode, wherein the positive electrode of the battery is used as the positive electrode of a test battery whose negative electrode is lithium metal, and the test battery is subjected to 4.
  • the positive electrode of the battery is used as the positive electrode of a test battery whose negative electrode is lithium metal, and the test battery is subjected to 4.
  • the test battery is preferably a coin-type half cell.
  • the positive electrode preferably has a layered rock salt type positive electrode active material.
  • the positive electrode active material preferably contains lithium cobalt oxide.
  • an electronic device or a vehicle equipped with the above battery there is provided an electronic device or a vehicle equipped with the above battery.
  • a positive electrode active material or a composite oxide in which a decrease in charge/discharge capacity during charge/discharge cycles is suppressed when used in a lithium ion secondary battery.
  • a positive electrode active material or a composite oxide whose crystal structure does not easily collapse even after repeated charging and discharging.
  • a secondary battery with high safety or reliability can be provided.
  • the present invention can provide a positive electrode active material, a secondary battery, or a method for producing them.
  • FIGS. 4A and 4B are cross-sectional views of the positive electrode active material, and FIGS. 5C1 and 5C2 are part of the cross-sectional views of the positive electrode active material.
  • FIG. 6 is a cross-sectional view of the positive electrode active material.
  • FIG. 7 is a cross-sectional view of a positive electrode active material.
  • FIG. 8 is a diagram for explaining the charge depth and crystal structure of the positive electrode active material.
  • FIG. 9 shows an XRD pattern calculated from the crystal structure.
  • FIG. 10 is a diagram for explaining the charge depth and crystal structure of the positive electrode active material of the comparative example.
  • FIG. 11 shows an XRD pattern calculated from the crystal structure.
  • 12A and 12B are diagrams showing XRD patterns calculated from the crystal structure.
  • 13A to 13C are lattice constants calculated from XRD.
  • 14A to 14C are lattice constants calculated from XRD.
  • FIG. 15 is an example of a TEM image in which the orientation of the crystals is approximately the same.
  • FIG. 16A is an example of an STEM image in which the crystal orientations are approximately matched.
  • FIG. 16B is the FFT of the rocksalt crystal RS area
  • FIG. 16C is the FFT of the layered rocksalt crystal LRS area.
  • 17A and 17B are cross-sectional views of active material layers when a graphene compound is used as a conductive agent.
  • 18A and 18B are diagrams illustrating an example of a secondary battery.
  • 19A to 19C are diagrams illustrating examples of secondary batteries.
  • 20A and 20B are diagrams illustrating an example of a secondary battery.
  • 21A to 21C are diagrams illustrating a coin-type secondary battery.
  • 22A to 22D are diagrams illustrating a cylindrical secondary battery.
  • 23A and 23B are diagrams illustrating an example of a secondary battery.
  • 24A to 24D are diagrams illustrating examples of secondary batteries.
  • 25A and 25B are diagrams illustrating an example of a secondary battery.
  • FIG. 26 is a diagram illustrating an example of a secondary battery.
  • 27A to 27C are diagrams illustrating a laminated secondary battery.
  • 28A and 28B are diagrams illustrating a laminated secondary battery.
  • FIG. 29 is a diagram showing the appearance of a secondary battery.
  • FIG. 30 is a diagram showing the appearance of a secondary battery.
  • 31A to 31C are diagrams illustrating a method for manufacturing a secondary battery.
  • 32A to 32H are diagrams illustrating examples of electronic devices.
  • 33A to 33C are diagrams illustrating an example of electronic equipment.
  • FIG. 34 is a diagram illustrating an example of electronic equipment.
  • 35A to 35D are diagrams illustrating examples of electronic devices.
  • 36A to 36C are diagrams illustrating examples of electronic devices.
  • 37A to 37C are diagrams illustrating an example of a vehicle.
  • 38A and 38B are diagrams showing cycle characteristics.
  • 39A and 39B are diagrams showing cycle characteristics.
  • 40A and 40B are diagrams showing cycle characteristics.
  • FIG. 41 is a diagram showing cycle characteristics.
  • 42A and 42B are diagrams showing charge/discharge curves.
  • 43A and 43B are diagrams showing charge/discharge curves.
  • 44A and 44B are diagrams showing charge/discharge curves.
  • 45A and 45B are diagrams showing cycle characteristics.
  • 46A and 46B are diagrams showing cycle characteristics.
  • 47A and 47B are diagrams showing cycle characteristics.
  • FIG. 48 is a diagram etc.
  • FIG. 49 is a diagram and the like showing the discharge capacity retention rate with respect to the maximum discharge capacity.
  • 50A and 50B are diagrams showing charge/discharge curves.
  • 51A and 51B are diagrams showing charge/discharge curves.
  • 52A and 52B are diagrams showing charge/discharge curves.
  • 53A and 53B are diagrams showing rate characteristics.
  • 54A and 54B are diagrams showing rate characteristics.
  • 55A and 55B are diagrams showing rate characteristics.
  • 56A and 56B are diagrams showing the relationship between measured temperature and charge/discharge voltage.
  • 57A and 57B are diagrams showing the relationship between measured temperature and charge/discharge voltage.
  • 58 is a diagram showing the relationship between measured temperature and charge/discharge voltage.
  • 59A and 59B are diagrams showing the relationship between measured temperature and charge/discharge voltage.
  • 60A and 60B are diagrams showing the relationship between measured temperature and charge/discharge voltage.
  • FIG. 61 is a diagram showing the relationship between measured temperature and charge/discharge voltage.
  • 62A and 62B are diagrams showing the relationship between measured temperature and charge/discharge voltage.
  • 63A and 63B are diagrams showing the relationship between measured temperature and charge/discharge voltage.
  • FIG. 64 is a diagram showing the relationship between measured temperature and charge/discharge voltage.
  • 65A and 65B are diagrams showing charge curves versus measured temperature.
  • FIG. 67 is a diagram showing charge curves with respect to measured temperature.
  • 68A and 68B are diagrams showing charge curves versus measured temperature.
  • 69A and 69B are diagrams showing charging curves against measured temperature.
  • FIG. 70 is a diagram showing charge curves with respect to measured temperature.
  • 71A and 71B are diagrams showing charge curves versus measured temperature.
  • 72A and 72B are diagrams showing charge curves versus measured temperature.
  • FIG. 73 is a diagram showing a charge curve with respect to measured temperature.
  • FIG. 74 is a diagram showing the discharge capacity retention rate with respect to the measured temperature.
  • FIG. 75 is a diagram showing charge depth versus measured temperature.
  • FIG. 67 is a diagram showing charge curves with respect to measured temperature.
  • 68A and 68B are diagrams showing charge curves versus measured temperature.
  • 69A and 69B are diagrams showing charging curves against measured temperature.
  • FIG. 70 is a diagram showing charge curves with
  • FIG. 76 is a conceptual diagram showing the relationship between charging depth and crystal structure.
  • FIG. 77 is a conceptual diagram showing changes in the crystal phase inside the active material particles as charge-discharge cycles progress.
  • FIG. 78 is a graph showing cycle characteristics, maximum discharge capacity and discharge capacity retention rate of a full cell.
  • FIG. 79 is a diagram showing cycle characteristics and maximum discharge capacity of a full cell.
  • FIG. 80 is a diagram showing cycle characteristics, maximum discharge capacity and discharge capacity retention rate of a full cell.
  • FIG. 81 is a diagram showing cycle characteristics and maximum discharge capacity of a full cell.
  • 82A and 82B are diagrams showing discharge curves versus measured temperature.
  • 83A and 83B are diagrams showing discharge curves against measured temperature.
  • FIG. 84 is a diagram showing the relationship between discharge capacity and measured temperature.
  • 85A and 85B are diagrams showing the relationship between weight energy density and measured temperature.
  • FIG. 86 is a diagram showing the relationship between weight energy density and measured temperature.
  • FIG. 87 is a diagram showing a discharge curve with respect to measured temperature.
  • FIG. 88 is a diagram showing a discharge curve with respect to measured temperature.
  • 89A and 89B are diagrams showing the relationship between discharge capacity and rate.
  • 90A and 90B are diagrams showing discharge curves against rate.
  • 91A and 91B are diagrams showing the relationship between discharge capacity and rate.
  • 92A and 92B are diagrams showing the relationship between weight energy density and rate.
  • 93A and 93B are diagrams showing the relationship between weight energy density and rate.
  • 94A and 94B are diagrams showing discharge curves against rate.
  • FIG. 95 is a diagram showing a discharge curve.
  • crystal planes and crystal directions are expressed using Miller indices. Individual planes indicating crystal planes are indicated using ( ). Crystal planes, crystal orientations, and space groups are indicated by a superscript bar on the number from the standpoint of crystallography. - (minus sign) may be attached and expressed.
  • the theoretical capacity of a positive electrode active material refers to the amount of electricity when all the lithium that can be inserted and detached included in the positive electrode active material is desorbed.
  • LiCoO2 has a theoretical capacity of 274 mAh /g
  • LiNiO2 has a theoretical capacity of 274 mAh /g
  • LiMn2O4 has a theoretical capacity of 148 mAh/g.
  • the depth of charge is an index indicating 0 when all the lithium that can be inserted and detached is inserted, and 1 when all the lithium that can be inserted and detached contained in the positive electrode active material is desorbed.
  • the depth of charge is a value that indicates how much capacity is charged based on the theoretical capacity of the positive electrode active material, in other words, how much lithium is desorbed from the positive electrode.
  • the theoretical capacity is 274 mAh/
  • LiCoO2 lithium cobalt oxide
  • LiNixCoyMnzO2 ( x + y + z 1)
  • the theoretical capacity is 274 mAh/
  • Li is not desorbed from the positive electrode active material
  • the depth of charge is 0.5
  • lithium equivalent to 137 mAh / g is desorbed from the positive electrode.
  • the depth of charge is 0.8, it means the state in which lithium corresponding to 219.2 mAh/g is desorbed from the positive electrode.
  • the value of x in Li x CoO 2 can also be used as an index of how much lithium that can be intercalated and deintercalated remains in the positive electrode active material.
  • Co can be replaced with a transition metal M that is oxidized and reduced as lithium is intercalated and deintercalated, and can also be described as Li x MO 2 .
  • Small x in LixCoO 2 means, for example, 0.1 ⁇ x ⁇ 0.24.
  • the charge capacity used to calculate x is preferably measured under conditions where there is no or little influence of short circuit and/or decomposition of the electrolytic solution. For example, the data of a secondary battery in which a sudden change in capacity has occurred due to a short circuit is not used in the calculation of x. The same applies when the discharge capacity is used to calculate x.
  • discharge is completed when the voltage drops below 2.5 V (counter electrode lithium) at a current of 100 mA/g.
  • Step S11 a lithium source (denoted as a Li source in the figure) and a transition metal source (denoted as an M source in the figure) are used as a starting material (also referred to as a starting material) and a transition metal material, respectively. ) are prepared.
  • the lithium source it is preferable to use a compound containing lithium.
  • a compound containing lithium for example, lithium carbonate, lithium hydroxide, lithium nitrate, lithium fluoride, or the like can be used. It is preferable that the lithium source has a high purity, and for example, a material with a purity of 99.99% or higher is preferably used.
  • the transition metal can be selected from elements listed in Groups 3 to 11 of the periodic table, and at least one of manganese, cobalt, and nickel is used, for example.
  • cobalt when only nickel is used, when two kinds of cobalt and manganese are used, when two kinds of cobalt and nickel are used, or when three kinds of cobalt, manganese and nickel are used.
  • the positive electrode active material obtained by this manufacturing method has lithium cobalt oxide (also referred to as LCO), and when cobalt, manganese, and nickel are used, the obtained positive electrode active material is nickel-cobalt. - with lithium manganate (also denoted as NCM);
  • the two or more transition metal sources when two or more transition metal sources are used, it is preferable to prepare the two or more transition metal sources at a ratio (mixing ratio) such that the two or more transition metal sources can have a layered rock salt type crystal structure.
  • the transition metal source it is preferable to use a compound containing the transition metal.
  • oxides or hydroxides of the metals exemplified as the transition metals can be used.
  • Cobalt oxide, cobalt hydroxide, or the like can be used as the cobalt source.
  • Manganese oxide, manganese hydroxide, or the like can be used as a manganese source.
  • nickel source nickel oxide, nickel hydroxide, or the like can be used.
  • aluminum source aluminum oxide, aluminum hydroxide, or the like can be used.
  • the transition metal source preferably has a high purity, for example, a purity of 3N (99.9%) or higher, preferably 4N (99.99%) or higher, more preferably 4N5 (99.995%) or higher, further preferably 5N ( 99.999%) or higher is preferably used.
  • Impurities in the positive electrode active material can be controlled by using a high-purity material. As a result, the capacity of the secondary battery is increased and/or the reliability of the secondary battery is improved.
  • the transition metal source be highly crystalline, eg, have single crystal grains.
  • TEM Transmission Electron Microscope, transmission electron microscope
  • STEM Sccanning Transmission Electron Microscope, scanning transmission electron microscope
  • HAADF-STEM High-angle Annular Dark Field Scanning TEM, High-angle scattering annular dark-field scanning transmission electron microscope
  • ABF-STEM Annular Bright-Field Scanning Transmission Electron Microscope, annular bright-field scanning transmission electron microscope
  • X-ray diffraction X-ray Diffraction, XRD
  • electron diffraction, neutron diffraction, etc. are used.
  • the method for evaluating the crystallinity described above can be applied not only to the evaluation of the crystallinity of the transition metal source, but also to the evaluation of the crystallinity of the positive electrode active material and the like.
  • Step S12 the lithium source and the transition metal source are pulverized and mixed to produce a mixed material (also referred to as a mixture). Grinding and mixing can be dry or wet. The wet method is preferred because it can be pulverized into smaller pieces. Prepare a solvent if the method is wet. Examples of solvents that can be used include ketones such as acetone, alcohols such as ethanol and isopropanol, ethers, dioxane, acetonitrile, N-methyl-2-pyrrolidone (NMP), and the like. It is more preferable to use an aprotic solvent that is less likely to react with lithium.
  • solvents that can be used include ketones such as acetone, alcohols such as ethanol and isopropanol, ethers, dioxane, acetonitrile, N-methyl-2-pyrrolidone (NMP), and the like. It is more preferable to use an aprotic solvent that is less likely to react with lithium.
  • dehydrated acetone or ultra-dehydrated acetone with a purity of 99.5% or higher is used. It is preferable to mix the lithium source and the transition metal source with ultra-dehydrated acetone with a purity of 99.5% or higher and with a moisture content of 10 ppm or less, followed by pulverization and mixing.
  • dehydrated acetone or ultra-dehydrated acetone with the above purity impurities that may be mixed in the mixed material can be reduced.
  • a ball mill, a bead mill, or the like can be used as means for mixing.
  • a ball mill it is preferable to use alumina balls or zirconia balls as grinding media. Zirconia balls are preferable because they emit less impurities.
  • the peripheral speed should be 100 mm/s or more and 2000 mm/s or less in order to suppress contamination from the grinding media. For example, mixing may be carried out at a peripheral speed of 838 mm/s (400 rpm of rotation, 40 mm diameter of the ball mill).
  • Step S13 the mixed material is heated.
  • the heating is preferably performed at 800°C or higher and 1100°C or lower, more preferably 900°C or higher and 1000°C or lower, and still more preferably about 950°C. If the temperature is too low, decomposition and melting of the lithium source and transition metal source may be insufficient. On the other hand, if the temperature is too high, defects may occur due to evaporation or sublimation of lithium from the lithium source and/or excessive reduction of the metal used as the transition metal source. For example, when cobalt is used as a transition metal, the defects include oxygen defects induced by the change of cobalt from trivalent to divalent due to excessive reduction.
  • the heating time is preferably 1 hour or more and 100 hours or less, preferably 2 hours or more and 20 hours or less.
  • the heating rate is preferably 80° C./h or more and 250° C./h or less, although it depends on the reaching temperature of the heating temperature. For example, when heating at 1000° C. for 10 hours, the temperature should be raised at 200° C./h.
  • Heating is preferably carried out in an atmosphere with little water such as dry air, for example, an atmosphere with a dew point of -50°C or lower, more preferably -80°C or lower. In this embodiment mode, heating is performed in an atmosphere with a dew point of -93°C. Also, in order to suppress impurities that may be mixed into the mixed material, the concentrations of impurities such as CH 4 , CO, CO 2 and H 2 in the heating atmosphere should each be 5 ppb (parts per billion) or less.
  • An atmosphere containing oxygen is preferable as the heating atmosphere.
  • the heating atmosphere there is a method of continuously introducing dry air into the reaction chamber (or heating chamber).
  • the flow rate of dry air is preferably 10 L/min.
  • a method in which oxygen, such as dry air, is continuously supplied to the reaction chamber and the oxygen is flowing through the reaction chamber is called flow.
  • the heating atmosphere is an atmosphere containing oxygen
  • a method in which oxygen is not supplied to the reaction chamber may be employed.
  • a method of decompressing the reaction chamber and then filling it with oxygen to prevent the oxygen from going in and out of the reaction chamber may be used, and this is called purging.
  • the reaction chamber may be decompressed to -970 hPa by a differential pressure gauge and then filled with oxygen to 50 hPa.
  • Cooling after heating may be natural cooling, but it is preferable that the cooling time from the specified temperature to room temperature is within 10 hours or more and 50 hours or less. However, cooling to room temperature is not necessarily required, and cooling to a temperature that the next step allows is sufficient.
  • the container used for heating is preferably a crucible or sheath of aluminum oxide (referred to as alumina).
  • Alumina crucible is a material that does not easily release impurities. In this embodiment, an alumina crucible with a purity of 99.9% is used. It is preferable to place a lid on the crucible and heat it. Volatilization or sublimation of the material can be prevented.
  • Heating in this step may be performed by a rotary kiln or a roller hearth kiln. Heating by a rotary kiln may be either continuous or batch, and in either method the material can be heated while being stirred.
  • step S13 After the heating is finished, it may be pulverized and sieved as necessary. When recovering the material after heating, it may be recovered after being moved from the crucible to a mortar. In addition, it is preferable to use an alumina mortar as the mortar.
  • Alumina mortar is a material that does not easily release impurities. Specifically, an alumina mortar with a purity of 90% or higher, preferably 99% or higher is used. Note that the same heating conditions as in step S13 can be applied to the later-described heating process other than step S13.
  • LiMO 2 composite oxide or composite oxide containing a transition metal
  • cobalt is used as the transition metal, it is called a composite oxide containing cobalt and is expressed as LiCoO 2 .
  • the composite oxide may be produced by the coprecipitation method.
  • a composite oxide may also be produced by a hydrothermal method.
  • step S15 the composite oxide is heated. Since the composite oxide is first heated, the heating in step S15 may be called initial heating. After initial heating, the surface of the composite oxide becomes smooth.
  • smooth surface means that the surface is less uneven, the complex oxide is overall rounded, and the corners are rounded. Furthermore, a state in which there are few foreign substances adhering to the surface is called smooth. Foreign matter is considered to cause unevenness, and it is preferable that foreign matter does not adhere to the surface of the composite oxide.
  • the initial heating is performed after the composite oxide has been completed, and the initial heating makes the surface smooth as described above, and further suppresses deterioration after charging and discharging.
  • the initial heating it is not necessary to prepare a lithium compound source.
  • the initial heating does not require preparation of the additive element source.
  • Initial heating is performed before step S31 described below, and is sometimes called preheating or pretreatment.
  • Impurities may be mixed in the lithium source and/or the transition metal source prepared in step S11 or the like.
  • the composite oxide finished in step 14 may have such impurities. It is possible to reduce the impurities by initial heating.
  • the heating conditions for the initial heating may be any conditions as long as the surface of the composite oxide becomes smooth.
  • the heating conditions described in step S13 can be selected and implemented.
  • the heating time of the initial heating should be shorter than the time of step S13.
  • the initial heating may be performed at a temperature of 700° C. or higher and 1000° C. or lower for 2 hours or longer.
  • a temperature difference may occur between the surface and the inside of the composite oxide in step S14 due to the heating in step S13. Differences in temperature can induce differential shrinkage. It is also considered that the difference in shrinkage occurs due to the difference in fluidity between the surface and the inside due to the temperature difference.
  • the energy associated with the differential shrinkage gives differential internal stress to the composite oxide.
  • the difference in internal stress is also called strain, and the energy is sometimes called strain energy. It is considered that the internal stress is removed by the initial heating in step S15, and in other words the strain energy is homogenized by the initial heating in step S15. When the strain energy is homogenized, the strain of the composite oxide is relaxed. Therefore, the surface of the composite oxide may become smooth after step S15. It is also called that the surface has been improved by step S15. In other words, after step S15, the shrinkage difference occurring in the composite oxide is relaxed, and the surface of the composite oxide becomes smooth.
  • the differential shrinkage may cause micro-shifts, such as crystal shifts, in the composite oxide in step S14.
  • initial heating After the initial heating, it is possible to uniform the misalignment of the composite oxide. If the deviation is made uniform, the surface of the composite oxide may become smooth. It is also called that the crystal grains are aligned. In other words, after step S15, it is considered that the deviation of crystals and the like generated in the composite oxide is alleviated and the surface of the composite oxide becomes smooth.
  • the smooth surface of the complex oxide can be said to have a surface roughness of 10 nm or less when the information on the unevenness of the surface is digitized from the measurement data in one cross section of the complex oxide.
  • One cross section is, for example, a cross section acquired during STEM observation.
  • step S14 a composite oxide synthesized in advance may be used in step S14.
  • steps S11 to S13 can be omitted.
  • step S15 By performing step S15 on a complex oxide synthesized in advance, a complex oxide with a smooth surface can be obtained.
  • initial heating may reduce lithium in the composite oxide. Due to the decreased amount of lithium, it is possible that the additive element described in the next step S20 or the like is likely to enter the composite oxide.
  • the additive element X may be added to the composite oxide having a smooth surface within the range where a layered rock salt type crystal structure can be obtained.
  • the additive element X can be added evenly. Therefore, it is preferable to add the additional element X after the initial heating. The step of adding the additive element X will be described with reference to FIGS. 1B and 1C.
  • step S21 shown in FIG. 1B an additive element source (X source) to be added to the composite oxide is prepared.
  • a lithium source may be prepared together with the additive element source (X source).
  • the additive element X includes nickel, cobalt, magnesium, calcium, chlorine, fluorine, aluminum, manganese, titanium, zirconium, yttrium, vanadium, iron, chromium, niobium, lanthanum, hafnium, zinc, silicon, sulfur, phosphorus, boron, and arsenic can be used.
  • As the additional element X one or more selected from bromine and beryllium can be used. However, since bromine and beryllium are elements that are toxic to living organisms, it is preferable to use the additive element X described above.
  • the additive element source can be called a magnesium source.
  • Magnesium fluoride, magnesium oxide, magnesium hydroxide, magnesium carbonate, or the like can be used as the magnesium source.
  • the additive element source can be called a fluorine source.
  • the fluorine source include lithium fluoride, magnesium fluoride, aluminum fluoride, titanium fluoride, cobalt fluoride, nickel fluoride, zirconium fluoride, vanadium fluoride, manganese fluoride, iron fluoride, and chromium fluoride.
  • niobium fluoride, zinc fluoride, calcium fluoride, sodium fluoride, potassium fluoride, barium fluoride, cerium fluoride, lanthanum fluoride, sodium aluminum hexafluoride, or the like can be used.
  • lithium fluoride is preferable because it has a relatively low melting point of 848° C. and is easily melted in a heating step to be described later.
  • Magnesium fluoride can be used as both a fluorine source and a magnesium source. Lithium fluoride can also be used as a lithium source. Another lithium source that can be used in step S21 is lithium carbonate.
  • the fluorine source may also be gaseous, such as fluorine, carbon fluoride, sulfur fluoride, or oxygen fluoride ( OF2 , O2F2 , O3F2 , O4F2 , O5F2 , O6F2 ) . , or O 2 F) may be used and mixed in the atmosphere in the heating step described later. Also, a plurality of fluorine sources as described above may be used.
  • lithium fluoride (LiF) is prepared as a fluorine source
  • magnesium fluoride (MgF 2 ) is prepared as a fluorine source and a magnesium source.
  • LiF:MgF 2 65:35 (molar ratio)
  • the effect of lowering the melting point is maximized.
  • the amount of lithium fluoride increases, there is a concern that the amount of lithium becomes excessive and the cycle characteristics deteriorate.
  • the term “near” means a value larger than 0.9 times and smaller than 1.1 times the value.
  • step S22 shown in FIG. 1B the magnesium source and the fluorine source are pulverized and mixed. This step can be performed by selecting from the pulverization and mixing conditions described in step S12.
  • a heating step may be performed after step S22, if necessary.
  • the heating process can be performed by selecting from the heating conditions described in step S13.
  • the heating time is preferably 2 hours or longer, and the heating temperature is preferably 800° C. or higher and 1100° C. or lower.
  • step S23 shown in FIG. 1B the pulverized and mixed material can be recovered to obtain an additive element source (X source).
  • the additive element source (X source) shown in step S23 has a plurality of starting materials and can be called a mixture.
  • the median diameter (D50) is preferably 600 nm or more and 20 ⁇ m or less, more preferably 1 ⁇ m or more and 10 ⁇ m or less. Even when one type of material is used as the additive element source (X source), the median diameter (D50) is preferably 600 nm or more and 20 ⁇ m or less, more preferably 1 ⁇ m or more and 10 ⁇ m or less.
  • the additive element X typically fluorine and magnesium
  • fluorine and magnesium is easily distributed or diffused uniformly in the surface layer of the composite oxide by heating.
  • a region in which fluorine and magnesium are distributed can also be called a surface layer portion of the composite oxide. If there is a region that does not contain fluorine and magnesium in the surface layer, it may be difficult to form an O3' type crystal structure, which will be described later, in a charged state.
  • fluorine is used in the explanation, fluorine may be chlorine, and it can be read as halogen as containing these.
  • Step S21 A process different from that in FIG. 1B will be described with reference to FIG. 1C.
  • step S21 shown in FIG. 1C four types of additive element sources (X sources) to be added to the composite oxide are prepared. That is, FIG. 1C differs from FIG. 1B in the type of additive element source.
  • a lithium source may be prepared together with the additive element source (X source).
  • a magnesium source (Mg source), a fluorine source (F source), a nickel source (Ni source), and an aluminum source (Al source) are prepared as four kinds of additive element sources (X sources).
  • the magnesium source and the fluorine source can be selected from the compounds and the like described in FIG. 1B.
  • Nickel oxide, nickel hydroxide, or the like can be used as the nickel source.
  • Aluminum oxide, aluminum hydroxide, or the like can be used as the aluminum source.
  • Steps S22 and S23 shown in FIG. 1C are the same as the steps described in FIG. 1B.
  • step S31 shown in FIG. 1A the composite oxide and the additive element source (X source) are mixed.
  • the mixing in step S31 is preferably performed under milder conditions than the mixing in step S12 so as not to destroy the composite oxide particles in step S14.
  • milder conditions it is preferable that the number of revolutions is smaller or the time is shorter than the mixing in step S12.
  • the conditions for the dry method are milder than those for the wet method.
  • a ball mill, bead mill, or the like can be used for mixing.
  • zirconia balls it is preferable to use, for example, zirconia balls as grinding media.
  • dry mixing is performed at 150 rpm for 1 hour using a ball mill using zirconia balls with a diameter of 1 mm.
  • the mixing is performed in a dry room with a dew point of -100°C or higher and -10°C or lower.
  • step S32 of FIG. 1A the mixed materials are collected to obtain a mixture 903.
  • a method of adding lithium fluoride as a fluorine source and magnesium fluoride as a magnesium source to a composite oxide that has undergone initial heating afterward is described.
  • the invention is not limited to the above method.
  • a magnesium source, a fluorine source, and the like can be added to the lithium source and the transition metal source (M source) at the stage of step S11, that is, at the stage of the starting material of the composite oxide.
  • M source transition metal source
  • Lithium cobaltate to which magnesium and fluorine are added in advance may also be used. If lithium cobaltate to which magnesium and fluorine are added is used, steps S11 to S32 and step S20 can be omitted. It can be said that it is a simple and highly productive method.
  • a magnesium source and a fluorine source may be further added according to step S20 shown in FIG. 1B to lithium cobalt oxide to which magnesium and fluorine have been added in advance, or a magnesium source and fluorine source may be further added according to step S20 shown in FIG. 1C.
  • source, nickel source, and aluminum source may be added.
  • step S33 shown in FIG. 1A the mixture 903 is heated.
  • the heating conditions described in step S13 can be selected and implemented.
  • the heating time is preferably 2 hours or longer.
  • the heating temperature is supplemented here.
  • the lower limit of the heating temperature in step S33 needs to be higher than or equal to the temperature at which the reaction between the composite oxide (LiMO 2 ) and the additive element source proceeds.
  • the temperature at which the reaction proceeds may be any temperature at which interdiffusion of elements possessed by LiMO 2 and the additive element source occurs, and may be lower than the melting temperature of these materials. Taking an oxide as an example, it is known that solid-phase diffusion occurs from 0.757 times the melting temperature Tm (Tammmann's law). Therefore, the heating temperature in step S33 may be 500° C. or higher.
  • the reaction proceeds more easily.
  • the temperature is equal to or higher than the temperature at which at least part of the mixture 903 melts, the reaction proceeds more easily.
  • the eutectic point of LiF and MgF2 is around 742°C, so the lower limit of the heating temperature in step S33 is preferably 742°C or higher.
  • a mixture 903 obtained by mixing LiCoO 2 :LiF:MgF 2 100:0.33:1 (molar ratio) has an endothermic peak near 830° C. in differential scanning calorimetry (DSC measurement). is observed. Therefore, the lower limit of the heating temperature is more preferably 830° C. or higher.
  • the upper limit of the heating temperature is less than the decomposition temperature of LiMO 2 (the decomposition temperature of LiCoO 2 is 1130° C.). At temperatures near the decomposition temperature, there is concern that LiMO 2 will decompose, albeit in a very small amount. Therefore, it is more preferably 1000° C. or lower, more preferably 950° C. or lower, and even more preferably 900° C. or lower.
  • the heating temperature in step S33 is preferably 500° C. or higher and 1130° C. or lower, more preferably 500° C. or higher and 1000° C. or lower, even more preferably 500° C. or higher and 950° C. or lower, and further preferably 500° C. or higher and 900° C. or lower. preferable.
  • the temperature is preferably 742°C or higher and 1130°C or lower, more preferably 742°C or higher and 1000°C or lower, even more preferably 742°C or higher and 950°C or lower, and even more preferably 742°C or higher and 900°C or lower.
  • the temperature is preferably 800° C. to 1100° C., preferably 830° C.
  • the heating temperature in step S33 is preferably lower than that in step S13.
  • some materials such as LiF, which is a fluorine source, may function as a flux.
  • the heating temperature in step S33 can be lowered to below the decomposition temperature of the composite oxide (LiMO 2 ), for example, 742° C. or higher and 950° C. or lower.
  • a positive electrode active material with specific characteristics can be produced.
  • LiF has a lower specific gravity than oxygen in a gaseous state
  • LiF may volatilize or sublimate by heating, and the volatilization or sublimation reduces LiF in the mixture 903 .
  • the function as a flux is weakened. Therefore, it is necessary to heat while suppressing volatilization or sublimation of LiF.
  • LiF is not used as a fluorine source or the like, there is a possibility that Li on the surface of LiMO 2 reacts with F of the fluorine source to generate LiF, which volatilizes or sublimates. Therefore, even if a fluoride having a higher melting point than LiF is used, it is necessary to similarly suppress volatilization or sublimation.
  • the mixture 903 in an atmosphere containing LiF, that is, to heat the mixture 903 in a state where the partial pressure of LiF in the heating furnace is high.
  • Such heating can suppress volatilization or sublimation of LiF in the mixture 903 .
  • the heating in this step is preferably performed so that the particles of the mixture 903 do not adhere to each other. If the particles of the mixture 903 adhere to each other during heating, the contact area with oxygen in the atmosphere is reduced, and the diffusion path of the additive element X (for example, fluorine) is inhibited. magnesium and fluorine) may be poorly distributed.
  • the additive element X for example, fluorine
  • magnesium and fluorine may be poorly distributed.
  • the additive element X for example, fluorine
  • a positive electrode active material that is smooth and has less unevenness can be obtained. Therefore, in order to maintain or smoothen the surface after the heating in step S15 in this step, it is preferable that the particles of the mixture 903 do not adhere to each other.
  • step S33 when heating by a rotary kiln is applied in step S33, it is preferable to heat by controlling the flow rate of the atmosphere containing oxygen in the kiln (also referred to as a furnace). For example, it is preferable to reduce the flow rate of the oxygen-containing atmosphere, to purge the atmosphere first and not to supply oxygen after introducing the oxygen atmosphere into the kiln, and the like. If oxygen is supplied and oxygen flows in the above atmosphere, the fluorine source may evaporate or sublime, which is not preferable for maintaining the smoothness of the surface.
  • the mixture 903 can be heated in an atmosphere containing LiF by placing a lid on the container containing the mixture 903 .
  • the heating time varies depending on conditions such as the heating temperature, the particle size of LiMO 2 in step S14, and the composition. Lower temperatures or shorter times may be preferred for smaller particles than for larger particles.
  • the heating temperature is preferably 600° C. or higher and 950° C. or lower, for example.
  • the heating time is, for example, preferably 3 hours or longer, more preferably 10 hours or longer, and even more preferably 60 hours or longer.
  • the cooling time after heating is, for example, 10 hours or more and 50 hours or less.
  • the heating temperature is preferably 600° C. or higher and 950° C. or lower.
  • the heating time is, for example, preferably 1 hour or more and 10 hours or less, more preferably about 2 hours.
  • the cooling time after heating is, for example, 10 hours or more and 50 hours or less.
  • step S34 shown in FIG. 1A the heated material is recovered and, if necessary, pulverized to obtain positive electrode active material 100.
  • FIG. At this time, it is preferable to further screen the collected particles.
  • the positive electrode active material 100 of one embodiment of the present invention can be manufactured.
  • the positive electrode active material of one embodiment of the present invention has a smooth surface.
  • steps S11 to S15 are performed in the same manner as in FIG. 1A to prepare a complex oxide (LiMO 2 ) with a smooth surface.
  • the additive element X may be added to the composite oxide to the extent that the layered rock salt type crystal structure can be obtained.
  • the step of adding elements X1 and X2 will be described with reference also to FIG. 3A.
  • a first additive element source is prepared.
  • the additive element X described in step S21 shown in FIG. 1B can be selected and used.
  • the additive element X1 one or more selected from magnesium, fluorine, and calcium can be preferably used.
  • FIG. 3A illustrates a case where a magnesium source (Mg source) and a fluorine source (F source) are used as the additive element X1.
  • Steps S21 to S23 shown in FIG. 3A can be performed under the same conditions as steps S21 to S23 shown in FIG. 1B.
  • an additive element source X1 source
  • steps S31 to S33 shown in FIG. 2 can be performed in the same processes as steps S31 to S33 shown in FIG. 1A.
  • Step S34a> the material heated in step S33 is recovered, and a composite oxide containing the additive element X1 is produced.
  • the composite oxide of this step may be given an ordinal number and referred to as a second composite oxide.
  • Step S40 In step S40 shown in FIG. 2, a second additive element source (X2 source) is added. Description will also be made with reference to FIGS. 3B and 3C.
  • X2 source second additive element source
  • a second additive element source is prepared.
  • the second additive element source can be selected from the additive elements X described in step S21 shown in FIG. 1B, and is preferably different from the additive element X1.
  • the additive element X2 one or more selected from nickel, titanium, boron, zirconium, and aluminum can be suitably used.
  • FIG. 3B illustrates a case where nickel and aluminum are used as the additive element X2.
  • Steps S41 to S43 shown in FIG. 3B can be performed under the same conditions as steps S21 to S23 shown in FIG. 1B.
  • an additive element source X2 source
  • FIG. 3C shows a modification of the steps described with reference to FIG. 3B.
  • a nickel source (Ni source) and an aluminum source (Al source) are prepared in step S41 shown in FIG. 3C, and pulverized independently in step S42a.
  • a plurality of second additive element sources (X2 sources) are prepared in step S43.
  • the step of FIG. 3C differs from FIG. 3B in that the additional element X2 is independently pulverized in step S42a.
  • Steps S51 to S54 shown in FIG. 2 can be performed under the same conditions as steps S31 to S34 shown in FIG. 1A.
  • the conditions of step S53 regarding the heating process may be lower temperature and shorter time than those of step S33.
  • the additive element X to the composite oxide is introduced separately into the first additive element X1 and the second additive element X2.
  • the profile of each additional element X in the depth direction can be changed. For example, it is possible to profile the first additive element X1 so that the concentration is higher in the surface layer than in the inside, and profile the second additive element X2 so that the concentration is higher inside than in the surface layer. is.
  • a positive electrode active material having a smooth surface can be obtained after the initial heating.
  • Initial heating in Manufacturing Methods 1 and 2 described in this embodiment mode is performed on a composite oxide. Therefore, it is preferable that the initial heating is performed at a temperature lower than the heating temperature for obtaining the composite oxide and for a heating time shorter than the heating time for obtaining the composite oxide.
  • the addition step can be divided into two or more times. It is preferable to follow such a process order because the smoothness of the surface obtained by the initial heating is maintained.
  • the composite oxide when it contains cobalt as a transition metal, it can be read as a composite oxide containing cobalt.
  • the composite oxide before containing the additive element may be referred to as a first composite oxide, and the composite oxide including the additive element may be referred to as a second composite oxide for distinction.
  • the obtained positive electrode active material may be referred to as a composite oxide.
  • the positive electrode active material can be described as a second composite oxide.
  • This embodiment can be used in combination with other embodiments.
  • FIG. 4A is a cross-sectional view of a positive electrode active material 100 that is one embodiment of the present invention.
  • FIGS. 4B1 and 4B2 show enlarged views of the vicinity of AB in FIG. 4A.
  • FIGS. 4C1 and 4C2 show enlarged views of the vicinity of CD in FIG. 4A.
  • the positive electrode active material 100 has a surface layer portion 100a and an inner portion 100b.
  • the dashed line indicates the boundary between the surface layer portion 100a and the inner portion 100b.
  • a part of the grain boundary is indicated by a one-dot chain line in FIG. 4A.
  • the surface layer portion 100a of the positive electrode active material 100 is, for example, within 50 nm from the surface toward the inside, more preferably within 35 nm from the surface toward the inside, and still more preferably within 20 nm from the surface toward the inside. It refers to a region within 10 nm, most preferably within 10 nm from the surface toward the inside. A surface caused by a crack can also be called a surface.
  • the superficial portion 100a may also be referred to as a near-surface or near-surface region or shell.
  • a region deeper than the surface layer portion 100a of the positive electrode active material is called an inner portion 100b.
  • the interior 100b may also be referred to as an interior region, core, or the like.
  • the surface layer portion 100a has a higher concentration of the additive element X than the inner portion 100b. Further, it is preferable that the additive element X has a concentration gradient. Further, when there are a plurality of additive elements X, it is preferable that the position of the peak top indicating the maximum concentration differs depending on the additive element X.
  • the additive element Xa preferably has a concentration gradient that increases from the inside 100b toward the surface, as shown by the gradation in FIG. 4B1.
  • Examples of additive elements Xa that preferably have such a concentration gradient include magnesium, fluorine, titanium, silicon, phosphorus, boron, and calcium.
  • the additive element Xb which is different from the additive element Xa, has a concentration gradient as shown by the gradation in FIG. 4B2 and has a peak top indicating the maximum concentration in a region deeper than that in FIG. 4B1.
  • the peak top may exist in the surface layer portion 100a or may be deeper than the surface layer portion 100a.
  • the additional element Xb preferably has a peak top in a region that is not on the outermost surface side.
  • the additive element Xb preferably has a peak top in a region of 5 nm or more and 30 nm or less from the surface toward the inside.
  • additive elements Xb that preferably have such a concentration gradient include aluminum and manganese.
  • the crystal structure changes continuously from the inside 100b toward the surface due to the concentration gradient of the additive element as described above.
  • the positive electrode active material 100 contains lithium, a transition metal M, oxygen, and an additive element X. It can be said that the positive electrode active material 100 is obtained by adding the additive element X to a composite oxide represented by LiMO 2 .
  • the transition metal M included in the positive electrode active material 100 it is preferable to use a metal capable of forming a layered rock salt-type composite oxide belonging to the space group R-3m together with lithium.
  • a metal capable of forming a layered rock salt-type composite oxide belonging to the space group R-3m together with lithium For example, at least one of manganese, cobalt and nickel can be used. That is, as the transition metal M included in the positive electrode active material 100, only cobalt may be used, only nickel may be used, two kinds of cobalt and manganese, or two kinds of cobalt and nickel may be used, Cobalt, manganese, and nickel may be used.
  • the positive electrode active material 100 includes lithium cobaltate, lithium nickelate, lithium cobaltate in which cobalt is partially replaced with manganese, lithium cobaltate in which cobalt is partially replaced by nickel, and nickel-manganese-lithium cobaltate. It can have a composite oxide containing lithium and transition metal M, such as.
  • the transition metal M contained in the positive electrode active material 100 when 75 atomic % or more, preferably 90 atomic % or more, and more preferably 95 atomic % or more of cobalt is used as the transition metal M contained in the positive electrode active material 100, synthesis is relatively easy, handling is easy, and excellent cycle characteristics are obtained. and many other advantages. Further, if nickel is contained in addition to cobalt within the above range as the transition metal M, the deviation of the layered structure composed of octahedrons of cobalt and oxygen may be suppressed. Therefore, the crystal structure may become more stable particularly in a charged state at a high temperature, which is preferable.
  • the transition metal M does not necessarily have to contain manganese.
  • the weight of manganese contained in positive electrode active material 100 is preferably, for example, 600 ppm or less, more preferably 100 ppm or less.
  • the manganese weight can be analyzed using, for example, GD-MS (glow discharge mass spectrometry).
  • the raw material becomes cheaper than when cobalt is abundant. Also, the charge/discharge capacity per weight may increase, which is preferable.
  • transition metal M does not necessarily contain nickel.
  • At least one of magnesium, fluorine, aluminum, titanium, zirconium, vanadium, iron, chromium, niobium, cobalt, arsenic, zinc, silicon, sulfur, phosphorus, and boron is used as the additive element X included in the positive electrode active material 100.
  • These additive elements X may further stabilize the crystal structure of the positive electrode active material 100 as described later. That is, the positive electrode active material 100 includes lithium cobalt oxide to which magnesium and fluorine are added, magnesium, lithium cobalt oxide to which fluorine and titanium are added, nickel-lithium cobalt oxide to which magnesium and fluorine are added, and magnesium and fluorine.
  • the additive element X may also be referred to as a mixture, a part of raw materials, an impurity element, or the like.
  • the additive element X does not necessarily contain magnesium, fluorine, aluminum, titanium, zirconium, vanadium, iron, chromium, niobium, cobalt, arsenic, zinc, silicon, sulfur, phosphorus, or boron.
  • the surface layer having a high concentration of the additive element X does not break the layered structure composed of the transition metal M and the octahedron of oxygen.
  • the portion 100 a that is, the outer peripheral portion of the particles reinforces the positive electrode active material 100 .
  • the concentration gradient of the additional element X is the same throughout the surface layer portion 100a. It can be said that it is preferable that the reinforcement derived from the high concentration of the additive element exists homogeneously in the surface layer portion 100a. Even if a part of the surface layer portion 100a is reinforced, if there is an unreinforced portion, stress may concentrate on the unreinforced portion. If the stress concentrates on a portion of the particles, defects such as cracks may occur there, leading to cracking of the positive electrode active material and a decrease in charge/discharge capacity.
  • the term “homogeneous” refers to a phenomenon in which, in a solid composed of a plurality of elements (eg, A, B, C), an element (eg, A) is distributed in a specific region with similar characteristics. Note that it is sufficient that the concentrations of the elements in the specific regions are substantially the same. For example, the difference in element concentration between specific regions may be within 10%. Specific regions include, for example, a surface layer portion, surface, convex portion, concave portion, inner portion, and the like.
  • the additive element does not necessarily have to have the same concentration gradient in the entire surface layer portion 100 a of the positive electrode active material 100 .
  • FIG. 4C1 shows an example of the distribution of the additional element Xa near C-D in FIG. 4A
  • FIG. 4C2 shows an example of the distribution of the additional element Xb near C-D.
  • the (001) oriented surface (sometimes referred to as the (001) plane) as shown in FIGS. 4C1 and 4C2 has a different additive element distribution from the other planes shown in FIGS. good too.
  • the distribution of the additive element Xa may remain shallower than the other planes shown in FIG. 4B1.
  • the (001) plane shown in FIG. 4C1 and the surface layer portion 100a including the plane may have a lower concentration of the additive element Xa than the other planes shown in FIG. 4B1.
  • the (001) plane shown in FIG. 4C1 and the surface layer portion 100a including the plane may have a concentration of the additional element Xa equal to or lower than the detection limit.
  • the distribution of the additional element Xb may remain shallower from the surface than in the other planes shown in FIG. 4B2. .
  • the (001) plane shown in FIG. 4C2 and the surface layer portion 100a including the plane may have a lower concentration of the additional element Xb than the other planes shown in FIG. 4B2.
  • the (001) plane shown in FIG. 4C2 and the surface layer portion 100a including the plane may have a concentration of the additional element Xb equal to or lower than the detection limit.
  • the layered rock salt type crystal structure of R - 3m is a structure in which MO2 layers composed of octahedrons of a transition metal M and oxygen and lithium layers are alternately stacked parallel to the (001) plane. Therefore, the diffusion path of lithium ions also exists parallel to the (001) plane.
  • the (001) plane is a stable plane and lithium ion diffusion paths are not exposed on the (001) plane.
  • the surface other than the (001) plane and the surface layer portion 100a including the surface are important regions for maintaining the diffusion path of lithium ions, and at the same time, are the regions where lithium ions are first desorbed, so they are unstable. Prone. Therefore, it is extremely important to reinforce the surface other than the (001) plane and the surface layer portion 100a including the surface in order to maintain the crystal structure of the positive electrode active material 100 as a whole.
  • the distribution of the additive element X in the surface other than the (001) plane and the surface layer portion 100a including the surface is as shown in FIG. 4B1 or 4B2. It is important to be On the other hand, in the surface layer portion 100a including the (001) plane and the plane shown in FIGS. 4C1 and 4C2, the concentration of the additive element may be low or may be absent as described above.
  • the production method in which the additive element X is mixed and heated afterward is mainly through the diffusion path of lithium ions. Since it spreads, the distribution of the additional element X in the surface layer portion 100a including the surface other than the (001) plane and the surface can be easily controlled within a preferable range.
  • lithium atoms in the surface layer can be expected to be desorbed from LiMO 2 by the initial heating. It is considered to be.
  • the surface of the positive electrode active material 100 is smooth and has few irregularities, but not necessarily the entire surface of the positive electrode active material 100 .
  • a composite oxide having an R-3m layered rocksalt type crystal structure is prone to slip in a plane parallel to the (001) plane, such as a plane in which lithium is arranged.
  • the (001) plane is horizontal as shown in FIG. 5A, it may be deformed by slipping horizontally as indicated by arrows in FIG. 5B through a process such as pressing. Multiple presses may be performed.
  • the pressing pressure is 100 kN/m or more and 300 kN/m or less, preferably 150 kN/m or more and 250 kN/m or less, more preferably 190 kN/m or more and 230 kN/m or less.
  • the pressure of the second press should be 5 times or more and 8 times or less, preferably 6 times or more and 7 times or less of the pressure of the first time.
  • FIGS. 5C1 and 5C2 show enlarged views of the vicinity of E-F.
  • FIGS. 5C1 and 5C2 unlike FIGS. 4B1 to 4C2, there is no gradation indicating the concentration gradients of the additive element Xa and the additive element Xb.
  • the additive element X does not exist or its concentration is below the detection limit.
  • cations are arranged parallel to the (001) plane.
  • the luminance of the transition metal M having the highest atomic number among LiMO 2 is the highest. Therefore, in the HAADF-STEM image, the arrangement of atoms with high brightness can be considered as the arrangement of atoms of the transition metal M.
  • the repetition of this high-brightness array may be referred to as crystal fringes or lattice fringes.
  • the crystal fringes or lattice fringes may be considered parallel to the (001) plane when the crystal structure is of the R-3m layered rock salt type.
  • the cathode active material 100 may have depressions, cracks, depressions, or V-shaped cross-sections. These are one of the defects, and repeated charging and discharging may cause elution of the transition metal M, collapse of the crystal structure, cracking of the positive electrode active material 100, desorption of oxygen, and the like from the defects.
  • an embedded portion 102 FIG. 7
  • the embedded portion 102 preferably contains the additive element X. As shown in FIG.
  • the embedded portion 102 can provide the positive electrode active material 100 with excellent reliability and cycle characteristics.
  • the positive electrode active material 100 may have a convex portion 103 (FIG. 7) as a region where the additional element X is unevenly distributed.
  • the additive element X included in the positive electrode active material 100 may adversely affect the insertion and extraction of lithium if the amount thereof is excessive.
  • the positive electrode active material 100 is used in a secondary battery, there is a risk of causing an increase in internal resistance, a decrease in charge/discharge capacity, and the like.
  • the amount of additive element X is insufficient, it may not be distributed over the entire surface layer portion 100a, and the effect of suppressing the deterioration of the crystal structure may become insufficient.
  • the additive element X needs to have an appropriate concentration in the positive electrode active material 100, but the adjustment is not easy.
  • the inner portion 100b can have an appropriate additive element concentration. This makes it possible to suppress an increase in internal resistance, a decrease in charge/discharge capacity, and the like when used as a secondary battery. Being able to suppress an increase in the internal resistance of a secondary battery is an extremely favorable characteristic particularly in high-rate charge/discharge, for example, charge/discharge at 2C (where 1C is 200 mA/g) or higher.
  • the additive element concentration can be appropriately adjusted in the interior 100b, so that the additive element is allowed to be excessively mixed to some extent in the manufacturing process. Therefore, the margin in production is widened, which is preferable.
  • uneven distribution means that the concentration of an element in a certain region is different from that in another region. It can be said that segregation, precipitation, non-uniformity, unevenness, and high-concentration and low-concentration areas coexist.
  • Magnesium which is one of the additional elements X, is divalent and is more stable at the lithium site than at the transition metal site in the layered rocksalt crystal structure, so it easily enters the lithium site.
  • the layered rock salt type crystal structure can be easily maintained by the presence of magnesium at an appropriate concentration in the lithium sites of the surface layer portion 100a.
  • the presence of magnesium can suppress desorption of oxygen around magnesium when the charging depth is high.
  • it can be expected that the presence of magnesium increases the density of the positive electrode active material.
  • Magnesium is preferable because it does not adversely affect the insertion and extraction of lithium during charging and discharging if the concentration is appropriate. However, excess magnesium can adversely affect lithium insertion and extraction. Therefore, as will be described later, the surface layer portion 100a preferably has a higher concentration of the transition metal M than, for example, magnesium.
  • Aluminum which is one of the additional elements X, is trivalent and can exist at transition metal sites in the layered rock salt crystal structure. Aluminum can suppress the elution of surrounding cobalt. In addition, since aluminum has a strong bonding force with oxygen, desorption of oxygen around aluminum can be suppressed. Therefore, when aluminum is included as the additive element X, the positive electrode active material 100 whose crystal structure does not easily collapse even after repeated charging and discharging can be obtained.
  • Fluorine is a monovalent anion, and if part of the oxygen in the surface layer portion 100a is substituted with fluorine, the lithium desorption energy is reduced. This is because the change in the valence of cobalt ions due to desorption of lithium changes from trivalent to tetravalent when fluorine is not present, and from divalent to trivalent when fluorine is present, resulting in different oxidation-reduction potentials. Therefore, it can be said that when a part of oxygen is substituted with fluorine in the surface layer portion 100a of the positive electrode active material 100, desorption and insertion of lithium ions in the vicinity of fluorine easily occur. Therefore, when used in a secondary battery, charge/discharge characteristics, rate characteristics, etc. are improved, which is preferable.
  • Titanium oxide is known to have superhydrophilic properties. Therefore, by using the positive electrode active material 100 including titanium oxide in the surface layer portion 100a, wettability to a highly polar solvent may be improved. When used as a secondary battery, the interface between the positive electrode active material 100 and the highly polar electrolyte solution is in good contact, and an increase in internal resistance may be suppressed.
  • a positive electrode active material of one embodiment of the present invention has a stable crystal structure even at high voltage. Since the crystal structure of the positive electrode active material is stable in a charged state, it is possible to suppress a decrease in charge/discharge capacity due to repeated charging/discharging.
  • the short circuit of the secondary battery not only causes troubles in charging operation and/or discharging operation of the secondary battery, but also may cause heat generation and ignition.
  • the positive electrode active material 100 of one embodiment of the present invention suppresses short-circuit current even at high charging voltage. Therefore, a secondary battery having both high charge/discharge capacity and safety can be obtained.
  • the concentration gradient of the additive element X can be evaluated using, for example, energy dispersive X-ray spectroscopy (EDX), EPMA (electron probe microanalysis), or the like.
  • EDX energy dispersive X-ray spectroscopy
  • EPMA electron probe microanalysis
  • linear analysis measuring while linearly scanning and evaluating the distribution of the atomic concentration in the positive electrode active material particles.
  • linear analysis measuring while linearly scanning and evaluating the distribution of the atomic concentration in the positive electrode active material particles.
  • linear analysis the extraction of linear region data from EDX surface analysis is sometimes called line analysis.
  • measuring a certain area without scanning is called point analysis.
  • EDX surface analysis for example, elemental mapping
  • concentration of the additive element X in the surface layer portion 100a, the inner portion 100b, the grain boundary 101 of the positive electrode active material 100, their vicinity, and the like can be quantitatively analyze. Further, the concentration distribution and maximum value of the additive element X can be analyzed by EDX-ray analysis.
  • the maximum magnesium concentration peak in the surface layer portion 100a is present at a depth of 3 nm from the surface toward the center of the positive electrode active material 100. Preferably, it exists up to a depth of 1 nm, more preferably up to a depth of 0.5 nm.
  • the distribution of fluorine preferably overlaps with the distribution of magnesium. Therefore, when EDX-ray analysis is performed, the maximum fluorine concentration peak in the surface layer portion 100a preferably exists at a depth of 3 nm from the surface toward the center of the positive electrode active material 100, and may exist at a depth of 1 nm. More preferably, it exists up to a depth of 0.5 nm.
  • the positive electrode active material 100 contains aluminum as the additive element X, it is preferable that the distribution is slightly different from that of magnesium and fluorine as described above.
  • the maximum peak of magnesium concentration be closer to the surface than the maximum peak of aluminum concentration in the surface layer portion 100a.
  • the maximum aluminum concentration peak preferably exists at a depth of 0.5 nm or more and 50 nm or less, more preferably 5 nm or more and 30 nm or less, from the surface of the positive electrode active material 100 .
  • it is preferably present at 0.5 nm or more and 30 nm or less.
  • the atomic ratio (X/M) of the additional element X and the transition metal M in the surface layer portion 100a is preferably 0.05 or more and 1.00 or less.
  • the additive element is titanium
  • the atomic ratio (Ti/M) between titanium and the transition metal M is preferably 0.05 or more and 0.4 or less, more preferably 0.1 or more and 0.3 or less.
  • the additive element is magnesium
  • the atomic ratio (Mg/M) between magnesium and the transition metal M is preferably 0.4 or more and 1.5 or less, more preferably 0.45 or more and 1.00 or less.
  • the additive element is fluorine
  • the atomic ratio (F/M) between fluorine and the transition metal M is preferably 0.05 or more and 1.5 or less, more preferably 0.3 or more and 1.00 or less.
  • the surface of the positive electrode active material 100 in the EDX-ray analysis result can be estimated as follows, for example.
  • the surface is defined as the point where the amount of an element uniformly present in the interior 100b of the positive electrode active material 100, such as oxygen or a transition metal M such as cobalt, is 1/2 of the amount detected in the interior 100b.
  • the positive electrode active material 100 is a composite oxide, it is preferable to estimate the surface using the detected amount of oxygen. Specifically, first, the average value O ave of the oxygen concentration is obtained from the region where the detected amount of oxygen in the interior 100b is stable. At this time, if oxygen O background , which is considered to be due to chemisorption or background, is detected in a region that can be clearly determined to be outside the surface, O background can be subtracted from the measured value to obtain the average oxygen concentration O ave . can. It can be estimated that the measurement point showing the value of 1/2 of this average value O ave , that is, the measurement value closest to 1/2 O ave , is the surface of the positive electrode active material.
  • the surface can also be estimated using the transition metal M included in the positive electrode active material 100 .
  • the detected amount of cobalt can be used to estimate the surface in the same manner as described above.
  • it can be similarly estimated using the sum of the detected amounts of a plurality of transition metals M.
  • the detected amount of the transition metal M is suitable for estimating the surface because it is less susceptible to chemical adsorption.
  • the atomic ratio (X/M) between the additional element X and the transition metal M in the vicinity of the grain boundary 101 is preferably 0.020 or more and 0.50 or less. Furthermore, 0.025 or more and 0.30 or less are preferable. Furthermore, 0.030 or more and 0.20 or less are preferable. Alternatively, it is preferably 0.020 or more and 0.30 or less. Alternatively, it is preferably 0.020 or more and 0.20 or less. Alternatively, it is preferably 0.025 or more and 0.50 or less. Alternatively, it is preferably 0.025 or more and 0.20 or less. Alternatively, it is preferably 0.030 or more and 0.50 or less. Alternatively, it is preferably 0.030 or more and 0.30 or less.
  • the atomic ratio (Mg/Co) of magnesium and cobalt is preferably 0.020 or more and 0.50 or less.
  • 0.025 or more and 0.30 or less are preferable.
  • 0.030 or more and 0.20 or less are preferable.
  • it is preferably 0.020 or more and 0.30 or less.
  • it is preferably 0.020 or more and 0.20 or less.
  • it is preferably 0.025 or more and 0.50 or less.
  • it is preferably 0.025 or more and 0.20 or less.
  • it is preferably 0.030 or more and 0.50 or less.
  • FIG. 6 shows a schematic cross-sectional view of the positive electrode active material 51 .
  • the pits 54 and 58 are shown as holes, but the shape of the opening is deep and groove-like rather than circular.
  • the source of pits may be point defects.
  • the crystal structure of LCO collapses in the vicinity of the formation of pits, resulting in a crystal structure different from that of the layered rock salt type. If the crystal structure collapses, the diffusion and release of lithium ions, which are carrier ions, may be inhibited, and pits are considered to be a factor in deterioration of cycle characteristics. Cracks 57 are also shown in the positive electrode active material 51 .
  • the crystal plane 55 is parallel to the arrangement of cations, and the positive electrode active material 51 may have recesses 52 . Regions 53 and 56 indicate regions where the additive element is present, and region 53 is positioned to fill at least recess 52 .
  • Positive electrode active materials for lithium ion secondary batteries are typically LCO and NMC (lithium nickel-manganese-cobaltate), and can also be said to be composite oxides containing a plurality of metal elements (cobalt, nickel, etc.). At least one of the positive electrode active materials has a defect, and the defect may change before and after charging and discharging. If the positive electrode active material is used in a secondary battery, it may be chemically or electrochemically corroded by environmental substances (electrolyte solution, etc.) surrounding the positive electrode active material, or the positive electrode active material may deteriorate. There is This deterioration does not occur uniformly on the surface of the positive electrode active material, but occurs locally and intensively. Repeated charging and discharging of the secondary battery causes, for example, deep defects from the surface toward the inside.
  • LCO and NMC lithium nickel-manganese-cobaltate
  • a phenomenon in which defects progress and form holes in the positive electrode active material can also be called pitting corrosion.
  • cracks and pits are different. Immediately after the production of the positive electrode active material, there are cracks but no pits.
  • the pits can be said to be holes from which several layers of cobalt and oxygen are removed by charging and discharging under high charging depth conditions, for example, high voltage conditions of 4.5 V or higher or high temperature (45 ° C. or higher), and cobalt is eluted.
  • Cracks refer to new surfaces caused by the application of physical pressure, or fractures caused by grain boundaries 101 in FIG. 4A. Cracks may occur due to expansion and contraction of the positive electrode active material due to charging and discharging. In addition, cracks and/or pits may occur from cavities inside the positive electrode active material.
  • the positive electrode active material 100 may have a film (sometimes referred to as a coating portion) on at least part of the surface.
  • FIG. 7 shows an example of a positive electrode active material 100 having a film 104. As shown in FIG.
  • Coating 104 is preferably formed by, for example, depositing decomposition products of an electrolytic solution due to charging and discharging.
  • the positive electrode active material 100 has a film derived from the electrolytic solution on its surface, thereby improving charge-discharge cycle characteristics. This is for the reason of suppressing an increase in impedance on the surface of the positive electrode active material, suppressing elution of the transition metal M, or the like.
  • Coating 104 preferably comprises carbon, oxygen and fluorine, for example.
  • the film 104 containing at least one of boron, nitrogen, sulfur, and fluorine is preferable because it may be a good film. Moreover, the film 104 does not have to cover all of the positive electrode active material 100 .
  • ⁇ Crystal structure Materials having a layered rock salt crystal structure, such as lithium cobalt oxide (LiCoO 2 ), are known to have high discharge capacity and to be excellent as positive electrode active materials for secondary batteries.
  • Examples of materials having a layered rock salt crystal structure include composite oxides represented by LiMO 2 .
  • FIG. 8 to 12 describe the case where cobalt is used as the transition metal M contained in the positive electrode active material.
  • the positive electrode active material shown in FIG. 10 is lithium cobalt oxide (LiCoO 2 ) to which fluorine and magnesium are not added by the manufacturing method described later. As described in Non-Patent Document 1, Non-Patent Document 2, etc., the crystal structure of lithium cobaltate changes. FIG. 10 shows how the crystal structure of lithium cobalt oxide changes depending on x in Li x CoO 2 .
  • This crystal structure has three CoO 2 layers in the unit cell, with lithium located between the CoO 2 layers. Lithium also occupies octahedral sites in which six oxygen atoms are coordinated. Therefore, this crystal structure is sometimes called an O3 type crystal structure.
  • the CoO 2 layer is a structure in which an octahedral structure in which six oxygen atoms are coordinated to cobalt is continuous in a plane with shared edges. This is sometimes referred to as a layer composed of octahedrons of cobalt and oxygen.
  • This structure has one CoO 2 layer in the unit cell. Therefore, it is sometimes called O1 type or monoclinic O1 type.
  • P-3m1 trigonal crystal O1
  • P-3m1 trigonal crystal O1
  • This structure can also be said to be a structure in which a CoO 2 structure such as a trigonal O1 type and a LiCoO 2 structure such as R-3m(O3) are alternately laminated. Therefore, this crystal structure is sometimes called an H1-3 type crystal structure.
  • the H1-3 type crystal structure has twice the number of cobalt atoms per unit cell as other structures.
  • the c-axis of the H1-3 type crystal structure is shown in a figure where the c-axis of the H1-3 type crystal structure is 1/2 of the unit cell in order to facilitate comparison with other crystal structures.
  • the coordinates of cobalt and oxygen in the unit cell are Co (0, 0, 0.42150 ⁇ 0.00016), O1 (0, 0, 0.27671 ⁇ 0.00045), O2(0, 0, 0.11535 ⁇ 0.00045).
  • O1 and O2 are each oxygen atoms.
  • the H1-3 type crystal structure is represented by a unit cell using one cobalt atom and two oxygen atoms.
  • the O3′-type crystal structure of one embodiment of the present invention is preferably represented by a unit cell using one cobalt atom and one oxygen atom.
  • these two crystal structures have a large difference in volume.
  • the difference in volume between the H1-3 type crystal structure and the O3 type crystal structure in the discharged state is 3.0% or more, typically 3.9% or more.
  • the H1-3 type crystal structure has a structure in which CoO 2 layers are continuous, but the structure in which CoO 2 layers are continuous also has P-3m1 (trigonal O1) and is likely to be unstable. .
  • the crystal structure of lithium cobalt oxide is destroyed when charging and discharging with increasing depth of charge or repeating charging and discharging with x of 0.24 or less are repeated. Collapse of the crystal structure causes deterioration of cycle characteristics. This is because the crystal structure collapses, the number of sites where lithium can stably exist decreases, and the intercalation and deintercalation of lithium becomes difficult.
  • the positive electrode active material 100 of one embodiment of the present invention can reduce displacement of the CoO 2 layer in repeated charging and discharging with a high charging depth. Specifically, the change in the crystal structure between the state where x in Li x CoO 2 is 1 and the state where x is 0.24 or less is smaller than in the conventional positive electrode active material. More specifically, the deviation of the CoO 2 layer between the discharged state where x is 1 and the charged state where x is 0.24 or less can be reduced. Furthermore, the change in volume when compared per cobalt atom can be reduced.
  • the positive electrode active material 100 of one embodiment of the present invention does not easily lose its crystal structure even when charging and discharging are repeated such that x is 0.24 or less, and excellent cycle characteristics can be achieved. Further, the positive electrode active material 100 of one embodiment of the present invention can have a more stable crystal structure than a conventional positive electrode active material when x in Li x CoO 2 is 0.24 or less. Therefore, in the positive electrode active material of one embodiment of the present invention, when x in Li x CoO 2 is maintained at 0.24 or less, the secondary battery is unlikely to be short-circuited in some cases. Such a case is preferable because the safety of the secondary battery is further improved.
  • FIG. 8 shows the crystal structure of the interior 100b of the positive electrode active material 100 when x in Li x CoO 2 is approximately 1 and 0.2.
  • the inside 100b occupies most of the volume of the positive electrode active material 100 and is a portion that greatly contributes to charge and discharge.
  • the positive electrode active material 100 is a composite oxide containing lithium, cobalt as a transition metal M, and oxygen.
  • the interior 100b preferably contains magnesium as an additive element, and more preferably contains nickel as a transition metal M in addition to cobalt.
  • the surface layer portion 100a preferably contains fluorine as an additive element, and more preferably contains aluminum and/or nickel. Details of the surface layer portion 100a will be described later.
  • the positive electrode active material 100 has the same R-3m(O3) crystal structure as conventional lithium cobaltate.
  • the inside 100b of the positive electrode active material 100 is sufficiently charged, typically when x is 0.24 or less, for example, about 0.2 or about 0.12, the H1-3 crystal structure is It has crystals with different structures.
  • the positive electrode active material 100 of one embodiment of the present invention when x is about 0.2 belongs to the trigonal space group R-3m, and has a crystal structure in which ions of cobalt, magnesium, or the like occupy 6 oxygen coordination positions. have It has the same symmetry of CoO2 layer as O3.
  • this structure is referred to as an O3'-type crystal structure in this specification and the like, and is shown in FIG. 8 with R-3m(O3'). Further, in both the O3-type crystal structure and the O3'-type crystal structure, it is preferable that magnesium is present in a thin amount between the CoO 2 layers, that is, in the lithium sites. In addition, it is preferable that fluorine is randomly and sparsely present at the oxygen sites.
  • light elements such as lithium may occupy oxygen 4-coordination sites.
  • O3' in FIG. 8 shows that lithium exists at all lithium sites with a probability of 1/5, but the positive electrode active material 100 of one embodiment of the present invention is not limited thereto. It may exist disproportionately at some lithium sites. For example, like Li 0.5 CoO 2 belonging to the space group P2/m, it may exist at some aligned lithium sites.
  • the lithium distribution can be analyzed, for example, by neutron diffraction.
  • the crystal structure of the O3′ type is similar to the crystal structure of the CdCl 2 type, although it has lithium randomly between the layers.
  • the crystal structure similar to this CdCl 2 type is close to the crystal structure of lithium nickel oxide (Li 0.06 NiO 2 ) when charged to a charging depth of 0.94, but contains pure lithium cobalt oxide or cobalt. It is known that layered rock salt type positive electrode active materials usually do not have this crystal structure.
  • the positive electrode active material 100 of one embodiment of the present invention change in crystal structure when a large amount of lithium is desorbed is suppressed more than in a conventional positive electrode active material. For example, there is little displacement of the CoO 2 layer in these crystal structures, as indicated by the dotted line in FIG.
  • the positive electrode active material 100 of one embodiment of the present invention has a highly stable crystal structure even when a large amount of lithium is desorbed.
  • the charging voltage at which the H1-3 type crystal structure is obtained for example, the charging voltage at which the R-3m(O3) crystal structure can be maintained even at a voltage of about 4.6 V based on the potential of lithium metal.
  • the O3' type crystal structure can be obtained even at a higher charging voltage, for example, at a voltage of 4.65 V or more and 4.7 V or less with respect to the potential of lithium metal.
  • the charging voltage is further increased, H1-3 type crystals may be observed.
  • the charging voltage is lower (for example, even when the charging voltage is 4.5 V or more and less than 4.6 V relative to the potential of lithium metal, the positive electrode active material 100 of one embodiment of the present invention can have the O3′ type crystal structure.
  • the crystal structure does not easily collapse even when charge and discharge are repeated such that a large amount of lithium is released.
  • the space group of the crystal structure is identified by XRD, electron beam diffraction, neutron beam diffraction, or the like. Therefore, in this specification and the like, belonging to a certain space group or being in a certain space group can be rephrased as being identified by a certain space group.
  • the positive electrode active material 100 of one embodiment of the present invention can maintain the R-3m(O3) crystal structure.
  • the O3′ type crystal structure can be obtained even in a region where the charging voltage is increased, for example, when the voltage of the secondary battery exceeds 4.5 V and is 4.6 V or less.
  • the positive electrode active material 100 of one embodiment of the present invention may have an O3′ crystal structure.
  • the coordinates of cobalt and oxygen in the unit cell are Co (0, 0, 0.5), O (0, 0, x), and the range of 0.20 ⁇ x ⁇ 0.25 can be shown in
  • An additive element, such as magnesium, randomly and thinly present in the CoO 2 layers, that is, in the lithium site, has the effect of suppressing the displacement of the CoO 2 layers when the charging depth is high. Therefore, when magnesium is present between the CoO 2 layers, the crystal structure tends to be of the O3' type. Therefore, magnesium is preferably distributed throughout the positive electrode active material 100 of one embodiment of the present invention. Further, heat treatment is preferably performed in the manufacturing process of the positive electrode active material 100 of one embodiment of the present invention in order to distribute magnesium throughout the positive electrode active material 100 .
  • a fluorine compound to the lithium cobaltate before the heat treatment for distributing magnesium.
  • Adding a fluorine compound lowers the melting point of lithium cobalt oxide. By lowering the melting point, it becomes easier to distribute magnesium throughout the positive electrode active material 100 at a temperature at which cation mixing is unlikely to occur. Furthermore, the presence of the fluorine compound is expected to improve corrosion resistance to hydrofluoric acid generated by decomposition of the electrolytic solution.
  • the distribution of additive elements such as magnesium and aluminum can be improved. Therefore, even when the charging voltage is higher, for example, the charging voltage is 4.6 V or more and 4.8 V or less, even when a large amount of lithium is desorbed, the H1-3 type crystal structure is not formed, and the displacement of the CoO 2 layer is suppressed. may be able to keep Although the crystal structure has the same symmetry as the O3' type crystal structure, the lattice constant is different from the O3' type crystal structure. Therefore, this structure is called an O3′′ type crystal structure in this specification and the like. The O3′′ type can also be said to have a crystal structure similar to the CdCl 2 type crystal structure.
  • the number of magnesium atoms included in the positive electrode active material 100 of one embodiment of the present invention is preferably 0.001 to 0.1 times the number of atoms of the transition metal M, and more than 0.01 times and less than 0.04 times the number of atoms of the transition metal M. More preferably, about 0.02 times is even more preferable. Alternatively, it is preferably 0.001 times or more and less than 0.04. Alternatively, it is preferably 0.01 times or more and 0.1 times or less.
  • the concentration of magnesium shown here may be, for example, a value obtained by elemental analysis of the entire positive electrode active material 100 using ICP-MS (inductively coupled plasma mass spectrometry) or the like, or It may be based on the value of the raw material formulation.
  • ICP-MS inductively coupled plasma mass spectrometry
  • transition metals M including nickel and aluminum are preferably present on the cobalt sites, but a part of them may be present on the lithium sites. Also, magnesium is preferably present at the lithium site. Oxygen may be partially substituted with fluorine.
  • the charge/discharge capacity of the positive electrode active material may decrease. As a factor for this, for example, the amount of lithium that contributes to charge/discharge decreases due to the entry of magnesium into the lithium sites. Excess magnesium may also generate magnesium compounds that do not contribute to charging and discharging.
  • the positive electrode active material of one embodiment of the present invention contains nickel in addition to magnesium, charge/discharge capacity per weight and per volume can be increased in some cases.
  • the positive electrode active material of one embodiment of the present invention contains aluminum in addition to magnesium, charge/discharge capacity per weight and per volume can be increased in some cases.
  • the positive electrode active material of one embodiment of the present invention contains nickel and aluminum in addition to magnesium, charge/discharge capacity per weight and per volume can be increased in some cases.
  • concentrations of elements such as magnesium and metal Z included in the positive electrode active material of one embodiment of the present invention are shown below using the number of atoms.
  • the number of nickel atoms in the positive electrode active material 100 of one embodiment of the present invention is more than 0% and preferably 7.5% or less, preferably 0.05% or more and 4% or less, and 0.1%. % or more and 2% or less, and more preferably 0.2% or more and 1% or less. Alternatively, it is preferably more than 0% and 4% or less. Alternatively, it is preferably more than 0% and 2% or less. Alternatively, 0.05% or more and 7.5% or less is preferable. Alternatively, 0.05% or more and 2% or less is preferable. Alternatively, 0.1% or more and 7.5% or less is preferable. Alternatively, 0.1% or more and 4% or less is preferable.
  • the concentration of nickel shown here may be, for example, a value obtained by elemental analysis of the entire positive electrode active material 100 using GD-MS, ICP-MS, or the like, or It may be based on formulation values.
  • Nickel contained at the above concentration tends to form a uniform solid solution throughout the positive electrode active material 100, and thus contributes to stabilization of the crystal structure of the inner portion 100b in particular.
  • a divalent additive element such as magnesium, which randomly and dilutely exists in the lithium site, can more stably exist nearby. Therefore, the elution of magnesium can be suppressed even after charging and discharging such that a large amount of lithium is desorbed. Therefore, charge-discharge cycle characteristics can be improved.
  • having both the effect of nickel in the inner portion 100b and the effect of magnesium, aluminum, titanium, fluorine, etc. in the surface layer portion 100a is extremely effective in stabilizing the crystal structure when a large amount of lithium is desorbed. is.
  • the number of aluminum atoms included in the positive electrode active material of one embodiment of the present invention is preferably 0.05% or more and 4% or less, preferably 0.1% or more and 2% or less, and 0.3% or more and 1 0.5% or less is more preferable. Alternatively, 0.05% or more and 2% or less is preferable. Alternatively, 0.1% or more and 4% or less is preferable.
  • the concentration of aluminum shown here may be, for example, a value obtained by performing elemental analysis of the entire positive electrode active material 100 using GD-MS, ICP-MS, or the like, or It may be based on formulation values.
  • Phosphorus is preferably used as an additional element in the positive electrode active material 100 of one embodiment of the present invention. Further, the positive electrode active material 100 of one embodiment of the present invention more preferably contains a compound containing phosphorus and oxygen.
  • the positive electrode active material 100 of one embodiment of the present invention contains a compound containing phosphorus, short-circuiting of the secondary battery can be suppressed in some cases when a state in which a large amount of lithium is desorbed is maintained.
  • the positive electrode active material 100 of one embodiment of the present invention contains phosphorus
  • hydrogen fluoride generated by decomposition of the electrolyte reacts with phosphorus, which may reduce the concentration of hydrogen fluoride in the electrolyte.
  • Hydrolysis may generate hydrogen fluoride.
  • Hydrogen fluoride may also be generated by the reaction between polyvinylidene fluoride (PVDF) used as a component of the positive electrode and alkali. Corrosion of the current collector and/or peeling of the film 104 can be suppressed by lowering the concentration of hydrogen fluoride in the electrolytic solution. In addition, it may be possible to suppress deterioration in adhesiveness due to gelation and/or insolubilization of PVDF.
  • PVDF polyvinylidene fluoride
  • the stability is extremely high when a large amount of lithium is desorbed.
  • the number of phosphorus atoms is preferably 1% or more and 20% or less, more preferably 2% or more and 10% or less, and even more preferably 3% or more and 8% or less of the number of cobalt atoms.
  • it is preferably 1% or more and 10% or less.
  • it is preferably 1% or more and 8% or less.
  • it is preferably 2% or more and 20% or less.
  • it is preferably 2% or more and 8% or less.
  • it is preferably 3% or more and 20% or less.
  • the number of atoms of magnesium is preferably 0.1% or more and 10% or less, more preferably 0.5% or more and 5% or less, and more preferably 0.7% or more and 4% or less of the number of cobalt atoms.
  • 0.1% or more and 5% or less is preferable.
  • 0.1% or more and 4% or less is preferable.
  • 0.5% or more and 10% or less is preferable.
  • 0.5% or more and 4% or less is preferable.
  • the concentrations of phosphorus and magnesium shown here may be, for example, values obtained by elemental analysis of the entire positive electrode active material 100 using ICP-MS, etc. may be based on values.
  • the cathode active material 100 may have cracks. Presence of a compound containing phosphorus, more specifically phosphorus and oxygen, in the inside or recess of the positive electrode active material 100 with cracks on the surface, for example, the buried portion 102, may suppress the progression of cracks.
  • Magnesium is preferably distributed throughout the positive electrode active material 100 of one embodiment of the present invention, and in addition, the magnesium concentration in the surface layer portion 100 a is preferably higher than the average of the entire positive electrode active material 100 . Alternatively, it is preferable that the concentration of magnesium in the surface layer portion 100a is higher than that in the inner portion 100b.
  • the magnesium concentration of the surface layer portion 100a measured by XPS (X-ray photoelectron spectroscopy) or the like is preferably higher than the average magnesium concentration of the entire positive electrode active material 100 measured by ICP-MS or the like.
  • the magnesium concentration of the surface layer portion 100a measured by EDX (Energy Dispersive X-ray Analysis) surface analysis or the like is higher than the magnesium concentration of the inner portion 100b.
  • the concentration of the additive element X in the surface layer portion 100 a is preferably higher than the average of the entire positive electrode active material 100 .
  • the concentration of the additive element X in the surface layer portion 100a is higher than that in the inner portion 100b.
  • the concentration of elements other than cobalt in the surface layer portion 100a measured by XPS or the like is preferably higher than the average concentration of the elements in the entire positive electrode active material 100 measured by ICP-MS or the like.
  • the concentration of elements other than cobalt in the surface layer portion 100a measured by EDX surface analysis or the like is higher than the concentration of elements other than cobalt in the inner portion 100b.
  • the surface layer 100a is in a state in which the bonds are broken, unlike the interior 100b where the crystal structure is maintained, and lithium is released from the surface during charging, so the surface layer 100a has a lower lithium concentration than the interior 100b. This is the easy part. Therefore, it is a portion that tends to be unstable and the crystal structure is likely to collapse. If the magnesium concentration of the surface layer portion 100a is high, it is possible to more effectively suppress changes in the crystal structure. Further, when the magnesium concentration of the surface layer portion 100a is high, it can be expected that corrosion resistance to hydrofluoric acid generated by decomposition of the electrolytic solution is improved.
  • the concentration of fluorine in the surface layer portion 100 a of the positive electrode active material 100 of one embodiment of the present invention is preferably higher than the average of the entire positive electrode active material 100 .
  • the fluorine concentration in the surface layer portion 100a is higher than that in the inner portion 100b.
  • the surface layer portion 100a of the positive electrode active material 100 of one embodiment of the present invention preferably has a higher concentration of additive elements such as magnesium and fluorine than the inside 100b and has a composition different from that of the inside. Moreover, it is preferable that the composition has a stable crystal structure at room temperature (25° C.). Therefore, the surface layer portion 100a may have a crystal structure different from that of the inner portion 100b. For example, at least part of surface layer portion 100a of positive electrode active material 100 of one embodiment of the present invention may have a rock salt crystal structure. Moreover, when the surface layer portion 100a and the inner portion 100b have different crystal structures, it is preferable that the crystal orientations of the surface layer portion 100a and the inner portion 100b substantially match.
  • Layered rock salt crystals and anions of rock salt crystals have a cubic close-packed structure (face-centered cubic lattice structure).
  • the O3' type crystal is also presumed to have a cubic close-packed structure of anions.
  • a structure in which three layers of negative ions are mutually shifted and stacked like ABCABC is referred to as a cubic close-packed structure. Therefore, anions do not have to form a strictly cubic lattice.
  • the analytical results may not necessarily match the theoretical results.
  • FFT Fast Fourier Transform
  • spots may appear at positions slightly different from their theoretical positions. For example, if the orientation with respect to the theoretical position is 5 degrees or less, or 2.5 degrees or less, it can be said that a cubic close-packed structure is obtained.
  • the anions in the (111) plane of the cubic crystal structure have a triangular shaped arrangement.
  • the layered rocksalt type has a space group R-3m and has a rhombohedral structure, but is generally represented by a compound hexagonal lattice to facilitate understanding of the structure, and the (0001) plane of the layered rocksalt type has a hexagonal lattice.
  • the cubic (111) triangular lattice has the same atomic arrangement as the (0001) hexagonal lattice of the layered rocksalt type. It can be said that the orientation of the cubic close-packed structure is aligned when both lattices are consistent.
  • the space group of the layered rocksalt crystal and the O3' crystal is R-3m, which is different from the space group of the rocksalt crystal. Therefore, the Miller indices of the crystal planes satisfying the above conditions are the layered rocksalt crystal and the O3' crystal.
  • Type crystals and rock salt type crystals are different. In this specification, when the cubic close-packed structures composed of anions are oriented in the layered rocksalt-type crystal, the O3′-type crystal, and the rocksalt-type crystal, it is sometimes said that the orientations of the crystals roughly match. be.
  • TEM images STEM images, HAADF-STEM images, ABF-STEM images, electron beam diffraction patterns, FFT patterns such as TEM images, and the like that the crystal orientations of the two regions approximately match.
  • XRD electron beam diffraction, neutron beam diffraction, etc. can also be used as materials for determination.
  • FIG. 15 shows an example of a TEM image in which the orientations of the layered rocksalt crystal LRS and the rocksalt crystal RS are approximately the same.
  • a TEM image, an STEM image, an HAADF-STEM image, an ABF-STEM image, or the like provides an image that reflects the crystal structure.
  • a contrast derived from a crystal plane can be obtained. Due to electron beam diffraction and interference, for example, when an electron beam is incident perpendicular to the c-axis of a layered rocksalt-type compound hexagonal lattice, the contrast derived from the (0003) plane is bright (bright strips) and dark (dark strips). ) is obtained as a repetition of Therefore, repetition of bright lines and dark lines is observed in the TEM image, and when the angle between the bright lines (for example, L RS and L LRS shown in FIG.
  • the crystal plane 15 is 5 degrees or less, or 2.5 degrees or less, the crystal plane is roughly It can be determined that they match, that is, that the crystal orientations roughly match.
  • the angle between the dark lines is 5 degrees or less, or 2.5 degrees or less, it can be determined that the crystal orientations are approximately the same.
  • FIG. 16A shows an example of an STEM image in which the orientations of the layered rocksalt crystal LRS and the rocksalt crystal RS are approximately the same.
  • FIG. 16B shows FFT of the region of rock salt crystal RS
  • FIG. 16C shows FFT of the region of layered rock salt crystal LRS.
  • Compositions, JCPDS card numbers, and d values and angles calculated therefrom are shown on the left of FIGS. 16B and 16C. Measured values are shown on the right.
  • the spots marked with an O are the 0th diffraction order.
  • the spot labeled A in FIG. 16B is derived from the cubic 11-1 reflection.
  • the spots marked with A in FIG. 16C are derived from layered rock salt-type 0003 reflections. From FIGS. 16B and 16C, it can be seen that the orientation of the cubic crystal 11-1 reflection and the orientation of the layered rock salt type 0003 reflection approximately match. That is, it can be seen that the straight line passing through AO in FIG. 16B and the straight line passing through AO in FIG. 16C are substantially parallel. As used herein, “substantially coincident” and “substantially parallel” mean that the angle is 5 degrees or less, or 2.5 degrees or less.
  • the orientation of the 0003 reflection of the layered rocksalt type may vary depending on the incident direction of the electron beam. Spots not derived from layered rocksalt-type 0003 reflection may be observed on a reciprocal lattice space with a different orientation. For example, the spot labeled B in FIG. 16C originates from the layered rock salt type 1014 reflection. This is an angle of 52° or more and 56° or less from the orientation of the reciprocal lattice point (A in FIG.
  • a spot not derived from the cubic 11-1 reflection may be observed on a reciprocal lattice space different from the orientation in which the cubic 11-1 reflection is observed.
  • the spot labeled B in FIG. 16B is from the cubic 200 reflection. This is a diffraction spot at an angle of 54° or more and 56° or less (that is, ⁇ AOB is 54° or more and 56° or less) from the orientation of the cubic 11-1-derived reflection (A in FIG. 16B). is sometimes observed. Note that this index is an example, and does not necessarily have to match this index.
  • a reciprocal lattice point equivalent to 11-1 and 200 may be used.
  • the (0003) plane and its equivalent planes and the (10-14) plane and its equivalent planes tend to appear as crystal planes.
  • the observation sample is prepared with an FIB or the like so that the (0003) plane can be easily observed, for example, the electron beam is [12-10] incident in the TEM or the like. Thin section processing is possible.
  • it is preferable to thin the crystal so that the (0003) plane of the layered rock salt type can be easily observed.
  • the surface layer portion 100a has only MgO or only a solid solution structure of MgO and CoO(II), it becomes difficult to intercalate and deintercalate lithium. Therefore, the surface layer portion 100a must contain at least cobalt, also contain lithium in a discharged state, and must have a lithium intercalation/deintercalation path. Also, the concentration of cobalt is preferably higher than that of magnesium.
  • the additive element X is preferably located in the surface layer portion 100a of the positive electrode active material 100 of one embodiment of the present invention.
  • the positive electrode active material 100 of one embodiment of the present invention may be covered with a film 104 containing the additive element X.
  • part of the additive element included in the positive electrode active material 100 of one embodiment of the present invention is more preferably segregated at and near the grain boundary 101 as shown in FIG. 4A.
  • the concentration of magnesium in the grain boundary 101 of the positive electrode active material 100 and its vicinity is higher than in other regions of the interior 100b. Also, it is preferable that the fluorine concentration in the grain boundary 101 and its vicinity is higher than that in other regions of the inner portion 100b.
  • the grain boundary 101 is one of planar defects. Therefore, like the particle surface, it tends to be unstable and the crystal structure tends to start changing. Therefore, if the magnesium concentration at and near grain boundaries 101 is high, the change in crystal structure can be more effectively suppressed.
  • magnesium concentration and the fluorine concentration at and near grain boundaries 101 are high, even when cracks occur along crystal grain boundaries 101 of positive electrode active material 100 of one embodiment of the present invention, the cracks cause surface damage. Magnesium concentration and fluorine concentration are high in the vicinity. Therefore, the corrosion resistance to hydrofluoric acid can be improved even in the positive electrode active material after cracks have occurred.
  • the vicinity of the grain boundary 101 means a region from the grain boundary to about 10 nm.
  • the crystal grain boundary 101 means a plane with a change in the arrangement of atoms, and can be observed with an electron microscope. Specifically, it refers to a portion where the angle formed by the repetition of bright lines and dark lines exceeds 5 degrees in an electron microscope image, or a portion where the crystal structure cannot be observed.
  • the median diameter (D50) is preferably 1 ⁇ m or more and 100 ⁇ m or less, more preferably 2 ⁇ m or more and 40 ⁇ m or less, and even more preferably 5 ⁇ m or more and 30 ⁇ m or less. Alternatively, it is preferably 1 ⁇ m or more and 40 ⁇ m or less.
  • it is preferably 1 ⁇ m or more and 30 ⁇ m or less. Alternatively, it is preferably 2 ⁇ m or more and 100 ⁇ m or less. Alternatively, it is preferably 2 ⁇ m or more and 30 ⁇ m or less. Alternatively, it is preferably 5 ⁇ m or more and 100 ⁇ m or less. Alternatively, it is preferably 5 ⁇ m or more and 40 ⁇ m or less.
  • a certain positive electrode active material is the positive electrode active material 100 of one embodiment of the present invention that exhibits an O3′-type crystal structure when a large amount of lithium is desorbed depends on the positive electrode active material from which a large amount of lithium is desorbed. It can be determined by analyzing the positive electrode having XRD, electron beam diffraction, neutron diffraction, electron spin resonance (ESR), nuclear magnetic resonance (NMR), or the like.
  • XRD can analyze the symmetry of transition metals such as cobalt in the positive electrode active material with high resolution, can compare the crystallinity level and crystal orientation, and can analyze the periodic strain and crystallite size of the lattice. It is preferable in that sufficient accuracy can be obtained even if the positive electrode obtained by disassembling the secondary battery is measured as it is.
  • the positive electrode active material 100 of one embodiment of the present invention is characterized by little change in crystal structure between a state in which a large amount of lithium is desorbed and a discharged state.
  • a material in which a crystal structure that greatly changes from the discharged state occupies 50 wt % or more in a state in which a large amount of lithium is detached is not preferable because it cannot withstand charging and discharging in which a large amount of lithium is detached. It should be noted that the desired crystal structure may not be obtained only by adding the additive element X.
  • the positive electrode active material in a state in which a large amount of lithium is desorbed or in a discharged state may undergo a change in crystal structure when exposed to air.
  • the O3' type crystal structure may change to the H1-3 type crystal structure. Therefore, all samples are preferably handled in an inert atmosphere such as an argon atmosphere.
  • High-voltage charging for determining whether a certain composite oxide is the positive electrode active material 100 of one embodiment of the present invention is performed by, for example, preparing a coin cell (CR2032 type, diameter 20 mm, height 3.2 mm) using lithium as a counter electrode. can be charged.
  • the positive electrode can be prepared by applying a slurry obtained by mixing a positive electrode active material, a conductive agent and a binder to a positive electrode current collector made of aluminum foil.
  • Lithium metal can be used for the counter electrode (negative electrode).
  • the potential of the secondary battery and the potential of the positive electrode are different. Voltage and potential in this specification and the like are the potential of the positive electrode (V vs. Li/Li + ) when metallic lithium is used as the counter electrode, unless otherwise specified.
  • LiPF 6 lithium hexafluorophosphate
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • VC 2 wt % vinylene carbonate
  • a polypropylene porous film having a thickness of 25 ⁇ m can be used as the separator.
  • the cathode can and the anode can can be made of stainless steel (SUS).
  • the temperature should be 25°C or 45°C.
  • the coin cell is dismantled in an argon atmosphere glove box and the positive electrode is taken out to obtain a positive electrode active material from which a large amount of lithium is desorbed.
  • XRD XRD
  • the device and conditions for XRD measurement are not particularly limited. For example, it can be measured using the following apparatus and conditions.
  • XRD device D8 ADVANCE manufactured by Bruker AXS X-ray source: CuK ⁇ ray output: 40 kV, 40 mA Slit system: Div. Slit, 0.5° Detector: LynxEye Scanning method: 2 ⁇ / ⁇ continuous scan Measurement range (2 ⁇ ): 15° to 90° Step width (2 ⁇ ): 0.01° setting Counting time: 1 second/step Sample table rotation: 15 rpm
  • the sample to be measured is powder, it can be set by placing it in a glass sample holder or by sprinkling the sample on a greased silicone non-reflective plate.
  • the sample to be measured is a positive electrode
  • the positive electrode can be attached to the substrate with a double-sided tape, and the positive electrode active material layer can be set according to the measurement surface required by the device.
  • 12,A and 12B show ideal powder XRD patterns with CuK ⁇ 1 rays calculated from models of the O3′ type crystal structure and the H1-3 type crystal structure.
  • 12A and 12B show the XRD patterns of the O3′ type crystal structure and the H1-3 type crystal structure. The range is enlarged for the range of 42° or more and 46° or less.
  • the pattern of the H1-3 type crystal structure was similarly created from the crystal structure information described in Non-Patent Document 3.
  • the crystal structure pattern of the O3′ type was estimated from the XRD pattern of the positive electrode active material of one embodiment of the present invention, and TOPAS ver. 3 (Crystal structure analysis software manufactured by Bruker) was used for fitting, and an XRD pattern was created in the same manner as the others.
  • the positive electrode active material 100 of one embodiment of the present invention has an O3′-type crystal structure when x in Li x CoO 2 is small; however, all particles do not have to have an O3′-type crystal structure. It may contain other crystal structures, or may be partially amorphous. However, when the XRD pattern is subjected to Rietveld analysis, the O3′ type crystal structure is preferably 50 wt % or more, more preferably 60 wt % or more, and even more preferably 66 wt % or more. If the O3′ type crystal structure is 50 wt % or more, more preferably 60 wt % or more, and still more preferably 66 wt % or more, the positive electrode active material can have sufficiently excellent cycle characteristics.
  • the O3' type crystal structure is preferably 35 wt% or more, more preferably 40 wt% or more, and 43 wt% when Rietveld analysis is performed. It is more preferable that it is above.
  • each diffraction peak after charging is sharp, that is, the full width at half maximum, for example, the full width at half maximum is narrow.
  • the crystallite size of the O3′ type crystal structure possessed by the particles of the positive electrode active material is reduced to only about 1/10 that of LiCoO 2 (O3) in the discharged state. Therefore, even under the same XRD measurement conditions as for the positive electrode before charging/discharging, when x in Li x CoO 2 is small, a clear O3′-type crystal structure peak can be observed.
  • the crystallite size is small and the peak is broad and small, even if a part of it can have a structure similar to the O3′ type crystal structure. The crystallite size can be obtained from the half width of the XRD peak.
  • the positive electrode active material of one embodiment of the present invention preferably has little influence of the Jahn-Teller effect.
  • the positive electrode active material of one embodiment of the present invention preferably has a layered rock salt crystal structure and mainly contains cobalt as a transition metal.
  • the positive electrode active material of one embodiment of the present invention may contain the above-described metal Z as long as the effect of the Jahn-Teller effect is small.
  • FIG. 13 shows the results of calculating the lattice constants of the a-axis and the c-axis using XRD in the case where the positive electrode active material of one embodiment of the present invention has a layered rock salt crystal structure and contains cobalt and nickel.
  • FIG. 13A shows the results for the a-axis
  • FIG. 13B shows the results for the c-axis.
  • the XRD pattern used for these calculations is the powder after synthesizing the positive electrode active material and before incorporating it into the positive electrode.
  • the nickel concentration on the horizontal axis indicates the concentration of nickel when the sum of the number of atoms of cobalt and nickel is 100%.
  • the positive electrode active material was produced according to the production method of FIG. 2 except that the aluminum source was not used.
  • the concentration of nickel indicates the concentration of nickel when the sum of the number of atoms of cobalt and nickel in the positive electrode active material is 100%.
  • FIG. 14 shows the results of estimating the a-axis and c-axis lattice constants by XRD in the case where the positive electrode active material of one embodiment of the present invention has a layered rock salt crystal structure and contains cobalt and manganese. show.
  • FIG. 14A shows the results for the a-axis
  • FIG. 14B shows the results for the c-axis.
  • the lattice constant shown in FIG. 14 is the powder obtained after synthesizing the positive electrode active material, and is obtained by XRD measured before incorporating into the positive electrode.
  • the manganese concentration on the horizontal axis indicates the concentration of manganese when the sum of the number of atoms of cobalt and manganese is taken as 100%.
  • the positive electrode active material was produced according to the production method of FIG. 2 except that a manganese source was used in place of the nickel source and the aluminum source was not used.
  • the concentration of manganese indicates the concentration of manganese when the sum of the number of atoms of cobalt and manganese in step S21 is 100%.
  • FIG. 13C shows the value obtained by dividing the lattice constant of the a-axis by the lattice constant of the c-axis (a-axis/c-axis) for the positive electrode active materials whose lattice constant results are shown in FIGS. 13A and 13B.
  • FIG. 14C shows the value obtained by dividing the lattice constant of the a-axis by the lattice constant of the c-axis (a-axis/c-axis) for the positive electrode active materials whose lattice constant results are shown in FIGS. 14A and 14B.
  • FIG. 14A suggests that when the manganese concentration is 5% or more, the behavior of the change in lattice constant is different and does not follow Vegard's law. Therefore, it is suggested that the crystal structure is different when the manganese concentration is 5% or more. Therefore, the concentration of manganese is preferably 4% or less, for example.
  • nickel concentration and manganese concentration ranges described above do not necessarily apply to the surface layer portion 100a. That is, in the surface layer portion 100a, the concentration may be higher than the above concentration in some cases.
  • the preferable range of the lattice constant was considered.
  • the a-axis lattice constant is greater than 2.814 ⁇ 10 ⁇ 10 m and less than 2.817 ⁇ 10 ⁇ 10 m
  • the c-axis lattice constant is 14.05 ⁇ 10 ⁇ 10 m. It has been found to be preferably larger than 14.07 ⁇ 10 ⁇ 10 m.
  • the state in which charging and discharging are not performed may be, for example, the state of powder before manufacturing the positive electrode of the secondary battery.
  • the value obtained by dividing the lattice constant of the a-axis by the lattice constant of the c-axis is preferably greater than 0.20000 and less than 0.20049.
  • XRD analysis shows that 2 ⁇ is 18.50 ° or more and 19.30 ° or less. A peak may be observed, and a second peak may be observed at 2 ⁇ of 38.00° or more and 38.80° or less.
  • the peak appearing in the powder XRD pattern reflects the crystal structure of the inside 100b of the positive electrode active material 100, which occupies most of the volume of the positive electrode active material 100.
  • the crystal structure of the surface layer portion 100a, the crystal grain boundaries 101, and the like can be analyzed by electron beam diffraction of a cross section of the positive electrode active material 100, or the like.
  • the positive electrode active material 100 of one embodiment of the present invention may exhibit a characteristic voltage change during charging.
  • a change in voltage can be read from a dQ/dVvsV curve obtained by differentiating the capacity (Q) of the charge curve by the voltage (V) (dQ/dV).
  • Q capacity
  • V voltage
  • a non-equilibrium phase change means a phenomenon that causes a nonlinear change in physical quantity.
  • the positive electrode active material 100 of one embodiment of the present invention may have a broad peak near 4.55 V in the dQ/dV curve.
  • the peak around 4.55 V reflects the change in voltage during the phase change from the O3-type crystal structure to the O3′-type crystal structure. Therefore, it is considered that the change in the crystal structure is gentler when the peak is broader than when the peak is sharp. It is preferable that the crystal structure change to the O3′ type progresses slowly, because the influence of the displacement of the CoO 2 layer and the change in volume are small.
  • the half width of the first peak is 0.10 V or more. and sufficiently broad, it is preferable.
  • the half width of the first peak is the average of the first peak and the first minimum value when the minimum value appearing at 4.3 V or more and 4.5 V or less is taken as the first minimum value.
  • ⁇ XPS ⁇ XPS can analyze a region from the surface to a depth of about 2 nm to 8 nm (usually 5 nm or less).
  • concentration of each element up to the depth region can be quantitatively analyzed.
  • the bonding state of elements can be analyzed by narrow scan analysis.
  • the quantitative accuracy of XPS is often about ⁇ 1 atomic %, and the detection limit is about 1 atomic % although it depends on the element.
  • the number of atoms of a certain additive element X is preferably 1.6 times or more and 6.0 times or less, more preferably 1.8 times or more, than the number of atoms of the transition metal M. Less than 4.0 times is more preferable.
  • the number of magnesium atoms is preferably 1.6 times or more and 6.0 times or less of the number of cobalt atoms. 0.8 times or more and less than 4.0 times is more preferable.
  • the number of atoms of halogen such as fluorine is preferably 0.2 times or more and 6.0 times or less, more preferably 1.2 times or more and 4.0 times or less, the number of atoms of the transition metal M.
  • the take-out angle may be set to, for example, 45°.
  • it can be measured using the following apparatus and conditions.
  • the peak indicating the binding energy between fluorine and another element is preferably 682 eV or more and less than 685 eV, more preferably about 684.3 eV. .
  • This value is different from both the 685 eV, which is the binding energy of lithium fluoride, and the 686 eV, which is the binding energy of magnesium fluoride. That is, in the case where the positive electrode active material 100 of one embodiment of the present invention contains fluorine, it is preferably a bond other than lithium fluoride and magnesium fluoride.
  • the peak indicating the binding energy between magnesium and another element is preferably 1302 eV or more and less than 1304 eV, more preferably about 1303 eV. This value is different from 1305 eV, which is the binding energy of magnesium fluoride, and is close to the binding energy of magnesium oxide. That is, in the case where the positive electrode active material 100 of one embodiment of the present invention contains magnesium, it is preferably a bond other than magnesium fluoride.
  • the additive element X such as magnesium and aluminum, which are preferably abundantly present in the surface layer portion 100a, has a concentration measured by XPS or the like higher than the concentration measured by ICP-MS, GD-MS, or the like.
  • the concentrations of magnesium and aluminum in the surface layer 100a are preferably higher than those in the interior 100b.
  • the concentration of magnesium attenuates to 60% or less of the peak at a depth of 1 nm from the peak top.
  • the peak is attenuated to 30% or less at a point 2 nm deep from the peak top.
  • Processing can be performed by FIB (Focused Ion Beam), for example.
  • the number of magnesium atoms is preferably 0.4 to 1.5 times the number of cobalt atoms.
  • the ratio Mg/Co of the number of magnesium atoms to the number of cobalt atoms is preferably 0.001 or more and 0.06 or less.
  • nickel contained in the transition metal M is preferably distributed throughout the positive electrode active material 100 without being unevenly distributed in the surface layer portion 100a. However, this is not the case when there is a region where the additive element X is unevenly distributed as described above.
  • the positive electrode active material of one embodiment of the present invention preferably contains cobalt and nickel as transition metals M and magnesium as an additive element.
  • some Co 3+ is preferably replaced by Ni 2+ and some Li + is replaced by Mg 2+ .
  • the Ni 2+ may be reduced to Ni 3+ .
  • part of Li + may be replaced with Mg 2+ , and along with this, Co 3+ near Mg 2+ may be reduced to Co 2+ .
  • part of Co 3+ may be replaced with Mg 2+ , and along with this, Co 3+ in the vicinity of Mg 2+ may be oxidized to become Co 4+ .
  • the positive electrode active material which is one embodiment of the present invention preferably contains any one or more of Ni 2+ , Ni 3+ , Co 2+ and Co 4+ .
  • the spin density due to at least one of Ni 2+ , Ni 3+ , Co 2+ and Co 4+ per weight of the positive electrode active material is 2.0 ⁇ 10 17 spins/g or more and 1.0 ⁇ 10 21 spins/g. g or less is preferable.
  • the crystal structure becomes stable particularly in a charged state, which is preferable. Note that if the magnesium concentration is too high, the spin density due to one or more of Ni 2+ , Ni 3+ , Co 2+ and Co 4+ may decrease.
  • the spin density in the positive electrode active material can be analyzed using, for example, an electron spin resonance method (ESR: Electron Spin Resonance).
  • ESR Electron Spin Resonance
  • ⁇ EPMA ⁇ EPMA electron probe microanalysis
  • the concentration of each element may differ from measurement results using other analytical methods. For example, when a surface analysis of the positive electrode active material 100 is performed, the concentration of the additional element X present in the surface layer may be lower than the result of XPS. In addition, the concentration of the additive element X present in the surface layer portion may be higher than the result of ICP-MS or the value of the blending of the raw materials in the process of producing the positive electrode active material.
  • the concentration of the additive element X preferably has a concentration gradient that increases from the inside toward the surface layer. More specifically, as shown in FIG. 4C1, magnesium, fluorine, titanium, and silicon preferably have a concentration gradient that increases from the inside of the positive electrode active material 100 toward the surface. Further, as shown in FIG. 4C2, aluminum preferably has a concentration peak in a region deeper than the concentration peak of the above element. The aluminum concentration peak may exist in the surface layer or may be deeper than the surface layer.
  • the surface and surface layer portion of the positive electrode active material of one embodiment of the present invention do not contain carbonate, hydroxy groups, and the like that are chemically adsorbed after the positive electrode active material is manufactured. Also, it does not include the electrolytic solution, the binder, the conductive agent, or the compounds derived from these adhered to the surface of the positive electrode active material. Therefore, when quantitatively analyzing the elements contained in the positive electrode active material, correction may be made to exclude carbon, hydrogen, excess oxygen, excess fluorine, etc. that can be detected by surface analysis such as XPS and EPMA. For example, in XPS, it is possible to separate the types of bonds by analysis, and correction may be performed to exclude binder-derived C—F bonds.
  • the samples such as the positive electrode active material and the positive electrode active material layer are washed in order to remove the electrolytic solution, binder, conductive agent, or compounds derived from these adhered to the surface of the positive electrode active material. may be performed. At this time, lithium may dissolve into the solvent or the like used for washing.
  • the positive electrode active material 100 of one embodiment of the present invention preferably has a smooth surface with few unevenness.
  • a smooth surface with little unevenness is one of the factors indicating that the distribution of the additive element in the surface layer portion 100a is good.
  • Whether the surface is smooth and has few irregularities can be determined from, for example, a cross-sectional SEM image or a cross-sectional TEM image of the positive electrode active material 100, the specific surface area of the positive electrode active material 100, or the like.
  • the surface smoothness can be quantified from a cross-sectional SEM image of the positive electrode active material 100 as follows.
  • the positive electrode active material 100 is processed by FIB or the like to expose the cross section. At this time, it is preferable to cover the positive electrode active material 100 with a protective film, a protective material, or the like.
  • the surface roughness of the positive electrode active material is the surface roughness of at least 400 nm of the outer circumference of the particle.
  • the root mean square (RMS) surface roughness which is an index of roughness, is less than 3 nm, preferably less than 1 nm, more preferably less than 0.5 nm ( RMS) surface roughness.
  • Image processing software for noise processing, interface extraction, etc. is not particularly limited, but for example, "ImageJ" can be used.
  • the spreadsheet software is not particularly limited, but for example, Microsoft Office Excel can be used.
  • the smoothness of the surface of the positive electrode active material 100 can be quantified from the ratio between the actual specific surface area A R measured by the gas adsorption method using the constant volume method and the ideal specific surface area A i . can.
  • the ideal specific surface area A i is obtained by calculation assuming that all particles have the same diameter as the median diameter (D50), the same weight, and an ideal sphere shape.
  • the median diameter (D50) can be measured with a particle size distribution meter or the like using a laser diffraction/scattering method.
  • the specific surface area can be measured, for example, by a specific surface area measuring device using a gas adsorption method based on a constant volume method.
  • the ratio AR / Ai between the ideal specific surface area Ai obtained from the median diameter (D50) and the actual specific surface area AR is 2.1 or less. is preferred.
  • the smoothness of the surface can be quantified from the cross-sectional SEM image of the positive electrode active material 100 by the following method.
  • a surface SEM image of the positive electrode active material 100 is obtained.
  • a conductive coating may be applied as a pretreatment for observation.
  • the viewing plane is preferably perpendicular to the electron beam.
  • a grayscale image contains luminance (brightness information).
  • a dark part has a low number of gradations, and a bright part has a high number of gradations.
  • the brightness change can be quantified in association with the number of gradations.
  • Such numerical values are called grayscale values.
  • a histogram is a three-dimensional representation of the gradation distribution in a target area, and is also called a luminance histogram. Acquiring the luminance histogram makes it possible to visually understand and evaluate the unevenness of the positive electrode active material.
  • the difference between the maximum and minimum grayscale values is preferably 120 or less, more preferably 115 or less, and 70 or more and 115 or less. is more preferred.
  • the standard deviation of gray scale values is preferably 11 or less, more preferably 8 or less, and even more preferably 4 or more and 8 or less.
  • This embodiment can be used in combination with other embodiments.
  • the positive electrode has a positive electrode active material layer and a positive electrode current collector.
  • the positive electrode active material layer contains a positive electrode active material and may contain a conductive agent and a binder.
  • the positive electrode active material the positive electrode active material manufactured using the manufacturing method described in the above embodiment is used.
  • the positive electrode active material described in the previous embodiment may be mixed with another positive electrode active material.
  • Examples of other positive electrode active materials include composite oxides having an olivine-type crystal structure, a layered rock salt-type crystal structure, or a spinel-type crystal structure.
  • compounds such as LiFePO 4 , LiFeO 2 , LiNiO 2 , LiMn 2 O 4 , V 2 O 5 , Cr 2 O 5 and MnO 2 can be mentioned.
  • LiNiO2 or LiNi1 - xMxO2 ( 0 ⁇ x ⁇ 1 ) (M Co, Al, etc.)
  • a lithium-manganese composite oxide represented by a composition formula of LiaMnbMcOd can be used as another positive electrode active material.
  • the element M is preferably a metal element other than lithium and manganese, silicon, or phosphorus, and more preferably nickel.
  • the composition of metal, silicon, phosphorus, etc. in the entire lithium-manganese composite oxide can be measured using, for example, an ICP-MS (inductively coupled plasma mass spectrometer).
  • the oxygen composition of the entire lithium-manganese composite oxide can be measured using, for example, EDX.
  • EDX EDX
  • XAFS X-ray absorption fine structure analysis
  • the lithium-manganese composite oxide is an oxide containing at least lithium and manganese, and includes chromium, cobalt, aluminum, nickel, iron, magnesium, molybdenum, zinc, indium, gallium, copper, titanium, niobium, silicon, and at least one element selected from the group consisting of phosphorus and the like.
  • FIG. 17A shows a longitudinal sectional view of the active material layer 200.
  • the active material layer 200 includes a granular positive electrode active material 100, graphene or a graphene compound 201 as a conductive agent, and a binder (not shown).
  • the graphene compound 201 refers to multilayer graphene, multi-graphene, graphene oxide, multilayer graphene oxide, multi-graphene oxide, reduced graphene oxide, reduced multilayer graphene oxide, reduced multi-graphene oxide, or graphene. Including quantum dots, etc.
  • a graphene compound refers to a compound that contains carbon, has a shape such as a plate shape or a sheet shape, and has a two-dimensional structure formed of six-membered carbon rings. The two-dimensional structure formed by the six-membered carbon rings may be called a carbon sheet.
  • the graphene compound may have functional groups.
  • the graphene compound preferably has a bent shape.
  • the graphene compound may be rolled up like carbon nanofibers.
  • graphene oxide contains carbon and oxygen, has a sheet-like shape, and has a functional group, particularly an epoxy group, a carboxy group, or a hydroxy group.
  • reduced graphene oxide includes carbon and oxygen, has a sheet-like shape, and has a two-dimensional structure formed of six-membered carbon rings. It can be called a carbon sheet.
  • a single sheet of reduced graphene oxide functions, but a plurality of layers may be stacked.
  • the reduced graphene oxide preferably has a portion where the carbon concentration is higher than 80 atomic % and the oxygen concentration is higher than or equal to 2 atomic % and lower than or equal to 15 atomic %. With such carbon concentration and oxygen concentration, even a small amount can function as a highly conductive conductive agent.
  • the reduced graphene oxide preferably has an intensity ratio G/D of 1 or more between the G band and the D band in a Raman spectrum. Even a small amount of reduced graphene oxide having such an intensity ratio can function as a highly conductive conductive agent.
  • Graphene compounds may have excellent electrical properties of having high electrical conductivity and excellent physical properties of having high flexibility and high mechanical strength. Also, the graphene compound has a sheet-like shape. Graphene compounds may have curved surfaces, allowing surface contact with low contact resistance. Moreover, even if it is thin, it may have very high conductivity, and a small amount can efficiently form a conductive path in the active material layer. Therefore, the contact area between the active material and the conductive agent can be increased by using the graphene compound as the conductive agent.
  • the graphene compound preferably covers 80% or more of the area of the active material. Note that the graphene compound preferably clings to at least part of the active material particles.
  • the graphene compound overlaps at least part of the active material particles.
  • the shape of the graphene compound matches at least part of the shape of the active material particles.
  • the shape of the active material particles refers to, for example, unevenness possessed by a single active material particle or unevenness formed by a plurality of active material particles.
  • the graphene compound surrounds at least part of the active material particles.
  • the graphene compound may have holes.
  • active material particles with a small particle size for example, active material particles of 1 ⁇ m or less
  • the specific surface area of the active material particles is large, and more conductive paths connecting the active material particles are required.
  • the graphene compound is particularly effective to use the graphene compound as a conductive agent for secondary batteries that require rapid charging and rapid discharging.
  • secondary batteries for two-wheeled or four-wheeled vehicles, secondary batteries for drones, and the like are sometimes required to have rapid charging and discharging characteristics.
  • mobile electronic devices and the like may require quick charge characteristics.
  • Rapid charging and rapid discharging may also be referred to as high rate charging and high rate discharging. For example, it refers to charging and discharging at 1C, 2C, or 5C or higher.
  • the sheet-like graphene or graphene compound 201 is dispersed substantially uniformly inside the active material layer 200.
  • the graphene or graphene compound 201 is schematically represented by a thick line, but it is actually a thin film having a thickness of a single layer or multiple layers of carbon molecules.
  • the plurality of graphenes or graphene compounds 201 are formed so as to partially cover the plurality of granular positive electrode active materials 100 or adhere to the surfaces of the plurality of granular positive electrode active materials 100, and thus are in surface contact with each other. ing.
  • a mesh-like graphene compound sheet (hereinafter referred to as a graphene compound net or graphene net) can be formed by bonding a plurality of graphenes or graphene compounds.
  • the graphene net covers the active material, the graphene net can also function as a binder that binds the active materials together. Therefore, the amount of binder can be reduced or not used, and the ratio of the active material to the electrode volume and electrode weight can be improved. That is, the charge/discharge capacity of the secondary battery can be increased.
  • graphene oxide is preferably used as the graphene or the graphene compound 201 and is preferably mixed with an active material to form a layer to be the active material layer 200 and then reduced. That is, the active material layer after completion preferably contains reduced graphene oxide.
  • graphene oxide which is highly dispersible in a polar solvent, to form the graphene or the graphene compound 201, the graphene or the graphene compound 201 can be substantially uniformly dispersed inside the active material layer 200.
  • the graphene or the graphene compound 201 remaining in the active material layer 200 partially overlaps and is dispersed to the extent that they are in surface contact with each other. By doing so, a three-dimensional conductive path can be formed.
  • graphene oxide may be reduced by heat treatment or by using a reducing agent, for example.
  • the graphene or graphene compound 201 enables surface contact with low contact resistance. Electrical conductivity between the positive electrode active material 100 and the graphene or the graphene compound 201 can be improved. Therefore, the ratio of the positive electrode active material 100 in the active material layer 200 can be increased. Thereby, the discharge capacity of the secondary battery can be increased.
  • a graphene compound which is a conductive agent
  • a conductive path can be formed with the graphene compound between the active materials.
  • a material used for forming the graphene compound may be mixed with the graphene compound and used for the active material layer 200 .
  • particles used as catalysts in forming the graphene compound may be mixed with the graphene compound.
  • catalysts for forming graphene compounds include particles containing silicon oxide (SiO 2 , SiO x (x ⁇ 2)), aluminum oxide, iron, nickel, ruthenium, iridium, platinum, copper, germanium, and the like. .
  • the particles preferably have a median diameter (D50) of 1 ⁇ m or less, more preferably 100 nm or less.
  • binder it is preferable to use, for example, rubber materials such as styrene-butadiene rubber (SBR), styrene-isoprene-styrene rubber, acrylonitrile-butadiene rubber, butadiene rubber, and ethylene-propylene-diene copolymer.
  • SBR styrene-butadiene rubber
  • Fluororubber can also be used as the binder.
  • a binder it is preferable to use, for example, a water-soluble polymer.
  • Polysaccharides for example, can be used as the water-soluble polymer.
  • polysaccharides one or more of cellulose derivatives such as carboxymethyl cellulose (CMC), methyl cellulose, ethyl cellulose, hydroxypropyl cellulose, diacetyl cellulose, regenerated cellulose, starch, and the like can be used. Further, it is more preferable to use these water-soluble polymers in combination with the aforementioned rubber material.
  • a material having a particularly excellent viscosity adjusting effect may be used in combination with another material.
  • materials having elasticity typically rubber materials, are excellent in adhesive strength and/or elasticity, but sometimes it is difficult to adjust the viscosity when mixed with a solvent. In such a case, for example, it is preferable to mix with a material having a particularly excellent viscosity-adjusting effect.
  • a water-soluble polymer may be used as a material having a particularly excellent viscosity-adjusting effect.
  • the aforementioned polysaccharides such as carboxymethyl cellulose (CMC), methyl cellulose, ethyl cellulose, hydroxypropyl cellulose and diacetyl cellulose, cellulose derivatives such as regenerated cellulose, and starch are used. be able to.
  • the solubility of cellulose derivatives such as carboxymethyl cellulose can be increased by using salts such as sodium and ammonium salts of carboxymethyl cellulose, and the effect as a viscosity modifier can be easily exhibited.
  • the increased solubility can also enhance the dispersibility with the active material and other constituents when preparing the electrode slurry.
  • cellulose and cellulose derivatives used as binders for electrodes also include salts thereof.
  • the water-soluble polymer stabilizes the viscosity by dissolving in water, and can stably disperse other materials, such as styrene-butadiene rubber, to be combined as an active material and a binder in an aqueous solution.
  • other materials such as styrene-butadiene rubber
  • it since it has a functional group, it is expected to be stably adsorbed on the surface of the active material.
  • many cellulose derivatives such as carboxymethyl cellulose are materials having functional groups such as hydroxyl groups and carboxyl groups, and due to the presence of functional groups, the macromolecules interact with each other, and the surface of the active material is widely covered. There is expected.
  • the passive film is a film having no electrical conductivity or a film having extremely low electrical conductivity.
  • the passivation film suppresses electrical conductivity and allows lithium ions to conduct.
  • the positive electrode current collector highly conductive materials such as metals such as stainless steel, gold, platinum, aluminum and titanium, and alloys thereof can be used. Moreover, it is preferable that the material used for the positive electrode current collector does not elute at the potential of the positive electrode.
  • an aluminum alloy added with an element that improves heat resistance, such as silicon, titanium, neodymium, scandium, or molybdenum, can be used.
  • a metal element that forms silicide by reacting with silicon may be used.
  • Metal elements that react with silicon to form silicide include zirconium, titanium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, cobalt, and nickel.
  • the shape of the positive electrode current collector can be appropriately used such as foil, plate, sheet, mesh, punching metal, expanded metal, and the like.
  • a positive electrode current collector having a thickness of 5 ⁇ m or more and 30 ⁇ m or less is preferably used.
  • a positive electrode can be obtained by applying a slurry containing the positive electrode active material, the binder, the solvent, the conductive agent, and the like to the positive electrode current collector and pressing the slurry.
  • NMP can be used as a solvent.
  • a pressing machine is used in the press working, and the temperature of the first and second rolls of the pressing machine is preferably 80° C. or higher and 150° C. or lower, preferably 100° C. or higher and 130° C. or lower to heat the slurry. Higher roll temperatures allow higher electrode densities. However, the temperature should be lower than the melting point of the binder or the like.
  • PVDF used for the binder has a melting point of 158° C. or higher and 160° C. or lower.
  • the pressing pressure is 100 kN/m or more and 300 kN/m or less, preferably 150 kN/m or more and 250 kN/m or less, more preferably 190 kN/m or more and 230 kN/m or less.
  • the pressure of the second press should be 5 times or more and 8 times or less, preferably 6 times or more and 7 times or less of the pressure of the first time.
  • the negative electrode has a negative electrode active material layer and a negative electrode current collector. Also, the negative electrode active material layer may contain a conductive agent and a binder.
  • Negative electrode active material for example, an alloy-based material and/or a carbon-based material can be used.
  • an element capable of performing charge-discharge reaction by alloying/dealloying reaction with lithium can be used.
  • materials containing at least one of silicon, tin, gallium, aluminum, germanium, lead, antimony, bismuth, silver, zinc, cadmium, indium, etc. can be used.
  • Such an element has a higher charge/discharge capacity than carbon, and silicon in particular has a high theoretical capacity of 4200 mAh/g. Therefore, it is preferable to use silicon for the negative electrode active material.
  • Compounds containing these elements may also be used.
  • alloy-based materials For example, SiO, Mg2Si , Mg2Ge , SnO, SnO2 , Mg2Sn , SnS2 , V2Sn3 , FeSn2 , CoSn2 , Ni3Sn2 , Cu6Sn5 , Ag3Sn , Ag 3 Sb, Ni 2 MnSb, CeSb 3 , LaSn 3 , La 3 Co 2 Sn 7 , CoSb 3 , InSb, SbSn and the like.
  • elements capable of undergoing charge-discharge reactions by alloying/dealloying reactions with lithium, compounds containing such elements, and the like are sometimes referred to as alloy-based materials.
  • SiO refers to silicon monoxide, for example.
  • SiO can be represented as SiO x .
  • x preferably has a value close to one.
  • x is preferably 0.2 or more and 1.5 or less, more preferably 0.3 or more and 1.2 or less.
  • it is preferably 0.2 or more and 1.2 or less.
  • it is preferably 0.3 or more and 1.5 or less.
  • graphite graphitizable carbon (soft carbon), non-graphitizable carbon (hard carbon), carbon nanotube, graphene, carbon black, or the like may be used.
  • Examples of graphite include artificial graphite and natural graphite.
  • Examples of artificial graphite include mesocarbon microbeads (MCMB), coke-based artificial graphite, and pitch-based artificial graphite.
  • MCMB mesocarbon microbeads
  • Spherical graphite having a spherical shape can be used here as the artificial graphite.
  • MCMB may have a spherical shape and are preferred.
  • MCMB is also relatively easy to reduce its surface area and may be preferred.
  • Examples of natural graphite include flake graphite and spherical natural graphite.
  • Graphite exhibits a potential as low as that of lithium metal when lithium ions are inserted into graphite (at the time of formation of a lithium-graphite intercalation compound) (0.05 V or more and 0.3 V or less vs. Li/Li + ). This allows the lithium ion secondary battery to exhibit a high operating voltage. Furthermore, graphite is preferable because it has advantages such as relatively high charge/discharge capacity per unit volume, relatively small volume expansion, low cost, and high safety compared to lithium metal.
  • titanium dioxide TiO2
  • lithium titanium oxide Li4Ti5O12
  • lithium - graphite intercalation compound LixC6
  • niobium pentoxide Nb2O5
  • oxide Oxides such as tungsten (WO 2 ) and molybdenum oxide (MoO 2 ) can be used.
  • Li 2.6 Co 0.4 N 3 exhibits a large charge/discharge capacity (900 mAh/g, 1890 mAh/cm 3 ) and is preferable.
  • lithium ions are contained in the negative electrode active material, so that it can be combined with materials such as V 2 O 5 and Cr 3 O 8 that do not contain lithium ions as the positive electrode active material, which is preferable. . Even when a material containing lithium ions is used as the positive electrode active material, the lithium ions contained in the positive electrode active material are preliminarily desorbed, so that a composite nitride of lithium and a transition metal can be used as the negative electrode active material. can.
  • a material that causes a conversion reaction can also be used as the negative electrode active material.
  • transition metal oxides such as cobalt oxide (CoO), nickel oxide (NiO), and iron oxide (FeO) that do not form an alloy with lithium may be used as the negative electrode active material.
  • oxides such as Fe2O3 , CuO , Cu2O , RuO2 and Cr2O3 , sulfides such as CoS0.89 , NiS and CuS, and Zn3N2 , Cu 3 N, Ge 3 N 4 and other nitrides, NiP 2 , FeP 2 and CoP 3 and other phosphides, and FeF 3 and BiF 3 and other fluorides.
  • the same materials as the conductive agent and binder that the positive electrode active material layer can have can be used.
  • Negative electrode current collector A material similar to that of the positive electrode current collector can be used for the negative electrode current collector.
  • the negative electrode current collector it is preferable to use a material that does not alloy with carrier ions such as lithium.
  • the negative electrode can be obtained by applying a slurry containing the negative electrode active material, the binder, the solvent, the conductive agent, and the like to the negative electrode current collector and pressing the slurry.
  • NMP can be used as a solvent.
  • a pressing machine is used in the press working, and the temperature of the first and second rolls of the pressing machine is preferably 80° C. or higher and 150° C. or lower, preferably 100° C. or higher and 130° C. or lower to heat the slurry. Higher roll temperatures allow higher electrode densities. However, the temperature should be lower than the melting point of the binder or the like.
  • PVDF used for the binder has a melting point of 158° C. or higher and 160° C. or lower.
  • the pressing pressure is 100 kN/m or more and 300 kN/m or less, preferably 150 kN/m or more and 250 kN/m or less, more preferably 190 kN/m or more and 230 kN/m or less.
  • the pressure of the second press should be 5 times or more and 8 times or less, preferably 6 times or more and 7 times or less of the pressure of the first time.
  • the electrolytic solution has a solvent and an electrolyte.
  • aprotic organic solvents are preferred, such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate, chloroethylene carbonate, vinylene carbonate, ⁇ -butyrolactone, ⁇ -valerolactone, dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), methyl formate, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, propyl propionate, methyl butyrate, 1,3-dioxane, 1,4 - one of dioxane, dimethoxyethane (DME), dimethyl sulfoxide, diethyl ether, methyl diglyme, acetonitrile, benzonitrile, tetrahydrofuran, sulfolane
  • Ionic liquids room-temperature molten salt
  • ionic liquids room-temperature molten salt
  • organic cations used in the electrolytic solution include aliphatic onium cations such as quaternary ammonium cations, tertiary sulfonium cations and quaternary phosphonium cations, and aromatic cations such as imidazolium cations and pyridinium cations.
  • Anions used in the electrolytic solution include monovalent amide anions, monovalent methide anions, fluorosulfonate anions, perfluoroalkylsulfonate anions, tetrafluoroborate anions, perfluoroalkylborate anions, and hexafluorophosphate anions. , or perfluoroalkyl phosphate anions.
  • electrolytes dissolved in the above solvents include LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiAlCl 4 , LiSCN, LiBr, LiI, Li 2 SO 4 , Li 2 B 10 Cl 10 , Li 2 B 12 Cl12 , LiCF3SO3 , LiC4F9SO3, LiC ( CF3SO2 ) 3 , LiC ( C2F5SO2 ) 3 , LiN ( FSO2 ) 2 , LiN ( CF3SO2 ) 2 , LiN(C 4 F 9 SO 2 )(CF 3 SO 2 ), LiN(C 2 F 5 SO 2 ) 2 or the like, or two or more thereof in any combination and ratio. be able to.
  • the electrolytic solution used in the secondary battery is preferably a highly purified electrolytic solution containing only a small amount of particulate matter or elements other than constituent elements of the electrolytic solution (hereinafter also simply referred to as “impurities”).
  • the weight ratio of impurities to the electrolytic solution is preferably 1% or less, preferably 0.1% or less, and more preferably 0.01% or less.
  • the electrolyte includes vinylene carbonate (VC), propanesultone (PS), tert-butylbenzene (TBB), fluoroethylene carbonate (FEC), lithium bis(oxalate)borate (LiBOB), succinonitrile, adiponitrile, and the like.
  • Additives such as dinitrile compounds may be added.
  • the concentration of the material to be added may be, for example, 0.1 wt % or more and 5 wt % or less with respect to the entire solvent.
  • VC or LiBOB are particularly preferred because they tend to form good coatings.
  • a polymer gel electrolyte obtained by swelling a polymer with an electrolytic solution may also be used.
  • the safety against leakage and the like is enhanced. Also, the thickness and weight of the secondary battery can be reduced.
  • silicone gel acrylic gel, acrylonitrile gel, polyethylene oxide gel, polypropylene oxide gel, fluorine polymer gel, and the like can be used.
  • polymers examples include polymers having a polyalkylene oxide structure such as polyethylene oxide (PEO), PVDF, polyacrylonitrile, and copolymers containing them.
  • PEO polyethylene oxide
  • PVDF-HFP which is a copolymer of PVDF and hexafluoropropylene (HFP)
  • the polymer formed may also have a porous geometry.
  • a solid electrolyte containing an inorganic material such as a sulfide or oxide, or a solid electrolyte containing a polymeric material such as PEO (polyethylene oxide) can be used.
  • an inorganic material such as a sulfide or oxide
  • a solid electrolyte containing a polymeric material such as PEO (polyethylene oxide)
  • a metal material such as aluminum and/or a resin material can be used as the exterior body of the secondary battery.
  • a film-like exterior body can also be used.
  • a film for example, a film made of a material such as polyethylene, polypropylene, polycarbonate, ionomer, polyamide, etc. is provided with a thin metal film having excellent flexibility such as aluminum, stainless steel, copper, nickel, etc., and an exterior is provided on the thin metal film.
  • a film having a three-layer structure provided with an insulating synthetic resin film such as a polyamide-based resin or a polyester-based resin can be used as the outer surface of the body.
  • secondary battery 400 of one embodiment of the present invention includes positive electrode 410 , solid electrolyte layer 420 , and negative electrode 430 .
  • the positive electrode 410 has a positive electrode current collector 413 and a positive electrode active material layer 414 .
  • a positive electrode active material layer 414 includes a positive electrode active material 411 and a solid electrolyte 421 .
  • As the positive electrode active material 411 a positive electrode active material manufactured using the manufacturing method described in the above embodiment is used. Also, the positive electrode active material layer 414 may contain a conductive agent and a binder.
  • Solid electrolyte layer 420 has solid electrolyte 421 .
  • Solid electrolyte layer 420 is a region located between positive electrode 410 and negative electrode 430 and having neither positive electrode active material 411 nor negative electrode active material 431 .
  • the negative electrode 430 has a negative electrode current collector 433 and a negative electrode active material layer 434 .
  • a negative electrode active material layer 434 includes a negative electrode active material 431 and a solid electrolyte 421 . Further, the negative electrode active material layer 434 may contain a conductive agent and a binder. Note that when metal lithium is used for the negative electrode 430, the negative electrode 430 can be formed without the solid electrolyte 421 as shown in FIG. 18B. The use of metallic lithium for the negative electrode 430 is preferable because the energy density of the secondary battery 400 can be improved.
  • solid electrolyte 421 of solid electrolyte layer 420 for example, a sulfide-based solid electrolyte, an oxide-based solid electrolyte, a halide-based solid electrolyte, or the like can be used.
  • Sulfide - based solid electrolytes include thiolysicone - based ( Li10GeP2S12 , Li3.25Ge0.25P0.75S4 , etc.), sulfide glass ( 70Li2S , 30P2S5 , 30Li2 S.26B2S3.44LiI , 63Li2S.36SiS2.1Li3PO4 , 57Li2S.38SiS2.5Li4SiO4 , 50Li2S.50GeS2 , etc. ) , sulfide crystallized glass ( Li7 P 3 S 11 , Li 3.25 P 0.95 S 4 etc.).
  • a sulfide-based solid electrolyte has advantages such as being a material with high conductivity, being able to be synthesized at a low temperature, and being relatively soft so that a conductive path is easily maintained even after charging and discharging.
  • oxide-based solid electrolytes examples include materials having a perovskite crystal structure (La2 /3- xLi3xTiO3 , etc.) and materials having a NASICON crystal structure (Li1 + xAlxTi2 -x ( PO4) 3 etc.), materials having a garnet - type crystal structure ( Li7La3Zr2O12 , etc.), materials having a LISICON - type crystal structure ( Li14ZnGe4O16 , etc.) , LLZO ( Li7La3Zr2O12 ) , oxide glass ( Li3PO4 - Li4SiO4 , 50Li4SiO4 , 50Li3BO3 , etc.) , oxide crystallized glass ( Li1.07Al0.69Ti1.46 ( PO4 ) 3 , Li1.5Al0.5Ge1.5 ( PO4 ) 3 , etc.). Oxide-based solid electrolytes have the advantage of being stable in the air.
  • Halide-based solid electrolytes include LiAlCl 4 , Li 3 InBr 6 , LiF, LiCl, LiBr, LiI, and the like. Composite materials in which pores of porous aluminum oxide and/or porous silica are filled with these halide-based solid electrolytes can also be used as solid electrolytes.
  • Li1 + xAlxTi2 -x ( PO4) 3 ( 0 ⁇ x ⁇ 1) (hereinafter referred to as LATP) having a NASICON-type crystal structure is aluminum and titanium in the secondary battery 400 of one embodiment of the present invention. Since it contains an element that may be contained in the positive electrode active material used in , a synergistic effect can be expected for improving cycle characteristics, which is preferable. Also, an improvement in productivity can be expected by reducing the number of processes.
  • a NASICON-type crystal structure is a compound represented by M 2 (XO 4 ) 3 (M: transition metal, X: S, P, As, Mo, W, etc.), and MO 6 It has a structure in which octahedrons and XO 4 tetrahedrons share vertices and are three-dimensionally arranged.
  • the shape of the exterior body and the secondary battery Various materials and shapes can be used for the exterior body of the secondary battery 400 of one embodiment of the present invention, but it preferably has a function of pressurizing the positive electrode, the solid electrolyte layer, and the negative electrode.
  • FIG. 19 is an example of a cell for evaluating materials for all-solid-state batteries.
  • FIG. 19A is a schematic cross-sectional view of the evaluation cell.
  • the evaluation cell has a lower member 761, an upper member 762, and a fixing screw or wing nut 764 for fixing them.
  • a plate 753 is pressed to fix the evaluation material.
  • An insulator 766 is provided between a lower member 761 made of stainless steel and an upper member 762 .
  • An O-ring 765 is provided between the upper member 762 and the set screw 763 for sealing.
  • the evaluation material is placed on an electrode plate 751, surrounded by an insulating tube 752, and pressed from above by an electrode plate 753. As shown in FIG. FIG. 19B is an enlarged perspective view of the periphery of this evaluation material.
  • FIG. 19C As an evaluation material, an example of lamination of a positive electrode 750a, a solid electrolyte layer 750b, and a negative electrode 750c is shown, and a cross-sectional view thereof is shown in FIG. 19C.
  • symbol is used for the same location in FIG. 19A, FIG. 19B, and FIG. 19C.
  • the electrode plate 751 and the lower member 761 electrically connected to the positive electrode 750a correspond to a positive electrode terminal. It can be said that the electrode plate 753 and the upper member 762 electrically connected to the negative electrode 750c correspond to a negative electrode terminal.
  • the electrical resistance and the like can be measured while pressing the evaluation material through the electrode plate 751 and the electrode plate 753 .
  • a highly airtight package is preferably used for the exterior body of the secondary battery of one embodiment of the present invention.
  • a ceramic package and/or a resin package can be used.
  • FIG. 20A shows a perspective view of a secondary battery of one embodiment of the present invention having an exterior body and a shape different from those in FIG.
  • the secondary battery of FIG. 20A has external electrodes 771 and 772 and is sealed with an exterior body having a plurality of package members.
  • FIG. 20B shows an example of a cross section taken along the dashed line in FIG. 20A.
  • a laminate having a positive electrode 750a, a solid electrolyte layer 750b, and a negative electrode 750c includes a package member 770a in which an electrode layer 773a is provided on a flat plate, a frame-shaped package member 770b, and a package member 770c in which an electrode layer 773b is provided on a flat plate. , and has a sealed structure.
  • the package members 770a, 770b, 770c can be made of an insulating material such as a resin material and/or a ceramic material.
  • the external electrode 771 is electrically connected to the positive electrode 750a through the electrode layer 773a and functions as a positive electrode terminal.
  • the external electrode 772 is electrically connected to the negative electrode 750c through the electrode layer 773b and functions as a negative electrode terminal.
  • This embodiment can be used in appropriate combination with any of the other embodiments.
  • FIG. 21A is an external view of a coin-type (single-layer flat type) secondary battery
  • FIG. 21B is a cross-sectional view thereof.
  • a positive electrode can 301 which also functions as a positive electrode terminal
  • a negative electrode can 302 which also functions as a negative electrode terminal
  • the positive electrode 304 is formed of a positive electrode current collector 305 and a positive electrode active material layer 306 provided so as to be in contact therewith.
  • the negative electrode 307 is formed of a negative electrode current collector 308 and a negative electrode active material layer 309 provided so as to be in contact therewith.
  • the active material layers of the positive electrode 304 and the negative electrode 307 used in the coin-type secondary battery 300 may be formed only on one side.
  • the positive electrode can 301 and the negative electrode can 302 are made of metal such as nickel, aluminum, titanium, etc., or alloys thereof and/or alloys of these and other metals (for example, stainless steel), which are corrosion-resistant to the electrolyte. be able to. In addition, it is preferable to coat with nickel and/or aluminum in order to prevent corrosion due to the electrolytic solution.
  • the positive electrode can 301 and the negative electrode can 302 are electrically connected to the positive electrode 304 and the negative electrode 307, respectively.
  • negative electrode 307, positive electrode 304 and separator 310 are impregnated with an electrolytic solution, and as shown in FIG. A can 301 and a negative electrode can 302 are pressure-bonded via a gasket 303 to manufacture a coin-shaped secondary battery 300 .
  • the coin-shaped secondary battery 300 with high charge/discharge capacity and excellent cycle characteristics can be obtained.
  • the current flow during charging of the secondary battery will be described with reference to FIG. 21C.
  • a secondary battery using lithium is regarded as one closed circuit, the movement of lithium ions and the flow of current are in the same direction.
  • the anode (anode) and the cathode (cathode) are switched between charging and discharging, and the oxidation reaction and the reduction reaction are switched, so the electrode with a high reaction potential is called a positive electrode.
  • An electrode with a low reaction potential is called a negative electrode. Therefore, in this specification, the positive electrode is the “positive electrode” or “positive electrode” or “positive electrode” during charging, discharging, reverse pulse current, or charging current.
  • the negative electrode is called a "negative electrode” or a "negative electrode”.
  • anode and cathode in connection with oxidation and reduction reactions can be confusing when charging and discharging are reversed. Accordingly, the terms anode and cathode are not used herein. If the terms anode and cathode are to be used, specify whether it is during charging or discharging, and also indicate whether it corresponds to the positive electrode (positive electrode) or the negative electrode (negative electrode). do.
  • a charger is connected to the two terminals shown in FIG. 21C to charge the secondary battery 300 .
  • the potential difference between the electrodes increases.
  • FIG. 22A An external view of a cylindrical secondary battery 600 is shown in FIG. 22A.
  • FIG. 22B is a diagram schematically showing a cross section of a cylindrical secondary battery 600.
  • a cylindrical secondary battery 600 has a positive electrode cap (battery lid) 601 on its top surface and battery cans (armor cans) 602 on its side and bottom surfaces.
  • the positive electrode cap 601 and the battery can (outer can) 602 are insulated by a gasket (insulating packing) 610 .
  • a battery element in which a strip-shaped positive electrode 604 and a strip-shaped negative electrode 606 are wound with a separator 605 interposed therebetween is provided inside a hollow columnar battery can 602 .
  • the battery element is wound around a center pin.
  • Battery can 602 is closed at one end and open at the other end.
  • the battery can 602 should be made of a metal such as nickel, aluminum, titanium, etc., which is resistant to corrosion by the electrolyte, or an alloy thereof and/or an alloy of these and other metals (for example, stainless steel, etc.). can be done.
  • the battery element in which the positive electrode, the negative electrode and the separator are wound is sandwiched between a pair of insulating plates 608 and 609 facing each other.
  • a non-aqueous electrolyte (not shown) is filled inside the battery can 602 in which the battery element is provided. The same non-aqueous electrolyte as used in coin-type secondary batteries can be used.
  • a positive electrode terminal (positive collector lead) 603 is connected to the positive electrode 604
  • a negative electrode terminal (negative collector lead) 607 is connected to the negative electrode 606 .
  • a metal material such as aluminum can be used for both the positive terminal 603 and the negative terminal 607 .
  • the positive terminal 603 and the negative terminal 607 are resistance welded to the safety valve mechanism 612 and the bottom of the battery can 602, respectively.
  • the safety valve mechanism 612 is electrically connected to the positive electrode cap 601 via a PTC element (Positive Temperature Coefficient) 611 .
  • the safety valve mechanism 612 disconnects the electrical connection between the positive electrode cap 601 and the positive electrode 604 when the increase in internal pressure of the battery exceeds a predetermined threshold.
  • the PTC element 611 is a thermal resistance element whose resistance increases when the temperature rises, and the increase in resistance limits the amount of current to prevent abnormal heat generation. Barium titanate (BaTiO 3 ) semiconductor ceramics or the like can be used for the PTC element.
  • a module 615 may be configured by sandwiching a plurality of secondary batteries 600 between conductive plates 613 and 614 as shown in FIG. 22C.
  • the plurality of secondary batteries 600 may be connected in parallel, may be connected in series, or may be connected in series after being connected in parallel.
  • a large amount of electric power can be extracted by configuring the module 615 having a plurality of secondary batteries 600 .
  • module 615 is a top view of module 615.
  • FIG. The conductive plate 613 is shown in dashed lines for clarity of illustration.
  • module 615 may have conductors 616 that electrically connect multiple secondary batteries 600 .
  • a conductive plate may be provided overlying the conductor 616 .
  • a temperature control device 617 may be provided between the plurality of secondary batteries 600 . When the secondary battery 600 is overheated, it can be cooled by the temperature control device 617, and when the secondary battery 600 is too cold, it can be heated by the temperature control device 617. Therefore, the performance of the module 615 is less affected by the outside air temperature. It is preferable that the heat medium included in the temperature control device 617 has insulation and nonflammability.
  • the cylindrical secondary battery 600 with high charge/discharge capacity and excellent cycle characteristics can be obtained.
  • the secondary battery preferably has a separator.
  • a separator for example, paper, non-woven fabric, glass fiber, ceramics, nylon (polyamide), vinylon (polyvinyl alcohol fiber), polyester, acrylic, polyolefin, synthetic fiber using polyurethane, etc. can be used. can be done. It is preferable that the separator is processed into an envelope shape and arranged so as to enclose either the positive electrode or the negative electrode.
  • the separator may have a multilayer structure.
  • an organic material film such as polypropylene or polyethylene can be coated with a ceramic material, a fluorine material, a polyamide material, or a mixture thereof.
  • the ceramic material for example, aluminum oxide particles, silicon oxide particles, or the like can be used.
  • PVDF, polytetrafluoroethylene, or the like can be used as the fluorine-based material.
  • polyamide materials that can be used include nylon and aramid (meta-aramid and para-aramid).
  • Coating with a ceramic-based material improves oxidation resistance, so deterioration of the separator during high-voltage charging and discharging can be suppressed, and the reliability of the secondary battery can be improved.
  • the separator and the electrode are more likely to adhere to each other, and the output characteristics can be improved.
  • Coating with a polyamide-based material, particularly aramid improves the heat resistance, so that the safety of the secondary battery can be improved.
  • both sides of a polypropylene film may be coated with a mixed material of aluminum oxide and aramid.
  • a polypropylene film may be coated with a mixed material of aluminum oxide and aramid on the surface thereof in contact with the positive electrode, and coated with a fluorine-based material on the surface thereof in contact with the negative electrode.
  • the safety of the secondary battery can be maintained even if the thickness of the entire separator is thin, so that the charge/discharge capacity per unit volume of the secondary battery can be increased.
  • the battery pack has a secondary battery 913 and a circuit board 900 .
  • a secondary battery 913 is connected to an antenna 914 via a circuit board 900 .
  • a label 910 is attached to the secondary battery 913 .
  • the secondary battery 913 is connected to terminals 951 and 952 .
  • the circuit board 900 is fixed with a seal 915 .
  • the circuit board 900 has terminals 911 and a circuit 912 .
  • Terminal 911 is connected to terminal 951 , terminal 952 , antenna 914 and circuit 912 .
  • a plurality of terminals 911 may be provided and each of the plurality of terminals 911 may be used as a control signal input terminal, a power supply terminal, or the like.
  • the circuit 912 may be provided on the back surface of the circuit board 900 .
  • the antenna 914 is not limited to a coil shape, and may be linear or plate-shaped, for example. Further, antennas such as planar antennas, aperture antennas, traveling wave antennas, EH antennas, magnetic field antennas, and dielectric antennas may be used. Alternatively, antenna 914 may be a planar conductor. This flat conductor can function as one of conductors for electric field coupling. That is, the antenna 914 may function as one of the two conductors of the capacitor. As a result, electric power can be exchanged not only by electromagnetic fields and magnetic fields, but also by electric fields.
  • the battery pack has layer 916 between antenna 914 and secondary battery 913 .
  • Layer 916 has a function of shielding an electromagnetic field generated by secondary battery 913, for example.
  • a magnetic material for example, can be used as the layer 916 .
  • antennas may be provided on each of a pair of opposing surfaces of the secondary battery 913 shown in FIGS. 23A and 23B.
  • FIG. 24A is an external view showing one of the pair of surfaces
  • FIG. 24B is an external view showing the other of the pair of surfaces. Note that in the secondary battery shown in FIGS. 24A and 24B, the description of the same parts as those of the secondary battery shown in FIGS. 23A and 23B can be incorporated as appropriate, and thus description thereof is omitted here.
  • an antenna 914 is provided on one of a pair of surfaces of a secondary battery 913 with a layer 916 interposed therebetween, and as shown in FIG. Antenna 918 is provided on both sides.
  • Layer 917 has a function of shielding an electromagnetic field generated by secondary battery 913, for example.
  • a magnetic material for example, can be used as the layer 917 .
  • antenna 918 has a function of performing data communication with an external device, for example.
  • antenna 918 for example, an antenna having a shape applicable to antenna 914 can be applied.
  • a response method such as NFC (Near Field Communication) that can be used between the secondary battery and other devices can be applied. can be done.
  • a display device 920 may be provided in the secondary battery 913 shown in FIGS. 23A and 23B.
  • the display device 920 is electrically connected to the terminals 911 .
  • the label 910 may not be provided in the portion where the display device 920 is provided.
  • the description of the same parts as those of the secondary battery shown in FIGS. 23A and 23B can be used as appropriate, and thus description thereof is omitted here.
  • Display device 920 may display, for example, an image indicating whether or not charging is in progress, an image indicating the amount of stored electricity, and the like.
  • electronic paper a liquid crystal display device, an electroluminescence (also referred to as EL) display device, or the like can be used, for example.
  • EL electroluminescence
  • a sensor 921 may be provided in the secondary battery 913 shown in FIGS. 23A and 23B. Sensor 921 is electrically connected to terminal 911 via terminal 922 . Note that in the secondary battery shown in FIG. 24D , the description of the same parts as those of the secondary battery shown in FIGS. 23A and 23B can be cited as appropriate, and thus description thereof is omitted here.
  • Sensors 921 include, for example, displacement, position, speed, acceleration, angular velocity, number of rotations, distance, light, liquid, magnetism, temperature, chemical substances, sound, time, hardness, electric field, current, voltage, power, radiation, flow rate , humidity, gradient, vibration, smell, or infrared rays.
  • data such as temperature
  • the environment in which the secondary battery is placed can be detected and stored in the memory within the circuit 912 .
  • FIG. 913 a structural example of the secondary battery 913 is described with reference to FIGS. 25 and 26.
  • FIG. 25 a structural example of the secondary battery 913 is described with reference to FIGS. 25 and 26.
  • a secondary battery 913 illustrated in FIG. 25A includes a wound body 950 provided with a terminal 951 and a terminal 952 inside a housing 930 .
  • the wound body 950 is impregnated with the electrolytic solution inside the housing 930 .
  • the terminal 952 is in contact with the housing 930, and the terminal 951 is not in contact with the housing 930 by using an insulating material or the like.
  • the housing 930 is shown separately for the sake of convenience. exist.
  • a metal material for example, aluminum
  • a resin material can be used as housing 930.
  • the housing 930 shown in FIG. 25A may be made of a plurality of materials.
  • secondary battery 913 shown in FIG. 25B has housing 930a and housing 930b bonded together, and wound body 950 is provided in a region surrounded by housing 930a and housing 930b.
  • An insulating material such as an organic resin can be used for the housing 930a.
  • a material such as an organic resin for the surface on which the antenna is formed shielding of the electric field by the secondary battery 913 can be suppressed.
  • an antenna such as the antenna 914 may be provided inside the housing 930a if the shielding of the electric field by the housing 930a is small.
  • a metal material, for example, can be used as the housing 930b.
  • a wound body 950 has a negative electrode 931 , a positive electrode 932 , and a separator 933 .
  • the wound body 950 is a wound body in which the negative electrode 931 and the positive electrode 932 are laminated with the separator 933 interposed therebetween, and the laminated sheet is wound. Note that the negative electrode 931, the positive electrode 932, and the separator 933 may be stacked more than once.
  • Negative electrode 931 is connected to terminal 911 shown in FIG. 23 through one of terminal 951 and terminal 952 .
  • Positive electrode 932 is connected to terminal 911 shown in FIG. 23 through the other of terminal 951 and terminal 952 .
  • the secondary battery 913 can have high charge/discharge capacity and excellent cycle characteristics.
  • laminate type secondary battery ⁇ Laminate type secondary battery>
  • the laminate-type secondary battery has a flexible structure and is mounted in an electronic device having at least a part of the flexible portion, the secondary battery can be bent according to the deformation of the electronic device. can.
  • a laminated secondary battery 980 will be described with reference to FIG.
  • a laminated secondary battery 980 has a wound body 993 shown in FIG. 27A.
  • a wound body 993 has a negative electrode 994 , a positive electrode 995 , and a separator 996 .
  • a wound body 993 is obtained by laminating a negative electrode 994 and a positive electrode 995 with a separator 996 interposed therebetween, and winding the laminated sheet, similarly to the wound body 950 described with reference to FIG.
  • the number of laminations of the negative electrode 994, the positive electrode 995, and the separator 996 may be appropriately designed according to the required charge/discharge capacity and device volume.
  • the negative electrode 994 is connected to a negative current collector (not shown) through one of the lead electrodes 997 and 998, and the positive electrode 995 is connected to a positive current collector (not shown) through the other of the lead electrodes 997 and 998. connected).
  • the above-described wound body 993 is housed in a space formed by pasting together a film 981 serving as an exterior body and a film 982 having a concave portion by thermocompression bonding or the like.
  • a secondary battery 980 can be manufactured as follows.
  • the wound body 993 has a lead electrode 997 and a lead electrode 998, and is impregnated with an electrolytic solution inside the film 981 and the film 982 having the recess.
  • the film 981 and the film 982 having recesses can be made of, for example, a metal material such as aluminum and/or a resin material. If a resin material is used as the material for the film 981 and the film 982 having the recesses, the film 981 and the film 982 having the recesses can be deformed when an external force is applied, and a flexible storage battery can be manufactured. be able to.
  • 27B and 27C show an example using two films, a space may be formed by folding one film, and the wound body 993 described above may be accommodated in the space.
  • the secondary battery 980 can have high charge/discharge capacity and excellent cycle characteristics.
  • FIG. 27 describes an example of the secondary battery 980 having the wound body in the space formed by the film serving as the exterior body.
  • a secondary battery having a plurality of strip-shaped positive electrodes, separators, and negative electrodes may be used.
  • a separator 507 is provided between the positive electrode 503 and the negative electrode 506 provided in the exterior body 509 . Further, the inside of the exterior body 509 is filled with an electrolytic solution 508 .
  • the electrolytic solution 508 the electrolytic solution described in Embodiment 3 can be used.
  • the positive electrode current collector 501 and the negative electrode current collector 504 also serve as terminals for electrical contact with the outside. Therefore, part of the positive electrode current collector 501 and the negative electrode current collector 504 may be arranged so as to be exposed to the outside from the exterior body 509 . In addition, the positive electrode current collector 501 and the negative electrode current collector 504 are not exposed to the outside from the outer package 509, and the lead electrode and the positive electrode current collector 501 or the negative electrode current collector 504 are ultrasonically bonded using a lead electrode. The lead electrodes may be exposed to the outside.
  • the exterior body 509 includes a film made of a material such as polyethylene, polypropylene, polycarbonate, ionomer, or polyamide, and a highly flexible metal such as aluminum, stainless steel, copper, or nickel.
  • a laminate film having a three-layer structure can be used in which a thin film is provided and an insulating synthetic resin film such as a polyamide-based resin or a polyester-based resin is provided on the metal thin film as the outer surface of the exterior body.
  • FIG. 28B shows an example of a cross-sectional structure of a laminated secondary battery 500. As shown in FIG. For the sake of simplicity, FIG. 28A shows an example in which two current collectors are used, but actually, as shown in FIG. 28B, it is composed of a plurality of electrode layers.
  • the number of electrode layers is 16 as an example. Note that the secondary battery 500 has flexibility even with 16 electrode layers.
  • FIG. 28B shows a structure of 16 layers in total, including 8 layers of negative electrode current collectors 504 and 8 layers of positive electrode current collectors 501 .
  • FIG. 28B shows a cross section of the negative electrode lead-out portion, in which eight layers of the negative electrode current collector 504 are ultrasonically bonded.
  • the number of electrode layers is not limited to 16, and may be more or less. When the number of electrode layers is large, the secondary battery can have a larger charge/discharge capacity. In addition, when the number of electrode layers is small, the thickness of the secondary battery can be reduced and the secondary battery can be excellent in flexibility.
  • FIG. 29 and 30 show examples of external views of a laminated secondary battery 500.
  • FIG. 29 and 30 have a positive electrode 503, a negative electrode 506, a separator 507, an outer package 509, a positive electrode lead electrode 510 and a negative electrode lead electrode 511.
  • FIG. 29 and 30 have a positive electrode 503, a negative electrode 506, a separator 507, an outer package 509, a positive electrode lead electrode 510 and a negative electrode lead electrode 511.
  • FIG. 29 and 30 have a positive electrode 503, a negative electrode 506, a separator 507, an outer package 509, a positive electrode lead electrode 510 and a negative electrode lead electrode 511.
  • FIG. 29 and 30 have a positive electrode 503, a negative electrode 506, a separator 507, an outer package 509, a positive electrode lead electrode 510 and a negative electrode lead electrode 511.
  • FIG. 29 and 30 have a positive electrode 503, a negative electrode 506, a separator 507, an outer package 509, a
  • FIG. 31A shows an external view of the positive electrode 503 and the negative electrode 506.
  • the positive electrode 503 has a positive electrode current collector 501 , and the positive electrode active material layer 502 is formed on the surface of the positive electrode current collector 501 .
  • the positive electrode 503 has a region where the positive electrode current collector 501 is partially exposed (hereinafter referred to as a tab region).
  • the negative electrode 506 has a negative electrode current collector 504 , and the negative electrode active material layer 505 is formed on the surface of the negative electrode current collector 504 .
  • the negative electrode 506 has a region where the negative electrode current collector 504 is partially exposed, that is, a tab region.
  • the area and shape of the tab regions of the positive and negative electrodes are not limited to the example shown in FIG. 31A.
  • FIG. 31B shows negative electrode 506, separator 507 and positive electrode 503 stacked.
  • an example is shown in which five sets of negative electrodes and four sets of positive electrodes are used.
  • the tab regions of the positive electrode 503 are joined together, and the positive electrode lead electrode 510 is joined to the tab region of the outermost positive electrode.
  • For joining for example, ultrasonic welding or the like may be used.
  • bonding between the tab regions of the negative electrode 506 and bonding of the negative electrode lead electrode 511 to the tab region of the outermost negative electrode are performed.
  • the negative electrode 506 , the separator 507 and the positive electrode 503 are arranged on the exterior body 509 .
  • the exterior body 509 is bent at the portion indicated by the dashed line. After that, the outer peripheral portion of the exterior body 509 is joined. Thermocompression bonding or the like may be used for bonding. At this time, a region (hereinafter referred to as an inlet) that is not joined is provided in a part (or one side) of the exterior body 509 so that the electrolytic solution 508 can be introduced later.
  • an inlet a region that is not joined is provided in a part (or one side) of the exterior body 509 so that the electrolytic solution 508 can be introduced later.
  • an electrolytic solution 508 (not shown) is introduced into the exterior body 509 through an inlet provided in the exterior body 509 . It is preferable to introduce the electrolytic solution 508 under a reduced pressure atmosphere or an inert atmosphere. And finally, the inlet is joined. In this manner, a laminated secondary battery 500 can be manufactured.
  • the secondary battery 500 can have high charge/discharge capacity and excellent cycle characteristics.
  • the all-solid-state battery by applying a predetermined pressure in the stacking direction of the stacked positive electrode and negative electrode, it is possible to maintain a good contact state at the interface inside.
  • a predetermined pressure in the stacking direction of the positive electrode and the negative electrode expansion in the stacking direction due to charging and discharging of the all-solid-state battery can be suppressed, and the reliability of the all-solid-state battery can be improved.
  • This embodiment can be used in appropriate combination with any of the other embodiments.
  • FIGS. 32A to 32G show an example of mounting the bendable secondary battery described in the above embodiment to an electronic device.
  • Electronic devices to which a bendable secondary battery is applied include, for example, television devices (also referred to as televisions or television receivers), monitors for computers, digital cameras, digital video cameras, digital photo frames, and mobile phones. (also referred to as a mobile phone or a mobile phone device), a mobile game machine, a personal digital assistant, a sound reproducing device, a large game machine such as a pachinko machine, and the like.
  • a secondary battery having a flexible shape along the curved surface of the inner wall or outer wall of a house, building, etc., or the interior or exterior of an automobile.
  • FIG. 32A shows an example of a mobile phone.
  • a mobile phone 7400 includes a display portion 7402 incorporated in a housing 7401, operation buttons 7403, an external connection port 7404, a speaker 7405, a microphone 7406, and the like.
  • the mobile phone 7400 has a secondary battery 7407 .
  • the secondary battery of one embodiment of the present invention as the secondary battery 7407, a lightweight mobile phone with a long life can be provided.
  • FIG. 32B shows a state in which the mobile phone 7400 is bent.
  • the secondary battery 7407 provided therein is also bent.
  • FIG. 32C shows the state of the secondary battery 7407 bent at that time.
  • a secondary battery 7407 is a thin storage battery.
  • the secondary battery 7407 is fixed in a bent state.
  • the secondary battery 7407 has a lead electrode electrically connected to the current collector.
  • the current collector is a copper foil, which is partly alloyed with gallium to improve adhesion between the current collector and the active material layer in contact with the current collector, thereby improving reliability when the secondary battery 7407 is bent. It is highly structured.
  • FIG. 32D shows an example of a bangle-type display device.
  • a portable display device 7100 includes a housing 7101 , a display portion 7102 , operation buttons 7103 , and a secondary battery 7104 .
  • FIG. 32E shows the state of the secondary battery 7104 bent. When the secondary battery 7104 is worn on a user's arm in a bent state, the housing is deformed and the curvature of part or all of the secondary battery 7104 changes. The degree of curvature at an arbitrary point of the curve is expressed by the value of the radius of the corresponding circle, which is called the radius of curvature, and the reciprocal of the radius of curvature is called the curvature.
  • part or all of the main surface of the housing or the secondary battery 7104 changes within the range of radius of curvature of 40 mm or more and 150 mm or less. High reliability can be maintained if the radius of curvature of the main surface of the secondary battery 7104 is in the range of 40 mm or more and 150 mm or less.
  • a lightweight and long-life portable display device can be provided.
  • FIG. 32F shows an example of a wristwatch-type portable information terminal.
  • a mobile information terminal 7200 includes a housing 7201, a display portion 7202, a band 7203, a buckle 7204, operation buttons 7205, an input/output terminal 7206, and the like.
  • Personal digital assistant 7200 is capable of running a variety of applications such as mobile phones, e-mail, text viewing and composition, music playback, Internet communication, computer games, and the like.
  • the display portion 7202 has a curved display surface, and can perform display along the curved display surface.
  • the display portion 7202 includes a touch sensor and can be operated by touching the screen with a finger, a stylus, or the like. For example, by touching an icon 7207 displayed on the display portion 7202, the application can be activated.
  • the operation button 7205 can have various functions such as time setting, power on/off operation, wireless communication on/off operation, manner mode execution/cancellation, and power saving mode execution/cancellation. .
  • the operating system installed in the mobile information terminal 7200 can freely set the functions of the operation buttons 7205 .
  • the mobile information terminal 7200 is capable of performing short-range wireless communication according to communication standards. For example, by intercommunicating with a headset capable of wireless communication, it is also possible to talk hands-free.
  • the portable information terminal 7200 has an input/output terminal 7206 and can directly exchange data with another information terminal through a connector. Also, charging can be performed through the input/output terminal 7206 . Note that the charging operation may be performed by wireless power supply without using the input/output terminal 7206 .
  • the display portion 7202 of the portable information terminal 7200 includes the secondary battery of one embodiment of the present invention.
  • the secondary battery of one embodiment of the present invention a portable information terminal that is lightweight and has a long life can be provided.
  • the secondary battery 7104 shown in FIG. 32E can be incorporated inside the housing 7201 in a curved state or inside the band 7203 in a curved state.
  • Personal digital assistant 7200 preferably has a sensor.
  • sensors for example, a fingerprint sensor, a pulse sensor, a human body sensor such as a body temperature sensor, a touch sensor, a pressure sensor, an acceleration sensor, etc. are preferably mounted.
  • FIG. 32G shows an example of an armband-type display device.
  • the display device 7300 includes a display portion 7304 and a secondary battery of one embodiment of the present invention. Further, the display device 7300 can include a touch sensor in the display portion 7304 and can function as a portable information terminal.
  • the display surface of the display portion 7304 is curved, and display can be performed along the curved display surface.
  • the display device 7300 can change the display state by short-range wireless communication or the like according to communication standards.
  • the display device 7300 has an input/output terminal and can directly exchange data with another information terminal through a connector. Also, charging can be performed via the input/output terminals. Note that the charging operation may be performed by wireless power supply without using the input/output terminal.
  • the secondary battery of one embodiment of the present invention as the secondary battery included in the display device 7300, a lightweight and long-life display device can be provided.
  • FIG. 32H An example of mounting the secondary battery with good cycle characteristics described in the above embodiment in an electronic device will be described with reference to FIGS. 32H, 33, and 34.
  • FIG. 32H An example of mounting the secondary battery with good cycle characteristics described in the above embodiment in an electronic device will be described with reference to FIGS. 32H, 33, and 34.
  • the secondary battery of one embodiment of the present invention as a secondary battery in a daily electronic device, a product that is lightweight and has a long life can be provided.
  • daily electronic devices include electric toothbrushes, electric shavers, electric beauty devices, and the like, and the secondary batteries for these products are stick-shaped, compact, and lightweight, in consideration of the user's ease of holding.
  • a secondary battery with a large charge/discharge capacity is desired.
  • FIG. 32H is a perspective view of a device, also called a cigarette containing smoking device (e-cigarette).
  • an electronic cigarette 7500 consists of an atomizer 7501 containing a heating element, a secondary battery 7504 that powers the atomizer, and a cartridge 7502 that contains a liquid supply bottle, sensors and the like.
  • a protection circuit that prevents overcharging and/or overdischarging of secondary battery 7504 may be electrically connected to secondary battery 7504 to increase safety.
  • a secondary battery 7504 shown in FIG. 32H has an external terminal so that it can be connected to a charging device. Since the secondary battery 7504 becomes a tip portion when held, it is desirable that the total length be short and the weight be light. Since the secondary battery of one embodiment of the present invention has high charge-discharge capacity and favorable cycle characteristics, the electronic cigarette 7500 that is small and lightweight and can be used for a long time can be provided.
  • FIGS. 33A and 33B show an example of a tablet terminal that can be folded in two.
  • a tablet terminal 9600 shown in FIGS. 33A and 33B includes a housing 9630a, a housing 9630b, a movable portion 9640 connecting the housings 9630a and 9630b, a display portion 9631 having a display portion 9631a and a display portion 9631b, and a switch 9625. , a switch 9627 , a fastener 9629 , and an operation switch 9628 .
  • the tablet terminal can have a wider display portion.
  • FIG. 33A shows the tablet terminal 9600 opened
  • FIG. 33B shows the tablet terminal 9600 closed.
  • the tablet terminal 9600 also includes a power storage unit 9635 inside the housings 9630a and 9630b.
  • the power storage unit 9635 is provided across the housing 9630a and the housing 9630b through the movable portion 9640.
  • All or part of the display portion 9631 can be a touch panel region, and data can be input by touching an image including an icon, characters, an input form, or the like displayed in the region.
  • keyboard buttons may be displayed on the entire surface of the display portion 9631a on the housing 9630a side, and information such as characters and images may be displayed on the display portion 9631b on the housing 9630b side.
  • a keyboard may be displayed on the display portion 9631b on the housing 9630b side, and information such as characters and images may be displayed on the display portion 9631a on the housing 9630a side.
  • a keyboard display switching button of a touch panel may be displayed on the display portion 9631, and a keyboard may be displayed on the display portion 9631 by touching the button with a finger, a stylus, or the like.
  • touch input can be performed simultaneously on the touch panel region of the display portion 9631a on the housing 9630a side and the touch panel region of the display portion 9631b on the housing 9630b side.
  • the switches 9625 to 9627 may be interfaces for switching various functions as well as interfaces for operating the tablet terminal 9600 .
  • at least one of the switches 9625 to 9627 may function as a switch that switches the power of the tablet terminal 9600 on and off.
  • at least one of the switches 9625 to 9627 may have a function of switching the orientation of display, such as vertical display or horizontal display, or a function of switching between black-and-white display and color display.
  • at least one of the switches 9625 to 9627 may have a function of adjusting luminance of the display portion 9631, for example.
  • the luminance of the display portion 9631 can be optimized according to the amount of external light during use, which is detected by an optical sensor incorporated in the tablet terminal 9600 .
  • the tablet terminal may incorporate other detection devices such as a sensor for detecting tilt such as a gyro or an acceleration sensor.
  • FIG. 33A shows an example in which the display area of the display portion 9631a on the housing 9630a side and the display area of the display portion 9631b on the housing 9630b side are substantially the same.
  • one size may be different from the other size, and the display quality may also be different.
  • one of the display panels may display with higher definition than the other.
  • FIG. 33B shows a state in which the tablet terminal 9600 is folded and closed, and the tablet terminal 9600 has a housing 9630, a solar cell 9633, and a charge/discharge control circuit 9634 including a DCDC converter 9636.
  • the tablet terminal 9600 can be folded in half, it can be folded so that the housings 9630a and 9630b are overlapped when not in use. Since the display portion 9631 can be protected by folding, the durability of the tablet terminal 9600 can be increased. In addition, since the power storage unit 9635 including the secondary battery of one embodiment of the present invention has high charge/discharge capacity and favorable cycle characteristics, the tablet terminal 9600 that can be used for a long time can be provided. .
  • the tablet terminal 9600 shown in FIGS. 33A and 33B has a function of displaying various information (still images, moving images, text images, etc.), a calendar, and displaying the date or time on the display unit. functions, a touch input function for performing touch input operation or editing information displayed on the display unit, a function for controlling processing by various software (programs), and the like.
  • a solar cell 9633 attached to the surface of the tablet terminal 9600 can supply power to a touch panel, a display portion, a video signal processing portion, or the like.
  • the solar cell 9633 can be provided on one side or both sides of the housing 9630 so that the power storage unit 9635 can be efficiently charged.
  • use of a lithium ion battery as the power storage unit 9635 has an advantage such as miniaturization.
  • FIG. 33C shows a solar cell 9633, a power storage body 9635, a DCDC converter 9636, a converter 9637, switches SW1 to SW3, and a display portion 9631.
  • the power storage body 9635, the DCDC converter 9636, the converter 9637, and the switches SW1 to This portion corresponds to the charge/discharge control circuit 9634 shown in FIG. 33B.
  • the solar cell 9633 generates power with external light.
  • the power generated by the solar cell is stepped up or down in a DCDC converter 9636 so as to have a voltage for charging the power storage unit 9635 .
  • the switch SW1 is turned on, and the converter 9637 steps up or down the voltage necessary for the display portion 9631.
  • the power storage unit 9635 may be charged by turning off SW1 and turning on SW2.
  • the solar cell 9633 is shown as an example of a power generation means, it is not particularly limited, and the power storage body 9635 is charged by other power generation means such as a piezoelectric element (piezo element) and a thermoelectric conversion element (Peltier element).
  • a piezoelectric element piezo element
  • a thermoelectric conversion element Peltier element
  • a non-contact power transmission module that transmits and receives power wirelessly (non-contact) for charging may be combined with other charging means.
  • FIG. 34 shows an example of another electronic device.
  • a display device 8000 is an example of an electronic device using a secondary battery 8004 of one embodiment of the present invention.
  • the display device 8000 corresponds to a display device for receiving TV broadcast, and includes a housing 8001, a display portion 8002, a speaker portion 8003, a secondary battery 8004, and the like.
  • a secondary battery 8004 according to one embodiment of the present invention is provided inside the housing 8001 .
  • the display device 8000 can receive power from a commercial power source or can use power accumulated in the secondary battery 8004 . Therefore, the use of the secondary battery 8004 according to one embodiment of the present invention as an uninterruptible power supply makes it possible to use the display device 8000 even when power cannot be supplied from a commercial power supply due to a power failure or the like.
  • the display unit 8002 includes a liquid crystal display device, a light emitting device having a light emitting element such as an organic EL element in each pixel, an electrophoretic display device, a DMD (Digital Micromirror Device), a PDP (Plasma Display Panel), and an FED (Field Emission Display). ) can be used.
  • a liquid crystal display device a light emitting device having a light emitting element such as an organic EL element in each pixel
  • an electrophoretic display device a DMD (Digital Micromirror Device), a PDP (Plasma Display Panel), and an FED (Field Emission Display).
  • the display device includes all display devices for information display, such as for TV broadcast reception, personal computer, advertisement display, and the like.
  • a stationary lighting device 8100 is an example of an electronic device using a secondary battery 8103 of one embodiment of the present invention.
  • the lighting device 8100 includes a housing 8101, a light source 8102, a secondary battery 8103, and the like.
  • FIG. 34 illustrates the case where the secondary battery 8103 is provided inside the ceiling 8104 on which the housing 8101 and the light source 8102 are installed. It's okay to be.
  • the lighting device 8100 can receive power from a commercial power source or can use power accumulated in the secondary battery 8103 . Therefore, the use of the secondary battery 8103 according to one embodiment of the present invention as an uninterruptible power supply makes it possible to use the lighting device 8100 even when power cannot be supplied from a commercial power supply due to a power failure or the like.
  • FIG. 34 illustrates the stationary lighting device 8100 provided on the ceiling 8104, but the secondary battery according to one embodiment of the present invention can be used in areas other than the ceiling 8104, such as the side walls 8105, the floor 8106, the windows 8107, and the like. It can also be used for a stationary lighting device provided in a desk, or for a desk-top lighting device.
  • an artificial light source that artificially obtains light using electric power can be used.
  • incandescent lamps, discharge lamps such as fluorescent lamps, and light-emitting elements such as LEDs and organic EL elements are examples of the artificial light source.
  • An air conditioner including an indoor unit 8200 and an outdoor unit 8204 in FIG. 34 is an example of an electronic device using a secondary battery 8203 according to one embodiment of the present invention.
  • the indoor unit 8200 has a housing 8201, a blower port 8202, a secondary battery 8203, and the like.
  • FIG. 34 illustrates the case where the secondary battery 8203 is provided in the indoor unit 8200, the secondary battery 8203 may be provided in the outdoor unit 8204.
  • both the indoor unit 8200 and the outdoor unit 8204 may be provided with the secondary battery 8203 .
  • the air conditioner can receive power from a commercial power source or can use power accumulated in the secondary battery 8203 .
  • the secondary battery 8203 when the secondary battery 8203 is provided in both the indoor unit 8200 and the outdoor unit 8204, the secondary battery 8203 according to one embodiment of the present invention can be used even when power cannot be supplied from a commercial power supply due to a power failure or the like. can be used as an uninterruptible power supply for air conditioners.
  • FIG. 34 exemplifies a separate type air conditioner composed of an indoor unit and an outdoor unit
  • an integrated type air conditioner having the function of the indoor unit and the function of the outdoor unit in one housing is used.
  • the secondary battery according to one embodiment of the present invention can also be used.
  • an electric refrigerator-freezer 8300 is an example of an electronic device using a secondary battery 8304 of one embodiment of the present invention.
  • the electric refrigerator-freezer 8300 includes a housing 8301, a refrigerator compartment door 8302, a freezer compartment door 8303, a secondary battery 8304, and the like.
  • a secondary battery 8304 is provided inside a housing 8301 .
  • the electric refrigerator-freezer 8300 can receive power from a commercial power source, or can use power stored in a secondary battery 8304 . Therefore, the electric refrigerator-freezer 8300 can be used by using the secondary battery 8304 according to one embodiment of the present invention as an uninterruptible power supply even when power cannot be supplied from a commercial power supply due to a power failure or the like.
  • high-frequency heating devices such as microwave ovens and electronic devices such as electric rice cookers require high power in a short period of time. Therefore, by using the secondary battery according to one embodiment of the present invention as an auxiliary power supply for supplementing electric power that cannot be covered by the commercial power supply, it is possible to prevent the breaker of the commercial power supply from tripping when the electronic device is in use. .
  • the power usage rate By storing electric power in the secondary battery, it is possible to suppress an increase in the electric power usage rate during periods other than the above time period.
  • the secondary battery 8304 In the case of the electric freezer-refrigerator 8300, electric power is stored in the secondary battery 8304 at night when the temperature is low and the refrigerator compartment door 8302 and the freezer compartment door 8303 are not opened and closed. In the daytime when the temperature rises and the refrigerator compartment door 8302 and the freezer compartment door 8303 are opened and closed, the secondary battery 8304 is used as an auxiliary power supply, so that the power usage rate during the daytime can be kept low.
  • the secondary battery can have favorable cycle characteristics and improved reliability.
  • a secondary battery having a high charge/discharge capacity can be obtained, so that the characteristics of the secondary battery can be improved, and thus the size and weight of the secondary battery itself can be reduced. be able to. Therefore, by including the secondary battery which is one embodiment of the present invention in the electronic device described in this embodiment, the electronic device can have a longer life and a lighter weight.
  • FIG. 35A shows an example of a wearable device.
  • a wearable device uses a secondary battery as a power source.
  • wearable devices that can be charged not only by wires with exposed connectors but also by wireless charging are being developed. Desired.
  • the secondary battery which is one embodiment of the present invention can be mounted in a spectacles-type device 4000 as shown in FIG. 35A.
  • the glasses-type device 4000 has a frame 4000a and a display section 4000b.
  • the spectacles-type device 4000 that is lightweight, has a good weight balance, and can be used continuously for a long time can be obtained.
  • a structure that can save space due to the downsizing of the housing can be realized.
  • a secondary battery that is one embodiment of the present invention can be mounted in the headset device 4001 .
  • the headset type device 4001 has at least a microphone section 4001a, a flexible pipe 4001b, and an earphone section 4001c.
  • a secondary battery can be provided in the flexible pipe 4001b and/or the earphone portion 4001c.
  • the device 4002 that can be attached directly to the body can be equipped with the secondary battery that is one embodiment of the present invention.
  • a secondary battery 4002b can be provided in a thin housing 4002a of the device 4002 .
  • the device 4003 that can be attached to clothes can be equipped with the secondary battery that is one embodiment of the present invention.
  • a secondary battery 4003b can be provided in a thin housing 4003a of the device 4003 .
  • the belt-type device 4006 can be equipped with a secondary battery that is one embodiment of the present invention.
  • a belt-type device 4006 has a belt portion 4006a and a wireless power supply receiving portion 4006b, and a secondary battery can be mounted inside the belt portion 4006a.
  • a structure that can save space due to the downsizing of the housing can be realized.
  • the secondary battery that is one embodiment of the present invention can be mounted in the wristwatch-type device 4005 .
  • a wristwatch-type device 4005 has a display portion 4005a and a belt portion 4005b, and a secondary battery can be provided in the display portion 4005a or the belt portion 4005b.
  • a structure that can save space due to the downsizing of the housing can be realized.
  • the display portion 4005a can display not only the time but also various information such as incoming e-mails and phone calls.
  • the wristwatch-type device 4005 is a wearable device that is directly wrapped around the arm, it may be equipped with a sensor for measuring the user's pulse, blood pressure, and the like. It is possible to accumulate data on the amount of exercise and health of the user and manage the health.
  • FIG. 35B shows a perspective view of the wristwatch-type device 4005 removed from the arm.
  • FIG. 35C shows a state in which a secondary battery 913 is incorporated inside.
  • a secondary battery 913 is the secondary battery described in Embodiment 4.
  • the secondary battery 913 is provided so as to overlap with the display portion 4005a, and is small and lightweight.
  • FIG. 35D shows an example of a wireless earphone. Although wireless earphones having a pair of main bodies 4100a and 4100b are illustrated here, they are not necessarily a pair.
  • Main bodies 4100 a and 4100 b have driver unit 4101 , antenna 4102 and secondary battery 4103 .
  • a display portion 4104 may be provided.
  • a case 4110 has a secondary battery 4111 . Moreover, it is preferable to have a board on which circuits such as a wireless IC and a charging control IC are mounted, and a charging terminal. Further, it may have a display portion, buttons, and the like.
  • the main bodies 4100a and 4100b can wirelessly communicate with other electronic devices such as smartphones. As a result, sound data and the like sent from other electronic devices can be reproduced on the main bodies 4100a and 4100b. Also, if the main bodies 4100a and 4100b have microphones, the sound acquired by the microphones can be sent to another electronic device, and the sound data processed by the electronic device can be sent back to the main bodies 4100a and 4100b for reproduction. As a result, it can also be used as a translator, for example.
  • the secondary battery 4111 included in the case 4100 can charge the secondary battery 4103 included in the main body 4100b.
  • the coin-shaped secondary battery, the cylindrical secondary battery, or the like described in the above embodiment can be used.
  • a secondary battery in which the positive electrode active material 100 obtained in Embodiment 1 is used for the positive electrode has a high energy density.
  • FIG. 36A shows an example of a cleaning robot.
  • the cleaning robot 6300 has a display unit 6302 arranged on the top surface of a housing 6301, a plurality of cameras 6303 arranged on the side surfaces, a brush 6304, an operation button 6305, a secondary battery 6306, various sensors, and the like.
  • the cleaning robot 6300 is provided with tires, a suction port, and the like.
  • the cleaning robot 6300 can run by itself, detect dust 6310, and suck the dust from a suction port provided on the bottom surface.
  • cleaning robot 6300 can analyze images captured by camera 6303 to determine the presence or absence of obstacles such as walls, furniture, or steps. Further, when an object such as wiring that is likely to get entangled in the brush 6304 is detected by image analysis, the rotation of the brush 6304 can be stopped.
  • the cleaning robot 6300 includes therein a secondary battery 6306 according to one embodiment of the present invention and a semiconductor device or an electronic component. By using the secondary battery 6306 of one embodiment of the present invention in the cleaning robot 6300, the cleaning robot 6300 can be a highly reliable electronic device with a long operating time.
  • FIG. 36B shows an example of a robot.
  • a robot 6400 shown in FIG. 36B includes a secondary battery 6409, an illuminance sensor 6401, a microphone 6402, an upper camera 6403, a speaker 6404, a display unit 6405, a lower camera 6406 and an obstacle sensor 6407, a moving mechanism 6408, an arithmetic device, and the like.
  • a microphone 6402 has a function of detecting the user's speech, environmental sounds, and the like. Also, the speaker 6404 has a function of emitting sound. Robot 6400 can communicate with a user using microphone 6402 and speaker 6404 .
  • the display unit 6405 has a function of displaying various information.
  • the robot 6400 can display information desired by the user on the display unit 6405 .
  • the display portion 6405 may include a touch panel. Further, the display unit 6405 may be a detachable information terminal, and by installing it at a fixed position of the robot 6400, charging and data transfer are possible.
  • Upper camera 6403 and lower camera 6406 have the function of capturing images of the surroundings of robot 6400 .
  • the obstacle sensor 6407 can detect the presence or absence of an obstacle in the direction in which the robot 6400 moves forward using the movement mechanism 6408 .
  • Robot 6400 uses upper camera 6403, lower camera 6406, and obstacle sensor 6407 to recognize the surrounding environment and can move safely.
  • a robot 6400 includes a secondary battery 6409 according to one embodiment of the present invention and a semiconductor device or an electronic component.
  • the robot 6400 can be a highly reliable electronic device with a long operating time.
  • FIG. 36C shows an example of an air vehicle.
  • a flying object 6500 shown in FIG. 36C has a propeller 6501, a camera 6502, a secondary battery 6503, and the like, and has a function of autonomous flight.
  • An aircraft 6500 includes a secondary battery 6503 according to one embodiment of the present invention.
  • the flying object 6500 can be a highly reliable electronic device with a long operating time.
  • a next-generation clean energy vehicle such as a hybrid vehicle (HV), an electric vehicle (EV), or a plug-in hybrid vehicle (PHV) can be realized.
  • HV hybrid vehicle
  • EV electric vehicle
  • PSV plug-in hybrid vehicle
  • FIG. 37 illustrates a vehicle using a secondary battery that is one embodiment of the present invention.
  • a vehicle 8400 shown in FIG. 37A is an electric vehicle that uses an electric motor as a power source for running. Alternatively, it is a hybrid vehicle in which an electric motor and an engine can be appropriately selected and used as power sources for running. By using one aspect of the present invention, a vehicle with a long cruising range can be realized.
  • automobile 8400 has a secondary battery.
  • the secondary battery may be used by arranging the secondary battery modules shown in FIGS. 22C and 22D on the floor of the vehicle.
  • a battery pack formed by combining a plurality of secondary batteries shown in FIG. 25 may be installed on the floor of the vehicle.
  • the secondary battery can not only drive the electric motor 8406, but also power light emitting devices such as headlights 8401 and room lights (not shown).
  • the secondary battery can supply power to display devices such as a speedometer and a tachometer of the automobile 8400 .
  • the secondary battery can supply power to a semiconductor device such as a navigation system included in the automobile 8400 .
  • a vehicle 8500 shown in FIG. 37B can be charged by receiving power from an external charging facility by a plug-in method and/or a contactless power supply method or the like to the secondary battery of the vehicle 8500 .
  • FIG. 37B shows a state in which a secondary battery 8024 mounted on an automobile 8500 is being charged via a cable 8022 from a charging device 8021 installed on the ground.
  • the charging method and the standard of the connector may be appropriately performed by a predetermined method such as CHAdeMO (registered trademark) or Combo.
  • the charging device 8021 may be a charging station provided in a commercial facility, or may be a household power source.
  • the plug-in technology can charge the secondary battery 8024 mounted on the automobile 8500 by power supply from the outside. Charging can be performed by converting AC power into DC power via a conversion device such as an ACDC converter.
  • the power receiving device can be mounted on a vehicle, and power can be supplied from a power transmission device on the ground in a non-contact manner for charging.
  • this non-contact power supply system by incorporating a power transmission device into the road and/or the outer wall, charging can be performed not only while the vehicle is stopped but also while it is running.
  • electric power may be transmitted and received between vehicles using this contactless power supply method.
  • a solar battery may be provided on the exterior of the vehicle, and the secondary battery may be charged while the vehicle is stopped and/or while the vehicle is running.
  • An electromagnetic induction method and/or a magnetic resonance method can be used for such contactless power supply.
  • FIG. 37C illustrates an example of a two-wheeled vehicle using the secondary battery of one embodiment of the present invention.
  • a scooter 8600 shown in FIG. A secondary battery 8602 can supply electricity to the turn signal lights 8603 .
  • the scooter 8600 shown in FIG. 37C can store a secondary battery 8602 in the underseat storage 8604 .
  • the secondary battery 8602 can be stored in the underseat storage 8604 even if the underseat storage 8604 is small.
  • the secondary battery 8602 is removable, and when charging, the secondary battery 8602 can be carried indoors, charged, and stored before traveling.
  • the cycle characteristics of the secondary battery can be improved, and the charge/discharge capacity of the secondary battery can be increased. Therefore, the size and weight of the secondary battery itself can be reduced. If the size and weight of the secondary battery itself can be reduced, the cruising distance can be improved because it contributes to the weight reduction of the vehicle.
  • a secondary battery mounted on a vehicle can also be used as a power supply source other than the vehicle. In this case, it is possible to avoid using a commercial power source, for example, during peak power demand. If it is possible to avoid using a commercial power supply during peak power demand, it can contribute to energy conservation and reduction of carbon dioxide emissions.
  • the cycle characteristics are good, the secondary battery can be used for a long period of time, so the amount of rare metals such as cobalt used can be reduced.
  • the positive electrode active material 100 of one embodiment of the present invention was manufactured, and battery characteristics were obtained.
  • lithium cobalt oxide (Cellseed C-10N, manufactured by Nippon Kagaku Kogyo Co., Ltd.) having cobalt as the transition metal M and no additive elements was prepared.
  • this lithium cobalt oxide was placed in a crucible, covered, and heated at 850° C. for 2 hours in a muffle furnace. This heating corresponds to initial heating. After creating an oxygen atmosphere in the muffle furnace, oxygen was not supplied (this is referred to as O 2 purge). Impurities may have been removed from the LCO after the initial heating.
  • step S21 shown in FIG. 3A LiF was prepared as the F source and MgF 2 was prepared as the Mg source. LiF:MgF 2 was weighed to be 1:3 (molar ratio). Next, LiF and MgF 2 were mixed in ultra-dehydrated acetone and stirred at a rotational speed of 400 rpm for 12 hours to prepare additive element source XA . After that, it was sieved through a sieve having a mesh size of 300 ⁇ m to obtain an additive element source XA with a uniform median diameter (D50).
  • D50 uniform median diameter
  • the additive element source XA was weighed so as to be 1 at % of the transition metal M , that is, cobalt, and was dry-mixed with the LCO after the initial heating. At this time, the mixture was stirred for 1 hour at a rotational speed of 150 rpm. This is a condition that is gentler than the stirring conditions for obtaining the additive element source XA , and conditions that do not cause the LCO to collapse are preferable. Finally, the mixture was sieved through a sieve with 300 ⁇ m mesh to obtain a mixture A with a uniform median diameter (D50).
  • D50 uniform median diameter
  • Mixture A was then heated.
  • the heating conditions were 900° C. and 20 hours.
  • the crucible containing the mixture A was covered with a lid and heated in a muffle furnace. After an oxygen atmosphere was created in the muffle furnace, an O 2 purge was performed.
  • An LCO containing Mg and F (referred to as composite oxide A) was obtained by heating.
  • the additive element source XB is added to the composite oxide A.
  • nickel hydroxide was prepared as a Ni source
  • aluminum hydroxide was prepared as an Al source. Weighed so that the nickel hydroxide became 0.5 at % of the transition metal M, that is, cobalt, and the aluminum hydroxide became 0.5 at % of the transition metal M, that is, cobalt, and mixed with the composite oxide A in a dry process. did.
  • the mixture was stirred for 1 hour at a rotational speed of 150 rpm. This is a gentler condition than the stirring conditions for obtaining the additive element source XA .
  • the stirring conditions are preferably conditions under which the obtained composite oxide A does not collapse.
  • the mixture was sieved through a sieve having a mesh size of 300 ⁇ m to obtain a mixture B with a uniform particle size.
  • Mixture B was then heated.
  • the heating conditions were 850° C. and 10 hours.
  • the crucible containing the mixture B was covered with a lid and heated in a muffle furnace. After an oxygen atmosphere was created in the muffle furnace, an O 2 purge was performed.
  • An LCO containing Mg, F, Ni, and Al (referred to as composite oxide B) was obtained by heating.
  • the positive electrode active material thus obtained was prepared.
  • LCO positive electrode active material
  • AB acetylene black
  • PVDF polyvinylidene fluoride
  • sample 1-1 was pressurized at 210 kN/m
  • sample 1-2 was pressurized at 1467 kN/m after pressurizing at 210 kN/m.
  • the temperature of the rolls of the press was set to 120°C.
  • the amount of the positive electrode active material supported per unit area of the positive electrodes having Samples 1-1 and 1-2 was set to about 7 mg/cm 2 .
  • Table 1 shows the manufacturing conditions for samples 1-1 and 1-2.
  • Table 2 shows the electrode density, filling rate and porosity of Sample 1-1 and Sample 1-2.
  • the electrode density was calculated from the weight of the active material layer excluding the current collector from the positive electrode (corresponding to the positive electrode active material, the conductive agent, and the binder)/the volume of the active material layer ⁇ 100.
  • the filling rate was calculated from (electrode density/true density of mixture) ⁇ 100.
  • LiCoO 2 was 5.05 g/cc
  • AB used as a conductive agent was 1.95 g/cc
  • PVDF used as a binder was 1.78 g/cc.
  • the porosity was calculated as (1-filling rate) ⁇ 100.
  • sample 1-1 has a higher porosity than sample 1-2.
  • a half-cell was assembled as a test battery using two positive electrodes with sample 1-1 and sample 1-2, respectively.
  • Lithium metal was prepared as a negative electrode, that is, a counter electrode.
  • a separator was interposed between the positive electrode having Sample 1-1 and Sample 1-2, respectively, and the negative electrode, and the positive electrode and the negative electrode were housed in the outer packaging together with the electrolytic solution.
  • Polypropylene was used for the separator.
  • LiPF 6 lithium hexafluorophosphate
  • a coin-shaped half-cell was formed in this way, and a charge-discharge cycle test was measured using a charge-discharge measuring system (TOSCAT-3100) manufactured by Toyo System Co., Ltd. as a charge-discharge measuring instrument.
  • TOSCAT-3100 charge-discharge measuring system manufactured by Toyo System Co., Ltd.
  • the performance of the positive electrode alone can be grasped by a charge-discharge cycle test using a half-cell, that is, a cycle characteristic evaluation.
  • the rate of the charge/discharge cycle test conditions will be described.
  • the rate during discharge is called the discharge rate, which is the relative ratio of the current during discharge to the battery capacity, expressed in units of C.
  • the current corresponding to 1C is X (A).
  • the rate at the time of charging is called the charge rate.
  • the charge rate when charging at a current of 2X (A), it is said to charge at 2C, and charging at a current of X/2 (A). It is said that the battery was charged at 0.5C.
  • a combination of the charge rate and the discharge rate is referred to as the charge/discharge rate.
  • the value calculated by (discharge capacity at 50th cycle / maximum value of discharge capacity during 50 cycles) x 100 is the discharge capacity retention rate at 50th cycle. (capacity retention) (%). That is, when the charge-discharge cycle is repeated 50 times and the discharge capacity is measured for each cycle, the value of the discharge capacity measured at the 50th cycle is the maximum value of the discharge capacity in all 50 cycles (maximum discharge It was determined how much ratio it is with respect to the capacity). A higher discharge capacity retention rate is desirable as a battery characteristic because a decrease in battery capacity after repeated charging and discharging is suppressed.
  • the charge current and discharge current are measured by an ammeter included in the charge/discharge measuring instrument, and the integrated amount of current flowing in one charge and one discharge corresponds to the charge capacity and discharge capacity, respectively.
  • the integrated amount of the discharge current that flowed in the first cycle discharge can be called the first cycle discharge capacity
  • the integrated amount of the discharge current that flowed in the 50th cycle discharge can be referred to as the 50th cycle discharge.
  • capacity can be called capacity.
  • Table 3 shows a list of maximum discharge capacities (mAh/g), which are the maximum values of discharge capacities during 50 cycles for Samples 1-1 and 1-2, which are necessary for calculating the discharge capacity retention rate.
  • 38A, 38B, 39A, 39B, 40A and 40B show the results of the charge-discharge cycle test measured under the above conditions.
  • 38A, 38B, 39A, 39B, 40A and 40B the horizontal axis indicates the number of cycles (cycles), and the vertical axis indicates the discharge capacity retention rate (%), and the results of Sample 1-1 are shown.
  • the solid line indicates the result, and the dashed line indicates the result of sample 1-2.
  • LCO with initial heating exhibits a high discharge capacity retention rate in a 25° C. environment, which is desirable for battery characteristics.
  • sample 1-1 is a discharge capacity retention rate after 50 cycles (referred to as after 50 cycles) in 4.6V charging, 4.65V charging, and 4.7V charging under an environment of 25°C. was found to be 95% or more.
  • Sample 1-2 had a discharge capacity retention rate of 95% or more after 50 cycles of charging at 4.6 V and 4.65 V in an environment of 25°C. That is, an LCO that has been subjected to initial heating is suitable for obtaining a high discharge capacity retention rate.
  • the discharge capacity retention rate in the cycle test means the ratio of the discharge capacity at the 500th cycle to the maximum discharge capacity.
  • 38A, 38B, 39A, 39B, 40A, and 40B show a high discharge capacity retention rate even in a 45° C. environment, which is desirable as a battery characteristic. Specifically, it was found that Sample 1-1 had a discharge capacity retention rate of 95% or more after 50 cycles under a 45° C. environment when charged at 4.6 V.
  • FIG. 41 shows the results of the discharge capacity retention ratios shown in FIGS. 38A, 38B, 39A, 39B, 40A, and 40B under a 25° C. environment.
  • the results for 4.6V charging are shown by the solid line, the results for 4.65V charging by the small dashed line, and the results for 4.7V charging by the dashed line.
  • the discharge capacity retention rate at the 50th cycle was 95% or more in any temperature environment, and the battery characteristics were good. That is, the LCO subjected to the initial heating is suitable because the discharge capacity retention rate at the 50th cycle is 95% or more in the cycle test under the environment of 25°C.
  • the charge/discharge curves of Sample 1-1 are shown in FIGS. 42A, 42B, 43A, 43B, 44A and 44B.
  • the charge-discharge curve is a charge curve and a discharge curve (collectively referred to as a charge-discharge curve) obtained in a charge-discharge cycle test, with the horizontal axis as capacity (mAh / g) and the vertical axis as voltage (V). It refers to a graph superimposed from the 1st cycle to the nth cycle (n is an integer of 2 or more).
  • Figures 42A, 42B, 43A, 43B, 44A and 44B show charge-discharge curves with a cycle number of 1 or more and 50 or less, and the number of cycles is the 1st cycle, the 10th cycle and the 50th cycle. 2 is a graph showing superimposed charge/discharge curves. Furthermore, in FIGS. 42A, 42B, 43A, 43B, 44A, and 44B, arrows are added from 1 cycle to 50 cycles in order to make changes in the charge/discharge curves easier to understand.
  • sample 1-1 In the charge curves of sample 1-1 shown in FIGS. 42A, 42B, 43A, 43B, 44A, and 44B, the voltage is low and the capacity is small from the first cycle to several cycles. It can be seen that Sample 1-1 exhibits a good capacity in an environment of 25° C. except for several cycles where the capacity is small, and for example, after the 10th cycle. In addition, sample 1-1 showed a decrease in capacity when charged at 4.7 V in an environment of 45° C., and the shape of the charge/discharge curve changed, suggesting deterioration.
  • charge-discharge rate 0.5C> The charge/discharge rate in the charge/discharge cycle test was set to 0.5 C, and the discharge capacity retention rates of Samples 1-1 and 1-2 were measured. The conditions other than the charge/discharge rate were the same as those for the rate 1C.
  • Table 4 shows a list of the maximum discharge capacities (mAh/g) of Samples 1-1 and 1-2 under the above conditions.
  • FIGS. 45A, 45B, 46A, 46B, 47A and 47B The results of the charge-discharge cycle test measured under the above conditions are shown in FIGS. 45A, 45B, 46A, 46B, 47A and 47B.
  • 45A, 45B, 46A, 46B, 47A and 47B the horizontal axis indicates the number of cycles (cycles), and the vertical axis indicates the discharge capacity retention rate (%), and the results of Sample 1-1 are shown.
  • the solid line indicates the result, and the dashed line indicates the result of sample 1-2.
  • LCO with initial heating exhibits a high discharge capacity retention rate in a 25° C. environment, which is desirable as a battery characteristic. Specifically, it was found that Sample 1-1 had a discharge capacity retention rate of 95% or more after 50 cycles of charging at 4.6 V, charging at 4.65 V, and charging at 4.7 V under an environment of 25°C. rice field. Furthermore, it was found that Sample 1-2 had a discharge capacity retention rate of 95% or more when charged at 4.6 V and 4.65 V under an environment of 25°C. That is, an LCO that has been subjected to initial heating is suitable for obtaining a high discharge capacity retention rate.
  • 45A, 45B, 46A, 46B, 47A, and 47B show a high discharge capacity retention rate even in a 45° C. environment, which is desirable as a battery characteristic. Specifically, it was found that Sample 1-1 had a discharge capacity retention rate of 95% or more after 50 cycles under a 45° C. environment when charged at 4.6 V.
  • sample 1-1 was used as the positive electrode active material for the positive electrode of a test battery whose negative electrode was lithium, and the charge rate was 0 until the charging voltage reached 4.6 V, 4.65 V or 4.7 V in an environment of 25 ° C.
  • Constant current charge at .5C then constant voltage charge at a voltage of 4.6V, 4.65V or 4.7V until the charge rate is 0.05C, then 0.5C to a voltage of 2.5V was repeated 50 times.
  • FIG. 48 shows the values of the discharge capacity retention rate at the 50th cycle (discharge capacity at the 50th cycle/maximum discharge capacity ⁇ 100) with respect to the maximum discharge capacity, and Table 5 lists them.
  • FIG. 48 shows the results of 4.6V charging as squares, 4.65V charging as circles, and 4.7V charging as triangles.
  • the discharge capacity retention rate at the 50th cycle at 4.6 V charge is 90% or more, preferably 95% or more, and more preferably 97% or more, although there is some variation. Also, it can be seen that the discharge capacity retention rate at the 50th cycle when charged at 4.65 V is 85% or more, preferably 90% or more, and more preferably 92% or more. Similarly, when charged at 4.7 V, the discharge capacity retention rate at the 50th cycle is 80% or more, preferably 85% or more, and more preferably 87% or more. Both can be considered to have an upper limit of less than 100%.
  • sample 1-1 was used as the positive electrode active material for the positive electrode of a test battery whose negative electrode was made of lithium metal, and the charge rate was changed until the charging voltage reached 4.6 V, 4.65 V, or 4.7 V in an environment of 25 ° C.
  • Constant current charge at 0.5C then constant voltage charge at a voltage of 4.6V, 4.65V or 4.7V until the charge rate reaches 0.05C, then 0.5V until the voltage reaches 2.5V.
  • a cycle of constant current discharge at a discharge rate of 5C was repeated 50 times.
  • FIG. 49 shows the values of the discharge capacity retention rate at the 50th cycle (discharge capacity at the 50th cycle/maximum discharge capacity ⁇ 100) with respect to the maximum discharge capacity, and Table 6 lists them.
  • FIG. 49 shows the results of 4.6V charging as squares, 4.65V charging as circles, and 4.7V charging as triangles.
  • FIGS. 50A to 52B The charge/discharge curves of Sample 1-1 are shown in FIGS. 50A to 52B.
  • Figures 50A to 52B are graphs similar to Figures 42A to 44B, with arrows added from 1st cycle to 50th cycle in order to make changes in charge/discharge curves easier to understand.
  • sample 1-1 In the charge curves of sample 1-1 shown in FIGS. 50A to 52B, the voltage is low and the capacity is small from the first cycle to several cycles. It can be seen that Sample 1-1 exhibits a good capacity in an environment of 25° C. except for several cycles where the capacity is small, and for example, after the 10th cycle. In addition, sample 1-1 showed a decrease in capacity when charged at 4.7 V in an environment of 45° C., and the shape of the charge/discharge curve changed, suggesting deterioration.
  • FIGS. 53A to 55B The results of the above measurements are shown in FIGS. 53A to 55B.
  • 53A, 54A, and 55A the horizontal axis indicates the charge rate/discharge rate as C-rate, and the vertical axis indicates the discharge capacity (mAh/g).
  • FIGS. 53B, 54B, and 55B show graphs normalized by the discharge capacity under the rate conditions (C-rate is 0.5/0.2) used in the first cycle.
  • FIGS. 56A to 64 The measurement results are shown in FIGS. 56A to 64.
  • FIG. 56A to 64 the horizontal axis indicates the number of cycles (times), and the vertical axis indicates capacity (mAh/g).
  • FIGS. 65A to 73 Charge curves measured under the same conditions are shown in FIGS. 65A to 73.
  • FIG. 65A to 73 are graphs obtained by acquiring charging curves with the number of cycles of 1 to 50, and superimposing the charging curves of the 1st cycle, the 10th cycle, and the 50th cycle.
  • FIG. 74 and Table 9 show the discharge capacity retention rate (%) after 50 cycles at each temperature obtained from the charge/discharge cycle test results of FIGS. 56A to 64 .
  • regions with relatively low discharge capacity maintenance ratios are enclosed by thick frames.
  • FIG. 75 and Table 10 show the charge depth at each temperature obtained from the charge-discharge cycle test results of FIGS. 65A to 73 .
  • the depth of charge was obtained from maximum charge capacity/theoretical capacity ⁇ 100, and the theoretical capacity of LCO was 274 mAh/g.
  • FIG. 75 has a dashed line drawn according to the charging depth of 80%, the charging depth of 80% indicates that the charging capacity is 220 mAh/g.
  • 5C) and sample 1-1 (45-5C) sample 1-1 (25-15C) and sample 1-1 (45-15C) after 15 cycles, sample 1-1 (25-30C) after 30 cycles and Sample 1-1 (45-30C), and Sample 1-1 (25-50C) and Sample 1-1 (45-50C) after 50 cycles.
  • Tables 11 and 12 show charge-discharge cycle conditions for Sample 1-1 (25-1C) to Sample 1-1 (45-50C).
  • Sample 1-1 (25-1C) to Sample 1-1 (45-50C) Two samples each of Sample 1-1 (25-1C) to Sample 1-1 (45-50C) were produced for XRD analysis, cross-sectional STEM analysis, and cross-sectional SEM analysis. As shown in Tables 11 and 12, the samples 1-1 (25-1C) to 1-1 (45-50C) were in the charged state in the XRD analysis. In order to achieve this state of charge, only the charge in the final cycle was charged at a constant current of 0.05 C (final voltage of 4.7 V).
  • samples 1-1 (25-1C) to 1-1 (45-50C) were analyzed by XRD measurement and the Rietveld method.
  • D8 ADVANCE manufactured by Bruker was used, and the measurement was performed under the conditions described in ⁇ XRD>> of Embodiment 2.
  • the XRD measurement data was analyzed by the Rietveld method after background removal processing and CuK ⁇ 2 ray component removal were performed using analysis software EVA manufactured by Bruker.
  • the analysis program RIETAN-FP (see F. Izumi and K. Momma, Solid State Phenom., 130, 15-20 (2007)) was used for analysis by the Rietveld method.
  • cross-sectional STEM analysis results and cross-sectional SEM analysis results shown in Table 14 in the sample 1-1 (45-15C) to sample 1-1 (45-50C) after the 15th cycle, the cross-sectional STEM analysis results show that the inside of the particle The occurrence of closed cracks was confirmed. Also, in the results of cross-sectional SEM analysis, the generation of pits was confirmed in the samples after the 15th cycle, and there was a tendency for the number of pits to increase as the number of charge/discharge cycles increased.
  • a diagram is shown in FIG.
  • the graph shown in the lower part of FIG. 77 corresponds to the graph shown in FIG.
  • FIGS. 76 and 77 As shown in FIGS. 76 and 77, as the charge-discharge cycle progresses, not only the O3′ structure but also the H1-3 structure and the O1 structure are formed, and the proportion of the amorphous portion increases. . For this reason, it is considered that deterioration due to charge/discharge cycles is large under the conditions of a charging voltage of 4.7 V and 45°C.
  • a full cell was assembled using Sample 1-1 as a positive electrode active material.
  • the conditions for the full cell were the same as those for the half cell described above, except that graphite was used as the negative electrode active material and no additives were added.
  • VGCF registered trademark
  • CMC carboxymethylcellulose
  • SBR styrene-butadiene rubber
  • CMC was added to increase viscosity and SBR was added as a binder.
  • Graphite:VGCF:CMC:SBR was mixed at a weight ratio of 96:1:1:2.
  • the final discharge voltage was set to 3 V in the cycle characteristic evaluation using a full cell.
  • the maximum discharge capacity was 205.1 mAh/g
  • the discharge capacity retention rate at 500 cycles was found to be 82.3%, that is, 80% or more. Good battery characteristics.
  • FIG. 79 shows the discharge capacity retention rate results obtained under the same conditions as in FIG. 78 under the 45° C. environment. As the cycle characteristics shown in FIG. 79, the maximum discharge capacity was 194 mAh/g.
  • the final discharge voltage was set to 3 V in the cycle characteristic evaluation using a full cell.
  • the maximum discharge capacity was 196.6 mAh/g
  • the discharge capacity retention rate of 500 cycles was found to be 91.0%, that is, 90% or more. Good battery characteristics.
  • FIG. 81 shows the discharge capacity retention rate results obtained under the same conditions as in FIG. 80 under the 45° C. environment. As the cycle characteristics shown in FIG. 81, the maximum discharge capacity was 198.5 mAh/g.
  • the cycle characteristics of the full cell are about 0.1 V lower than the charging/discharging voltage in the case of using lithium as the counter electrode like the half cell because graphite is used for the negative electrode. That is, the charging voltage of 4.5V in the full cell is equivalent to the charging voltage of 4.6V in the half cell.
  • Example 2 temperature characteristics and rate characteristics of a secondary battery using a positive electrode manufactured under the same conditions as in Example 1 are shown.
  • the positive electrode As the positive electrode, a positive electrode manufactured under the same conditions as those of Sample 1-1 shown in Example 1 was used. However, in addition to the positive electrode in which the amount of positive electrode active material supported per unit area was about 7 mg/cm 2 , a positive electrode with a condition of about 5 mg/cm 2 and a positive electrode with a supporting amount of about 20 mg/cm 2 were also produced.
  • a test half-cell was assembled. Lithium metal was prepared as a negative electrode, that is, a counter electrode. A separator was interposed between the positive electrode and the negative electrode, and the positive electrode and the negative electrode were housed together with the electrolytic solution in the outer packaging material.
  • the electrolytic solution was subjected to two conditions.
  • I used the one I added.
  • 1 mol/L lithium hexafluorophosphate (LiPF 6 ) was used as the electrolyte contained in the electrolytic solution.
  • EMI-FSA (1-ethyl-3-methylimidazolium bis(fluorosulfonyl)amide) was used as the solvent for the electrolytic solution.
  • LiFSA lithium bis(fluorosulfonyl)amide
  • concentration of the electrolyte with respect to the electrolytic solution was 2.15 mol/L.
  • porous polypropylene was used for the half cell using the electrolyte under the first condition
  • porous polyimide was used for the half cell using the electrolyte under the second condition.
  • Temperature characteristics were measured. A half cell using a positive electrode having a positive electrode active material load of about 5 mg/cm 2 per unit area was evaluated.
  • constant current charging was performed at 0.5C up to the upper limit voltage, and then constant voltage charging was performed with the lower limit at 0.05C.
  • constant current discharge was performed at 0.1 C with a lower limit voltage of 2.5 V as the third discharge.
  • the upper limit voltage for charging was the same as the upper limit voltage for obtaining the temperature characteristics.
  • Temperature characteristics were evaluated at environmental temperatures of 25°C for charging and 25°C, 15°C, 0°C, -20°C, -40°C, 45°C, 60°C, 80°C and 100°C for discharging.
  • FIGS. 82A to 84 The results of the half-cell using the first electrolytic solution as the electrolytic solution are shown in FIGS. 82A to 84.
  • FIG. 82A to 84 The results of the half-cell using the first electrolytic solution as the electrolytic solution are shown in FIGS. 82A to 84.
  • FIGS. 82A and 82B show discharge curves when the upper limit voltage for charging is 4.6V.
  • 83A and 83B show discharge curves when the upper limit voltage for charging is 4.7V.
  • the horizontal axis of FIGS. 82A to 83B is the discharge capacity per weight of the positive electrode active material, and the vertical axis is the discharge voltage.
  • FIG. 84 shows the discharge capacity at each temperature when the discharge capacity at the environmental temperature of 25° C. is normalized as 1.
  • the solid line is the data for the upper limit voltage of 4.6V, and the dashed line is the data for the upper limit voltage of 4.7V.
  • FIG. 85A and 85B show the weight energy density per weight of the positive electrode active material at each temperature.
  • FIG. 85A shows data with an upper limit voltage of 4.6V
  • FIG. 85B shows data with an upper limit voltage of 4.7V.
  • FIG. 86 shows the weight energy density at each temperature when the weight energy density at the environmental temperature of 25° C. is normalized as 1.
  • the solid line is the data for the upper limit voltage of 4.6V
  • the dashed line is the data for the upper limit voltage of 4.7V.
  • FIG. 87 shows a discharge curve when the upper limit voltage for charging is 4.6V.
  • FIG. 88 shows a discharge curve when the upper limit voltage for charging is 4.7V.
  • Table 15 shows the discharge capacity (mAh/g) per weight of the positive electrode active material and Table 16 shows the weight energy density (mWh/g) per weight of the positive electrode active material at each temperature. Two half cells were prepared using the first condition as the electrolyte, and the results of measurement for each of them are shown.
  • rate characteristics were measured.
  • the environmental temperature was set at 25°C.
  • constant current of 0.5C constant voltage charging with an upper limit of 0.05C was performed.
  • the upper limits of the charging voltage are 4.6 V and 4.7 V, and different half-cells were used to determine the conditions.
  • 1C was set to 200 mA/g.
  • the weight used for rate calculation is the weight of the positive electrode active material.
  • Discharging was performed by two cycles of 0.1C, 0.2C, 0.5C, 1C, 2C, 3C, 4C, 5C, 10C, 20C, and 0.1C in order of conditions for each cycle.
  • Figures 89A and 89B show the results of the half-cell using the first condition as the electrolyte.
  • 89A and 89B show the discharge capacity when the upper limit of the charging voltage is 4.6V and 4.7V, respectively.
  • the discharge capacity shown in FIGS. 89A and 89B is the discharge capacity per weight of the positive electrode active material.
  • the supported amount of the positive electrode active material weight is about 5 mg/cm 2 , about 7 mg/cm 2 and about 20 mg/cm 2 .
  • FIGS. 90A and 90B show discharge curves under the condition that the first condition is used as the electrolytic solution and the amount of the positive electrode active material supported per unit area is about 5 mg/cm 2 .
  • the horizontal axis of FIGS. 90A and 90B is the discharge capacity per weight of the positive electrode active material, and the vertical axis is the discharge voltage.
  • 0.1C is indicated by a dashed line, and other results are indicated by a solid line. Data for 3C and 4C are not shown for the sake of clarity. Only one cycle of two cycles of discharge at each rate is shown. Also, for the 0.1C characteristics, only the results of the first cycle are shown.
  • FIG. 90A shows the result when the upper limit of the charging voltage is 4.6V
  • FIG. 90B shows the result when the upper limit of the charging voltage is 4.7V.
  • a high discharge capacity was obtained even at a discharge rate of 10C.
  • a discharge capacity of about 10 mAh/g was obtained.
  • FIGS. 91A and 91B show the results of the half-cell using the second condition as the electrolytic solution and the positive electrode active material supported amount per unit area of about 5 mg/cm 2 .
  • the first condition is used as the electrolytic solution, and the amount of the positive electrode active material supported per unit area is about 5 mg/cm 2 , about 7 mg/cm 2 , and about 20 mg/cm 2 .
  • the weight energy density per weight of the positive electrode active material at each rate is shown.
  • FIG. 92A shows result data under the condition that the upper limit voltage is 4.6V
  • FIG. 92B shows result data under the condition that the upper limit voltage is 4.7V.
  • FIGS. 93A and 93B the second condition is used as the electrolytic solution, and the loading amount of the positive electrode active material per unit area is about 5 mg/cm 2 . Shows gravimetric energy density.
  • FIG. 93A shows data with an upper limit voltage of 4.6V
  • FIG. 93B shows data with an upper limit voltage of 4.7V.
  • FIGS. 94A and 94B show discharge curves of the half-cell using the second condition as the electrolytic solution and the positive electrode active material supported amount per unit area of about 5 mg/cm 2 .
  • the horizontal axis of FIGS. 94A and 94B is the discharge capacity per weight of the positive electrode active material, and the vertical axis is the discharge voltage.
  • 94A shows the results when the upper limit of the charging voltage is 4.6V
  • FIG. 94B shows the results when the upper limit of the charging voltage is 4.7V.
  • 0.1C is indicated by a dashed line, and other results are indicated by a solid line. Data for 3C and 4C are not shown for the sake of clarity. Only one cycle of two cycles of discharge at each rate is shown. Also, for the 0.1C characteristics, only the results of the first cycle are shown.
  • a high discharge capacity was obtained even at a discharge rate of 5C.
  • a discharge capacity of 20 mAh/g or more was obtained at 10C, and a discharge capacity of 10 mAh/g or more was obtained at 20C.
  • Example 2 characteristics of a positive electrode manufactured under the same conditions as in Example 1 and a secondary battery using an electrolytic solution different from that in Example 2 are shown.
  • the positive electrode a positive electrode manufactured under the same conditions as those of Sample 1-1 shown in Example 1 was used.
  • the electrolytic solution an electrolytic solution under a third condition different from both the electrolytic solution under the first condition and the electrolytic solution under the second condition shown in Example 2 was used. Lithium metal was used as the negative electrode.
  • the electrolyte contained in the electrolytic solution was 1 mol/L lithium hexafluorophosphate (LiPF 6 ).
  • a separator was interposed between the positive electrode and the negative electrode, and the positive electrode and the negative electrode were housed together with the electrolytic solution of the third condition in a packaging material to prepare a half cell for testing. It is sometimes called a coin-shaped half-cell because it is in a coin-shaped state when housed in an exterior material.
  • a coin-shaped half-cell was thus formed, and a charge/discharge test was performed using a charge/discharge measuring system (TOSCAT-3100) manufactured by Toyo System Co., Ltd. as a charge/discharge measuring instrument.
  • TOSCAT-3100 charge/discharge measuring system manufactured by Toyo System Co., Ltd.
  • Measurement conditions will be described. There were three measurement conditions, and the upper limit voltages for charging were 4.3V, 4.6V, and 4.7V.
  • Table 17 shows the average discharge voltage, discharge capacity and discharge energy density when the upper limit voltage of charge is 4.3V, 4.6V and 4.7V.
  • FIG. 95 shows respective discharge curves.
  • the weight used for calculating the discharge capacity and the discharge energy density is the weight of the positive electrode active material.
  • Negative electrode active material 100: positive electrode active material, 100a: surface layer portion, 100b: inside, 101: grain boundary, 103: convex portion, 104: coating, 200: active material layer, 201: graphene compound, 300: secondary battery, 301: positive electrode Can 302: Negative electrode can 303: Gasket 304: Positive electrode 305: Positive electrode current collector 306: Positive electrode active material layer 307: Negative electrode 308: Negative electrode current collector 309: Negative electrode active material layer 310: Separator

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

充放電サイクル試験における放電容量維持率の低下が抑制された電池を提供する。 正極と負極を備えた電池であって、電池の正極を負極がリチウム金属で構成される試験用電池の正極に用いて、試験用電池を25℃環境下又は45℃環境下において4.6Vの電圧になるまで1C(1C=200mA/gとする)の充電レートで定電流充電した後、4.6Vの電圧で充電レートが0.1Cになるまで定電圧充電し、その後、2.5Vの電圧になるまで1Cの放電レートで定電流放電する充放電のサイクルを50回繰り返す試験を行い、サイクルごとに放電容量を計測した場合に、50サイクル目に計測された放電容量の値が、全50サイクル中の放電容量の最大値の90%以上100%未満を満たす、電池である。

Description

電池、電子機器および車両
本発明の一様態は、電池、電子機器および車両に関する。本発明の一様態は、物、方法、または製造方法に関する。または、本発明の一様態は、プロセス、マシン、マニュファクチャ、または組成物(コンポジション・オブ・マター)に関する。または、本発明の一態様は、半導体装置、表示装置、発光装置、蓄電装置、照明装置、若しくは電子機器またはそれらの製造方法に関する。
なお、本明細書中において電池とは二次電池を含む。また本明細書中において蓄電装置とは、電池の機能を有する据え置き型の装置、例えば家庭用蓄電池を含む。また本明細書中において電子機器とは、電池を有する装置全体を指し、例えば電池を有する電気光学装置、又は電池を有する情報端末装置などを含む。
近年、リチウムイオン二次電池、リチウムイオンキャパシタ、空気電池、全固体電池等、種々の電池の開発が盛んに行われている。特に高出力、高容量であるリチウムイオン二次電池(リチウムイオン電池とも記す)は半導体産業の発展と併せて急速にその需要が拡大し、充電可能なエネルギーの供給源として現代の情報化社会に不可欠なものとなっている。
なかでもモバイル電子機器向け二次電池では、重量あたりの放電容量が大きく、サイクル特性に優れた二次電池の需要が高い。これらの需要に応えるため、二次電池の正極が有する正極活物質の改良が盛んに行われている(たとえば特許文献1乃至特許文献3)。また、正極活物質の結晶構造に関する研究も行われている(非特許文献1乃至非特許文献3)。
またX線回折(XRD)は、正極活物質の結晶構造の解析に用いられる手法の一つである。非特許文献4に紹介されているICSD(Inorganic Crystal Structure Database)を用いることにより、XRDデータの解析を行うことができる。
特開2019−179758号公報 WO2020/026078号パンフレット 特開2020−140954号公報
Toyoki Okumura et al,"Correlation of lithium ion distribution and X−ray absorption near−edge structure in O3−and O2−lithium cobalt oxides from first−principle calculation",Journal of Materials Chemistry,2012,22,p.17340−17348 Motohashi,T.et al,"Electronic phase diagram of the layered cobalt oxide system LixCoO▲2▼(0.0≦x≦1.0)",Physical Review B,80(16);165114 Zhaohui Chen et al,"Staging Phase Transitions in LixCoO▲2▼",Journal of The Electrochemical Society,2002,149(12)A1604−A1609 Belsky,A.et al.,"New developments in the Inorganic Crystal Structure Database(ICSD):accessibility in support of materials research and design",Acta Cryst.,(2002)B58 364−369.
リチウムイオン二次電池およびそれに用いられる正極活物質には、充放電容量、サイクル特性、信頼性、安全性、またはコストといった様々な面で改善の余地が残されている。
本発明は、リチウムイオン二次電池に用いることで、充放電サイクルにおける充放電容量の低下が抑制された正極活物質または複合酸化物を提供することを課題の一とする。または、充放電を繰り返しても結晶構造が崩れにくい正極活物質または複合酸化物を提供することを課題の一とする。または、充放電容量が大きい正極活物質または複合酸化物を提供することを課題の一とする。または、安全性または信頼性の高い二次電池を提供することを課題の一とする。
また本発明は、正極活物質、複合酸化物、二次電池、またはそれらの作製方法を提供することを課題の一とする。
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、これらの課題の全てを解決する必要はないものとする。なお、明細書、図面、請求項の記載から、これら以外の課題を抽出することが可能である。
本発明の一態様は、正極と負極を備えた電池であって、電池の正極を負極がリチウム金属で構成される試験用電池の正極に用いて、試験用電池を25℃環境下又は45℃環境下において4.6Vの電圧になるまで200mA/gで定電流充電した後、4.6Vの電圧で充電電流が20mA/gになるまで定電圧充電し、その後、2.5Vの電圧になるまで200mA/gで定電流放電する充放電のサイクルを50回繰り返す試験を行い、サイクルごとに放電容量を計測した場合に、50サイクル目に計測された放電容量の値が、全50サイクル中の放電容量の最大値の90%以上100%未満を満たす、電池である。
本発明の別態様は、正極と負極を備えた電池であって、電池の正極を負極がリチウム金属で構成される試験用電池の正極に用いて、試験用電池を25℃環境下又は45℃環境下において4.6Vの電圧になるまで0.5C(1C=200mA/gとする)の充電レートで定電流充電した後、4.6Vの電圧で充電レートが0.05Cになるまで定電圧充電し、その後、2.5Vの電圧になるまで0.5Cの放電レートで定電流放電する充放電のサイクルを50回繰り返す試験を行い、サイクルごとに放電容量を計測した場合に、50サイクル目に計測された放電容量の値が、全50サイクル中の放電容量の最大値の90%以上100%未満を満たす、電池である。
本発明の別態様は、正極と負極を備えた電池であって、電池の正極を負極がリチウム金属で構成される試験用電池の正極に用いて、試験用電池を25℃環境下又は45℃環境下において4.6Vの電圧になるまで100mA/gで定電流充電した後、4.6Vの電圧で充電電流が10mA/gになるまで定電圧充電し、その後、2.5Vの電圧になるまで100mA/gで定電流放電する充放電のサイクルを50回繰り返す試験を行い、サイクルごとに放電容量を計測した場合に、50サイクル目に計測された放電容量の値が全50サイクル中の放電容量の最大値の90%以上100%未満を満たす、電池である。
本発明の別態様は、正極と負極を備えた電池であって、電池の正極を負極がリチウム金属で構成される試験用電池の正極に用いて、試験用電池を25℃環境下において4.65Vの電圧になるまで200mA/gで定電流充電した後、4.65Vの電圧で充電電流が20mA/gになるまで定電圧充電し、その後、2.5Vの電圧になるまで200mA/gで定電流放電する充放電のサイクルを50回繰り返す試験を行い、サイクルごとに放電容量を計測した場合に、50サイクル目に計測された放電容量の値が、全50サイクル中の放電容量の最大値の90%以上100%未満を満たす、電池である。
本発明の別態様は、正極と負極を備えた電池であって、電池の正極を負極がリチウム金属で構成される試験用電池の正極に用いて、試験用電池を25℃環境下において4.65Vの電圧になるまで0.5C(1C=200mA/gとする)の充電レートで定電流充電した後、4.65Vの電圧で充電レートが0.05Cになるまで定電圧充電し、その後、2.5Vの電圧になるまで0.5Cの放電レートで定電流放電する充放電のサイクルを50回繰り返す試験を行い、サイクルごとに放電容量を計測した場合に、50サイクル目に計測された放電容量の値が、全50サイクル中の放電容量の最大値の90%以上100%未満を満たす、電池である。
本発明の別態様は、正極と負極を備えた電池であって、電池の正極を負極がリチウム金属で構成される試験用電池の正極に用いて、試験用電池を25℃環境下において4.65Vの電圧になるまで100mA/gで定電流充電した後、4.65Vの電圧で充電電流が10mA/gになるまで定電圧充電し、その後、2.5Vの電圧になるまで100mA/gで定電流放電する充放電のサイクルを50回繰り返す試験を行い、サイクルごとに放電容量を計測した場合に、50サイクル目に計測された放電容量の値が全50サイクル中の放電容量の最大値の90%以上100%未満を満たす、電池である。
本発明の別態様は、正極と負極を備えた電池であって、電池の正極を負極がリチウム金属で構成される試験用電池の正極に用いて、試験用電池を25℃環境下において4.7Vの電圧になるまで200mA/gで定電流充電した後、4.7Vの電圧で充電電流が20mA/gになるまで定電圧充電し、その後、2.5Vの電圧になるまで200mA/gで定電流放電する充放電のサイクルを50回繰り返す試験を行い、サイクルごとに放電容量を計測した場合に、50サイクル目に計測された放電容量の値が、全50サイクル中の放電容量の最大値の90%以上100%未満を満たす、電池である。
本発明の別態様は、正極と負極を備えた電池であって、電池の正極を負極がリチウム金属で構成される試験用電池の正極に用いて、試験用電池を25℃環境下において4.7Vの電圧になるまで0.5C(1C=200mA/gとする)の充電レートで定電流充電した後、4.7Vの電圧で充電レートが0.05Cになるまで定電圧充電し、その後、2.5Vの電圧になるまで0.5Cの放電レートで定電流放電する充放電のサイクルを50回繰り返す試験を行い、サイクルごとに放電容量を計測した場合に、50サイクル目に計測された放電容量の値が、全50サイクル中の放電容量の最大値の90%以上100%未満を満たす、電池である。
本発明の別態様は、正極と負極を備えた電池であって、電池の正極を負極がリチウム金属で構成される試験用電池の正極に用いて、試験用電池を25℃環境下において4.7Vの電圧になるまで100mA/gで定電流充電した後、4.7Vの電圧で充電電流が10mA/gになるまで定電圧充電し、その後、2.5Vの電圧になるまで100mA/gで定電流放電する充放電のサイクルを50回繰り返す試験を行い、サイクルごとに放電容量を計測した場合に、50サイクル目に計測された放電容量の値が全50サイクル中の放電容量の最大値の90%以上100%未満を満たす、電池である。
本発明において、試験用電池を25℃環境下及び45℃環境下としたときに充放電のサイクルを50回繰り返す試験を行い、サイクルごとに放電容量を計測した場合に、50サイクル目に計測された放電容量の値が全50サイクル中の放電容量の最大値の90%以上100%未満を満たすと好ましい。
本発明において、50サイクル目に計測された放電容量の値が全50サイクル中の放電容量の最大値の95%以上を満たすと好ましい。
本発明の別態様は、正極と負極を備えた電池であって、電池の正極を負極がリチウム金属で構成される試験用電池の正極に用いて、試験用電池を25℃環境下において4.65Vの電圧になるまで0.5C(1C=200mA/gとする)の充電レートで定電流充電した後、4.65Vの電圧で充電レートが0.05Cになるまで定電圧充電し、その後、2.5Vの電圧になるまで0.5Cの放電レートで定電流放電する充放電のサイクルを50回繰り返す試験を行い、サイクルごとに放電容量を計測した場合に、50サイクル目に計測された放電容量の値が、全50サイクル中の放電容量の最大値の85%以上100%未満を満たす、電池である。
本発明の別態様は、正極と負極を備えた電池であって、電池の正極を負極がリチウム金属で構成される試験用電池の正極に用いて、試験用電池を25℃環境下において4.65Vの電圧になるまで100mA/gで定電流充電した後、4.65Vの電圧で充電電流が10mA/gになるまで定電圧充電し、その後、2.5Vの電圧になるまで100mA/gで定電流放電する充放電のサイクルを50回繰り返す試験を行い、サイクルごとに放電容量を計測した場合に、50サイクル目に計測された放電容量の値が、全50サイクル中の放電容量の最大値の85%以上100%未満を満たす、電池である。
本発明の別態様は、正極と負極を備えた電池であって、電池の正極を負極がリチウム金属で構成される試験用電池の正極に用いて、試験用電池を25℃環境下において4.7Vの電圧になるまで0.5C(1C=200mA/gとする)の充電レートで定電流充電した後、4.7Vの電圧で充電レートが0.05Cになるまで定電圧充電し、その後、2.5Vの電圧になるまで0.5Cの放電レートで定電流放電する充放電のサイクルを50回繰り返す試験を行い、サイクルごとに放電容量を計測した場合に、50サイクル目に計測された放電容量の値が、全50サイクル中の放電容量の最大値の80%以上100%未満を満たす、電池である。
本発明の別態様は、正極と負極を備えた電池であって、電池の正極を負極がリチウム金属で構成される試験用電池の正極に用いて、試験用電池を25℃環境下において4.7Vの電圧になるまで100mA/gで定電流充電した後、4.7Vの電圧で充電電流が10mA/gになるまで定電圧充電し、その後、2.5Vの電圧になるまで100mA/gで定電流放電する充放電のサイクルを50回繰り返す試験を行い、サイクルごとに放電容量を計測した場合に、50サイクル目に計測された放電容量の値が、全50サイクル中の放電容量の最大値の80%以上100%未満を満たす、電池である。
本発明において、試験用電池はコイン型のハーフセルであるとよい。
本発明において、正極は、層状岩塩型の正極活物質を有するとよい。
本発明において、正極活物質は、コバルト酸リチウムを有するとよい。
本発明において、上記電池を搭載した電子機器または車両である。
本発明により、リチウムイオン二次電池に用いることで、充放電サイクルにおける充放電容量の低下が抑制された正極活物質または複合酸化物を提供することができる。または、充放電を繰り返しても結晶構造が崩れにくい正極活物質または複合酸化物を提供することができる。または、充放電容量が大きい正極活物質または複合酸化物を提供することができる。または、安全性または信頼性の高い二次電池を提供することができる。
また本発明により、正極活物質、二次電池、またはそれらの作製方法を提供することができる。
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一態様は、必ずしも、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の効果を抽出することが可能である。
図1A乃至図1Cは正極活物質の作製方法を説明する図である。
図2は正極活物質の作製方法を説明する図である。
図3A乃至図3Cは正極活物質の作製方法を説明する図である。
図4Aは正極活物質の断面図、図4B1乃至図4C2は正極活物質の断面図の一部である。
図5Aおよび図5Bは正極活物質の断面図、図5C1および図5C2は正極活物質の断面図の一部である。
図6は正極活物質の断面図である。
図7は正極活物質の断面図である。
図8は正極活物質の充電深度と結晶構造を説明する図である。
図9は結晶構造から計算されるXRDパターンを示す図である。
図10は比較例の正極活物質の充電深度と結晶構造を説明する図である。
図11は結晶構造から計算されるXRDパターンを示す図である。
図12Aおよび図12Bは結晶構造から計算されるXRDパターンを示す図である。
図13A乃至図13CはXRDから算出される格子定数である。
図14A乃至図14CはXRDから算出される格子定数である。
図15は結晶の配向が概略一致しているTEM像の例である。
図16Aは結晶の配向が概略一致しているSTEM像の例である。図16Bは岩塩型結晶RSの領域のFFT、図16Cは層状岩塩型結晶LRSの領域のFFTである。
図17Aおよび図17Bは導電剤としてグラフェン化合物を用いた場合の活物質層の断面図である。
図18Aおよび図18Bは二次電池の例を説明する図である。
図19A乃至図19Cは二次電池の例を説明する図である。
図20Aおよび図20Bは二次電池の例を説明する図である。
図21A乃至図21Cはコイン型二次電池を説明する図である。
図22A乃至図22Dは円筒型二次電池を説明する図である。
図23Aおよび図23Bは二次電池の例を説明する図である。
図24A乃至図24Dは二次電池の例を説明する図である。
図25Aおよび図25Bは二次電池の例を説明する図である。
図26は二次電池の例を説明する図である。
図27A乃至図27Cはラミネート型の二次電池を説明する図である。
図28Aおよび図28Bはラミネート型の二次電池を説明する図である。
図29は二次電池の外観を示す図である。
図30は二次電池の外観を示す図である。
図31A乃至図31Cは二次電池の作製方法を説明する図である。
図32A乃至図32Hは電子機器の一例を説明する図である。
図33A乃至図33Cは電子機器の一例を説明する図である。
図34は電子機器の一例を説明する図である。
図35A乃至図35Dは電子機器の一例を説明する図である。
図36A乃至図36Cは、電子機器の一例を示す図である。
図37A乃至図37Cは車両の一例を説明する図である。
図38A及び図38Bはサイクル特性を示す図である。
図39A及び図39Bはサイクル特性を示す図である。
図40A及び図40Bはサイクル特性を示す図である。
図41はサイクル特性を示す図である。
図42A及び図42Bは充放電カーブを示す図である。
図43A及び図43Bは充放電カーブを示す図である。
図44A及び図44Bは充放電カーブを示す図である。
図45A及び図45Bはサイクル特性を示す図である。
図46A及び図46Bはサイクル特性を示す図である。
図47A及び図47Bはサイクル特性を示す図である。
図48は最大放電容量に対する放電容量維持率を示す図等である。
図49は最大放電容量に対する放電容量維持率を示す図等である。
図50A及び図50Bは充放電カーブを示す図である。
図51A及び図51Bは充放電カーブを示す図である。
図52A及び図52Bは充放電カーブを示す図である。
図53A及び図53Bはレート特性を示す図である。
図54A及び図54Bはレート特性を示す図である。
図55A及び図55Bはレート特性を示す図である。
図56A及び図56Bは測定温度と充放電電圧との関係を示す図である。
図57A及び図57Bは測定温度と充放電電圧との関係を示す図である。
図58は測定温度と充放電電圧との関係を示す図である。
図59A及び図59Bは測定温度と充放電電圧との関係を示す図である。
図60A及び図60Bは測定温度と充放電電圧との関係を示す図である。
図61は測定温度と充放電電圧との関係を示す図である。
図62A及び図62Bは測定温度と充放電電圧との関係を示す図である。
図63A及び図63Bは測定温度と充放電電圧との関係を示す図である。
図64は測定温度と充放電電圧との関係を示す図である。
図65A及び図65Bは測定温度に対する充電カーブを示す図である。
図66A及び図66Bは測定温度に対する充電カーブを示す図である。
図67は測定温度に対する充電カーブを示す図である。
図68A及び図68Bは測定温度に対する充電カーブを示す図である。
図69A及び図69Bは測定温度に対する充電カーブを示す図である。
図70は測定温度に対する充電カーブを示す図である。
図71A及び図71Bは測定温度に対する充電カーブを示す図である。
図72A及び図72Bは測定温度に対する充電カーブを示す図である。
図73は測定温度に対する充電カーブを示す図である。
図74は測定温度に対する放電容量維持率を示す図である。
図75は測定温度に対する充電深度を示す図である。
図76は充電深度と結晶構造との関係を示す概念図である。
図77は充放電サイクルの進行による活物質粒子内部の結晶相の変化を示す概念図である。
図78はフルセルのサイクル特性、最大放電容量および放電容量維持率を示す図等である。
図79はフルセルのサイクル特性および最大放電容量を示す図等である。
図80はフルセルのサイクル特性、最大放電容量および放電容量維持率を示す図等である。
図81はフルセルのサイクル特性および最大放電容量を示す図等である。
図82A及び図82Bは、測定温度に対する放電カーブを示す図である。
図83A及び図83Bは、測定温度に対する放電カーブを示す図である。
図84は、放電容量と測定温度の関係を示す図である。
図85A及び図85Bは、重量エネルギー密度と測定温度の関係を示す図である。
図86は、重量エネルギー密度と測定温度の関係を示す図である。
図87は、測定温度に対する放電カーブを示す図である。
図88は、測定温度に対する放電カーブを示す図である。
図89A及び図89Bは、放電容量とレートの関係を示す図である。
図90A及び図90Bは、レートに対する放電カーブを示す図である。
図91A及び図91Bは、放電容量とレートの関係を示す図である。
図92A及び図92Bは、重量エネルギー密度とレートの関係を示す図である。
図93A及び図93Bは、重量エネルギー密度とレートの関係を示す図である。
図94A及び図94Bは、レートに対する放電カーブを示す図である。
図95は、放電カーブを示す図である。
以下では、本発明を実施するための形態例について図面等を用いて説明する。ただし、本発明は以下の形態例に限定して解釈されるものではない。本発明の趣旨を逸脱しない範囲で発明を実施する形態を変更することは可能である。
本明細書等において、ミラー指数を用いて結晶面および結晶方向を表記する。結晶面を示す個別面は( )を用いて表記する。結晶面、結晶方向および空間群の表記は、結晶学上、数字に上付きのバーを付すが、本明細書等では書式の制約上、数字の上にバーを付す代わりに、数字の前に−(マイナス符号)を付して表現する場合がある。
本明細書等において、正極活物質の理論容量とは、正極活物質が有する挿入脱離可能なリチウムが全て脱離した場合の電気量をいう。たとえば、LiCoOの理論容量は274mAh/g、LiNiOの理論容量は274mAh/g、LiMnの理論容量は148mAh/gである。
本明細書等において、充電深度とは、挿入脱離可能なリチウムが全て挿入されているときを0とし、正極活物質が有する挿入脱離可能なリチウムが全て脱離したときを1として示す指標として用いる。
本明細書において、充電深度とは正極活物質の理論容量を基準として、どれほどの容量が充電された状態か、換言すると、どれほどの量のリチウムが正極から脱離した状態か、を示す値である。例えばコバルト酸リチウム(LiCoO)及びニッケル−コバルト−マンガン酸リチウム(LiNiCoMn(x+y+z=1))などの層状岩塩型構造の正極活物質の場合は、理論容量の274mAh/gを基準として、充電深度が0の場合は正極活物質からLiが脱離していない状態をいい、充電深度が0.5の場合は137mAh/gに相当するリチウムが正極から脱離した状態をいい、充電深度が0.8の場合は219.2mAh/gに相当するリチウムが正極から脱離した状態をいう。
本明細書において、LiCoO中のxの値を、正極活物質中に挿入脱離可能なリチウムがどの程度残っているかの指標として用いることもできる。なおCoはリチウムの挿入脱離に伴い酸化還元する遷移金属Mに置き換え、LiMOと記すこともできる。xは(理論容量−充電容量)/理論容量より求めることができる。なおxの算出において充電容量を放電容量と読み替えてもよい。たとえばLiCoOを正極活物質に用いた二次電池を219.2mAh/g充電した場合、x=0.2となる。x=0.2の状態は上記充電深度が0.8と同じ状態といってもよい。LixCoO中のxが小さいとは、たとえば0.1<x≦0.24をいう。
xの算出に用いる充電容量は、短絡および/または電解液の分解の影響がないか、少ない条件で計測することが好ましい。たとえば短絡とみられる急激な容量の変化が生じた二次電池のデータはxの算出に使用しない。xの算出に放電容量を用いた場合も同様である。
正極活物質は化学量論比以上にはリチウムが入りにくく、リチウムが入らなくなると、二次電池の電圧が急激に低下する。このときを二次電池の放電が終了したといえる。放電が終了したときのコバルト酸リチウムはリチウムが入らない状態であり、LixCoOにおいてx=1とみなすことができる。コバルト酸リチウムを正極に用いたリチウムイオン二次電池では、100mA/gの電流で、電圧が2.5V(対極リチウム)以下となった状態を放電が終了したということがある。
(実施の形態1)
本実施の形態では、本発明を実施する一形態である正極活物質の作製方法について説明する。
《正極活物質の作製方法1》
<ステップS11>
図1Aに示すステップS11では、出発材料(出発原料とも記す)であるリチウム材料、および遷移金属の材料として、それぞれリチウム源(図中Li源と記す)および遷移金属源(図中M源と記す)を準備する。
リチウム源としては、リチウムを有する化合物を用いると好ましく、たとえば炭酸リチウム、水酸化リチウム、硝酸リチウム、またはフッ化リチウム等を用いることができる。リチウム源は純度が高いと好ましく、たとえば純度が99.99%以上の材料を用いるとよい。
遷移金属は、周期表に示す第3族乃至第11族に記載された元素から選ぶことができ、たとえば、マンガン、コバルト、およびニッケルのうち少なくとも一以上を用いる。遷移金属として、コバルトのみを用いる場合、ニッケルのみを用いる場合、コバルトとマンガンの2種を用いる場合、コバルトとニッケルの2種を用いる場合、または、コバルト、マンガン、及びニッケルの3種を用いる場合がある。コバルトのみを用いる場合、本作製方法によって得られる正極活物質はコバルト酸リチウム(LCOとも記す)を有し、コバルト、マンガン、およびニッケルの3種を用いる場合、得られる正極活物質はニッケル−コバルト−マンガン酸リチウム(NCMとも記す)を有する。
また、2以上の遷移金属源を用いる場合、当該2以上の遷移金属源が層状岩塩型の結晶構造をとりうるような割合(混合比)で用意すると好ましい。
遷移金属源としては、上記遷移金属を有する化合物を用いると好ましく、たとえば上記遷移金属として例示した金属の酸化物、または例示した金属の水酸化物等を用いることができる。コバルト源であれば、酸化コバルト、または水酸化コバルト等を用いることができる。マンガン源であれば、酸化マンガン、または水酸化マンガン等を用いることができる。ニッケル源であれば、酸化ニッケル、または水酸化ニッケル等を用いることができる。アルミニウム源であれば、酸化アルミニウム、または水酸化アルミニウム等を用いることができる。
遷移金属源は純度が高いと好ましく、たとえば純度が3N(99.9%)以上、好ましくは4N(99.99%)以上、より好ましくは4N5(99.995%)以上、さらに好ましくは5N(99.999%)以上の材料を用いるとよい。高純度の材料を用いることで、正極活物質の不純物を制御することができる。その結果、二次電池の容量が高まり、および/または二次電池の信頼性が向上する。
加えて、遷移金属源の結晶性が高いと好ましく、たとえば単結晶粒を有するとよい。遷移金属源の結晶性の評価としては、TEM(Transmission Electron Microscope、透過電子顕微鏡)像、STEM(Scanning Transmission Electron Microscope、走査透過電子顕微鏡)像、HAADF−STEM(High−angle Annular Dark Field Scanning TEM、高角散乱環状暗視野走査透過電子顕微鏡)像、ABF−STEM(Annular Bright−Field Scanning Transmission Electron Microscope、環状明視野走査透過電子顕微鏡)像等による判断を用い、またはX線回折(X−ray Diffraction、XRD)、電子線回折、中性子線回折等の判断を用いる。なお、上記の結晶性の評価に関する手法は、遷移金属源の結晶性の評価だけではなく、正極活物質等の結晶性の評価にも適用することができる。
<ステップS12>
次に、図1Aに示すステップS12として、リチウム源および遷移金属源を粉砕および混合して、混合材料(混合物とも記す)を作製する。粉砕および混合は、乾式または湿式で行うことができる。湿式はより小さく粉砕することができるため好ましい。湿式で行う場合は、溶媒を準備する。溶媒としてはアセトン等のケトン、エタノールおよびイソプロパノール等のアルコール、エーテル、ジオキサン、アセトニトリル、又はN−メチル−2−ピロリドン(NMP)等を用いることができる。リチウムと反応が起こりにくい、非プロトン性溶媒を用いることがより好ましい。本実施の形態では、純度が99.5%以上の脱水アセトン又は超脱水アセトンを用いることとする。水分含有量を10ppm以下まで抑えた、純度が99.5%以上の超脱水アセトンにリチウム源および遷移金属源を混合して、粉砕および混合を行うと好適である。上記のような純度の脱水アセトン又は超脱水アセトンを用いることで、混合材料中に混入しうる不純物を低減することができる。
混合等の手段にはボールミル、またはビーズミル等を用いることができる。ボールミルを用いる場合は、粉砕メディアとしてアルミナボールまたはジルコニアボールを用いるとよい。ジルコニアボールは不純物の排出が少なく好ましい。また、ボールミル、またはビーズミル等を用いる場合、粉砕メディアからのコンタミネーションを抑制するために、周速を、100mm/s以上2000mm/s以下とするとよい。例えば周速838mm/s(回転数400rpm、ボールミルの直径40mm)として混合を実施するとよい。
<ステップS13>
次に、図1Aに示すステップS13として、上記混合材料を加熱する。加熱は、800℃以上1100℃以下で行うことが好ましく、900℃以上1000℃以下で行うことがより好ましく、950℃程度がさらに好ましい。温度が低すぎると、リチウム源および遷移金属源の分解および溶融が不十分となるおそれがある。一方温度が高すぎると、リチウム源からリチウムが蒸散又は昇華する、および/または遷移金属源として用いる金属が過剰に還元される、などが原因となり欠陥が生じるおそれがある。当該欠陥とは、たとえば遷移金属としてコバルトを用いる場合、過剰に還元されるとコバルトが3価から2価へ変化することで誘発された酸素欠陥などである。
加熱時間は1時間以上100時間以下とするとよく、2時間以上20時間以下とすることが好ましい。
昇温レートは、加熱温度の到達温度によるが、80℃/h以上250℃/h以下がよい。たとえば1000℃で10時間加熱する場合、昇温は200℃/hとするとよい。
加熱は、乾燥空気等の水が少ない雰囲気で行うことが好ましく、たとえば露点が−50℃以下、より好ましくは露点が−80℃以下の雰囲気がよい。本実施の形態においては、露点−93℃の雰囲気にて、加熱を行うこととする。また混合材料中に混入しうる不純物を抑制するためには、加熱雰囲気におけるCH、CO、CO、およびH等の不純物濃度は、それぞれ5ppb(parts per billion)以下にするとよい。
加熱雰囲気として酸素を有する雰囲気が好ましい。たとえば反応室(又は加熱室とも記す)に乾燥空気を導入し続ける方法がある。この場合、乾燥空気の流量は10L/minとすることが好ましい。乾燥空気等の酸素を反応室へ供給し続け、当該酸素が反応室内を流れている方法をフローと呼ぶ。
加熱雰囲気を、酸素を有する雰囲気とする場合、酸素を反応室へ供給させないやり方でもよい。たとえば反応室を減圧してから酸素を充填し、当該酸素が反応室から出入りしないようにする方法でもよく、これをパージと呼ぶ。たとえば反応室を、差圧計において−970hPaまで減圧してから、50hPaまで酸素を充填すればよい。
加熱後の冷却は自然放冷でよいが、規定温度から室温までの降温時間が10時間以上50時間以下に収まると好ましい。ただし、必ずしも室温までの冷却は要せず、次のステップが許容する温度まで冷却されればよい。
加熱の際に用いる容器は、酸化アルミニウム(アルミナと記す)のるつぼ又はさやが好ましい。アルミナのるつぼは不純物を放出しにくい材質である。本実施の形態においては、純度が99.9%のアルミナのるつぼを用いる。るつぼには蓋を配して加熱すると好ましい。材料の揮発又は昇華を防ぐことができる。
本工程の加熱は、ロータリーキルンまたはローラーハースキルンによる加熱を行ってもよい。ロータリーキルンによる加熱は、連続式、またはバッチ式のいずれでもよく、いずれの方式においても材料を攪拌しながら加熱することができる。
加熱が終わったあと、必要に応じで解砕し、さらにふるいを実施してもよい。加熱後の材料を回収する際に、るつぼから乳鉢へ移動させたのち回収してもよい。また、当該乳鉢はアルミナの乳鉢を用いると好適である。アルミナの乳鉢は不純物を放出しにくい材質である。具体的には、純度が90%以上、好ましくは純度が99%以上のアルミナの乳鉢を用いる。なお、ステップS13以外の後述の加熱の工程においても、ステップS13と同等の加熱条件を適用できる。
<ステップS14>
以上の工程により、図1Aに示すステップS14で、LiMO(複合酸化物、又は遷移金属を有する複合酸化物)を得ることができる。LiMOで表したが、複合酸化物はリチウム複合酸化物の結晶構造を有すればよく、その組成が厳密にLi:M:O=1:1:2に限定されるものではない。遷移金属としてコバルトを用いた場合、コバルトを有する複合酸化物と称し、LiCoOとして表される。組成については厳密にLi:Co:O=1:1:2に限定されるものではない。
ステップS11乃至ステップS14のように固相法で複合酸化物を作製する例を示したが、共沈法で複合酸化物を作製してもよい。また水熱法で複合酸化物を作製してもよい。
<ステップS15>
次に、図1Aに示すステップS15として、上記複合酸化物を加熱する。複合酸化物に対する最初の加熱のため、ステップS15の加熱を初期加熱と呼ぶことがある。初期加熱を経ると、複合酸化物の表面がなめらかになる。表面がなめらかとは、凹凸が少なく、複合酸化物が全体的に丸みを帯び、さらに角部が丸みを帯びる様子をいう。さらに、表面へ付着した異物が少ない状態をなめらかと呼ぶ。異物は凹凸の要因となると考えられ、複合酸化物の表面に付着しない方が好ましい。
初期加熱は、複合酸化物として完成した状態の後に加熱するというものであり、初期加熱を行うと上述したように表面がなめらかとなり、さらに充放電後の劣化が抑制できる。
本初期加熱では、リチウム化合物源を用意しなくてよい。または、初期加熱では、添加元素源を用意しなくてよい。または、初期加熱では、フラックス剤を用意しなくてよい。
初期加熱は、以下に示すステップS31の前に加熱するものであり、予備加熱または前処理と呼ぶことがある。
ステップS11等で準備したリチウム源および/または遷移金属源には、不純物が混入していることがある。ステップ14で完成した複合酸化物は当該不純物を有することがある。初期加熱によって当該不純物を低減させることが、可能である。
初期加熱の加熱条件は複合酸化物の表面がなめらかになるものであればよい。たとえばステップS13で説明した加熱条件から選択して実施することができる。当該加熱条件に補足すると、ステップS14の複合酸化物の結晶構造を維持するため、初期加熱の加熱温度はステップS13の温度より低くするとよい。また、ステップS14の複合酸化物の結晶構造を維持するため、初期加熱の加熱時間はステップS13の時間より短くするとよい。たとえば初期加熱の加熱条件は、700℃以上1000℃以下の温度で、2時間以上の加熱を行うとよい。
ステップS14の複合酸化物は、ステップS13の加熱によって、複合酸化物の表面と内部に温度差が生じることがある。温度差が生じると収縮差が誘発されることがある。温度差により、表面と内部の流動性が異なるため収縮差が生じるとも考えられる。収縮差に関連するエネルギーは、複合酸化物に内部応力の差を与えてしまう。内部応力の差は歪みとも称され、当該エネルギーを歪みエネルギーと呼ぶことがある。内部応力はステップS15の初期加熱により除去され、別言すると歪みエネルギーはステップS15の初期加熱により均質化されると考えられる。歪みエネルギーが均質化されると複合酸化物の歪みが緩和される。そのためステップS15を経ると複合酸化物の表面がなめらかになる可能性がある。ステップS15により表面が改善されたとも称する。別言すると、ステップS15を経ると複合酸化物に生じた収縮差が緩和され、複合酸化物の表面がなめらかになると考えられる。
また収縮差はステップS14の複合酸化物にミクロなずれ、たとえば結晶のずれを生じさせることがある。当該ずれを低減するためにも、初期加熱を実施するとよい。初期加熱を経ると、上記複合酸化物のずれを均一化させることが可能である。ずれが均一化されると、複合酸化物の表面がなめらかになる可能性がある。結晶粒の整列が行われたとも称する。別言すると、ステップS15を経ると複合酸化物に生じた結晶等のずれが緩和され、複合酸化物の表面がなめらかになると考えられる。
表面がなめらかな複合酸化物を正極活物質として用いると、二次電池として充放電した際の劣化が少なくなり、正極活物質の割れを抑制することができる。
複合酸化物の表面がなめらかな状態は、複合酸化物の一断面において、表面の凹凸情報を測定データより数値化したとき、10nm以下の表面粗さを有するということができる。一断面は、たとえばSTEM観察する際に取得する断面である。
なお、ステップS14としてあらかじめ合成された複合酸化物を用いてもよい。この場合、ステップS11乃至ステップS13を省略することができる。あらかじめ合成された複合酸化物に対してステップS15を実施することで、表面がなめらかな複合酸化物を得ることができる。
初期加熱により複合酸化物のリチウムが減少する場合が考えられる。減少したリチウムのおかげで、次のステップS20等で説明する添加元素が複合酸化物に入りやすくなる可能性がある。
<ステップS20>
層状岩塩型の結晶構造をとりうる範囲で、表面がなめらかな複合酸化物に添加元素Xを加えてもよい。表面がなめらかな複合酸化物に添加元素Xを加えると、添加元素Xをムラなく添加することができる。よって、初期加熱後に添加元素Xを添加する順が好ましい。添加元素Xを添加するステップについて、図1B、および図1Cを用いて説明する。
<ステップS21>
図1Bに示すステップS21では、複合酸化物に添加する添加元素源(X源)を用意する。添加元素源(X源)と合わせて、リチウム源を準備してもよい。
添加元素Xとしては、ニッケル、コバルト、マグネシウム、カルシウム、塩素、フッ素、アルミニウム、マンガン、チタン、ジルコニウム、イットリウム、バナジウム、鉄、クロム、ニオブ、ランタン、ハフニウム、亜鉛、ケイ素、硫黄、リン、ホウ素、およびヒ素の中から選ばれる一または複数を用いることができる。また、添加元素Xとしては、臭素、およびベリリウムから選ばれる一または複数を用いることができる。ただし、臭素、およびベリリウムについては、生物に対し毒性を有する元素であるため、先に述べた添加元素Xを用いる方が好適である。
添加元素Xにマグネシウムを選んだとき、添加元素源(X源)はマグネシウム源と呼ぶことができる。当該マグネシウム源としては、フッ化マグネシウム、酸化マグネシウム、水酸化マグネシウム、または炭酸マグネシウム等を用いることができる。また上述したマグネシウム源を複数用いてもよい。
添加元素Xにフッ素を選んだとき、添加元素源(X源)はフッ素源と呼ぶことができる。当該フッ素源としては、たとえばフッ化リチウム、フッ化マグネシウム、フッ化アルミニウム、フッ化チタン、フッ化コバルト、フッ化ニッケル、フッ化ジルコニウム、フッ化バナジウム、フッ化マンガン、フッ化鉄、フッ化クロム、フッ化ニオブ、フッ化亜鉛、フッ化カルシウム、フッ化ナトリウム、フッ化カリウム、フッ化バリウム、フッ化セリウム、フッ化ランタン、または六フッ化アルミニウムナトリウム等を用いることができる。なかでも、フッ化リチウムは融点が848℃と比較的低く、後述する加熱工程で溶融しやすいため好ましい。
フッ化マグネシウムはフッ素源としてもマグネシウム源としても用いることができる。またフッ化リチウムはリチウム源としても用いることができる。ステップS21に用いられるその他のリチウム源は炭酸リチウムがある。
またフッ素源は気体でもよく、フッ素、フッ化炭素、フッ化硫黄、またはフッ化酸素(OF、O、O、O、O、O、又はOFと表記されるものが含まれる)等を用い、後述する加熱工程において雰囲気中に混合させてもよい。また上述したフッ素源を複数用いてもよい。
本実施の形態では、フッ素源としてフッ化リチウム(LiF)を準備し、フッ素源およびマグネシウム源としてフッ化マグネシウム(MgF)を準備する。フッ化リチウムとフッ化マグネシウムは、LiF:MgF=65:35(モル比)程度で混合すると融点を下げる効果が最も高くなる。一方、フッ化リチウムが多くなると、リチウムが過剰になりすぎサイクル特性が悪化する懸念がある。そのため、フッ化リチウムとフッ化マグネシウムのモル比は、LiF:MgF=x:1(0≦x≦1.9)であることが好ましく、LiF:MgF=x:1(0.1≦x≦0.5)がより好ましく、LiF:MgF=x:1(x=0.33及びその近傍)がさらに好ましい。なお本明細書等において近傍とは、その値の0.9倍より大きく1.1倍より小さい値とする。
<ステップS22>
次に、図1Bに示すステップS22では、マグネシウム源およびフッ素源を粉砕および混合する。本工程は、ステップS12で説明した粉砕および混合の条件から選択して実施することができる。
必要に応じてステップS22の後に加熱工程を行ってもよい。加熱工程はステップS13で説明した加熱条件から選択して実施することができる。加熱時間は2時間以上が好ましく、加熱温度は800℃以上1100℃以下が好ましい。
<ステップS23>
次に、図1Bに示すステップS23では、上記で粉砕、混合した材料を回収して、添加元素源(X源)を得ることができる。なお、ステップS23に示す添加元素源(X源)は、複数の出発材料を有するものであり、混合物と呼ぶことができる。
上記混合物の粒径は、メディアン径(D50)が600nm以上20μm以下であることが好ましく、1μm以上10μm以下であることがより好ましい。添加元素源(X源)として、一種の材料を用いた場合においても、メディアン径(D50)が600nm以上20μm以下であることが好ましく、1μm以上10μm以下であることがより好ましい。
このような微粉化された混合物(添加元素Xが1種の場合も含む)であると、後の工程で複合酸化物と混合したときに、複合酸化物の粒子の表面に混合物を均一に付着させやすい。複合酸化物の表面に混合物が均一に付着していると、加熱により、複合酸化物の表層部に均一に添加元素X(代表的にはフッ素およびマグネシウム)を分布または拡散させやすいため好ましい。フッ素およびマグネシウムが分布した領域を複合酸化物の表層部と呼ぶこともできる。表層部にフッ素およびマグネシウムが含まれない領域があると、充電状態において後述するO3’型結晶構造になりにくいおそれがある。なおフッ素を用いて説明したが、フッ素は塩素でもよく、これらを含むものとしてハロゲンと読み替えることができる。
<ステップS21>
図1Bとは異なる工程について図1Cを用いて説明する。図1Cに示すステップS21では、複合酸化物に添加する添加元素源(X源)を4種用意する。すなわち図1Cは図1Bとは添加元素源の種類が異なる。添加元素源(X源)と合わせて、リチウム源を準備してもよい。
4種の添加元素源(X源)として、マグネシウム源(Mg源)、フッ素源(F源)、ニッケル源(Ni源)、およびアルミニウム源(Al源))を準備する。なお、マグネシウム源およびフッ素源は図1Bで説明した化合物等から選択することができる。ニッケル源としては、酸化ニッケル、又は水酸化ニッケル等を用いることができる。アルミニウム源としては、酸化アルミニウム、又は水酸化アルミニウム、等を用いることができる。
<ステップS22>および<ステップS23>
次に、図1Cに示すステップS22およびステップS23は、図1Bで説明したステップと同様である。
<ステップS31>
次に、図1Aに示すステップS31では、複合酸化物と、添加元素源(X源)とを混合する。リチウム、遷移金属および酸素を有する複合酸化物中の遷移金属の原子数Aと、添加元素Xが有するマグネシウムの原子数AMgとの比は、A:AMg=100:y(0.1≦y≦6)であることが好ましく、A:AMg=100:y(0.3≦y≦3)であることがより好ましい。
ステップS31の混合は、ステップS14の複合酸化物の粒子を破壊させないためにステップS12の混合よりも穏やかな条件とすることが好ましい。たとえば、ステップS12の混合よりも回転数が少ない、または時間が短い条件とすることが好ましい。また湿式よりも乾式のほうが穏やかな条件であると言える。混合にはたとえばボールミル、又はビーズミル等を用いることができる。ボールミルを用いる場合は、たとえば粉砕メディアとしてジルコニアボールを用いることが好ましい。
本実施の形態では、直径1mmのジルコニアボールを用いたボールミルで、150rpm、1時間、乾式で混合することとする。また該混合は、露点が−100℃以上−10℃以下のドライルームで行うこととする。
<ステップS32>
次に、図1AのステップS32において、上記で混合した材料を回収し、混合物903を得る。回収の際、必要に応じて解砕した後にふるいを実施してもよい。
なお、本実施の形態では、フッ素源としてフッ化リチウム、およびマグネシウム源としてフッ化マグネシウムを、初期加熱を経た複合酸化物にあとから添加する方法について説明している。しかしながら、本発明は上記方法に限定されない。ステップS11の段階、つまり複合酸化物の出発材料の段階でマグネシウム源およびフッ素源等を、リチウム源および遷移金属源(M源)へ添加することができる。その後ステップS13で加熱してマグネシウムおよびフッ素が添加されたLiMOを得ることができる。この場合は、ステップS11乃至ステップS14の工程と、ステップS21乃至ステップS23の工程を分ける必要がない。簡便で生産性が高い方法であるといえる。
また、あらかじめマグネシウムおよびフッ素が添加されたコバルト酸リチウムを用いてもよい。マグネシウムおよびフッ素が添加されたコバルト酸リチウムを用いれば、ステップS11乃至ステップS32、およびステップS20の工程を省略することができる。簡便で生産性が高い方法であるといえる。
または、あらかじめマグネシウムおよびフッ素が添加されたコバルト酸リチウムに対して、図1Bに示すステップS20に従いさらにマグネシウム源およびフッ素源を添加してもよいし、図1Cに示すステップS20に従いさらにマグネシウム源、フッ素源、ニッケル源、およびアルミニウム源を添加してもよい。
<ステップS33>
次に、図1Aに示すステップS33では、混合物903を加熱する。ステップS13で説明した加熱条件から選択して実施することができる。加熱時間は2時間以上が好ましい。
ここで加熱温度について補足する。ステップS33の加熱温度の下限は、複合酸化物(LiMO)と添加元素源との反応が進む温度以上である必要がある。反応が進む温度とは、LiMOと添加元素源との有する元素の相互拡散が起きる温度であればよく、これらの材料の溶融温度よりも低くてもよい。酸化物を例にして説明するが、溶融温度Tの0.757倍(タンマンの法則)から固相拡散が起こることがわかっている。そのため、ステップS33における加熱温度としては、500℃以上であればよい。
勿論、混合物903の少なくとも一部が溶融する温度以上であると、より反応が進みやすい。たとえば、添加元素源(X源)として、LiFおよびMgFを有する場合、LiFとMgFの共融点は742℃付近であるため、ステップS33の加熱温度の下限は742℃以上とすると好ましい。
また、LiCoO:LiF:MgF=100:0.33:1(モル比)となるように混合して得られた混合物903は、示差走査熱量測定(DSC測定)において830℃付近に吸熱ピークが観測される。よって、加熱温度の下限は830℃以上がより好ましい。
加熱温度は高い方が反応が進みやすく、加熱時間が短く済み、生産性が高く好ましい。
加熱温度の上限はLiMOの分解温度(LiCoOの分解温度は1130℃)未満とする。分解温度の近傍の温度では、微量ではあるがLiMOの分解が懸念される。そのため、1000℃以下であるとより好ましく、950℃以下であるとさらに好ましく、900℃以下であるとさらに好ましい。
これらを踏まえると、ステップS33における加熱温度としては、500℃以上1130℃以下が好ましく、500℃以上1000℃以下がより好ましく、500℃以上950℃以下がさらに好ましく、500℃以上900℃以下がさらに好ましい。また、742℃以上1130℃以下が好ましく、742℃以上1000℃以下がより好ましく、742℃以上950℃以下がさらに好ましく、742℃以上900℃以下がさらに好ましい。また、800℃以上1100℃以下、830℃以上1130℃以下が好ましく、830℃以上1000℃以下がより好ましく、830℃以上950℃以下がさらに好ましく、830℃以上900℃以下がさらに好ましい。なおステップS33における加熱温度は、ステップ13よりも低いとよい。
さらに混合物903を加熱する際、フッ素源等に起因するフッ素またはフッ化物の分圧を適切な範囲に制御することが好ましい。
本実施の形態で説明する作製方法では、一部の材料、たとえばフッ素源であるLiFが融剤として機能する場合がある。この機能によりステップS33の加熱温度を複合酸化物(LiMO)の分解温度未満、たとえば742℃以上950℃以下にまで低温化でき、表層部にマグネシウムをはじめとする添加元素を分布させ、良好な特性の正極活物質を作製できる。
しかし、LiFは酸素よりも気体状態での比重が軽いため、加熱によりLiFが揮発又は昇華する可能性があり、揮発又は昇華すると混合物903中のLiFが減少してしまう。すると融剤としての機能が弱くなってしまう。よって、LiFの揮発又は昇華を抑制しつつ、加熱する必要がある。なお、フッ素源等としてLiFを用いなかったとしても、LiMO表面のLiとフッ素源のFが反応して、LiFが生じ、揮発又は昇華する可能性もある。そのため、LiFより融点が高いフッ化物を用いたとしても、同じように揮発又は昇華の抑制が必要である。
そこで、LiFを含む雰囲気で混合物903を加熱すること、すなわち、加熱炉内のLiFの分圧が高い状態で混合物903を加熱することが好ましい。このような加熱により混合物903中のLiFの揮発又は昇華を抑制することができる。
本工程の加熱は、混合物903の粒子同士が固着しないように加熱すると好ましい。加熱中に混合物903の粒子同士が固着すると、雰囲気中の酸素との接触面積が減る、および添加元素X(たとえばフッ素)が拡散する経路を阻害することにより、表層部への添加元素X(たとえばマグネシウムおよびフッ素)の分布が悪化する可能性がある。
また、添加元素X(たとえばフッ素)が表層部に均一に分布するとなめらかで凹凸が少ない正極活物質を得られると考えられている。そのため本工程でステップS15の加熱を経た、表面がなめらかな状態を維持するまたはより一層なめらかになるためには、混合物903の粒子同士が固着しない方がよい。
また、ステップS33をロータリーキルンによる加熱を適用する場合は、キルン(炉とも記す)内の酸素を含む雰囲気の流量を制御して加熱することが好ましい。たとえば酸素を含む雰囲気の流量を少なくする、最初に雰囲気をパージしキルン内に酸素雰囲気を導入した後は酸素を供給しない、等が好ましい。酸素を供給し、上記雰囲気中を酸素が流れるとフッ素源が蒸散又は昇華する可能性があり、表面のなめらかさを維持するためには好ましくない。
ステップS33をローラーハースキルンによる加熱を適用する場合は、たとえば混合物903の入った容器に蓋を配することでLiFを含む雰囲気で混合物903を加熱することができる。
加熱時間について補足する。加熱時間は、加熱温度、ステップS14のLiMOの粒子の大きさ、および組成等の条件により変化する。粒子が小さい場合は、粒子が大きい場合よりも低い温度または短い時間がより好ましい場合がある。
図1AのステップS14の複合酸化物(LiMO)のメディアン径(D50)が12μm程度の場合、加熱温度は、たとえば600℃以上950℃以下が好ましい。加熱時間はたとえば3時間以上が好ましく、10時間以上がより好ましく、60時間以上がさらに好ましい。なお、加熱後の降温時間は、たとえば10時間以上50時間以下とすることが好ましい。
一方、ステップS14の複合酸化物(LiMO)のメディアン径(D50)が5μm程度の場合、加熱温度はたとえば600℃以上950℃以下が好ましい。加熱時間はたとえば1時間以上10時間以下が好ましく、2時間程度がより好ましい。なお、加熱後の降温時間は、たとえば10時間以上50時間以下とすることが好ましい。
<ステップS34>
次に、図1Aに示すステップS34では、加熱した材料を回収し、必要に応じて解砕して、正極活物質100を得る。このとき、回収された粒子をさらに、ふるいにかけると好ましい。以上の工程により、本発明の一形態の正極活物質100を作製することができる。本発明の一形態の正極活物質は表面がなめらかである。
《正極活物質の作製方法2》
次に、本発明を実施する一形態であって、正極活物質の作製方法1とは異なる方法について説明する。
図2において、図1Aと同様にステップS11乃至S15までを行い、表面がなめらかな複合酸化物(LiMO)を準備する。
<ステップS20a>
層状岩塩型の結晶構造をとりうる範囲で、複合酸化物に添加元素Xを加えてもよいことは上述した通りであるが、本作製方法2では添加元素Xを2回以上に分けて、添加元素X1、X2として添加するステップについて、図3Aも参照しながら説明する。
<ステップS21>
図3Aに示すステップS21では、第1の添加元素源を準備する。第1の添加元素源としては、図1Bに示すステップS21で説明した添加元素Xの中から選択して用いることができる。たとえば、添加元素X1としては、マグネシウム、フッ素、およびカルシウムの中から選ばれるいずれか一または複数を好適に用いることができる。図3Aでは添加元素X1として、マグネシウム源(Mg源)、およびフッ素源(F源)を用いる場合を例示する。
図3Aに示すステップS21乃至ステップS23については、図1Bに示すステップS21乃至ステップS23と同様の条件で行うことができる。その結果、ステップS23で添加元素源(X1源)を得ることができる。
また、図2に示すステップS31乃至S33については、図1Aに示すステップS31乃至S33と同様の工程にて行うことができる。
<ステップS34a>
次に、ステップS33で加熱した材料を回収し、添加元素X1を有する複合酸化物を作製する。ステップS14の複合酸化物と区別するため、本ステップの複合酸化物に序数を付して第2の複合酸化物と記すことがある。
<ステップS40>
図2に示すステップS40では、第2の添加元素源(X2源)を添加する。図3Bおよび図3Cも参照しながら説明する。
<ステップS41>
図3Bに示すステップS41では、第2の添加元素源を準備する。第2の添加元素源としては、図1Bに示すステップS21で説明した添加元素Xの中から選択して用いることができ、好ましくは添加元素X1とは異ならせる。たとえば、添加元素X2としては、ニッケル、チタン、ホウ素、ジルコニウム、およびアルミニウムの中から選ばれるいずれか一または複数を好適に用いることができる。図3Bでは添加元素X2として、ニッケル、およびアルミニウムを用いる場合を例示する。
図3Bに示すステップS41乃至ステップS43については、図1Bに示すステップS21乃至ステップS23と同様の条件で行うことができる。その結果、ステップS43で添加元素源(X2源)を得ることができる。
また、図3Cには、図3Bを用いて説明したステップの変形例を示す。図3Cに示すステップS41ではニッケル源(Ni源)、およびアルミニウム源(Al源)を準備し、ステップS42aではそれぞれ独立に粉砕する。その結果、ステップS43では、複数の第2の添加元素源(X2源)を準備することとなる。図3Cのステップは、ステップS42aにて添加元素X2を独立に粉砕していることが図3Bと異なる。
<ステップS51乃至ステップS54>
次に、図2に示すステップS51乃至ステップS54は、図1Aに示すステップS31乃至ステップS34と同様の条件にて行うことができる。加熱工程に関するステップS53の条件はステップS33より低い温度且つ短い時間でよい。以上の工程により、ステップS54では、本発明の一形態の正極活物質100を作製することができる。
図2および図3に示すように、作製方法2では、複合酸化物への添加元素Xを第1の添加元素X1と、第2の添加元素X2とに分けて導入する。分けて導入することにより、各添加元素Xの深さ方向のプロファイルを変えることができる。たとえば、第1の添加元素X1を内部に比べて表層部で高い濃度となるようにプロファイルし、第2の添加元素X2を表層部に比べて内部で高い濃度となるようにプロファイルすることも可能である。
本作製方法2においても、初期加熱を経ると表面がなめらかな正極活物質を得ることができる。
本実施の形態で示した作製方法1、2における初期加熱は、複合酸化物に対して実施する。よって初期加熱は、複合酸化物を得るための加熱温度よりも低く、かつ複合酸化物を得るための加熱時間よりも短い条件が好ましい。複合酸化物に添加元素Xを添加する場合は、初期加熱後に添加工程を実施すると好ましい。当該添加工程は2回以上に分けることが可能である。このような工程順に従うと、初期加熱で得られた表面のなめらかさは維持されるため好ましい。
本実施の形態において、複合酸化物は遷移金属としてコバルトを有する場合、コバルトを有する複合酸化物と読み替えることができる。
本実施の形態において、添加元素を有する前の複合酸化物を第1の複合酸化物と記し、添加元素を有する複合酸化物を第2の複合酸化物と記して区別することがある。
本実施の形態において、得られた正極活物質を複合酸化物と記すことがある。上述のように区別する場合、正極活物質は第2の複合酸化物と記すことができる。
本実施の形態は、他の実施の形態と組み合わせて用いることができる。
(実施の形態2)
本実施の形態では、図4乃至図14を用いて本発明の一態様の正極活物質について説明する。
図4Aは本発明の一態様である正極活物質100の断面図である。図4A中のA−B付近を拡大した図を図4B1および図4B2に示す。図4A中のC−D付近を拡大した図を図4C1および図4C2に示す。
図4A乃至図4C2に示すように、正極活物質100は、表層部100aと、内部100bを有する。これらの図中に破線で表層部100aと内部100bの境界を示す。また図4Aに一点鎖線で結晶粒界の一部を示す。
本明細書等において、正極活物質100の表層部100aとは、例えば、表面から内部に向かって50nm以内、より好ましくは表面から内部に向かって35nm以内、さらに好ましくは表面から内部に向かって20nm以内、最も好ましくは表面から内部に向かって10nm以内の領域をいう。クラックにより生じた面も表面といってよい。表層部100aを、表面近傍、または表面近傍領域またはシェルなどといってもよい。また正極活物質の表層部100aより深い領域を、内部100bと呼ぶ。内部100bを、内部領域またはコアなどといってもよい。
表層部100aは内部100bよりも添加元素Xの濃度が高いことが好ましい。また添加元素Xは濃度勾配を有していることが好ましい。また添加元素Xが複数ある場合は、添加元素Xによって、濃度の最大を示すピークトップの位置が異なっていることが好ましい。
たとえば添加元素Xaと添加元素Xbを有する場合を説明する。添加元素Xaは図4B1にグラデーションで示すように、内部100bから表面に向かって高くなる濃度勾配を有することが好ましい。このような濃度勾配を有することが好ましい添加元素Xaとして、たとえばマグネシウム、フッ素、チタン、ケイ素、リン、ホウ素およびカルシウム等が挙げられる。
添加元素Xaとは異なる添加元素Xbは図4B2にグラデーションで示すように、濃度勾配を有しかつ図4B1よりも深い領域に濃度の最大を示すピークトップが位置することが好ましい。添加元素Xbではピークトップが表層部100aに存在してもよいし、表層部100aより深くてもよい。すなわち添加元素Xbは、最表面側ではない領域にピークトップを有することが好ましい。たとえば添加元素Xbは、表面から内部に向かって5nm以上30nm以下の領域にピークトップを有することが好ましい。このような濃度勾配を有することが好ましい添加元素Xbとして、たとえばアルミニウムおよびマンガンが挙げられる。
また添加元素の上述のような濃度勾配に起因して、内部100bから、表面に向かって結晶構造が連続的に変化することが好ましい。
正極活物質100は、リチウムと、遷移金属Mと、酸素と、添加元素Xと、を有する。正極活物質100はLiMOで表される複合酸化物に添加元素Xが添加されたものといってもよい。ただし本発明の一態様の正極活物質はLiMOで表されるリチウム複合酸化物の結晶構造を有すればよく、その組成が厳密にLi:M:O=1:1:2に限定されるものではない。また添加元素Xが添加された正極活物質も複合酸化物又はリチウム複合酸化物という場合がある。
正極活物質100が有する遷移金属Mとしては、リチウムとともに空間群R−3mに帰属する層状岩塩型の複合酸化物を形成しうる金属を用いることが好ましい。たとえばマンガン、コバルト、ニッケルのうち少なくとも一を用いることができる。つまり正極活物質100が有する遷移金属Mとしてコバルトのみを用いてもよいし、ニッケルのみを用いてもよいし、コバルトとマンガンの2種、またはコバルトとニッケルの2種を用いてもよいし、コバルト、マンガン、ニッケルの3種を用いてもよい。つまり正極活物質100は、コバルト酸リチウム、ニッケル酸リチウム、コバルトの一部がマンガンで置換されたコバルト酸リチウム、コバルトの一部がニッケルで置換されたコバルト酸リチウム、ニッケル−マンガン−コバルト酸リチウム等の、リチウムと遷移金属Mを含む複合酸化物を有することができる。
特に正極活物質100が有する遷移金属Mとしてコバルトを75原子%以上、好ましくは90原子%以上、さらに好ましくは95原子%以上用いると、合成が比較的容易で取り扱いやすく、優れたサイクル特性を有するなど利点が多い。また遷移金属Mとして上記の範囲のコバルトに加えてニッケルを有すると、コバルトと酸素の八面体からなる層状構造のずれが抑制される場合がある。そのため特に高温での充電状態において結晶構造がより安定になる場合があり好ましい。
なお遷移金属Mとして、必ずしもマンガンを含まなくてもよい。マンガンを実質的に含まない正極活物質100とすることで、合成が比較的容易で取り扱いやすく、優れたサイクル特性を有するといった上記の利点がより大きくなる場合がある。正極活物質100に含まれるマンガンの重量はたとえば600ppm以下、より好ましくは100ppm以下であることが好ましい。マンガンの重量はたとえばGD−MS(グロー放電質量分析法)を用いて分析することができる。
一方、正極活物質100が有する遷移金属Mとしてニッケルを33原子%以上、好ましくは60原子%以上、さらに好ましくは80原子%以上用いると、コバルトが多い場合と比較して原料が安価になる場合があり、また重量あたりの充放電容量が増加する場合があり好ましい。
なお遷移金属Mとして、必ずしもニッケルを含まなくてもよい。
正極活物質100が有する添加元素Xとしては、マグネシウム、フッ素、アルミニウム、チタン、ジルコニウム、バナジウム、鉄、クロム、ニオブ、コバルト、ヒ素、亜鉛、ケイ素、硫黄、リン、ホウ素のうち少なくとも一を用いることが好ましい。これらの添加元素Xが、後述するように正極活物質100が有する結晶構造をより安定化させる場合がある。つまり正極活物質100は、マグネシウムおよびフッ素が添加されたコバルト酸リチウム、マグネシウム、フッ素およびチタンが添加されたコバルト酸リチウム、マグネシウムおよびフッ素が添加されたニッケル−コバルト酸リチウム、マグネシウムおよびフッ素が添加されたコバルト−アルミニウム酸リチウム、ニッケル−コバルト−アルミニウム酸リチウム、マグネシウムおよびフッ素が添加されたニッケル−コバルト−アルミニウム酸リチウム、マグネシウムおよびフッ素が添加されたニッケル−マンガン−コバルト酸リチウム等を有することができる。なお本明細書等において添加元素Xは混合物、原料の一部、不純物元素などといってもよい。
なお添加元素Xとして、必ずしもマグネシウム、フッ素、アルミニウム、チタン、ジルコニウム、バナジウム、鉄、クロム、ニオブ、コバルト、ヒ素、亜鉛、ケイ素、硫黄、リンまたはホウ素を含まなくてもよい。
本発明の一態様の正極活物質100では、充電により正極活物質100からリチウムが抜けても、遷移金属Mと酸素の八面体からなる層状構造が壊れないよう、添加元素Xの濃度の高い表層部100a、すなわち粒子の外周部が正極活物質100を補強している。
また添加元素Xの濃度勾配は、表層部100a全体において同じような勾配であることが好ましい。添加元素濃度の高さに由来する補強が表層部100aに均質に存在することが好ましいといってもよい。表層部100aの一部に補強があっても、補強のない部分が存在すれば、ない部分に応力が集中する恐れがある。粒子の一部に応力が集中すると、そこからクラック等の欠陥が生じ、正極活物質の割れおよび充放電容量の低下につながる恐れがある。
なお本明細書等において均質とは、複数の元素(たとえばA,B,C)からなる固体において、ある元素(たとえばA)が特定の領域に同様の特徴を有して分布する現象をいう。なお特定の領域同士の元素の濃度が実質的に同一であればよい。たとえば特定領域同士の元素濃度の差が10%以内であればよい。特定の領域としてはたとえば表層部、表面、凸部、凹部、内部などが挙げられる。
ただし必ずしも、正極活物質100の表層部100a全てにおいて添加元素が同じような濃度勾配を有していなくてもよい。たとえば図4AのC−D付近の添加元素Xaの分布の例を図4C1に、C−D付近の添加元素Xbの分布の例を図4C2に示す。
ここで、C−D付近はR−3mの層状岩塩型の結晶構造を有し、表面は(001)配向であるとする。図4C1及び図4C2に示すような(001)配向した表面((001)面と記すことがある)は、図4B1及び図4B2に示すようなその他の面と、添加元素の分布が異なっていてもよい。たとえば、図4C1に示す(001)面と当該面を含む表層部100aは、添加元素Xaの分布が、図4B1に示すその他の面と比較して、表面から浅い部分にとどまっていてもよい。または、図4C1に示す(001)面と当該面を含む表層部100aは、図4B1に示すその他の面と比較して、添加元素Xaの濃度が低くてもよい。または、図4C1に示す(001)面と当該面を含む表層部100aは、添加元素Xaの濃度が検出下限以下であってもよい。また、たとえば図4C2に示す(001)面と当該面を含む表層部100aは、添加元素Xbの分布が、図4B2に示すその他の面と比較して、表面から浅い部分にとどまっていてもよい。または、図4C2に示す(001)面と当該面を含む表層部100aは、図4B2に示すその他の面と比較して、添加元素Xbの濃度が低くてもよい。または、図4C2に示す(001)面と当該面を含む表層部100aは、添加元素Xbの濃度が検出下限以下であってもよい。
R−3mの層状岩塩型の結晶構造では、(001)面に平行に陽イオンが配列している。これは、R−3mの層状岩塩型の結晶構造が遷移金属Mと酸素の8面体からなるMO層と、リチウム層と、が(001)面と平行に交互に積層した構造だからである。そのためリチウムイオンの拡散経路も(001)面に平行に存在する。
遷移金属Mと酸素の8面体からなるMO層は比較的安定であるため、(001)面は安定な面であり、(001)面にはリチウムイオンの拡散経路は露出していない。
一方、図4B1及び図4B2に示すような(001)面以外の表面ではリチウムイオンの拡散経路が露出する。そのため(001)面以外の表面および当該表面を含む表層部100aは、リチウムイオンの拡散経路を保つために重要な領域であると同時に、リチウムイオンが最初に脱離する領域であるため不安定になりやすい。そのため(001)面以外の表面および当該表面を含む表層部100aを補強することが、正極活物質100全体の結晶構造を保つために極めて重要である。
そのため本発明の別の一態様の正極活物質100では、(001)面以外の表面および当該表面を含む表層部100aの添加元素Xの分布が図4B1または図4B2に示すような分布となっていることが重要である。一方、図4C1及び図4C2に示すような(001)面および当該面を含む表層部100aでは上述のように添加元素の濃度は低い、または添加元素がなくてもよい。
先の実施の形態で示したような、純度の高いLiMOを作製した後に、添加元素Xを後から混合して加熱する作製方法は、主にリチウムイオンの拡散経路を介して添加元素Xが広がるため、(001)面以外の表面および当該表面を含む表層部100aの添加元素Xの分布を好ましい範囲にしやすい。
また、初期加熱を経る作製方法では、初期加熱により表層部のリチウム原子がLiMOから脱離することが期待できるため、マグネシウム原子をはじめとする添加元素Xを高濃度に表層部に分布させやすくなると考えられる。
また、正極活物質100の表面はなめらかで凹凸が少ないことが好ましいが、必ずしも、正極活物質100が有する表面の全てがそうでなくてもよい。R−3mの層状岩塩型の結晶構造を有する複合酸化物は、(001)面に平行な面、たとえばリチウムが配列した面においてスリップが生じやすい。図5Aのように、(001)面が水平である場合は、プレス等の工程を経ることで図5B中に矢印で示したように水平にスリップが起こり、変形する場合がある。プレスは複数回実施してもよい。プレス圧力は100kN/m以上300kN/m以下、好ましくは150kN/m以上250kN/m以下、さらに好ましくは190kN/m以上230kN/m以下とする。プレスを複数回実施する場合、2回目のプレス圧力は1回目のプレス圧力の5倍以上8倍以下、好ましくは6倍以上7倍以下とする。
この場合、スリップした結果新たに生じた表面およびその表層部100aには、添加元素が存在しないか、濃度が検出下限以下である場合がある。図5B中のE−Fはスリップした結果新たに生じた表面およびその表層部100aの例である。E−F付近を拡大した図を図5C1および図5C2に示す。図5C1および図5C2では、図4B1乃至図4C2と異なり添加元素Xaおよび添加元素Xbの濃度勾配を示すグラデーションが存在しない。
しかしスリップは(001)面に平行に生じやすいため、新たに生じた表面は(001)面となり、当該面を表層部100aが有する。(001)面はリチウムイオンの拡散経路が露出せず、比較的安定であるため、添加元素Xが存在しないか、濃度が検出下限以下であっても問題がほとんどない。
なお上述のように、組成がLiMO、結晶構造がR−3mの層状岩塩型を有する複合酸化物では、(001)面と平行に陽イオンが配列する。またHAADF−STEM像では、LiMOのうち原子番号の最も大きい遷移金属Mの輝度が最も高くなる。そのためHAADF−STEM像において、輝度の高い原子の配列は遷移金属Mの原子の配列と考えてよい。この輝度の高い配列の繰り返しを、結晶縞、又は格子縞といってもよい。さらに結晶縞または格子縞は、結晶構造がR−3mの層状岩塩型である場合(001)面と平行と考えてよい。
正極活物質100は凹部、クラック、窪み、又は断面V字形などを有する場合がある。これらは欠陥の一つであり、充放電を繰り返すと欠陥等から遷移金属Mの溶出、結晶構造の崩れ、正極活物質100の割れ、酸素の脱離などが生じる恐れがある。しかしこれらを埋め込むように図4Aに示すような埋め込み部102(図7)が存在すると、遷移金属Mの溶出などを抑制することができる。埋め込み部102は、添加元素Xを有するとよい。埋め込み部102により信頼性およびサイクル特性の優れた正極活物質100とすることができる。
また正極活物質100は添加元素Xが偏在する領域として凸部103(図7)を有していてもよい。
上述したように正極活物質100が有する添加元素Xは、量が過剰であるとリチウムの挿入および脱離に悪影響が出る恐れがある。また正極活物質100を二次電池に用いたときに内部抵抗の上昇、充放電容量の低下等を招く恐れもある。一方、添加元素Xは量が不足すると表層部100a全体に分布せず、結晶構造の劣化を抑制する効果が不十分になる恐れがある。このように添加元素Xは正極活物質100において適切な濃度である必要があるが、その調整は容易ではない。
そのため正極活物質100において、たとえば表層部100aに添加元素Xが偏在した領域を有すると、内部100bにおいて適切な添加元素濃度とすることができる。これにより二次電池としたときの内部抵抗の上昇、充放電容量の低下等を抑制することができる。二次電池の内部抵抗の上昇を抑制できることは、特に高レートでの充放電、たとえば2C(なお1Cは200mA/gとする)以上での充放電において極めて好ましい特性である。
また添加元素Xが偏在している領域を有する正極活物質100では、内部100bにおいて適切な添加元素濃度とすることができるため、作製工程においてある程度過剰に添加元素を混合することが許容される。そのため生産におけるマージンが広くなり好ましい。
なお本明細書等において、偏在とはある領域における元素の濃度が他の領域と異なることをいう。偏析、析出、不均一、偏り、濃度が高い箇所と濃度が低い箇所が混在する、などといってもよい。
添加元素Xの一つであるマグネシウムは2価であり、層状岩塩型の結晶構造における遷移金属サイトよりもリチウムサイトに存在する方が安定であるため、リチウムサイトに入りやすい。マグネシウムが表層部100aのリチウムサイトに適切な濃度で存在することで、層状岩塩型の結晶構造を保持しやすい。またマグネシウムが存在することで、充電深度が高い時のマグネシウムの周囲の酸素の脱離を抑制することができる。またマグネシウムが存在することで正極活物質の密度が高くなることが期待できる。マグネシウムは、適切な濃度であれば充放電に伴うリチウムの挿入および脱離に悪影響を及ぼさず好ましい。しかしながら、マグネシウムが過剰であるとリチウムの挿入および脱離に悪影響が出る恐れがある。そのため後述するように、表層部100aはたとえばマグネシウムよりも遷移金属Mの濃度が高いことが好ましい。
添加元素Xの一つであるアルミニウムは3価であり、層状岩塩型の結晶構造における遷移金属サイトに存在しうる。アルミニウムは周囲のコバルトの溶出を抑制することができる。またアルミニウムは酸素との結合力が強いため、アルミニウムの周囲の酸素の脱離を抑制することができる。そのため添加元素Xとしてアルミニウムを有すると充放電を繰り返しても結晶構造が崩れにくい正極活物質100とすることができる。
フッ素は1価の陰イオンであり、表層部100aにおいて酸素の一部がフッ素に置換されていると、リチウム脱離エネルギーが小さくなる。これは、リチウム脱離に伴うコバルトイオンの価数の変化が、フッ素を有さない場合は3価から4価、フッ素を有する場合は2価から3価となり、酸化還元電位が異なることによる。そのため正極活物質100の表層部100aにおいて酸素の一部がフッ素に置換されていると、フッ素近傍のリチウムイオンの脱離および挿入がスムースに起きやすいと言える。そのため二次電池に用いたときに充放電特性、レート特性等が向上し好ましい。
チタン酸化物は超親水性を有することが知られている。そのため、表層部100aにチタン酸化物を有する正極活物質100を用いることで、極性の高い溶媒に対して濡れ性がよくなる可能性がある。二次電池としたときに正極活物質100と、極性の高い電解液との界面の接触が良好となり、内部抵抗の上昇を抑制できる可能性がある。
二次電池の充電電圧の上昇に伴い、正極の電圧は一般的に上昇する。本発明の一態様の正極活物質は、高い電圧においても安定な結晶構造を有する。充電状態において正極活物質の結晶構造が安定であることにより、充放電の繰り返しに伴う充放電容量の低下を抑制することができる。
また、二次電池のショートは二次電池の充電動作および/または放電動作における不具合を引き起こすのみでなく、発熱および発火を招く恐れがある。安全な二次電池を実現するためには、高い充電電圧においてもショート電流が抑制されることが好ましい。本発明の一態様の正極活物質100は、高い充電電圧においてもショート電流が抑制される。そのため高い充放電容量と安全性と、を両立した二次電池とすることができる。
添加元素Xの濃度勾配は、たとえば、エネルギー分散型X線分光法(EDX:Energy Dispersive X−ray Spectroscopy)、EPMA(電子プローブ微小分析)等を用いて評価できる。EDX測定のうち、領域内を走査しながら測定し、領域内を2次元に評価することをEDX面分析と呼ぶ。また線状に走査しながら測定し、原子濃度について正極活物質粒子内の分布を評価することを線分析と呼ぶ。さらにEDXの面分析から、線状の領域のデータを抽出したものを線分析と呼ぶ場合もある。またある領域について走査せずに測定することを点分析と呼ぶ。
EDX面分析(たとえば元素マッピング)により、正極活物質100の表層部100a、内部100bおよび結晶粒界101並びにこれらの近傍等における、添加元素Xの濃度を定量的に分析することができる。また、EDX線分析により、添加元素Xの濃度分布および最大値を分析することができる。
添加元素Xとしてマグネシウムを有する正極活物質100についてEDX線分析をしたとき、表層部100aにおけるマグネシウム濃度の最大ピークは、正極活物質100の表面から中心に向かった深さ3nmまでに存在することが好ましく、深さ1nmまでに存在することがより好ましく、深さ0.5nmまでに存在することがさらに好ましい。
また添加元素Xとしてマグネシウムおよびフッ素を有する正極活物質100では、フッ素の分布は、マグネシウムの分布と重畳することが好ましい。そのためEDX線分析をしたとき、表層部100aにおけるフッ素濃度の最大ピークは、正極活物質100の表面から中心に向かった深さ3nmまでに存在することが好ましく、深さ1nmまでに存在することがより好ましく、深さ0.5nmまでに存在することがさらに好ましい。
なお、全ての添加元素Xが同様の濃度分布でなくてもよい。たとえば正極活物質100が添加元素Xとしてアルミニウムを有する場合は上述したようにマグネシウムおよびフッ素と若干異なる分布となっていることが好ましい。たとえばEDX線分析をしたとき、表層部100aにおけるアルミニウム濃度の最大ピークよりも、マグネシウム濃度の最大ピークが表面に近いことが好ましい。たとえばアルミニウム濃度の最大ピークは正極活物質100の表面から深さ0.5nm以上50nm以下に存在することが好ましく、深さ5nm以上30nm以下に存在することがより好ましい。または0.5nm以上30nm以下に存在することが好ましい。または5nm以上50nm以下に存在することが好ましい。
また正極活物質100について線分析または面分析をしたとき、表層部100aにおける添加元素Xと遷移金属Mの原子数の比(X/M)は0.05以上1.00以下が好ましい。さらに添加元素がチタンである場合、チタンと遷移金属Mの原子数の比(Ti/M)は0.05以上0.4以下が好ましく、0.1以上0.3以下がより好ましい。また添加元素がマグネシウムである場合、マグネシウムと遷移金属Mの原子数の比(Mg/M)は0.4以上1.5以下が好ましく、0.45以上1.00以下がより好ましい。また添加元素がフッ素である場合、フッ素と遷移金属Mの原子数の比(F/M)は0.05以上1.5以下が好ましく、0.3以上1.00以下がより好ましい。
なおEDX線分析結果における正極活物質100の表面は、たとえば以下のように推定することができる。正極活物質100の内部100bにおいて均一に存在する元素、たとえば酸素、またはコバルト等の遷移金属Mについて、内部100bの検出量の1/2となった点を表面とする。
正極活物質100は複合酸化物であるので、酸素の検出量を用いて表面を推定することが好ましい。具体的には、まず内部100bの酸素の検出量が安定している領域から酸素濃度の平均値Oaveを求める。このとき明らかに表面より外と判断できる領域に化学吸着またはバックグラウンドによると考えられる酸素Obackgroundが検出される場合は、測定値からObackgroundを減じて酸素濃度の平均値Oaveとすることができる。この平均値Oaveの1/2の値、つまり1/2Oaveに最も近い測定値を示した測定点を、正極活物質の表面であると推定することができる。
また正極活物質100が有する遷移金属Mを用いても表面を推定することができる。たとえば遷移金属Mの95%以上がコバルトである場合は、コバルトの検出量を用いて上記と同様に表面を推定することができる。または複数の遷移金属Mの検出量の和を用いて同様に推定することができる。遷移金属Mの検出量は化学吸着の影響を受けにくい点で、表面の推定に好適である。
また正極活物質100について線分析または面分析をしたとき、結晶粒界101近傍における添加元素Xと遷移金属Mの原子数の比(X/M)は0.020以上0.50以下が好ましい。さらには0.025以上0.30以下が好ましい。さらには0.030以上0.20以下が好ましい。または0.020以上0.30以下が好ましい。または0.020以上0.20以下が好ましい。または0.025以上0.50以下が好ましい。または0.025以上0.20以下が好ましい。または0.030以上0.50以下が好ましい。または0.030以上0.30以下が好ましい。
たとえば添加元素Xがマグネシウム、遷移金属Mがコバルトであるときは、マグネシウムとコバルトの原子数の比(Mg/Co)は、0.020以上0.50以下が好ましい。さらには0.025以上0.30以下が好ましい。さらには0.030以上0.20以下が好ましい。または0.020以上0.30以下が好ましい。または0.020以上0.20以下が好ましい。または0.025以上0.50以下が好ましい。または0.025以上0.20以下が好ましい。または0.030以上0.50以下が好ましい。または0.030以上0.30以下が好ましい。
なお正極活物質100は、4.5V以上で充電するような充電深度の高い条件または高温(45℃以上)下で充放電することにより、進行性の欠陥(ピットとも呼ぶ)が正極活物質に生じる場合がある。また、充放電による正極活物質の膨張および収縮により割れ目(クラックとも呼ぶ)などの欠陥が発生する場合もある。図6に正極活物質51の断面模式図を示す。正極活物質51において、ピット54、58は穴のように図示しているが、開口形状は円ではなく奥行きがあり溝のような形状を有する。ピットの発生源は点欠陥の可能性がある。またピットができる近傍ではLCOの結晶構造が崩れ、層状岩塩型とは異なった結晶構造になると考えられる。結晶構造が崩れるとキャリアイオンであるリチウムイオンの拡散および放出を阻害する可能性があり、ピットはサイクル特性劣化の要因と考えられる。また、正極活物質51において、クラック57も示している。結晶面55は陽イオンの配列と平行な結晶面であり、正極活物質51は凹部52を有することがある。領域53、56は添加元素が存在する領域を示し、領域53は少なくとも凹部52を充填するように位置する。
リチウムイオン二次電池の正極活物質は、代表的にはLCOおよびNMC(ニッケル−マンガン−コバルト酸リチウム)であり、複数の金属元素(コバルト、ニッケルなど)を有する複合酸化物とも言える。複数の正極活物質のうち、少なくとも一つには欠陥を有し、その欠陥が充放電前後で変化する場合がある。正極活物質は、二次電池に用いられると、その正極活物質を取り囲む環境物質(電解液など)によって化学的または電気化学的に侵食されるか、若しくは正極活物質が劣化する現象が生じる場合がある。この劣化は、正極活物質の表面で均一に発生するのではなく、局部的に集中して生じ、二次電池の充放電を繰り返すことでたとえば表面から内部に向かって深く欠陥が生じる。
正極活物質において欠陥が進行して穴を形成する現象を孔食(Pitting Corrosion)とも呼ぶことができ、図6では孔食で発生した穴をピット54、58として示す。
本明細書において、クラックとピットは異なる。正極活物質の作製直後にクラックは存在してもピットは存在しない。ピットは、充電深度の高い条件、たとえば4.5V以上の高電圧条件または高温(45℃以上)下で充放電することにより、コバルトおよび酸素が何層分か抜けた穴とも言え、コバルトが溶出した箇所ともいえる。クラックは物理的な圧力が加えられることで生じる新たな面、或いは図4Aの結晶粒界101が起因となって生じた割れ目を指している。充放電による正極活物質の膨張および収縮によりクラックが発生する場合もある。また、クラックおよび/または正極活物質内部の空洞からピットが発生する場合もある。
また正極活物質100は、表面の少なくとも一部に被膜(被覆部と記すことがある)を有していてもよい。図7に被膜104を有する正極活物質100の例を示す。
被膜104はたとえば充放電に伴い電解液の分解物が堆積して形成されたものであることが好ましい。特に高い充電深度となるような充電を繰り返す場合、正極活物質100の表面に電解液由来の被膜を有することで、充放電サイクル特性が向上することが期待される。これは正極活物質表面のインピーダンスの上昇を抑制する、または遷移金属Mの溶出を抑制する、等の理由による。被膜104はたとえば炭素、酸素およびフッ素を有することが好ましい。さらに電解液にリチウムビス(オキサレート)ボレート(LiBOB)、および/またはSUN(スベロニトリル)を用いた場合などは良質な被膜を得られやすい。そのため、ホウ素、窒素、硫黄、フッ素のうち少なくとも一を有する被膜104は良質な被膜である場合があり好ましい。また被膜104は正極活物質100の全てを覆っていなくてもよい。
<結晶構造>
コバルト酸リチウム(LiCoO)などの層状岩塩型の結晶構造を有する材料は、放電容量が高く、二次電池の正極活物質として優れることが知られている。層状岩塩型の結晶構造を有する材料としてたとえば、LiMOで表される複合酸化物が挙げられる。
遷移金属化合物におけるヤーン・テラー効果は、遷移金属のd軌道の電子の数により、その効果の強さが異なることが知られている。
ニッケルを有する化合物においては、ヤーン・テラー効果により歪みが生じやすい場合がある。よって、LiNiOにおいて高い充電深度となるような充放電を行った場合、歪みに起因する結晶構造の崩れが生じる懸念がある。LiCoOにおいてはヤーン・テラー効果の影響が小さいことが示唆され、充電深度が高いときの耐性がより優れる場合があり、遷移金属としてコバルトを用いると好ましい。
図8乃至図12を用いて、正極活物質の結晶構造について説明する。図8乃至図12では、正極活物質が有する遷移金属Mとしてコバルトを用いる場合について述べる。
<従来の正極活物質>
図10に示す正極活物質は、後述する作製方法にてフッ素およびマグネシウムが添加されないコバルト酸リチウム(LiCoO)である。非特許文献1および非特許文献2等で述べられているように、コバルト酸リチウムの結晶構造は変化する。図10には、LiCoO中のxによってコバルト酸リチウムの結晶構造が変化する様子を示す。
図10にR−3m(O3)を付してLiCoO中においてx=1のコバルト酸リチウムが有する結晶構造を示す。LiCoOにおいてx=1のときのコバルト酸リチウムは充電深度0(放電状態)に相当する。この結晶構造は、ユニットセル中にCoO層が3層存在し、リチウムがCoO層間に位置する。またリチウムは酸素が6配位した8面体(Octahedral)サイトを占有する。そのためこの結晶構造をO3型結晶構造と呼ぶ場合がある。なお、CoO層とはコバルトに酸素が6配位した8面体構造が、稜共有の状態で平面に連続した構造をいうこととする。これをコバルトと酸素の8面体からなる層、という場合もある。
また従来のコバルト酸リチウムは、x=0.5程度のときリチウムの対称性が高まり、単斜晶系の空間群P2/mに帰属する結晶構造を有することが知られている。この構造はユニットセル中にCoO層が1層存在する。そのためO1型、または単斜晶O1型と呼ぶ場合がある。図10ではP2/m(単斜晶O1)を付して、LiCoO中においてx=0.5のときのコバルト酸リチウムが有する結晶構造を示す。
またx=0のときの正極活物質は、三方晶系の空間群P−3m1の結晶構造を有し、やはりユニットセル中にCoO層が1層存在する。そのためこの結晶構造を、O1型、または三方晶O1型と呼ぶ場合がある。また三方晶を複合六方格子に変換し、六方晶O1型と呼ぶ場合もある。図10ではP−3m1(三方晶O1)を付して、LiCoO中においてx=0のときのコバルト酸リチウムが有する結晶構造を示す。
またx=0.12程度のときの従来のコバルト酸リチウムは、空間群R−3mの結晶構造を有する。LiCoOにおいてx=0.12程度のときのコバルト酸リチウムは充電深度が0.8程度に相当し、割合で示すと充電深度は80%程度である。この構造は、三方晶O1型のようなCoOの構造と、R−3m(O3)のようなLiCoOの構造と、が交互に積層された構造ともいえる。そのためこの結晶構造を、H1−3型結晶構造と呼ぶ場合がある。図10ではR−3m(H1−3)を付して、LiCoO中においてx=0.12のときのコバルト酸リチウムが有する結晶構造を示す。なお、実際のリチウムの挿入脱離にはムラが生じうるため、実験的にはx=0.25程度からH1−3型結晶構造が観測される。また実際にはH1−3型結晶構造は、ユニットセルあたりのコバルト原子の数が他の構造の2倍となっている。しかし図10をはじめ本明細書では、他の結晶構造と比較しやすくするためH1−3型結晶構造のc軸をユニットセルの1/2にした図で示すこととする。
H1−3型結晶構造は一例として、非特許文献3に記載があるように、ユニットセルにおけるコバルトと酸素の座標を、Co(0、0、0.42150±0.00016)、O1(0、0、0.27671±0.00045)、O2(0、0、0.11535±0.00045)と表すことができる。O1およびO2はそれぞれ酸素原子である。このようにH1−3型結晶構造は、1つのコバルト原子および2つの酸素原子を用いたユニットセルにより表される。一方、後述するように、本発明の一態様のO3’型の結晶構造は好ましくは、1つのコバルト原子および1つの酸素原子を用いたユニットセルにより表される。これは、O3’の構造の場合とH1−3型構造の場合では、コバルトと酸素との対称性が異なり、O3’の構造の方が、H1−3型構造に比べてO3の構造からの変化が小さいことを示す。正極活物質が有する結晶構造をいずれのユニットセルを用いて表すのがより好ましいか、の選択はたとえば、XRDパターンのリートベルト解析において、GOF(goodness of fit)の値がより小さくなるように選択すればよい。
充電電圧がリチウム金属の酸化還元電位を基準に4.6V(vs Li/Li)以上になるような高電圧の充電、あるいはLiCoO中のxが0.24以下になるような充電(当該充電は充電深度が0.8以上になるような深い深度の充電に相当する)と、放電とを繰り返すと、従来のコバルト酸リチウムはH1−3型結晶構造と、放電状態のR−3m(O3)の構造と、の間で結晶構造の変化(つまり、非平衡な相変化)を繰り返すことになる。
しかしながら、これらの2つの結晶構造は、CoO層のずれが大きい。図10に点線および矢印で示すように、H1−3型結晶構造では、CoO層がR−3m(O3)から大きくずれている。このようなダイナミックな構造変化は、結晶構造の安定性に悪影響を与えうる。
さらにこれらの2つの結晶構造は体積の差も大きい。同数のコバルト原子あたりで比較した場合、H1−3型結晶構造と放電状態のO3型結晶構造の体積の差は3.0%以上であり、代表的には3.9%以上である。
加えて、H1−3型結晶構造はCoO層が連続した構造を有するが、CoO層が連続した構造はP−3m1(三方晶O1)も有する構造であり不安定である可能性が高い。
そのため、充電深度が高くなるような充放電、又はxが0.24以下になるような充放電を繰り返すとコバルト酸リチウムの結晶構造は崩れていく。結晶構造の崩れが、サイクル特性の悪化を引き起こす。これは、結晶構造が崩れることで、リチウムが安定して存在できるサイトが減少し、またリチウムの挿入脱離が難しくなる。
<本発明の一態様の正極活物質>
≪結晶構造≫
本発明の一態様の正極活物質100は、充電深度が高くなるような充放電の繰り返しにおいて、CoO層のずれを小さくすることができる。具体的には、LiCoO中のxが1の状態と、xが0.24以下の状態における結晶構造の変化が従来の正極活物質よりも少ない。より具体的には、xが1の放電状態と、xが0.24以下の充電状態におけるCoO層のずれを小さくすることができる。さらに、コバルト原子あたりで比較した場合の体積の変化を小さくすることができる。よって本発明の一態様の正極活物質100は、xが0.24以下になるような充放電を繰り返しても結晶構造が崩れにくく、優れたサイクル特性を実現することができる。また、本発明の一態様の正極活物質100は、LiCoO中のxが0.24以下の状態において従来の正極活物質よりも安定な結晶構造を取り得る。よって、本発明の一態様の正極活物質は、LiCoO中のxが0.24以下の状態を保持した場合において、二次電池のショートが生じづらい場合がある。そのような場合には二次電池の安全性がより向上するため、好ましい。
LiCoO中のxが1および0.2程度のときに正極活物質100の内部100bが有する結晶構造を、図8に示す。内部100bは正極活物質100の体積の大半を占め、充放電に大きく寄与する部分であるため、CoO層のずれおよび体積の変化が最も問題となる部分といえる。
正極活物質100はリチウムと、遷移金属Mとしてコバルトと、酸素と、を有する複合酸化物である。上記に加えて、内部100bは添加元素としてマグネシウムを有することが好ましく、さらに遷移金属Mとしてコバルトに加えてニッケルを有するとより好ましい。表層部100aは添加元素としてフッ素を有することが好ましく、アルミニウムおよび/またはニッケルを有するとより好ましい。表層部100aの詳細については後述する。
図8において、正極活物質100はx=1のとき、従来のコバルト酸リチウムと同じR−3m(O3)の結晶構造を有する。一方、正極活物質100の内部100bは、十分に充電されたとき、代表的にはxが0.24以下、たとえば0.2程度または0.12程度のとき、H1−3型結晶構造とは異なる構造の結晶を有する。x=0.2程度のときの本発明の一態様の正極活物質100は、三方晶系の空間群R−3mに帰属され、コバルト、マグネシウム等のイオンが酸素6配位位置を占める結晶構造を有する。これはCoO層の対称性がO3と同じである。よって、本構造を本明細書等ではO3’型結晶構造と呼び、図8にR−3m(O3’)を付して示す。また、O3型結晶構造およびO3’型結晶構造のいずれの場合も、CoO層の間、つまりリチウムサイトに、希薄にマグネシウムが存在することが好ましい。また、酸素サイトに、ランダムかつ希薄に、フッ素が存在することが好ましい。
なお、O3’型結晶構造では、リチウムなどの軽元素は酸素4配位位置を占める場合がありうる。
また図8のO3’ではリチウムが全てのリチウムサイトに1/5の確率で存在するように示したが、本発明の一態様の正極活物質100はこれに限らない。一部のリチウムサイトに偏って存在していてもよい。たとえば空間群P2/mに属するLi0.5CoOと同様に、整列した一部のリチウムサイトに存在していてもよい。リチウムの分布は、たとえば中性子線回折により分析することができる。
またO3’型の結晶構造は、層間にランダムにリチウムを有するもののCdCl型の結晶構造に類似する結晶構造であるということもできる。このCdCl型に類似した結晶構造は、ニッケル酸リチウムを充電深度0.94まで充電したとき(Li0.06NiO)の結晶構造と近いが、純粋なコバルト酸リチウム、またはコバルトを多く含む層状岩塩型の正極活物質では通常この結晶構造を取らないことが知られている。
本発明の一態様の正極活物質100では、多くのリチウムが脱離したときの結晶構造の変化が、従来の正極活物質よりも抑制されている。たとえば、図8中に点線で示すように、これらの結晶構造ではCoO層のずれがほとんどない。
より詳細に説明すれば、本発明の一態様の正極活物質100は、多くのリチウムが脱離した場合にも結晶構造の安定性が高い。たとえば、従来の正極活物質においてはH1−3型結晶構造となる充電電圧、たとえばリチウム金属の電位を基準として4.6V程度の電圧においてもR−3m(O3)の結晶構造を保持できる充電電圧の領域が存在し、さらに充電電圧を高めた領域、たとえばリチウム金属の電位を基準として4.65V以上4.7V以下の電圧においてもO3’型の結晶構造を取り得る領域が存在する。さらに充電電圧を高めるとようやく、H1−3型結晶が観測される場合がある。また、充電電圧がより低い場合(たとえば充電電圧がリチウム金属の電位を基準として4.5V以上4.6V未満でも、本発明の一態様の正極活物質100はO3’型結晶構造を取り得る場合が有る。
そのため、本発明の一態様の正極活物質100においては、多くのリチウムが脱離するような充放電を繰り返しても結晶構造が崩れにくい。
また結晶構造の空間群はXRD、電子線回折、中性子線回折等によって同定されるものである。そのため本明細書等において、ある空間群に属する、またはある空間群であるとは、ある空間群に同定されると言い換えることができる。
なお、二次電池においてたとえば負極活物質として黒鉛を用いる場合には、上記よりも黒鉛の電位の分だけ二次電池の電圧が低下する。黒鉛の電位はリチウム金属の電位を基準として0.05V乃至0.2V程度である。そのためたとえば負極活物質に黒鉛を用いた二次電池の電圧が4.3V以上4.5V以下においても本発明の一態様の正極活物質100はR−3m(O3)の結晶構造を保持でき、さらに充電電圧を高めた領域、たとえば二次電池の電圧が4.5Vを超えて4.6V以下においてもO3’型結晶構造を取り得る。さらには、充電電圧がより低い場合、たとえば二次電池の電圧が4.2V以上4.3V未満でも、本発明の一態様の正極活物質100はO3’型結晶構造を取り得る場合が有る。
なおO3’型の結晶構造は、ユニットセルにおけるコバルトと酸素の座標を、Co(0,0,0.5)、O(0,0,x)、0.20≦x≦0.25の範囲内で示すことができる。またユニットセルの格子定数は、a軸は2.797×10−1≦a≦2.837×10−1(nm)が好ましく、2.807×10−1≦a≦2.827×10−1(nm)がより好ましく、代表的にはa=2.817×10−1(nm)である。c軸は13.681×10−1≦c≦13.881×10−1(nm)が好ましく、13.751×10−1≦c≦13.811×10−1(nm)がより好ましく、代表的にはc=13.781×10−1(nm)である。
CoO層間、つまりリチウムサイトにランダムかつ希薄に存在する添加元素、たとえばマグネシウムは、充電深度が高いときにCoO層のずれを抑制する効果がある。そのためCoO層間にマグネシウムが存在すると、O3’型の結晶構造になりやすい。そのためマグネシウムは本発明の一態様の正極活物質100全体に分布していることが好ましい。またマグネシウムを正極活物質100全体に分布させるために、本発明の一態様の正極活物質100の作製工程において、加熱処理を行うことが好ましい。
しかしながら、加熱処理の温度が高すぎると、カチオンミキシングが生じて添加元素、たとえばマグネシウムがコバルトサイトに入る可能性が高まる。コバルトサイトに存在するマグネシウムは、多くのリチウムが脱離したときR−3mの構造を保つ効果がない。さらに、加熱処理の温度が高すぎると、コバルトが還元されて2価になってしまう、リチウムが蒸散するなどの悪影響も懸念される。
そこで、マグネシウムを分布させるための加熱処理よりも前に、コバルト酸リチウムにフッ素化合物を加えておくことが好ましい。フッ素化合物を加えることでコバルト酸リチウムの融点降下が起こる。融点降下させることで、カチオンミキシングが生じにくい温度で、マグネシウムを正極活物質100全体に分布させることが容易となる。さらにフッ素化合物の存在により、電解液が分解して生じたフッ酸に対する耐食性が向上することが期待できる。
さらに、上述した初期加熱を行うことで、マグネシウム、アルミニウムをはじめとする添加元素の分布をより良好にすることができる。そのため充電電圧がより高い、たとえば充電電圧が4.6V以上4.8V以下、多くのリチウムが脱離した場合でもH1−3型結晶構造にならず、CoO層のずれが抑制された結晶構造を保つことができる場合がある。該結晶構造はO3’型結晶構造と同じ対称性を有するものの、格子定数がO3’型結晶構造と異なる。そのため、該構造を本明細書等ではO3”型結晶構造と呼ぶ。O3”型もCdCl型の結晶構造に類似する結晶構造ということができる。
なお、マグネシウム濃度を所望の値よりも高くすると、結晶構造の安定化への効果が小さくなってしまう場合がある。マグネシウムが、リチウムサイトに加えて、コバルトサイトにも入るようになるためと考えられる。本発明の一態様の正極活物質100が有するマグネシウムの原子数は、遷移金属Mの原子数の0.001倍以上0.1倍以下が好ましく、0.01倍より大きく0.04倍未満がより好ましく、0.02倍程度がさらに好ましい。または0.001倍以上0.04未満が好ましい。または0.01倍以上0.1倍以下が好ましい。ここで示すマグネシウムの濃度はたとえば、ICP−MS(誘導結合プラズマ質量分析)等を用いて正極活物質100全体の元素分析を行った値であってもよいし、正極活物質の作製の過程における原料の配合の値に基づいてもよい。
ニッケルをはじめとする遷移金属Mおよびアルミニウムはコバルトサイトに存在することが好ましいが、一部がリチウムサイトに存在していてもよい。またマグネシウムはリチウムサイトに存在することが好ましい。酸素は、一部がフッ素と置換されていてもよい。
本発明の一態様の正極活物質のマグネシウム濃度が高くなるのに伴って正極活物質の充放電容量が減少することがある。その要因としてたとえば、リチウムサイトにマグネシウムが入ることにより、充放電に寄与するリチウム量が減少することが挙げられる。また、過剰なマグネシウムが、充放電に寄与しないマグネシウム化合物を生成する場合もある。本発明の一態様の正極活物質がマグネシウムに加えて、ニッケルを有することにより、重量あたりおよび体積あたりの充放電容量を高めることができる場合がある。また本発明の一態様の正極活物質がマグネシウムに加えて、アルミニウムを有することにより、重量あたりおよび体積あたりの充放電容量を高めることができる場合がある。また本発明の一態様の正極活物質がマグネシウムに加えてニッケルおよびアルミニウムを有することにより、重量あたりおよび体積あたりの充放電容量を高めることができる場合がある。
以下に、本発明の一態様の正極活物質が有するマグネシウム、金属Z、等の元素の濃度を、原子数を用いて表す。
本発明の一態様の正極活物質100が有するニッケルの原子数は、コバルトの原子数の0%を超えて7.5%以下が好ましく、0.05%以上4%以下が好ましく、0.1%以上2%以下が好ましく、0.2%以上1%以下がより好ましい。または0%を超えて4%以下が好ましい。または0%を超えて2%以下が好ましい。または0.05%以上7.5%以下が好ましい。または0.05%以上2%以下が好ましい。または0.1%以上7.5%以下が好ましい。または0.1%以上4%以下が好ましい。ここで示すニッケルの濃度はたとえば、GD−MS、ICP−MS等を用いて正極活物質100全体の元素分析を行った値であってもよいし、正極活物質100の作製の過程における原料の配合の値に基づいてもよい。
上記の濃度で含まれるニッケルは正極活物質100全体に均一に固溶しやすいため、特に内部100bの結晶構造の安定化に寄与する。また内部100bに2価のニッケルが存在すると、その近くではリチウムサイトにランダムかつ希薄に存在する2価の添加元素、たとえばマグネシウムがより安定に存在できる可能性がある。そのため多くのリチウムが脱離するような充放電を経てもマグネシウムの溶出が抑制されうる。そのため充放電サイクル特性が向上しうる。このように内部100bにおけるニッケルの効果と、表層部100aにおけるマグネシウム、アルミニウム、チタン、フッ素等の効果と、を両方併せ持つと、多くのリチウムが脱離した時の結晶構造の安定化に極めて効果的である。
本発明の一態様の正極活物質が有するアルミニウムの原子数は、コバルトの原子数の0.05%以上4%以下が好ましく、0.1%以上2%以下が好ましく、0.3%以上1.5%以下がより好ましい。または0.05%以上2%以下が好ましい。または0.1%以上4%以下が好ましい。ここで示すアルミニウムの濃度はたとえば、GD−MS、ICP−MS等を用いて正極活物質100全体の元素分析を行った値であってもよいし、正極活物質100の作製の過程における原料の配合の値に基づいてもよい。
本発明の一態様の正極活物質100は、さらに添加元素としてリンを用いることが好ましい。また、本発明の一態様の正極活物質100は、リンと酸素を含む化合物を有することがより好ましい。
本発明の一態様の正極活物質100がリンを含む化合物を有することにより、多くのリチウムが脱離した状態を保持した場合において、二次電池のショートを抑制できる場合がある。
本発明の一態様の正極活物質100がリンを有する場合には、電解液の分解により発生したフッ化水素とリンが反応し、電解液中のフッ化水素濃度が低下する可能性がある。
電解液がLiPFを有する場合、加水分解により、フッ化水素が発生する場合がある。また、正極の構成要素として用いられるポリフッ化ビニリデン(PVDF)とアルカリとの反応によりフッ化水素が発生する場合もある。電解液中のフッ化水素濃度が低下することにより、集電体の腐食および/または被膜104のはがれを抑制できる場合がある。また、PVDFのゲル化および/または不溶化による接着性の低下を抑制できる場合がある。
本発明の一態様の正極活物質がマグネシウムに加えてリンを有する場合、多くのリチウムが脱離した状態における安定性が極めて高い。リンを有する場合、リンの原子数は、コバルトの原子数の1%以上20%以下が好ましく、2%以上10%以下がより好ましく、3%以上8%以下がさらに好ましい。または1%以上10%以下が好ましい。または1%以上8%以下が好ましい。または2%以上20%以下が好ましい。または2%以上8%以下が好ましい。または3%以上20%以下が好ましい。または3%以上10%以下が好ましい。加えてマグネシウムの原子数は、コバルトの原子数の0.1%以上10%以下が好ましく、0.5%以上5%以下がより好ましく、0.7%以上4%以下がより好ましい。または0.1%以上5%以下が好ましい。または0.1%以上4%以下が好ましい。または0.5%以上10%以下が好ましい。または0.5%以上4%以下が好ましい。または0.7%以上10%以下が好ましい。または0.7%以上5%以下が好ましい。ここで示すリンおよびマグネシウムの濃度はたとえば、ICP−MS等を用いて正極活物質100全体の元素分析を行った値であってもよいし、正極活物質100の作製の過程における原料の配合の値に基づいてもよい。
正極活物質100はクラックを有することがある。クラックを表面とした正極活物質100の内部又は凹部、たとえば埋め込み部102にリン、より具体的にはたとえばリンと酸素を含む化合物が存在することにより、クラックの進行が抑制される場合がある。
≪表層部≫
マグネシウムは本発明の一態様の正極活物質100全体に分布していることが好ましいが、これに加えて表層部100aのマグネシウム濃度が、正極活物質100全体の平均よりも高いことが好ましい。または、表層部100aのマグネシウム濃度が、内部100bの濃度よりも高いことが好ましい。たとえば、XPS(X線光電子分光)等で測定される表層部100aのマグネシウム濃度が、ICP−MS等で測定される正極活物質100全体の平均のマグネシウム濃度よりも高いことが好ましい。または、EDX(エネルギー分散型X線分析法)面分析等で測定される表層部100aのマグネシウム濃度が、内部100bのマグネシウム濃度よりも高いことが好ましい。
また、本発明の一態様の正極活物質100が添加元素Xを有する場合において、該添加元素Xの表層部100aにおける濃度が、正極活物質100全体の平均よりも高いことが好ましい。または、該添加元素Xの表層部100aにおける濃度が、内部100bよりも高いことが好ましい。たとえば、XPS等で測定される表層部100aのコバルト以外の元素の濃度が、ICP−MS等で測定される正極活物質100全体の平均における該元素の濃度よりも高いことが好ましい。または、EDX面分析等で測定される表層部100aのコバルト以外の元素の濃度が、内部100bのコバルト以外の元素の濃度よりも高いことが好ましい。
表層部100aは、結晶構造が保たれた内部100bと異なり結合が切断された状態である上に、充電時には表面からリチウムが抜けていくため、表層部100aは内部100bよりもリチウム濃度が低くなりやすい部分である。そのため、不安定になりやすく結晶構造が崩れやすい部分である。表層部100aのマグネシウム濃度が高ければ、結晶構造の変化をより効果的に抑制することができる。また表層部100aのマグネシウム濃度が高いと、電解液が分解して生じたフッ酸に対する耐食性が向上することも期待できる。
またフッ素も、本発明の一態様の正極活物質100の表層部100aの濃度が、正極活物質100全体の平均よりも高いことが好ましい。または、表層部100aのフッ素濃度が、内部100bの濃度よりも高いことが好ましい。電解液に接する領域である表層部100aにフッ素が存在することで、フッ酸に対する耐食性を効果的に向上させることができる。
このように本発明の一態様の正極活物質100の表層部100aは内部100bよりも、添加元素、たとえばマグネシウムおよびフッ素の濃度が高い、内部と異なる組成であることが好ましい。またその組成として室温(25℃)で安定な結晶構造をとることが好ましい。そのため、表層部100aは内部100bと異なる結晶構造を有していてもよい。たとえば、本発明の一態様の正極活物質100の表層部100aの少なくとも一部が、岩塩型の結晶構造を有していてもよい。また表層部100aと内部100bが異なる結晶構造を有する場合、表層部100aと内部100bの結晶の配向が概略一致していることが好ましい。
層状岩塩型結晶、および岩塩型結晶の陰イオンは立方最密充填構造(面心立方格子構造)をとる。O3’型結晶も、陰イオンは立方最密充填構造をとると推定される。
なお、本明細書等では、陰イオンがABCABCのように3層が互いにずれて積み重なる構造であれば、立方最密充填構造と呼ぶこととする。そのため陰イオンは厳密に立方格子でなくてもよい。同時に現実の結晶は必ず欠陥を有するため、分析結果が必ずしも理論通りとなっていないことがある。たとえば電子線回折パターンまたはTEM像等のFFT(高速フーリエ変換)パターンにおいて、理論上の位置と若干異なる位置にスポットが現れてもよい。たとえば理論上の位置との方位が5度以下、または2.5度以下であれば立方最密充填構造をとるといってよい。
層状岩塩型結晶と岩塩型結晶が接するとき、陰イオンにより構成される立方最密充填構造の向きが揃う結晶面が存在する。
または、以下のように説明することもできる。立方晶の結晶構造の(111)面における陰イオンは三角形形状の配列を有する。層状岩塩型は空間群R−3mであって、菱面体構造であるが、構造の理解を容易にするため一般に複合六方格子で表現され、層状岩塩型の(0001)面は六角格子を有する。立方晶(111)面の三角格子は、層状岩塩型の(0001)面の六角格子と同様の原子配列を有する。両者の格子が整合性を持つことを、立方最密充填構造の向きが揃うということができる。
ただし、層状岩塩型結晶およびO3’型結晶の空間群はR−3mであり、岩塩型結晶の空間群とは異なるため、上記の条件を満たす結晶面のミラー指数は層状岩塩型結晶およびO3’型結晶と、岩塩型結晶では異なる。本明細書では、層状岩塩型結晶、O3’型結晶、および岩塩型結晶において、陰イオンにより構成される立方最密充填構造の向きが揃うとき、結晶の配向が概略一致する、と言う場合がある。
二つの領域の結晶の配向が概略一致することは、TEM像、STEM像、HAADF−STEM像、ABF−STEM像、電子線回折パターン、TEM像等のFFTパターン等から判断することができる。XRD、電子線回折、中性子線回折等も判断の材料にすることができる。
図15に、層状岩塩型結晶LRSと岩塩型結晶RSの配向が概略一致しているTEM像の例を示す。TEM像、STEM像、HAADF−STEM像、ABF−STEM像等では、結晶構造を反映した像が得られる。
たとえばTEMの高分解能像等では、結晶面に由来するコントラストが得られる。電子線の回折および干渉によって、たとえば層状岩塩型の複合六方格子のc軸と垂直に電子線が入射した場合、(0003)面に由来するコントラストが明るい帯(明るいストリップ)と暗い帯(暗いストリップ)の繰り返しとして得られる。そのためTEM像において明線と暗線の繰り返しが観察され、明線同士(たとえば図15に示すLRSとLLRS)の角度が5度以下、または2.5度以下である場合、結晶面が概略一致している、すなわち結晶の配向が概略一致していると判断することができる。同様に、暗線同士の角度が5度以下、または2.5度以下である場合も、結晶の配向が概略一致していると判断することができる。
またHAADF−STEM像では、原子番号に応じたコントラストが得られ、原子番号が大きい元素ほど明るく観察される。たとえば空間群R−3mに属する層状岩塩型のコバルト酸リチウムの場合、コバルト(原子番号27)が最も原子番号が大きいため、コバルト原子の位置で電子線が強く散乱され、コバルト原子の配列が明線もしくは強い輝度の点の配列として観察される。そのため層状岩塩型の結晶構造を有するコバルト酸リチウムをc軸と垂直に観察した場合、c軸と垂直にコバルト原子の配列が明線もしくは強い輝度の点の配列として観察され、リチウム原子、酸素原子の配列は暗線もしくは輝度の低い領域として観察される。コバルト酸リチウムの添加元素としてフッ素(原子番号9)およびマグネシウム(原子番号12)を有する場合も同様である。
そのためHAADF−STEM像において、結晶構造の異なる二つの領域で明線と暗線の繰り返しが観察され、明線同士の角度が5度以下、または2.5度以下である場合、原子の配列が概略一致している、すなわち結晶の配向が概略一致していると判断することができる。同様に、暗線同士の角度が5度以下、または2.5度以下である場合も、結晶の配向が概略一致していると判断することができる。
なおABF−STEMでは原子番号が小さい元素ほど明るく観察されるが、原子番号に応じたコントラストが得られる点ではHAADF−STEMと同様であるため、HAADF−STEM像と同様に結晶の配向を判断することができる。
図16Aに層状岩塩型結晶LRSと岩塩型結晶RSの配向が概略一致しているSTEM像の例を示す。岩塩型結晶RSの領域のFFTを図16Bに、層状岩塩型結晶LRSの領域のFFTを図16Cに示す。図16Bおよび図16Cの左に組成、JCPDSのカードナンバー、およびこれから計算されるd値および角度を示す。右に実測値を示す。Oを付したスポットは0次回折である。
図16BでAを付したスポットは立方晶の11−1反射に由来するものである。図16CでAを付したスポットは層状岩塩型の0003反射に由来するものである。図16Bおよび図16Cから、立方晶の11−1反射の方位と、層状岩塩型の0003反射の方位と、が概略一致していることがわかる。すなわち図16BのAOを通る直線と、図16CのAOを通る直線と、が概略平行であることがわかる。ここでいう概略一致および概略平行とは、角度が5度以下、または2.5度以下であることをいう。
このようにFFTおよび電子線回折では、層状岩塩型結晶と岩塩型結晶の配向が概略一致していると、層状岩塩型の<0003>方位と、岩塩型の<11−1>方位と、が概略一致する場合がある。このとき、これらの逆格子点はスポット状であること、つまり他の逆格子点と連続していないことが好ましい。逆格子点がスポット状で、他の逆格子点と連続していないことは、結晶性が高いことを意味する。
また、上述のように立方晶の11−1反射の方位と、層状岩塩型の0003反射の方位と、が概略一致している場合、電子線の入射方位によっては、層状岩塩型の0003反射の方位とは異なる逆格子空間上に、層状岩塩型の0003反射由来ではないスポットが観測されることがある。たとえば図16CでBを付したスポットは、層状岩塩型の1014反射に由来するものである。これは、層状岩塩型の0003反射由来の逆格子点(図16CのA)の方位から、52°以上56°以下の角度であり(すなわち∠AOBが52°以上56°以下であり)、dが0.19nm以上0.21nm以下の箇所に観測されることがある。なおこの指数は一例であり、必ずしもこれに一致している必要は無い。たとえば、0003と1014と等価な逆格子点でも良い。
同様に立方晶の11−1反射が観測された方位とは別の逆格子空間上に、立方晶の11−1反射由来ではないスポットが観測されることがある。たとえば、図16BでBを付したスポットは、立方晶の200反射に由来するものである。これは、立方晶の11−1由来の反射(図16BのA)の方位から、54°以上56°以下の角度である(すなわち∠AOBが54°以上56°以下である)箇所に回折スポットが観測されることがある。なおこの指数は一例であり、必ずしもこれに一致している必要は無い。たとえば、11−1と200と等価な逆格子点でも良い。
なお、コバルト酸リチウムをはじめとする層状岩塩型の正極活物質は、(0003)面およびこれと等価な面、並びに(10−14)面およびこれと等価な面が結晶面として現れやすいことが知られている。そのため正極活物質の形状をSEM等でよく観察することで、(0003)面が観察しやすいように、たとえばTEM等において電子線が[12−10]入射となるように観察サンプルをFIB等で薄片加工することが可能である。結晶の配向の一致について判断したいときは、層状岩塩型の(0003)面が観察しやすいよう薄片化することが好ましい。
ただし表層部100aがMgOのみ、またはMgOとCoO(II)が固溶した構造のみでは、リチウムの挿入脱離が難しくなってしまう。そのため表層部100aは少なくともコバルトを有し、放電状態においてはリチウムも有し、リチウムの挿入脱離の経路を有している必要がある。また、マグネシウムよりもコバルトの濃度が高いことが好ましい。
また、添加元素Xは本発明の一態様の正極活物質100の表層部100aに位置することが好ましい。たとえば本発明の一態様の正極活物質100は、添加元素Xを有する被膜104に覆われていてもよい。
≪粒界≫
本発明の一態様の正極活物質100が有する添加元素は、上記で説明した分布に加え、一部は図4Aに示すように結晶粒界101およびその近傍に偏析していることがより好ましい。
より具体的には、正極活物質100の結晶粒界101およびその近傍のマグネシウム濃度が、内部100bの他の領域よりも高いことが好ましい。また結晶粒界101およびその近傍のフッ素濃度も内部100bの他の領域より高いことが好ましい。
結晶粒界101は面欠陥の一つである。そのため粒子表面と同様不安定になりやすく結晶構造の変化が始まりやすい。そのため、結晶粒界101およびその近傍のマグネシウム濃度が高ければ、結晶構造の変化をより効果的に抑制することができる。
また、結晶粒界101およびその近傍のマグネシウム濃度およびフッ素濃度が高い場合、本発明の一態様の正極活物質100の結晶粒界101に沿ってクラックが生じた場合でも、クラックにより生じた表面の近傍でマグネシウム濃度およびフッ素濃度が高くなる。そのためクラックが生じた後の正極活物質においてもフッ酸に対する耐食性を高めることができる。
なお本明細書等において、結晶粒界101の近傍とは、粒界から10nm程度までの領域をいうこととする。また結晶粒界101とは、原子の配列に変化のある面をいい、電子顕微鏡で観察することができる。具体的には、電子顕微鏡像で明線と暗線の繰り返しのなす角度が5度を超えた箇所、または結晶構造が観察できなくなった箇所をいうこととする。
≪粒径≫
本発明の一態様の正極活物質100の粒径は、大きすぎるとリチウムの拡散が難しくなる、集電体に塗工したときに活物質層の表面が粗くなりすぎる、等の問題がある。一方、小さすぎると、集電体への塗工時に活物質層を担持しにくくなる、電解液との反応が過剰に進む等の問題点も生じる。そのため、メディアン径(D50)が、1μm以上100μm以下が好ましく、2μm以上40μm以下であることがより好ましく、5μm以上30μm以下がさらに好ましい。または1μm以上40μm以下が好ましい。または1μm以上30μm以下が好ましい。または2μm以上100μm以下が好ましい。または2μm以上30μm以下が好ましい。または5μm以上100μm以下が好ましい。または5μm以上40μm以下が好ましい。
<分析方法>
ある正極活物質が、多くのリチウムが脱離したときO3’型の結晶構造を示す本発明の一態様の正極活物質100であるか否かは、多くのリチウムが脱離した正極活物質を有する正極を、XRD、電子線回折、中性子回折、電子スピン共鳴(ESR)、核磁気共鳴(NMR)等を用いて解析することで判断できる。特にXRDは、正極活物質が有するコバルト等の遷移金属の対称性を高分解能で解析できる、結晶性の高さおよび結晶の配向性を比較できる、格子の周期性歪みおよび結晶子サイズの解析ができる、二次電池を解体して得た正極をそのまま測定しても十分な精度を得られる、等の点で好ましい。
本発明の一態様の正極活物質100は、これまで述べたように多くのリチウムが脱離した状態と放電状態とで結晶構造の変化が少ないことが特徴である。多くのリチウムが脱離した状態で、放電状態との変化が大きな結晶構造が50wt%以上を占める材料は、多くのリチウムが脱離するような充放電に耐えられないため好ましくない。そして添加元素Xを添加するだけでは目的の結晶構造をとらない場合があることに注意が必要である。たとえばマグネシウムおよびフッ素を有するコバルト酸リチウム、という点で共通していても、多くのリチウムが脱離した状態でO3’型の結晶構造が60wt%以上になる場合と、H1−3型結晶構造が50wt%以上を占める場合と、がある。また、所定の電圧では、O3’型の結晶構造がほぼ100wt%になり、さらに当該所定の電圧をあげるとH1−3型結晶構造が生じる場合もある。そのため、本発明の一態様の正極活物質100であるか否かを判断するには、XRDをはじめとする結晶構造についての解析が必要である。
ただし、多くのリチウムが脱離した状態または放電状態の正極活物質は、大気に触れると結晶構造の変化を起こす場合がある。たとえばO3’型の結晶構造からH1−3型結晶構造に変化する場合がある。そのため、サンプルはすべてアルゴン雰囲気等の不活性雰囲気でハンドリングすることが好ましい。
≪充電方法≫
ある複合酸化物が、本発明の一態様の正極活物質100であるか否かを判断するための高電圧充電は、たとえば対極リチウムでコインセル(CR2032タイプ、直径20mm高さ3.2mm)を作製して充電することができる。
より具体的には、正極には、正極活物質、導電剤およびバインダを混合したスラリーを、アルミニウム箔の正極集電体に塗工したものを用いることができる。
対極(負極)にはリチウム金属を用いることができる。なお対極にリチウム金属以外の材料を用いたときは、二次電池の電位と正極の電位が異なる。本明細書等における電圧および電位は、特に言及しない場合、リチウム金属を対極に用いた場合の正極の電位(V vs. Li/Li)である。
電解液が有する電解質には、1mol/Lの六フッ化リン酸リチウム(LiPF)を用い、電解液には、エチレンカーボネート(EC)とジエチルカーボネート(DEC)がEC:DEC=3:7(体積比)、ビニレンカーボネート(VC)が2wt%で混合されたものを用いることができる。
セパレータには厚さ25μmのポリプロピレン多孔質フィルムを用いることができる。
正極缶および負極缶には、ステンレス(SUS)で形成されているものを用いることができる。
上記条件で作製したコインセルを、任意の電圧(たとえば4.6V、4.65V、4.7V、4.75Vまたは4.8V)、0.5Cで定電流充電し、その後電流値が0.01Cとなるまで定電圧充電する。なお1Cは充電状態から1時間で放電させたときに流す電流値とし、正極活物質の相変化を観測するためには、小さな電流値を用いることが望ましい。例えば1C=137mA/gまたは1C=200mA/gとすることができる。試験用電池としてコインセルを組み立てたとき、コインセルが有する正極の活物質量が10mgであった場合、0.5Cの充電レートで充電するとは、1C=137mA/gのとき0.685mAで充電することに相当し、1C=200mA/gのとき1mAで充電することに相当する。温度は25℃または45℃とする。このようにして充電した後に、コインセルをアルゴン雰囲気のグローブボックス中で解体して正極を取り出せば、多くのリチウムが脱離した正極活物質を得られる。この後に各種分析を行う際、外界成分との反応を抑制するため、アルゴン雰囲気で密封することが好ましい。たとえばXRDは、アルゴン雰囲気の密閉容器内に封入して行うことができる。
≪XRD≫
XRD測定の装置および条件は特に限定されない。たとえば下記のような装置および条件で測定することができる。
XRD装置 :Bruker AXS社製、D8 ADVANCE
X線源 :CuKα線
出力 :40kV、40mA
スリット系 :Div.Slit、0.5°
検出器:LynxEye
スキャン方式 :2θ/θ連続スキャン
測定範囲(2θ) :15°以上90°以下
ステップ幅(2θ) :0.01°設定
計数時間 :1秒間/ステップ
試料台回転 :15rpm
測定サンプルが粉末の場合は、ガラスのサンプルホルダーに入れる、またはグリースを塗ったシリコン無反射板にサンプルを振りかける、等の手法でセッティングすることができる。測定サンプルが正極の場合は、正極を基板に両面テープで貼り付け、正極活物質層を装置の要求する測定面に合わせてセッティングすることができる。
O3’型の結晶構造と、H1−3型結晶構造のモデルから計算される、CuKα1線による理想的な粉末XRDパターンを図9、図11、図12Aおよび図12Bに示す。また比較のためLiCoO中のx=1のLiCoO(O3)と、x=0のCoO(O1)の結晶構造から計算される理想的なXRDパターンも示す。図12Aおよび図12Bは、O3’型結晶構造とH1−3型結晶構造のXRDパターンを併記したものであり、図12Aは2θの範囲が18°以上21°以下の領域、図12Bは2θの範囲が42°以上46°以下の領域について拡大したものである。なお、LiCoO(O3)およびCoO(O1)のパターンはICSD(Inorganic Crystal Structure Database)(非特許文献4参照)より入手した結晶構造情報からMaterials Studio(BIOVIA)のモジュールの一つである、Reflex Powder Diffractionを用いて作成した。2θの範囲は15°から75°とし、Step size=0.01、波長λ1=1.540562×10−10m、λ2は設定なし、Monochromatorはsingleとした。H1−3型結晶構造のパターンは非特許文献3に記載の結晶構造情報から同様に作成した。O3’型の結晶構造のパターンは本発明の一態様の正極活物質のXRDパターンから結晶構造を推定し、TOPAS ver.3(Bruker社製結晶構造解析ソフトウェア)を用いてフィッティングし、他と同様にXRDパターンを作成した。
図9および図12に示すように、O3’型の結晶構造では、2θ=19.30±0.20°(19.10°以上19.50°以下)、および2θ=45.55±0.10°(45.45°以上45.65°以下)に回折ピークが出現する。より詳しく述べれば、2θ=19.30±0.10°(19.20°以上19.40°以下)、および2θ=45.55±0.05°(45.50°以上45.60°以下)に鋭い回折ピークが出現する。しかし図11および図12に示すように、H1−3型結晶構造およびCoO(P−3m1、O1)ではこれらの位置にピークは出現しない。そのため、充電深度の高い状態で2θ=19.30±0.20°、および2θ=45.55±0.10°のピークが出現することは、本発明の一態様の正極活物質100の特徴であるといえる。
これは、x=1と、x≦0.24の結晶構造で、XRDの回折ピークが出現する位置が近いということもできる。より具体的には、両者の主な回折ピークのうち2つ以上、より好ましくは3つ以上において、ピークが出現する位置の差が、2θ=0.7以下、より好ましくは2θ=0.5以下であるということができる。
また図示しないがO3’型の結晶構造では、2θ=19.47±0.10°(19.37°以上19.57°以下)、および2θ=45.62±0.05°(45.57°以上45.67°以下)に回折ピークが出現する。H1−3型結晶構造およびCoO(P−3m1、O1)ではこれらの位置にピークは出現しない。そのため充電電圧が4.8V以上となるようなLiCoO中のxが小さい状態で2θ=19.47±0.10°、および2θ=45.62±0.05°のピークが出現することは、初期加熱を経て作製した本発明の一態様の正極活物質100の特徴であるといえる。
なお、本発明の一態様の正極活物質100はLiCoO中のxが小さいときO3’型の結晶構造を有するが、粒子のすべてがO3’型の結晶構造でなくてもよい。他の結晶構造を含んでいてもよいし、一部が非晶質であってもよい。ただし、XRDパターンについてリートベルト解析を行ったとき、O3’型の結晶構造が50wt%以上であることが好ましく、60wt%以上であることがより好ましく、66wt%以上であることがさらに好ましい。O3’型の結晶構造が50wt%以上、より好ましくは60wt%以上、さらに好ましくは66wt%以上あれば、十分にサイクル特性に優れた正極活物質とすることができる。
また、測定開始から100サイクル以上の充放電を経ても、リートベルト解析を行ったときO3’型の結晶構造が35wt%以上であることが好ましく、40wt%以上であることがより好ましく、43wt%以上であることがさらに好ましい。
またXRDパターンにおける回折ピークの鋭さは結晶性の高さを示す。そのため、充電後の各回折ピークは鋭い、すなわち半値幅、たとえば半値全幅が狭い方が好ましい。半値幅は、同じ結晶相から生じたピークでも、XRDの測定条件又は2θの値によっても異なる。上述した測定条件の場合は、2θ=43°以上46°以下に観測されるピークにおいて、半値幅はたとえば0.2°以下が好ましく、0.15°以下がより好ましく、0.12°以下がさらに好ましい。なお必ずしも全てのピークがこの要件を満たしていなくてもよい。一部のピークがこの要件を満たせば、その結晶相の結晶性が高いことがいえる。このような高い結晶性は、十分に充電後の結晶構造の安定化に寄与する。
また、正極活物質の粒子が有するO3’型の結晶構造の結晶子サイズは、放電状態のLiCoO(O3)の1/10程度までしか低下しない。そのため、充放電前の正極と同じXRDの測定条件であっても、LiCoO中のxが小さいときは明瞭なO3’型の結晶構造のピークが確認できる。一方単純なLiCoOでは、一部がO3’型の結晶構造に似た構造を取りえたとしても、結晶子サイズが小さくなり、ピークはブロードで小さくなる。結晶子サイズは、XRDピークの半値幅から求めることができる。
本発明の一態様の正極活物質においては、前述の通り、ヤーン・テラー効果の影響が小さいことが好ましい。本発明の一態様の正極活物質は、層状岩塩型の結晶構造を有し、遷移金属としてコバルトを主として有することが好ましい。また、本発明の一態様の正極活物質において、ヤーン・テラー効果の影響が小さい範囲であれば、コバルトの他に、先に述べた金属Zを有してもよい。
正極活物質において、XRD分析を用いて、ヤーン・テラー効果の影響が小さいと推測される格子定数の範囲について考察する。
図13は、本発明の一態様の正極活物質が層状岩塩型の結晶構造を有し、コバルトとニッケルを有する場合において、XRDを用いてa軸およびc軸の格子定数を算出した結果を示す。図13Aがa軸、図13Bがc軸の結果である。なお、これらの算出に用いたXRDパターンは、正極活物質の合成を行った後の粉体であり、正極に組み込む前のものである。横軸のニッケル濃度は、コバルトとニッケルの原子数の和を100%とした場合のニッケルの濃度を示す。正極活物質は、アルミニウム源を用いない他は図2の作製方法に準じて作製した。ニッケルの濃度は、正極活物質においてコバルトとニッケルの原子数の和を100%とした場合のニッケルの濃度を示す。
図14には、本発明の一態様の正極活物質が層状岩塩型の結晶構造を有し、コバルトとマンガンを有する場合において、XRDを用いてa軸およびc軸の格子定数を見積もった結果を示す。図14Aがa軸、図14Bがc軸の結果である。なお、図14に示す格子定数は、正極活物質の合成を行った後の粉体であり、正極に組み込む前に測定したXRDによるものである。横軸のマンガン濃度は、コバルトとマンガンの原子数の和を100%とした場合のマンガンの濃度を示す。正極活物質は、ニッケル源に代えてマンガン源を用い、さらにアルミニウム源を用いない他は図2の作製方法に準じて作製した。マンガンの濃度は、ステップS21においてコバルトとマンガンの原子数の和を100%とした場合のマンガンの濃度を示す。
図13Cには、図13Aおよび図13Bに格子定数の結果を示した正極活物質について、a軸の格子定数をc軸の格子定数で割った値(a軸/c軸)を示す。図14Cには、図14Aおよび図14Bに格子定数の結果を示した正極活物質について、a軸の格子定数をc軸の格子定数で割った値(a軸/c軸)を示す。
図13Cより、ニッケル濃度が5%と7.5%ではa軸/c軸が顕著に変化する傾向がみられ、ニッケル濃度7.5%ではa軸の歪みが大きくなっている。この歪みはヤーン・テラー歪みである可能性がある。ニッケル濃度が7.5%未満において、ヤーン・テラー歪みの小さい、優れた正極活物質が得られることが示唆される。
次に、図14Aより、マンガン濃度が5%以上においては、格子定数の変化の挙動が異なり、ベガード則に従わないことが示唆される。よって、マンガン濃度が5%以上では結晶構造が異なることが示唆される。よって、マンガンの濃度はたとえば、4%以下が好ましい。
なお、上記のニッケル濃度およびマンガン濃度の範囲は、表層部100aにおいては必ずしもあてはまらない。すなわち、表層部100aにおいては、上記の濃度より高くてもよい場合がある。
以上より、格子定数の好ましい範囲について考察を行ったところ、本発明の一態様の正極活物質において、XRDパターンから推定できる、充放電を行わない状態、あるいは放電状態の正極活物質の粒子が有する層状岩塩型の結晶構造において、a軸の格子定数が2.814×10−10mより大きく2.817×10−10mより小さく、かつc軸の格子定数が14.05×10−10mより大きく14.07×10−10mより小さいことが好ましいことがわかった。充放電を行わない状態とはたとえば、二次電池の正極を作製する前の粉体の状態であってもよい。
あるいは、充放電を行わない状態、あるいは放電状態の正極活物質の粒子が有する層状岩塩型の結晶構造において、a軸の格子定数をc軸の格子定数で割った値(a軸/c軸)が0.20000より大きく0.20049より小さいことが好ましい。
あるいは、充放電を行わない状態、あるいは放電状態の正極活物質の粒子が有する層状岩塩型の結晶構造において、XRD分析をしたとき、2θが18.50°以上19.30°以下に第1のピークが観測され、かつ2θが38.00°以上38.80°以下に第2のピークが観測される場合がある。
なお粉体XRDパターンに出現するピークは、正極活物質100の体積の大半を占める、正極活物質100の内部100bの結晶構造を反映したものである。表層部100a、結晶粒界101等の結晶構造は、正極活物質100の断面の電子線回折等で分析することができる。
≪充電曲線とdQ/dV曲線≫
本発明の一態様の正極活物質100は、充電していくとき特徴的な電圧の変化が表れることがある。電圧の変化は、充電曲線の容量(Q)を電圧(V)で微分(dQ/dV)することで得られるdQ/dVvsV曲線から読み取ることができる。たとえばdQ/dVvsV曲線におけるピークの前後では、非平衡な相変化が起き、結晶構造が大きく変わっていると考えられる。なお本明細書等において、非平衡な相変化とは、物理量の非線形変化を起こす現象をいうこととする。
本発明の一態様の正極活物質100は、dQ/dV曲線において、4.55V付近にブロードなピークを有する場合がある。4.55V付近のピークは、O3型結晶構造からO3’型結晶構造へと相変化する際の電圧の変化を反映している。そのためこのピークが鋭い場合より、ブロードである方が結晶構造の変化がゆるやかであると考えられる。O3’型への結晶構造の変化は、ゆるやかに進んだ方がCoO層のずれおよび体積の変化の影響が少なく、好ましい。
より具体的には、充電曲線のdQ/dV曲線において、4.5V以上4.6V以下に現れる最大値を第1のピークとしたとき、第1のピークの半値幅が0.10V以上であると十分にブロードであるといえ、好ましい。本明細書等において第1のピークの半値幅は、4.3V以上4.5V以下に現れる最小値を第1の最小値としたときの、第1のピークと第1の最小値との平均値HWHMと、4.6V以上4.8V以下に現れる最小値を第2の最小値としたときの第1のピークと第2の最小値との平均値HWHMと、の和とする。
≪放電曲線とdQ/dV曲線≫
また、本発明の一態様の正極活物質100は、高電圧で充電した後、たとえば0.2C以下の低いレートで放電すると、放電終了間近に特徴的な電圧の変化が表れることがある。この変化は、放電曲線から求めたdQ/dVにおいて、3.9V前後に出現するピークよりも低電圧で、3.5Vまでの範囲に、少なくとも1つのピークが存在することで明瞭に確かめることができる。
≪XPS≫
XPSでは、表面から、2nm乃至8nm程度(通常5nm以下)の深さまでの領域の分析が可能である。表層部100aにおいて上記深さの領域までの各元素の濃度を定量的に分析することができる。また、ナロースキャン分析をすれば元素の結合状態を分析することができる。なおXPSの定量精度は多くの場合±1原子%程度、検出下限は元素にもよるが約1原子%である。
本発明の一態様の正極活物質100についてXPS分析をしたとき、ある添加元素Xの原子数は遷移金属Mの原子数の1.6倍以上6.0倍以下が好ましく、1.8倍以上4.0倍未満がより好ましい。例えば正極活物質100が、添加元素Xとしてマグネシウムを有する場合、遷移金属Mがコバルトである場合は、マグネシウムの原子数はコバルトの原子数の1.6倍以上6.0倍以下が好ましく、1.8倍以上4.0倍未満がより好ましい。またフッ素等のハロゲンの原子数は、遷移金属Mの原子数の0.2倍以上6.0倍以下が好ましく、1.2倍以上4.0倍以下がより好ましい。
XPS分析を行う場合にはたとえば、X線源として単色化アルミニウムを用いることができる。また、取出角はたとえば45°とすればよい。たとえば下記の装置および条件で測定することができる。
測定装置 :PHI 社製QuanteraII
X線源 :単色化Al(1486.6eV)
検出領域 :100μmφ
検出深さ :約4~5nm(取出角45°)
測定スペクトル :ワイドスキャン,各検出元素のナロースキャン
また、本発明の一態様の正極活物質100についてXPS分析したとき、フッ素と他の元素の結合エネルギーを示すピークは682eV以上685eV未満であることが好ましく、684.3eV程度であることがさらに好ましい。これは、フッ化リチウムの結合エネルギーである685eV、およびフッ化マグネシウムの結合エネルギーである686eVのいずれとも異なる値である。つまり、本発明の一態様の正極活物質100がフッ素を有する場合、フッ化リチウムおよびフッ化マグネシウム以外の結合であることが好ましい。
さらに、本発明の一態様の正極活物質100についてXPS分析したとき、マグネシウムと他の元素の結合エネルギーを示すピークは、1302eV以上1304eV未満であることが好ましく、1303eV程度であることがさらに好ましい。これは、フッ化マグネシウムの結合エネルギーである1305eVと異なる値であり、酸化マグネシウムの結合エネルギーに近い値である。つまり、本発明の一態様の正極活物質100がマグネシウムを有する場合、フッ化マグネシウム以外の結合であることが好ましい。
表層部100aに多く存在することが好ましい添加元素X、たとえばマグネシウムおよびアルミニウムは、XPS等で測定される濃度が、ICP−MS、あるいはGD−MS等で測定される濃度よりも高いことが好ましい。
マグネシウムおよびアルミニウムは、加工によりその断面を露出させ、断面をTEM−EDXを用いて分析する場合に、表層部100aにおける濃度が、内部100bにおける濃度に比べて高いことが好ましい。たとえば、TEM−EDX分析において、マグネシウムの濃度はピークトップから深さ1nmの点でピークの60%以下に減衰することが好ましい。またピークトップから深さ2nmの点でピークの30%以下に減衰することが好ましい。加工はたとえばFIB(Focused Ion Beam)により行うことができる。
XPS(X線光電子分光)の分析において、マグネシウムの原子数はコバルトの原子数の0.4倍以上1.5倍以下であることが好ましい。一方ICP−MSの分析による、コバルトの原子数に対するマグネシウムの原子数の比Mg/Coは0.001以上0.06以下であることが好ましい。
一方、遷移金属Mに含まれるニッケルは表層部100aに偏在せず、正極活物質100全体に分布していることが好ましい。ただし前述した添加元素Xが偏在する領域が存在する場合はこの限りではない。
≪ESR≫
上述したように本発明の一態様の正極活物質では、遷移金属Mとしてコバルトおよびニッケルを有し、添加元素としてマグネシウムを有することが好ましい。その結果一部のCo3+がNi2+に置換され、また一部のLiがMg2+に置換されることが好ましい。LiがMg2+に置換されることに伴い、当該Ni2+は還元されて、Ni3+になる場合がある。また、一部のLiがMg2+に置換され、それに伴いMg2+近傍のCo3+が還元されてCo2+になる場合がある。また、一部のCo3+がMg2+に置換され、それに伴いMg2+近傍のCo3+が酸化されてCo4+になる場合がある。
したがって、本発明の一態様である正極活物質は、Ni2+、Ni3+、Co2+およびCo4+のいずれか一以上を有することが好ましい。また、正極活物質の重量当たりのNi2+、Ni3+、Co2+およびCo4+のいずれか一以上に起因するスピン密度が、2.0×1017spins/g以上1.0×1021spins/g以下であることが好ましい。前述のスピン密度を有する正極活物質とすることで、特に充電状態での結晶構造が安定となり好ましい。なお、マグネシウム濃度が高すぎると、Ni2+、Ni3+、Co2+およびCo4+のいずれか一以上に起因するスピン密度が低くなる場合がある。
正極活物質中のスピン密度は、たとえば、電子スピン共鳴法(ESR:Electron Spin Resonance)などを用いて分析することができる。
≪EPMA≫
EPMA(電子プローブ微小分析)は元素の定量分析が可能である。面分析ならば各元素の分布を分析することができる。
EPMAでは表面から1μm程度の深さまでの領域を分析する。そのため、各元素の濃度は他の分析法を用いた測定結果と異なる場合がある。たとえば正極活物質100の表面分析を行ったとき、表層部に存在する添加元素Xの濃度が、XPSの結果より低くなる場合がある。また表層部に存在する添加元素Xの濃度が、ICP−MSの結果または正極活物質の作製の過程における原料の配合の値より高くなる場合がある。
本発明の一態様の正極活物質100の断面についてEPMA面分析をしたとき、添加元素Xの濃度が内部から表層部に向かって高くなる濃度勾配を有することが好ましい。より詳細には、図4C1に示すようにマグネシウム、フッ素、チタン、ケイ素は正極活物質100の内部から表面に向かって高くなる濃度勾配を有することが好ましい。また図4C2に示すようにアルミニウムは上記元素の濃度のピークよりも深い領域に濃度のピークを有することが好ましい。アルミニウム濃度のピークは表層部に存在してもよいし、表層部より深くてもよい。
なお本発明の一態様の正極活物質の表面および表層部には、正極活物質作製後に化学吸着した炭酸塩、ヒドロキシ基等は含まないとする。また正極活物質の表面に付着した電解液、バインダ、導電剤、またはこれら由来の化合物も含まないとする。そのため正極活物質が有する元素を定量分析するときは、XPSおよびEPMAをはじめとする表面分析で検出されうる炭素、水素、過剰な酸素、過剰なフッ素等を除外する補正をしてもよい。たとえば、XPSでは結合の種類を解析で分離することが可能であり、バインダ由来のC−F結合を除外する補正をおこなってもよい。
さらに各種分析に供する前に、正極活物質の表面に付着した電解液、バインダ、導電剤、またはこれら由来の化合物を除くために、正極活物質および正極活物質層等の試料に対して洗浄等を行ってもよい。このとき洗浄に用いる溶媒等にリチウムが溶け出す場合があるが、たとえその場合であっても、添加元素Xは溶け出しにくいため、添加元素Xの原子数比に影響があるものではない。
≪表面粗さと比表面積≫
本発明の一態様の正極活物質100は、表面がなめらかで凹凸が少ないことが好ましい。表面がなめらかで凹凸が少ないことは、表層部100aにおける添加元素の分布が良好であることを示す一つの要素である。
表面がなめらかで凹凸が少ないことは、たとえば正極活物質100の断面SEM像または断面TEM像、正極活物質100の比表面積等から判断することができる。
たとえば以下のように、正極活物質100の断面SEM像から表面のなめらかさを数値化することができる。
まず正極活物質100をFIB等により加工して断面を露出させる。このとき保護膜、保護材等で正極活物質100を覆うことが好ましい。次に保護膜等と正極活物質100との界面のSEM像を撮影する。該SEM像に画像処理ソフトでノイズ処理を行う。たとえばガウスぼかし(σ=2)を行った後、二値化を行う。さらに画像処理ソフトで界面抽出を行う。さらに自動選択ツール等で保護膜等と正極活物質100との界面ラインを選択し、データを表計算ソフト等に抽出する。表計算ソフト等の機能を用いて、回帰曲線(二次回帰)から補正を行い、傾き補正後データからラフネス算出用パラメータを求め、標準偏差を算出した二乗平均平方根(RMS)表面粗さを求める。また、この表面粗さは、正極活物質は少なくとも粒子外周の400nmにおける表面粗さである。
本実施の形態の正極活物質100の粒子表面においては、ラフネスの指標である二乗平均平方根(RMS)表面粗さは3nm未満、好ましくは1nm未満、さらに好ましくは0.5nm未満の二乗平均平方根(RMS)表面粗さであることが好ましい。
なおノイズ処理、界面抽出等を行う画像処理ソフトについては特に限定されないが、たとえば「ImageJ」を用いることができる。また表計算ソフト等についても特に限定されないが、たとえばMicrosoft Office Excelを用いることができる。
またたとえば、定容法によるガス吸着法にて測定した実際の比表面積Aと、理想的な比表面積Aとの比からも、正極活物質100の表面のなめらかさを数値化することができる。
理想的な比表面積Aは、すべての粒子の直径がメディアン径(D50)と同じであり、重量が同じであり、形状は理想的な球であるとして計算して求める。
メディアン径(D50)は、レーザ回折・散乱法を用いた粒度分布計等によって測定することができる。比表面積は、たとえば定容法によるガス吸着法を用いた比表面積測定装置等によって測定することができる。
本発明の一態様の正極活物質100は、メディアン径(D50)から求めた理想的な比表面積Aと、実際の比表面積Aの比A/Aが2.1以下であることが好ましい。
または、下記のような方法によっても正極活物質100の断面SEM像から表面のなめらかさを数値化することができる。
まず正極活物質100の表面SEM像を取得する。このとき観察前処理として導電性コーティングを施してもよい。観察面は電子線と垂直であることが好ましい。複数のサンプルを比較する場合は測定条件および観察面積を同じとする。
次に画像処理ソフト(たとえば「ImageJ」)を用いて上記のSEM像をたとえば8ビットに変換した画像(これをグレースケール画像と呼ぶ)を取得する。グレースケール画像は輝度(明るさ情報)を含んでいる。たとえば8ビットのグレースケール画像では、輝度を2の8乗=256階調で表すことができる。暗い部分は階調数が低くなり、明るい部分は階調数が高くなる。階調数と関連付けて輝度変化を数値化することができる。当該数値をグレースケール値と呼ぶ。グレースケール値を取得することで正極活物質の凹凸を数値として評価することが可能となる。
さらに対象領域の輝度変化をヒストグラムで表すことも可能となる。ヒストグラムとは対象領域における階調分布を立体的に示したもので、輝度ヒストグラムとも呼ぶ。輝度ヒストグラムを取得することで正極活物質の凹凸を視覚的にわかりやすく、評価することが可能となる。
本発明の一態様の正極活物質100は、上記グレースケール値の最大値と最小値との差が120以下であることが好ましく、115以下であることがより好ましく、70以上115以下であることがさらに好ましい。またグレースケール値の標準偏差は、11以下となることが好ましく、8以下であることがより好ましく、4以上8以下であることがさらに好ましい。
本実施の形態は、他の実施の形態と組み合わせ用いることができる。
(実施の形態3)
本実施の形態では、図17乃至図20用いて本発明の一態様の二次電池の例について説明する。
<二次電池の構成例1>
以下に、正極、負極および電解液が、外装体に包まれている二次電池を例にとって説明する。
〔正極〕
正極は、正極活物質層および正極集電体を有する。正極活物質層は正極活物質を有し、導電剤およびバインダを有していてもよい。正極活物質には、先の実施の形態で説明した作製方法を用いて作製した正極活物質を用いる。
また先の実施の形態で説明した正極活物質と、他の正極活物質を混合して用いてもよい。
他の正極活物質としてはたとえばオリビン型の結晶構造、層状岩塩型の結晶構造、またはスピネル型の結晶構造を有する複合酸化物等がある。たとえば、LiFePO、LiFeO、LiNiO、LiMn、V、Cr、MnO等の化合物があげられる。
また、他の正極活物質としてLiMn等のマンガンを含むスピネル型の結晶構造を有するリチウム含有材料に、ニッケル酸リチウム(LiNiOまたはLiNi1−x(0<x<1)(M=Co、Al等))を混合すると好ましい。該構成とすることによって、二次電池の特性を向上させることができる。
また、他の正極活物質として、組成式LiMnで表すことができるリチウムマンガン複合酸化物を用いることができる。ここで、元素Mは、リチウム、マンガン以外から選ばれた金属元素、またはシリコン、リンを用いることが好ましく、ニッケルであることがさらに好ましい。また、リチウムマンガン複合酸化物全体を測定する場合、放電時に0<a/(b+c)<2、かつc>0、かつ0.26≦(b+c)/d<0.5を満たすことが好ましい。なお、リチウムマンガン複合酸化物全体の金属、シリコン、リン等の組成は、たとえばICP−MS(誘導結合プラズマ質量分析計)を用いて測定することができる。またリチウムマンガン複合酸化物全体の酸素の組成は、たとえばEDXを用いて測定することが可能である。また、ICP−MS分析と併用して、融解ガス分析、XAFS(X線吸収微細構造)分析の価数評価を用いることで求めることができる。なお、リチウムマンガン複合酸化物とは、少なくともリチウムとマンガンとを含む酸化物をいい、クロム、コバルト、アルミニウム、ニッケル、鉄、マグネシウム、モリブデン、亜鉛、インジウム、ガリウム、銅、チタン、ニオブ、シリコン、およびリンなどからなる群から選ばれる少なくとも一種の元素を含んでいてもよい。
以下に一例として、活物質層200に導電剤としてグラフェンまたはグラフェン化合物を用いる場合の断面構成例を説明する。
図17Aに、活物質層200の縦断面図を示す。活物質層200は、粒状の正極活物質100と、導電剤としてのグラフェンまたはグラフェン化合物201と、バインダ(図示せず)と、を含む。
本明細書等においてグラフェン化合物201とは、多層グラフェン、マルチグラフェン、酸化グラフェン、多層酸化グラフェン、マルチ酸化グラフェン、還元された酸化グラフェン、還元された多層酸化グラフェン、還元されたマルチ酸化グラフェン、又はグラフェン量子ドット等を含む。グラフェン化合物とは、炭素を有し、平板状、シート状等の形状を有し、炭素6員環で形成された二次元的構造を有するものをいう。該炭素6員環で形成された二次元的構造は炭素シートといってもよい。グラフェン化合物は官能基を有してもよい。またグラフェン化合物は屈曲した形状を有することが好ましい。またグラフェン化合物は丸まってカーボンナノファイバーのようになっていてもよい。
本明細書等において酸化グラフェンとは、炭素と、酸素を有し、シート状の形状を有し、官能基、特にエポキシ基、カルボキシ基またはヒドロキシ基を有するものをいう。
本明細書等において還元された酸化グラフェンとは、炭素と、酸素を有し、シート状の形状を有し、炭素6員環で形成された二次元的構造を有するものをいう。炭素シートといってもよい。還元された酸化グラフェンは1枚でも機能するが、複数枚が積層されていてもよい。還元された酸化グラフェンは、炭素の濃度が80atomic%より大きく、酸素の濃度が2atomic%以上15atomic%以下である部分を有することが好ましい。このような炭素濃度および酸素濃度とすることで、少量でも導電性の高い導電剤として機能することができる。また還元された酸化グラフェンは、ラマンスペクトルにおけるGバンドとDバンドの強度比G/Dが1以上であることが好ましい。このような強度比である還元された酸化グラフェンは、少量でも導電性の高い導電剤として機能することができる。
グラフェン化合物は、高い導電性を有するという優れた電気特性と、高い柔軟性および高い機械的強度を有するという優れた物理特性と、を有する場合がある。また、グラフェン化合物はシート状の形状を有する。グラフェン化合物は、湾曲面を有する場合があり、接触抵抗の低い面接触を可能とする。また、薄くても導電性が非常に高い場合があり、少ない量で効率よく活物質層内で導電パスを形成することができる。そのため、グラフェン化合物を導電剤として用いることにより、活物質と導電剤との接触面積を増大させることができる。グラフェン化合物は活物質の80%以上の面積を覆っているとよい。なお、グラフェン化合物が活物質粒子の少なくとも一部にまとわりついていると好ましい。また、グラフェン化合物が活物質粒子の少なくとも一部の上に重なっていると好ましい。また、グラフェン化合物の形状が活物質粒子の形状の少なくとも一部に一致していると好ましい。該活物質粒子の形状とは、たとえば、単一の活物質粒子が有する凹凸、または複数の活物質粒子によって形成される凹凸をいう。また、グラフェン化合物が活物質粒子の少なくとも一部を囲んでいることが好ましい。また、グラフェン化合物は穴が空いていてもよい。
粒子径の小さい活物質粒子、たとえば1μm以下の活物質粒子を用いる場合には、活物質粒子の比表面積が大きく、活物質粒子同士を繋ぐ導電パスがより多く必要となる。このような場合には、少ない量でも効率よく導電パスを形成することができるグラフェン化合物を用いると好ましい。
上述のような性質を有するため、急速充電および急速放電が要求される二次電池には、グラフェン化合物を導電剤として用いることが特に有効である。たとえば2輪または4輪の車両用二次電池、ドローン用二次電池などは急速充電および急速放電特性が要求される場合がある。またモバイル電子機器などでは急速充電特性が要求される場合がある。急速充電および急速放電は、高レートの充電および高レートの放電といってもよい。たとえば1C、2C、または5C以上の充電および放電をいうこととする。
活物質層200の縦断面においては、図17Bに示すように、活物質層200の内部において概略均一にシート状のグラフェンまたはグラフェン化合物201が分散する。図17Bにおいてはグラフェンまたはグラフェン化合物201を模式的に太線で表しているが、実際には炭素分子の単層または多層の厚みを有する薄膜である。複数のグラフェンまたはグラフェン化合物201は、複数の粒状の正極活物質100を一部覆うように、あるいは複数の粒状の正極活物質100の表面上に張り付くように形成されているため、互いに面接触している。
ここで、複数のグラフェンまたはグラフェン化合物同士が結合することにより、網目状のグラフェン化合物シート(以下グラフェン化合物ネットまたはグラフェンネットと呼ぶ)を形成することができる。活物質をグラフェンネットが被覆する場合に、グラフェンネットは活物質同士を結合するバインダとしても機能することができる。よって、バインダの量を少なくすることができる、または使用しないことができるため、電極体積および電極重量に占める活物質の比率を向上させることができる。すなわち、二次電池の充放電容量を増加させることができる。
ここで、グラフェンまたはグラフェン化合物201として酸化グラフェンを用い、活物質と混合して活物質層200となる層を形成後、還元することが好ましい。つまり完成後の活物質層は還元された酸化グラフェンを有することが好ましい。グラフェンまたはグラフェン化合物201の形成に、極性溶媒中での分散性が極めて高い酸化グラフェンを用いることにより、グラフェンまたはグラフェン化合物201を活物質層200の内部において概略均一に分散させることができる。均一に分散した酸化グラフェンを含有する分散媒から溶媒を揮発除去し、酸化グラフェンを還元するため、活物質層200に残留するグラフェンまたはグラフェン化合物201は部分的に重なり合い、互いに面接触する程度に分散していることで三次元的な導電パスを形成することができる。なお、酸化グラフェンの還元は、たとえば熱処理により行ってもよいし、還元剤を用いて行ってもよい。
従って、活物質と点接触するアセチレンブラック等の粒状の導電剤と異なり、グラフェンまたはグラフェン化合物201は接触抵抗の低い面接触を可能とするものであるから、通常の導電剤よりも少量で粒状の正極活物質100とグラフェンまたはグラフェン化合物201との電気伝導性を向上させることができる。よって、正極活物質100の活物質層200における比率を増加させることができる。これにより、二次電池の放電容量を増加させることができる。
また、予め、スプレードライ装置を用いることで、活物質全体を覆って導電剤であるグラフェン化合物を被膜として形成し、さらに活物質同士間をグラフェン化合物で導電パスを形成することもできる。
またグラフェン化合物と共に、グラフェン化合物を形成する際に用いる材料を混合して活物質層200に用いてもよい。たとえばグラフェン化合物を形成する際の触媒として用いる粒子を、グラフェン化合物と共に混合してもよい。グラフェン化合物を形成する際の触媒としてはたとえば、酸化ケイ素(SiO、SiO(x<2))、酸化アルミニウム、鉄、ニッケル、ルテニウム、イリジウム、プラチナ、銅、ゲルマニウム等を有する粒子が挙げられる。該粒子はメディアン径(D50)が1μm以下であると好ましく、100nm以下であることがより好ましい。
[バインダ]
バインダとしては、たとえば、スチレン−ブタジエンゴム(SBR)、スチレン−イソプレン−スチレンゴム、アクリロニトリル−ブタジエンゴム、ブタジエンゴム、エチレン−プロピレン−ジエン共重合体などのゴム材料を用いることが好ましい。またバインダとして、フッ素ゴムを用いることができる。
また、バインダとしては、たとえば水溶性の高分子を用いることが好ましい。水溶性の高分子としては、たとえば多糖類などを用いることができる。多糖類としては、カルボキシメチルセルロース(CMC)、メチルセルロース、エチルセルロース、ヒドロキシプロピルセルロース、ジアセチルセルロース、再生セルロースなどのセルロース誘導体、澱粉などのうち一以上を用いることができる。また、これらの水溶性の高分子を、前述のゴム材料と併用して用いると、さらに好ましい。
または、バインダとしては、ポリスチレン、ポリアクリル酸メチル、ポリメタクリル酸メチル(ポリメチルメタクリレート、PMMA)、ポリアクリル酸ナトリウム、ポリビニルアルコール(PVA)、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド、ポリイミド、ポリ塩化ビニル、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、ポリイソブチレン、ポリエチレンテレフタレート、ナイロン、ポリフッ化ビニリデン(PVDF)、ポリアクリロニトリル(PAN)、エチレンプロピレンジエンポリマー、ポリ酢酸ビニル、ニトロセルロース等の材料を用いることが好ましい。
バインダは上記のうち複数を組み合わせて使用してもよい。
たとえば粘度調整効果の特に優れた材料と、他の材料とを組み合わせて使用してもよい。たとえば弾性を有する材料、代表的にはゴム材料等は接着力および/または弾性力に優れる反面、溶媒に混合した場合に粘度調整が難しい場合がある。このような場合にはたとえば、粘度調整効果の特に優れた材料と混合することが好ましい。粘度調整効果の特に優れた材料としては、たとえば水溶性高分子を用いるとよい。また、粘度調整効果に特に優れた水溶性高分子としては、前述の多糖類、たとえばカルボキシメチルセルロース(CMC)、メチルセルロース、エチルセルロース、ヒドロキシプロピルセルロースおよびジアセチルセルロース、再生セルロースなどのセルロース誘導体、澱粉などを用いることができる。
なお、カルボキシメチルセルロースなどのセルロース誘導体は、たとえばカルボキシメチルセルロースのナトリウム塩およびアンモニウム塩などの塩とすることにより溶解度が上がり、粘度調整剤としての効果を発揮しやすくなる。溶解度が高くなることにより電極のスラリーを作製する際に活物質および他の構成要素との分散性を高めることもできる。本明細書においては、電極のバインダとして使用するセルロースおよびセルロース誘導体としては、それらの塩も含むものとする。
水溶性高分子は水に溶解することにより粘度を安定化させ、また活物質およびバインダとして組み合わせる他の材料、たとえばスチレンブタジエンゴムなどを、水溶液中に安定して分散させることができる。また、官能基を有するために活物質表面に安定に吸着しやすいことが期待される。また、たとえばカルボキシメチルセルロースなどのセルロース誘導体は、たとえば水酸基およびカルボキシル基などの官能基を有する材料が多く、官能基を有するために高分子同士が相互作用し、活物質表面を広く覆って存在することが期待される。
活物質表面を覆う、または表面に接するバインダが膜を形成する場合には、不動態膜としての役割を果たして電解液の分解を抑える効果も期待される。ここで、不動態膜とは、電気の伝導性のない膜、または電気伝導性の極めて低い膜であり、たとえば活物質の表面に不動態膜が形成された場合には、電池反応電位において、電解液の分解を抑制することができる。また、不動態膜は、電気の伝導性を抑えるとともに、リチウムイオンは伝導できるとさらに望ましい。
[正極集電体]
正極集電体としては、ステンレス、金、白金、アルミニウム、チタン等の金属、およびこれらの合金など、導電性が高い材料をもちいることができる。また正極集電体に用いる材料は、正極の電位で溶出しないことが好ましい。また、シリコン、チタン、ネオジム、スカンジウム、モリブデンなどの耐熱性を向上させる元素が添加されたアルミニウム合金を用いることができる。また、シリコンと反応してシリサイドを形成する金属元素で形成してもよい。シリコンと反応してシリサイドを形成する金属元素としては、ジルコニウム、チタン、ハフニウム、バナジウム、ニオブ、タンタル、クロム、モリブデン、タングステン、コバルト、ニッケル等がある。正極集電体は、箔状、板状、シート状、網状、パンチングメタル状、エキスパンドメタル状等の形状を適宜用いることができる。正極集電体は、厚みが5μm以上30μm以下のものを用いるとよい。
正極集電体に、上記正極活物質、上記バインダ、溶媒及び導電剤等を有するスラリーを塗工して、プレス加工することで正極を得ることができる。溶媒にはNMPを用いることができる。プレス加工ではプレス機を用い、当該プレス機が有する第1及び第2のロールの温度をそれぞれ80℃以上150℃以下、好ましくは100℃以上130℃以下としてスラリーを加熱するとよい。ロールの温度が高いと、電極密度を高くすることができる。ただし、当該温度はバインダ等の融点以下がよい。例えばバインダに用いられるPVDFの融点は158℃以上160℃以下である。プレス圧力は100kN/m以上300kN/m以下、好ましくは150kN/m以上250kN/m以下、さらに好ましくは190kN/m以上230kN/m以下とする。プレスを複数回実施する場合、2回目のプレス圧力は1回目のプレス圧力の5倍以上8倍以下、好ましくは6倍以上7倍以下とする。
〔負極〕
負極は、負極活物質層および負極集電体を有する。また、負極活物質層は、導電剤およびバインダを有していてもよい。
[負極活物質]
負極活物質としては、たとえば合金系材料および/または炭素系材料等を用いることができる。
負極活物質として、リチウムとの合金化・脱合金化反応により充放電反応を行うことが可能な元素を用いることができる。たとえば、シリコン、スズ、ガリウム、アルミニウム、ゲルマニウム、鉛、アンチモン、ビスマス、銀、亜鉛、カドミウム、インジウム等のうち少なくとも一つを含む材料を用いることができる。このような元素は炭素と比べて充放電容量が大きく、特にシリコンは理論容量が4200mAh/gと高い。このため、負極活物質にシリコンを用いることが好ましい。また、これらの元素を有する化合物を用いてもよい。たとえば、SiO、MgSi、MgGe、SnO、SnO、MgSn、SnS、VSn、FeSn、CoSn、NiSn、CuSn、AgSn、AgSb、NiMnSb、CeSb、LaSn、LaCoSn、CoSb、InSb、SbSn等がある。ここで、リチウムとの合金化・脱合金化反応により充放電反応を行うことが可能な元素、および該元素を有する化合物等を合金系材料と呼ぶ場合がある。
本明細書等において、SiOはたとえば一酸化シリコンを指す。あるいはSiOは、SiOと表すこともできる。ここでxは1近傍の値を有することが好ましい。たとえばxは、0.2以上1.5以下が好ましく、0.3以上1.2以下がより好ましい。または0.2以上1.2以下が好ましい。または0.3以上1.5以下が好ましい。
炭素系材料としては、黒鉛、易黒鉛化性炭素(ソフトカーボン)、難黒鉛化性炭素(ハードカーボン)、カーボンナノチューブ、グラフェン、カーボンブラック等を用いればよい。
黒鉛としては、人造黒鉛、天然黒鉛等が挙げられる。人造黒鉛としてはたとえば、メソカーボンマイクロビーズ(MCMB)、コークス系人造黒鉛、ピッチ系人造黒鉛等が挙げられる。ここで人造黒鉛として、球状の形状を有する球状黒鉛を用いることができる。たとえば、MCMBは球状の形状を有する場合があり、好ましい。また、MCMBはその表面積を小さくすることが比較的容易であり、好ましい場合がある。天然黒鉛としてはたとえば、鱗片状黒鉛、球状化天然黒鉛等が挙げられる。
黒鉛は、リチウムイオンが黒鉛に挿入されたとき(リチウム−黒鉛層間化合物の生成時)にリチウム金属と同程度に低い電位を示す(0.05V以上0.3V以下 vs.Li/Li)。これにより、リチウムイオン二次電池は高い作動電圧を示すことができる。さらに、黒鉛は、単位体積当たりの充放電容量が比較的高い、体積膨張が比較的小さい、安価である、リチウム金属に比べて安全性が高い等の利点を有するため、好ましい。
また、負極活物質として、二酸化チタン(TiO)、リチウムチタン酸化物(LiTi12)、リチウム−黒鉛層間化合物(Li)、五酸化ニオブ(Nb)、酸化タングステン(WO)、酸化モリブデン(MoO)等の酸化物を用いることができる。
また、負極活物質として、リチウムと遷移金属の複窒化物である、LiN型構造をもつLi3−xN(M=Co、Ni、Cu)を用いることができる。たとえば、Li2.6Co0.4は大きな充放電容量(900mAh/g、1890mAh/cm)を示し好ましい。
リチウムと遷移金属の複窒化物を用いると、負極活物質中にリチウムイオンを含むため、正極活物質としてリチウムイオンを含まないV、Cr等の材料と組み合わせることができ好ましい。なお、正極活物質にリチウムイオンを含む材料を用いる場合でも、あらかじめ正極活物質に含まれるリチウムイオンを脱離させておくことで、負極活物質としてリチウムと遷移金属の複窒化物を用いることができる。
また、コンバージョン反応が生じる材料を負極活物質として用いることもできる。たとえば、酸化コバルト(CoO)、酸化ニッケル(NiO)、酸化鉄(FeO)等の、リチウムとの合金を作らない遷移金属酸化物を負極活物質に用いてもよい。コンバージョン反応が生じる材料としては、さらに、Fe、CuO、CuO、RuO、Cr等の酸化物、CoS0.89、NiS、CuS等の硫化物、Zn、CuN、Ge等の窒化物、NiP、FeP、CoP等のリン化物、FeF、BiF等のフッ化物でも起こる。
負極活物質層が有することのできる導電剤およびバインダとしては、正極活物質層が有することのできる導電剤およびバインダと同様の材料を用いることができる。
[負極集電体]
負極集電体には、正極集電体と同様の材料を用いることができる。なお負極集電体は、リチウム等のキャリアイオンと合金化しない材料を用いることが好ましい。
負極集電体に、上記負極活物質、上記バインダ、溶媒及び導電剤等を有するスラリーを塗工して、プレス加工することで負極を得ることができる。溶媒にはNMPを用いることができる。プレス加工ではプレス機を用い、当該プレス機が有する第1及び第2のロールの温度を80℃以上150℃以下、好ましくは100℃以上130℃以下としてスラリーを加熱するとよい。ロールの温度が高いと、電極密度を高くすることができる。ただし、当該温度はバインダ等の融点以下がよい。例えばバインダに用いられるPVDFの融点は158℃以上160℃以下である。プレス圧力は100kN/m以上300kN/m以下、好ましくは150kN/m以上250kN/m以下、さらに好ましくは190kN/m以上230kN/m以下とする。プレスを複数回実施する場合、2回目のプレス圧力は1回目のプレス圧力の5倍以上8倍以下、好ましくは6倍以上7倍以下とする。
〔電解液〕
電解液は、溶媒と電解質を有する。電解液の溶媒としては、非プロトン性有機溶媒が好ましく、たとえば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート、クロロエチレンカーボネート、ビニレンカーボネート、γ−ブチロラクトン、γ−バレロラクトン、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ギ酸メチル、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、酪酸メチル、1,3−ジオキサン、1,4−ジオキサン、ジメトキシエタン(DME)、ジメチルスルホキシド、ジエチルエーテル、メチルジグライム、アセトニトリル、ベンゾニトリル、テトラヒドロフラン、スルホラン、スルトン等の1種、またはこれらのうちの2種以上を任意の組み合わせおよび比率で用いることができる。
また、電解液の溶媒として、難燃性および難揮発性であるイオン液体(常温溶融塩)を一つまたは複数用いることで、二次電池の内部短絡または過充電等によって内部温度が上昇しても、二次電池の破裂および/または発火などを防ぐことができる。イオン液体は、カチオンとアニオンからなり、有機カチオンとアニオンとを含む。電解液に用いる有機カチオンとして、四級アンモニウムカチオン、三級スルホニウムカチオン、および四級ホスホニウムカチオン等の脂肪族オニウムカチオン、イミダゾリウムカチオンおよびピリジニウムカチオン等の芳香族カチオンが挙げられる。また、電解液に用いるアニオンとして、1価のアミド系アニオン、1価のメチド系アニオン、フルオロスルホン酸アニオン、パーフルオロアルキルスルホン酸アニオン、テトラフルオロボレートアニオン、パーフルオロアルキルボレートアニオン、ヘキサフルオロホスフェートアニオン、またはパーフルオロアルキルホスフェートアニオン等が挙げられる。
また、上記の溶媒に溶解させる電解質としては、たとえばLiPF、LiClO、LiAsF、LiBF、LiAlCl、LiSCN、LiBr、LiI、LiSO、Li10Cl10、Li12Cl12、LiCFSO、LiCSO、LiC(CFSO、LiC(CSO、LiN(FSO、LiN(CFSO、LiN(CSO)(CFSO)、LiN(CSO等のリチウム塩を一種、またはこれらのうちの二種以上を任意の組み合わせおよび比率で用いることができる。
二次電池に用いる電解液は、粒状のごみまたは電解液の構成元素以外の元素(以下、単に「不純物」ともいう。)の含有量が少ない高純度化された電解液を用いることが好ましい。具体的には、電解液に対する不純物の重量比を1%以下、好ましくは0.1%以下、より好ましくは0.01%以下とすることが好ましい。
また、電解液にビニレンカーボネート(VC)、プロパンスルトン(PS)、tert−ブチルベンゼン(TBB)、フルオロエチレンカーボネート(FEC)、リチウムビス(オキサレート)ボレート(LiBOB)、またスクシノニトリル、アジポニトリル等のジニトリル化合物などの添加剤を添加してもよい。添加する材料の濃度は、たとえば溶媒全体に対して0.1wt%以上5wt%以下とすればよい。VCまたはLiBOBは良好な被膜を形成しやすく、特に好ましい。
また、ポリマーを電解液で膨潤させたポリマーゲル電解質を用いてもよい。
ポリマーゲル電解質を用いることで、漏液性等に対する安全性が高まる。また、二次電池の薄型化および軽量化が可能である。
ゲル化されるポリマーとして、シリコーンゲル、アクリルゲル、アクリロニトリルゲル、ポリエチレンオキサイド系ゲル、ポリプロピレンオキサイド系ゲル、フッ素系ポリマーのゲル等を用いることができる。
ポリマーとしては、たとえばポリエチレンオキシド(PEO)などのポリアルキレンオキシド構造を有するポリマー、PVDF、およびポリアクリロニトリル等、およびそれらを含む共重合体等を用いることができる。たとえばPVDFとヘキサフルオロプロピレン(HFP)の共重合体であるPVDF−HFPを用いることができる。また、形成されるポリマーは、多孔質形状を有してもよい。
また、電解液の代わりに、硫化物系または酸化物系等の無機物材料を有する固体電解質、PEO(ポリエチレンオキシド)系等の高分子材料を有する固体電解質等を用いることができる。固体電解質を用いる場合には、セパレータおよび/またはスペーサの設置が不要となる。また、電池全体を固体化できるため、漏液のおそれがなくなり安全性が飛躍的に向上する。
〔外装体〕
二次電池が有する外装体としては、たとえばアルミニウムなどの金属材料および/または樹脂材料を用いることができる。また、フィルム状の外装体を用いることもできる。フィルムとしては、たとえばポリエチレン、ポリプロピレン、ポリカーボネート、アイオノマー、ポリアミド等の材料からなる膜上に、アルミニウム、ステンレス、銅、ニッケル等の可撓性に優れた金属薄膜を設け、さらに該金属薄膜上に外装体の外面としてポリアミド系樹脂、ポリエステル系樹脂等の絶縁性合成樹脂膜を設けた三層構造のフィルムを用いることができる。
<二次電池の構成例2>
以下に、二次電池の構成の一例として、固体電解質層を用いた二次電池の構成について説明する。
図18Aに示すように、本発明の一態様の二次電池400は、正極410、固体電解質層420および負極430を有する。
正極410は正極集電体413および正極活物質層414を有する。正極活物質層414は正極活物質411および固体電解質421を有する。正極活物質411には、先の実施の形態で説明した作製方法を用いて作製した正極活物質を用いる。また正極活物質層414は、導電剤およびバインダを有していてもよい。
固体電解質層420は固体電解質421を有する。固体電解質層420は、正極410と負極430の間に位置し、正極活物質411および負極活物質431のいずれも有さない領域である。
負極430は負極集電体433および負極活物質層434を有する。負極活物質層434は負極活物質431および固体電解質421を有する。また負極活物質層434は、導電剤およびバインダを有していてもよい。なお、負極430に金属リチウムを用いる場合は、図18Bのように、固体電解質421を有さない負極430とすることができる。負極430に金属リチウムを用いると、二次電池400のエネルギー密度を向上させることができ好ましい。
固体電解質層420が有する固体電解質421としては、たとえば硫化物系固体電解質、酸化物系固体電解質、ハロゲン化物系固体電解質等を用いることができる。
硫化物系固体電解質には、チオリシコン系(Li10GeP12、Li3.25Ge0.250.75等)、硫化物ガラス(70LiS・30P、30LiS・26B・44LiI、63LiS・36SiS・1LiPO、57LiS・38SiS・5LiSiO、50LiS・50GeS等)、硫化物結晶化ガラス(Li11、Li3.250.95等)が含まれる。硫化物系固体電解質は、高い伝導度を有する材料がある、低い温度で合成可能、また比較的やわらかいため充放電を経ても導電経路が保たれやすい等の利点がある。
酸化物系固体電解質には、ペロブスカイト型結晶構造を有する材料(La2/3−xLi3xTiO等)、NASICON型結晶構造を有する材料(Li1+xAlTi2−x(PO等)、ガーネット型結晶構造を有する材料(LiLaZr12等)、LISICON型結晶構造を有する材料(Li14ZnGe16等)、LLZO(LiLaZr12)、酸化物ガラス(LiPO−LiSiO、50LiSiO・50LiBO等)、酸化物結晶化ガラス(Li1.07Al0.69Ti1.46(PO、Li1.5Al0.5Ge1.5(PO等)が含まれる。酸化物系固体電解質は、大気中で安定であるといった利点がある。
ハロゲン化物系固体電解質には、LiAlCl、LiInBr、LiF、LiCl、LiBr、LiI等が含まれる。また、これらハロゲン化物系固体電解質を、ポーラス酸化アルミニウムおよび/またはポーラスシリカの細孔に充填したコンポジット材料も固体電解質として用いることができる。
また、異なる固体電解質を混合して用いてもよい。
中でも、NASICON型結晶構造を有するLi1+xAlTi2−x(PO(0<x<1)(以下、LATP)は、アルミニウムとチタンという、本発明の一態様の二次電池400に用いる正極活物質が有してもよい元素を含むため、サイクル特性の向上について相乗効果が期待でき好ましい。また、工程の削減による生産性の向上も期待できる。なお本明細書等において、NASICON型結晶構造とは、M(XO(M:遷移金属、X:S、P、As、Mo、W等)で表される化合物であり、MO八面体とXO四面体が頂点を共有して3次元的に配列した構造を有するものをいう。
〔外装体と二次電池の形状〕
本発明の一態様の二次電池400の外装体には、様々な材料および形状のものを用いることができるが、正極、固体電解質層および負極を加圧する機能を有することが好ましい。
たとえば図19は、全固体電池の材料を評価するセルの一例である。
図19Aは評価セルの断面模式図であり、評価セルは、下部部材761と、上部部材762と、それらを固定する固定ねじ、または蝶ナット764を有し、押さえ込みねじ763を回転させることで電極用プレート753を押して評価材料を固定している。ステンレス材料で構成された下部部材761と、上部部材762との間には絶縁体766が設けられている。また上部部材762と、押さえ込みねじ763の間には密閉するためのOリング765が設けられている。
評価材料は、電極用プレート751に載せられ、周りを絶縁管752で囲み、上方から電極用プレート753で押されている状態となっている。この評価材料周辺を拡大した斜視図が図19Bである。
評価材料としては、正極750a、固体電解質層750b、負極750cの積層の例を示しており、断面図を図19Cに示す。なお、図19A、図19B、図19Cにおいて同じ箇所には同じ符号を用いる。
正極750aと電気的に接続される電極用プレート751および下部部材761は、正極端子に相当するということができる。負極750cと電気的に接続される電極用プレート753および上部部材762は、負極端子に相当するということができる。電極用プレート751および電極用プレート753を介して評価材料に押圧をかけながら電気抵抗などを測定することができる。
また、本発明の一態様の二次電池の外装体には、気密性に優れたパッケージを使用することが好ましい。たとえばセラミックパッケージおよび/または樹脂パッケージを用いることができる。また、外装体を封止する際には、外気を遮断し、密閉した雰囲気下、たとえばグローブボックス内で行うことが好ましい。
図20Aに、図19と異なる外装体および形状を有する本発明の一態様の二次電池の斜視図を示す。図20Aの二次電池は、外部電極771、772を有し、複数のパッケージ部材を有する外装体で封止されている。
図20A中の一点破線で切断した断面の一例を図20Bに示す。正極750a、固体電解質層750bおよび負極750cを有する積層体は、平板に電極層773aが設けられたパッケージ部材770aと、枠状のパッケージ部材770bと、平板に電極層773bが設けられたパッケージ部材770cと、で囲まれて封止された構造となっている。パッケージ部材770a、770b、770cには、絶縁材料、たとえば樹脂材料および/またはセラミック系材料を用いることができる。
外部電極771は、電極層773aを介して正極750aと電気的に接続され、正極端子として機能する。また、外部電極772は、電極層773bを介して負極750cと電気的に接続され、負極端子として機能する。
本実施の形態は、他の実施の形態と適宜組み合わせて用いることができる。
(実施の形態4)
本実施の形態では、先の実施の形態で説明した正極を有する二次電池の形状の例について説明する。本実施の形態で説明する二次電池に用いる材料は、先の実施の形態の記載を参酌することができる。
<コイン型二次電池>
まずコイン型の二次電池の一例について説明する。図21Aはコイン型(単層偏平型)の二次電池の外観図であり、図21Bは、その断面図である。
コイン型の二次電池300は、正極端子を兼ねた正極缶301と負極端子を兼ねた負極缶302とが、ポリプロピレン等で形成されたガスケット303で絶縁シールされている。正極304は、正極集電体305と、これと接するように設けられた正極活物質層306により形成される。また、負極307は、負極集電体308と、これに接するように設けられた負極活物質層309により形成される。
なお、コイン型の二次電池300に用いる正極304および負極307は、それぞれ活物質層は片面のみに形成すればよい。
正極缶301、負極缶302には、電解液に対して耐食性のあるニッケル、アルミニウム、チタン等の金属、またはこれらの合金および/またはこれらと他の金属との合金(たとえばステンレス鋼等)を用いることができる。また、電解液による腐食を防ぐため、ニッケルおよび/またはアルミニウム等を被覆することが好ましい。正極缶301は正極304と、負極缶302は負極307とそれぞれ電気的に接続する。
これら負極307、正極304およびセパレータ310を電解液に含浸させ、図21Bに示すように、正極缶301を下にして正極304、セパレータ310、負極307、負極缶302をこの順で積層し、正極缶301と負極缶302とをガスケット303を介して圧着してコイン形の二次電池300を製造する。
正極304に、先の実施の形態で説明した正極活物質を用いることで、充放電容量が高くサイクル特性に優れたコイン型の二次電池300とすることができる。
ここで図21Cを用いて二次電池の充電時の電流の流れを説明する。リチウムを用いた二次電池を一つの閉回路とみなした時、リチウムイオンの動きと電流の流れは同じ向きになる。なお、リチウムを用いた二次電池では、充電と放電でアノード(陽極)とカソード(陰極)が入れ替わり、酸化反応と還元反応とが入れ替わることになるため、反応電位が高い電極を正極と呼び、反応電位が低い電極を負極と呼ぶ。したがって、本明細書においては、充電中であっても、放電中であっても、逆パルス電流を流す場合であっても、充電電流を流す場合であっても、正極は「正極」または「+極(プラス極)」と呼び、負極は「負極」または「−極(マイナス極)」と呼ぶこととする。酸化反応および還元反応に関連したアノード(陽極)およびカソード(陰極)という用語を用いると、充電時と放電時とでは、逆になってしまい、混乱を招く可能性がある。したがって、アノード(陽極)およびカソード(陰極)という用語は、本明細書においては用いないこととする。仮にアノード(陽極)およびカソード(陰極)という用語を用いる場合には、充電時か放電時かを明記し、正極(プラス極)と負極(マイナス極)のどちらに対応するものかも併記することとする。
図21Cに示す2つの端子には充電器が接続され、二次電池300が充電される。二次電池300の充電が進めば、電極間の電位差は大きくなる。
<円筒型二次電池>
次に円筒型の二次電池の例について図22を参照して説明する。円筒型の二次電池600の外観図を図22Aに示す。図22Bは、円筒型の二次電池600の断面を模式的に示した図である。図22Bに示すように、円筒型の二次電池600は、上面に正極キャップ(電池蓋)601を有し、側面および底面に電池缶(外装缶)602を有している。これら正極キャップ601と電池缶(外装缶)602とは、ガスケット(絶縁パッキン)610によって絶縁されている。
中空円柱状の電池缶602の内側には、帯状の正極604と負極606とがセパレータ605を間に挟んで捲回された電池素子が設けられている。図示しないが、電池素子はセンターピンを中心に捲回されている。電池缶602は、一端が閉じられ、他端が開いている。電池缶602には、電解液に対して耐腐食性のあるニッケル、アルミニウム、チタン等の金属、またはこれらの合金および/またはこれらと他の金属との合金(たとえば、ステンレス鋼等)を用いることができる。また、電解液による腐食を防ぐため、ニッケルおよび/またはアルミニウム等を電池缶602に被覆することが好ましい。電池缶602の内側において、正極、負極およびセパレータが捲回された電池素子は、対向する一対の絶縁板608、絶縁板609により挟まれている。また、電池素子が設けられた電池缶602の内部は、非水電解液(図示せず)が注入されている。非水電解液は、コイン型の二次電池と同様のものを用いることができる。
円筒型の蓄電池に用いる正極および負極は捲回するため、集電体の両面に活物質を形成することが好ましい。正極604には正極端子(正極集電リード)603が接続され、負極606には負極端子(負極集電リード)607が接続される。正極端子603および負極端子607は、ともにアルミニウムなどの金属材料を用いることができる。正極端子603は安全弁機構612に、負極端子607は電池缶602の底にそれぞれ抵抗溶接される。安全弁機構612は、PTC素子(Positive Temperature Coefficient)611を介して正極キャップ601と電気的に接続されている。安全弁機構612は電池の内圧の上昇が所定の閾値を超えた場合に、正極キャップ601と正極604との電気的な接続を切断するものである。また、PTC素子611は温度が上昇した場合に抵抗が増大する熱感抵抗素子であり、抵抗の増大により電流量を制限して異常発熱を防止するものである。PTC素子には、チタン酸バリウム(BaTiO)系半導体セラミックス等を用いることができる。
また、図22Cのように複数の二次電池600を、導電板613および導電板614の間に挟んでモジュール615を構成してもよい。複数の二次電池600は、並列接続されていてもよいし、直列接続されていてもよいし、並列に接続された後さらに直列に接続されていてもよい。複数の二次電池600を有するモジュール615を構成することで、大きな電力を取り出すことができる。
図22Dはモジュール615の上面図である。図を明瞭にするために導電板613を点線で示した。図22Dに示すようにモジュール615は、複数の二次電池600を電気的に接続する導線616を有していてもよい。導線616上に導電板を重畳して設けることができる。また複数の二次電池600の間に温度制御装置617を有していてもよい。二次電池600が過熱されたときは、温度制御装置617により冷却し、二次電池600が冷えすぎているときは温度制御装置617により加熱することができる。そのためモジュール615の性能が外気温に影響されにくくなる。温度制御装置617が有する熱媒体は絶縁性と不燃性を有することが好ましい。
正極604に、先の実施の形態で説明した正極活物質を用いることで、充放電容量が高くサイクル特性に優れた円筒型の二次電池600とすることができる。
〔セパレータ〕
また二次電池は、セパレータを有することが好ましい。セパレータとしては、たとえば、紙、不織布、ガラス繊維、セラミックス、或いはナイロン(ポリアミド)、ビニロン(ポリビニルアルコール系繊維)、ポリエステル、アクリル、ポリオレフィン、ポリウレタンを用いた合成繊維等で形成されたものを用いることができる。セパレータはエンベロープ状に加工し、正極または負極のいずれか一方を包むように配置することが好ましい。
セパレータは多層構造であってもよい。たとえばポリプロピレン、ポリエチレン等の有機材料フィルムに、セラミック系材料、フッ素系材料、ポリアミド系材料、またはこれらを混合したもの等をコートすることができる。セラミック系材料としては、たとえば酸化アルミニウム粒子、酸化シリコン粒子等を用いることができる。フッ素系材料としては、たとえばPVDF、ポリテトラフルオロエチレン等を用いることができる。ポリアミド系材料としては、たとえばナイロン、アラミド(メタ系アラミド、パラ系アラミド)等を用いることができる。
セラミック系材料をコートすると耐酸化性が向上するため、高電圧充放電の際のセパレータの劣化を抑制し、二次電池の信頼性を向上させることができる。またフッ素系材料をコートするとセパレータと電極が密着しやすくなり、出力特性を向上させることができる。ポリアミド系材料、特にアラミドをコートすると、耐熱性が向上するため、二次電池の安全性を向上させることができる。
たとえばポリプロピレンのフィルムの両面に酸化アルミニウムとアラミドの混合材料をコートしてもよい。また、ポリプロピレンのフィルムの、正極と接する面に酸化アルミニウムとアラミドの混合材料をコートし、負極と接する面にフッ素系材料をコートしてもよい。
多層構造のセパレータを用いると、セパレータ全体の厚さが薄くても二次電池の安全性を保つことができるため、二次電池の体積あたりの充放電容量を大きくすることができる。
<二次電池の構造例>
二次電池の別の構造例について、図23乃至図27を用いて説明する。
図23Aおよび図23Bは、電池パックの外観図を示す図である。電池パックは、二次電池913と、回路基板900と、を有する。二次電池913は、回路基板900を介して、アンテナ914に接続されている。また、二次電池913には、ラベル910が貼られている。さらに、図23Bに示すように、二次電池913は、端子951と、端子952と、に接続されている。また回路基板900は、シール915で固定されている。
回路基板900は、端子911と、回路912と、を有する。端子911は、端子951、端子952、アンテナ914、および回路912に接続される。なお、端子911を複数設けて、複数の端子911のそれぞれを、制御信号入力端子、電源端子などとしてもよい。
回路912は、回路基板900の裏面に設けられていてもよい。なお、アンテナ914は、コイル状に限定されず、たとえば線状、板状であってもよい。また、平面アンテナ、開口面アンテナ、進行波アンテナ、EHアンテナ、磁界アンテナ、誘電体アンテナ等のアンテナを用いてもよい。または、アンテナ914は、平板状の導体でもよい。この平板状の導体は、電界結合用の導体の一つとして機能することができる。つまり、コンデンサの有する2つの導体のうちの一つの導体としてアンテナ914を機能させてもよい。これにより、電磁界、磁界だけでなく、電界で電力のやり取りを行うこともできる。
電池パックは、アンテナ914と、二次電池913との間に層916を有する。層916は、たとえば二次電池913による電磁界を遮蔽することができる機能を有する。層916としては、たとえば磁性体を用いることができる。
なお、電池パックの構造は、図23に限定されない。
たとえば、図24Aおよび図24Bに示すように、図23Aおよび図23Bに示す二次電池913のうち、対向する一対の面のそれぞれにアンテナを設けてもよい。図24Aは、上記一対の面の一方を示した外観図であり、図24Bは、上記一対の面の他方を示した外観図である。なお、図24Aおよび図24Bに示す二次電池において、図23Aおよび図23Bに示す二次電池と同じ部分についての説明は適宜援用することができるため、ここでは説明を省略する。
図24Aに示すように、二次電池913の一対の面の一方に層916を挟んでアンテナ914が設けられ、図24Bに示すように、二次電池913の一対の面の他方に層917を挟んでアンテナ918が設けられる。層917は、たとえば二次電池913による電磁界を遮蔽することができる機能を有する。層917としては、たとえば磁性体を用いることができる。
上記構造にすることにより、アンテナ914およびアンテナ918の両方のサイズを大きくすることができる。アンテナ918は、たとえば、外部機器とのデータ通信を行うことができる機能を有する。アンテナ918には、たとえばアンテナ914に適用可能な形状のアンテナを適用することができる。アンテナ918を介した二次電池と他の機器との通信方式としては、NFC(近距離無線通信)など、二次電池と他の機器との間で用いることができる応答方式などを適用することができる。
または、図24Cに示すように、図23Aおよび図23Bに示す二次電池913に表示装置920を設けてもよい。表示装置920は、端子911に電気的に接続される。なお、表示装置920が設けられる部分にラベル910を設けなくてもよい。なお、図24Cに示す二次電池において、図23Aおよび図23Bに示す二次電池と同じ部分についての説明は適宜援用できるため、ここでは説明を省略する。
表示装置920には、たとえば充電中であるか否かを示す画像、蓄電量を示す画像などを表示してもよい。表示装置920としては、たとえば電子ペーパー、液晶表示装置、エレクトロルミネセンス(ELともいう)表示装置などを用いることができる。たとえば、電子ペーパーを用いることにより表示装置920の消費電力を低減することができる。
または、図24Dに示すように、図23Aおよび図23Bに示す二次電池913にセンサ921を設けてもよい。センサ921は、端子922を介して端子911に電気的に接続される。なお、図24Dに示す二次電池において、図23Aおよび図23Bに示す二次電池と同じ部分についての説明は適宜援用できるため、ここでは説明を省略する。
センサ921としては、たとえば、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、におい、または赤外線を測定することができる機能を有すればよい。センサ921を設けることにより、たとえば、二次電池が置かれている環境を示すデータ(温度など)を検出し、回路912内のメモリに記憶しておくこともできる。
さらに、二次電池913の構造例について図25および図26を用いて説明する。
図25Aに示す二次電池913は、筐体930の内部に端子951と端子952が設けられた捲回体950を有する。捲回体950は、筐体930の内部で電解液に含浸される。端子952は、筐体930に接し、端子951は、絶縁材などを用いることにより筐体930に接していない。なお、図25Aでは、便宜のため、筐体930を分離して図示しているが、実際は、捲回体950が筐体930に覆われ、端子951および端子952が筐体930の外に延在している。筐体930としては、金属材料(たとえばアルミニウムなど)または樹脂材料を用いることができる。
なお、図25Bに示すように、図25Aに示す筐体930を複数の材料によって形成してもよい。たとえば、図25Bに示す二次電池913は、筐体930aと筐体930bが貼り合わされており、筐体930aおよび筐体930bで囲まれた領域に捲回体950が設けられている。
筐体930aとしては、有機樹脂など、絶縁材料を用いることができる。特に、アンテナが形成される面に有機樹脂などの材料を用いることにより、二次電池913による電界の遮蔽を抑制できる。なお、筐体930aによる電界の遮蔽が小さければ、筐体930aの内部にアンテナ914などのアンテナを設けてもよい。筐体930bとしては、たとえば金属材料を用いることができる。
さらに、捲回体950の構造について図26に示す。捲回体950は、負極931と、正極932と、セパレータ933と、を有する。捲回体950は、セパレータ933を挟んで負極931と、正極932が重なり合って積層され、該積層シートを捲回させた捲回体である。なお、負極931と、正極932と、セパレータ933と、の積層を、さらに複数重ねてもよい。
負極931は、端子951および端子952の一方を介して図23に示す端子911に接続される。正極932は、端子951および端子952の他方を介して図23に示す端子911に接続される。
正極932に、先の実施の形態で説明した正極活物質を用いることで、充放電容量が高くサイクル特性に優れた二次電池913とすることができる。
<ラミネート型二次電池>
次に、ラミネート型の二次電池の例について、図27乃至図31を参照して説明する。ラミネート型の二次電池は、可撓性を有する構成とすれば、可撓性を有する部位を少なくとも一部有する電子機器に実装すれば、電子機器の変形に合わせて二次電池も曲げることもできる。
図27を用いて、ラミネート型の二次電池980について説明する。ラミネート型の二次電池980は、図27Aに示す捲回体993を有する。捲回体993は、負極994と、正極995と、セパレータ996と、を有する。捲回体993は、図26で説明した捲回体950と同様に、セパレータ996を挟んで負極994と、正極995とが重なり合って積層され、該積層シートを捲回したものである。
なお、負極994、正極995およびセパレータ996からなる積層の積層数は、必要な充放電容量と素子体積に応じて適宜設計すればよい。負極994はリード電極997およびリード電極998の一方を介して負極集電体(図示せず)に接続され、正極995はリード電極997およびリード電極998の他方を介して正極集電体(図示せず)に接続される。
図27Bに示すように、外装体となるフィルム981と、凹部を有するフィルム982とを熱圧着などにより貼り合わせて形成される空間に上述した捲回体993を収納することで、図27Cに示すように二次電池980を作製することができる。捲回体993は、リード電極997およびリード電極998を有し、フィルム981と、凹部を有するフィルム982との内部で電解液に含浸される。
フィルム981と、凹部を有するフィルム982は、たとえばアルミニウムなどの金属材料および/または樹脂材料を用いることができる。フィルム981および凹部を有するフィルム982の材料として樹脂材料を用いれば、外部から力が加わったときにフィルム981と、凹部を有するフィルム982を変形させることができ、可撓性を有する蓄電池を作製することができる。
また、図27Bおよび図27Cでは2枚のフィルムを用いる例を示しているが、1枚のフィルムを折り曲げることによって空間を形成し、その空間に上述した捲回体993を収納してもよい。
正極995に、先の実施の形態で説明した正極活物質を用いることで、充放電容量が高くサイクル特性に優れた二次電池980とすることができる。
また図27では外装体となるフィルムにより形成された空間に捲回体を有する二次電池980の例について説明したが、たとえば図28のように、外装体となるフィルムにより形成された空間に、短冊状の複数の正極、セパレータおよび負極を有する二次電池としてもよい。
図28Aに示すラミネート型の二次電池500は、正極集電体501および正極活物質層502を有する正極503と、負極集電体504および負極活物質層505を有する負極506と、セパレータ507と、電解液508と、外装体509と、を有する。外装体509内に設けられた正極503と負極506との間にセパレータ507が設置されている。また、外装体509内は、電解液508で満たされている。電解液508には、実施の形態3で示した電解液を用いることができる。
図28Aに示すラミネート型の二次電池500において、正極集電体501および負極集電体504は、外部との電気的接触を得る端子の役割も兼ねている。そのため、正極集電体501および負極集電体504の一部は、外装体509から外側に露出するように配置してもよい。また、正極集電体501および負極集電体504を、外装体509から外側に露出させず、リード電極を用いてそのリード電極と正極集電体501、或いは負極集電体504と超音波接合させてリード電極を外側に露出するようにしてもよい。
ラミネート型の二次電池500において、外装体509には、たとえばポリエチレン、ポリプロピレン、ポリカーボネート、アイオノマー、ポリアミド等の材料からなる膜上に、アルミニウム、ステンレス、銅、ニッケル等の可撓性に優れた金属薄膜を設け、さらに該金属薄膜上に外装体の外面としてポリアミド系樹脂、ポリエステル系樹脂等の絶縁性合成樹脂膜を設けた三層構造のラミネートフィルムを用いることができる。
また、ラミネート型の二次電池500の断面構造の一例を図28Bに示す。図28Aでは簡略のため、2つの集電体で構成する例を示しているが、実際は、図28Bに示すように、複数の電極層で構成する。
図28Bでは、一例として、電極層数を16としている。なお、電極層数を16としても二次電池500は、可撓性を有する。図28Bでは負極集電体504が8層と、正極集電体501が8層の合計16層の構造を示している。なお、図28Bは負極の取り出し部の断面を示しており、8層の負極集電体504を超音波接合させている。勿論、電極層数は16に限定されず、多くてもよいし、少なくてもよい。電極層数が多い場合には、より多くの充放電容量を有する二次電池とすることができる。また、電極層数が少ない場合には、薄型化でき、可撓性に優れた二次電池とすることができる。
ここで、ラミネート型の二次電池500の外観図の一例を図29および図30に示す。図29および図30は、正極503、負極506、セパレータ507、外装体509、正極リード電極510および負極リード電極511を有する。
図31Aは正極503および負極506の外観図を示す。正極503は正極集電体501を有し、正極活物質層502は正極集電体501の表面に形成されている。また、正極503は正極集電体501が一部露出する領域(以下、タブ領域という)を有する。負極506は負極集電体504を有し、負極活物質層505は負極集電体504の表面に形成されている。また、負極506は負極集電体504が一部露出する領域、すなわちタブ領域を有する。正極および負極が有するタブ領域の面積および形状は、図31Aに示す例に限られない。
<ラミネート型二次電池の作製方法>
ここで、図29に外観図を示すラミネート型二次電池の作製方法の一例について、図31B、図31Cを用いて説明する。
まず、負極506、セパレータ507および正極503を積層する。図31Bに積層された負極506、セパレータ507および正極503を示す。ここでは負極を5組、正極を4組使用する例を示す。次に、正極503のタブ領域同士の接合と、最表面の正極のタブ領域への正極リード電極510の接合を行う。接合には、たとえば超音波溶接等を用いればよい。同様に、負極506のタブ領域同士の接合と、最表面の負極のタブ領域への負極リード電極511の接合を行う。
次に外装体509上に、負極506、セパレータ507および正極503を配置する。
次に、図31Cに示すように、外装体509を破線で示した部分で折り曲げる。その後、外装体509の外周部を接合する。接合にはたとえば熱圧着等を用いればよい。この時、後に電解液508を入れることができるように、外装体509の一部(または一辺)に接合されない領域(以下、導入口という)を設ける。
次に、外装体509に設けられた導入口から、電解液508(図示しない。)を外装体509の内側へ導入する。電解液508の導入は、減圧雰囲気下、或いは不活性雰囲気下で行うことが好ましい。そして最後に、導入口を接合する。このようにして、ラミネート型の二次電池500を作製することができる。
正極503に、先の実施の形態で説明した正極活物質を用いることで、充放電容量が高くサイクル特性に優れた二次電池500とすることができる。
全固体電池においては、積層した正極および負極の積層方向に所定の圧力を加えることで、内部における界面の接触状態を良好に保つことができる。正極および負極の積層方向に所定の圧力を加えることで、全固体電池の充放電によって積層方向に膨張することを抑えることができ、全固体電池の信頼性を向上させることができる。
本実施の形態は、他の実施の形態と適宜組み合わせて用いることができる。
(実施の形態5)
本実施の形態では、本発明の一態様である二次電池を電子機器に実装する例について説明する。
まず、先の実施の形態で説明した、曲げることのできる二次電池を電子機器に実装する例を、図32A乃至図32Gに示す。曲げることのできる二次電池を適用した電子機器として、たとえば、テレビジョン装置(テレビ、またはテレビジョン受信機ともいう)、コンピュータ用などのモニタ、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機(携帯電話、携帯電話装置ともいう)、携帯型ゲーム機、携帯情報端末、音響再生装置、パチンコ機などの大型ゲーム機などが挙げられる。
また、フレキシブルな形状を備える二次電池を、家屋、ビル等の内壁または外壁、自動車の内装または外装の曲面に沿って組み込むことも可能である。
図32Aは、携帯電話機の一例を示している。携帯電話機7400は、筐体7401に組み込まれた表示部7402の他、操作ボタン7403、外部接続ポート7404、スピーカ7405、マイク7406などを備えている。なお、携帯電話機7400は、二次電池7407を有している。上記の二次電池7407に本発明の一態様の二次電池を用いることで、軽量で長寿命な携帯電話機を提供できる。
図32Bは、携帯電話機7400を湾曲させた状態を示している。携帯電話機7400を外部の力により変形させて全体を湾曲させると、その内部に設けられている二次電池7407も湾曲される。また、その時、曲げられた二次電池7407の状態を図32Cに示す。二次電池7407は薄型の蓄電池である。二次電池7407は曲げられた状態で固定されている。なお、二次電池7407は集電体と電気的に接続されたリード電極を有している。たとえば、集電体は銅箔であり、一部ガリウムと合金化させて、集電体と接する活物質層との密着性を向上し、二次電池7407が曲げられた状態での信頼性が高い構成となっている。
図32Dは、バングル型の表示装置の一例を示している。携帯表示装置7100は、筐体7101、表示部7102、操作ボタン7103、および二次電池7104を備える。また、図32Eに曲げられた二次電池7104の状態を示す。二次電池7104は曲げられた状態で使用者の腕への装着時に、筐体が変形して二次電池7104の一部または全部の曲率が変化する。なお、曲線の任意の点における曲がり具合を相当する円の半径の値で表したものを曲率半径と呼び、曲率半径の逆数を曲率と呼ぶ。具体的には、曲率半径が40mm以上150mm以下の範囲内で筐体または二次電池7104の主表面の一部または全部が変化する。二次電池7104の主表面における曲率半径が40mm以上150mm以下の範囲であれば、高い信頼性を維持できる。上記の二次電池7104に本発明の一態様の二次電池を用いることで、軽量で長寿命な携帯表示装置を提供できる。
図32Fは、腕時計型の携帯情報端末の一例を示している。携帯情報端末7200は、筐体7201、表示部7202、バンド7203、バックル7204、操作ボタン7205、入出力端子7206などを備える。
携帯情報端末7200は、移動電話、電子メール、文章閲覧および作成、音楽再生、インターネット通信、コンピュータゲームなどの種々のアプリケーションを実行することができる。
表示部7202はその表示面が湾曲して設けられ、湾曲した表示面に沿って表示を行うことができる。また、表示部7202はタッチセンサを備え、指またはスタイラスなどで画面に触れることで操作することができる。たとえば、表示部7202に表示されたアイコン7207に触れることで、アプリケーションを起動することができる。
操作ボタン7205は、時刻設定のほか、電源のオン、オフ動作、無線通信のオン、オフ動作、マナーモードの実行および解除、省電力モードの実行および解除など、様々な機能を持たせることができる。たとえば、携帯情報端末7200に組み込まれたオペレーティングシステムにより、操作ボタン7205の機能を自由に設定することもできる。
また、携帯情報端末7200は、通信規格された近距離無線通信を実行することが可能である。たとえば無線通信可能なヘッドセットと相互通信することによって、ハンズフリーで通話することもできる。
また、携帯情報端末7200は入出力端子7206を備え、他の情報端末とコネクタを介して直接データのやりとりを行うことができる。また入出力端子7206を介して充電を行うこともできる。なお、充電動作は入出力端子7206を介さずに無線給電により行ってもよい。
携帯情報端末7200の表示部7202には、本発明の一態様の二次電池を有している。本発明の一態様の二次電池を用いることで、軽量で長寿命な携帯情報端末を提供できる。たとえば、図32Eに示した二次電池7104を、筐体7201の内部に湾曲した状態で、またはバンド7203の内部に湾曲可能な状態で組み込むことができる。
携帯情報端末7200はセンサを有することが好ましい。センサとしてたとえば、指紋センサ、脈拍センサ、体温センサ等の人体センサ、タッチセンサ、加圧センサ、加速度センサ、等が搭載されることが好ましい。
図32Gは、腕章型の表示装置の一例を示している。表示装置7300は、表示部7304を有し、本発明の一態様の二次電池を有している。また、表示装置7300は、表示部7304にタッチセンサを備えることもでき、また、携帯情報端末として機能させることもできる。
表示部7304はその表示面が湾曲しており、湾曲した表示面に沿って表示を行うことができる。また、表示装置7300は、通信規格された近距離無線通信などにより、表示状況を変更することができる。
また、表示装置7300は入出力端子を備え、他の情報端末とコネクタを介して直接データのやりとりを行うことができる。また入出力端子を介して充電を行うこともできる。なお、充電動作は入出力端子を介さずに無線給電により行ってもよい。
表示装置7300が有する二次電池として本発明の一態様の二次電池を用いることで、軽量で長寿命な表示装置を提供できる。
また、先の実施の形態で示したサイクル特性のよい二次電池を電子機器に実装する例を図32H、図33および図34を用いて説明する。
日用電子機器に二次電池として本発明の一態様の二次電池を用いることで、軽量で長寿命な製品を提供できる。たとえば、日用電子機器として、電動歯ブラシ、電気シェーバー、電動美容機器などが挙げられ、それらの製品の二次電池としては、使用者の持ちやすさを考え、形状をスティック状とし、小型、軽量、且つ、充放電容量の大きな二次電池が望まれている。
図32Hはタバコ収容喫煙装置(電子タバコ)とも呼ばれる装置の斜視図である。図32Hにおいて電子タバコ7500は、加熱素子を含むアトマイザ7501と、アトマイザに電力を供給する二次電池7504と、液体供給ボトルおよびセンサなどを含むカートリッジ7502で構成されている。安全性を高めるため、二次電池7504の過充電および/または過放電を防ぐ保護回路を二次電池7504に電気的に接続してもよい。図32Hに示した二次電池7504は、充電機器と接続できるように外部端子を有している。二次電池7504は持った場合に先端部分となるため、トータルの長さが短く、且つ、重量が軽いことが望ましい。本発明の一態様の二次電池は充放電容量が高く、良好なサイクル特性を有するため、長期間に渡って長時間の使用ができる小型であり、且つ、軽量の電子タバコ7500を提供できる。
次に、図33Aおよび図33Bに、2つ折り可能なタブレット型端末の一例を示す。図33Aおよび図33Bに示すタブレット型端末9600は、筐体9630a、筐体9630b、筐体9630aと筐体9630bを接続する可動部9640、表示部9631aと表示部9631bを有する表示部9631、スイッチ9625乃至スイッチ9627、留め具9629、操作スイッチ9628、を有する。表示部9631には、可撓性を有するパネルを用いることで、より広い表示部を有するタブレット端末とすることができる。図33Aは、タブレット型端末9600を開いた状態を示し、図33Bは、タブレット型端末9600を閉じた状態を示している。
また、タブレット型端末9600は、筐体9630aおよび筐体9630bの内部に蓄電体9635を有する。蓄電体9635は、可動部9640を通り、筐体9630aと筐体9630bに渡って設けられている。
表示部9631は、全てまたは一部の領域をタッチパネルの領域とすることができ、また当該領域に表示されたアイコンを含む画像、文字、入力フォームなどに触れることでデータ入力をすることができる。たとえば、筐体9630a側の表示部9631aの全面にキーボードボタンを表示させて、筐体9630b側の表示部9631bに文字、画像などの情報を表示させて用いてもよい。
また、筐体9630b側の表示部9631bにキーボードを表示させて、筐体9630a側の表示部9631aに文字、画像などの情報を表示させて用いてもよい。また、表示部9631にタッチパネルのキーボード表示切り替えボタンを表示するようにして、当該ボタンに指またはスタイラスなどで触れることで表示部9631にキーボードを表示するようにしてもよい。
また、筐体9630a側の表示部9631aのタッチパネルの領域と筐体9630b側の表示部9631bのタッチパネルの領域に対して同時にタッチ入力することもできる。
また、スイッチ9625乃至スイッチ9627は、タブレット型端末9600を操作するためのインターフェースだけでなく、様々な機能の切り替えを行うことができるインターフェースとしてもよい。たとえば、スイッチ9625乃至スイッチ9627の少なくとも一は、タブレット型端末9600の電源のオン・オフを切り替えるスイッチとして機能してもよい。また、たとえば、スイッチ9625乃至スイッチ9627の少なくとも一は、縦表示または横表示などの表示の向きを切り替える機能、または白黒表示とカラー表示を切り替える機能を有してもよい。また、たとえば、スイッチ9625乃至スイッチ9627の少なくとも一は、表示部9631の輝度を調整する機能を有してもよい。また、表示部9631の輝度は、タブレット型端末9600に内蔵している光センサで検出される使用時の外光の光量に応じて最適なものとすることができる。なお、タブレット型端末は光センサだけでなく、ジャイロ、加速度センサ等の傾きを検出するセンサなどの他の検出装置を内蔵させてもよい。
また、図33Aでは筐体9630a側の表示部9631aと筐体9630b側の表示部9631bの表示面積とがほぼ同じ例を示しているが、表示部9631aおよび表示部9631bのそれぞれの表示面積は特に限定されず、一方のサイズと他方のサイズが異なっていてもよく、表示の品質も異なっていてもよい。たとえば一方が他方よりも高精細な表示を行える表示パネルとしてもよい。
図33Bは、タブレット型端末9600を2つ折りに閉じた状態であり、タブレット型端末9600は、筐体9630、太陽電池9633、DCDCコンバータ9636を含む充放電制御回路9634を有する。また、蓄電体9635として、本発明の一態様に係る二次電池を用いる。
なお、上述の通り、タブレット型端末9600は2つ折りが可能であるため、非使用時に筐体9630aおよび筐体9630bを重ね合せるように折りたたむことができる。折りたたむことにより、表示部9631を保護できるため、タブレット型端末9600の耐久性を高めることができる。また、本発明の一態様の二次電池を用いた蓄電体9635は充放電容量が高く、良好なサイクル特性を有するため、長期間に渡って長時間の使用ができるタブレット型端末9600を提供できる。
また、この他にも図33Aおよび図33Bに示したタブレット型端末9600は、様々な情報(静止画、動画、テキスト画像など)を表示する機能、カレンダー、日付または時刻などを表示部に表示する機能、表示部に表示した情報をタッチ入力操作または編集するタッチ入力機能、様々なソフトウェア(プログラム)によって処理を制御する機能、等を有することができる。
タブレット型端末9600の表面に装着された太陽電池9633によって、電力をタッチパネル、表示部、または映像信号処理部等に供給することができる。なお、太陽電池9633は、筐体9630の片面または両面に設けることができ、蓄電体9635の充電を効率的に行う構成とすることができる。なお蓄電体9635としては、リチウムイオン電池を用いると、小型化を図れる等の利点がある。
また、図33Bに示す充放電制御回路9634の構成、および動作について図33Cにブロック図を示し説明する。図33Cには、太陽電池9633、蓄電体9635、DCDCコンバータ9636、コンバータ9637、スイッチSW1乃至SW3、表示部9631について示しており、蓄電体9635、DCDCコンバータ9636、コンバータ9637、スイッチSW1乃至SW3が、図33Bに示す充放電制御回路9634に対応する箇所となる。
まず外光により太陽電池9633により発電がされる場合の動作の例について説明する。太陽電池で発電した電力は、蓄電体9635を充電するための電圧となるようDCDCコンバータ9636で昇圧または降圧がなされる。そして、表示部9631の動作に太陽電池9633からの電力が用いられる際にはスイッチSW1をオンにし、コンバータ9637で表示部9631に必要な電圧に昇圧または降圧をすることとなる。また、表示部9631での表示を行わない際には、SW1をオフにし、SW2をオンにして蓄電体9635の充電を行う構成とすればよい。
なお太陽電池9633については、発電手段の一例として示したが、特に限定されず、圧電素子(ピエゾ素子)および熱電変換素子(ペルティエ素子)などの他の発電手段による蓄電体9635の充電を行う構成であってもよい。たとえば、無線(非接触)で電力を送受信して充電する無接点電力伝送モジュール、さらに他の充電手段を組み合わせて行う構成としてもよい。
図34に、他の電子機器の例を示す。図34において、表示装置8000は、本発明の一態様に係る二次電池8004を用いた電子機器の一例である。具体的に、表示装置8000は、TV放送受信用の表示装置に相当し、筐体8001、表示部8002、スピーカ部8003、二次電池8004等を有する。本発明の一態様に係る二次電池8004は、筐体8001の内部に設けられている。表示装置8000は、商用電源から電力の供給を受けることもできるし、二次電池8004に蓄積された電力を用いることもできる。よって、停電などにより商用電源から電力の供給が受けられない時でも、本発明の一態様に係る二次電池8004を無停電電源として用いることで、表示装置8000の利用が可能となる。
表示部8002には、液晶表示装置、有機EL素子などの発光素子を各画素に備えた発光装置、電気泳動表示装置、DMD(Digital Micromirror Device)、PDP(Plasma Display Panel)、FED(Field Emission Display)などの、半導体表示装置を用いることができる。
なお、表示装置には、TV放送受信用の他、パーソナルコンピュータ用、広告表示用など、全ての情報表示用表示装置が含まれる。
図34において、据え付け型の照明装置8100は、本発明の一態様に係る二次電池8103を用いた電子機器の一例である。具体的に、照明装置8100は、筐体8101、光源8102、二次電池8103等を有する。図34では、二次電池8103が、筐体8101および光源8102が据え付けられた天井8104の内部に設けられている場合を例示しているが、二次電池8103は、筐体8101の内部に設けられていても良い。照明装置8100は、商用電源から電力の供給を受けることもできるし、二次電池8103に蓄積された電力を用いることもできる。よって、停電などにより商用電源から電力の供給が受けられない時でも、本発明の一態様に係る二次電池8103を無停電電源として用いることで、照明装置8100の利用が可能となる。
なお、図34では天井8104に設けられた据え付け型の照明装置8100を例示しているが、本発明の一態様に係る二次電池は、天井8104以外、たとえば側壁8105、床8106、窓8107等に設けられた据え付け型の照明装置に用いることもできるし、卓上型の照明装置などに用いることもできる。
また、光源8102には、電力を利用して人工的に光を得る人工光源を用いることができる。具体的には、白熱電球、蛍光灯などの放電ランプ、LEDおよび有機EL素子などの発光素子が、上記人工光源の一例として挙げられる。
図34において、室内機8200および室外機8204を有するエアコンディショナーは、本発明の一態様に係る二次電池8203を用いた電子機器の一例である。具体的に、室内機8200は、筐体8201、送風口8202、二次電池8203等を有する。図34では、二次電池8203が、室内機8200に設けられている場合を例示しているが、二次電池8203は室外機8204に設けられていても良い。或いは、室内機8200と室外機8204の両方に、二次電池8203が設けられていても良い。エアコンディショナーは、商用電源から電力の供給を受けることもできるし、二次電池8203に蓄積された電力を用いることもできる。特に、室内機8200と室外機8204の両方に二次電池8203が設けられている場合、停電などにより商用電源から電力の供給が受けられない時でも、本発明の一態様に係る二次電池8203を無停電電源として用いることで、エアコンディショナーの利用が可能となる。
なお、図34では、室内機と室外機で構成されるセパレート型のエアコンディショナーを例示しているが、室内機の機能と室外機の機能とを1つの筐体に有する一体型のエアコンディショナーに、本発明の一態様に係る二次電池を用いることもできる。
図34において、電気冷凍冷蔵庫8300は、本発明の一態様に係る二次電池8304を用いた電子機器の一例である。具体的に、電気冷凍冷蔵庫8300は、筐体8301、冷蔵室用扉8302、冷凍室用扉8303、二次電池8304等を有する。図34では、二次電池8304が、筐体8301の内部に設けられている。電気冷凍冷蔵庫8300は、商用電源から電力の供給を受けることもできるし、二次電池8304に蓄積された電力を用いることもできる。よって、停電などにより商用電源から電力の供給が受けられない時でも、本発明の一態様に係る二次電池8304を無停電電源として用いることで、電気冷凍冷蔵庫8300の利用が可能となる。
なお、上述した電子機器のうち、電子レンジ等の高周波加熱装置、電気炊飯器などの電子機器は、短時間で高い電力を必要とする。よって、商用電源では賄いきれない電力を補助するための補助電源として、本発明の一態様に係る二次電池を用いることで、電子機器の使用時に商用電源のブレーカーが落ちるのを防ぐことができる。
また、電子機器が使用されない時間帯、特に、商用電源の供給元が供給可能な総電力量のうち、実際に使用される電力量の割合(電力使用率と呼ぶ)が低い時間帯において、二次電池に電力を蓄えておくことで、上記時間帯以外において電力使用率が高まるのを抑えることができる。たとえば、電気冷凍冷蔵庫8300の場合、気温が低く、冷蔵室用扉8302、冷凍室用扉8303の開閉が行われない夜間において、二次電池8304に電力を蓄える。そして、気温が高くなり、冷蔵室用扉8302、冷凍室用扉8303の開閉が行われる昼間において、二次電池8304を補助電源として用いることで、昼間の電力使用率を低く抑えることができる。
本発明の一態様により、二次電池のサイクル特性が良好となり、信頼性を向上させることができる。また、本発明の一態様によれば、充放電容量が高い二次電池とすることができ、よって、二次電池の特性を向上することができ、よって、二次電池自体を小型軽量化することができる。そのため本発明の一態様である二次電池を、本実施の形態で説明した電子機器に搭載することで、より長寿命で、より軽量な電子機器とすることができる。
本実施の形態は、他の実施の形態と適宜組み合わせて実施することが可能である。
(実施の形態6)
本実施の形態では、先の実施の形態で説明した二次電池を用いた電子機器の例について図35A乃至図36Cを用いて説明する。
図35Aは、ウェアラブルデバイスの例を示している。ウェアラブルデバイスは、電源として二次電池を用いる。また、使用者が生活または屋外で使用する場合において、防沫性能、耐水性能または防塵性能を高めるため、接続するコネクタ部分が露出している有線による充電だけでなく、無線充電も行えるウェアラブルデバイスが望まれている。
たとえば、図35Aに示すような眼鏡型デバイス4000に本発明の一態様である二次電池を搭載することができる。眼鏡型デバイス4000は、フレーム4000aと、表示部4000bを有する。湾曲を有するフレーム4000aのテンプル部に二次電池を搭載することで、軽量であり、且つ、重量バランスがよく継続使用時間の長い眼鏡型デバイス4000とすることができる。本発明の一態様である二次電池を備えることで、筐体の小型化に伴う省スペース化に対応できる構成を実現することができる。
また、ヘッドセット型デバイス4001に本発明の一態様である二次電池を搭載することができる。ヘッドセット型デバイス4001は、少なくともマイク部4001aと、フレキシブルパイプ4001bと、イヤフォン部4001cを有する。フレキシブルパイプ4001b内および/またはイヤフォン部4001c内に二次電池を設けることができる。本発明の一態様である二次電池を備えることで、筐体の小型化に伴う省スペース化に対応できる構成を実現することができる。
また、身体に直接取り付け可能なデバイス4002に本発明の一態様である二次電池を搭載することができる。デバイス4002の薄型の筐体4002aの中に、二次電池4002bを設けることができる。本発明の一態様である二次電池を備えることで、筐体の小型化に伴う省スペース化に対応できる構成を実現することができる。
また、衣服に取り付け可能なデバイス4003に本発明の一態様である二次電池を搭載することができる。デバイス4003の薄型の筐体4003aの中に、二次電池4003bを設けることができる。本発明の一態様である二次電池を備えることで、筐体の小型化に伴う省スペース化に対応できる構成を実現することができる。
また、ベルト型デバイス4006に本発明の一態様である二次電池を搭載することができる。ベルト型デバイス4006は、ベルト部4006aおよびワイヤレス給電受電部4006bを有し、ベルト部4006aの内部に、二次電池を搭載することができる。本発明の一態様である二次電池を備えることで、筐体の小型化に伴う省スペース化に対応できる構成を実現することができる。
また、腕時計型デバイス4005に本発明の一態様である二次電池を搭載することができる。腕時計型デバイス4005は表示部4005aおよびベルト部4005bを有し、表示部4005aまたはベルト部4005bに、二次電池を設けることができる。本発明の一態様である二次電池を備えることで、筐体の小型化に伴う省スペース化に対応できる構成を実現することができる。
表示部4005aには、時刻だけでなく、メールおよび電話の着信等、様々な情報を表示することができる。
また、腕時計型デバイス4005は、腕に直接巻きつけるタイプのウェアラブルデバイスであるため、使用者の脈拍、血圧等を測定するセンサを搭載してもよい。使用者の運動量および健康に関するデータを蓄積し、健康を管理することができる。
図35Bに腕から取り外した腕時計型デバイス4005の斜視図を示す。
また、側面図を図35Cに示す。図35Cには、内部に二次電池913を内蔵している様子を示している。二次電池913は実施の形態4に示した二次電池である。二次電池913は表示部4005aと重なる位置に設けられており、小型、且つ、軽量である。
図35Dはワイヤレスイヤホンの例を示している。ここでは一対の本体4100aおよび本体4100bを有するワイヤレスイヤホンを図示するが、必ずしも一対でなくてもよい。
本体4100aおよび4100bは、ドライバユニット4101、アンテナ4102、二次電池4103を有する。表示部4104を有していてもよい。また無線用IC等の回路が載った基板、充電用端子等を有することが好ましい。またマイクを有していてもよい。
ケース4110は、二次電池4111を有する。また無線用IC、充電制御IC等の回路が載った基板、充電用端子を有することが好ましい。また表示部、ボタン等を有していてもよい。
本体4100aおよび4100bは、スマートフォン等の他の電子機器と無線で通信することができる。これにより他の電子機器から送られた音データ等を本体4100aおよび4100bで再生することができる。また本体4100aおよび4100bがマイクを有すれば、マイクで取得した音を他の電子機器に送り、該電子機器により処理をした後の音データ再び本体4100aおよび4100bに送って再生することができる。これにより、たとえば翻訳機として用いることもできる。
またケース4100が有する二次電池4111から、本体4100bが有する二次電池4103に充電を行うことができる。二次電池4111および二次電池4103としては先の実施の形態のコイン型二次電池、円筒形二次電池等を用いることができる。実施の形態1で得られる正極活物質100を正極に用いた二次電池は高エネルギー密度であり、二次電池4103および二次電池4111に用いることで、ワイヤレスイヤホンの小型化に伴う省スペース化に対応できる構成を実現することができる。
図36Aは、掃除ロボットの一例を示している。掃除ロボット6300は、筐体6301上面に配置された表示部6302、側面に配置された複数のカメラ6303、ブラシ6304、操作ボタン6305、二次電池6306、各種センサなどを有する。図示されていないが、掃除ロボット6300には、タイヤ、吸い込み口等が備えられている。掃除ロボット6300は自走し、ゴミ6310を検知し、下面に設けられた吸い込み口からゴミを吸引することができる。
たとえば、掃除ロボット6300は、カメラ6303が撮影した画像を解析し、壁、家具または段差などの障害物の有無を判断することができる。また、画像解析により、配線などブラシ6304に絡まりそうな物体を検知した場合は、ブラシ6304の回転を止めることができる。掃除ロボット6300は、その内部に本発明の一態様に係る二次電池6306と、半導体装置または電子部品を備える。本発明の一態様に係る二次電池6306を掃除ロボット6300に用いることで、掃除ロボット6300を稼働時間が長く信頼性の高い電子機器とすることができる。
図36Bは、ロボットの一例を示している。図36Bに示すロボット6400は、二次電池6409、照度センサ6401、マイクロフォン6402、上部カメラ6403、スピーカ6404、表示部6405、下部カメラ6406および障害物センサ6407、移動機構6408、演算装置等を備える。
マイクロフォン6402は、使用者の話し声および環境音等を検知する機能を有する。また、スピーカ6404は、音声を発する機能を有する。ロボット6400は、マイクロフォン6402およびスピーカ6404を用いて、使用者とコミュニケーションをとることが可能である。
表示部6405は、種々の情報の表示を行う機能を有する。ロボット6400は、使用者の望みの情報を表示部6405に表示することが可能である。表示部6405は、タッチパネルを搭載していてもよい。また、表示部6405は取り外しのできる情報端末であっても良く、ロボット6400の定位置に設置することで、充電およびデータの受け渡しを可能とする。
上部カメラ6403および下部カメラ6406は、ロボット6400の周囲を撮像する機能を有する。また、障害物センサ6407は、移動機構6408を用いてロボット6400が前進する際の進行方向における障害物の有無を察知することができる。ロボット6400は、上部カメラ6403、下部カメラ6406および障害物センサ6407を用いて、周囲の環境を認識し、安全に移動することが可能である。
ロボット6400は、その内部に本発明の一態様に係る二次電池6409と、半導体装置または電子部品を備える。本発明の一態様に係る二次電池をロボット6400に用いることで、ロボット6400を稼働時間が長く信頼性の高い電子機器とすることができる。
図36Cは、飛行体の一例を示している。図36Cに示す飛行体6500は、プロペラ6501、カメラ6502、および二次電池6503などを有し、自律して飛行する機能を有する。
たとえば、カメラ6502で撮影した画像データは、電子部品6504に記憶される。電子部品6504は、画像データを解析し、移動する際の障害物の有無などを察知することができる。また、電子部品6504によって二次電池6503の蓄電容量の変化から、バッテリ残量を推定することができる。飛行体6500は、その内部に本発明の一態様に係る二次電池6503を備える。本発明の一態様に係る二次電池を飛行体6500に用いることで、飛行体6500を稼働時間が長く信頼性の高い電子機器とすることができる。
本実施の形態は、他の実施の形態と適宜組み合わせて実施することが可能である。
(実施の形態7)
本実施の形態では、車両に本発明の一態様である二次電池を搭載する例を示す。
二次電池を車両に搭載すると、ハイブリッド車(HV)、電気自動車(EV)、またはプラグインハイブリッド車(PHV)等の次世代クリーンエネルギー自動車を実現できる。
図37において、本発明の一態様である二次電池を用いた車両を例示する。図37Aに示す自動車8400は、走行のための動力源として電気モーターを用いる電気自動車である。または、走行のための動力源として電気モーターとエンジンを適宜選択して用いることが可能なハイブリッド自動車である。本発明の一態様を用いることで、航続距離の長い車両を実現することができる。また、自動車8400は二次電池を有する。二次電池は、車内の床部分に対して、図22Cおよび図22Dに示した二次電池のモジュールを並べて使用すればよい。また、図25に示す二次電池を複数組み合わせた電池パックを車内の床部分に対して設置してもよい。二次電池は電気モーター8406を駆動するだけでなく、ヘッドライト8401およびルームライト(図示せず)などの発光装置に電力を供給することができる。
また、二次電池は、自動車8400が有するスピードメーター、タコメーターなどの表示装置に電力を供給することができる。また、二次電池は、自動車8400が有するナビゲーションシステムなどの半導体装置に電力を供給することができる。
図37Bに示す自動車8500は、自動車8500が有する二次電池にプラグイン方式および/または非接触給電方式等により外部の充電設備から電力供給を受けて、充電することができる。図37Bに、地上設置型の充電装置8021から自動車8500に搭載された二次電池8024に、ケーブル8022を介して充電を行っている状態を示す。充電に際しては、充電方法およびコネクタの規格等はCHAdeMO(登録商標)またはコンボ等の所定の方式で適宜行えばよい。充電装置8021は、商用施設に設けられた充電ステーションでもよく、また家庭の電源であってもよい。たとえば、プラグイン技術によって、外部からの電力供給により自動車8500に搭載された二次電池8024を充電することができる。充電は、ACDCコンバータ等の変換装置を介して、交流電力を直流電力に変換して行うことができる。
また、図示しないが、受電装置を車両に搭載し、地上の送電装置から電力を非接触で供給して充電することもできる。この非接触給電方式の場合には、道路および/または外壁に送電装置を組み込むことで、停車中に限らず走行中に充電を行うこともできる。また、この非接触給電の方式を利用して、車両どうしで電力の送受信を行ってもよい。さらに、車両の外装部に太陽電池を設け、停車時および/または走行時に二次電池の充電を行ってもよい。このような非接触での電力の供給には、電磁誘導方式および/または磁界共鳴方式を用いることができる。
また、図37Cは、本発明の一態様の二次電池を用いた二輪車の一例である。図37Cに示すスクータ8600は、二次電池8602、サイドミラー8601、方向指示灯8603を備える。二次電池8602は、方向指示灯8603に電気を供給することができる。
また、図37Cに示すスクータ8600は、座席下収納8604に、二次電池8602を収納することができる。二次電池8602は、座席下収納8604が小型であっても、座席下収納8604に収納することができる。二次電池8602は、取り外し可能となっており、充電時には二次電池8602を屋内に持って運び、充電し、走行する前に収納すればよい。
本発明の一態様によれば、二次電池のサイクル特性が良好となり、二次電池の充放電容量を大きくすることができる。よって、二次電池自体を小型軽量化することができる。二次電池自体を小型軽量化できれば、車両の軽量化に寄与するため、航続距離を向上させることができる。また、車両に搭載した二次電池を車両以外の電力供給源として用いることもできる。この場合、たとえば電力需要のピーク時に商用電源を用いることを回避することができる。電力需要のピーク時に商用電源を用いることを回避できれば、省エネルギー、および二酸化炭素の排出の削減に寄与することができる。また、サイクル特性が良好であれば二次電池を長期に渡って使用できるため、コバルトをはじめとする希少金属の使用量を減らすことができる。
本実施の形態は、他の実施の形態と適宜組み合わせて実施することが可能である。
本実施例では、本発明の一態様の正極活物質100を作製し、電池特性を取得した。
<正極活物質の作製>
図2および図3に示す作製方法を参照しながら本実施例で作製したサンプルについて説明する。
図2のステップS14のLiMOとして、遷移金属Mとしてコバルトを有し、添加元素を添加していない市販のコバルト酸リチウム(日本化学工業株式会社製、セルシードC−10N)を用意した。ステップS15の加熱として、このコバルト酸リチウムをるつぼに入れ、蓋をし、850℃、2時間、マッフル炉にて加熱した。この加熱が初期加熱に相当する。マッフル炉内は酸素雰囲気とした後、酸素を供給しなかった(これをOパージと記す)。初期加熱後によりLCOから不純物が除去された可能性がある。
図3A、図3Bで示したステップS21及びステップS41に従って、添加元素としてMg,F,Ni,Alを用意し、Mg,Fと、Ni,Alとに分けて添加した。図3Aで示したステップS21に従って、F源としてLiFを用意し、Mg源としてMgFを用意した。LiF:MgFを1:3(モル比)となるように秤量した。次に超脱水アセトン中にLiF,およびMgFを混合して、400rpmの回転速度で12時間攪拌して添加元素源Xを作製した。その後300μmの目を有するふるいでふるい、メディアン径(D50)の揃った添加元素源Xを得た。
次に、添加元素源Xが遷移金属M、つまりコバルトの1at%となるように秤量して、初期加熱後のLCOと乾式で混合した。このとき150rpmの回転速度で1時間攪拌した。これは添加元素源Xを得るときの攪拌より緩やかな条件であり、LCOが崩れない条件が好ましい。最後に300μmの目を有するふるいでふるい、メディアン径(D50)の揃った混合物Aを得た。
次に、混合物Aを加熱した。加熱条件は、900℃および20時間とした。加熱の際、混合物Aをいれたるつぼに蓋を配し、マッフル炉にて加熱した。マッフル炉内は酸素雰囲気とした後、Oパージを行った。加熱によりMg,およびFを有するLCO(複合酸化物Aと記す)を得た。
次に、複合酸化物Aに添加元素源Xを添加する。図3Bで示したステップS41に従って、Ni源としてニッケル水酸化物を用意し、Al源としてアルミニウム水酸化物を用意した。ニッケル水酸化物が遷移金属M、つまりコバルトの0.5at%となり、アルミニウム水酸化物が遷移金属M、つまりコバルトの0.5at%となるように秤量して、複合酸化物Aと乾式で混合した。このとき150rpmの回転速度で1時間攪拌した。これは添加元素源Xを得るときの攪拌より緩やかな条件である。攪拌条件は得られた複合酸化物Aが崩れない条件が好ましい。最後に300μmの目を有するふるいでふるい、粒径の揃った混合物Bを得た。
次に、混合物Bを加熱した。加熱条件は、850℃および10時間とした。加熱の際、混合物Bをいれたるつぼに蓋を配し、マッフル炉にて加熱した。マッフル炉内は酸素雰囲気とした後、Oパージを行った。加熱によりMg、F、Ni、およびAlを有するLCO(複合酸化物Bと記す)を得た。このようにして得た正極活物質を用意した。
次いで、得られた正極活物質(LCO)と、導電剤であるアセチレンブラック(AB)と、バインダであるポリフッ化ビニリデン(PVDF)とを、LCO:AB:PVDF=95:3:2(wt%)の割合とし、1500rpmで混合してスラリーを作製した。スラリーの溶媒はNMPを用い、アルミニウムの集電体にスラリーを塗工した後に、溶媒を揮発させた。溶媒が揮発した後に、集電体上のスラリーをプレスした。
プレス条件として、210kN/mで加圧を行ったものをサンプル1−1とし、210kN/mで加圧した後に1467kN/mで加圧を行ったものをサンプル1−2とした。サンプル1−1及びサンプル1−2はともにプレス機が有するロールの温度を120℃とした。サンプル1−1およびサンプル1−2を有する正極の単位面積あたりの正極活物質担持量は、いずれも約7mg/cmとした。このようにして正極が完成した。サンプル1−1およびサンプル1−2について作製条件を表1に示す。
Figure JPOXMLDOC01-appb-T000001
サンプル1−1およびサンプル1−2について電極密度、充填率および空隙率をそれぞれ表2に示す。
Figure JPOXMLDOC01-appb-T000002
電極密度は、正極から集電体を除いた活物質層(正極活物質、導電剤、およびバインダに相当する)の重量/活物質層の体積×100から算出した。充填率は、(電極密度/混合物の真密度)×100から算出した。各材料の真密度であるが、LiCoOは5.05g/cc、導電剤に用いたABは1.95g/cc、バインダに用いたPVDFは1.78g/ccとした。また空隙率は、(1−充填率)×100として算出した。
表2にあるように、サンプル1−1とサンプル1−2とを比較すると、サンプル1−1はサンプル1−2より空隙率が高いことが分かる。
サンプル1−1およびサンプル1−2を有する2つの正極を用いてそれぞれ、試験用電池として、ハーフセルを組み立てた。負極、つまり対極としてリチウム金属を用意した。サンプル1−1およびサンプル1−2をそれぞれ有する正極と、負極との間にセパレータを介在させて、電解液とともに外装材へ収容した。セパレータにはポリプロピレンを用いた。電解液は、エチレンカーボネート(EC)とジエチルカーボネート(DEC)をEC:DEC=3:7(体積比)で混合したものに、添加剤としてビニレンカーボネート(VC)を2wt%加えたものを用いた。電解液が有する電解質には、1mol/Lの六フッ化リン酸リチウム(LiPF)を用いた。外装材へ収容された状態がコイン型のためコイン型のハーフセルと呼ばれることがある。
このようにしてコイン型のハーフセルを形成し、充放電測定器として東洋システム社製の充放電計測システム(TOSCAT−3100)を用いて充放電サイクル試験を測定した。ハーフセルによる充放電サイクル試験、つまりサイクル特性評価により正極単体の性能を把握することができる。
充放電サイクル試験条件のレートについて説明する。放電時のレートを放電レートと呼ぶが、当該放電レートとは、電池容量に対する放電時の電流の相対的な比率であり、単位Cで表される。定格容量X(Ah)の電池において、1C相当の電流は、X(A)である。2X(A)の電流で放電させた場合は、2Cで放電させたといい、X/2(A)の電流で放電させた場合は、0.5Cで放電させたという。また、充電時のレートを充電レートと呼ぶが、充電レートと同様に、2X(A)の電流で充電させた場合は、2Cで充電させたといい、X/2(A)の電流で充電させた場合は、0.5Cで充電させたという。充電レートおよび放電レートを合わせて、充放電レートと記す。
<充放電サイクル試験条件:充放電レート1C>
充放電レート1Cで充放電サイクル試験を実施した。具体的には、25℃または45℃に保持された恒温槽内(25℃または45℃環境下と記す)において4.60V(4.6Vと記す)の電圧になるまで1C(1C=200mA/gとする)の充電レートで定電流充電したのち、さらに4.6Vの電圧で充電レートが0.1Cになるまで定電圧充電し、その後、2.5Vの電圧になるまで1Cの放電レートで定電流放電した。充電と放電との間には、5分以上15分以下の休止期間を設けてもよく、本実施例では10分の休止期間を設けた。
別の試験として、充電の上限電圧が異なる条件での試験を行った。具体的には、25℃または45℃環境下において4.65Vの電圧になるまで1C(1C=200mA/gとする)の充電レートで定電流充電したのち、さらに4.65Vの電圧で充電レートが0.1Cになるまで定電圧充電し、その後、2.5Vの電圧になるまで1Cの放電レートで定電流放電した。充電と放電との間に10分の休止期間を設けた。
さらに別の試験として、充電の上限電圧が異なる条件での試験を行った。具体的には、25℃または45℃環境下において4.70V(4.7Vと記す)の電圧になるまで1C(1C=200mA/gとする)の充電レートで定電流充電したのち、さらに4.7Vの電圧で充電レートが0.1Cになるまで定電圧充電し、その後、2.5Vの電圧になるまで1Cの放電レートで定電流放電した。充電と放電との間に10分の休止期間を設けた。
上記充電と放電を1サイクルとして、サイクル数を50回繰り返し、(50サイクル目の放電容量/50サイクル中の放電容量の最大値)×100で計算した値を、50サイクル目の放電容量維持率(capacity retention)(%)とした。すなわち充放電のサイクルを50回繰り返す試験を行い、サイクルごとに放電容量を計測した場合に、50サイクル目に計測された放電容量の値が、全50サイクル中の放電容量の最大値(最大放電容量と記す)に対してどのくらいの割合かを求めた。放電容量維持率が高いほど、充放電を繰り返した後の電池の容量低下が抑制されるため、電池特性として望ましい。
充放電サイクル試験では電流を測定する。具体的には充電および放電の測定において、電池電圧および電池に流れる電流は、4端子法で測定することが好ましい。充電では正極端子から充放電測定器を通って負極端子に電子が流れるため、充電電流とは負極端子から充放電測定器を通って正極端子に流れる。また放電では負極端子から充放電測定器を通って正極端子に電子が流れるため、放電電流とは正極端子から充放電測定器を通って負極端子に流れる。充電電流及び放電電流は充放電測定器が有する電流計で測定され、1回の充電及び1回の放電において流れた電流の積算量が、それぞれ充電容量及び放電容量に相当する。例えば1サイクル目の放電において流れた放電電流の積算量のことを1サイクル目の放電容量と呼ぶことができ、50サイクル目の放電において流れた放電電流の積算量のことを50サイクル目の放電容量と呼ぶことができる。
放電容量維持率を算出するために必要な、サンプル1−1およびサンプル1−2に対する50サイクル中の放電容量の最大値である最大放電容量(mAh/g)の一覧を表3に示す。
Figure JPOXMLDOC01-appb-T000003
LCOの理論容量が274mAh/gであること等を踏まえると、表3に示したサンプル1−1およびサンプル1−2は最大放電容量が高いことが分かる。すなわち初期加熱を実施したLCOは、高い最大放電容量を得るために好適である。
上記各条件で測定された充放電サイクル試験の結果を図38A、図38B、図39A、図39B、図40A及び図40Bに示す。図38A、図38B、図39A、図39B、図40A及び図40Bでは、横軸はサイクル数(回)を示し、縦軸は放電容量維持率(%)を示し、サンプル1−1の結果を実線で示し、サンプル1−2の結果を破線で示す。
図38A、図38B、図39A、図39B、図40A及び図40Bから、初期加熱を実施したLCOは25℃環境下において高い放電容量維持率を示し、電池特性として望ましいことが分かる。具体的にはサンプル1−1は、25℃環境下での4.6V充電、4.65V充電および4.7V充電において、サイクル数が50回後(50サイクル後と記す)の放電容量維持率が95%以上となることが分かった。さらにサンプル1−2は、25℃環境下での4.6V、および4.65V充電において50サイクル後の放電容量維持率が95%以上となることが分かった。すなわち初期加熱を実施したLCOは、高い放電容量維持率を得るために好適である。なお、サイクル試験における放電容量維持率とは、最大放電容量に対する500サイクル目の放電容量の比率のことをいう。
図38A、図38B、図39A、図39B、図40A及び図40Bから、45℃環境下においても高い放電容量維持率を示し、電池特性として望ましいことが分かる。具体的にはサンプル1−1は、45℃環境下、4.6V充電において、50サイクル後の放電容量維持率が95%以上となることが分かった。
このように放電容量維持率の値および範囲は図38A、図38B、図39A、図39B、図40A及び図40Bから読み取ることができる。
図38A、図38B、図39A、図39B、図40A及び図40Bに示した放電容量維持率のうち25℃環境下の結果を重ねて、図41に示す。4.6V充電の結果を実線、4.65V充電の結果を小破線、および4.7V充電の結果を破線で示す。
図41より、いずれの温度環境下においても50サイクル目の放電容量維持率は95%以上となり、電池特性が良好であるとわかる。すなわち初期加熱を実施したLCOは、25℃環境下のサイクル試験において、50サイクル目の放電容量維持率は95%以上となるために好適である。
サンプル1−1の充放電カーブを図42A、図42B、図43A、図43B、図44A及び図44Bに示す。充放電カーブとは、充放電サイクル試験で得られた充電カーブと放電カーブ(まとめて充放電カーブと記す)を、横軸を容量(mAh/g)とし、縦軸を電圧(V)として、1サイクル目からnサイクル目(nは2以上の整数)まで重ね合わせて示したグラフを指す。図42A、図42B、図43A、図43B、図44A及び図44Bは、サイクル数が1回以上50回以下の充放電カーブを取得し、サイクル数が1サイクル目、10サイクル目及び50サイクル目の充放電カーブを重ねて示したグラフである。さらに図42A、図42B、図43A、図43B、図44A及び図44Bでは、充放電カーブの変化を分かりやすくするため、1サイクルからに50サイクルへ向かって矢印を添えた。
図42A、図42B、図43A、図43B、図44A及び図44Bに示すサンプル1−1の充電カーブにおいて、1サイクル目から数サイクル目までは電圧が低く、容量が小さい。サンプル1−1は容量の小さい数サイクル目までを除き、たとえば10サイクル目以降等では、25℃環境下で良好な容量を示すことがわかる。またサンプル1−1は、45℃環境下、4.7V充電で容量減少があり、充放電カーブの形状が変化し、劣化したことが伺える。
<充放電サイクル試験条件:充放電レート0.5C>
充放電サイクル試験の充放電レートを0.5Cとして、サンプル1−1およびサンプル1−2の放電容量維持率を測定した。充放電レート以外の条件は、レート1Cのときと同様にした。
まず、上記条件におけるサンプル1−1およびサンプル1−2の最大放電容量(mAh/g)の一覧を表4に示す。
Figure JPOXMLDOC01-appb-T000004
LCOの理論容量は274mAh/gであること等を踏まえると、表4に示したサンプル1−1およびサンプル1−2は最大放電容量が高いことが分かる。すなわち初期加熱を実施したLCOは、高い最大放電容量を得るために好適である。
上記条件で測定された充放電サイクル試験の結果を図45A、図45B、図46A、図46B、図47A及び図47Bに示す。図45A、図45B、図46A、図46B、図47A及び図47Bでは、横軸はサイクル数(回)を示し、縦軸は放電容量維持率(%)を示し、サンプル1−1の結果を実線で示し、サンプル1−2の結果を破線で示す。
図45A、図45B、図46A、図46B、図47A及び図47Bから、初期加熱を実施したLCOは25℃環境下において高い放電容量維持率を示し、電池特性として望ましいことが分かる。具体的にはサンプル1−1は、25℃環境下での、4.6V充電、4.65V充電および4.7V充電において、50サイクル後の放電容量維持率が95%以上となることが分かった。さらにサンプル1−2は、25℃環境下、4.6V、および4.65V充電において放電容量維持率が95%以上となることが分かった。すなわち初期加熱を実施したLCOは、高い放電容量維持率を得るために好適である。
図45A、図45B、図46A、図46B、図47A及び図47Bから、45℃環境下においても高い放電容量維持率を示し、電池特性として望ましいことが分かる。具体的にはサンプル1−1は、45℃環境下、4.6V充電において、50サイクル後の放電容量維持率が95%以上となることが分かった。
このように放電容量維持率の値および範囲は図45A、図45B、図46A、図46B、図47A及び図47Bから読み取ることができる。
図45A、図45B、図46A、図46B、図47A及び図47Bに示した放電容量維持率についてn数を増して確認するために、同じ条件でn個のサンプルを測定した。すなわち負極がリチウムで構成される試験用の電池の正極にサンプル1−1を正極活物質として用い、25℃環境下で充電電圧4.6V、4.65Vまたは4.7Vとなるまで充電レート0.5Cで定電流充電し、さらに4.6V、4.65Vまたは4.7Vの電圧で充電レートが0.05Cになるまで定電圧充電し、その後、2.5Vの電圧になるまで0.5Cの放電レートで定電流放電するサイクルを50回繰り返した。最大放電容量に対する、50サイクル目の放電容量維持率(50サイクル目の放電容量/最大放電容量×100)の値を図48に示し、表5に一覧で示す。図48では4.6V充電の結果を四角、4.65V充電の結果を丸、および4.7V充電の結果を三角で示す。
Figure JPOXMLDOC01-appb-T000005
ばらつきがみられるが、4.6V充電のとき50サイクル目の放電容量維持率が90%以上、好ましくは95%以上、さらに好ましくは97%以上を示すことがわかる。また4.65V充電のとき50サイクル目の放電容量維持率が85%以上、好ましくは90%以上、さらに好ましくは92%以上を示すことがわかる。同様に、4.7V充電のとき、50サイクル目の放電容量維持率が80%以上、好ましくは85%以上、さらに好ましくは87%以上を示すことがわかる。いずれも上限は100%未満と考えることができる。
サンプル1−2の放電容量維持率についてn数を増して確認するために、サンプル1−1と同じ条件でn個のサンプルを測定した。すなわち負極がリチウム金属で構成される試験用の電池の正極にサンプル1−1を正極活物質として用い、25℃環境下で充電電圧4.6V、4.65Vまたは4.7Vとなるまで充電レート0.5Cで定電流充電し、さらに4.6V、4.65Vまたは4.7Vの電圧で充電レートが0.05Cになるまで定電圧充電し、その後、2.5Vの電圧になるまで0.5Cの放電レートで定電流放電するサイクルを50回繰り返した。最大放電容量に対する、50サイクル目の放電容量維持率(50サイクル目の放電容量/最大放電容量×100)の値を図49に示し、表6に一覧で示す。図49では4.6V充電の結果を四角、4.65V充電の結果を丸、および4.7V充電の結果を三角で示す。
Figure JPOXMLDOC01-appb-T000006
サンプル1−1の充放電カーブを図50A乃至図52Bに示す。図50A乃至図52Bは図42A乃至図44Bと同様なグラフであり、充放電カーブの変化を分かりやすくするため、1サイクルからに50サイクルへ向かって矢印を添えた。
図50A乃至図52Bに示すサンプル1−1の充電カーブにおいて、1サイクル目から数サイクル目までは電圧が低く、容量が小さい。サンプル1−1は容量の小さい数サイクル目までを除き、たとえば10サイクル目以降等では、25℃環境下で良好な容量を示すことがわかる。またサンプル1−1は、45℃環境下、4.7V充電で容量減少があり、充放電カーブの形状が変化し、劣化したことが伺える。
<レート特性>
次に、サンプル1−1に対して、25℃環境下で、4.6V、4.65V及び4.7Vの電圧になるまでの充電時のレートを0.5Cに固定し、放電時のレートを0.2C、0.5C、1C、2C、3C、4C、5C、および0.2Cと順に変動させて、放電容量を測定した。当該測定をレート特性と記すことがある。なお、各レートに対する放電容量の測定は、2回ずつ実施した。
上記の測定結果を図53A乃至図55Bに示す。図53A、図54A、及び図55Aでは、横軸は充電レート/放電レートをC−rateとして示し、縦軸は放電容量(mAh/g)を示す。さらに図53B、図54B、及び図55Bでは、初回のサイクルに用いたレート条件(C−rateが0.5/0.2)のときの放電容量で規格化したグラフを示す。
図53A、図54A、及び図55Aに示された結果を表7に示す。図53B、図54B、及び図55Bに示された結果を表8に示す。図53A乃至図55B、表7および表8より、サンプル1−1のレート特性はいずれの充電電圧においても良好であった。さらに同じCレートでの放電容量を比較すると、初回のCレート0.5/0.2より、最後のCレート0.5/0.2の方が大きい。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
<温度および充電電圧依存性>
次にサンプル1−1に対して、30℃、35℃、および40℃の環境下で充放電サイクル試験を追加した。先に実施した25℃、および45℃の環境下での充放電サイクル試験と合わせて検討する。いずれも充放電レートは0.5Cとした。測定した結果を、図56A乃至図64に示す。図56A乃至図64では、横軸はサイクル数(回)を示し、縦軸は容量(mAh/g)を示す。同じ条件で測定した充電カーブを図65A乃至図73に示す。図65A乃至図73は、サイクル数が1回以上50回以下の充電カーブを取得し、サイクル数が1サイクル目、10サイクル目及び50サイクル目の充電カーブを重ねて示したグラフである。
図56A乃至図64の充放電サイクル試験結果から得られた各温度における50サイクル後の放電容量維持率(%)を図74および表9に示す。表9では、放電容量維持率が相対的に低い領域を太枠で囲んだ。
Figure JPOXMLDOC01-appb-T000009
また図65A乃至図73の充放電サイクル試験結果から得られた各温度における充電深度を図75および表10に示す。なお充電深度は最大充電容量/理論容量×100から求められ、LCOの理論容量は274mAh/gとした。図75には充電深度80%に合わせて引かれた破線があるが、充電深度80%は充電容量が220mAh/gであることを示す。
Figure JPOXMLDOC01-appb-T000010
図56A乃至図75、表9および表10より、充電深度が80%未満のときにいずれの温度環境下であっても、充電容量および放電容量維持率が高く、電池特性が高いことがわかる。
<ハーフセル充放電サイクルにおける正極の解析>
サンプル1−1に対する充放電サイクル試験の中で、充電電圧4.7V、25℃及び45℃環境下の条件を対象として、サンプル1−1の変化と充放電サイクルの回数との関係を調査した。
充放電サイクル試験に供していないサンプル1−1に対し、1サイクル後をサンプル1−1(25−1C)及びサンプル1−1(45−1C)、5サイクル後をサンプル1−1(25−5C)及びサンプル1−1(45−5C)、15サイクル後をサンプル1−1(25−15C)及びサンプル1−1(45−15C)、30サイクル後をサンプル1−1(25−30C)及びサンプル1−1(45−30C)、50サイクル後をサンプル1−1(25−50C)及びサンプル1−1(45−50C)とした。サンプル1−1(25−1C)乃至サンプル1−1(45−50C)について、充放電サイクル条件を表11及び表12に示す。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
なお、表11及び表12に記載していない各種条件は、図56A乃至図73で示した評価結果に関する、正極の作製条件、コイン型のハーフセルの作製条件、及び充放電サイクル試験の条件と同様とした。
サンプル1−1(25−1C)乃至サンプル1−1(45−50C)は各々、XRD分析用と、断面STEM分析用及び断面SEM分析用に2サンプルを作製した。表11及び表12に示すとおり、XRD分析ではサンプル1−1(25−1C)乃至サンプル1−1(45−50C)を充電状態とした。当該充電状態とするために、最終サイクルの充電のみ0.05Cの定電流充電(終止電圧4.7V)とした。
XRD分析として、サンプル1−1(25−1C)乃至サンプル1−1(45−50C)について、XRD測定及びリートベルト法による解析を行った。XRD測定には、ブルカー社製D8 ADVANCEを用い、実施の形態2の≪XRD≫に記載した条件で測定した。XRD測定データは、ブルカー社製解析ソフトEVAを用いて、バックグラウンド除去処理及びCuKα2線の成分除去を行った後、リートベルト法による解析を行った。リートベルト法による解析には、解析プログラムRIETAN−FP(F.Izumi and K.Momma,Solid State Phenom.,130,15−20(2007)参照)を用いた。
リートベルト法による解析では、各々のサンプルが有するO3構造、O3’構造、H1−3構造及びO1構造の存在量を明らかにするために多相解析を行った。ここで、充放電サイクルを実施していないサンプル1−1が有する非晶質部の存在量をゼロとした。サンプル1−1が有するO3構造、O3’構造、H1−3構造及びO1構造の存在量の総和から、サンプル1−1(25−1C)乃至サンプル1−1(45−50C)の各々におけるO3構造、O3’構造、H1−3構造及びO1構造の存在量の総和、を引き、残った値を、サンプル1−1(25−1C)乃至サンプル1−1(45−50C)の各々における非晶質部の存在量とした。このとき、サンプル1−1(25−1C)乃至サンプル1−1(45−50C)の各々における非晶質部の存在量は、充放電サイクルによって発生又は増加した非晶質部の存在量、と考えることができる。
上記のリートベルト法による解析において、尺度因子(scale factor)はRIETAN−FPから出力された数値を使用した。O3構造、O3’構造、H1−3構造及びO1構造の存在比は、各結晶構造の多重度因子及び単位胞に含まれる化学式単位の数から、各結晶構造の存在比をモル分率で算出した。サンプル1−1乃至サンプル1−1(45−50C)のリートベルト法による解析では、今回のXRD測定において有意なシグナルが存在しない範囲(2θ=23°以上27°以下)のホワイトノイズで各サンプルを規格化しており、各々の存在量は絶対値ではなく相対値である。サンプル1−1乃至サンプル1−1(45−50C)におけるO3構造、O3’構造、H1−3構造、O1構造及び非晶質部の存在比率を、100分率として表13及び表14に示す。
断面STEM分析として、サンプル1−1乃至サンプル1−1(45−50C)について、正極が有する活物質粒子の断面STEM像において、任意範囲の面積と、該任意範囲に存在する閉じたひびの面積(閉じたひびが複数ある場合は、各閉じたひびの面積の総和)と、を算出し、閉じたひびが粒子の断面の該任意範囲に占める割合(閉じたひびの割合)を100分率として算出した。サンプル1−1乃至サンプル1−1(45−50C)における閉じたひびの割合を表13及び表14に示す。
断面SEM分析として、サンプル1−1乃至サンプル1−1(45−50C)について、各正極の断面SEM像において、正極断面における所定の範囲に存在する活物質粒子の表面にピットが発生しているかどうか、の解析をおこなった。ピットが発生していた場合はピットの数を計測した。本実施例の断面SEM分析の範囲としては、約26μm×約19μmの範囲に存在する活物質粒子を対象とした。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
表13に示したXRD分析結果において、充放電サイクル数の多いサンプルほど、非晶質部の存在比率が増加していた。
表13に示した断面STEM分析結果及び断面SEM分析結果において、25℃環境下での充放電サイクル試験では、50サイクル後においても、断面STEM分析で粒子内部の閉じたひびは観察されなかった。
表14に示したXRD分析結果において、充放電サイクル数の多いサンプルほど、非晶質部の存在比率が増加している傾向は45℃環境下での充放電サイクル試験においても、同様であった。ただし、45℃環境下での充放電サイクル試験では、サンプル1−1(45−5C)においてH1−3構造、O1構造が存在していた。また、非晶質部の存在比率を25℃環境下と45℃環境下と、で比較すると、45℃環境下のサンプルの方が多い傾向がある。特にサンプル1−1(45−50C)では、非晶質部の存在比率が58%となり、結晶性の低下が顕著であることが分かった。
表14に示した断面STEM分析結果及び断面SEM分析結果において、15サイクル目以降のサンプル1−1(45−15C)乃至サンプル1−1(45−50C)では、断面STEM分析結果として、粒子内部の閉じたひびの発生が確認された。また、断面SEM分析の結果においても、15サイクル目以降のサンプルで、ピットの発生が確認されており、充放電サイクル数が多いサンプルほど、ピット数が多い傾向が見られた。
表14に示したXRD分析結果をもとに作成した、充電深度と結晶構造との関係を示す概念図を図76に、充放電サイクルの進行による活物質粒子内部の結晶構造の変化を示す概念図を図77に示す。図77の下段に示すグラフは図64に示したグラフに対応する。図76及び図77に示すように、充放電サイクルが進むにつれて、O3’構造までにとどまらず、H1−3構造及びO1構造が形成されるようになるとともに、非晶質部の割合が増大する。このため、充電電圧4.7V、45℃の条件では充放電サイクルによる劣化が大きいと考えられる。
<フルセル充放電サイクル特性>
次にフルセルを組み立ててサイクル特性を評価した。フルセルによるサイクル特性評価により二次電池の性能を把握することができる。
まずサンプル1−1を正極活物質として、フルセルを組み立てた。フルセルの条件は、負極活物質として黒鉛を用いた点、さらに添加剤を添加しない点以外は上述したハーフセル条件と同様に作製した。負極において黒鉛以外にVGCF(登録商標)、カルボキシメチルセルロース(CMC)、およびスチレンブタジエンゴム(SBR)を添加した。CMCは粘度を高めるために添加し、SBRはバインダとして添加した。なお黒鉛:VGCF:CMC:SBR=96:1:1:2(重量比)となるように混合した。
図78は充電レートおよび放電レート0.2C(1C=200mA/g)で充放電を行った、充放電電圧4.6Vかつ25℃環境下におけるサイクル特性と放電容量維持率結果を示す図である。またフルセルによるサイクル特性評価では放電終止電圧は3Vとした。図78に示したサイクル特性として、最大放電容量は205.1mAh/gであり、500サイクルの放電容量維持率は82.3%、つまり80%以上となることが分かった。良好な電池特性である。図79は45℃環境下であって、他の条件は図78と同様にして得られた放電容量維持率結果を示す。図79に示したサイクル特性として、最大放電容量は194mAh/gであった。
図80は充電レートおよび放電レート0.2C(1C=200mA/g)で充放電を行った、充放電電圧4.5Vかつ25℃環境下におけるサイクル特性と放電容量維持率結果を示す図である。またフルセルによるサイクル特性評価では放電終止電圧は3Vとした。図80に示したサイクル特性として、最大放電容量は196.6mAh/gであり、500サイクルの放電容量維持率は91.0%、つまり90%以上となることが分かった。良好な電池特性である。図81は45℃環境下であって、他の条件は図80と同様にして得られた放電容量維持率結果を示す。図81に示したサイクル特性として、最大放電容量は198.5mAh/gであった。
なおフルセルのサイクル特性は負極に黒鉛を用いているため、ハーフセルのように対極リチウムを用いた場合の充放電電圧から約0.1V低くなっている。すなわち、フルセルにおける充電電圧4.5Vは、ハーフセルにおける充電電圧4.6V相当である。
本実施例では、実施例1と同様の条件にて作製した正極を用いた二次電池の温度特性、及びレート特性を示す。
正極として、実施例1に示すサンプル1−1と同様の条件で作製した正極を用いた。但し、単位面積あたりの正極活物質の担持量が約7mg/cmの正極に加えて、約5mg/cmの条件の正極、および約20mg/cmの正極も作製した。
試験用のハーフセルを組み立てた。負極、つまり対極としてリチウム金属を用意した。正極と負極との間にセパレータを介在させて、電解液とともに外装材へ収容した。
電解液は、2条件の条件振りを行った。第1の条件として、電解液の溶媒としてエチレンカーボネート(EC)とジエチルカーボネート(DEC)をEC:DEC=3:7(体積比)で混合液に、添加剤としてビニレンカーボネート(VC)を2wt%加えたものを用いた。電解液が有する電解質には、1mol/Lの六フッ化リン酸リチウム(LiPF)を用いた。
第2の条件として、電解液の溶媒としてEMI−FSA(1−エチル−3−メチルイミダゾリウムビス(フルオロスルホニル)アミド)を用いた。電解液が有する電解質には、2.15mol/LのLiFSA(リチウムビス(フルオロスルホニル)アミド)を用い、電解液に対する電解質の濃度は、2.15mol/Lとした。
セパレータとして、第1の条件の電解液を用いたハーフセルには多孔質のポリプロピレンを用い、第2の条件の電解液を用いたハーフセルには、多孔質のポリイミドを用いた。
<温度特性>
温度特性の測定を行った。単位面積あたりの正極活物質の担持量として約5mg/cmの正極を用いたハーフセルについて、評価を行った。
測定条件について、説明する。
まずエージングとして、充放電を3回行った。エージングは恒温槽の温度(環境温度と記す)25℃で行った。1回目の充電として、上限電圧まで0.1Cの定電流充電を行った後、下限を0.01Cとして定電圧充電を行った。1回目の充電の後、1回目の放電として、下限電圧を2.5Vとして、0.1Cで定電流放電を行った。2回目の充電として、上限電圧まで0.5Cの定電流充電を行った後、下限を0.05Cとして定電圧充電を行った。2回目の充電の後、2回目の放電として、下限電圧を2.5Vとして、0.5Cで定電流放電を行った。3回目の充電として、上限電圧まで0.5Cの定電流充電を行った後、下限を0.05Cとして定電圧充電を行った。3回目の充電の後、3回目の放電として、下限電圧を2.5Vとして、0.1Cで定電流放電を行った。なお、充電の上限電圧は、温度特性を取得する際の上限電圧と合わせた。
エージングを行った後、温度特性の評価を行った。充電は0.5Cの定電流充電の後、下限を0.05Cとして定電圧充電を行った。充電電圧の上限は、4.6Vと、4.7Vとで、それぞれ異なるハーフセルを用いて条件振りを行った。放電は0.1Cとして行った。1Cは、200mA/gとした。ここで、レートの算出に用いる重量は、正極活物質の重量である。
充電は環境温度が25℃、放電は環境温度が25℃、15℃、0℃、−20℃、−40℃、45℃、60℃、80℃、100℃において温度特性の評価を行った。
電解液として第1の電解液を用いたハーフセルの結果を図82A乃至図84に示す。
図82Aおよび図82Bには充電の上限電圧を4.6Vとしたときの放電カーブを示す。図83Aおよび図83Bには充電の上限電圧を4.7Vとしたときの放電カーブを示す。図82A乃至図83Bの横軸は、正極活物質重量あたりの放電容量であり、縦軸は放電電圧である。図84には、環境温度25℃における放電容量を1として規格化した場合の、各温度における放電容量を示す。実線が上限電圧が4.6Vの、破線が上限電圧が4.7Vのデータである。
また、図85Aおよび図85Bには各温度における、正極活物質重量あたりの重量エネルギー密度を示す。図85Aが上限電圧が4.6Vの、図85Bが上限電圧が4.7Vのデータである。
また、図86には、環境温度25℃における重量エネルギー密度を1として規格化した場合の、各温度における重量エネルギー密度を示す。実線が上限電圧が4.6Vの、破線が上限電圧が4.7Vのデータである。
環境温度が−40℃から100℃までにおいて、優れた放電容量が得られた。
電解液として第2の電解液を用いたハーフセルの結果を図87および図88に示す。
図87には充電の上限電圧を4.6Vとしたときの放電カーブを示す。図88には充電の上限電圧を4.7Vとしたときの放電カーブを示す。
環境温度が−20℃から100℃までにおいて、優れた放電容量が得られた。また、環境温度が−40℃においては、放電容量は10mAh/g程度であった。
各温度における、正極活物質重量あたりの放電容量(mAh/g)を表15に、正極活物質重量あたりの重量エネルギー密度(mWh/g)を表16に、それぞれ示す。なお、電解質として、第1の条件を用いたハーフセルは2セル作製し、それぞれについて測定を行った結果を示す。
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
<レート特性>
まずエージングとして、充放電を2回行った。エージングは環境温度25℃で行った。1回目の充電として、上限電圧まで0.1Cの定電流充電を行った後、下限を0.01Cとして定電圧充電を行った。1回目の充電の後、1回目の放電として、下限電圧を2.5Vとして、0.1Cで定電流放電を行った。2回目の充電として、上限電圧まで0.5Cの定電流充電を行った後、下限を0.05Cとして定電圧充電を行った。2回目の充電の後、2回目の放電として、下限電圧を2.5Vとして、0.5Cで定電流放電を行った。なお、充電の上限電圧は、温度特性を取得する際の上限電圧と合わせた。
エージングを行った後、レート特性の測定を行った。環境温度は25℃とした。充電は0.5Cの定電流充電の後、上限を0.05Cとして定電圧充電を行った。充電電圧の上限は、4.6Vと、4.7Vとで、それぞれ異なるハーフセルを用いて条件振りを行った。1Cは、200mA/gとした。ここで、レートの算出に用いる重量は、正極活物質の重量である。
放電は、サイクル毎に条件を順に、0.1C、0.2C、0.5C、1C、2C、3C、4C、5C、10C、20C、0.1Cをそれぞれ2サイクルずつ行った。
図89Aおよび図89Bには、電解液として第1の条件を用いたハーフセルの結果を示す。図89Aは充電電圧の上限が4.6Vの、図89Bは充電電圧の上限が4.7Vの放電容量をそれぞれ示す。図89Aおよび図89Bに示す放電容量は、正極活物質重量あたりの放電容量である。正極活物質重量の担持量は約5mg/cm、約7mg/cm、約20mg/cmでの結果を示す。
また図90Aおよび図90Bには、電解液として第1の条件を用い、単位面積あたりの正極活物質の担持量が約5mg/cmの条件における放電カーブを示す。図90Aおよび図90Bの横軸は、正極活物質重量あたりの放電容量であり、縦軸は放電電圧である。0.1Cは破線、その他の結果は実線にて示す。なお、図を見やすくするため、3Cおよび4Cのデータは図示しない。また、それぞれのレートにおいて2サイクル放電を行ったうち、1サイクル分のみ図示した。また、0.1Cの特性については、最初に行ったサイクルの結果のみ示した。図90Aには充電電圧の上限が4.6Vの、図90Bは充電電圧の上限が4.7Vの結果をそれぞれ示す。
10Cの放電レートにおいても、高い放電容量が得られた。なお、20Cにおいては、放電容量が10mAh/g程度得られた。
図91Aおよび図91Bには、電解液として第2の条件を用い、単位面積あたりの正極活物質の担持量が約5mg/cmの条件を用いたハーフセルの結果を示す。
また、図92Aおよび図92Bには、電解液として第1の条件を用い、単位面積あたりの正極活物質の担持量が約5mg/cm、約7mg/cm、約20mg/cmの条件について、各レートにおける、正極活物質重量あたりの重量エネルギー密度を示す。図92Aは上限電圧が4.6Vの条件における結果データで、図92Bは上限電圧が4.7Vの条件における結果データである。
また、図93Aおよび図93Bには、電解液として第2の条件を用い、単位面積あたりの正極活物質の担持量が約5mg/cmの条件について、各レートにおける、正極活物質重量あたりの重量エネルギー密度を示す。図93Aは上限電圧が4.6Vの、図93Bは上限電圧が4.7Vのデータである。
図94Aおよび図94Bには、電解液として第2の条件を用い、単位面積あたりの正極活物質の担持量が約5mg/cmの条件を用いたハーフセルの放電カーブを示す。図94Aおよび図94Bの横軸は、正極活物質重量あたりの放電容量であり、縦軸は放電電圧である。図94Aは充電電圧の上限が4.6Vの、図94Bは充電電圧の上限が4.7Vの結果をそれぞれ示す。0.1Cは破線、その他の結果は実線にて示す。なお、図を見やすくするため、3Cおよび4Cのデータは図示しない。また、それぞれのレートにおいて2サイクル放電を行ったうち、1サイクル分のみ図示した。また、0.1Cの特性については、最初に行ったサイクルの結果のみ示した。
5Cの放電レートにおいても、高い放電容量が得られた。なお、10Cにおいては、放電容量が20mAh/g以上、20Cにおいては、放電容量が10mAh/g以上得られた。
本実施例では、実施例1と同様の条件にて作製した正極と、実施例2とは異なる電解液を用いた二次電池の特性を示す。
正極として、実施例1に示すサンプル1−1と同様の条件で作製した正極を用いた。電解液として、実施例2で示した第1の条件の電解液および第2の条件の電解液、のいずれとも異なる第3の条件の電解液を用いた。負極としてリチウム金属を用いた。
第3の条件の電解液として、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とジメチルカーボネート(DMC)をEC:EMC:DMC=3:3.5:3.5(体積比)で混合したものを用いた。電解液が有する電解質は、1mol/Lの六フッ化リン酸リチウム(LiPF)とした。
上記の正極および負極の間に、セパレータを介在させて、第3の条件の電解液とともに外装材へ収容し、試験用のハーフセルを作製した。外装材へ収容された状態がコイン型のためコイン型のハーフセルと呼ばれることがある。
このようにしてコイン型のハーフセルを形成し、充放電測定器として東洋システム社製の充放電計測システム(TOSCAT−3100)を用いて充放電試験を実施した。
測定条件について説明する。測定条件は3条件で、充電の上限電圧を4.3V、4.6V、4.7Vとした。
充電の上限電圧を4.3V、4.6V、4.7Vとした3条件の測定として、それぞれ異なるハーフセルを用いて3サイクルの充放電測定を行った。測定は環境温度25℃で行った。1サイクル目の充電として、上限電圧まで0.1Cの定電流充電を行った後、電流の下限を0.01Cとして定電圧充電を行った。1サイクル目の充電の後、1サイクル目の放電として、下限電圧を2.5Vとして、0.1Cで定電流放電を行った。2サイクル目および3サイクル目の充放電として、1サイクル目と同じ条件で充電及び放電をおこなった。3サイクル目の放電の結果を表17及び図95に示す。ここで、1Cは、200mA/gとした。レートの算出に用いる重量は、正極活物質の重量である。
表17に、充電の上限電圧が4.3Vの条件、4.6Vの条件、及び4.7Vの条件であるときの、平均放電電圧、放電容量および放電エネルギー密度を示す。図95に、それぞれの放電カーブを示す。なお、放電容量および放電エネルギー密度の算出に用いる重量は、正極活物質の重量である。
Figure JPOXMLDOC01-appb-T000017
表17及び図95に示すように、充電の上限電圧を4.3V、4.6V、4.7Vと高くするに従い、平均放電電圧および放電容量が増大し、放電エネルギー密度が大幅に向上することが分かる。
100:正極活物質、100a:表層部、100b:内部、101:結晶粒界、103:凸部、104:被膜、200:活物質層、201:グラフェン化合物、300:二次電池、301:正極缶、302:負極缶、303:ガスケット、304:正極、305:正極集電体、306:正極活物質層、307:負極、308:負極集電体、309:負極活物質層、310:セパレータ

Claims (20)

  1.  正極と負極を備えた電池であって、
     前記正極を負極がリチウム金属で構成される試験用電池の正極として用いて、
     前記試験用電池を25℃環境下又は45℃環境下において4.6Vの電圧になるまで1C(1C=200mA/gとする)の充電レートで定電流充電した後、4.6Vの電圧で充電レートが0.1Cになるまで定電圧充電し、その後、2.5Vの電圧になるまで1Cの放電レートで定電流放電する充放電のサイクルを50回繰り返す試験を行い、サイクルごとに放電容量を計測した場合に、
     50サイクル目に計測された放電容量の値が、全50サイクル中の放電容量の最大値の90%以上100%未満を満たす、電池。
  2.  正極と負極を備えた電池であって、
     前記正極を負極がリチウム金属で構成される試験用電池の正極として用いて、
     前記試験用電池を25℃環境下又は45℃環境下において4.6Vの電圧になるまで200mA/gで定電流充電した後、4.6Vの電圧で充電電流が20mA/gになるまで定電圧充電し、その後、2.5Vの電圧になるまで200mA/gで定電流放電する充放電のサイクルを50回繰り返す試験を行い、サイクルごとに放電容量を計測した場合に、
     50サイクル目に計測された放電容量の値が、全50サイクル中の放電容量の最大値の90%以上100%未満を満たす、電池。
  3.  正極と負極を備えた電池であって、
     前記正極を負極がリチウム金属で構成される試験用電池の正極として用いて、
     前記試験用電池を25℃環境下又は45℃環境下において4.6Vの電圧になるまで0.5C(1C=200mA/gとする)の充電レートで定電流充電した後、4.6Vの電圧で充電レートが0.05Cになるまで定電圧充電し、その後、2.5Vの電圧になるまで0.5Cの放電レートで定電流放電する充放電のサイクルを50回繰り返す試験を行い、サイクルごとに放電容量を計測した場合に、
     50サイクル目に計測された放電容量の値が、全50サイクル中の放電容量の最大値の90%以上100%未満を満たす、電池。
  4.  正極と負極を備えた電池であって、
     前記正極を負極がリチウム金属で構成される試験用電池の正極として用いて、
     前記試験用電池を25℃環境下又は45℃環境下において4.6Vの電圧になるまで100mA/gで定電流充電した後、4.6Vの電圧で充電電流が10mA/gになるまで定電圧充電し、その後、2.5Vの電圧になるまで100mA/gで定電流放電する充放電のサイクルを50回繰り返す試験を行い、サイクルごとに放電容量を計測した場合に、
     50サイクル目に計測された放電容量の値が全50サイクル中の放電容量の最大値の90%以上100%未満を満たす、電池。
  5.  正極と負極を備えた電池であって、
     前記正極を負極がリチウム金属で構成される試験用電池の正極として用いて、
     前記試験用電池を25℃環境下において4.65Vの電圧になるまで1C(1C=200mA/gとする)の充電レートで定電流充電した後、4.65Vの電圧で充電レートが0.1Cになるまで定電圧充電し、その後、2.5Vの電圧になるまで1Cの放電レートで定電流放電する充放電のサイクルを50回繰り返す試験を行い、サイクルごとに放電容量を計測した場合に、
     50サイクル目に計測された放電容量の値が、全50サイクル中の放電容量の最大値の90%以上100%未満を満たす、電池。
  6.  正極と負極を備えた電池であって、
     前記正極を負極がリチウム金属で構成される試験用電池の正極として用いて、
     前記試験用電池を25℃環境下において4.65Vの電圧になるまで200mA/gで定電流充電した後、4.65Vの電圧で充電電流が20mA/gになるまで定電圧充電し、その後、2.5Vの電圧になるまで200mA/gで定電流放電する充放電のサイクルを50回繰り返す試験を行い、サイクルごとに放電容量を計測した場合に、
     50サイクル目に計測された放電容量の値が、全50サイクル中の放電容量の最大値の90%以上100%未満を満たす、電池。
  7.  正極と負極を備えた電池であって、
     前記正極を負極がリチウム金属で構成される試験用電池の正極として用いて、
     前記試験用電池を25℃環境下において4.65Vの電圧になるまで0.5C(1C=200mA/gとする)の充電レートで定電流充電した後、4.65Vの電圧で充電レートが0.05Cになるまで定電圧充電し、その後、2.5Vの電圧になるまで0.5Cの放電レートで定電流放電する充放電のサイクルを50回繰り返す試験を行い、サイクルごとに放電容量を計測した場合に、
     50サイクル目に計測された放電容量の値が、全50サイクル中の放電容量の最大値の90%以上100%未満を満たす、電池。
  8.  正極と負極を備えた電池であって、
     前記正極を負極がリチウム金属で構成される試験用電池の正極として用いて、
     前記試験用電池を25℃環境下において4.65Vの電圧になるまで100mA/gで定電流充電した後、4.65Vの電圧で充電電流が10mA/gになるまで定電圧充電し、その後、2.5Vの電圧になるまで100mA/gで定電流放電する充放電のサイクルを50回繰り返す試験を行い、サイクルごとに放電容量を計測した場合に、
     50サイクル目に計測された放電容量の値が全50サイクル中の放電容量の最大値の90%以上100%未満を満たす、電池。
  9.  正極と負極を備えた電池であって、
     前記正極を負極がリチウム金属で構成される試験用電池の正極として用いて、
     前記試験用電池を25℃環境下において4.7Vの電圧になるまで1C(1C=200mA/gとする)の充電レートで定電流充電した後、4.7Vの電圧で充電レートが0.1Cになるまで定電圧充電し、その後、2.5Vの電圧になるまで1Cの放電レートで定電流放電する充放電のサイクルを50回繰り返す試験を行い、サイクルごとに放電容量を計測した場合に、
     50サイクル目に計測された放電容量の値が、全50サイクル中の放電容量の最大値の90%以上100%未満を満たす、電池。
  10.  正極と負極を備えた電池であって、
     前記正極を負極がリチウム金属で構成される試験用電池の正極として用いて、
     前記試験用電池を25℃環境下において4.7Vの電圧になるまで200mA/gで定電流充電した後、4.7Vの電圧で充電電流が20mA/gになるまで定電圧充電し、その後、2.5Vの電圧になるまで200mA/gで定電流放電する充放電のサイクルを50回繰り返す試験を行い、サイクルごとに放電容量を計測した場合に、
     50サイクル目に計測された放電容量の値が、全50サイクル中の放電容量の最大値の90%以上100%未満を満たす、電池。
  11.  正極と負極を備えた電池であって、
     前記正極を負極がリチウム金属で構成される試験用電池の正極として用いて、
     前記試験用電池を25℃環境下において4.7Vの電圧になるまで0.5C(1C=200mA/gとする)の充電レートで定電流充電した後、4.7Vの電圧で充電レートが0.05Cになるまで定電圧充電し、その後、2.5Vの電圧になるまで0.5Cの放電レートで定電流放電する充放電のサイクルを50回繰り返す試験を行い、サイクルごとに放電容量を計測した場合に、
     50サイクル目に計測された放電容量の値が、全50サイクル中の放電容量の最大値の90%以上100%未満を満たす、電池。
  12.  正極と負極を備えた電池であって、
     前記正極を負極がリチウム金属で構成される試験用電池の正極として用いて、
     前記試験用電池を25℃環境下において4.7Vの電圧になるまで100mA/gで定電流充電した後、4.7Vの電圧で充電電流が10mA/gになるまで定電圧充電し、その後、2.5Vの電圧になるまで100mA/gで定電流放電する充放電のサイクルを50回繰り返す試験を行い、サイクルごとに放電容量を計測した場合に、
     50サイクル目に計測された放電容量の値が全50サイクル中の放電容量の最大値の90%以上100%未満を満たす、電池。
  13.  請求項1乃至請求項4のいずれか一において、
     前記試験用電池を前記25℃環境下及び前記45℃環境下としたときに、前記50サイクル目に計測された放電容量の値が全50サイクル中の放電容量の最大値の90%以上100%未満を満たす、電池。
  14.  請求項1乃至請求項13のいずれか一において、前記50サイクル目に計測された放電容量の値が全50サイクル中の放電容量の最大値の95%以上を満たす、電池。
  15.  請求項1乃至請求項14のいずれか一において、前記試験用電池はコイン型のハーフセルである、電池。
  16.  請求項1乃至請求項15のいずれか一において、
     前記試験用電池は電解液を有し、前記電解液はエチレンカーボネートとジエチルカーボネートを有する溶媒と、ビニレンカーボネートを有する添加剤と、六フッ化リン酸リチウムを有するリチウム塩とを含む、電池。
  17.  請求項1乃至請求項16のいずれか一において、前記正極は、層状岩塩型の正極活物質を有する、電池。
  18.  請求項17において、前記正極活物質は、コバルト酸リチウムを有する、電池。
  19.  請求項1乃至請求項18のいずれか一に記載された電池を搭載した電子機器。
  20.  請求項1乃至請求項18のいずれか一に記載された電池を搭載した車両。
PCT/IB2022/052240 2021-03-22 2022-03-14 電池、電子機器および車両 WO2022200908A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2023508135A JPWO2022200908A1 (ja) 2021-03-22 2022-03-14
DE112022001653.1T DE112022001653T5 (de) 2021-03-22 2022-03-14 Batterie, elektronisches Gerät und Fahrzeug
CN202280020100.3A CN117043989A (zh) 2021-03-22 2022-03-14 电池、电子设备及车辆
US18/550,769 US20240170667A1 (en) 2021-03-22 2022-03-14 Battery, electronic device, and vehicle
KR1020237034018A KR20230160287A (ko) 2021-03-22 2022-03-14 전지, 전자 기기, 및 차량

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2021-047831 2021-03-22
JP2021047831 2021-03-22
JP2021-080592 2021-05-11
JP2021080592 2021-05-11
JP2021081778 2021-05-13
JP2021-081778 2021-05-13
JP2021101158 2021-06-17
JP2021-101158 2021-06-17

Publications (1)

Publication Number Publication Date
WO2022200908A1 true WO2022200908A1 (ja) 2022-09-29

Family

ID=83396397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2022/052240 WO2022200908A1 (ja) 2021-03-22 2022-03-14 電池、電子機器および車両

Country Status (5)

Country Link
US (1) US20240170667A1 (ja)
JP (1) JPWO2022200908A1 (ja)
KR (1) KR20230160287A (ja)
DE (1) DE112022001653T5 (ja)
WO (1) WO2022200908A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024170994A1 (ja) * 2023-02-14 2024-08-22 株式会社半導体エネルギー研究所 正極活物質、リチウムイオン二次電池、電子機器、車両および複合酸化物の作製方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118645704A (zh) * 2024-08-12 2024-09-13 烟台经纬智能科技有限公司 一种可自由设计形状的柔性电池及制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020047595A (ja) * 2016-11-24 2020-03-26 株式会社半導体エネルギー研究所 携帯情報端末
WO2020065441A1 (ja) * 2018-09-28 2020-04-02 株式会社半導体エネルギー研究所 リチウムイオン二次電池用正極材、二次電池、電子機器および車両、並びにリチウムイオン二次電池用正極材の作製方法
JP2021007100A (ja) * 2017-06-26 2021-01-21 株式会社半導体エネルギー研究所 リチウムイオン二次電池

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114853084A (zh) 2018-08-03 2022-08-05 株式会社半导体能源研究所 锂离子二次电池
US20220029159A1 (en) 2018-12-13 2022-01-27 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material, method for manufacturing the same, and secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020047595A (ja) * 2016-11-24 2020-03-26 株式会社半導体エネルギー研究所 携帯情報端末
JP2021007100A (ja) * 2017-06-26 2021-01-21 株式会社半導体エネルギー研究所 リチウムイオン二次電池
WO2020065441A1 (ja) * 2018-09-28 2020-04-02 株式会社半導体エネルギー研究所 リチウムイオン二次電池用正極材、二次電池、電子機器および車両、並びにリチウムイオン二次電池用正極材の作製方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024170994A1 (ja) * 2023-02-14 2024-08-22 株式会社半導体エネルギー研究所 正極活物質、リチウムイオン二次電池、電子機器、車両および複合酸化物の作製方法

Also Published As

Publication number Publication date
JPWO2022200908A1 (ja) 2022-09-29
KR20230160287A (ko) 2023-11-23
US20240170667A1 (en) 2024-05-23
DE112022001653T5 (de) 2024-01-11

Similar Documents

Publication Publication Date Title
JP7451592B2 (ja) リチウムイオン二次電池
US20220199983A1 (en) Positive electrode active material particle and manufacturing method of positive electrode active material particle
JP7566840B2 (ja) リチウムイオン二次電池
WO2020099978A1 (ja) 正極活物質、二次電池、電子機器及び車両
WO2021130599A1 (ja) 正極活物質、二次電池、電子機器
WO2022200908A1 (ja) 電池、電子機器および車両
JP2021093356A (ja) 正極活物質、二次電池、電子機器
WO2022096989A1 (ja) 正極活物質、リチウムイオン二次電池、および車両
WO2020261040A1 (ja) 正極活物質、正極、二次電池、およびこれらの作製方法
WO2023209477A1 (ja) リチウムイオン電池、及び電子機器
WO2023281346A1 (ja) 正極活物質
US20220359870A1 (en) Positive electrode active material, secondary battery, and vehicle
WO2021152417A1 (ja) 正極活物質、二次電池、電子機器
WO2020099991A1 (ja) 正極活物質、二次電池、電子機器および車両
WO2022130100A1 (ja) イオン液体、二次電池、電子機器および車両
WO2022038448A1 (ja) 電極の作製方法、二次電池、電子機器および車両
WO2024176061A1 (ja) 製造装置、および正極活物質の作製方法
WO2023248044A1 (ja) 正極活物質、二次電池、電子機器および車両
CN117043989A (zh) 电池、电子设备及车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22774428

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023508135

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280020100.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18550769

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20237034018

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237034018

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 112022001653

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22774428

Country of ref document: EP

Kind code of ref document: A1