WO2019151363A1 - 固体電解質含有シート、全固体二次電池用電極シート、全固体二次電池、電子機器及び電気自動車、並びに、これらの製造方法 - Google Patents

固体電解質含有シート、全固体二次電池用電極シート、全固体二次電池、電子機器及び電気自動車、並びに、これらの製造方法 Download PDF

Info

Publication number
WO2019151363A1
WO2019151363A1 PCT/JP2019/003270 JP2019003270W WO2019151363A1 WO 2019151363 A1 WO2019151363 A1 WO 2019151363A1 JP 2019003270 W JP2019003270 W JP 2019003270W WO 2019151363 A1 WO2019151363 A1 WO 2019151363A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
group
layer
solid
laminate
Prior art date
Application number
PCT/JP2019/003270
Other languages
English (en)
French (fr)
Inventor
信 小澤
真二 今井
鈴木 秀幸
広 磯島
稔彦 八幡
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020207017707A priority Critical patent/KR20200089719A/ko
Priority to JP2019569203A priority patent/JP6985426B2/ja
Priority to CN201980006762.3A priority patent/CN111512487B/zh
Priority to EP19747290.5A priority patent/EP3751657A4/en
Publication of WO2019151363A1 publication Critical patent/WO2019151363A1/ja
Priority to US16/908,729 priority patent/US20210104773A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0094Composites in the form of layered products, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solid electrolyte-containing sheet, an electrode sheet for an all-solid-state secondary battery, an all-solid-state secondary battery, an electronic device and an electric vehicle, and methods for producing these.
  • a lithium ion secondary battery is a storage battery that has a negative electrode, a positive electrode, and an electrolyte sandwiched between the negative electrode and the positive electrode, and enables charging and discharging by reciprocating lithium ions between the two electrodes.
  • an organic electrolytic solution has been used as an electrolyte in a lithium ion secondary battery.
  • the organic electrolyte is liable to leak, and there is a possibility that a short circuit may occur inside the battery due to overcharge or overdischarge, resulting in ignition, and further improvements in safety and reliability are required. Under such circumstances, an all-solid secondary battery using an inorganic solid electrolyte instead of an organic electrolyte has been attracting attention.
  • the all-solid-state secondary battery is composed of a solid negative electrode, electrolyte, and positive electrode, which can greatly improve safety and reliability, which is a problem of batteries using organic electrolytes, and can extend the service life. It will be. Furthermore, the all-solid-state secondary battery can have a laminated structure in which electrodes and an electrolyte are directly arranged in series. Therefore, the energy density can be increased as compared with the secondary battery using the organic electrolyte, and application to various electronic devices, electric vehicles, large-sized storage batteries, and the like is expected.
  • Patent Document 1 an electrode material is laminated on a single solid electrolyte layer containing a binder and placed on a foil, and then pressed to form an electrode layer and remove the foil.
  • the manufacturing method of the all-solid-state secondary battery containing is described.
  • the all-solid-state secondary battery obtained by this manufacturing method is said to have high output.
  • Patent Document 2 describes a method for producing an all-solid secondary battery having two or three solid electrolyte layers.
  • the all-solid-state secondary battery obtained by this manufacturing method is said to be short-circuited and reduced in internal resistance.
  • Patent Document 3 discloses a member for an all-solid-state secondary battery in which a thin film layer having a thickness of 10 nm to 1 ⁇ m and a solid electrolyte layer having a thickness of 1 to 500 ⁇ m are laminated in this order on an electrode material layer.
  • An all-solid-state secondary battery member whose layer is made of the same material as the solid electrolyte layer, the same material as the electrode layer, or a mixture thereof is described. This member has a low interface resistance between the electrode material layer and the solid electrolyte layer, and a good discharge current density.
  • an electrode active material layer and a solid electrolyte layer constituting electrodes are formed of solid particles such as an active material and an inorganic solid electrolyte.
  • the average particle size of the inorganic solid electrolyte contained in the solid electrolyte layer is preferably larger in order to improve the ionic conductivity of the solid electrolyte layer itself.
  • this solid electrolyte layer needs to withstand the friction when wound into a roll, the winding of a large curvature, the impact during transportation, the load applied during handling when laminating with the positive electrode and the negative electrode, and the like. Therefore, improvement of film strength is desired.
  • the all-solid-state secondary battery obtained by the manufacturing method described in Patent Document 1 is composed of one layer in which the solid electrolyte layer is thinned. If the average particle size of the inorganic solid electrolyte is increased in order to improve the ionic conductivity of the solid electrolyte layer, the resistance at the interface increases due to the small contact area between the solid electrolyte layer and the electrode active material layer. Further, in order to increase the contact area between the solid electrolyte layer and the electrode active material layer, if the average particle size of the inorganic solid electrolyte contained in the solid electrolyte layer is reduced, the number of particles in the layer increases so that the solid electrolyte layer itself Resistance increases.
  • the laminate composed of two or three solid electrolyte layers of the all-solid-state secondary battery obtained by the manufacturing method described in Patent Document 2 has low ion conductivity and high resistance.
  • the film strength is low when the laminate is regarded as a film.
  • the present invention is a solid electrolyte-containing sheet having excellent membrane strength, and can be used as a constituent member to realize an all-solid-state secondary battery having an excellent battery voltage.
  • Lamination of three or more solid electrolyte layers It is an object to provide a solid electrolyte-containing sheet having a body.
  • this invention comprises the electrode sheet for all-solid-state secondary batteries which has the said laminated body, the all-solid-state secondary battery which has this electrode sheet for all-solid-state secondary batteries, and the said all-solid-state secondary battery. It is an object to provide an electronic device and an electric vehicle.
  • this invention makes it a subject to provide the manufacturing method of the said solid electrolyte containing sheet
  • an average particle of the inorganic solid electrolyte which is a laminate composed of three or more solid electrolyte layers including an inorganic solid electrolyte and a binder, and is included in two solid electrolyte layers disposed on both surface sides of the laminate.
  • the present invention has been further studied based on these findings and has been completed.
  • a solid electrolyte-containing sheet having a laminate of three or more solid electrolyte layers contains an inorganic solid electrolyte and a binder, Of the three or more solid electrolyte layers, the inorganic solid electrolyte contained in two solid electrolyte layers disposed on both surface sides of the laminate is particles having an average particle size of 0.3 to 0.9 ⁇ m, Among the solid electrolyte layers arranged between two solid electrolyte layers arranged on both surface sides of the laminate, the inorganic solid electrolyte contained in at least one solid electrolyte layer is a particle having an average particle diameter of 1 to 5 ⁇ m And The solid electrolyte-containing sheet, wherein the binder contained in the at least one solid electrolyte layer is particulate.
  • ⁇ 2> The solid electrolyte-containing sheet according to ⁇ 1>, wherein the binders contained in the two solid electrolyte layers arranged on both surface sides of the laminate are different from each other.
  • ⁇ 3> The solid electrolyte-containing sheet according to ⁇ 1> or ⁇ 2>, wherein the binder contained in the two solid electrolyte layers disposed on both surface sides of the laminate is in the form of particles.
  • ⁇ 4> The solid electrolyte-containing sheet according to any one of ⁇ 1> to ⁇ 3>, wherein the binder contained in all the solid electrolyte layers of the laminate is particulate.
  • a method for producing a solid electrolyte-containing sheet having a laminate of three or more solid electrolyte layers Applying a solid electrolyte composition containing an inorganic solid electrolyte having an average particle size of 0.3 to 0.9 ⁇ m and a binder to form a solid electrolyte layer (1); Applying a solid electrolyte composition containing an inorganic solid electrolyte having an average particle size of 1 to 5 ⁇ m and a particulate binder to form a solid electrolyte layer; A step (3) of forming a solid electrolyte layer by applying a solid electrolyte composition containing an inorganic solid electrolyte having an average particle size of 0.3 to 0.9 ⁇ m and a binder, and a drying step.
  • a solid electrolyte-containing sheet wherein the solid electrolyte layer formed by the step (2) is between the solid electrolyte layer formed by the step (1) and the solid electrolyte layer formed by the step (3).
  • Production method ⁇ 14> The method for producing a solid electrolyte-containing sheet according to ⁇ 13>, wherein a binder contained in the solid electrolyte composition in the step (1) and a binder contained in the solid electrolyte composition in the step (3) are different from each other.
  • ⁇ 15> The production of the solid electrolyte-containing sheet according to ⁇ 13> or ⁇ 14>, further comprising a step of laminating the three or more solid electrolyte layers in a wet state and drying the laminated three or more solid electrolyte layers.
  • ⁇ 18> The method for producing a solid electrolyte-containing sheet according to any one of ⁇ 13> to ⁇ 17>, comprising a laminate of four or more solid electrolyte layers, Between the solid electrolyte layer formed by the step (1) and the solid electrolyte layer formed by the step (3), the pore pore radius measured by the mercury intrusion method is less than 5 nm, The manufacturing method of the solid electrolyte containing sheet
  • seat which further includes the process (4) which apply
  • the solid electrolyte-containing sheet of the present invention is excellent in membrane strength, and an all-solid secondary battery having an excellent battery voltage can be realized by using the laminate of the solid electrolyte-containing sheet as a constituent member.
  • an electrode sheet for an all-solid-state secondary battery having the above laminate, an all-solid-state secondary battery having the electrode sheet for an all-solid-state secondary battery, and an electronic device including the all-solid-state secondary battery And an electric vehicle can be provided.
  • FIG. 1 is a longitudinal sectional view schematically showing a solid electrolyte-containing sheet (transfer sheet) according to a preferred embodiment of the present invention.
  • FIG. 2 is a longitudinal sectional view schematically showing another solid electrolyte-containing sheet (transfer sheet) according to a preferred embodiment of the present invention.
  • FIG. 3 is a longitudinal sectional view schematically showing an all solid state secondary battery according to a preferred embodiment of the present invention.
  • FIG. 4 is a longitudinal sectional view schematically showing another all solid state secondary battery according to a preferred embodiment of the present invention.
  • the solid electrolyte layer usually does not contain an active material, but may contain an active material as long as it does not impair the effects of the present invention and does not function as an active material layer.
  • each of the binders contained in the two solid electrolyte layers arranged on both surface sides of the laminate is different from each other means that one of the two solid electrolyte layers is a solid electrolyte layer. This means that the binder contained is different from the binder contained in the other solid electrolyte layer.
  • one of the two solid electrolyte layers has a high adhesion to the positive electrode active material layer.
  • the other solid electrolyte layer contains a binder having high adhesion to the negative electrode active material layer.
  • the compositions of the solid electrolyte layers in contact with each other constituting the laminate of three or more solid electrolyte layers are different from each other. That is, when a plurality of solid electrolyte layers having the same composition are laminated, the plurality of solid electrolyte layers are made into one solid electrolyte layer as a whole.
  • “transfer” is arranged opposite to the release film (support) in a laminate composed of three or more solid electrolyte layers formed on the release film (support).
  • the solid electrolyte-containing sheet and the electrode active material layer are overlapped so that the solid electrolyte layer and the electrode active material layer are in contact with each other. Accordingly, the solid electrolyte-containing sheet of the present invention can also be referred to as a sheet for transferring a laminate (laminate transfer sheet).
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the solid electrolyte-containing sheet of the present invention has a laminate of three or more solid electrolyte layers.
  • the solid electrolyte layer included in the laminate is used to configure a solid electrolyte layer of an all-solid secondary battery.
  • the solid electrolyte layer contains an inorganic solid electrolyte and a binder, and of the three or more solid electrolyte layers, two solid electrolyte layers (on the front surface side) disposed on both surface sides of the laminated body.
  • the inorganic solid electrolyte contained in the outermost solid electrolyte layer and the outermost solid electrolyte layer on the back surface side is particles having an average particle size (hereinafter, also simply referred to as “particle size”) of 0.3 to 0.9 ⁇ m.
  • the solid electrolyte layer containing a particulate binder, wherein the binder contained in at least one of the solid electrolyte layers disposed between the two solid electrolyte layers disposed on both surface sides of the laminate is particulate.
  • the inorganic solid electrolyte contained in is a particle having an average particle size of 1 to 5 ⁇ m.
  • the above laminate may be referred to as “the laminate of the present invention”.
  • the laminate of the present invention comprises three or more solid electrolyte layers.
  • the upper limit of the number of solid electrolyte layers is not particularly limited, but is preferably 10 or less, more preferably 7 or less, still more preferably 5 or less, and particularly preferably 4 or less.
  • one of the solid electrolyte layers of the laminate of the present invention is a short-circuit suppressing layer (dendrite suppressing layer).
  • the short-circuit suppressing layer has a pore pore radius measured by a mercury intrusion method of less than 5 nm, and preferably less than 3 nm.
  • the lower limit is not particularly limited, but 1 nm or more is practical.
  • the pore pore radius of the short-circuit suppressing layer is preferably in the above range.
  • the thickness of the short-circuit suppressing layer is 4 ⁇ m or less, and preferably 2 ⁇ m or less.
  • the position of the short-circuit suppressing layer is not particularly limited, but is preferably not a layer disposed on both surface sides of the laminate. That is, when the laminate of the present invention has a solid electrolyte layer as a short-circuit suppression layer, the solid body has four or more solid electrolyte layers, and the two short-circuit suppression layers are arranged on both surface sides of the laminate. It is preferable to be sandwiched between electrolyte layers directly or via another solid electrolyte layer. In the following description of the solid electrolyte-containing sheet of the present invention, the short-circuit suppressing layer is sandwiched between two solid electrolyte layers arranged on both surface sides of the laminate, directly or via another solid electrolyte layer.
  • two solid electrolyte layers arranged on both surface sides of the laminate means a surface layer and a back layer of the laminate, and taking the transfer sheet 10A of FIG. 1 as an example, the solid electrolyte layer 1 and the solid electrolyte layer 3 are these two layers.
  • first solid electrolyte layer first SE layer
  • third solid electrolyte layer 3rd SE layer
  • a solid electrolyte layer disposed between the first SE layer and the third SE layer and including a particulate binder and inorganic solid electrolyte particles having an average particle diameter of 1 to 5 ⁇ m is referred to as a “second solid electrolyte layer (second SE layer)”.
  • second solid electrolyte layer second SE layer
  • the short-circuit suppressing layer may be referred to as a “fourth solid electrolyte layer (fourth SE layer)”.
  • solid electrolyte layer other than the first to fourth SE layers included in the laminate of the present invention may be referred to as “another solid electrolyte layer (another SE layer)”.
  • another solid electrolyte layer another SE layer
  • the laminate of the present invention is composed of first to third SE layers. Specifically, two solid electrolyte layers (first SE layer and third SE layer) disposed on both surface sides of the laminate, containing a binder and inorganic solid electrolyte particles having a particle size of 0.3 to 0.9 ⁇ m. And a solid electrolyte layer (second SE layer) including a particulate binder and inorganic solid electrolyte particles having a particle diameter of 1 to 5 ⁇ m.
  • first SE layer and third SE layer disposed on both surface sides of the laminate, containing a binder and inorganic solid electrolyte particles having a particle size of 0.3 to 0.9 ⁇ m.
  • second SE layer including a particulate binder and inorganic solid electrolyte particles having a particle diameter of 1 to 5 ⁇ m.
  • the laminate of the present invention preferably has the first to fourth SE layers. Specifically, two solid electrolyte layers (first SE layer and third SE layer) disposed on both surface sides of the laminate, containing a binder and inorganic solid electrolyte particles having a particle size of 0.3 to 0.9 ⁇ m. And a solid electrolyte layer (second SE layer) containing a particulate binder and inorganic solid electrolyte particles having a particle size of 1 to 5 ⁇ m, and a short-circuit suppressing layer (fourth SE layer).
  • the positional relationship between the second SE layer and the fourth SE layer is not particularly limited. Moreover, in this invention, it replaces with a short circuit suppression layer and the aspect which has another SE layer is also included.
  • the laminate of the present invention is preferably in the form of the first to fourth SE layers and other SE layers.
  • the other SE layer a normal solid electrolyte layer used for an all-solid secondary battery can be used by appropriately adjusting the thickness.
  • the fourth SE layer is preferably in contact with the first or third SE layer. This is because the short circuit is efficiently suppressed in the all solid state secondary battery.
  • an aspect having a plurality of short-circuit suppression layers, and an aspect having no other short-circuit suppression layer and three other SE layers are also included.
  • the solid electrolyte-containing sheet of the present invention may be a sheet made of the above laminate or a transfer sheet having a release film (support).
  • the solid electrolyte-containing sheet of the present invention which is a transfer sheet, may be simply referred to as a “transfer sheet”.
  • the transfer sheet of the present invention is suitable for transferring the laminate of the present invention onto the electrode active material layer.
  • the transfer sheet 10A of the present invention shown in FIG. 1 has a release film 4, a solid electrolyte layer 3 (first SE layer), a solid electrolyte layer 2 (second SE layer), and a solid electrolyte layer 1 (third SE layer) in this order.
  • the transfer sheet 10B of the present invention shown in FIG. 2 has a solid electrolyte layer 5 (short-circuit suppressing layer, fourth SE layer) between the solid electrolyte layer 1 (third SE layer) and the solid electrolyte layer 2 (second SE layer). Except for having, it is the same as the transfer sheet shown in FIG.
  • the release film used for the transfer sheet of the present invention is not particularly limited.
  • metal films such as aluminum film, stainless steel (SUS) film, copper film, polyethylene terephthalate film, polyethylene naphthalate film, polyimide film, polytetra
  • a resin film such as a fluoroethylene (PTFE) film may be mentioned.
  • a releasability adjusting layer such as a silicone resin layer, a fluororesin layer, or an olefin resin layer is provided between the solid electrolyte layer and the release film. May be.
  • Specific examples of the release film with a release property adjusting layer include Toray Film Processing Co., Ltd., Peelac Panapeel, Unitika Ltd. Unipeel.
  • the solid electrolyte-containing sheet of the present invention may have a protective film.
  • the protective film the film mentioned in the above release film can be used.
  • the film that needs to be peeled off before transfer is a protective film, and the laminate of the present invention is placed on the electrode active material layer.
  • the film that peels after being laminated is a release film.
  • the solid electrolyte-containing sheet of the present invention protects the end face of the laminate of the present invention in order to prevent short circuit due to contact of the positive electrode and the negative electrode due to moisture, foreign matter intrusion prevention, misalignment during lamination after transfer, etc. You may have a film.
  • the electrode sheet for an all-solid-state secondary battery of the present invention has the laminate of the present invention and an electrode active material layer.
  • an electrode sheet for an all-solid-state secondary battery of the present invention for example, a sheet having an electrode active material layer on a current collector, and having the laminate of the present invention on this electrode active material layer, and a current collector
  • each solid electrolyte layer constituting the laminate may contain a dispersion medium described later.
  • the conductor layer examples include conductor layers (carbon coated foils) described in JP2013-23654A and JP2013-229187A.
  • the electrode active material layer and the current collector may be the electrode active material layer and the current collector used in a normal all-solid secondary battery.
  • an electrode active material layer and a current collector described in JP-A-2015-088486 can be used.
  • an electrode active material layer (a positive electrode active material layer (hereinafter also referred to as a positive electrode layer) and a negative electrode active material layer (hereinafter also referred to as a negative electrode layer)) may be referred to as an active material layer. .
  • the all solid state secondary battery of the present invention includes a current collector, an electrode active material layer, and the laminate of the present invention.
  • a preferred all solid state secondary battery of the present invention will be described with reference to FIGS. 3 and 4, but the present invention is not limited thereto.
  • FIG. 3 is a cross-sectional view schematically showing an all-solid secondary battery 100A (lithium ion secondary battery) according to a preferred embodiment of the present invention.
  • the all-solid-state secondary battery 100A of the present embodiment has a laminate of the solid electrolyte-containing sheet shown in FIG. 1, and is viewed from the negative electrode side, the negative electrode current collector 9, the negative electrode active material layer 8, and the solid electrolyte layer 1 (Third SE layer), solid electrolyte layer 2 (second SE layer), solid electrolyte layer 3 (first SE layer), positive electrode active material layer 7, and positive electrode current collector 6 are provided in this order.
  • Each layer is in contact with each other and has a laminated structure.
  • a conductor layer may be provided between the negative electrode current collector 9 and the negative electrode active material layer 8 and / or between the positive electrode active material layer 7 and the positive electrode current collector 6. Good.
  • FIG. 4 is a cross-sectional view schematically showing another all-solid secondary battery (lithium ion secondary battery) according to a preferred embodiment of the present invention.
  • the all-solid-state secondary battery shown in FIG. 3 except that a solid electrolyte layer 5 (short-circuit suppressing layer, fourth SE layer) is provided between the solid electrolyte layer 1 (third SE layer) and the solid electrolyte layer 2 (second SE layer). Is the same.
  • the thicknesses of the solid electrolyte layer 1 (third SE layer), the solid electrolyte layer 2 (second SE layer), and the solid electrolyte layer 3 (first SE layer) are not particularly limited, but the layer thicknesses of the first SE layer and the third SE layer are 1 Is preferably 5 to 5 ⁇ m, and more preferably 2 to 4 ⁇ m.
  • the thickness of the second SE layer is preferably 3 to 50 ⁇ m, more preferably 5 to 30 ⁇ m.
  • the layer thicknesses of the negative electrode active material layer 8 and the positive electrode active material layer 7 are not particularly limited. Considering general battery dimensions, 10 to 1,000 ⁇ m is preferable, and 20 ⁇ m or more and less than 500 ⁇ m is more preferable.
  • the electrode active material layer may be composed of a single layer or a multilayer.
  • the basic structure of the all-solid-state secondary battery can be manufactured by arranging each of the above layers. Depending on the application, it may be used as an all-solid secondary battery as it is, but in order to form a dry battery, it is further enclosed in a suitable housing.
  • the housing may be metallic or made of resin (plastic). When using a metallic thing, the thing made from an aluminum alloy and stainless steel can be mentioned, for example.
  • the metallic housing is preferably divided into a positive-side housing and a negative-side housing, and electrically connected to the positive current collector and the negative current collector, respectively.
  • the casing on the positive electrode side and the casing on the negative electrode side are preferably joined and integrated through a gasket for preventing a short circuit.
  • the inorganic solid electrolyte is an inorganic solid electrolyte
  • the solid electrolyte is a solid electrolyte capable of moving ions inside. Since it does not contain organic substances as the main ion conductive material, organic solid electrolytes (polymer electrolytes typified by polyethylene oxide (PEO), etc., organics typified by lithium bis (trifluoromethanesulfonyl) imide (LiTFSI), etc. It is clearly distinguished from the electrolyte salt).
  • PEO polyethylene oxide
  • LiTFSI lithium bis (trifluoromethanesulfonyl) imide
  • the inorganic solid electrolyte since the inorganic solid electrolyte is solid in a steady state, it is not usually dissociated or released into cations and anions. In this respect, it is also clearly distinguished from an electrolyte solution or an inorganic electrolyte salt (such as LiPF 6 , LiBF 4 , LiFSI, LiCl, etc.) in which cations and anions are dissociated or liberated in the polymer.
  • the inorganic solid electrolyte is not particularly limited as long as it has conductivity of ions of metals belonging to Group 1 or Group 2 of the periodic table, and generally does not have electron conductivity.
  • the inorganic solid electrolyte has ion conductivity of a metal belonging to Group 1 or Group 2 of the periodic table.
  • a solid electrolyte material applied to this type of product can be appropriately selected and used.
  • Typical examples of the inorganic solid electrolyte include (i) sulfide-based inorganic solid electrolyte and (ii) oxide-based inorganic solid electrolyte. Based inorganic solid electrolytes are preferred.
  • the inorganic solid electrolyte preferably has an ionic conductivity of lithium ions.
  • the sulfide-based inorganic solid electrolyte contains a sulfur atom (S) and has ionic conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, and A compound having an electronic insulating property is preferable.
  • the sulfide-based inorganic solid electrolyte preferably contains at least Li, S, and P as elements and has lithium ion conductivity. However, depending on the purpose or the case, other than Li, S, and P may be used. An element may be included.
  • L represents an element selected from Li, Na and K, and Li is preferred.
  • M represents an element selected from B, Zn, Sn, Si, Cu, Ga, Sb, Al, and Ge.
  • A represents an element selected from I, Br, Cl and F.
  • a1 to e1 indicate the composition ratio of each element, and a1: b1: c1: d1: e1 satisfies 1 to 12: 0 to 5: 1: 2 to 12: 0 to 10.
  • a1 is preferably 1 to 9, and more preferably 1.5 to 7.5.
  • b1 is preferably 0 to 3, and more preferably 0 to 1.
  • d1 is preferably 2.5 to 10, and more preferably 3.0 to 8.5.
  • e1 is preferably from 0 to 5, and more preferably from 0 to 3.
  • composition ratio of each element can be controlled by adjusting the compounding ratio of the raw material compounds when producing the sulfide-based inorganic solid electrolyte as described below.
  • the sulfide-based inorganic solid electrolyte may be amorphous (glass) or crystallized (glass ceramic), or only a part may be crystallized.
  • glass glass
  • glass ceramic glass ceramic
  • Li—PS system glass containing Li, P, and S or Li—PS system glass ceramics containing Li, P, and S can be used.
  • the sulfide-based inorganic solid electrolyte includes, for example, lithium sulfide (Li 2 S), phosphorus sulfide (for example, diphosphorus pentasulfide (P 2 S 5 )), simple phosphorus, simple sulfur, sodium sulfide, hydrogen sulfide, lithium halide (for example, LiI, LiBr, LiCl) and a sulfide of the element represented by M (for example, SiS 2 , SnS, GeS 2 ) can be produced by reaction of at least two raw materials.
  • Li 2 S lithium sulfide
  • P 2 S 5 diphosphorus pentasulfide
  • simple phosphorus simple sulfur
  • sodium sulfide sodium sulfide
  • hydrogen sulfide lithium halide
  • a sulfide of the element represented by M for example, SiS 2 , SnS, GeS 2
  • the ratio of Li 2 S to P 2 S 5 in the Li—PS system glass and Li—PS system glass ceramics is a molar ratio of Li 2 S: P 2 S 5 , preferably 60:40 to 90:10, more preferably 68:32 to 78:22.
  • the lithium ion conductivity can be increased.
  • the lithium ion conductivity can be preferably 1 ⁇ 10 ⁇ 4 S / cm or more, more preferably 1 ⁇ 10 ⁇ 3 S / cm or more. Although there is no particular upper limit, it is practical that it is 1 ⁇ 10 ⁇ 1 S / cm or less.
  • Li 2 S—P 2 S 5 Li 2 S—P 2 S 5 —LiCl, Li 2 S—P 2 S 5 —H 2 S, Li 2 S—P 2 S 5 —H 2 S—LiCl, Li 2 S—LiI—P 2 S 5 , Li 2 S—LiI—Li 2 O—P 2 S 5 , Li 2 S—LiBr—P 2 S 5 , Li 2 S—Li 2 O—P 2 S 5 , Li 2 S—Li 3 PO 4 —P 2 S 5 , Li 2 S—P 2 S 5 —P 2 O 5 , Li 2 S—P 2 S 5 —SiS 2 , Li 2 S—P 2 S 5 —SiS 2- LiCl, Li 2 S—P 2 S 5 —SnS, Li 2 S—P 2 S 5 —Al 2 S 3 , Li 2 S—G
  • Examples of a method for synthesizing a sulfide-based inorganic solid electrolyte material using such a raw material composition include an amorphization method.
  • Examples of the amorphization method include a mechanical milling method, a solution method, and a melt quench method. This is because processing at room temperature is possible, and the manufacturing process can be simplified.
  • Oxide-based inorganic solid electrolyte contains an oxygen atom (O) and has ionic conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, and A compound having an electronic insulating property is preferable.
  • Li, P and O Phosphorus compounds containing Li, P and O are also desirable.
  • lithium phosphate Li 3 PO 4
  • LiPON obtained by replacing a part of oxygen of lithium phosphate with nitrogen
  • LiPOD 1 LiPOD 1
  • LiA 1 ON A 1 is at least one selected from Si, B, Ge, Al, C, Ga, etc.
  • the lower limit of the particle size of the inorganic solid electrolyte particles contained in the first SE layer and the third SE layer is 0.3 ⁇ m or more.
  • 0.4 ⁇ m or more is preferable, and 0.5 ⁇ m or more is more preferable.
  • the upper limit of the particle size is 0.9 ⁇ m or less.
  • the lower limit of the particle size of the inorganic solid electrolyte particles contained in the second SE layer is 1 ⁇ m or more, preferably 1.8 ⁇ m or more, and more preferably 2.0 ⁇ m or more.
  • the upper limit of the particle size is 5 ⁇ m or less.
  • inorganic solid electrolyte particles contained in the first SE layer or the second SE layer can be used as the inorganic solid electrolyte particles contained in the fourth SE layer and other SE layers.
  • the particle size of the inorganic solid electrolyte in the solid electrolyte layer is a value obtained by a measurement method using a scanning electron microscope in Examples described later.
  • An inorganic solid electrolyte may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the content of the inorganic solid electrolyte in each solid electrolyte layer is not particularly limited. When considering reduction of interface resistance and maintenance of reduced interface resistance when used in an all-solid secondary battery, 50 to 99.9 mass of inorganic solid electrolyte in 100 mass parts of solid component in each solid electrolyte layer. Part is preferable, 60 to 99.5 parts by mass is more preferable, and 70 to 99 parts by mass or more is particularly preferable.
  • the solid content (solid component) means volatilization or evaporation when a solid electrolyte composition for forming each solid electrolyte layer is dried at 120 ° C. for 6 hours in a nitrogen atmosphere under a pressure of 1 mmHg. The component that does not disappear. Typically, it refers to components other than the dispersion medium contained in the solid electrolyte composition.
  • the binders contained in the first SE layer and the third SE layer may be the same or different, but are preferably different from each other. That is, it is preferable that one of the first SE layer and the third SE layer contains a binder having high adhesion to the positive electrode active material layer and the other has a binder having high adhesion to the negative electrode active material layer. This is because the laminate of the present invention and the electrode active material layer are more firmly bound.
  • one of the first SE layer and the third SE layer contains a binder having high adhesion to the negative electrode active material layer, and the remaining all solid electrolyte layer has high adhesion to the positive electrode active material layer. It is preferable to contain a binder.
  • the shape of the binder contained in the solid electrolyte layer other than the second SE layer is not particularly limited, but in order to further improve the battery voltage, the binder contained in the first SE layer and the third SE layer is particulate. It is preferable that the binder contained in all the solid electrolyte layers constituting the laminate of the present invention is in the form of particles.
  • the solid electrolyte layer 1 (third SE layer) contains a binder having high adhesion to the negative electrode active material layer, and the solid electrolyte layer 2 (second SE layer) and the solid electrolyte layer 3.
  • a form in which the (first SE layer) contains a binder (preferably binder particles) having high adhesion to the positive electrode active material layer is a preferred form of the transfer sheet of the present invention.
  • the solid electrolyte layer 1 (third SE layer) contains a binder having high adhesion to the negative electrode active material layer, and the solid electrolyte layer 2 (second SE layer), solid electrolyte layer 3
  • the form in which the (first SE layer) and the solid electrolyte layer 5 (short-circuit suppressing layer, fourth SE layer) contain a binder (preferably binder particles) having high adhesion to the positive electrode active material layer is a preferred form of the transfer sheet of the present invention. It is.
  • binder particles having high adhesion to the positive electrode active material layer for example, binder particles described in JP-A-2015-088486 can be used. In addition, binder particles described in International Publication No. 2017/131993 can be used as binder particles having high adhesion to the negative electrode active material layer.
  • binder particles having high adhesion to the negative electrode active material layer for example, binder particles described in JP-A-2015-088486 can be used.
  • Binder particles having high adhesion to the positive electrode active material layer (binder particles A)
  • the polymer constituting the binder particle A incorporates a component derived from the macromonomer A having a number average molecular weight of 1000 or more.
  • the graft portion derived from the macromonomer A constitutes a side chain with respect to the main chain.
  • the main chain is not particularly limited.
  • Constituent components other than the constituent components derived from the macromonomer A of the polymer constituting the binder particles A are not particularly limited, and normal polymer components can be applied.
  • a monomer for introducing a constituent other than the constituent derived from the macromonomer A (hereinafter, this monomer is also referred to as “monomer (a)”), a monomer having a polymerizable unsaturated bond is preferable.
  • various vinyl monomers and / or acrylic monomers can be applied. In the present invention, it is particularly preferable to use an acrylic monomer.
  • a monomer selected from (meth) acrylic acid monomers, (meth) acrylic acid ester monomers, and (meth) acrylonitrile is used.
  • the number of polymerizable groups is not particularly limited, but is preferably 1 to 4.
  • the polymer constituting the binder particle A preferably has at least one of the following functional group group (a). This functional group may be contained in the main chain or in the side chain derived from the macromonomer A, but is preferably contained in the main chain.
  • the carbonyl group-containing group include a carboxy group, a carbonyloxy group, an amide group, and a carbamoyl group.
  • the number of carbon atoms is preferably 1 to 24, more preferably 1 to 12, and particularly preferably 1 to 6.
  • the amino group preferably has 0 to 12 carbon atoms, more preferably 0 to 6, and particularly preferably 0 to 2.
  • the sulfonic acid group may be its ester or salt.
  • the number of carbon atoms is preferably 1 to 24, more preferably 1 to 12, and particularly preferably 1 to 6.
  • the phosphate group may be its ester or salt.
  • the number of carbon atoms is preferably 1 to 24, more preferably 1 to 12, and particularly preferably 1 to 6.
  • the said functional group may exist as a substituent or may exist as a coupling group.
  • the amino group may exist as a divalent imino group or a trivalent nitrogen atom.
  • vinyl monomer constituting the polymer those represented by the following formula (b-1) are preferable.
  • R 1 represents a hydrogen atom, a hydroxy group, a cyano group, a halogen atom, an alkyl group (preferably 1 to 24 carbon atoms, more preferably 1 to 12 carbon atoms, and particularly preferably 1 to 6 carbon atoms), an alkenyl group (2 carbon atoms).
  • an alkyl group preferably 1 to 24 carbon atoms, more preferably 1 to 12 carbon atoms, and particularly preferably 1 to 6 carbon atoms
  • an alkenyl group (2 carbon atoms).
  • the number of carbon atoms is preferably 6 to 22, and more preferably 6 to 14.
  • a hydrogen atom or an alkyl group is preferable, and a hydrogen atom or a methyl group is more preferable.
  • R 2 is a hydrogen atom, an alkyl group (preferably 1 to 24 carbon atoms, more preferably 1 to 12 carbon atoms, particularly preferably 1 to 6 carbon atoms), an alkenyl group (preferably 2 to 12 carbon atoms, more preferably 2 to 6 carbon atoms).
  • Aryl group preferably having 6 to 22 carbon atoms, more preferably 6 to 14 carbon atoms
  • aralkyl group preferably having 7 to 23 carbon atoms, more preferably 7 to 15 carbon atoms
  • cyano group carboxy group, hydroxy group, thiol Group, sulfonic acid group, phosphoric acid group, phosphonic acid group, aliphatic heterocyclic group containing oxygen atom (preferably having 2 to 12 carbon atoms, more preferably 2 to 6), or amino group
  • NR N 2 is preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms according to the definition described later.
  • R 2 may further have a substituent T described later.
  • a carboxy group, a halogen atom (fluorine atom, etc.), a hydroxy group, an alkyl group and the like may be substituted.
  • the carboxy group, hydroxy group, sulfonic acid group, phosphoric acid group, and phosphonic acid group may be esterified with, for example, an alkyl group having 1 to 6 carbon atoms.
  • the aliphatic heterocyclic group containing an oxygen atom is preferably an epoxy group-containing group, an oxetane group-containing group, a tetrahydrofuryl group-containing group, or the like.
  • L 1 is an arbitrary linking group, and examples of the linking group L described later are given. Specifically, an alkylene group having 1 to 6 (preferably 1 to 3) carbon atoms, an alkenylene group having 2 to 6 (preferably 2 to 3) carbon atoms, and 6 to 24 (preferably 6 to 10) carbon atoms. Arylene group, oxygen atom, sulfur atom, imino group (NR N ), carbonyl group, phosphate linking group (—O—P (OH) (O) —O—), phosphonic acid linking group (—P (OH) ( And groups relating to O)-O-), or combinations thereof.
  • the linking group may have an arbitrary substituent. The preferable number of connecting atoms and the number of connecting atoms are the same as described later.
  • the substituent T is mentioned, For example, an alkyl group or a halogen atom is mentioned.
  • N is 0 or 1.
  • acrylic monomer constituting the above polymer in addition to the above (b-1), those represented by any of the following formulas (b-2) to (b-6) are preferable.
  • R 1 and n are as defined in the above formula (b-1).
  • R 3 has the same meaning as R 2 .
  • preferred examples thereof include a hydrogen atom, an alkyl group, an aryl group, a carboxy group, a thiol group, a phosphoric acid group, a phosphonic acid group, an aliphatic heterocyclic group containing an oxygen atom, and an amino group (NR N 2 ).
  • L 2 is an arbitrary linking group, and is preferably an example of L 1 , an oxygen atom, an alkylene group having 1 to 6 carbon atoms (preferably 1 to 3), or an alkylene group having 2 to 6 carbon atoms (preferably 2 to 3).
  • L 3 is a linking group, and an example of L 2 is preferable, and an alkylene group having 1 to 6 (preferably 1 to 3) carbon atoms is more preferable.
  • L 4 is synonymous with L 1 .
  • R 4 is a hydrogen atom, an alkyl group having 1 to 6 (preferably 1 to 3) carbon atoms, a hydroxy group-containing group having 0 to 6 (preferably 0 to 3) carbon atoms, or 0 to 6 (preferably 0) carbon atoms.
  • R 4 may be a linking group for L 1 and may form a dimer at this portion.
  • m represents an integer of 1 to 200, preferably an integer of 1 to 100, and more preferably an integer of 1 to 50.
  • any group which may take a substituent such as an alkyl group, an aryl group, an alkylene group or an arylene group may be substituted as long as the effects of the present invention are maintained. It may have a group.
  • the optional substituent include a substituent T, and specifically include a halogen atom, a hydroxy group, a carboxy group, a thiol group, an acyl group, an acyloxy group, an alkoxy group, an aryloxy group, an aryloyl group, and an aryl group.
  • L in the following formula represents 1 to 1,000,000.
  • the macromonomer A has a number average molecular weight of 1,000 or more, more preferably 2,000 or more, and particularly preferably 3,000 or more.
  • the upper limit is preferably 500,000 or less, more preferably 100,000 or less, and particularly preferably 30,000 or less. Since the polymer constituting the binder particle A has a side chain derived from the macromonomer A having a molecular weight in the above range, it can be more uniformly dispersed in the organic solvent (dispersion medium) and mixed with the solid electrolyte particles. It can be applied.
  • the side chain derived from the macromonomer A in the polymer constituting the binder particle A functions to improve the dispersibility in the solvent. It is understood that it has.
  • grains A are favorably disperse
  • the electrical connection between the solid particles such as the inorganic solid electrolyte particles can be brought into close contact with each other without being cut off, so that the increase in the interface resistance between the solid particles can be suppressed.
  • the polymer constituting the binder particle A has the above side chain, not only the binder particle A adheres to the inorganic solid electrolyte particle but also an effect of tangling the side chain can be expected. Thereby, it is considered that the suppression of the interfacial resistance related to the inorganic solid electrolyte and the improvement of the binding property can be achieved. Further, the polymer constituting the binder particle A can be omitted from the step of transferring the layer in an organic solvent as compared with emulsion polymerization in water because of its good dispersibility, and a solvent having a low boiling point can be used as a dispersion medium. Will be able to.
  • the molecular weight of the structural component derived from the macromonomer A can be identified by measuring the molecular weight of the polymerizable compound (macromonomer A) incorporated when the polymer constituting the binder particle A is synthesized.
  • the molecular weight of the polymer constituting the binder A and the macromonomer A is the number average molecular weight unless otherwise specified, and the number average molecular weight in terms of standard polystyrene is measured by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • a value measured by the method of Condition 1 or Condition 2 (priority) below is basically used.
  • an appropriate eluent may be selected and used depending on the polymer type.
  • Carrier 10 mM LiBr / N-methylpyrrolidone Measurement temperature: 40 ° C
  • Carrier flow rate 1.0 ml / min
  • Detector RI (refractive index) detector
  • Column A column to which TOSOH TSKgel Super HZM-H, TOSOH TSKgel Super HZ4000, and TOSOH TSKgel Super HZ2000 (both trade names, manufactured by Tosoh Corporation) are used.
  • Carrier Tetrahydrofuran Measurement temperature: 40 ° C
  • Carrier flow rate 1.0 ml / min
  • Sample concentration 0.1% by mass Detector: RI (refractive index) detector
  • the SP value of the macromonomer A is preferably 10 or less, and more preferably 9.5 or less. Although there is no particular lower limit, it is practical that it is 5 or more.
  • the SP value is obtained by the Hoy method (HL Hoy Journal of Paining, 1970, Vol. 42, 76-118).
  • the SP value is shown with the unit omitted, but the unit is cal 1/2 cm ⁇ 3/2 .
  • the SP value of the side chain component is not substantially different from the SP value of the raw material monomer forming the side chain, and may be evaluated by that.
  • the SP value is an index indicating the characteristic of being dispersed in an organic solvent.
  • the side chain component is set to a specific molecular weight or more, and preferably to the SP value or more, the binding property with the inorganic solid electrolyte is improved, and thereby the affinity with the solvent is increased and stable. It can be dispersed and is preferable.
  • the main chain of said macromonomer A is not specifically limited, A normal polymer component can be applied.
  • the macromonomer A preferably has a polymerizable unsaturated bond, and can have, for example, various vinyl groups or (meth) acryloyl groups. In the present invention, it is preferable to have a (meth) acryloyl group.
  • the term “acryl” or “acryloyl” broadly refers to not only an acryloyl group but also a derivative structure thereof, and includes a structure having a specific substituent at the ⁇ -position of the acryloyl group. However, in a narrow sense, the case where the ⁇ -position is a hydrogen atom may be referred to as acryl or acryloyl.
  • methacryl which means either acryl (the ⁇ -position is a hydrogen atom) or methacryl (the ⁇ -position is a methyl group), and is sometimes referred to as (meth) acryl.
  • the macromonomer A preferably includes a repeating unit derived from a monomer selected from a (meth) acrylic acid monomer, a (meth) acrylic acid ester monomer, and (meth) acrylonitrile.
  • the macromonomer A includes a polymerizable double bond and a linear hydrocarbon structural unit S having 6 or more carbon atoms (preferably an alkylene group having 6 to 30 carbon atoms, more preferably an alkylene group having 8 to 24 carbon atoms. Group).
  • a linear hydrocarbon structural unit S having 6 or more carbon atoms (preferably an alkylene group having 6 to 30 carbon atoms, more preferably an alkylene group having 8 to 24 carbon atoms. Group).
  • the macromonomer A preferably has a site represented by the following formula (b-11).
  • R 11 has the same meaning as R 1 . * Is a connecting part.
  • the macromonomer A preferably has a site represented by any of the following formulas (b-12a) to (b-12c). These sites may be referred to as “specific polymerizable sites”.
  • R b2 has the same meaning as R 1 .
  • RN has the same definition as the substituent T described later.
  • An arbitrary substituent T may be substituted on the benzene ring of formula (b-12c) and (b-13c) and (b-14c) described later.
  • the structure part existing at the end of the bond part of * is not particularly limited as long as the molecular weight as the macromonomer A is satisfied, but a structure part composed of a carbon atom, an oxygen atom, and a hydrogen atom is preferable.
  • you may have the substituent T for example, you may have a halogen atom (fluorine atom) etc.
  • the macromonomer A includes a compound represented by any of the following formulas (b-13a) to (b-13c) or a repeating unit represented by any of (b-14a) to (b-14c): It is preferable that it is a compound which has.
  • R b2 and R b3 have the same meaning as R 1 .
  • Na is not particularly limited, but is preferably an integer of 1 to 6, more preferably 1 or 2.
  • Ra represents a substituent (preferably an organic group) when na is 1, and represents a linking group when na is 2 or more.
  • Rb is a divalent linking group.
  • examples of the linking group include the following linking group L. Specifically, an alkane linking group having 1 to 30 carbon atoms (an alkylene group in the case of divalent), a cycloalkane linking group having 3 to 12 carbon atoms (a cycloalkylene group in the case of divalent), an aryl having 6 to 24 carbon atoms.
  • Linking group (arylene group for divalent), heteroaryl linking group having 3 to 12 carbon atoms (heteroarylene group for divalent), ether group (—O—), sulfide group (—S—), phosphinidene group ( -PR-: R is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms), a silylene group (-SiRR'-: R, R 'is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms), a carbonyl group, an imino group ( -NR N -: according R N is below the defined, here, a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 10 carbon atoms), or is preferably a combination thereof.
  • an alkane linking group having 1 to 30 carbon atoms (an alkylene group in the case of divalent), an aryl linking group having 6 to 24 carbon atoms (an arylene group in the case of divalent), an ether group, a carbonyl group, or a combination thereof. It is preferable.
  • the following linking group L may be employed as the linking group.
  • the linking group constituting Ra and Rb is preferably a linking structure composed of carbon atoms, oxygen atoms, and hydrogen atoms.
  • the linking group constituting Ra and Rb is also preferably a structural part having a repeating unit (b-15) described later.
  • the number of atoms constituting the linking group and the number of linking atoms when Ra and Rb are linking groups are as defined for the linking group L described later.
  • Ra is a monovalent substituent
  • examples of the substituent T described below are given, and among them, an alkyl group, an alkenyl group, and an aryl group are preferable.
  • the linking group L may be present in the substituent.
  • Ra is a monovalent substituent
  • a structure of —Rb—Rc or a structure having a repeating unit (b-15) described later is also preferred.
  • Rc includes examples of the substituent T described later, and among them, an alkyl group, an alkenyl group, and an aryl group are preferable.
  • each of Ra and Rb preferably contains at least a linear hydrocarbon structural unit having 1 to 30 carbon atoms (preferably an alkylene group), and preferably contains the linear hydrocarbon structural unit S. More preferred.
  • Each of Ra to Rc may have a linking group or a substituent, and examples thereof include a linking group L and a substituent T described later.
  • the macromonomer A preferably further has a repeating unit represented by the following formula (b-15).
  • R b4 is a hydrogen atom or a substituent T described later. Of these, a hydrogen atom, an alkyl group, an alkenyl group, and an aryl group are preferable.
  • R b4 is an alkyl group, an alkenyl group, or an aryl group, it may further have a substituent T described later, and may have, for example, a halogen atom or a hydroxy group.
  • X is a linking group, and examples of the linking group L can be given.
  • Specific examples of the linking group relating to the combination include a linking group composed of a carbonyloxy group, an amide group, an oxygen atom, a carbon atom, and a hydrogen atom.
  • R b4 and X contain carbon, the preferred number of carbon atoms is the same as the substituent T and linking group L described later.
  • the preferable number of constituent atoms of the linking group and the number of linking atoms are also synonymous.
  • the macromonomer A may have a (meth) acrylate structural unit such as the above formula (b-15) and a halogen atom (for example, a fluorine atom) in addition to the above-described repeating unit having a polymerizable group.
  • a halogen atom for example, a fluorine atom
  • Good alkylene chains eg ethylene chains
  • an ether group (O) or the like may be present in the alkylene chain.
  • Examples of the substituent include a structure in which an arbitrary substituent is arranged at the terminal of the linking group.
  • Examples of the terminal substituent include the substituent T described below, and the example of R 1 is preferable.
  • it uses for the meaning containing the salt and its ion other than the said compound itself about the display of a compound (For example, when attaching
  • it is meant to include derivatives in which a part thereof is changed, such as introduction of a substituent, within a range where a desired effect is achieved.
  • a substituent that does not specify substitution or non-substitution means that the group may have an arbitrary substituent. This is also the same for compounds that do not specify substitution or non-substitution.
  • Preferred substituents include the following substituent T.
  • substituent T examples include the following.
  • An alkyl group preferably an alkyl group having 1 to 20 carbon atoms, such as methyl, ethyl, isopropyl, t-butyl, pentyl, heptyl, 1-ethylpentyl, benzyl, 2-ethoxyethyl, 1-carboxymethyl, etc.
  • alkenyl group Preferably an alkenyl group having 2 to 20 carbon atoms, such as vinyl, allyl, oleyl, etc.
  • alkynyl group preferably an alkynyl group having 2 to 20 carbon atoms, such as ethynyl, butadiynyl, phenylethynyl, etc.
  • cycloalkyl group Preferably a cycloalkyl group having 3 to 20 carbon atoms such as cyclopropyl, cyclopentyl, cyclohexyl, 4-methylcyclohex
  • a heterocyclic group preferably a heterocyclic group having 2 to 20 carbon atoms, preferably a 5- or 6-membered heterocyclic group having at least one oxygen atom, sulfur atom or nitrogen atom
  • a heterocyclic group preferably a heterocyclic group having 2 to 20 carbon atoms, preferably a 5- or 6-membered heterocyclic group having at least one oxygen atom, sulfur atom or nitrogen atom
  • tetrahydropyran tetrahydrofuran
  • an alkoxy group preferably an alkoxy group having 1 to 20 carbon atoms, such as methoxy , Ethoxy, isopropyloxy, benzyloxy, etc.
  • aryloxy groups preferably aryloxy groups having 6 to 26 carbon atoms, such as phenoxy, 1-naphthy
  • substituent, linking group and the like include an alkyl group, an alkylene group, an alkenyl group, an alkenylene group, an alkynyl group and / or an alkynylene group, these may be cyclic or linear, and may be linear or branched. It may be substituted as described above or unsubstituted.
  • linking group L may be substituted through the following linking group L within the scope of the effects of the present invention, or the linking group L may be present in the structure thereof.
  • an alkyl group, an alkylene group, an alkenyl group, and an alkenylene group may further have the following hetero-linking group interposed in the structure.
  • the linking group L includes a hydrocarbon linking group [an alkylene group having 1 to 10 carbon atoms (more preferably 1 to 6 carbon atoms, more preferably 1 to 3 carbon atoms), an alkenylene group having 2 to 10 carbon atoms (more preferably carbon atoms).
  • hetero linking group [carbonyl group (—CO—), thiocarbonyl group (—CS—), ether group (—O—), thioether group (—S—), imino group (— NR N —), imine linking group (R N —N ⁇ C ⁇ , —N ⁇ C (R N ) —), sulfonyl group (—SO 2 —), sulfinyl group (—SO—), phosphate linking group ( -OP (OH) (O) -O-), phosphonic acid Yuimoto (-P (OH) (O) -O -), 2-valent heterocyclic group], or a linking group is preferably a combination thereof.
  • the said hydrocarbon coupling group may form the double bond and the triple bond suitably, and may connect.
  • the ring to be formed is preferably a 5-membered ring or a 6-membered ring.
  • a nitrogen-containing five-membered ring is preferable, and examples of the compound forming the ring include pyrrole, imidazole, pyrazole, indazole, indole, benzimidazole, pyrrolidine, imidazolidine, pyrazolidine, indoline, carbazole, or these And derivatives thereof.
  • 6-membered ring examples include piperidine, morpholine, piperazine, and derivatives thereof.
  • an aryl group, a heterocyclic group, etc. when included, they may be monocyclic or condensed and may be similarly substituted or unsubstituted.
  • R N represents a hydrogen atom or a substituent, the substituent is the same as defined indicated above substituent T.
  • substituents include an alkyl group (preferably having 1 to 24 carbon atoms, more preferably 1 to 12 carbon atoms, further preferably 1 to 6 carbon atoms, and particularly preferably 1 to 3 carbon atoms), and an alkenyl group (preferably having 2 to 24 carbon atoms and 2 carbon atoms).
  • To 12 is more preferable, 2 to 6 is more preferable, and 2 to 3 is particularly preferable, and an alkynyl group (2 to 24 carbon atoms is preferable, 2 to 12 is more preferable, 2 to 6 is more preferable, and 2 to 3 is Particularly preferred), an aralkyl group (preferably 7 to 22 carbon atoms, more preferably 7 to 14 carbon atoms, particularly preferably 7 to 10 carbon atoms), an aryl group (preferably 6 to 22 carbon atoms, more preferably 6 to 14 carbon atoms, 6 to 14 carbon atoms). 10 is particularly preferred).
  • RP is a hydrogen atom, a hydroxy group, or a substituent.
  • substituents include an alkyl group (preferably having 1 to 24 carbon atoms, more preferably 1 to 12 carbon atoms, further preferably 1 to 6 carbon atoms, and particularly preferably 1 to 3 carbon atoms), and an alkenyl group (preferably having 2 to 24 carbon atoms and 2 carbon atoms).
  • To 12 is more preferable, 2 to 6 is more preferable, and 2 to 3 is particularly preferable, and an alkynyl group (2 to 24 carbon atoms is preferable, 2 to 12 is more preferable, 2 to 6 is more preferable, and 2 to 3 is Particularly preferred), an aralkyl group (preferably 7 to 22 carbon atoms, more preferably 7 to 14 carbon atoms, particularly preferably 7 to 10 carbon atoms), an aryl group (preferably 6 to 22 carbon atoms, more preferably 6 to 14 carbon atoms, 6 to 14 carbon atoms).
  • an alkoxy group preferably having 1 to 24 carbon atoms, more preferably 1 to 12, more preferably 1 to 6 and particularly preferably 1 to 3
  • an alkenyloxy group having carbon number
  • More preferably 2 to 12, more preferably 2 to 6, particularly preferably 2 to 3, and an alkynyloxy group preferably having 2 to 24 carbon atoms, more preferably 2 to 12 and more preferably 2 to 6.
  • More preferably, 2 to 3 are particularly preferred
  • an aralkyloxy group preferably 7 to 22 carbon atoms, more preferably 7 to 14 carbon atoms, particularly preferably 7 to 10 carbon atoms
  • an aryloxy group preferably 6 to 22 carbon atoms, 6 to 14 are more preferable, and 6 to 10 are particularly preferable.
  • the number of atoms constituting the linking group is preferably from 1 to 36, more preferably from 1 to 24, still more preferably from 1 to 12, and from 1 to 6 Is particularly preferred.
  • the number of linking atoms in the linking group is preferably 10 or less, and more preferably 8 or less.
  • the lower limit is 1 or more.
  • the number of connected atoms refers to the minimum number of atoms that are located in a path connecting predetermined structural portions and are involved in the connection. For example, in the case of —CH 2 —C ( ⁇ O) —O—, the number of atoms constituting the linking group is 6, but the number of linking atoms is 3.
  • linking groups include the following. Oxycarbonyl group (—OCO—), carbonate group (—OCOO—), amide group (—CONH—), urethane group (—NHCOO—), urea group (—NHCONH—), (poly) alkyleneoxy group (— ( Lr-O) x-), carbonyl (poly) oxyalkylene group (-CO- (O-Lr) x-, carbonyl (poly) alkyleneoxy group (-CO- (Lr-O) x-), carbonyloxy ( Poly) alkyleneoxy group (—COO— (Lr—O) x—), (poly) alkyleneimino group (— (Lr—NR N ) x—), alkylene (poly) iminoalkylene group (—Lr— (NR N -lr) x-), carbonyl (poly) iminoalkylene group (-CO- (NR N -Lr) x- ), carbonyl (poly)
  • Lr is preferably an alkylene group, an alkenylene group or an alkynylene group.
  • the carbon number of Lr is preferably 1 to 12, more preferably 1 to 6, and particularly preferably 1 to 3.
  • a plurality of Lr, R N , R P , x, etc. need not be the same.
  • the direction of the linking group is not limited by the above description, and may be understood as appropriate according to a predetermined chemical formula.
  • the macromonomer A a macromonomer having an ethylenically unsaturated bond at the terminal may be used.
  • the macromonomer A is composed of a polymer chain portion and a polymerizable functional group portion having an ethylenically unsaturated double bond at its terminal.
  • the copolymerization ratio of the constituent component derived from the macromonomer A is not particularly limited, but is preferably 1% by mass or more, more preferably 3% by mass or more, in the polymer constituting the binder particle A, and 5% by mass. % Or more is particularly preferable. As an upper limit, it is preferable that it is 50 mass% or less, It is more preferable that it is 30 mass% or less, It is especially preferable that it is 20 mass% or less.
  • the number average molecular weight of the polymer constituting the binder particles A is preferably 5,000 or more, more preferably 10,000 or more, and particularly preferably 30,000 or more. preferable. As an upper limit, it is preferable that it is 1,000,000 or less, and it is more preferable that it is 200,000 or less.
  • the average particle size of the binder particles A is preferably 1,000 nm or less, more preferably 750 nm or less, more preferably 500 nm or less, further preferably 300 nm or less, and 200 nm or less. It is particularly preferred.
  • the lower limit is preferably 10 nm or more, more preferably 20 nm or more, more preferably 30 nm or more, and particularly preferably 50 nm or more.
  • the average particle diameter of the binder particles A is a value obtained by a measuring method using a scanning electron microscope in the section of Examples described later unless otherwise specified. It is preferable that the particle size of the binder particle A is smaller than the average particle size of the inorganic solid electrolyte.
  • the polymer constituting the binder particle A is preferably amorphous.
  • the polymer being “amorphous” typically means a crystal when measured by the glass transition temperature (Tg) measurement method described in paragraph ⁇ 0143> of JP-A-2015-088486. This refers to a polymer that does not show an endothermic peak due to melting.
  • the Tg of the polymer is preferably 50 ° C. or lower, more preferably 30 ° C. or lower, further preferably 20 ° C. or lower, and particularly preferably 0 ° C. or lower.
  • the lower limit is preferably ⁇ 80 ° C. or higher, more preferably ⁇ 70 ° C. or higher, and particularly preferably ⁇ 60 ° C. or higher.
  • the glass transition temperature of the polymer constituting the binder particle A is a value obtained by the above measurement method unless otherwise specified.
  • the measurement from the produced all-solid-state secondary battery is, for example, by disassembling the battery and placing the electrode in water to disperse the material, followed by filtration, collecting the remaining solid, and measuring the above Tg
  • the glass transition temperature can be measured by the method.
  • the binder particle A may be composed only of the polymer constituting the binder particle A, or may be composed in a form containing another kind of material (polymer, low molecular compound, inorganic compound, etc.). Preferably, it is a binder particle which consists only of a constituent polymer.
  • Binder with high adhesion to the negative electrode active material layer (binder particle B)
  • the binder particle B includes a constituent component derived from the macromonomer B having a mass average molecular weight of 1,000 or more and less than 1,000,000, and has a group including two or more ring structures.
  • polyamide, polyimide, polyurea, polyurethane, or acrylic resin is preferable.
  • grains B are not specifically limited.
  • Such a monomer is preferably a monomer having a polymerizable unsaturated bond, and for example, various vinyl monomers and / or acrylic monomers can be applied.
  • the monomer (a) described in the above binder particle A can be employed.
  • Examples of the monomer that can be used as a raw material for synthesizing the polymer constituting the binder particle B include the exemplary compounds represented by the above “A-number”. However, the present invention is not construed as being limited thereto.
  • the polymer composing the binder particle B used in the present invention incorporates a constituent component derived from the macromonomer B having a mass average molecular weight of 1000 or more.
  • the constituent component derived from the macromonomer B constitutes a side chain with respect to the main chain.
  • the mass average molecular weight of the macromonomer B is preferably 2,000 or more, and more preferably 3,000 or more.
  • the upper limit is less than 1,000,000, preferably 500,000 or less, more preferably 100,000 or less, and particularly preferably 30,000 or less.
  • the polymer constituting the binder particle B When the polymer constituting the binder particle B has a side chain having a molecular weight within the above range, it can be more uniformly dispersed in the organic solvent and can be mixed and applied with the solid electrolyte particles.
  • the mass average molecular weight of the macromonomer B can be measured in the same manner as the method for measuring the number average molecular weight of the macromonomer A.
  • the binder particle B containing the component derived from the macromonomer B has the same action as the binder particle A.
  • the SP value of the macromonomer B is preferably 10 or less, and more preferably 9.5 or less. Although there is no particular lower limit, it is practical that it is 5 or more.
  • the main chain structure is not particularly limited.
  • the macromonomer B preferably has a polymerizable unsaturated bond, and can have, for example, various vinyl groups or (meth) acryloyl groups. In the present invention, it is preferable to have a (meth) acryloyl group.
  • the constituent component derived from the macromonomer B preferably contains a constituent component (repeating unit) selected from a (meth) acrylic acid component, a (meth) acrylic acid ester component, and a (meth) acrylonitrile component in the graft chain.
  • the macromonomer B includes a polymerizable double bond and a linear hydrocarbon structural unit S having 6 or more carbon atoms (preferably an alkylene group having 6 to 30 carbon atoms, more preferably an alkylene group having 8 to 24 carbon atoms). A part of methylene constituting these alkylene groups may have a substituent, and a part of methylene constituting these alkylene groups may have another structure (oxygen atom, sulfur atom, imino group). , A carbonyl group, etc.) may be substituted.
  • the macromonomer B since the macromonomer B has the linear hydrocarbon structural unit S, it can be expected that the affinity with the solvent is increased and the dispersion stability is improved.
  • the macromonomer B preferably has a site represented by the above formula (b-1).
  • polyurea or polyurethane having a structural part (solvated part) that is solvated with respect to the hydrocarbon solvent and a structural part that is not solvated (non-solvated part) is also preferable.
  • particles having a long-chain alkyl group having 6 or more carbon atoms are preferable. Such particles include, for example, a diol compound having a long-chain alkyl group having 6 or more carbon atoms (so-called lipophilic diol), an isocyanate compound, a polyamine (polyol in the case of polyurethane) in a non-aqueous medium, It is obtained by reacting.
  • a structural portion solvated with a hydrocarbon solvent such as a long-chain alkyl group having 6 or more carbon atoms can be imparted to the particles.
  • a terminal NCO prepolymer comprising these compounds may be reacted.
  • the lipophilic diol is a polyol having a functional group of 2 or less, and a preferred molecular weight is 700 or more and less than 5000. However, the lipophilic diol is not limited to this.
  • various fats and oils may be reduced to fats and oils by a method of alcoholysis using lower alcohols and / or glycols, a method of partially saponifying fats and oils, a method of esterifying hydroxyl-containing fatty acids with glycols, etc.
  • Examples include oil-modified polyols, terminal alcohol-modified acrylic resins, and terminal alcohol-modified polyesters described in FRISCH's POLYURETHANES, CHEMISTRY AND TECHNOLOGY PART1, Chemistry (pp. 48-53, issued in 1962) and the like.
  • examples of the hydroxyl group-containing fatty acid include ricinoleic acid, 12-hydroxystearic acid, castor oil fatty acid, hydrogenated castor oil fatty acid, and the like.
  • examples of the terminal alcohol-modified acrylic resin include a polymer of a long-chain alkyl (meth) acrylate using thioglycerol as a chain transfer agent.
  • alkyl (meth) acrylate polymer one or more alkyl (meth) acrylates having 6 to 30 carbon atoms are preferably used. More preferably, it is an alkyl (meth) acrylate having 8 to 25 carbon atoms (particularly preferably 10 to 20 carbon atoms).
  • isocyanate compound all usual isocyanate compounds can be applied, and particularly preferred are aliphatic groups such as hexamethylene diisocyanate, water-added toluene diisocyanate (water-added TDI), water-added diphenylmethane diisocyanate (water-added MDI), and isophorodiisocyanate. It is an alicyclic diisocyanate compound.
  • Examples of the amine compound include ethylenediamine, diaminopropane, diaminobutane, hexamethylenediamine, trimethylhexamethylenediamine, N-aminoethylpiperazine, bis-aminopropylpiperazine, polyoxypropylenediamine, 4,4-diaminodicyclohexylmethane, and isophorone.
  • Examples include diamine, thiourea, and methyliminobispropylamine.
  • An amine compound may be used individually by 1 type, and may be used as a mixture which mixed 2 or more types.
  • the macromonomer B a macromonomer having an ethylenically unsaturated bond at the terminal may be used.
  • the macromonomer B is composed of a polymer chain portion and a polymerizable functional group portion having an ethylenically unsaturated double bond at its terminal.
  • the copolymerization ratio of the constituent component derived from the macromonomer B is not particularly limited, but is preferably 3% by mass or more, more preferably 10% by mass or more, and 20% by mass in the polymer constituting the binder particle B. % Or more is particularly preferable. As an upper limit, it is preferable that it is 70 mass% or less, It is more preferable that it is 60 mass% or less, It is especially preferable that it is 50 mass% or less.
  • the copolymerization ratio can be calculated from the amount of monomer used (the amount used) used for the synthesis of the binder particles B. However, the charge amount (use amount) of the monomer having a group containing two or more ring structures is not included.
  • the group containing two or more ring structures used in the present invention may be any group in which at least one hydrogen atom of a compound having a two or more ring (preferably condensed ring) structure is replaced with a bond.
  • a group in which at least one hydrogen atom of the compound represented by the general formula (D) is replaced with a bond is preferable, and a group in which one or two hydrogen atoms are replaced with a bond is more preferable.
  • a group in which one hydrogen atom is replaced with a bond is particularly preferable.
  • the group formed from the compound represented by the following general formula (D) is excellent in affinity with the carbonaceous material, it can improve the dispersion stability of the solid electrolyte composition containing the binder particles B, The binding properties of the laminate of the present invention and the electrode sheet for an all-solid-state secondary battery can be improved. With improvement in dispersion stability and binding property, the all-solid-state secondary battery produced using the laminate of the present invention and the electrode sheet for all-solid-state secondary battery has excellent cycle characteristics.
  • the group containing two or more ring structures is preferably a group containing three or more ring structures, and more preferably a group containing four or more ring structures from the viewpoint of improving cycle characteristics. Although there is no restriction
  • ring ⁇ represents two or more rings
  • R D1 represents a substituent bonded to a constituent atom of ring ⁇
  • d1 represents an integer of 1 or more.
  • the plurality of R D1 may be the same or different.
  • R D1 substituted with adjacent atoms may be bonded to each other to form a ring.
  • Ring ⁇ is preferably 2 or more, more preferably 3 or more, and still more preferably 4 or more. Further, the ring ⁇ is preferably 18 rings or less, more preferably 16 rings or less, further preferably 12 rings or less, further preferably 8 rings or less, and further preferably 6 rings or less.
  • the ring ⁇ preferably contains a ring structure of 3 or more members, more preferably contains a ring structure of 4 or more members, more preferably contains a ring structure of 5 or more members, It is particularly preferred to contain a structure.
  • the ring ⁇ preferably contains a ring structure having a 24-membered ring or less, more preferably contains a ring structure having a 12-membered ring or less, more preferably contains a ring structure having a 8-membered ring or less, and 6-membered. It is particularly preferred to contain a ring structure of the ring.
  • the ring ⁇ preferably contains an aliphatic hydrocarbon ring, an unsaturated hydrocarbon ring, an aromatic ring, a heterocyclic ring, or a combination thereof.
  • Specific examples of the aliphatic hydrocarbon ring include cyclopropane, cyclobutane, cyclopentane, cyclohexane, cycloheptane, cyclooctane, cyclononane, cyclodecane, cycloundecane, cyclododecane, and decalin.
  • the structure of the unsaturated hydrocarbon ring include a ring structure in which a part of the aliphatic hydrocarbon ring is replaced with a double bond.
  • examples include cyclobutene, cyclopentene, cyclopentadiene, cyclohexene, cyclohexadiene, cyclooctene, cyclooctadiene, and the like.
  • aromatic ring examples include benzene, naphthalene, anthracene, pyrene, tetracene, pentacene, phenanthrene, chrysene, triphenylene, tetraphen, picene, pentahene, perylene, helicene, coronene, and the like.
  • heterocycle examples include ethyleneimine, ethylene oxide, ethylene sulfide, acetylene oxide, azacyclobutane, 1,3-propylene oxide, trimethylene sulfide, pyrrolidine, tetrahydrofuran, tetrahydrothiophene, pyrrole, furan, thiophene, piperidine, Tetrahydropyran, tetrahydrothiopyran, pyridine, hexamethyleneimine, hexamethylene oxide, hexamethylene sulfide, azalotopyridene, oxacycloheptatriene, tiotropylidene, imidazole, oxazole, thiazole, imidazoline, pyrazine, morpholine, thiazine, indole, isoindole, benzo Imidazole, purine, quinoline, isoquinoline, quinoxaline, cinn
  • Ring ⁇ is, among others, cyclobutane, cyclopentane, cyclohexane, cycloheptane, cyclooctane, cyclobutene, cyclopentene, cyclopentadiene, cyclohexene, cyclohexadiene, cyclooctene, benzene, naphthalene, anthracene, pyrene, tetracene, phenanthrene, triphenylene, pyrrolidine, tetrahydrofuran , Tetrahydrothiophene, pyrrole, furan, thiophene, piperidine, pyridine, hexamethyleneimine, hexamethylene oxide, hexamethylene sulfide, imidazole, oxazole, thiazole, imidazoline, pyrazine, morpholine, thiazine, indole, isoindo
  • Preferred examples of the substituent represented by R D1 include the above-described substituent T.
  • ⁇ O is also preferable.
  • An example of such a ring ⁇ having ⁇ O includes a structure containing anthraquinone.
  • R D1 is It is also preferred to have the moiety represented by the formula (b-1) and / or the linking group L, and R D1 is P 1 described later.
  • the polymer constituting the binder particle B used in the present invention may have a group containing two or more ring structures in any of the polymer main chain, the side chain, and the terminal.
  • the compound having a ring structure of two or more rings is a compound represented by the general formula (D)
  • Having in the main chain of the polymer means that the compound represented by the general formula (D) is incorporated into the polymer with a structure in which at least two hydrogen atoms of the compound represented by the general formula (D) are replaced with bonds, It becomes the main chain itself which becomes the repeating structure of the polymer.
  • having in the side chain of the polymer means incorporating into the polymer with a structure in which one hydrogen atom of the compound represented by the general formula (D) is replaced with a bond.
  • having at the polymer terminal means that the compound is incorporated into the polymer in a structure in which one hydrogen atom of the compound represented by the general formula (D) is replaced with a bond, resulting in a polymer chain length.
  • it may be contained in a plurality of main chain, side chain and polymer terminal of the polymer.
  • the polymer constituting the binder particle B preferably has a group containing two or more ring structures in the main chain or side chain, more preferably in the side chain, and is derived from the macromonomer B.
  • Having in the side chain of the macromonomer B component means that a repeating unit having a structure in which one hydrogen atom of the compound represented by the general formula (D) is replaced with a bond as a side chain constitutes the macromonomer B component. It means that it is incorporated in the macromonomer B component as one of the repeating units.
  • the group containing two or more ring structures is incorporated in the side chain of the polymer constituting the binder particle B used in the present invention, thereby improving the mobility of the group containing two or more ring structures. This improves the adsorptivity. By doing so, the binding property between the solid particles in the all solid state secondary battery can be further improved.
  • the two rings present on the surface of the binder particle B by including the group containing two or more ring structures in the side chain of the macromonomer B component of the polymer constituting the binder particle B used in the present invention. The ratio of the group containing the above ring structure is increased, and the binding property between the solid particles in the all-solid secondary battery can be further improved.
  • the content of the repeating unit having a group containing two or more ring structures is preferably 10% by mass to 85% by mass in 100% by mass of the polymer constituting the binder particle B. 15 More preferably, the content is from 80% by mass to 80% by mass, and particularly preferably from 18% by mass to 70% by mass.
  • content of the repeating unit which has the group containing the said 2 or more ring structure can be computed from the preparation amount (usage amount) of the monomer used for the synthesis
  • FIG. 1 of International Publication No. 2017/131993 among the components represented by M1 to M4 and MM, the total of components having a group containing a ring structure of two or more rings is the ring structure of two or more rings. It is content of the repeating unit which has group containing.
  • M4 (B-5) and MM (MM-2) have a group containing two or more ring structures, and have a group containing two or more ring structures.
  • the content of the repeating unit is 40% by mass.
  • the compound represented by the general formula (D) is at least one of a compound represented by the following general formula (1) and an aliphatic hydrocarbon represented by the following general formula (2).
  • One type is preferable.
  • the compound represented by the following general formula (1) and the aliphatic hydrocarbon represented by the following general formula (2) are excellent in affinity with the carbonaceous material that is the negative electrode active material. Therefore, while improving the dispersion stability of the solid electrolyte composition containing these compounds, the binding property of the laminated body of this invention and the electrode sheet for all-solid-state secondary batteries can be improved. In addition, with improvement in dispersion stability and binding property, it is possible to improve cycle characteristics of an all-solid secondary battery produced using this solid electrolyte composition.
  • CHC represents a benzene ring, a cyclohexane ring, a cyclohexene ring, or a cyclohexadiene ring.
  • n1 represents an integer of 0 to 8.
  • R 11 to R 16 each independently represents a hydrogen atom or a substituent.
  • the ring structure may have a hydrogen atom in addition to R 11 to R 16 .
  • X 1 and X 2 each independently represent a hydrogen atom or a substituent.
  • groups adjacent to each other may be bonded to form a 5- or 6-membered ring.
  • any one substituent of R 11 to R 16 is — (CHC 1 ) m1 —Rx, or any two of R 11 to R 16 are bonded to each other, -(CHC 1 ) m1 -is formed.
  • CHC 1 represents a phenylene group, a cycloalkylene group, or a cycloalkenylene group
  • m1 represents an integer of 2 or more
  • Rx represents a hydrogen atom or a substituent.
  • n1 When n1 is 1, at least two adjacent R 11 to R 16 , X 1 and X 2 are bonded to each other to form a benzene ring, a cyclohexane ring, a cyclohexene ring or a cyclohexadiene ring.
  • Examples of the substituent represented by R 11 to R 16 include an alkyl group, an aryl group, a heteroaryl group, an alkenyl group, an alkynyl group, an alkoxy group, an aryloxy group, a heteroaryloxy group, an alkylthio group, an arylthio group, a heteroarylthio group, Acyl group, acyloxy group, alkoxycarbonyl group, aryloxycarbonyl group, alkylcarbonyloxy group, arylcarbonyloxy group, hydroxy group, carboxy group or salt thereof, sulfo group or salt thereof, amino group, mercapto group (sulfanyl group), Examples thereof include an amide group, a formyl group, a cyano group, a halogen atom, a (meth) acryl group, a (meth) acryloyloxy group, a (meth) acrylamide group, an epoxy group, and an oxetanyl
  • the formyl group is included in the acyl group.
  • the carbon number of the alkyl group is preferably 1 to 30, more preferably 1 to 25, and particularly preferably 1 to 20. Specific examples include methyl, ethyl, propyl, isopropyl, butyl, t-butyl, octyl, dodecyl, stearyl, benzyl, naphthylmethyl, pyrenylmethyl and pyrenylbutyl.
  • the alkyl group further preferably contains a double bond or triple bond unsaturated carbon bond inside.
  • the carbon number of the aryl group is preferably 6-30, more preferably 6-26, and particularly preferably 6-15. Specific examples include phenyl, naphthyl, anthracene, terphenyl, tolyl, xylyl, methoxyphenyl, cyanophenyl, and nitrophenyl.
  • the number of carbon atoms of the heteroaryl group is preferably 6 to 30, more preferably 6 to 26, and particularly preferably 6 to 15. Specific examples include furan, pyridine, thiophene, pyrrole, triazine, imidazole, tetrazole, pyrazole, thiazole, and oxazole.
  • the carbon number of the alkenyl group is preferably 2 to 30, more preferably 2 to 25, and particularly preferably 2 to 20. Specific examples include vinyl and propenyl.
  • the carbon number of the alkynyl group is preferably 2 to 30, more preferably 2 to 25, and particularly preferably 2 to 20. Specific examples include ethynyl, propynyl and phenylethynyl.
  • Alkoxy group The alkyl group in the alkoxy group is the same as the above alkyl group.
  • Aryloxy group The aryl group in the aryloxy group is the same as the above aryl group.
  • Heteroaryloxy group The heteroaryl group in the heteroaryloxy group is the same as the above heteroaryl group.
  • alkyl group in the alkylthio group is the same as the above alkyl group.
  • Arylthio group The aryl group in the arylthio group is the same as the above aryl group.
  • Heteroarylthio group The heteroaryl group in the heteroarylthio group is the same as the above heteroaryl group.
  • the number of carbon atoms is preferably 1-30, more preferably 1-25, still more preferably 1-20.
  • the acyl group includes a formyl group, an aliphatic carbonyl group, an aromatic carbonyl group, and a heterocyclic carbonyl group.
  • the following groups are mentioned.
  • Acyloxy group The acyl group in the acyloxy group is the same as the above acyl group.
  • Alkoxycarbonyl group The alkyl group in the alkoxycarbonyl group is the same as the above alkyl group.
  • Aryloxycarbonyl group The aryl group in the aryloxycarbonyl group is the same as the above aryl group.
  • alkyl group in the alkylcarbonyloxy group is the same as the above alkyl group.
  • Arylcarbonyloxy group The aryl group in the arylcarbonyloxy group is the same as the above aryl group.
  • substituents can generally be introduced by electrophilic substitution reaction, nucleophilic substitution reaction, halogenation, sulfonation, diazotization of the aromatic hydrocarbon represented by the general formula (1), or a combination thereof. It is. Examples thereof include alkylation by Friedel-Craft reaction, acylation by Friedel-Craft reaction, Vilsmeier reaction, transition metal catalyzed coupling reaction and the like.
  • N1 is more preferably an integer of 0 to 6, particularly preferably an integer of 1 to 4.
  • the compound represented by the general formula (1) is preferably a compound represented by the following general formula (1-1) or (1-2).
  • Ar is a benzene ring.
  • R 11 ⁇ R 16, X 1 and X 2 the general formula (1) in the same meaning as R 11 ⁇ R 16, X 1 and X 2, and the preferred range is also the same.
  • n3 represents an integer of 1 or more. However, when n3 is 1, in R 11 to R 16 , X 1 and X 2 , at least two adjacent to each other are bonded to form a benzene ring.
  • Rx has the same meaning as Rx in general formula (1), and the preferred range is also the same.
  • R 10 represents a substituent, and nx represents an integer of 0 to 4.
  • m3 represents an integer of 3 or more.
  • Ry represents a hydrogen atom or a substituent. Here, Rx and Ry may be combined.
  • n3 is preferably an integer of 1 to 6, more preferably an integer of 1 to 3, and particularly preferably an integer of 1 to 2.
  • m3 is preferably an integer of 3 to 10, more preferably an integer of 3 to 8, and particularly preferably an integer of 3 to 5.
  • the compound represented by the general formula (1) examples include naphthalene, anthracene, phenanthracene, pyrene, tetracene, tetraphen, chrysene, triphenylene, pentacene, pentaphen, perylene, pyrene, benzo [a] pyrene, coronene, Examples thereof include compounds containing a structure of anthanthrene, corannulene, obalene, graphene, cycloparaphenylene, polyparaphenylene, or cyclophene. However, the present invention is not limited to these.
  • Y 1 and Y 2 each independently represent a hydrogen atom, a methyl group or a formyl group.
  • R 21 , R 22 , R 23 and R 24 each independently represents a substituent, and a, b, c and d each represents an integer of 0 to 4.
  • the A ring may be a saturated ring, an unsaturated ring having 1 or 2 double bonds, or an aromatic ring, and the B ring and the C ring are unsaturated rings having 1 or 2 double bonds. It may be.
  • substituents adjacent to each other may be bonded to form a ring.
  • the aliphatic hydrocarbon represented by the general formula (2) is a compound having a steroid skeleton.
  • the carbon numbers of the steroid skeleton are as follows.
  • the substituent in R 21 , R 22 , R 23 and R 24 may be any substituent, but an alkyl group, an alkenyl group, a hydroxy group, a formyl group, an acyl group, a carboxy group or a salt thereof, (meth) An acryl group, a (meth) acryloyloxy group, a (meth) acrylamide group, an epoxy group, and an oxetanyl group are preferable, and a ⁇ O group formed by jointly forming two substituents on the same carbon atom is preferable.
  • the alkyl group is preferably an alkyl group having 1 to 12 carbon atoms and may have a substituent.
  • Such a substituent may be any substituent, and examples thereof include an alkyl group, an alkenyl group, a hydroxy group, a formyl group, an acyl group, a carboxy group, an alkoxycarbonyl group, a carbamoyl group, and a sulfo group.
  • the alkyl group further preferably contains a double bond or triple bond unsaturated carbon bond inside.
  • the alkenyl group is preferably an alkenyl group having 1 to 12 carbon atoms and may have a substituent.
  • Such a substituent may be any substituent, and examples thereof include an alkyl group, an alkenyl group, a hydroxy group, a formyl group, an acyl group, a carboxy group, an alkoxycarbonyl group, a carbamoyl group, and a sulfo group.
  • R 21 is preferably substituted with carbon number 3
  • R 22 is preferably substituted with carbon number 6 or 7
  • R 23 is preferably substituted with carbon number 11 or 12
  • R 24 is carbon Substitution with number 17 is preferred.
  • Y 1 and Y 2 are preferably a hydrogen atom or a methyl group.
  • A, b, c, d are preferably integers of 0-2.
  • the double bond is preferably a bond of carbon numbers 4 and 5
  • the double bond is a bond of carbon numbers 5 and 6 or 6 and 7
  • the double bond is preferably a bond having carbon numbers 8 and 9.
  • the compound represented by the general formula (2) includes any of stereoisomers.
  • the bonding direction of the substituent is represented by ⁇ in the downward direction on the paper and ⁇ in the upward direction on the paper, it may be either ⁇ or ⁇ , or a mixture thereof.
  • the arrangement of the A / B ring, the arrangement of the B / C ring, and the arrangement of the C / D ring may be either a trans arrangement or a cis arrangement, or a mixed arrangement thereof. Absent.
  • the sum of a to d is 1 or more, and any of R 21 , R 22 , R 23 and R 24 is preferably a hydroxy group or an alkyl group having a substituent.
  • steroids as shown below are preferable.
  • the substituents on the steroid ring are sterically controlled. From the left, there are cholestanes, cholans, pregnanes, androstanes, and estranes.
  • aliphatic hydrocarbon represented by the general formula (2) examples include cholesterol, ergosterol, testosterone, estradiol, aldosterol, aldosterone, hydrocortisone, stigmasterol, timosterol, lanosterol, 7-dehydrodesmosterol, 7 -Of dehydrocholesterol, cholanic acid, cholic acid, lithocholic acid, deoxycholic acid, sodium deoxycholic acid, lithium deoxycholic acid, hyodeoxycholic acid, chenodeoxycholic acid, ursodeoxycholic acid, dehydrocholic acid, hookecholic acid or hyocholic acid
  • Examples include compounds containing a structure. However, the present invention is not limited to these.
  • At least one of R D1 is L 1a -P 1 , or at least two of R D1 are each independently L 2a -P 2 or L 3a -P 2 Is preferable, and the former is more preferable.
  • at least one of R 11 to R 16 , X 1 and X 2 is L 1a -P 1 , or at least two of R 11 to R 16 , X 1 and X 2 are each independently Are preferably L 2a -P 2 or L 3a -P 2 , more preferably the former.
  • At least one of R 21 , R 22 , R 23 and R 24 is L 1a -P 1 , or at least two of R D1 are each independently L 2a -P 2 or L 3a -P 2 is preferable, and the former is more preferable.
  • L 1a -P 1 is bonded to the ring at L 1a .
  • L 2a -P 2 and L 3a -P 2 are bonded to the ring at L 2a and L 3a , respectively.
  • L 1a represents a single bond or a linking group.
  • the linking group include a hydrocarbon linking group [an alkylene group having 1 to 10 carbon atoms (more preferably 1 to 6 carbon atoms, more preferably 1 to 3 carbon atoms), an alkenylene group having 2 to 10 carbon atoms (more preferably carbon atoms).
  • the hydrocarbon linking group may be linked by appropriately forming a double bond or a triple bond.
  • a ring formed a 5-membered ring or a 6-membered ring is preferable.
  • the five-membered ring a nitrogen-containing five-membered ring is preferable, and examples of the compound forming the ring include pyrrole, imidazole, pyrazole, indazole, indole, benzimidazole, pyrrolidine, imidazolidine, pyrazolidine, indoline, carbazole, or these Derivatives and the like.
  • 6-membered ring examples include piperidine, morpholine, piperazine, and derivatives thereof.
  • an aryl group, a heterocyclic group, etc. when included, they may be monocyclic or condensed and may be similarly substituted or unsubstituted.
  • L 1a is a linking group comprising a combination
  • the number of combinations is not particularly limited, and is preferably 2 to 30, preferably 2 to 20, more preferably 2 to 10, and particularly preferably 2 to 4.
  • the linking group composed of a combination include an alkylene group having 1 to 6 carbon atoms (preferably 1 to 4), an arylene group having 6 to 24 carbon atoms (preferably 6 to 10), an ether group (—O—),
  • Examples include thioether groups (—S—), imino groups (NR Na ), carbonyl groups, (poly) alkyleneoxy groups, (poly) ester groups, (poly) amide groups, or combinations thereof.
  • groups having 1 to 4 carbon atoms groups having 1 to 4 carbon atoms, ether groups (—O—), imino groups (NR Na ), carbonyl groups, (poly) alkyleneoxy groups, (poly) ester groups or combinations thereof are more preferred. preferable.
  • the connecting group which the exemplary monomer mentioned later has is mentioned.
  • L 1a When L 1a is a group capable of taking a substituent, it may further have a substituent.
  • substituents include the above-described substituent T, and among them, a halogen atom (preferably a fluorine atom and a chlorine atom), an alkyl group, an acyl group, a carbamoyl group, and a hydroxy group are preferable.
  • L 1a preferably has a certain length or more.
  • the minimum number of atoms connecting ring ⁇ (ring ⁇ , an atom to which L 1a is bonded among the atoms constituting the ring structure in formula (1) or (2)) and P 1 is 2 atoms or more Is preferable, 4 atoms or more are more preferable, 6 atoms or more are more preferable, and 8 atoms or more are particularly preferable.
  • the upper limit is preferably 1000 atoms or less, more preferably 500 atoms or less, still more preferably 100 atoms or less, and particularly preferably 20 atoms or less.
  • L 2a and L 3a have the same meaning as L 1a and may be the same or different.
  • P 1 is a polymerizable site.
  • the polymerizable site is a group that can be polymerized by a polymerization reaction, and includes a group that undergoes chain polymerization such as an ethylenically unsaturated group, an epoxy group, or an oxetanyl group.
  • examples of the group having two or more hydroxy groups, amino groups, carboxy groups, isocyanate groups, and the like, and groups having at least one dicarboxylic acid anhydride structure include condensation polymerization.
  • the ethylenically unsaturated group include (meth) acryloyl group, (meth) acryloyloxy group, (meth) acrylamide group, and vinyl group (including allyl group).
  • P 1 is preferably a partial structure containing one or more ethylenically unsaturated groups, epoxy groups, oxetanyl groups or dicarboxylic anhydrides, or a hydroxy group, amino group, isocyanate group, or two or more, (meth) acryloyl
  • Examples of P 2 include a group that undergoes condensation polymerization such as a hydroxy group, an amino group, a carboxy group, an isocyanate group, and a dicarboxylic acid anhydride.
  • a hydroxy group, an amino group, an isocyanate group, and a dicarboxylic anhydride are preferable, and a hydroxy group, an amino group, and an isocyanate group are particularly preferable.
  • L 1a -P 1 is preferably a group represented by the following general formula (F-1).
  • the compound represented by the general formula (D) is preferably a group in which d1 is 1 to 4 and R D1 is a group represented by the general formula (F-1), d1 is 1, and R D1 is the general formula A group represented by (F-1) is more preferable.
  • R 11 to R 16 , X 1 and X 2 are preferably groups represented by the general formula (F-1), and at least one of the general formula (F-1 It is more preferable that it is group represented by.
  • at least four of R 21 , R 22 , R 23 and R 24 are preferably groups represented by the general formula (F-1), and at least one of the general formula (F-1 It is more preferable that it is group represented by.
  • X 31 represents —O— or> NH.
  • R 31 represents a hydrogen atom, a hydroxy group, a cyano group, a halogen atom, an alkyl group, an alkenyl group, an alkynyl group or an aryl group.
  • the alkyl group that can be adopted as R 31 is not particularly limited, but is preferably an alkyl group having 1 to 24 carbon atoms, more preferably an alkyl group having 1 to 12 carbon atoms, and particularly preferably an alkyl group having 1 to 6 carbon atoms.
  • the alkenyl group that can be adopted as R 31 is not particularly limited, but is preferably an alkenyl group having 2 to 24 carbon atoms, more preferably an alkenyl group having 2 to 12 carbon atoms, and particularly preferably an alkenyl group having 2 to 6 carbon atoms.
  • the alkynyl group that can be used as R 31 is not particularly limited, but is preferably an alkynyl group having 2 to 24 carbon atoms, more preferably an alkynyl group having 2 to 12 carbon atoms, and particularly preferably an alkynyl group having 2 to 6 carbon atoms.
  • the aryl group that can be employed as R 31 is not particularly limited, but is preferably an aryl group having 6 to 22 carbon atoms, and more preferably an aryl group having 6 to 14 carbon atoms.
  • Examples of the halogen atom that can be used as R 31 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a fluorine atom, a chlorine atom, or a bromine atom is preferable.
  • R 31 is preferably a hydrogen atom or an alkyl group, more preferably a hydrogen atom or methyl.
  • R 31 is a group that can take a substituent (an alkyl group, an alkenyl group, an alkynyl group, or an aryl group), R 31 may further have a substituent.
  • substituents include a substituent Z described later, and among them, a halogen atom (such as a fluorine atom), a hydroxy group, a carboxy group, an ester group, and an amide group are preferable.
  • L 31 is synonymous with L 1a .
  • an alkylene group preferably having a carbon number of 1 to 12, more preferably 1 to 6
  • a carbonyl group, an ether group, an imino group, or a linking group combining these is more preferable.
  • An alkylene group having 1 to 4 carbon atoms, a carbonyl group, an ether group, an imino group, or a linking group combining these is particularly preferable.
  • L 31 is a group that can take a substituent, it may further have a substituent.
  • substituents include the above-described substituent T, and among them, a halogen atom (preferably a fluorine atom and a chlorine atom), an alkyl group, an acyl group, a carbamoyl group, and a hydroxy group are preferable.
  • L 31 preferably has a certain length or more.
  • Ring ⁇ (ring ⁇ , the atom to which L 1a is bonded among the atoms constituting the ring structure in formula (1) or (2)) and X 31 connect the ring ⁇ and P 1 with the shortest number of atoms. It is the same as the shortest number of atoms to be connected.
  • m4 represents 1 to 100,000
  • n4 represents 1 to 100,000
  • the compound having a ring structure having two or more rings is, for example, a compound having a ring structure having two or more rings and a reaction point (for example, a hydroxy group or a carboxy group) with a polymerizable group (for example, a (meth) acryloyl group). It can be obtained by reacting and containing the compound contained.
  • the average particle size of the binder particles B is 50,000 nm or less, preferably 1000 nm or less, more preferably 500 nm or less, further preferably 300 nm or less, and particularly preferably 250 nm or less. .
  • the lower limit is 10 nm or more, preferably 30 nm or more, more preferably 50 nm or more, and particularly preferably 100 nm or more.
  • the average particle diameter of the binder particles B refers to the average particle diameter in a state where an ion conductive substance is included.
  • the method for measuring the average particle size of the binder particles B is the same as the method for measuring the average particle size of the binder particles A.
  • the polymer constituting the binder particle B has a mass average molecular weight of preferably 5,000 or more, more preferably 10,000 or more, and further preferably 30,000 or more.
  • the upper limit is substantially 1,000,000 or less, but a crosslinked mode is also preferable.
  • the mass average molecular weight of the polymer constituting the binder particle B can be measured in the same manner as the method for measuring the number average molecular weight of the polymer constituting the binder particle A.
  • the molecular weight may be larger than the above molecular weight.
  • the polymer constituting the binder particle B has a mass average molecular weight in the above range.
  • the water concentration of the polymer constituting the binder used in the present invention is preferably 100 ppm (mass basis) or less.
  • the binder content in each solid electrolyte layer is not particularly limited.
  • the content of the binder is preferably 0.1 to 50 parts by mass, more preferably 0.5 to 40 parts by mass with respect to 100 parts by mass of the inorganic solid electrolyte. It is particularly preferably 30 to 30 parts by mass.
  • each solid electrolyte layer constituting the laminate of the present invention one kind of binder may be used alone, or a plurality of kinds may be used in combination. Further, it may be used in combination with other particles.
  • the binder used for this invention can be prepared by a conventional method. Examples of the particle formation method include a method of forming binder particles during the polymerization reaction and a method of precipitating a polymer solution to form particles.
  • the solid electrolyte layer constituting the laminate of the present invention may contain a lithium salt (supporting electrolyte).
  • the lithium salt is preferably a lithium salt usually used in this type of product, and is not particularly limited.
  • the lithium salts described in paragraphs 0082 to 0085 of JP-A-2015-088486 are preferable.
  • the content of the lithium salt is preferably 0.1 parts by mass or more and more preferably 5 parts by mass or more with respect to 100 parts by mass of the inorganic solid electrolyte in each solid electrolyte layer.
  • 50 mass parts or less are preferable, and 20 mass parts or less are more preferable.
  • the solid electrolyte layer constituting the laminate of the present invention may contain an ionic liquid in order to further improve the ionic conductivity.
  • an ionic liquid From the viewpoint of improving an ionic conductivity effectively, what melt
  • the compound which consists of a combination of the following cation and an anion is mentioned.
  • (I) Cation Examples of the cation include an imidazolium cation, a pyridinium cation, a piperidinium cation, a pyrrolidinium cation, a morpholinium cation, a phosphonium cation, and a quaternary ammonium cation.
  • these cations have the following substituents.
  • one kind of these cations may be used alone, or two or more kinds may be used in combination.
  • it is a quaternary ammonium cation, a piperidinium cation or a pyrrolidinium cation.
  • Examples of the substituent that the cation has include an alkyl group (an alkyl group having 1 to 8 carbon atoms, more preferably an alkyl group having 1 to 4 carbon atoms), a hydroxyalkyl group (a hydroxyalkyl group having 1 to 3 carbon atoms).
  • alkyloxyalkyl group (preferably an alkyloxyalkyl group having 2 to 8 carbon atoms, more preferably an alkyloxyalkyl group having 2 to 4 carbon atoms), an ether group, an allyl group, an aminoalkyl group (carbon An aminoalkyl group having 1 to 8 carbon atoms is preferred, an aminoalkyl group having 1 to 4 carbon atoms is preferred, and an aryl group (an aryl group having 6 to 12 carbon atoms is preferred, and an aryl group having 6 to 8 carbon atoms is more preferred). .).
  • the substituent may form a cyclic structure containing a cation moiety.
  • the substituent may further have the substituent described in the dispersion medium.
  • the ether group is used in combination with other substituents. Examples of such a substituent include an alkyloxy group and an aryloxy group.
  • Anions As anions, chloride ions, bromide ions, iodide ions, boron tetrafluoride ions, nitrate ions, dicyanamide ions, acetate ions, iron tetrachloride ions, bis (trifluoromethanesulfonyl) imide ions, bis ( Fluorosulfonyl) imide ion, bis (perfluorobutylmethanesulfonyl) imide ion, allyl sulfonate ion, hexafluorophosphate ion, trifluoromethane sulfonate ion and the like.
  • these anions may be used alone or in combination of two or more.
  • Preferred are boron tetrafluoride ion, bis (trifluoromethanesulfonyl) imide ion, bis (fluorosulfonyl) imide ion or hexafluorophosphate ion, dicyanamide ion and allyl sulfonate ion, more preferably bis (trifluoromethanesulfonyl) imide ion.
  • a bis (fluorosulfonyl) imide ion and an allyl sulfonate ion are examples of the anion.
  • the ionic liquid examples include 1-allyl-3-ethylimidazolium bromide, 1-ethyl-3-methylimidazolium bromide, 1- (2-hydroxyethyl) -3-methylimidazolium bromide, 1- ( 2-methoxyethyl) -3-methylimidazolium bromide, 1-octyl-3-methylimidazolium chloride, N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium tetrafluoroborate, 1- Ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide, 1-ethyl-3-methylimidazolium bis (fluorosulfonyl) imide, 1-ethyl-3-methylimidazolium dicyanamide, 1-butyl-1-methyl Pyrrolidinium bis (trifluoromethanesulfonyl) Trimethylbutylammonium bis
  • the content of the ionic liquid in each solid electrolyte layer is preferably 0 parts by mass or more, more preferably 1 part by mass or more, and most preferably 2 parts by mass or more with respect to 100 parts by mass of the inorganic solid electrolyte.
  • 50 mass parts or less are preferable, 20 mass parts or less are more preferable, and 10 mass parts or less are especially preferable.
  • the solid electrolyte layer constituting the laminate of the present invention may contain a linear structure for reinforcing the structure.
  • the linear structure which consists of organic substance and an inorganic substance can be illustrated.
  • the linear structure made of an organic material include cellulose nanofiber (trade name: Celish (manufactured by Daicel Finechem Co., Ltd.)), substituted cellulose nanofiber, and polyester nanofiber (trade name: nanofront (manufactured by Teijin Limited). )), Polyamide nanofibers (trade name: Tiara (manufactured by Daicel Finechem Co., Ltd.)), acrylic nanofibers, polyurethane nanofibers, and polyimide nanofibers.
  • Examples of the linear structure made of carbon include carbon nanotubes and carbon nanofibers.
  • Examples of the linear structure made of an inorganic material include a linear structure made of metal (silver nanowire, copper nanowire, nickel nanowire, cobalt nanowire, gold nanowire, etc.), and a linear structure made of ceramics ( Alumino oxide nanowire, copper hydroxide nanowire, hydroxyapatite nanowire, iron oxide hydrate nanowire, iron oxide nanowire, nickel hydroxide nanowire, magnesium oxide nanowire, molybdenum oxide nanowire, silicon carbide nanowire, Examples include titanium oxide nanowires, manganese oxide nanowires, nickel oxide nanowires, tungsten oxide nanowires, vanadium oxide nanowires, and zinc oxide nanowires), and linear structures made of glass (such as silica glass nanofibers).
  • the content of the linear structure in each solid electrolyte layer is preferably 1 to 50% by mass, more preferably 5 to 30 parts by mass with respect to 100 parts by mass of the inorganic solid electrolyt
  • Each of the solid electrolyte layers may include a support different from the release film. That is, in the laminate of the present invention, a support may be used as a constituent member of each solid electrolyte layer. Hereinafter, such a support is also referred to as support A.
  • the shape of the support A is preferably a sheet-like support having openings such as a plurality of through holes.
  • the support A is preferably formed from a resin, glass or fiber.
  • the resin examples include polycaprolactam, polyalkylene, acrylic resin, polyimide, polycarbonate, polyphenylene, polyphenylene sulfide, polytetrafluoroethylene (PTFE), polytetrafluoroethylene (PTFE) -tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer. (PFA) and nylon are mentioned, and polycaprolactam, polyimide, and acrylic resin are preferable.
  • the glass support A having an opening can be produced, for example, by patterning by wet etching or the like. In order to perform the etching effectively in this method, it is preferable to use a photosensitive glass containing a small amount of metal ions.
  • the shape of the opening is not particularly limited, and examples thereof include a honeycomb shape and a circular shape. Further, it may be an irregular opening having no shape (for example, a through hole having a high opening ratio formed by combining fibers).
  • the method for producing a solid electrolyte-containing sheet of the present invention is a method for producing a solid electrolyte-containing sheet having a laminate of three or more solid electrolyte layers, which comprises at least the following steps (1) to (3) and a drying step. is there.
  • Step (1) A solid electrolyte composition containing an inorganic solid electrolyte having an average particle size of 0.3 to 0.9 ⁇ m and a binder is applied to form a solid electrolyte layer.
  • Step (3) A solid electrolyte composition containing an inorganic solid electrolyte having an average particle size of 0.3 to 0.9 ⁇ m and a binder is applied to form a solid electrolyte layer.
  • the order in which the steps (1) to (3) are performed is not particularly limited, and may be performed simultaneously.
  • the solid electrolyte layer formed by the step (2) is formed between the solid electrolyte layer formed by the step (1) and the solid electrolyte layer formed by the step (3).
  • the solid electrolyte-containing sheet of the present invention can be suitably manufactured by the method for manufacturing a solid electrolyte-containing sheet of the present invention. That is, either the first SE layer or the third SE layer of the solid electrolyte-containing sheet of the present invention is formed from the solid electrolyte composition in the step (1), and the first SE is formed from the solid electrolyte composition in the step (3). The other one of the layer and the third SE layer is formed. Further, the second SE layer is formed from the solid electrolyte composition in the step (2).
  • the method for producing a solid electrolyte-containing sheet of the present invention preferably includes a step of forming the fourth SE layer.
  • step (4) it is preferable to perform step (4) so that the short-circuit suppressing layer is in contact with one of the first SE layer and the third SE layer.
  • the method for producing a solid electrolyte-containing sheet of the present invention can include a step of forming “another SE layer” in accordance with the form of the solid electrolyte-containing sheet to be obtained.
  • the components and contents contained in the solid electrolyte composition used in the steps (1) to (4) and the solid electrolyte composition used for forming the “other SE layer” are contained in the laminate of the present invention described above. Corresponds to the component and content.
  • the pore pore radius measured by the mercury intrusion method in the fourth SE layer is the component of the solid electrolyte composition used in the step (4), the content thereof, and the pressure when forming the laminate of the present invention. It can be adjusted by the pressure.
  • the solid electrolyte composition used in the method for producing a solid electrolyte-containing sheet of the present invention can be prepared by a conventional method. Specifically, it can be prepared by mixing or adding an inorganic solid electrolyte and a binder and, if necessary, other components such as a dispersion medium. For example, it can prepare by mixing the said component using various mixers.
  • the mixing conditions are not particularly limited, and examples thereof include a ball mill, a bead mill, a planetary mixer, a blade mixer, a roll mill, a kneader, and a disk mill.
  • Dispersion medium Specific examples of the dispersion medium include the following.
  • the alcohol compound solvent include methyl alcohol, ethyl alcohol, 1-propyl alcohol, 2-butanol, ethylene glycol, propylene glycol, glycerin, 1,6-hexanediol, 1,3-butanediol, and 1,4-butane. Diols are mentioned.
  • ether compound solvents examples include alkylene glycol alkyl ethers (ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol, dipropylene glycol, propylene glycol monomethyl ether, diethylene glycol monomethyl ether, triethylene glycol, polyethylene glycol, propylene glycol dimethyl ether, dipropylene glycol.
  • alkylene glycol alkyl ethers ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol, dipropylene glycol, propylene glycol monomethyl ether, diethylene glycol monomethyl ether, triethylene glycol, polyethylene glycol, propylene glycol dimethyl ether, dipropylene glycol.
  • Examples of the amide compound solvent include N, N-dimethylformamide, 1-methyl-2-pyrrolidone, 2-pyrrolidinone, 1,3-dimethyl-2-imidazolidinone, ⁇ -caprolactam, formamide, N-methylformamide, Examples include acetamide, N-methylacetamide, N, N-dimethylacetamide, N-methylpropanamide and hexamethylphosphoric triamide.
  • amino compound solvents examples include triethylamine and tributylamine.
  • ketone compound solvent examples include acetone, methyl ethyl ketone, diethyl ketone, dipropyl ketone, dibutyl ketone, and diisobutyl ketone.
  • Ester compound solvents include methyl acetate, ethyl acetate, propyl acetate, butyl acetate, pentyl acetate, hexyl acetate, methyl propionate, ethyl propionate, propyl propionate, butyl propionate, methyl butyrate, ethyl butyrate, propyl butyrate, butyric acid
  • Examples include butyl, isobutyl isobutyrate, pentyl butyrate, methyl valerate, ethyl valerate, propyl valerate, butyl valerate, methyl caproate, ethyl caproate, propyl caproate, and butyl caproate.
  • aromatic compound solvent examples include benzene, toluene, xylene, and mesitylene.
  • aliphatic compound solvent examples include hexane, heptane, cyclohexane, methylcyclohexane, ethylcyclohexane, decalin, octane, pentane, cyclopentane and cyclooctane.
  • nitrile compound solvent examples include acetonitrile, propyronitrile, and butyronitrile.
  • the laminate of the present invention can be formed using the solid electrolyte composition.
  • the transfer sheet of the present invention is manufactured by the method for manufacturing the solid electrolyte-containing sheet of the present invention will be described as an example.
  • the method for coating the solid electrolyte composition on the release film (support) is not particularly limited, and examples thereof include a wet sequential coating method and a coating method, and a simultaneous multilayer coating method is preferable.
  • the wet sequential coating method can be performed with reference to, for example, the description of JP-A-2007-83625.
  • the production of the transfer sheet 10A of the present invention shown in FIG. 1 will be described as an example.
  • a solid electrolyte composition (slurry containing a dispersion medium) for forming the solid electrolyte layer 3 (first SE layer) is applied (step (1)) to form the first SE layer.
  • a solid electrolyte composition (slurry containing the dispersion medium) for forming the solid electrolyte layer 2 (second SE layer) is applied on the first SE layer.
  • Step (2) a second SE layer is formed.
  • a solid electrolyte composition (slurry containing the dispersion medium) for forming the solid electrolyte layer 1 (third SE layer) is applied on the second SE layer. (Step (3)), and a third SE layer is formed.
  • step (2) when the linear structure is used, for example, in step (2), before the dispersion medium completely evaporates or volatilizes from the first SE layer, a wire impregnated with the solid electrolyte composition for forming the second SE layer is used.
  • the second SE layer may be formed by disposing a structure.
  • the linear structure can be similarly used in the steps (1) and (3).
  • the support A when the support A is used, for example, in the step (2), before the dispersion medium completely evaporates or volatilizes from the first SE layer, the support A having a through hole is disposed on the first SE layer, and the second SE
  • the second SE layer may be formed by applying a solid electrolyte composition for forming a layer (step (2)) and filling the through holes with the solid electrolyte composition (slurry).
  • the support A can be used similarly in the steps (1) and (3).
  • first SE layer second SE layer
  • second SE layer first SE layer exhibits reduced-rate drying
  • “Before the first SE layer (second SE layer) begins to show reduced-rate drying” usually refers to a process of several minutes immediately after application of the slurry, and during this time, the solvent ( This shows the phenomenon of “constant rate drying” in which the content of the dispersion medium) decreases in proportion to time.
  • the time indicating “constant rate drying” is described in, for example, “Chemical Engineering Handbook” (pages 707 to 712, published by Maruzen Co., Ltd., October 25, 1980).
  • the slurry can be applied by an ordinary application method such as an extrusion die coater, an air doctor coater, a bread coater, a rod coater, a knife coater, a squeeze coater, a reverse roll coater, or a bar coater.
  • an extrusion die coater such as an extrusion die coater, an air doctor coater, a bread coater, a rod coater, a knife coater, a squeeze coater, a reverse roll coater, or a bar coater.
  • the simultaneous multilayer coating method can be performed with reference to, for example, the descriptions in JP-A Nos. 2005-271283 and 2006-247967.
  • the simultaneous multilayer coating for example, using a coater such as an extrusion die coater or a curtain flow coater, at least the solid electrolyte compositions used in steps (1) to (3) are simultaneously coated on, for example, a release film.
  • simultaneous application means, for example, that each solid electrolyte composition is applied on a release film, for example, in a state of being overlaid as described later, and the time or timing of application on the release film. It is not limited to the aspect which completely agree
  • the first to third SE layers are separated in a state containing a dispersion medium (wet state) by simultaneously applying slurry for forming each solid electrolyte layer. It is laminated
  • each solid electrolyte layer after drying in the laminated body of this invention may contain a dispersion medium, respectively after drying. For example, it can be 1 mass% or less in the total mass of the solid electrolyte layer.
  • the method for producing a solid electrolyte-containing sheet of the present invention it is preferable to form all solid electrolyte layers including a step of applying pressure after applying the solid electrolyte composition and drying it.
  • the pressure to pressurize is adjusted in the range in which the inorganic solid electrolyte particles and the binder particles in the obtained solid electrolyte-containing sheet can maintain a particulate form. For example, it is 1 to 100 MPa.
  • seat of this invention is not restrict
  • the pressurization may be performed before or after winding the solid electrolyte-containing sheet on a roll, but it is preferable to pressurize the sheet before winding the roll on the roll.
  • the manufacturing method of the electrode sheet for all-solid-state secondary batteries of this invention includes the process of transferring the laminated body obtained by the manufacturing method of the solid electrolyte containing sheet
  • the manufacturing method of the electrode sheet for all-solid-state secondary batteries of this invention can be performed by a conventional method except including the manufacturing method of the said solid electrolyte containing sheet.
  • It can be manufactured by a method including (intervening) a step of applying a composition for an electrode on a metal foil to be a current collector and forming (forming) a coating film.
  • a conductive layer forming composition may be applied onto a metal foil to form a conductive layer, and the electrode composition may be applied onto the conductive layer.
  • a negative electrode composition containing a negative electrode active material is applied as a negative electrode composition on a metal foil that is a negative electrode current collector to form a negative electrode active material layer, and a negative electrode sheet for an all solid secondary battery is formed. Make it.
  • the transfer sheet laminate obtained by the method for producing a solid electrolyte-containing sheet of the present invention is transferred onto the negative electrode active material layer. Taking the transfer sheet shown in FIG. 1 as an example, the transfer sheet is stacked on the negative electrode sheet for an all-solid-state secondary battery so that the solid electrolyte layer 1 (third SE layer) is in contact with the negative electrode active material layer.
  • the negative electrode sheet for all-solid-state secondary batteries of this invention can be obtained.
  • the electrode active material layer which comprises a normal all-solid-state secondary battery can be used for the electrode active material layer of the electrode sheet for all-solid-state secondary batteries of this invention.
  • an electrode composition for forming such an electrode active material layer for example, an electrode composition containing an active material in the solid electrolyte composition used in the above step (1) or (3) is used. Can do.
  • the manufacturing method of the all-solid-state secondary battery of this invention includes the manufacturing method of the electrode sheet for all-solid-state secondary batteries of this invention.
  • the manufacturing method of the all-solid-state secondary battery of this invention can be performed by a conventional method except including the manufacturing method of the said electrode sheet for all-solid-state secondary batteries.
  • the release film 4 is peeled off from the transfer sheet 10A on the negative electrode sheet for an all-solid secondary battery produced above.
  • the composition for positive electrodes is apply
  • an all solid state secondary battery 100A having the layer configuration shown in FIG. 3 can be obtained. If necessary, this can be enclosed in a housing to obtain a desired all-solid secondary battery.
  • a negative electrode sheet for an all-solid secondary battery is produced as described above.
  • a positive electrode composition containing a positive electrode active material is applied as a positive electrode composition on a metal foil that is a positive electrode current collector to form a positive electrode active material layer, and a positive electrode sheet for an all-solid-state secondary battery is formed.
  • the release film is peeled off from the negative electrode sheet for the all-solid-state secondary battery, and the positive electrode sheet for the all-solid-state secondary battery is in contact with the active material layer on the solid electrolyte layer having the release film.
  • Laminate as follows. You may pressurize under a heating condition as needed. In this way, an all-solid secondary battery can be manufactured.
  • the method for applying the electrode composition is not particularly limited, and can be appropriately selected. Examples thereof include coating (preferably wet coating), spray coating, spin coating coating, dip coating, slit coating, stripe coating, and bar coating coating.
  • the electrode composition may be dried after being applied.
  • the drying temperature is not particularly limited.
  • the lower limit is preferably 30 ° C or higher, more preferably 60 ° C or higher, and still more preferably 80 ° C or higher.
  • the upper limit is preferably 300 ° C. or lower, more preferably 250 ° C. or lower, and further preferably 200 ° C. or lower. By heating in such a temperature range, a dispersion medium can be removed and it can be set as a solid state. Moreover, it is preferable because the temperature is not excessively raised and each member of the all-solid-state secondary battery is not damaged. Thereby, in the all-solid-state secondary battery, excellent overall performance can be exhibited and good binding properties can be obtained.
  • the pressurizing method is a hydraulic cylinder press.
  • the applied pressure is not particularly limited and is generally preferably in the range of 50 to 1500 MPa.
  • the heating temperature is not particularly limited, and is generally in the range of 30 to 300 ° C. It is also possible to press at a temperature higher than the glass transition temperature of the inorganic solid electrolyte.
  • the pressurization may be performed in a state where the coating solvent or the dispersion medium is previously dried, or may be performed in a state where the solvent or the dispersion medium remains.
  • the atmosphere during pressurization is not particularly limited and may be any of the following: air, dry air (dew point -20 ° C. or less), and inert gas (for example, argon gas, helium gas, nitrogen gas).
  • the pressing time may be a high pressure in a short time (for example, within several hours), or a medium pressure may be applied for a long time (1 day or more).
  • a restraint (screw tightening pressure or the like) of the all-solid-state secondary battery can be used.
  • the pressing pressure may be uniform or different with respect to the pressed part such as the sheet surface.
  • the pressing pressure can be changed according to the area and film thickness of the pressed part. Also, the same part can be changed stepwise with different pressures.
  • the press surface may be smooth or roughened.
  • the all-solid-state secondary battery produced as described above is preferably initialized after production or before use.
  • the initialization is not particularly limited, and can be performed, for example, by performing initial charging / discharging in a state where the press pressure is increased, and then releasing the pressure until the general use pressure of the all-solid secondary battery is reached.
  • the all solid state secondary battery of the present invention can be applied to various uses. Although there is no particular limitation on the application mode, for example, when installed in an electronic device, a notebook computer, a pen input personal computer, a mobile personal computer, an electronic book player, a mobile phone, a cordless phone, a pager, a handy terminal, a mobile fax machine, a mobile phone Copy, portable printer, headphone stereo, video movie, LCD TV, handy cleaner, portable CD, minidisc, electric shaver, transceiver, electronic notebook, calculator, portable tape recorder, radio, backup power supply, memory card, etc.
  • Others for consumer use include automobiles (electric cars, etc.), electric vehicles, motors, lighting equipment, toys, game equipment, road conditioners, watches, strobes, cameras, medical equipment (pacemakers, hearing aids, shoulder massagers, etc.) . Furthermore, it can be used for various military use and space use. Moreover, it can also combine with a solar cell.
  • Liquid prepared in a separate container (93.1 g of 40% by weight heptane solution of macromonomer M-1, 222.8 g of methyl acrylate, 120.0 g of acrylic acid, 300.0 g of heptane, azoisobutyronitrile 2 .1 g) was added dropwise over 4 hours. After completion of the dropwise addition, 0.5 g of azoisobutyronitrile was added. Thereafter, the mixture was stirred at 100 ° C. for 2 hours, cooled to room temperature, and filtered to obtain a dispersion of binder A. The solid component concentration was 39.2%.
  • Macromonomer obtained by reacting acrylic acid (manufactured by Wako Pure Chemical Industries, Ltd.) with a polymer polymerized at a ratio of 1: 0.99: 0.01 (molar ratio) with methyl acrylate and glycidyl methacrylate (manufactured by Tokyo Chemical Industry Co., Ltd.) M-1 was obtained.
  • the macromonomer M-1 had an SP value of 9.3 and a number average molecular weight of 11,000.
  • the estimated structural formulas of the polymer and macromonomer M-1 constituting the binder A are shown below.
  • Li 2 S and P 2 S 5 at a molar ratio of Li 2 S: P 2 S 5 75: was 25.
  • 66 zirconia beads having a diameter of 5 mm were introduced into a 45 mL container (manufactured by Fritsch) made of zirconia, the whole mixture of lithium sulfide and phosphorous pentasulfide was introduced, and the container was sealed under an argon atmosphere.
  • a container is set on a planetary ball mill P-7 (trade name) manufactured by Frichtu, and mechanical milling is performed at a temperature of 25 ° C. and a rotation speed of 510 rpm for 20 hours to obtain a yellow powder sulfide-based inorganic solid electrolyte (Li-PS system). Glass, also referred to as “LPS”.) 6.20 g was obtained.
  • Example 1 ⁇ Preparation of solid electrolyte containing sheet> (Preparation of first solid electrolyte composition) Into a 45 mL zirconia container (Fritsch), 180 zirconia beads with a diameter of 5 mm are charged, 2.9 g of LPS, 0.1 g of the dispersion of binder A in terms of solid content, and 12.3 g of toluene as a dispersion medium are charged. did.
  • a container is set on a planetary ball mill P-7 (trade name) manufactured by Frichtu, and mixed for 2 hours at a temperature of 25 ° C. and a rotation speed of 300 rpm to form a first solid electrolyte layer containing LPS having a particle size of 0.7 ⁇ m.
  • a solid electrolyte composition (first solid electrolyte composition) was prepared.
  • Second solid electrolyte composition Solid electrolyte composition for forming the second solid electrolyte layer in the same manner as the preparation of the first solid electrolyte composition, except that 30 zirconia beads, the number of rotations was 100 rpm, and the mixing time was 30 minutes. (Second composition for solid electrolyte) was prepared. The particle size of LPS in the second solid electrolyte composition was 2.0 ⁇ m.
  • a solid electrolyte composition (third solid electrolyte composition) for forming the third solid electrolyte layer was prepared in the same manner as the preparation of the first solid electrolyte composition except that the binder A was changed to the binder B. Prepared.
  • the particle size of LPS in the third solid electrolyte composition was 0.7 ⁇ m.
  • the particle size of the inorganic solid electrolyte in the solid electrolyte composition was measured by the method described in paragraph ⁇ 0142> of JP-A-2015-088486.
  • Each solid electrolyte composition was apply
  • the solid electrolyte composition prepared above was pressed on A1N30-H (trade name, manufactured by UACJ, aluminum support with a thickness of 20 ⁇ m and a width of 200 mm) to form an all-solid secondary battery as described later.
  • the first solid electrolyte composition and the second solid electrolyte composition so that the thickness of the first solid electrolyte layer is 3 ⁇ m, the thickness of the second solid electrolyte layer is 24 ⁇ m, and the thickness of the third solid electrolyte layer is 3 ⁇ m.
  • Example 3 and the third solid electrolyte composition were simultaneously coated with a smart lab coater (manufactured by Techno Smart Co., Ltd.), dried in a dryer at 150 ° C. for 3 minutes, and pressurized at 20 MPa and wound up.
  • a solid electrolyte-containing sheet was prepared.
  • the solid electrolyte containing sheet 10 ⁇ / b> A of Example 1 includes a support 4, a first SE layer 3, a second SE layer 2, and a third SE layer 4.
  • ⁇ Preparation of all-solid secondary battery> 180 pieces of zirconia beads having a diameter of 5 mm are put into a 45 mL container (manufactured by Fritsch) made of zirconia, 2.8 g of the Li—PS glass based synthesized above, and 0.2 g of the dispersion liquid of binder A in terms of solid content. Then, 12.3 g of toluene was added as a dispersion medium. The container was set in a planetary ball mill P-7 (trade name) manufactured by Fricht, and mixed for 2 hours at a temperature of 25 ° C. and a rotation speed of 300 rpm.
  • P-7 trade name
  • NMC LiNi 0.33 Co 0.33 Mn 0.33 O 2
  • acetylene black manufactured by Denka Co., Ltd.
  • composition for positive electrode prepared above is applied on an aluminum foil (positive electrode current collector) with an applicator (trade name: SA-201 Baker-type applicator, manufactured by Tester Sangyo Co., Ltd.) to give a basis weight of 30 mg / cm 2. After heating at 80 ° C. for 1 hour, it was further dried at 110 ° C. for 1 hour. Then, using a heat press machine, it pressurized (20 Mpa, 1 minute), heating (120 degreeC), and produced the positive electrode sheet which has a positive electrode active material layer on a positive electrode electrical power collector.
  • an applicator trade name: SA-201 Baker-type applicator, manufactured by Tester Sangyo Co., Ltd.
  • composition for negative electrode prepared above is applied to a basis weight of 15 mg / cm 2 on an SUS foil (negative electrode current collector) by an applicator (trade name: SA-201 Baker type applicator, manufactured by Tester Sangyo Co., Ltd.). After heating at 80 ° C. for 1 hour, it was further dried at 110 ° C. for 1 hour. Then, using a heat press machine, it pressurized (20 Mpa, 1 minute), heating (120 degreeC), and produced the negative electrode sheet which has a negative electrode active material layer on a negative electrode collector.
  • Example 1 An all-solid secondary battery of Example 1 having the layer configuration shown in FIG. 3 was formed.
  • the solid electrolyte layer of the solid electrolyte-containing sheet obtained above and the negative electrode active material layer of the negative electrode sheet were overlapped (collective transfer) and pressed at 50 MPa for 10 seconds.
  • a member composed of negative electrode current collector 9 / negative electrode active material layer 8 / third SE layer 1 / second SE layer 2 / first SE layer 3 / aluminum support 4 was prepared, and after the aluminum support 4 was peeled off, the diameter became 15 mm ⁇ . Cut out.
  • the positive electrode active material layer 7 of the positive electrode sheet cut to a diameter of 14 mm ⁇ in the 2032 type coin case is stacked so that the first SE layer 3 is in contact with the first SE layer 3, and after pressurizing at 600 MPa, the coin case is caulked, A secondary battery was produced.
  • the configuration of the all-solid-state secondary battery of Example 1 is as follows: negative electrode current collector 9 / negative electrode active material layer 8 / third SE layer 1 / second SE layer 2 / first SE layer 3 / positive electrode active material. Layer 7 / positive electrode current collector 6.
  • Example 2 having the layer configuration shown in FIG. 3 and the solid electrolyte-containing sheet 10A of Example 2 having the layer configuration shown in FIG. 1 and the layer configuration shown in FIG. 100 A of the all solid state secondary battery was produced.
  • Example 3 Each solid electrolyte composition was applied by the wet coating method described above to produce a solid electrolyte-containing sheet 10A of Example 3 shown in FIG. 1, and the solid electrolyte-containing sheet of Example 3 was used.
  • An all-solid secondary battery was produced. Specifically, a first solid electrolyte composition was applied on an aluminum support to form a first solid electrolyte layer (wet state). A second solid electrolyte layer (wet state) was formed on the first solid electrolyte layer. A third solid electrolyte layer was formed on the second solid electrolyte layer.
  • the solid electrolyte containing sheet and the all-solid secondary battery of Example 3 were produced in the same manner as in Example 1 except that the solid electrolyte layers were sequentially laminated.
  • Example 4 Example having the layer configuration shown in FIG. 3 and the solid electrolyte-containing sheet 10A of Example 4 having the layer configuration shown in FIG. 1 in the same manner as Example 1 except that pressurization (20 MPa) was performed after winding. 4 All-solid-state secondary battery 100A was produced.
  • Example 5 (Preparation of the fourth solid electrolyte composition)
  • the solid electrolyte composition for forming the fourth solid electrolyte layer was prepared in the same manner as the preparation of the first solid electrolyte composition except that 120 zirconia beads and the rotation speed were set to 500 rpm. Composition) was prepared.
  • the particle size of LPS in the fourth solid electrolyte composition was 0.2 ⁇ m.
  • a solid electrolyte-containing sheet 10B of Example 5 having the layer configuration shown in FIG. 2 was produced.
  • a solid electrolyte-containing sheet 10B of Example 5 was produced in the same manner as the production of the solid electrolyte-containing sheet of Example 1.
  • the configuration of the solid electrolyte-containing sheet 10B of Example 5 is support 4 / first SE layer 3 / second SE layer 2 / fourth SE layer 5 / third SE layer 4.
  • the all-solid-state secondary battery of Example 5 having the layer configuration shown in FIG. 4 is the same as that of the all-solid-state secondary battery of Example 1 except that the solid electrolyte-containing sheet 10B of Example 5 is used. 100B was produced.
  • the configuration of the all-solid-state secondary battery of Example 5 is as follows: negative electrode current collector 9 / negative electrode active material layer 8 / third SE layer 1 / fourth SE layer 5 (short-circuit suppressing layer) / second SE layer. 2 / first SE layer 3 / positive electrode active material layer 7 / positive electrode current collector 6.
  • the hole pore radius of the short-circuit suppressing layer of the laminate of the present invention in the all-solid secondary battery calculated by the following method was 4 nm.
  • the fourth solid electrolyte composition was made into a dry powder, pressed with a pressure of 600 MPa, which was the same as when forming the battery, sandwiched between SUS plates, molded into a pellet of 600 ⁇ m thickness, and then used with Autopore IV9520 (trade name, manufactured by Micromeritics).
  • Autopore IV9520 trade name, manufactured by Micromeritics.
  • a pore pore distribution having a pore pore radius of 1.8 nm to 100 ⁇ m was obtained, and the pore pore radius was calculated using the Washburn equation.
  • the numerical value calculated by the mercury intrusion method was used.
  • Example 6 The solid electrolyte containing sheet of Example 6 and the all solid state 2 of Example 6 were the same as the solid electrolyte containing sheet of Example 5 and the all solid state secondary battery of Example 5 except that the configuration shown in Table 1 below was adopted. A secondary battery was produced.
  • Example 7 The solid of Example 7 was the same as the solid electrolyte-containing sheet of Example 5 except that the structure was support 4 / first SE layer 3 / fourth SE layer 5 / second SE layer 2 / third SE layer 1. An electrolyte-containing sheet was produced. Moreover, the all-solid-state secondary battery of Example 7 was produced like the all-solid-state secondary battery of Example 5 except having used the solid electrolyte containing sheet
  • Examples 8 to 13 were prepared in the same manner as in Example 1 except that the number of balls and the dispersion time were changed in the preparation of each solid electrolyte composition so that the particle size of the inorganic solid electrolyte shown in Table 1 was obtained. A solid electrolyte-containing sheet and an all-solid secondary battery were produced. [Examples 14 and 15] Except having set it as the structure shown in following Table 1, it carried out similarly to Example 1, and produced the solid electrolyte containing sheet
  • Examples 16 and 17 Implementation was performed except that the number of balls and the dispersion time were changed and / or the thickness of the solid electrolyte layer was changed in the preparation of each solid electrolyte composition so as to have the particle size of the inorganic solid electrolyte shown in Table 1 below.
  • the solid electrolyte-containing sheets and all-solid secondary batteries of Examples 16 and 17 were produced.
  • Example 18 The solid electrolyte containing sheet of Example 18 and the all solid state two of Example 18 were the same as the solid electrolyte containing sheet of Example 5 and the all solid state secondary battery of Example 5 except that the configuration shown in Table 1 below was adopted. A secondary battery was produced.
  • the particle size of the inorganic solid electrolyte was adjusted by the number of balls and the dispersion time in the preparation of the solid electrolyte composition.
  • Example 19 Referring to Example 1 of Japanese Patent Application Laid-Open No. 2017-103146, a polyimide sheet (thickness 40 ⁇ m, average opening size is about 3 mm) having a through hole with an aperture ratio of 88% was prepared. A solid electrolyte-containing sheet and an all-solid secondary battery of Example 19 were produced in the same manner as Example 3 except that this polyimide sheet was used. Specifically, a first solid electrolyte composition was applied on an aluminum support to form a first solid electrolyte layer (wet state). The polyimide sheet was disposed on the first solid electrolyte layer.
  • the through holes were filled to form a second solid electrolyte layer (wet state).
  • a third solid electrolyte layer was formed on the second solid electrolyte layer.
  • Example 20 With reference to Example 1 [Experiment 1] of Japanese Patent Application Laid-Open No. 2007-291367, a polycaprolactone sheet (thickness 50 ⁇ m) having a through hole with an aperture ratio of 80% was produced. A solid electrolyte-containing sheet and an all-solid secondary battery of Example 20 were produced in the same manner as Example 19 except that a polycaprolactone sheet was used instead of the polyimide sheet.
  • Example 21 Referring to Example 5 resin layer forming step of International Publication No. 2017/026118, an acrylic resin sheet (thickness 50 ⁇ m, opening size is about 2 mm on average) having through holes with an opening ratio of 80% was prepared. A solid electrolyte-containing sheet and an all-solid secondary battery of Example 21 were produced in the same manner as in Example 19 except that an acrylic resin sheet was used instead of the polyimide sheet.
  • a nonwoven fabric using fibers was prepared by the electrospinning method as follows.
  • a solution concentration 4% by mass
  • cellulose triacetate trade name L-30, manufactured by Daicel
  • NMP N-methyl-2-pyrrolidone
  • MAX mass ratio
  • electrospinning was performed with NANON-3 (trade name) manufactured by MECC under the conditions of an applied voltage of 30 kV and a flux of 1.0 mL / hr to obtain a fiber.
  • the fibers were accumulated to obtain a nonwoven fabric.
  • the thickness of the nonwoven fabric at this time was impregnated with the solid electrolyte composition shown below, and the amount of accumulation was adjusted so that the thickness became 25 ⁇ m after the formation of the sheet and the battery to obtain a nonwoven fabric with a predetermined thickness.
  • the nonwoven fabric obtained in this manner was impregnated with the second solid electrolyte composition to prepare an inorganic solid electrolyte-impregnated nonwoven fabric (wet state).
  • a solid electrolyte-containing sheet and an all-solid secondary battery of Example 22 were produced in the same manner as Example 3 except that this inorganic solid electrolyte-impregnated nonwoven fabric was used.
  • a first solid electrolyte composition was applied on an aluminum support to form a first solid electrolyte layer (wet state).
  • the inorganic solid electrolyte impregnation nonwoven fabric was arrange
  • a third solid electrolyte layer was formed on the second solid electrolyte layer.
  • the solid electrolyte containing sheet and all-solid secondary battery of Example 22 were produced.
  • the thickness of the second solid electrolyte layer was 25 ⁇ m.
  • Comparative Example 1 A solid electrolyte-containing sheet and an all-solid secondary battery of Comparative Example 1 were produced in the same manner as Example 1 except that the configuration shown in Table 1 below was adopted.
  • Comparative Examples 3 to 9 Except for the configuration shown in Table 1 below, the solid electrolyte-containing sheets and all-solid secondary batteries of Comparative Examples 3 to 9 were produced in the same manner as in Example 1. In addition, since Comparative Example 3 did not contain a binder, it could not be formed into a sheet.
  • Example 101 and Comparative Example 101 A solid electrolyte-containing sheet and an all-solid secondary battery of Example 101 and Comparative Example 101 were produced in the same manner as Example 1 except that the configuration shown in Table 2 below was adopted.
  • Comparative Example 102 A solid electrolyte-containing sheet and an all-solid secondary battery of Comparative Example 102 were produced in the same manner as Comparative Example 2 except that the configuration shown in Table 2 below was adopted.
  • Comparative Examples 103 and 104 A solid electrolyte-containing sheet and an all-solid secondary battery of Comparative Examples 103 and 104 were produced in the same manner as in Example 1 except that the configuration shown in Table 2 below was adopted.
  • (I) Average particle diameter The calculation method of the average particle diameter of the inorganic solid electrolyte particle and binder contained in a solid electrolyte layer is shown below.
  • the all-solid secondary battery manufactured above was disassembled, and a cross-section was performed using an ion milling device (trade name “IM4000PLUS”, manufactured by Hitachi High-Technologies Corporation) under the condition of an acceleration voltage of 3 kV.
  • 10 images taken with a scanning electron microscope (SEM) at a magnification of about 400 to 500 particles per screen were binarized using ImageJ (National Institutes of Health NIH software), and the calculated area The area-converted diameter obtained from the above was defined as the average particle diameter.
  • the all-solid-state secondary battery was measured with a charge / discharge evaluation apparatus “TOSCAT-3000” (trade name) manufactured by Toyo System.
  • the all solid state secondary battery was charged at a current value of 0.2 mA until the battery voltage reached 4.2 V, and then discharged at a current value of 2.0 mA until the battery voltage reached 3.0 V.
  • the battery voltage 10 seconds after the start of discharge was read according to the following criteria to evaluate the resistance.
  • Evaluation standard 1 is a standard for evaluation in Table 1
  • evaluation standard 2 is a standard for evaluation in Table 2.
  • AA, A, B, and C pass the test.
  • in the battery performance evaluation in Tables 1 and 2 means that the battery performance evaluation could not be performed because the strength was weak and the battery could not be formed.
  • Layer position B means that a fourth SE layer is provided between the first SE layer and the second SE layer.
  • Layer position C means that a fourth SE layer is provided between the second SE layer and the third SE layer.
  • Solid electrolyte layer (3rd SE layer, 3rd solid electrolyte layer) 2 Solid electrolyte layer (second SE layer, second solid electrolyte layer) 3 Solid electrolyte layer (first SE layer, first solid electrolyte layer) 4 Release film (support) 5 Solid electrolyte layer (Short-circuit suppression layer, 4th SE layer) 6 positive electrode current collector 7 positive electrode active material layer 8 negative electrode active material layer 9 negative electrode current collector 11 working part 10A, 10B solid electrolyte containing sheet (transfer sheet) 100A, 100B all solid state secondary battery

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

膜強度に優れ、構成部材として用いることにより、優れた電池電圧の全固体二次電池を実現できる、3層以上の固体電解質層の積層体を有する固体電解質含有シートを提供する。上記固体電解質層は、無機固体電解質とバインダとを含有し、上記固体電解質層のうち、上記積層体の両表面側に配置された2つの固体電解質層が含有する無機固体電解質の平均粒子径が0.3~0.9μmであり、上記積層体の両表面側に配置された2つの固体電解質層の間に配置された固体電解質層のうち、少なくとも1層の固体電解質層が含有する無機固体電解質の平均粒子径が1~5μmであり、上記少なくとも1層の固体電解質層が含有するバインダが粒子状である。

Description

固体電解質含有シート、全固体二次電池用電極シート、全固体二次電池、電子機器及び電気自動車、並びに、これらの製造方法
 本発明は、固体電解質含有シート、全固体二次電池用電極シート、全固体二次電池、電子機器及び電気自動車、並びに、これらの製造方法に関する。
 リチウムイオン二次電池は、負極と、正極と、負極及び正極の間に挟まれた電解質とを有し、両極間にリチウムイオンを往復移動させることにより充放電を可能とした蓄電池である。リチウムイオン二次電池には、従来、電解質として有機電解液が用いられてきた。しかし、有機電解液は液漏れを生じやすく、また、過充電又は過放電により電池内部で短絡が生じ発火するおそれもあり、安全性と信頼性の更なる向上が求められている。
 このような状況下、有機電解液に代えて、無機固体電解質を用いた全固体二次電池が注目されている。全固体二次電池は負極、電解質及び正極の全てが固体からなり、有機電解液を用いた電池の課題とされる安全性ないし信頼性を大きく改善することができ、また長寿命化も可能になるとされる。更に、全固体二次電池は、電極と電解質を直接並べて直列に配した積層構造とすることができる。そのため、有機電解液を用いた二次電池に比べて高エネルギー密度化が可能となり、各種電子機器、電気自動車又は大型蓄電池等への応用が期待されている。
 このような全固体二次電池の実用化に向けて、全固体二次電池及び全固体二次電池を構成する部材の検討が盛んに進められている。
 例えば、特許文献1には、箔上に配置された、バインダを含有する1層の固体電解質層の上に電極材を積層し、プレスすることにより、電極層を形成し、箔を除去することを含む全固体二次電池の製造方法が記載されている。この製造方法により得られる全固体二次電池は高出力であるとされる。特許文献2には、2つ又は3つの固体電解質層を有する全固体二次電池の製造方法が記載されている。この製造方法により得られる全固体二次電池は、短絡が抑制され、内部抵抗値が低下しているとされる。特許文献3には、極材層の上に厚さ10nm~1μmの薄膜層と厚さ1~500μmの固体電解質層をこの順に積層してなる全固体二次電池用部材であって、この薄膜層が固体電解質層と同一の材料、極材層と同一の材料又はこれらの混合物からなる全固体二次電池用部材が記載されている。この部材は、極材層と固体電解質層の界面抵抗が低く、放電電流密度が良好とされる。
特許第5686191号公報 特開2017-10816号公報 特開2008-135287号公報
 全固体二次電池は、電極(負極及び正極)を構成する電極活物質層、及び固体電解質層が、活物質、無機固体電解質等の固体粒子で形成されている。この固体電解質層が含有する無機固体電解質の平均粒子径は、電極活物質層表面の活物質との接触を考慮すると小さい方が固体電解質層と電極活物質層間のイオン伝導性に優れる。一方、固体電解質層が含有する無機固体電解質の平均粒子径は、固体電解質層自体のイオン伝導性を向上させるためには大きい方がよい。
 また、この固体電解質層は、ロール状に巻き取られた際の摩擦、大きい曲率の巻き取り、輸送時の衝撃、正極負極と積層する際の取扱時にかかる負荷などに耐えることが必要である。そのため、膜強度の向上が望まれている。
 特許文献1記載の製造方法により得られる全固体二次電池は、固体電解質層が薄膜化された1層からなる。この固体電解質層のイオン伝導性を向上させるため、無機固体電解質の平均粒子径を大きくすると、固体電解質層と電極活物質層との接触面積の少なさから界面における抵抗が大きくなる。また、固体電解質層と電極活物質層との接触面積を増やすため、固体電解質層が含有する無機固体電解質の平均粒子径を小さくすると、層内の粒子数が多くなりすぎ、固体電解質層自体の抵抗が大きくなる。
 特許文献2記載の製造方法によれば、電極活物質層上に形成された固体電解質層と、別に設けられた固体電解質層とを積層した後にプレスするため、固体電解質層間に空隙が存在する。結果、特許文献2記載の製造方法により得られる全固体二次電池が有する2つ又は3つの固体電解質層からなる積層体はイオン伝導性が低く、抵抗が高くなる。
 特許文献3に記載の全固体二次電池用部材が有する薄膜層と固体電解質層との積層体は、バインダを含有しないため、上記積層体を膜と見立てた場合に、膜強度が低い。
 そこで本発明は、膜強度に優れる固体電解質含有シートであって、構成部材として用いることにより、優れた電池電圧の全固体二次電池を実現することができる、3層以上の固体電解質層の積層体を有する固体電解質含有シートを提供することを課題とする。また、本発明は、上記積層体を有する全固体二次電池用電極シート、及び、この全固体二次電池用電極シートを有する全固体二次電池、並びに、上記全固体二次電池を具備する電子機器及び電気自動車を提供することを課題とする。また、本発明は、上記固体電解質含有シート、上記全固体二次電池用電極シート、上記全固体二次電池、上記電子機器及び上記電気自動車の製造方法を提供することを課題とする。
 本発明者らは上記課題に鑑み鋭意検討を重ねた。その結果、無機固体電解質とバインダとを含む3層以上の固体電解質層からなる積層体であって、この積層体の両表面側に配置された2つの固体電解質層が含む無機固体電解質の平均粒子径と、この2つの固体電解質層の間に配置された固体電解質層が含む無機固体電解質の平均粒子径とをそれぞれ特定の範囲にし、上記積層体の両表面側に配置された2つの固体電解質層の間に配置された固体電解質層が含むバインダを粒子状とすることにより、上記課題が解決できることを見出した。本発明はこれらの知見に基づきさらに検討を重ね、完成されるに至ったものである。
 すなわち、上記の課題は以下の手段により解決された。
<1>
 3層以上の固体電解質層の積層体を有する固体電解質含有シートであって、
 上記固体電解質層は無機固体電解質とバインダとを含有し、
 上記3層以上の固体電解質層のうちの、上記積層体の両表面側に配置された2つの固体電解質層が含有する無機固体電解質が平均粒子径0.3~0.9μmの粒子であり、
 上記積層体の両表面側に配置された2つの固体電解質層の間に配置された固体電解質層のうち、少なくとも1層の固体電解質層が含有する無機固体電解質が平均粒子径1~5μmの粒子であり、
前記少なくとも1層の固体電解質層が含有するバインダが粒子状である、固体電解質含有シート。
<2>
 上記積層体の両表面側に配置された2つの固体電解質層が含有するバインダのそれぞれが互いに異なる、<1>に記載の固体電解質含有シート。
<3>
 上記積層体の両表面側に配置された2つの固体電解質層が含有するバインダが粒子状である、<1>又は<2>に記載の固体電解質含有シート。
<4>
 上記積層体が有する全ての固体電解質層に含まれるバインダが粒子状である、<1>~<3>のいずれか1つに記載の固体電解質含有シート。
<5>
 上記積層体が有する全ての固体電解質層に含まれる無機固体電解質が硫化物系無機固体電解質である、<1>~<4>のいずれか1つに記載の固体電解質含有シート。
<6>
 4層以上の固体電解質層の積層体を有する、<1>~<5>のいずれか1つに記載の固体電解質含有シートであって、
 上記積層体の両表面側に配置された2つの固体電解質層の間に配置された固体電解質層のうちの1層が短絡抑制層であり、上記短絡抑制層の水銀圧入法で測定される空孔細孔半径が5nm未満であり、上記短絡抑制層の厚さが4μm以下である、固体電解質含有シート。
<7>
 上記短絡抑制層が、上記積層体の両表面側に配置された2つの固体電解質層のうちの一方に接する、<6>に記載の固体電解質含有シート。
<8>
 転写用である、<1>~<7>のいずれか1つに記載の固体電解質含有シート。
<9>
 <1>~<8>のいずれか1つに記載の固体電解質含有シートが有する上記積層体と、上記積層体に隣接する電極活物質層とを有する全固体二次電池用電極シート。
<10>
 <9>に記載の全固体二次電池用電極シートを有する全固体二次電池。
<11>
 <10>に記載の全固体二次電池を有する電子機器。
<12>
 <10>に記載の全固体二次電池を有する電気自動車。
<13>
 3層以上の固体電解質層の積層体を有する固体電解質含有シートの製造方法であって、
 平均粒子径0.3~0.9μmの無機固体電解質とバインダとを含む固体電解質組成物を塗布して固体電解質層を形成する工程(1)と、
 平均粒子径1~5μmの無機固体電解質と粒子状バインダとを含む固体電解質組成物を塗布して固体電解質層を形成する工程(2)と、
 平均粒子径0.3~0.9μmの無機固体電解質とバインダとを含む固体電解質組成物を塗布して固体電解質層を形成する工程(3)と、 乾燥する工程と、を含み、
 上記工程(2)により形成される固体電解質層が、上記工程(1)により形成される固体電解質層と、上記工程(3)により形成される固体電解質層の間にある、固体電解質含有シートの製造方法。
<14>
 上記工程(1)における固体電解質組成物が含むバインダと、上記工程(3)における固体電解質組成物が含むバインダとが、互いに異なる、<13>に記載の固体電解質含有シートの製造方法。
<15>
 上記3層以上の固体電解質層を湿潤状態で積層し、積層した上記3層以上の固体電解質層を乾燥する工程、をさらに含む、<13>又は<14>に記載の固体電解質含有シートの製造方法。
<16>
 乾燥した上記3層以上の固体電解質層を加圧する工程、をさらに含む、<13>~<15>のいずれか1つに記載の固体電解質含有シートの製造方法。
<17>
 加圧した前記3層以上の固体電解質層をロールに巻き取る工程、をさらに含む、<16>に記載の固体電解質含有シートの製造方法。
<18>
 4層以上の固体電解質層の積層体を有する、<13>~<17>のいずれか1つに記載の固体電解質含有シートの製造方法であって、
 上記工程(1)により形成される固体電解質層と、上記工程(3)により形成される固体電解質層との間に、水銀圧入法で測定される空孔細孔半径が5nm未満であり、厚さが4μm以下である短絡抑制層を、短絡抑制層を形成するための固体電解質組成物を塗布して形成する工程(4)、をさらに含む、固体電解質含有シートの製造方法。
<19>
 上記短絡抑制層が、上記積層体の両表面に配置された固体電解質層のうちの一方に接する、<18>に記載の固体電解質含有シートの製造方法。
<20>
 <13>~<19>のいずれか1つに記載の固体電解質含有シートの製造方法により得られた固体電解質含有シートが有する上記積層体を、電極活物質層上に転写する工程を含む全固体二次電池用電極シートの製造方法。
<21>
 <20>に記載の全固体二次電池用電極シートの製造方法を経る、全固体二次電池の製造方法。
<22>
 <21>に記載の全固体二次電池の製造方法を経る電子機器の製造方法。
<23>
 <21>に記載の全固体二次電池の製造方法を経る電気自動車の製造方法。
 本発明の固体電解質含有シートは、膜強度に優れ、この固体電解質含有シートが有する積層体を構成部材として用いることにより、優れた電池電圧の全固体二次電池を実現することができる。本発明によれば、上記積層体を有する全固体二次電池用電極シート、この全固体二次電池用電極シートを有する全固体二次電池、並びに、この全固体二次電池を具備する電子機器及び電気自動車を提供することができる。
 本発明の固体電解質含有シート、全固体二次電池用電極シート、全固体二次電池、電子機器及び電気自動車の製造方法によれば、上述した本発明の固体電解質含有シート、全固体二次電池用電極シート、全固体二次電池、電子機器及び電気自動車を得ることができる。
図1は本発明の好ましい実施形態に係る固体電解質含有シート(転写シート)を模式化して示す縦断面図である。 図2は本発明の好ましい実施形態に係る別の固体電解質含有シート(転写シート)を模式化して示す縦断面図である。 図3は本発明の好ましい実施形態に係る全固体二次電池を模式化して示す縦断面図である。 図4は本発明の好ましい実施形態に係る別の全固体二次電池を模式化して示す縦断面図である。
 本発明において、固体電解質層は、通常、活物質を含有しないが、本発明の効果を損なわない範囲及び活物質層として機能しない範囲であれば、活物質を含有してもよい。
 本発明の説明において、「積層体の両表面側に配置された2つの固体電解質層が含有するバインダのそれぞれが互いに異なる」とは、上記2つの固体電解質層のうちの一方の固体電解質層に含まれるバインダと、もう一方の固体電解質層に含まれるバインダとが異なることを意味し、例えば、上記2つの固体電解質層のうちの一方の固体電解質層が正極活物質層に対する密着性の高いバインダを含有し、もう一方の固体電解質層が負極活物質層に対する密着性の高いバインダを含有することを意味する。
 本発明の説明において、3層以上の固体電解質層の積層体を構成する、互いに接する固体電解質層の組成は互いに異なる。すなわち、同じ組成を有する複数の固体電解質層が積層されている場合、複数の固体電解質層を全体として1層の固体電解質層とする。
 本発明の説明において、「転写」とは、離型フィルム(支持体)上に形成された3層以上の固体電解質層からなる積層体の、離型フィルム(支持体)と反対に配置された固体電解質層と、電極活物質層とが接するように、固体電解質含有シートと電極活物質層とを重ね合わせることを意味する。したがって、本発明の固体電解質含有シートは、積層体を転写するためのシート(積層体転写用シート)ということもできる。
 本発明の説明において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
[固体電解質含有シート]
 本発明の固体電解質含有シートは、3層以上の固体電解質層の積層体を有する。この積層体が有する固体電解質層は、全固体二次電池の固体電解質層を構成するために用いられる。
 上記固体電解質層は無機固体電解質とバインダとを含有し、上記3層以上の固体電解質層のうちの、上記積層体の両表面側に配置された2つの固体電解質層(おもて面側の最外の固体電解質層と裏面側の最外の固体電解質層)が含有する無機固体電解質が平均粒子径(以下、単に「粒径」ともいう。)0.3~0.9μmの粒子であり、上記積層体の両表面側に配置された2つの固体電解質層の間に配置された固体電解質層のうちの少なくとも1層が含有するバインダが粒子状であり、粒子状バインダを含む固体電解質層が含有する無機固体電解質が平均粒子径1~5μmの粒子である。
 以下、上記積層体を「本発明の積層体」と称することがある。
<積層体>
 本発明の積層体は3層以上の固体電解質層からなる。
 本発明の積層体において、固体電解質層の数の上限は特に制限されないが、10以下が好ましく、7以下がより好ましく、5以下がさらに好ましく、4以下が特に好ましい。
 本発明の積層体が有する固体電解質層のうちの1層が短絡抑制層(デンドライト抑制層)であることが好ましい。この短絡抑制層は、水銀圧入法で測定される空孔細孔半径が5nm未満であり、3nm未満が好ましい。下限に特に制限はないが、1nm以上が実際的である。全固体二次電池に本発明の積層体が組み込まれた状態で、短絡抑制層の空孔細孔半径が上記範囲にあることが好ましい。また、短絡抑制層の厚さは4μm以下であり、2μm以下が好ましい。下限に特に制限はないが、0.1μm以上が実際的である。
 本発明の積層体において、上記短絡抑制層の位置は特に制限されないが、積層体の両表面側に配置された層でないことが好ましい。すなわち、本発明の積層体が、短絡抑制層としての固体電解質層を有する場合、4層以上の固体電解質層を有し、短絡抑制層が、積層体の両表面側に配置された2つの固体電解質層に、直接又は他の固体電解質層を介して、挟まれることが好ましい。
 以下の、本発明の固体電解質含有シートの説明において、短絡抑制層は、積層体の両表面側に配置された2つの固体電解質層に、直接又は他の固体電解質層を介して、挟まれるものとする。ここで、「積層体の両表面側に配置された2つの固体電解質層」とは、積層体の表面層と裏面層を意味し、図1の転写シート10Aを例にとると、固体電解質層1と固体電解質層3が、この2つの層である。
 積層体の両表面側に配置された2つの固体電解質層のうちの1つを「第1固体電解質層(第1SE層)」と称し、もう1つの固体電解質層を「第3固体電解質層(第3SE層)」と称することがある。また、第1SE層と第3SE層の間に配置され、粒子状バインダと平均粒子径1~5μmの無機固体電解質粒子を含む固体電解質層を「第2固体電解質層(第2SE層)」と称することがある。また、短絡抑制層を「第4固体電解質層(第4SE層)」と称することがある。また、本発明の積層体が有する、上記第1~第4SE層以外の固体電解質層を「他の固体電解質層(他のSE層)」と称することがある。
 以下、本発明の積層体の好ましい形態を説明する。
(3層の固体電解質層を有する積層体)
 本発明の積層体が3層の固体電解質層からなる場合、本発明の積層体は、第1~第3SE層からなる。具体的には、バインダと粒径0.3~0.9μmの無機固体電解質粒子とを含有する、積層体の両表面側に配置された2つの固体電解質層(第1SE層と第3SE層)と、粒子状バインダと粒径1~5μmの無機固体電解質粒子を含む固体電解質層(第2SE層)からなる。
(4層の固体電解質層を有する積層体)
 本発明の積層体が4層の固体電解質層からなる場合、本発明の積層体は、第1~第4SE層からなる態様が好ましい。具体的には、バインダと粒径0.3~0.9μmの無機固体電解質粒子とを含有する、積層体の両表面側に配置された2つの固体電解質層(第1SE層と第3SE層)と、粒子状バインダと粒径1~5μmの無機固体電解質粒子を含む固体電解質層(第2SE層)と、短絡抑制層(第4SE層)からなる。第2SE層と第4SE層との位置関係は特に制限されない。また、本発明においては、短絡抑制層に代えて、他のSE層を有する態様も包含される。
(5層以上の固体電解質層を有する積層体)
 本発明の積層体が5層以上の固体電解質層からなる場合、本発明の積層体は、第1~第4SE層と他のSE層からなる態様が好ましい。他のSE層として、全固体二次電池に用いられる通常の固体電解質層を、適宜厚みを調整して用いることができる。本発明の積層体において、第4SE層は、第1又は第3SE層と接することが好ましい。全固体二次電池において、効率的に短絡を抑制するためである。本発明においては、短絡抑制層を複数有する態様、更には短絡抑制層を備えず、他のSE層を3層有する態様も包含される。
[転写シート]
 本発明の固体電解質含有シートは、上記積層体からなるシートであってもよく、離型フィルム(支持体)を有する転写シートであってもよい。以下、転写シートである、本発明の固体電解質含有シートを、単に「転写シート」と称することもある。本発明の転写シートは、電極活物質層上に本発明の積層体を転写するために好適である。
 本発明の転写シートの好ましい形態として、図1及び2に示す転写シートが挙げられる。
 図1に示す本発明の転写シート10Aは、離型フィルム4、固体電解質層3(第1SE層)、固体電解質層2(第2SE層)及び固体電解質層1(第3SE層)をこの順に有する。一方、図2に示す本発明の転写シート10Bは、固体電解質層1(第3SE層)と固体電解質層2(第2SE層)の間に固体電解質層5(短絡抑制層、第4SE層)を有すること以外は、図1に示す転写シートと同じである。
 本発明の転写シートに用いられる離型フィルムは特に制限されないが、例えば、アルミニウムフィルム、ステンレス鋼(SUS)フィルム、銅フィルム等の金属フィルム、ポリエチレンテレフタレートフィルム、ポリエチレンナフタレートフィルム、ポリイミドフィルム、ポリテトラフルオロエチレン(PTFE)フィルム等の樹脂フィルムが挙げられる。また、離型フィルムと固体電解質層との離型性を向上させるため、固体電解質層と離型フィルムとの間にシリコーン樹脂層、フッ素樹脂層、オレフィン樹脂層などの離型性調整層を有してもよい。離型性調整層付の離型フィルムの具体例として、東レフイルム加工(株)社製のセラピール、パナック(株)製のパナピール、ユニチカ(株)社製のユニピールを挙げることができる。
 本発明の固体電解質含有シートは、保護フィルムを有してもよい。保護フィルムとして、上記離型フィルムで挙げたフィルムを用いることができる。積層体の両表面側に配置された2つの固体電解質層上に設けられるフィルムのうち、転写前に剥離する必要があるフィルムが保護フィルムであり、電極活物質層上に本発明の積層体を積層した後に剥離するフィルムが離型フィルムである。
 なお、本発明の固体電解質含有シートは、水分、異物の侵入防止、転写後の積層時の位置ずれなどに起因する正極負極の接触による短絡を防ぐために、本発明の積層体の端面を保護する膜を有してもよい。
[全固体二次電池用電極シート]
 本発明の全固体二次電池用電極シートは、本発明の積層体と電極活物質層とを有する。
 本発明の全固体二次電池用電極シートとして、例えば、集電体上に電極活物質層を有し、この電極活物質層上に本発明の積層体を有するシート、及び、集電体上に導電体層を有し、この導電体層上に電極活物質層を有し、この電極活物質層上に本発明の積層体を有するシートが挙げられる。
 全固体二次電池用電極シートにおいて、積層体を構成する各固体電解質層は後述の分散媒を含んでいてもよい。
 この導電体層としては、例えば、特開2013-23654号公報及び特開2013-229187号公報に記載の導電体層(カーボンコート箔)が挙げられる。
 また、上記電極活物質層及び集電体は、通常の全固体二次電池に使用される電極活物質層及び集電体を用いることができる。例えば、特開2015-088486号公報に記載の電極活物質層及び集電体を用いることができる。
 なお、本発明の説明において、電極活物質層(正極活物質層(以下、正極層とも称す。)と負極活物質層(以下、負極層とも称す。))を活物質層と称することがある。
[全固体二次電池]
 本発明の全固体二次電池は、集電体と、電極活物質層と、本発明の積層体とを有する。以下に、図3及び4を参照して、本発明の好ましい全固体二次電池について説明するが、本発明はこれに限定されない。
 図3は、本発明の好ましい実施形態に係る全固体二次電池100A(リチウムイオン二次電池)を模式化して示す断面図である。本実施形態の全固体二次電池100Aは、図1に示す固体電解質含有シートの積層体を有するものであり、負極側からみて、負極集電体9、負極活物質層8、固体電解質層1(第3SE層)、固体電解質層2(第2SE層)、固体電解質層3(第1SE層)、正極活物質層7、正極集電体6を、この順に有する。各層はそれぞれ接触しており、積層した構造をとっている。このような構造を採用することで、充電時には、負極側に電子(e)が供給され、そこにリチウムイオン(Li)が蓄積される。一方、放電時には、負極に蓄積されたリチウムイオン(Li)が正極側に戻され、作動部位11に電子が供給される。図示した例では、作動部位11に電球を採用しており、放電によりこれが点灯するようにされている。図3において図示していないが、負極集電体9と負極活物質層8との間及び/又は正極活物質層7と正極集電体6との間にそれぞれ導電体層を有してもよい。
 図4は、本発明の好ましい実施形態に係る別の全固体二次電池(リチウムイオン二次電池)を模式化して示す断面図である。固体電解質層1(第3SE層)と固体電解質層2(第2SE層)の間に固体電解質層5(短絡抑制層、第4SE層)を有すること以外は、図3に示す全固体二次電池と同じである。
 固体電解質層1(第3SE層)、固体電解質層2(第2SE層)及び固体電解質層3(第1SE層)の層厚は特に制限されないが、第1SE層と第3SE層の層厚は1~5μmが好ましく、2~4μmがより好ましい。一方、第2SE層の層厚は3~50μmが好ましく、5~30μmがより好ましい。
 負極活物質層8、正極活物質層7の層厚は特に限定されない。一般的な電池の寸法を考慮すると、10~1,000μmが好ましく、20μm以上500μm未満がより好ましい。
 本発明において、固体電解質層と電極活物質層の間、電極活物質層と集電体の間、及び、集電体の外側には、機能性の層や部材等を適宜介在ないし配設してもよい。また、電極活物質層は単層で構成されていても、複層で構成されていてもよい。
〔筐体〕
 上記の各層を配置して全固体二次電池の基本構造を作製することができる。用途によってはこのまま全固体二次電池として使用してもよいが、乾電池の形態とするためにはさらに適当な筐体に封入して用いる。筐体は、金属性のものであっても、樹脂(プラスチック)製のものであってもよい。金属性のものを用いる場合には、例えば、アルミニウム合金及びステンレス鋼製のものを挙げることができる。金属性の筐体は、正極側の筐体と負極側の筐体に分けて、それぞれ正極集電体及び負極集電体と電気的に接続させることが好ましい。正極側の筐体と負極側の筐体とは、短絡防止用のガスケットを介して接合され、一体化されることが好ましい。
[固体電解質層が含有する成分]
<無機固体電解質>
 本発明において、無機固体電解質とは、無機の固体電解質のことであり、固体電解質とは、その内部においてイオンを移動させることができる固体状の電解質のことである。主たるイオン伝導性材料として有機物を含むものではないことから、有機固体電解質(ポリエチレンオキシド(PEO)などに代表される高分子電解質、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)などに代表される有機電解質塩)とは明確に区別される。また、無機固体電解質は定常状態では固体であるため、通常カチオン及びアニオンに解離又は遊離していない。この点で、電解液、又は、ポリマー中でカチオン及びアニオンが解離若しくは遊離している無機電解質塩(LiPF、LiBF、LiFSI、LiClなど)とも明確に区別される。無機固体電解質は周期律表第1族若しくは第2族に属する金属のイオンの伝導性を有するものであれば特に制限されず電子伝導性を有さないものが一般的である。
 本発明において、無機固体電解質は、周期律表第1族若しくは第2族に属する金属のイオン伝導性を有する。無機固体電解質は、この種の製品に適用される固体電解質材料を適宜選定して用いることができる。無機固体電解質は、(i)硫化物系無機固体電解質と、(ii)酸化物系無機固体電解質が代表例として挙げられ、高いイオン伝導度と粒子間界面接合の容易さの点で、硫化物系無機固体電解質が好ましい。
 本発明の全固体二次電池が全固体リチウムイオン二次電池である場合、無機固体電解質はリチウムイオンのイオン伝導度を有することが好ましい。
(i)硫化物系無機固体電解質
 硫化物系無機固体電解質は、硫黄原子(S)を含有し、かつ、周期律表第1族若しくは第2族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有する化合物が好ましい。硫化物系無機固体電解質は、元素として少なくともLi、S及びPを含有し、リチウムイオン伝導性を有しているものが好ましいが、目的又は場合に応じて、Li、S及びP以外の他の元素を含んでもよい。
 硫化物系無機固体電解質としては、例えば、下記式(1)で示される組成を満たすリチウムイオン伝導性硫化物系無機固体電解質が挙げられる。
 
   La1b1c1d1e1 式(I)
 
 式中、LはLi、Na及びKから選択される元素を示し、Liが好ましい。Mは、B、Zn、Sn、Si、Cu、Ga、Sb、Al及びGeから選択される元素を示す。Aは、I、Br、Cl及びFから選択される元素を示す。a1~e1は各元素の組成比を示し、a1:b1:c1:d1:e1は1~12:0~5:1:2~12:0~10を満たす。a1は1~9が好ましく、1.5~7.5がより好ましい。b1は0~3が好ましく、0~1がより好ましい。d1は2.5~10が好ましく、3.0~8.5がより好ましい。e1は0~5が好ましく、0~3がより好ましい。
 各元素の組成比は、下記のように、硫化物系無機固体電解質を製造する際の原料化合物の配合比を調整することにより制御できる。
 硫化物系無機固体電解質は、非結晶(ガラス)であっても結晶化(ガラスセラミックス化)していてもよく、一部のみが結晶化していてもよい。例えば、Li、P及びSを含有するLi-P-S系ガラス、又はLi、P及びSを含有するLi-P-S系ガラスセラミックスを用いることができる。
 硫化物系無機固体電解質は、例えば硫化リチウム(LiS)、硫化リン(例えば五硫化二燐(P))、単体燐、単体硫黄、硫化ナトリウム、硫化水素、ハロゲン化リチウム(例えばLiI、LiBr、LiCl)及び上記Mで表される元素の硫化物(例えばSiS、SnS、GeS)の中の少なくとも2つ以上の原料の反応により製造することができる。
 Li-P-S系ガラス及びLi-P-S系ガラスセラミックスにおける、LiSとPとの比率は、LiS:Pのモル比で、好ましくは60:40~90:10、より好ましくは68:32~78:22である。LiSとPとの比率をこの範囲にすることにより、リチウムイオン伝導度を高いものとすることができる。具体的には、リチウムイオン伝導度を好ましくは1×10-4S/cm以上、より好ましくは1×10-3S/cm以上とすることができる。上限は特にないが、1×10-1S/cm以下であることが実際的である。
 具体的な硫化物系無機固体電解質の例として、原料の組み合わせ例を下記に示す。例えば、LiS-P、LiS-P-LiCl、LiS-P-HS、LiS-P-HS-LiCl、LiS-LiI-P、LiS-LiI-LiO-P、LiS-LiBr-P、LiS-LiO-P、LiS-LiPO-P、LiS-P-P、LiS-P-SiS、LiS-P-SiS-LiCl、LiS-P-SnS、LiS-P-Al、LiS-GeS、LiS-GeS-ZnS、LiS-Ga、LiS-GeS-Ga、LiS-GeS-P、LiS-GeS-Sb、LiS-GeS-Al、LiS-SiS、LiS-Al、LiS-SiS-Al、LiS-SiS-P、LiS-SiS-P-LiI、LiS-SiS-LiI、LiS-SiS-LiSiO、LiS-SiS-LiPO、Li10GeP12などが挙げられる。ただし、各原料の混合比は問わない。このような原料組成物を用いて硫化物系無機固体電解質材料を合成する方法としては、例えば非晶質化法を挙げることができる。非晶質化法としては、例えば、メカニカルミリング法、溶液法及び溶融急冷法を挙げられる。常温での処理が可能になり、製造工程の簡略化を図ることができるからである。
(ii)酸化物系無機固体電解質
 酸化物系無機固体電解質は、酸素原子(O)を含有し、かつ、周期律表第1族若しくは第2族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有する化合物が好ましい。
 具体的な化合物例としては、例えばLixaLayaTiO〔xa=0.3~0.7、ya=0.3~0.7〕(LLT)、LixbLaybZrzbbb mbnb(MbbはAl、Mg、Ca、Sr、V、Nb、Ta、Ti、Ge、In、Snの少なくとも1種以上の元素でありxbは5≦xb≦10を満たし、ybは1≦yb≦4を満たし、zbは1≦zb≦4を満たし、mbは0≦mb≦2を満たし、nbは5≦nb≦20を満たす。)、Lixcyccc zcnc(MccはC、S、Al、Si、Ga、Ge、In、Snの少なくとも1種以上の元素でありxcは0≦xc≦5を満たし、ycは0≦yc≦1を満たし、zcは0≦zc≦1を満たし、ncは0≦nc≦6を満たす。)、Lixd(Al,Ga)yd(Ti,Ge)zdSiadmdnd(ただし、1≦xd≦3、0≦yd≦1、0≦zd≦2、0≦ad≦1、1≦md≦7、3≦nd≦13)、Li(3-2xe)ee xeeeO(xeは0以上0.1以下の数を表し、Meeは2価の金属原子を表す。Deeはハロゲン原子又は2種以上のハロゲン原子の組み合わせを表す。)、LixfSiyfzf(1≦xf≦5、0<yf≦3、1≦zf≦10)、Lixgygzg(1≦xg≦3、0<yg≦2、1≦zg≦10)、LiBO-LiSO、LiO-B-P、LiO-SiO、LiBaLaTa12、LiPO(4-3/2w)(wはw<1)、LISICON(Lithium super ionic conductor)型結晶構造を有するLi3.5Zn0.25GeO、ペロブスカイト型結晶構造を有するLa0.55Li0.35TiO、NASICON(Natrium super ionic conductor)型結晶構造を有するLiTi12、Li1+xh+yh(Al,Ga)xh(Ti,Ge)2-xhSiyh3-yh12(ただし、0≦xh≦1、0≦yh≦1)、ガーネット型結晶構造を有するLiLaZr12(LLZ)等が挙げられる。またLi、P及びOを含むリン化合物も望ましい。例えばリン酸リチウム(LiPO)、リン酸リチウムの酸素の一部を窒素で置換したLiPON、LiPOD(Dは、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zr、Nb、Mo、Ru、Ag、Ta、W、Pt、Au等から選ばれた少なくとも1種)等が挙げられる。また、LiAON(Aは、Si、B、Ge、Al、C、Ga等から選ばれた少なくとも1種)等も好ましく用いることができる。
 本発明の積層体において、第1SE層及び第3SE層が含有する無機固体電解質粒子の粒径の下限は、0.3μm以上である。固体電解質含有シートの膜強度、及び全固体二次電池に組み込んだ時に示す高い電池電圧を両立してより向上させるため、0.4μm以上が好ましく、0.5μm以上がさらに好ましい。一方、粒径の上限は、0.9μm以下である。
 また、本発明の積層体において、第2SE層が含有する無機固体電解質粒子の粒径の下限は、1μm以上であり、1.8μm以上が好ましく、2.0μm以上がさらに好ましい。一方、粒径の上限は、5μm以下である。
 また、本発明の積層体において、第4SE層及び他のSE層が含有する無機固体電解質粒子として、第1SE層又は第2SE層が含有する無機固体電解質粒子を用いることができる。
 本発明の説明において、固体電解質層中の無機固体電解質の粒径は、後述の実施例における、走査型電子顕微鏡を用いた測定方法により得られる値とする。
 無機固体電解質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 無機固体電解質の、各固体電解質層中の含有量は、特に制限されない。全固体二次電池に用いたときの界面抵抗の低減と低減された界面抵抗の維持を考慮したとき、各固体電解質層中の固形成分100質量部中、無機固体電解質が50~99.9質量部であることが好ましく、60~99.5質量部であることがより好ましく、70~99質量部以上であることが特に好ましい。
 本発明において、固形分(固形成分)とは、各固体電解質層を形成するための固体電解質組成物を、1mmHgの気圧下、窒素雰囲気下120℃で6時間乾燥処理したときに、揮発又は蒸発して消失しない成分をいう。典型的には、固体電解質組成物が含有する分散媒以外の成分を指す。
-バインダ-
 本発明の積層体において、第1SE層と第3SE層が含有するバインダは、同種でも異種でもよいが、互いに異なることが好ましい。すなわち、第1SE層及び第3SE層のうちの一方が正極活物質層に対する密着性の高いバインダを含有し、他方が負極活物質層に対する密着性の高いバインダを有することが好ましい。本発明の積層体と電極活物質層とがより強固に結着するからである。
 本発明の積層体において、第1SE層と第3SE層のうちの一方が、負極活物質層に対する密着性の高いバインダを含有し、残りの全固体電解質層が正極活物質層に対する密着性の高いバインダを含有することが好ましい。
 本発明の積層体において、第2SE層以外の固体電解質層が含有するバインダの形状に特に制限はないが、電池電圧をより向上させるため、第1SE層と第3SE層が含有するバインダが粒子状であることが好ましく、本発明の積層体を構成する全ての固体電解質層が含有するバインダが粒子状であることが好ましい。
 図1に示す転写シートを例にとると、固体電解質層1(第3SE層)が負極活物質層に対する密着性の高いバインダを含有し、固体電解質層2(第2SE層)及び固体電解質層3(第1SE層)が正極活物質層に対する密着性の高いバインダ(好ましくはバインダ粒子)を含有する形態が、本発明の転写シートの好ましい形態である。
 図2に示す転写シートを例にとると、固体電解質層1(第3SE層)が負極活物質層に対する密着性の高いバインダを含有し、固体電解質層2(第2SE層)、固体電解質層3(第1SE層)及び固体電解質層5(短絡抑制層、第4SE層)が正極活物質層に対する密着性の高いバインダ(好ましくはバインダ粒子)を含有する形態が、本発明の転写シートの好ましい形態である。
 正極活物質層に対する密着性の高いバインダ粒子として、例えば、特開2015-088486号公報に記載のバインダ粒子を用いることができる。また、負極活物質層に対する密着性の高いバインダ粒子として、国際公開第2017/131093号公報記載のバインダ粒子を用いることができる。
 以下に、正極活物質層に対する密着性の高いバインダ粒子と負極活物質層に対する密着性の高いバインダ粒子の具体的な形態を記載する。
(i)正極活物質層に対する密着性の高いバインダ粒子(バインダ粒子A)
 バインダ粒子Aを構成するポリマーは、数平均分子量1000以上のマクロモノマーAに由来する構成成分が組み込まれている。上記バインダ粒子Aを構成するポリマー中、マクロモノマーA由来のグラフト部分は、主鎖に対し側鎖を構成する。主鎖は特に限定されない。
・モノマー(a)
 バインダ粒子Aを構成するポリマーのマクロモノマーA由来の構成成分以外の構成成分は特に限定されず、通常のポリマー成分を適用することができる。マクロモノマーA由来の構成成分以外の構成成分を導入するためのモノマー(以下、このモノマーを「モノマー(a)」とも称する。)としては、重合性不飽和結合を有するモノマーであることが好ましく、例えば各種のビニル系モノマー及び/又はアクリル系モノマーを適用することができる。本発明においては、中でも、アクリル系モノマーを用いることが好ましい。さらに好ましくは、(メタ)アクリル酸モノマー、(メタ)アクリル酸エステルモノマー、及び(メタ)アクリロニトリルから選ばれるモノマーを用いることが好ましい。重合性基の数は特に限定されないが、1~4個であることが好ましい。
 バインダ粒子Aを構成するポリマーは、下記官能基群(a)のうち少なくとも1つを有していることが好ましい。この官能基群は、主鎖に含まれていても、マクロモノマーA由来の側鎖に含まれていてもよいが、主鎖に含まれることが好ましい。このように、主鎖等に特定の官能基が含まれることで、無機固体電解質、活物質、集電体の表面に存在していると考えられる水素原子、酸素原子、硫黄原子との相互作用が強くなり、結着性が向上し、界面の抵抗が下げられるという作用が期待できる。
官能基群(a)
 カルボニル基、アミノ基、スルホン酸基、リン酸基、ヒドロキシ基、エーテル基、シアノ基、チオール(スルファニル)基
 カルボニル基含有基としてはカルボキシ基、カルボニルオキシ基、アミド基、カルバモイル基等が挙げられ、炭素数1~24が好ましく、1~12がより好ましく、1~6が特に好ましい。
 アミノ基は炭素数0~12が好ましく、0~6がより好ましく、0~2が特に好ましい。
 スルホン酸基はそのエステルや塩でもよい。エステルの場合、炭素数1~24が好ましく、1~12がより好ましく、1~6が特に好ましい。
 リン酸基はそのエステルや塩でもよい。エステルの場合、炭素数1~24が好ましく、1~12がより好ましく、1~6が特に好ましい。
 なお、上記官能基は、置換基として存在しても、連結基として存在していてもよい。例えば、アミノ基は2価のイミノ基又は3価の窒素原子として存在してもよい。
 上記のポリマーをなすビニル系モノマーとしては、下記式(b-1)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000001
 式中、Rは水素原子、ヒドロキシ基、シアノ基、ハロゲン原子、アルキル基(炭素数1~24が好ましく、1~12がより好ましく、1~6が特に好ましい)、アルケニル基(炭素数2~24が好ましく、2~12がより好ましく、2~6が特に好ましい)、アルキニル基(炭素数2~24が好ましく、2~12がより好ましく、2~6が特に好ましい)、又はアリール基(炭素数6~22が好ましく、6~14がより好ましい)を表す。中でも水素原子又はアルキル基が好ましく、水素原子又はメチル基がより好ましい。
 Rは、水素原子、アルキル基(炭素数1~24が好ましく、1~12がより好ましく、1~6が特に好ましい)、アルケニル基(炭素数2~12が好ましく、2~6がより好ましい)、アリール基(炭素数6~22が好ましく、6~14がより好ましい)、アラルキル基(炭素数7~23が好ましく、7~15がより好ましい)、シアノ基、カルボキシ基、ヒドロキシ基、チオール基、スルホン酸基、リン酸基、ホスホン酸基、酸素原子を含有する脂肪族複素環基(炭素数2~12が好ましく、2~6がより好ましい)、又はアミノ基(NR :Rは後記の定義に従い、好ましくは水素原子又は炭素数1~3のアルキル基)である。なかでも、メチル基、エチル基、プロピル基、ブチル基、シアノ基、エテニル基、フェニル基、カルボキシ基、チオール基、スルホン酸基等が好ましい。
 Rはさらに後記置換基Tを有していてもよい。なかでも、カルボキシ基、ハロゲン原子(フッ素原子等)、ヒドロキシ基、アルキル基などが置換していてもよい。
 カルボキシ基、ヒドロキシ基、スルホン酸基、リン酸基、ホスホン酸基は例えば炭素数1~6のアルキル基を伴ってエステル化されていてもよい。
 酸素原子を含有する脂肪族複素環基は、エポキシ基含有基、オキセタン基含有基、テトラヒドロフリル基含有基などが好ましい。
 Lは、任意の連結基であり、後記連結基Lの例が挙げられる。具体的には、炭素数1~6(好ましくは1~3)のアルキレン基、炭素数2~6(好ましくは2~3)のアルケニレン基、炭素数6~24(好ましくは6~10)のアリーレン基、酸素原子、硫黄原子、イミノ基(NR)、カルボニル基、リン酸連結基(-O-P(OH)(O)-O-)、ホスホン酸連結基(-P(OH)(O)-O-)、又はそれらの組合せに係る基等が挙げられる。上記連結基は任意の置換基を有していてもよい。連結原子数、連結原子の数の好ましい範囲も後記と同様である。任意の置換基としては、置換基Tが挙げられ、例えば、アルキル基又はハロゲン原子などが挙げられる。
 nは0又は1である。
 上記のポリマーをなすアクリル系モノマーとしては、上記(b-1)のほか、下記式(b-2)~(b-6)のいずれかで表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000002
 R、nは、上記式(b-1)と同義である。
 Rは、Rと同義である。ただし、その好ましいものとしては、水素原子、アルキル基、アリール基、カルボキシ基、チオール基、リン酸基、ホスホン酸基、酸素原子を含有する脂肪族複素環基、アミノ基(NR )などが挙げられる。
 Lは、任意の連結基であり、Lの例が好ましく、酸素原子、炭素数1~6(好ましくは1~3)のアルキレン基、炭素数2~6(好ましくは2~3)のアルケニレン基、カルボニル基、イミノ基(NR)、又はそれらの組合せに係る基等がより好ましい。
 Lは連結基であり、Lの例が好ましく、炭素数1~6(好ましくは1~3)のアルキレン基がより好ましい。
 Lは、Lと同義である。
 Rは、水素原子、炭素数1~6(好ましくは1~3)のアルキル基、炭素数0~6(好ましくは0~3)のヒドロキシ基含有基、炭素数0~6(好ましくは0~3)のカルボキシ基含有基、又は(メタ)アクリロイルオキシ基である。なお、Rは上記Lの連結基になって、この部分で2量体を構成していてもよい。
 mは1~200の整数を表し、1~100の整数であることが好ましく、1~50の整数であることがより好ましい。
 上記式(b-1)~(b-6)において、アルキル基やアリール基、アルキレン基やアリーレン基など置換基を取ることがある基については、本発明の効果を維持する限りにおいて任意の置換基を有していてもよい。任意の置換基としては、例えば、置換基Tが挙げられ、具体的には、ハロゲン原子、ヒドロキシ基、カルボキシ基、チオール基、アシル基、アシルオキシ基、アルコキシ基、アリールオキシ基、アリーロイル基、アリーロイルオキシ基、アミノ基等の任意の置換基を有していてもよい。
 以下にモノマー(a)の例を挙げるが、本発明がこれにより限定して解釈されるものではない。下記式中のlは1~1,000,000を表す。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
・マクロモノマーA
 マクロモノマーAは、数平均分子量が1,000以上であり、2,000以上であることがより好ましく、3,000以上であることが特に好ましい。上限としては、500,000以下であることが好ましく、100,000以下であることがより好ましく、30,000以下であることが特に好ましい。上記バインダ粒子Aを構成するポリマーが上記の範囲の分子量をもつマクロモノマーA由来の側鎖を有することで、より良好に有機溶剤(分散媒)中に均一に分散でき固体電解質粒子と混合して塗布できるようになる。
 ここで本発明の積層体の作製に用いられる固体電解質組成物の作用について触れると、バインダ粒子Aを構成するポリマーにおける上記マクロモノマーA由来の側鎖は溶剤への分散性を良化する働きを有するものと解される。これにより、バインダ粒子Aが良好に分散されるので、無機固体電解質を局部的あるいは全面的に被覆することなく結着させることができる。その結果、無機固体電解質粒子等の固体粒子間の電気的なつながりを遮断せずに密着させることができるため、固体粒子間の界面抵抗の上昇を抑えられると考えられる。さらに、バインダ粒子Aを構成するポリマーが上記側鎖を有することでバインダ粒子Aが無機固体電解質粒子に付着するだけでなく、その側鎖が絡みつく効果も期待できる。これにより無機固体電解質に係る界面抵抗の抑制と結着性の良化との両立が図られるものと考えられる。さらに、バインダ粒子Aを構成するポリマーは、その分散性の良さから、水中乳化重合などと比較して有機溶剤中に転層させる工程を省略でき、また、沸点が低い溶剤を分散媒として用いることができるようにもなる。なお、マクロモノマーA由来の構成成分の分子量は、バインダ粒子Aを構成するポリマーを合成するときに組み込む重合性化合物(マクロモノマーA)の分子量を測定することで同定することができる。
-分子量の測定-
 本発明においてバインダAを構成するポリマー及びマクロモノマーAの分子量については、特に断らない限り、数平均分子量をいい、ゲルパーミエーションクロマトグラフィー(GPC)によって標準ポリスチレン換算の数平均分子量を計測する。測定法としては、基本として下記条件1又は条件2(優先)の方法により測定した値とする。ただし、ポリマー種によっては適宜適切な溶離液を選定して用いればよい。
(条件1)
  カラム:TOSOH TSKgel Super AWM-H(商品名、東ソー社製)を2本つなげる。
  キャリア:10mMLiBr/N-メチルピロリドン
  測定温度:40℃
  キャリア流量:1.0ml/min
  試料濃度:0.1質量%
  検出器:RI(屈折率)検出器
(条件2)
  カラム:TOSOH TSKgel Super HZM-H、TOSOH TSKgel Super HZ4000、TOSOH TSKgel Super HZ2000(いずれも商品名、東ソー社製)をつないだカラムを用いる。
  キャリア:テトラヒドロフラン
  測定温度:40℃
  キャリア流量:1.0ml/min
  試料濃度:0.1質量%
  検出器:RI(屈折率)検出器
 マクロモノマーAのSP値は10以下であることが好ましく、9.5以下であることがより好ましい。下限値は特にないが、5以上であることが実際的である。
-SP値の定義-
 本明細書においてSP値は、特に断らない限り、Hoy法によって求める(H.L.Hoy Journal of Painting,1970,Vol.42,76-118)。また、SP値については単位を省略して示しているが、その単位はcal1/2cm-3/2である。なお、側鎖成分のSP値は、上記側鎖をなす原料モノマーのSP値とほぼ変わらず、それにより評価してもよい。
 SP値は有機溶剤に分散する特性を示す指標となる。ここで、側鎖成分を特定の分子量以上とし、好ましくは上記SP値以上とすることで、無機固体電解質との結着性を向上させ、かつ、これにより溶媒との親和性を高め、安定に分散させることができ好ましい。
 上記のマクロモノマーAの主鎖は特に限定されず、通常のポリマー成分を適用することができる。マクロモノマーAは、重合性不飽和結合を有することが好ましく、例えば各種のビニル基や(メタ)アクリロイル基を有することができる。本発明においては、中でも、(メタ)アクリロイル基を有することが好ましい。
 なお、本明細書において、「アクリル」ないし「アクリロイル」と称するときには、アクリロイル基のみならずその誘導構造を含むものを広く指し、アクリロイル基のα位に特定の置換基を有する構造を含むものとする。ただし、狭義には、α位が水素原子の場合をアクリルないしアクリロイルと称することがある。α位にメチル基を有するものをメタクリルと呼び、アクリル(α位が水素原子)とメタクリル(α位がメチル基)のいずれかのものを意味して(メタ)クリルなどと称することがある。
 上記マクロモノマーAは、(メタ)アクリル酸モノマー、(メタ)アクリル酸エステルモノマー、及び(メタ)アクリロニトリルから選ばれるモノマーに由来する繰り返し単位を含むことが好ましい。また、上記マクロモノマーAは、重合性二重結合と炭素数6以上の直鎖炭化水素構造単位S(好ましくは炭素数6以上30以下のアルキレン基、より好ましくは炭素数8以上24以下のアルキレン基)を含むことが好ましい。このように、側鎖をなすマクロモノマーAが直鎖炭化水素構造単位Sを有することで、分散媒との親和性が高くなり分散安定性が向上するという作用が期待できる。
 上記のマクロモノマーAは、下記式(b-11)で表される部位を有することが好ましい。
Figure JPOXMLDOC01-appb-C000006
 R11はRと同義である。*は結合部である。
 上記のマクロモノマーAとしては、下記式(b-12a)~(b-12c)のいずれかで表される部位を有することが好ましい。これらの部位を「特定重合性部位」と呼ぶこともある。
Figure JPOXMLDOC01-appb-C000007
 Rb2はRと同義である。*は結合部である。Rは後記置換基Tで示す定義と同義である。式(b-12c)、後述の(b-13c)及び(b-14c)のベンゼン環には任意の置換基Tが置換していてもよい。
 *の結合部の先に存在する構造部としては、マクロモノマーAとしての分子量を満たせば特に限定されないが、炭素原子、酸素原子、水素原子から構成される構造部位であることが好ましい。このとき、置換基Tを有していてもよく、例えば、ハロゲン原子(フッ素原子)などを有していてもよい。
 上記のマクロモノマーAは、下記式(b-13a)~(b-13c)のいずれかで表される化合物又は(b-14a)~(b-14c)のいずれかで表される繰り返し単位を有する化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000008
 Rb2、Rb3は、Rと同義である。
 naは特に限定されないが、好ましくは1~6の整数であり、より好ましくは1又は2である。
 Raはnaが1のときは置換基(好ましくは有機基)、naが2以上のときは連結基を表す。
 Rbは二価の連結基である。
 Ra及びRbが連結基であるとき、その連結基としては、下記連結基Lが挙げられる。具体的には、炭素数1~30のアルカン連結基(2価の場合アルキレン基)、炭素数3~12のシクロアルカン連結基(2価の場合シクロアルキレン基)、炭素数6~24のアリール連結基(2価の場合アリーレン基)、炭素数3~12のヘテロアリール連結基(2価の場合ヘテロアリーレン基)、エーテル基(-O-)、スルフィド基(-S-)、ホスフィニデン基(-PR-:Rは水素原子もしくは炭素数1~6のアルキル基)、シリレン基(-SiRR’-:R、R’は水素原子もしくは炭素数1~6のアルキル基)カルボニル基、イミノ基(-NR-:Rは後記の定義に従い、ここでは、水素原子もしくは炭素数1~6のアルキル基、炭素数6~10のアリール基)、又はその組み合わせであることが好ましい。なかでも、炭素数1~30のアルカン連結基(2価の場合アルキレン基)、炭素数6~24のアリール連結基(2価の場合アリーレン基)、エーテル基、カルボニル基、又はその組み合わせであることが好ましい。また、Ra及びRbが連結基であるとき、その連結基として、下記連結基Lが採用されてもよい。
 Ra及びRbを構成する連結基は、炭素原子、酸素原子、水素原子から構成される連結構造であることが好ましい。あるいは、Ra及びRbを構成する連結基が、後記繰り返し単位(b-15)を有する構造部であることも好ましい。Ra及びRbが連結基であるときの連結基を構成する原子の数や連結原子数は後記連結基Lと同義である。
 Raが1価の置換基であるときには、後記置換基Tの例が挙げられ、なかでもアルキル基、アルケニル基、アリール基であることが好ましい。このとき、連結基Lが介在して置換していても、置換基内に連結基Lが介在していてもよい。
 あるいは、Raが1価の置換基であるときは、-Rb-Rcの構造や、後記繰り返し単位(b-15)を有する構造部であることも好ましい。ここでRcは、後記置換基Tの例が挙げられ、なかでもアルキル基、アルケニル基、アリール基であることが好ましい。
 このとき、Ra及びRbは、それぞれ、少なくとも、炭素数1~30の直鎖炭化水素構造単位(好ましくはアルキレン基)を含有することがより好ましく、上記直鎖炭化水素構造単位Sを含むことがより好ましい。また、上記Ra~Rcは、それぞれ、連結基又は置換基を有していてもよく、その例としては後記連結基Lや置換基Tが挙げられる。
 上記のマクロモノマーAはさらに下記式(b-15)で表される繰り返し単位を有することが好ましい。
Figure JPOXMLDOC01-appb-C000009
 式中、Rb4は、水素原子又は後記置換基Tである。好ましくは、水素原子、アルキル基、アルケニル基、アリール基である。Rb4がアルキル基、アルケニル基、アリール基であるとき、さらに後記置換基Tを有していてもよく、例えば、ハロゲン原子やヒドロキシ基などを有していても良い。
 Xは連結基であり、連結基Lの例が挙げられる。好ましくは、エーテル基、カルボニル基、イミノ基、アルキレン基、アリーレン基、又はその組合せである。組合せに係る連結基としては、具体的には、カルボニルオキシ基、アミド基、酸素原子、炭素原子、及び水素原子で構成された連結基が挙げられる。Rb4及びXが炭素を含むときその好ましい炭素数は、後記置換基T及び連結基Lと同義である。連結基の好ましい構成原子数や連結原子数も同義である。
 その他、マクロモノマーAには、上述した重合性基を有する繰り返し単位のほか、上記式(b-15)のような(メタ)アクリレート構成単位、ハロゲン原子(例えばフッ素原子)を有していてもよいアルキレン鎖(例えばエチレン鎖)が挙げられる。このとき、アルキレン鎖には、エーテル基(O)等が介在していてもよい。
 置換基としては、上記の連結基の末端に任意の置換基が配置された構造が挙げられる、末端置換基の例としては、後記置換基Tが挙げられ、上記Rの例が好ましい。
 なお、本明細書において化合物の表示(例えば、化合物と末尾に付して呼ぶとき)については、上記化合物そのもののほか、その塩、そのイオンを含む意味に用いる。また、所望の効果を奏する範囲で、置換基を導入するなど一部を変化させた誘導体を含む意味である。
 本明細書において置換又は無置換を明記していない置換基(連結基についても同様)については、その基に任意の置換基を有していてもよい意味である。これは置換又は無置換を明記していない化合物についても同義である。好ましい置換基としては、下記置換基Tが挙げられる。
 置換基Tとしては、下記のものが挙げられる。
 アルキル基(好ましくは炭素数1~20のアルキル基、例えばメチル、エチル、イソプロピル、t-ブチル、ペンチル、ヘプチル、1-エチルペンチル、ベンジル、2-エトキシエチル、1-カルボキシメチル等)、アルケニル基(好ましくは炭素数2~20のアルケニル基、例えば、ビニル、アリル、オレイル等)、アルキニル基(好ましくは炭素数2~20のアルキニル基、例えば、エチニル、ブタジイニル、フェニルエチニル等)、シクロアルキル基(好ましくは炭素数3~20のシクロアルキル基、例えば、シクロプロピル、シクロペンチル、シクロヘキシル、4-メチルシクロヘキシル等)、アリール基(好ましくは炭素数6~26のアリール基、例えば、フェニル、1-ナフチル、4-メトキシフェニル、2-クロロフェニル、3-メチルフェニル等)、ヘテロ環基(好ましくは炭素数2~20のヘテロ環基、好ましくは、少なくとも1つの酸素原子、硫黄原子、窒素原子を有する5又は6員環のヘテロ環基が好ましく、例えば、テトラヒドロピラン、テトラヒドロフラン、2-ピリジル、4-ピリジル、2-イミダゾリル、2-ベンゾイミダゾリル、2-チアゾリル、2-オキサゾリル等)、アルコキシ基(好ましくは炭素数1~20のアルコキシ基、例えば、メトキシ、エトキシ、イソプロピルオキシ、ベンジルオキシ等)、アリールオキシ基(好ましくは炭素数6~26のアリールオキシ基、例えば、フェノキシ、1-ナフチルオキシ、3-メチルフェノキシ、4-メトキシフェノキシ等)、アルコキシカルボニル基(好ましくは炭素数2~20のアルコキシカルボニル基、例えば、エトキシカルボニル、2-エチルヘキシルオキシカルボニル等)、アリールオキシカルボニル基(好ましくは炭素数6~26のアリールオキシカルボニル基、例えば、フェノキシカルボニル、1-ナフチルオキシカルボニル、3-メチルフェノキシカルボニル、4-メトキシフェノキシカルボニル等)、アミノ基(好ましくは炭素数0~20のアミノ基、アルキルアミノ基、アリールアミノ基を含み、例えば、アミノ、N,N-ジメチルアミノ、N,N-ジエチルアミノ、N-エチルアミノ、アニリノ等)、スルファモイル基(好ましくは炭素数0~20のスルファモイル基、例えば、N,N-ジメチルスルファモイル、N-フェニルスルファモイル等)、アシル基(アルキルカルボニル基、アルケニルカルボニル基、アルキニルカルボニル基、アリールカルボニル基、ヘテロ環カルボニル基を含み、好ましくは炭素数1~20のアシル基、例えば、アセチル、プロピオニル、ブチリル、オクタノイル、ヘキサデカノイル、アクリロイル、メタクリロイル、クロトノイル、ベンゾイル、ナフトイル、ニコチノイル等)、アシルオキシ基(アルキルカルボニルオキシ基、アルケニルカルボニルオキシ基、アルキニルカルボニルオキシ基、アリールカルボニルオキシ基、ヘテロ環カルボニルオキシ基を含み、好ましくは炭素数1~20のアシルオキシ基、例えば、アセチルオキシ、プロピオニルオキシ、ブチリルオキシ、オクタノイルオキシ、ヘキサデカノイルオキシ、アクリロイルオキシ、メタクリロイルオキシ、クロトノイルオキシ、ベンゾイルオキシ、ナフトイルオキシ、ニコチノイルオキシ等)、アリーロイルオキシ基(好ましくは炭素数7~23のアリーロイルオキシ基、例えば、ベンゾイルオキシ等)、カルバモイル基(好ましくは炭素数1~20のカルバモイル基、例えば、N,N-ジメチルカルバモイル、N-フェニルカルバモイル等)、アシルアミノ基(好ましくは炭素数1~20のアシルアミノ基、例えば、アセチルアミノ、ベンゾイルアミノ等)、アルキルチオ基(好ましくは炭素数1~20のアルキルチオ基、例えば、メチルチオ、エチルチオ、イソプロピルチオ、ベンジルチオ等)、アリールチオ基(好ましくは炭素数6~26のアリールチオ基、例えば、フェニルチオ、1-ナフチルチオ、3-メチルフェニルチオ、4-メトキシフェニルチオ等)、アルキルスルホニル基(好ましくは炭素数1~20のアルキルスルホニル基、例えば、メチルスルホニル、エチルスルホニル等)、アリールスルホニル基(好ましくは炭素数6~22のアリールスルホニル基、例えば、ベンゼンスルホニル等)、アルキルシリル基(好ましくは炭素数1~20のアルキルシリル基、例えば、モノメチルシリル、ジメチルシリル、トリメチルシリル、トリエチルシリル等)、アリールシリル基(好ましくは炭素数6~42のアリールシリル基、例えば、トリフェニルシリル等)、ホスホリル基(好ましくは炭素数0~20のリン酸基、例えば、-OP(=O)(R)、ホスホニル基(好ましくは炭素数0~20のホスホニル基、例えば、-P(=O)(R)、ホスフィニル基(好ましくは炭素数0~20のホスフィニル基、例えば、-P(R)、スルホ基(スルホン酸基)、ヒドロキシ基、スルファニル基、シアノ基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等)が挙げられる。
 また、これらの置換基Tで挙げた各基は、上記の置換基Tがさらに置換していてもよい。
 化合物、置換基及び連結基等がアルキル基、アルキレン基、アルケニル基、アルケニレン基、アルキニル基及び/又はアルキニレン基等を含むとき、これらは環状でも鎖状でもよく、また直鎖でも分岐していてもよく、上記のように置換されていても無置換でもよい。
 本明細書で規定される各置換基は、本発明の効果を奏する範囲で下記の連結基Lを介在して置換されていても、その構造中に連結基Lが介在していてもよい。たとえば、アルキル基、アルキレン基、アルケニル基及びアルケニレン基等はさらに構造中に下記のヘテロ連結基を介在していてもよい。
 連結基Lとしては、炭化水素連結基〔炭素数1~10のアルキレン基(より好ましくは炭素数1~6、さらに好ましくは1~3)、炭素数2~10のアルケニレン基(より好ましくは炭素数2~6、さらに好ましくは2~4)、炭素数2~10のアルキニレン基(より好ましくは炭素数2~6、さらに好ましくは2~4)、炭素数6~22のアリーレン基(より好ましくは炭素数6~10)〕、ヘテロ連結基〔カルボニル基(-CO-)、チオカルボニル基(-CS-)、エーテル基(-O-)、チオエーテル基(-S-)、イミノ基(-NR-)、イミン連結基(R-N=C<,-N=C(R)-)、スルホニル基(-SO-)、スルフィニル基(-SO-)、リン酸連結基(-O-P(OH)(O)-O-)、ホスホン酸連結基(-P(OH)(O)-O-)、2価のヘテロ環基〕、又はこれらを組み合せた連結基が好ましい。なお、縮合して環を形成する場合には、上記炭化水素連結基が、二重結合や三重結合を適宜形成して連結していてもよい。形成される環として好ましくは、5員環又は6員環が好ましい。5員環としては含窒素の5員環が好ましく、その環をなす化合物として例示すれば、ピロール、イミダゾール、ピラゾール、インダゾール、インドール、ベンゾイミダゾール、ピロリジン、イミダゾリジン、ピラゾリジン、インドリン、カルバゾール、又はこれらの誘導体などが挙げられる。6員環としては、ピペリジン、モルホリン、ピペラジン、又はこれらの誘導体などが挙げられる。またアリール基、ヘテロ環基等を含むとき、それらは単環でも縮環でもよく、同様に置換されていても無置換でもよい。
 Rは水素原子又は置換基を表し、置換基は上記置換基Tで示す定義と同義である。置換基としては、アルキル基(炭素数1~24が好ましく、1~12がより好ましく、1~6がさらに好ましく、1~3が特に好ましい)、アルケニル基(炭素数2~24が好ましく、2~12がより好ましく、2~6がさらに好ましく、2~3が特に好ましい)、アルキニル基(炭素数2~24が好ましく、2~12がより好ましく、2~6がさらに好ましく、2~3が特に好ましい)、アラルキル基(炭素数7~22が好ましく、7~14がより好ましく、7~10が特に好ましい)、アリール基(炭素数6~22が好ましく、6~14がより好ましく、6~10が特に好ましい)が好ましい。
 Rは水素原子、ヒドロキシ基、又は置換基である。置換基としては、アルキル基(炭素数1~24が好ましく、1~12がより好ましく、1~6がさらに好ましく、1~3が特に好ましい)、アルケニル基(炭素数2~24が好ましく、2~12がより好ましく、2~6がさらに好ましく、2~3が特に好ましい)、アルキニル基(炭素数2~24が好ましく、2~12がより好ましく、2~6がさらに好ましく、2~3が特に好ましい)、アラルキル基(炭素数7~22が好ましく、7~14がより好ましく、7~10が特に好ましい)、アリール基(炭素数6~22が好ましく、6~14がより好ましく、6~10が特に好ましい)、アルコキシ基(炭素数1~24が好ましく、1~12がより好ましく、1~6がさらに好ましく、1~3が特に好ましい)、アルケニルオキシ基(炭素数2~24が好ましく、2~12がより好ましく、2~6がさらに好ましく、2~3が特に好ましい)、アルキニルオキシ基(炭素数2~24が好ましく、2~12がより好ましく、2~6がさらに好ましく、2~3が特に好ましい)、アラルキルオキシ基(炭素数7~22が好ましく、7~14がより好ましく、7~10が特に好ましい)、アリールオキシ基(炭素数6~22が好ましく、6~14がより好ましく、6~10が特に好ましい)、が好ましい。
 本明細書において、連結基を構成する原子の数は、1~36であることが好ましく、1~24であることがより好ましく、1~12であることがさらに好ましく、1~6であることが特に好ましい。連結基の連結原子数は10以下であることが好ましく、8以下であることがより好ましい。下限としては、1以上である。上記連結原子数とは所定の構造部間を結ぶ経路に位置し連結に関与する最少の原子数を言う。たとえば、-CH-C(=O)-O-の場合、連結基を構成する原子の数は6となるが、連結原子数は3となる。
 具体的な連結基の組合せとしては、以下のものが挙げられる。オキシカルボニル基(-OCO-)、カーボネート基(-OCOO-)、アミド基(-CONH-)、ウレタン基(-NHCOO-)、ウレア基(-NHCONH-)、(ポリ)アルキレンオキシ基(-(Lr-O)x-)、カルボニル(ポリ)オキシアルキレン基(-CO-(O-Lr)x-、カルボニル(ポリ)アルキレンオキシ基(-CO-(Lr-O)x-)、カルボニルオキシ(ポリ)アルキレンオキシ基(-COO-(Lr-O)x-)、(ポリ)アルキレンイミノ基(-(Lr-NR)x-)、アルキレン(ポリ)イミノアルキレン基(-Lr-(NR-Lr)x-)、カルボニル(ポリ)イミノアルキレン基(-CO-(NR-Lr)x-)、カルボニル(ポリ)アルキレンイミノ基(-CO-(Lr-NR)x-)、(ポリ)エステル基(-(CO-O-Lr)x-、-(O-CO-Lr)x-、-(O-Lr-CO)x-、-(Lr-CO-O)x-、-(Lr-O-CO)x-)、(ポリ)アミド基(-(CO-NR-Lr)x-、-(NR-CO-Lr)x-、-(NR-Lr-CO)x-、-(Lr-CO-NR)x-、-(Lr-NR-CO)x-)などである。xは1以上の整数であり、1~500が好ましく、1~100がより好ましい。
 Lrはアルキレン基、アルケニレン基、アルキニレン基が好ましい。Lrの炭素数は、1~12が好ましく、1~6がより好ましく、1~3が特に好ましい。複数のLrやR、R、x等は同じである必要はない。連結基の向きは上記の記載により限定されず、適宜所定の化学式に合わせた向きで理解すればよい。
 上記マクロモノマーAとして、末端にエチレン性不飽和結合を有するマクロモノマーを用いてもよい。ここで、マクロモノマーAは、ポリマー鎖部分とその末端のエチレン性不飽和二重結合を有する重合可能な官能基の部分からなる。
 マクロモノマーAに由来する構成成分の共重合比は特に限定されないが、バインダ粒子Aを構成するポリマー中、1質量%以上であることが好ましく、3質量%以上であることがより好ましく、5質量%以上であることが特に好ましい。上限としては、50質量%以下であることが好ましく、30質量%以下であることがより好ましく、20質量%以下であることが特に好ましい。
・バインダ粒子A等の諸元
 バインダ粒子Aを構成するポリマーの数平均分子量は5,000以上であることが好ましく、10,000以上であることがより好ましく、30,000以上であることが特に好ましい。上限としては、1,000,000以下であることが好ましく、200,000以下であることがより好ましい。
 バインダ粒子Aの平均粒子径は、1,000nm以下であることが好ましく、750nm以下であることがより好ましく、500nm以下であることがより好ましく、300nm以下であることがさらに好ましく、200nm以下であることが特に好ましい。下限値は10nm以上であることが好ましく、20nm以上であることがより好ましく、30nm以上であることがより好ましく、50nm以上であることが特に好ましい。本発明においてバインダ粒子Aの平均粒子径は、特に断らない限り、後記実施例の項の走査型電子顕微鏡を用いた測定方法により得られる値とする。
 無機固体電解質の平均粒子径より、上記バインダ粒子Aの粒径が小さいことが好ましい。
 バインダ粒子Aの大きさを上記の範囲とすることにより、良好な密着性と界面抵抗の抑制とを実現することができる。
 本発明においてバインダ粒子Aを構成するポリマーは非晶質であることが好ましい。本発明においてポリマーが「非晶質」であるとは、典型的には、特開2015-088486号公報の段落<0143>に記載のガラス転移温度(Tg)の測定法で測定したときに結晶融解に起因する吸熱ピークが見られないポリマーのことを言う。上記ポリマーのTgは、50℃以下であることが好ましく、30℃以下であることがより好ましく、20℃以下であることがさらに好ましく、0℃以下であることが特に好ましい。下限値としては、-80℃以上であることが好ましく、-70℃以上であることがより好ましく、-60℃以上であることが特に好ましい。本発明においてバインダ粒子Aをなすポリマーのガラス転移温度は、特に断らない限り、上記測定法により得られる値とする。
 なお、作製された全固体二次電池からの測定は、例えば、電池を分解し電極を水に入れてその材料を分散させた後、ろ過を行い、残った固体を収集し、上記Tgの測定法でガラス転移温度を測定することにより行うことができる。
 バインダ粒子Aはこれを構成するポリマーのみからなっていてもよく、あるいは、別種の材料(ポリマーや低分子化合物、無機化合物など)を含む形で構成されていてもよい。好ましくは、構成ポリマーのみからなるバインダ粒子である。
(ii)負極活物質層に対する密着性の高いバインダ(バインダ粒子B)
 バインダ粒子Bは、質量平均分子量1,000以上1,000,000未満のマクロモノマーB由来の構成成分を含み、かつ、2環以上の環構造を含む基を有する。
 バインダ粒子Bを構成するポリマーとして、ポリアミド、ポリイミド、ポリウレア、ポリウレタン又はアクリル樹脂が好ましい。
・バインダ粒子Bの合成に用いられるモノマー
 バインダ粒子Bの合成に用いられるマクロモノマーB以外のモノマーは特に限定されない。このようなモノマーとしては、重合性不飽和結合を有するモノマーであることが好ましく、例えば各種のビニル系モノマー及び/又はアクリル系モノマーを適用することができる。具体的には、上述のバインダ粒子Aで記載したモノマー(a)を採用することができる。
 バインダ粒子Bを構成するポリマーの合成原料として用いうるモノマーとして、上記「A-数字」で示す例示化合物を挙げることができる。ただし、本発明がこれらにより限定して解釈されるものではない。
・マクロモノマーB由来の構成成分
 本発明に用いられるバインダ粒子Bを構成するポリマーは、質量平均分子量1000以上のマクロモノマーB由来の構成成分が組み込まれている。上記バインダ粒子Bを構成するポリマーにおいて、マクロモノマーB由来の構成成分は主鎖に対し側鎖を構成する。
 マクロモノマーBの質量平均分子量は、2,000以上であることが好ましく、3,000以上であることがより好ましい。上限は、1,000,000未満であり、500,000以下であることが好ましく、100,000以下であることがより好ましく、30,000以下であることが特に好ましい。上記バインダ粒子Bを構成するポリマーが上記の範囲の分子量をもつ側鎖を有することで、より良好に有機溶剤中に均一に分散でき固体電解質粒子と混合して塗布できるようになる。
 なお、マクロモノマーBの質量平均分子量は、マクロモノマーAの数平均分子量の測定方法と同様にして測定することができる。
 このようなマクロモノマーB由来の構成成分を含有するバインダ粒子Bは、バインダ粒子Aと同様の作用を奏する。
 マクロモノマーBのSP値は10以下であることが好ましく、9.5以下であることがより好ましい。下限値は特にないが、5以上であることが実際的である。
 バインダ粒子Bを構成するポリマーにおいて、上記のマクロモノマーB由来のグラフト部分を側鎖、それ以外を主鎖とした場合、この主鎖構造は特に限定されない。マクロモノマーBは、重合性不飽和結合を有することが好ましく、例えば各種のビニル基や(メタ)アクリロイル基を有することができる。本発明においては、中でも、(メタ)アクリロイル基を有することが好ましい。
 上記のマクロモノマーB由来の構成成分は、グラフト鎖中に(メタ)アクリル酸成分、(メタ)アクリル酸エステル成分及び(メタ)アクリロニトリル成分から選ばれる構成成分(繰り返し単位)を含むことが好ましい。また、上記マクロモノマーBは、重合性二重結合と炭素数6以上の直鎖炭化水素構造単位S(好ましくは炭素数6以上30以下のアルキレン基、より好ましくは炭素数8以上24以下のアルキレン基である。これらのアルキレン基を構成するメチレンの一部は置換基を有してもよく、またこれらのアルキレン基を構成するメチレンの一部が他の構造(酸素原子、硫黄原子、イミノ基、カルボニル基等)に置き換わっていてもよい。)を含むことが好ましい。このように、マクロモノマーBが直鎖炭化水素構造単位Sを有することで、溶媒との親和性が高くなり分散安定性が向上するという作用が期待できる。
 上記のマクロモノマーBは、上記式(b-1)で表される部位を有することが好ましい。
 マクロモノマーBとして、炭化水素系溶媒に対して溶媒和されている構造部分(溶媒和部分)と溶媒和されない構造部分(非溶媒和部分)とを有しているポリウレア又はポリウレタンも好ましい。ポリウレア又はポリウレタンとしては、炭素数6以上の長鎖アルキル基を有する粒子が好ましい。このような粒子は、例えば、非水媒体中で、炭素数6以上の長鎖アルキル基を有するジオール化合物(いわゆる親油性ジオール)と、イソシアネート化合物と、ポリアミン(ポリウレタンの場合はポリオール)化合物と、を反応させることで得られる。つまり、炭素数6以上の長鎖アルキル基等の、炭化水素系溶媒と溶媒和した構造部分を粒子に付与することができる。なお、親油性ジオール及びイソシアネート化合物に代えて、これらの化合物からなる末端NCOプレポリマーを反応させてもよい。
 親油性ジオールは、官能基が2以下のポリオールであって、好ましい分子量は700以上5000未満である。但し、親油性ジオールは、これに限定されない。親油性ジオールの具体例としては、各種の油脂を低級アルコール及び/又はグリコールを用いてアルコリシス化する方法、油脂を部分鹸化する方法、水酸基含有脂肪酸をグリコールによりエステル化する方法等によって、油脂に約2個以下の水酸基を含有させたもの、あるいはJ.H.SAUNDERS,K.C.FRISCH著のPOLYURETHANES,CHEMISTRY AND TECHNOLOGY PART1,Chemistry(pp.48~53、1962年発行)等に記載の、油脂変性ポリオール、末端アルコール変性したアクリル樹脂及び末端アルコール変性したポリエステル等が挙げられる。
 上記のうち、水酸基含有脂肪酸としては、例えば、リシノレイン酸、12-ヒドロキシステアリン酸、ヒマシ油脂肪酸及び水添ヒマシ油脂肪酸等が挙げられる。
 末端アルコール変性したアクリル樹脂としては、例えば、チオグリセロールを連鎖移動剤として用いた長鎖アルキル(メタ)アクリレートの重合物などが挙げられる。アルキル(メタ)アクリレートの重合物としては、炭素数6以上30未満のアルキル(メタ)アクリレートの1種又は2種以上が好適に用いられる。さらに好ましくは、炭素数8以上25未満(特に好ましくは炭素数10以上20未満)のアルキル(メタ)アクリレートである。
 イソシアネート化合物としては、通常のイソシアネート化合物を全て適用でき、特に好ましくは、ヘキサメチレンジイソシアネート、水添加トルエンジイソシアネート(水添加TDI)、水添加ジフェニルメタンジイソシアネート(水添加MDI)及びイソホロジイソシアネート等の脂肪族又は脂環族系ジイソシアネート化合物である。
 アミン化合物としては、例えば、エチレンジアミン、ジアミノプロパン、ジアミノブタン、ヘキサメチレンジアミン、トリメチルヘキサメチレンジアミン、N-アミノエチルピペラジン、ビス-アミノプロピルピペラジン、ポリオキシプロピレンジアミン、4,4-ジアミノジシクロヘキシルメタン、イソホロンジアミン、チオ尿素及びメチルイミノビスプロピルアミン等が挙げられる。アミン化合物は、1種単独で用てもよく、2種以上を混合した混合物として用いてもよい。
 上記マクロモノマーBとして、末端にエチレン性不飽和結合を有するマクロモノマーを用いてもよい。ここで、マクロモノマーBは、ポリマー鎖部分とその末端のエチレン性不飽和二重結合を有する重合可能な官能基の部分からなる。
 マクロモノマーBに由来する構成成分の共重合比は特に限定されないが、バインダ粒子Bを構成するポリマー中、3質量%以上であることが好ましく、10質量%以上であることがより好ましく、20質量%以上であることが特に好ましい。上限としては、70質量%以下であることが好ましく、60質量%以下であることがより好ましく、50質量%以下であることが特に好ましい。なお、共重合比は、バインダ粒子Bの合成に用いられるモノマーの仕込み量(使用量)から算出することができる。ただし、2環以上の環構造を含む基を有するモノマーの仕込み量(使用量)は含まれない。
-2環以上の環構造を含む基-
 本発明に用いられる2環以上の環構造を含む基は、2環以上の環(好ましくは縮環)構造を有する化合物の少なくとも1つの水素原子を結合手に置き換えた基であればよく、下記一般式(D)で表される化合物の少なくとも1つの水素原子を結合手に置き換えた基であることが好ましく、1つ又は2つの水素原子を結合手に置き換えた基であることがより好ましく、1つの水素原子を結合手に置き換えた基であることが特に好ましい。
 下記一般式(D)で表される化合物から形成される基は、炭素質材料との親和性に優れるため、バインダ粒子Bを含有する固体電解質組成物の分散安定性を向上させることができ、本発明の積層体及び全固体二次電池用電極シートの結着性を向上させることができる。分散安定性の向上、結着性の向上に伴い、本発明の積層体及び全固体二次電池用電極シートを用いて作製した全固体二次電池はサイクル特性に優れる。2環以上の環構造を含む基は、サイクル特性向上の観点から、3環以上の環構造を含む基であることが好ましく、4環以上の環構造を含む基であることがさらに好ましい。上限に特に制限はないが、18環以下が好ましく、16環以下がより好ましく、12環以下がさらに好ましく、8環以下がさらに好ましく、6環以下がさらに好ましい。
Figure JPOXMLDOC01-appb-C000010
 一般式(D)中、環αは2環以上の環を表し、RD1は環αの構成原子と結合している置換基を表し、d1は1以上の整数を表す。d1が2以上の場合、複数のRD1は同一でも異なっていてもよい。隣接する原子に置換するRD1が互いに結合して、環を形成してもよい。環αは、2環以上が好ましく、3環以上がより好ましく、4環以上がさらに好ましい。また、環αは、18環以下が好ましく、16環以下がより好ましく、12環以下がさらに好ましく、8環以下がさらに好ましく、6環以下がさらに好ましい。環αは3員環以上の環構造を含有することが好ましく、4員環以上の環構造を含有することがより好ましく、5員環以上の環構造を含有することがさらに好ましく、6員環構造を含有することが特に好ましい。また環αは24員環以下の環構造を含有することが好ましく、12員環以下の環構造を含有することがより好ましく、8員環以下の環構造を含有することがさらに好ましく、6員環の環構造を含有することが特に好ましい。
 環αは脂肪族炭化水素環、不飽和炭化水素環、芳香族環、ヘテロ環のいずれか又はその組み合わせの構造を含有することが好ましい。脂肪族炭化水素環の具体的な構造としてはシクロプロパン、シクロブタン、シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタン、シクロノナン、シクロデカン、シクロウンデカン、シクロドデカン、デカリンなどが挙げられる。
 不飽和炭化水素環の具体的な構造としては上記脂肪族炭化水素環の一部が二重結合に置き換わった環構造が挙げられる。例えば、シクロブテン、シクロペンテン、シクロペンタジエン、シクロヘキセン、シクロヘキサジエン、シクロオクテン、シクロオクタジエンなどが挙げられる。
 芳香族環の具体的な構造としては、ベンゼン、ナフタレン、アントラセン、ピレン、テトラセン、ペンタセン、フェナントレン、クリセン、トリフェニレン、テトラフェン、ピセン、ペンタヘン、ペリレン、ヘリセン、コロネンなどが挙げられる。
 ヘテロ環の具体的な構造としては、エチレンイミン、エチレンオキシド、エチレンスルフィド、アセチレンオキシド、アザシクロブタン、1,3-プロピレンオキシド、トリメチレンスルフィド、ピロリジン、テトラヒドロフラン、テトラヒドロチオフェン、ピロール、フラン、チオフェン、ピペリジン、テトラヒドロピラン、テトラヒドロチオピラン、ピリジン、ヘキサメチレンイミン、ヘキサメチレンオキシド、ヘキサメチレンスルフィド、アザロトピリデン、オキサシクロヘプタトリエン、チオトロピリデン、イミダゾール、オキサゾール、チアゾール、イミダゾリン、ピラジン、モルホリン、チアジン、インドール、イソインドール、ベンゾイミダゾール、プリン、キノリン、イソキノリン、キノキサリン、シンノリン、プテリジン、クロメン、イソクロメン、アクリジン、キサンテン、アクリジン、ベンゾキノリン、カルバゾール、ベンゾ-O-シンノリン、ポルフィリン、クロリン、コリンなどが挙げられる。
 環αは中でも、シクロブタン、シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタン、シクロブテン、シクロペンテン、シクロペンタジエン、シクロヘキセン、シクロヘキサジエン、シクロオクテン、ベンゼン、ナフタレン、アントラセン、ピレン、テトラセン、フェナントレン、トリフェニレン、ピロリジン、テトラヒドロフラン、テトラヒドロチオフェン、ピロール、フラン、チオフェン、ピペリジン、ピリジン、ヘキサメチレンイミン、ヘキサメチレンオキシド、ヘキサメチレンスルフィド、イミダゾール、オキサゾール、チアゾール、イミダゾリン、ピラジン、モルホリン、チアジン、インドール、イソインドール、ベンゾイミダゾール、キノリン、ベンゾキノリン、キサンテン、カルバゾール、ポルフィリンを含有する構造が好ましく、シクロペンタン、シクロヘキサン、シクロヘプタン、シクロペンテン、シクロペンタジエン、シクロヘキセン、シクロヘキサジエン、ベンゼン、ナフタレン、アントラセン、ピレン、トリフェニレン、ピロール、フラン、チオフェン、ピペリジン、ピリジン、イミダゾール、オキサゾール、インドールを含有していることがさらに好ましく、シクロペンタン、シクロヘキサン、シクロヘキセン、ピレンを含有する構造が特に好ましい。
 RD1で表される置換基としては、上述の置換基Tが好ましく挙げられる。
 また、RD1で表される置換基として、=Oも好ましい。このような=Oを有する環αの例として、アントラキノンを含む構造が挙げられる。
 後述のように、上記2環以上の環構造を含む基を、本発明に用いられるバインダ粒子Bを構成するポリマーの側鎖及び/又はマクロモノマーB成分の側鎖に含ませるため、RD1が上記式(b-1)で表される部位及び/又は上記連結基Lを有すること、RD1が後述のPであることも好ましい。
 本発明に用いられるバインダ粒子Bを構成するポリマーは、上記2環以上の環構造を含む基をポリマー主鎖、側鎖及び末端のいずれに有していてもよい。
 以下、上記2環以上の環構造を有する化合物が、一般式(D)で表される化合物である場合を例に挙げて説明する。
 ポリマーの主鎖に有するとは、一般式(D)で表される化合物が、一般式(D)で表される化合物の少なくとも2つの水素原子を結合手に置き換えた構造でポリマーに組込まれ、ポリマーの繰り返し構造となる主鎖そのものとなるものである。一方、ポリマーの側鎖に有するとは、一般式(D)で表される化合物の1つの水素原子を結合手に置き換えた構造でポリマーに組込まれることを意味する。また、ポリマー末端に有するとは、一般式(D)で表される化合物の1つ水素原子を結合手に置き換えた構造でポリマーに組込まれ、ポリマー鎖長となるものである。ここで、ポリマーの主鎖、側鎖及びポリマー末端の複数に含まれていても構わない。
 本発明では、バインダ粒子Bを構成するポリマーが、上記2環以上の環構造を含む基を、主鎖又は側鎖に有することが好ましく、側鎖に有することがより好ましく、マクロモノマーB由来の構成成分の側鎖(マクロモノマーB由来の構成成分が有するグラフト鎖)中に有することが特に好ましい。マクロモノマーB成分の側鎖に有するとは、一般式(D)で表される化合物の1つの水素原子を結合手に置き換えた構造を側鎖として有する繰り返し単位が、マクロモノマーB成分を構成する繰り返し単位の1つとして、マクロモノマーB成分に組み込まれていることを意味する。
 上記2環以上の環構造を含む基が、本発明に用いられるバインダ粒子Bを構成するポリマーの側鎖に組み込まれていることにより、上記2環以上の環構造を含む基の運動性が向上することで吸着性が向上する。そうすることで、全固体二次電池における固体粒子間等の結着性をより向上させることができる。上記2環以上の環構造を含む基が、本発明に用いられるバインダ粒子Bを構成するポリマーのマクロモノマーB成分の側鎖に含まれていることにより、バインダ粒子B表面に存在する上記2環以上の環構造を含む基の割合が多くなり、全固体二次電池における固体粒子間等の結着性をより向上させることができる。
 本発明においては、上記2環以上の環構造を含む基を有する繰り返し単位の含有量が、バインダ粒子Bを構成するポリマー100質量%中10質量%以上85質量%以下であることが好ましく、15質量%以上80質量%以下であることがより好ましく、18質量%以上70質量%以下であることが特に好ましい。上記2環以上の環構造を含む基を有する繰り返し単位の含有量が上記範囲内にあることにより、吸着性とバインダ粒子Bの分散安定性が両立することができ好ましい。
 なお、上記2環以上の環構造を含む基を有する繰り返し単位の含有量は、バインダ粒子Bの合成に用いられるモノマーの仕込み量(使用量)から算出することができる。国際公開第2017/131093号公報記載の表1において、M1~M4及びMMで表される成分のうち、2環以上の環構造を含む基を有する成分の合計が、上記2環以上の環構造を含む基を有する繰り返し単位の含有量である。例えば、表1のBP-5では、M4(B-5)とMM(MM-2)が2環以上の環構造を含む基を有しており、2環以上の環構造を含む基を有する繰り返し単位の含有量は40質量%である。
 また、本発明において、上記一般式(D)で表される化合物は、下記一般式(1)で表される化合物及び後述の一般式(2)で表される脂肪族炭化水素のうちの少なくとも1種であることが好ましい。
 下記一般式(1)で表される化合物及び下記一般式(2)で表される脂肪族炭化水素は、負極活物質である炭素質材料との親和性に優れる。そのため、これらの化合物を含有する固体電解質組成物の分散安定性をより向上させるとともに本発明の積層体及び全固体二次電池用電極シートの結着性を向上させることができる。また、分散安定性の向上、結着性の向上に伴い、この固体電解質組成物を用いて作製した全固体二次電池のサイクル特性を向上させることができる。
Figure JPOXMLDOC01-appb-C000011
 一般式(1)において、CHCはベンゼン環、シクロヘキサン環、シクロヘキセン環、シクロヘキサジエン環を表す。n1は0~8の整数を表す。R11~R16は各々独立に、水素原子又は置換基を表す。CHCがベンゼン環以外の場合は環構造にR11~R16以外に水素原子を有していてもよい。X及びXは各々独立に、水素原子又は置換基を表す。ここで、R11~R16、X及びXにおいて、互いに隣接する基が結合して、5又は6員環を形成してもよい。ただし、n1が0の場合、R11~R16のいずれか1つの置換基は、-(CHCm1-Rxであるか、又はR11~R16のいずれか2つが互いに結合して、-(CHCm1-を形成する。ここで、CHCはフェニレン基、シクロアルキレン基、シクロアルケニレン基を表し、m1は2以上の整数を表し、Rxは水素原子又は置換基を表す。また、n1が1の場合、R11~R16、X及びXにおいて、互いに隣接する少なくとも2つが結合して、ベンゼン環、シクロヘキサン環、シクロヘキセン環又はシクロヘキサジエン環を形成する。
 R11~R16が表す置換基として、アルキル基、アリール基、ヘテロアリール基、アルケニル基、アルキニル基、アルコキシ基、アリールオキシ基、ヘテロアリールオキシ基、アルキルチオ基、アリールチオ基、ヘテロアリールチオ基、アシル基、アシルオキシ基、アルコキシカルボニル基、アリールオキシカルボニル基、アルキルカルボニルオキシ基、アリールカルボニルオキシ基、ヒドロキシ基、カルボキシ基もしくはその塩、スルホ基もしくはその塩、アミノ基、メルカプト基(スルファニル基)、アミド基、ホルミル基、シアノ基、ハロゲン原子、(メタ)アクリル基、(メタ)アクリロイルオキシ基、(メタ)アクリルアミド基、エポキシ基、オキセタニル基等が挙げられる。
 なお、以下ではホルミル基をアシル基に含めて説明する。
 アルキル基の炭素数は、1~30が好ましく、1~25がより好ましく、1~20が特に好ましい。具体的には、メチル、エチル、プロピル、イソプロピル、ブチル、t-ブチル、オクチル、ドデシル、ステアリル、ベンジル、ナフチルメチル、ピレニルメチル及びピレニルブチルが挙げられる。アルキル基としては内部に二重結合又は三重結合の不飽和炭素結合を含有することがさらに好ましい。
 アリール基の炭素数は、6~30が好ましく、6~26がより好ましく、6~15が特に好ましい。具体的には、フェニル、ナフチル、アントラセン、ターフェニル、トリル、キシリル、メトキシフェニル、シアノフェニル及びニトロフェニルが挙げられる。
 ヘテロアリール基の炭素数は、6~30が好ましく、6~26がより好ましく、6~15が特に好ましい。具体的には、フラン、ピリジン、チオフェン、ピロール、トリアジン、イミダゾール、テトラゾール、ピラゾール、チアゾール及びオキサゾールが挙げられる。
 アルケニル基の炭素数は、2~30が好ましく、2~25がより好ましく、2~20が特に好ましい。具体的には、ビニル及びプロペニルが挙げられる。
 アルキニル基の炭素数は、2~30が好ましく、2~25がより好ましく、2~20が特に好ましい。具体的には、エチニル、プロピニル及びフェニルエチニルが挙げられる。
・アルコキシ基:アルコキシ基中のアルキル基は、上記アルキル基と同じである。
・アリールオキシ基:アリールオキシ基中のアリール基は、上記アリール基と同じである。
・ヘテロアリールオキシ基:ヘテロアリールオキシ基中のヘテロアリール基は、上記ヘテロアリール基と同じである。
・アルキルチオ基:アルキルチオ基中のアルキル基は、上記アルキル基と同じである。
・アリールチオ基:アリールチオ基中のアリール基は、上記アリール基と同じである。
・ヘテロアリールチオ基:ヘテロアリールチオ基中のヘテロアリール基は、上記ヘテロアリール基と同じである。
・アシル基:炭素数は、1~30が好ましく、1~25がより好ましく、1~20がさらに好ましい。アシル基はホルミル基、脂肪族カルボニル基、芳香族カルボニル基、ヘテロ環カルボニル基を含む。例えば、以下の基が挙げられる。
 ホルミル、アセチル(メチルカルボニル)、ベンゾイル(フェニルカルボニル)、エチルカルボニル、アクリロイル、メタクリロイル、オクチルカルボニル、ドデシルカルボニル(ステアリン酸残基)、リノール酸残基、リノレン酸残基
・アシルオキシ基:アシルオキシ基中のアシル基は、上記アシル基と同じである。
・アルコキシカルボニル基:アルコキシカルボニル基中のアルキル基は、上記アルキル基と同じである。
・アリールオキシカルボニル基:アリールオキシカルボニル基中のアリール基は、上記アリール基と同じである。
・アルキルカルボニルオキシ基:アルキルカルボニルオキシ基中のアルキル基は、上記アルキル基と同じである。
・アリールカルボニルオキシ基:アリールカルボニルオキシ基中のアリール基は、上記アリール基と同じである。
 これら置換基は一般的に、一般式(1)で示される芳香族炭化水素の求電子置換反応、求核置換反応、ハロゲン化、スルホン化、ジアゾ化、又はそれらの組み合わせによって導入することが可能である。例えばフリーデルクラフト反応によるアルキル化、フリーデルクラフト反応によるアシル化、ビルスマイヤー反応、遷移金属触媒カップリング反応などが挙げられる。
 n1は、0~6の整数がより好ましく、1~4の整数が特に好ましい。
 一般式(1)で表される化合物は、下記一般式(1-1)又は(1-2)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000012
 一般式(1-1)において、Arはベンゼン環である。R11~R16、X及びXは、一般式(1)におけるR11~R16、X及びXと同義であり、好ましい範囲も同じである。n3は1以上の整数を表す。ただし、n3が1の場合、R11~R16、X及びXにおいて、互いに隣接する少なくとも2つが結合して、ベンゼン環を形成する。
 一般式(1-2)において、Rxは一般式(1)におけるRxと同義であり、好ましい範囲も同じである。R10は置換基を表し、nxは0~4の整数を表す。m3は3以上の整数を表す。Ryは、水素原子又は置換基を表す。ここで、RxとRyが結合してもかまわない。
 n3は、1~6の整数が好ましく、1~3の整数がより好ましく、1~2の整数が特に好ましい。
 m3は、3~10の整数が好ましく、3~8の整数がより好ましく、3~5の整数が特に好ましい。
 一般式(1)で表される化合物の具体例として、ナフタレン、アントラセン、フェナントラセン、ピレン、テトラセン、テトラフェン、クリセン、トリフェニレン、ペンタセン、ペンタフェン、ペリレン、ピレン、ベンゾ[a]ピレン、コロネン、アンタントレン、コランヌレン、オバレン、グラフェン、シクロパラフェニレン、ポリパラフェニレン又はシクロフェンの構造を含む化合物が挙げられる。ただし、本発明はこれらに限定されない。
Figure JPOXMLDOC01-appb-C000013
 一般式(2)において、Y及びYは各々独立に水素原子、メチル基又はホルミル基を表す。R21、R22、R23及びR24は各々独立に、置換基を表し、a、b、c及びdは0~4の整数を表す。
 ここで、A環は、飽和環、二重結合を1もしくは2個有する不飽和環又は芳香環であってもよく、B環及びC環は、二重結合を1もしくは2個有する不飽和環であってもよい。なお、a、b、c又はdの各々において、2~4の整数の場合、互いに隣接する置換基が結合して環を形成してもよい。
 一般式(2)で表される脂肪族炭化水素は、ステロイド骨格を有する化合物である。
 ここで、ステロイド骨格の炭素番号は、下記の通りである。
Figure JPOXMLDOC01-appb-C000014
 最初に、一般式(2)で表される脂肪族炭化水素を説明する。
 R21、R22、R23及びR24における置換基は、どのような置換基でも構わないが、アルキル基、アルケニル基、ヒドロキシ基、ホルミル基、アシル基、カルボキシ基又はその塩、(メタ)アクリル基、(メタ)アクリロイルオキシ基、(メタ)アクリルアミド基、エポキシ基、オキセタニル基が好ましく、また、同一炭素原子に2つ置換した置換基が共同して形成された、=O基が好ましい。
 アルキル基は、炭素数1~12のアルキル基が好ましく、置換基を有していてもよい。このような置換基としては、どのような置換基でも構わないが、アルキル基、アルケニル基、ヒドロキシ基、ホルミル基、アシル基、カルボキシ基、アルコキシカルボニル基、カルバモイル基、スルホ基が挙げられる。アルキル基としては内部に二重結合又は三重結合の不飽和炭素結合を含有することがさらに好ましい。
 アルケニル基は、炭素数1~12のアルケニル基が好ましく、置換基を有していてもよい。このような置換基としては、どのような置換基でも構わないが、アルキル基、アルケニル基、ヒドロキシ基、ホルミル基、アシル基、カルボキシ基、アルコキシカルボニル基、カルバモイル基、スルホ基が挙げられる。
 R21は、炭素番号3に置換するのが好ましく、R22は、炭素番号6又は7に置換するのが好ましく、R23は炭素番号11又は12に置換するのが好ましく、R24は、炭素番号17に置換するのが好ましい。
 Y、Yは水素原子又はメチル基が好ましい。
 a、b、c、dは0~2の整数が好ましい。
 A環が不飽和環である場合、二重結合は炭素番号4と5の結合が好ましく、B環が不飽和環である場合、二重結合は炭素番号5と6又は6と7の結合が好ましく、C環が不飽和環である場合、二重結合は炭素番号8と9の結合が好ましい。
 なお、一般式(2)で表される化合物は、立体異性体のいずれをも包含するものである。置換基の結合方向が紙面下方向をα、紙面上方向をβで表すと、α、βのいずれであってもよく、これらの混合であってもよい。また、A/B環の配置、B/C環の配置、C/D環の配置は、トランス配置であっても、シス配置のいずれであってもよく、これらの混合配置であっても構わない。
 本発明では、a~dの総和が1以上であって、かつR21、R22、R23及びR24のいずれかが、ヒドロキシ基又は置換基を有するアルキル基が好ましい。
 ステロイド骨格を有する化合物としては下記に示されるようなステロイドが好ましい。
 下記では、ステロイド環に有する置換基は、立体的に制御されているものである。
 左からコレスタン類、コラン類、プレグナン類、アンドロスタン類、エストラン類である。
Figure JPOXMLDOC01-appb-C000015
 一般式(2)で表される脂肪族炭化水素の具体例として、コレステロール、エルゴステロール、テストステロン、エストラジオール、エルドステロール、アルドステロン、ヒドロコルチゾン、スチグマステロール、チモステロール、ラノステロール、7-デヒドロデスモステロール、7-デヒドロコレステロール、コラン酸、コール酸、リトコール酸、デオキシコール酸、デオキシコール酸ナトリウム、デオキシコール酸リチウム、ヒオデオキシコール酸、ケノデオキシコール酸、ウルソデオキシコール酸、デヒドロコール酸、ホケコール酸又はヒオコール酸の構造を含む化合物が挙げられる。ただし、本発明はこれらに限定されない。
 一般式(2)で表される脂肪族炭化水素は、市販品を用いることができる。
 一般式(D)で表される化合物は、RD1の少なくとも1つがL1a-Pであること、又はRD1の少なくとも2つが各々独立にL2a-P又はL3a-Pであることが好ましく、前者であることがより好ましい。一般式(1)においては、R11~R16、X及びXの少なくとも1つがL1a-Pであること、又はR11~R16、X及びXの少なくとも2つが各々独立にL2a-P又はL3a-Pであることが好ましく、前者であることがより好ましい。一般式(2)においては、R21、R22、R23及びR24の少なくとも1つがL1a-Pであること、又はRD1の少なくとも2つが各々独立にL2a-P又はL3a-Pであることが好ましく、前者であることがより好ましい。
 なお、L1a-PはL1aで環に結合する。また、L2a-P及びL3a-PはL2a及びL3aでそれぞれ環に結合する。
 L1aは、単結合又は連結基を表す。連結基としては、炭化水素連結基〔炭素数1~10のアルキレン基(より好ましくは炭素数1~6、さらに好ましくは1~3)、炭素数2~10のアルケニレン基(より好ましくは炭素数2~6、さらに好ましくは2~4)、炭素数2~10のアルキニレン基(より好ましくは炭素数2~6、さらに好ましくは2~4)、炭素数6~22のアリーレン基(より好ましくは炭素数6~10)、又はこれらの組み合わせ〕、ヘテロ連結基〔カルボニル基(-CO-)、チオカルボニル基(-CS-)、エーテル基(-O-)、チオエーテル基(-S-)、イミノ基(-NRNa-)、アンモニウム連結基(-NRNa -)、ポリスルフィド基(Sの数が1~8個)、イミン連結基(RNa-N=C<,-N=C(RNa)-)、スルホニル基(-SO-)、スルフィニル基(-SO-)、リン酸連結基(-O-P(OH)(O)-O-)、ホスホン酸連結基(-P(OH)(O)-O-)、又はこれらの組み合わせ〕、又は、これらを組み合わせた連結基が好ましい。L1aにおけるRNaは水素原子又は炭素数1~12のアルキル基(好ましくは炭素数1~4、さらに好ましくは炭素数1~2)を表す。
 なお、置換基や連結基が縮合して環を形成する場合には、上記炭化水素連結基が、二重結合や三重結合を適宜形成して連結していてもよい。形成される環としては、5員環又は6員環が好ましい。5員環としては含窒素5員環が好ましく、その環をなす化合物として例示すれば、ピロール、イミダゾール、ピラゾール、インダゾール、インドール、ベンゾイミダゾール、ピロリジン、イミダゾリジン、ピラゾリジン、インドリン、カルバゾール、又はこれらの誘導体などが挙げられる。6員環としては、ピペリジン、モルホリン、ピペラジン、又はこれらの誘導体などが挙げられる。またアリール基、ヘテロ環基等を含むとき、それらは単環でも縮環でもよく、同様に置換されていても無置換でもよい。
 L1aが組み合わせからなる連結基である場合、組み合わせる数は、特に限定されず、例えば、2~30が好ましく、2~20がより好ましく、2~10がさらに好ましく、2~4が特に好ましい。組み合わせからなる連結基としては、例えば、炭素数1~6(好ましくは1~4)のアルキレン基、炭素数6~24(好ましくは6~10)のアリーレン基、エーテル基(-O-)、チオエーテル基(-S-)、イミノ基(NRNa)、カルボニル基、(ポリ)アルキレンオキシ基、(ポリ)エステル基、(ポリ)アミド基又はそれらの組み合わせに係る基が挙げられる。中でも、炭素数1~4のアルキレン基、エーテル基(-O-)、イミノ基(NRNa)、カルボニル基、(ポリ)アルキレンオキシ基、(ポリ)エステル基又はそれらの組み合わせに係る基がより好ましい。他にも後述する例示モノマーが有する連結基が挙げられる。
 L1aが置換基を採りうる基であるとき、さらに置換基を有していてもよい。置換基としては上記置換基Tが挙げられ、中でも、ハロゲン原子(好ましくは、フッ素原子、塩素原子)、アルキル基、アシル基、カルバモイル基、ヒドロキシ基が好ましい。
 L1aは一定以上の長さを有することが好ましい。具体的には環α(環α、一般式(1)又は(2)における環構造を構成する原子のうちL1aが結合する原子)とPとを連結する最短原子数は、2原子以上が好ましく、4原子以上がより好ましく、6原子以上がさらに好ましく、8原子以上が特に好ましい。上限は1000原子以下であることが好ましく、500原子以下であることがより好ましく、100原子以下であることがさらに好ましく、20原子以下であることが特に好ましい。
 L2a、L3aはL1aと同義でありそれぞれ同一であっても異なっていてもよい。
 Pは重合性部位である。重合性部位とは、重合反応で重合することができる基であり、エチレン性不飽和基、エポキシ基やオキセタニル基のような、連鎖重合する基が挙げられる。またヒドロキシ基、アミノ基、カルボキシ基、イソシアナート基等を2つ以上有する基、及び、縮合重合する基として、ジカルボン酸無水物構造を1つ以上有する基などが挙げられる。
 なお、エチレン性不飽和基は、例えば、(メタ)アクリロイル基、(メタ)アクリロイルオキシ基、(メタ)アクリルアミド基、ビニル基(アリル基を含む)が挙げられる。
 Pは、エチレン性不飽和基、エポキシ基、オキセタニル基又はジカルボン酸無水物を1つ以上、又はヒドロキシ基、アミノ基、イソシアナート基、2つ以上含有する部分構造が好ましく、(メタ)アクリロイル基、(メタ)アクリロイルオキシ基、(メタ)アクリルアミド基又はビニル基を1つ以上、又はヒドロキシ基、アミノ基、イソシアナート基を2つ以上含有する部分構造がより好ましく、(メタ)アクリロイル基又は(メタ)アクリロイルオキシ基を含有する部分構造が好ましい。
 Pはヒドロキシ基、アミノ基、カルボキシ基、イソシアナート基、ジカルボン酸無水物など縮合重合する基が挙げられる。なかでもヒドロキシ基、アミノ基、イソシアナート基、ジカルボン酸無水物が好ましく、ヒドロキシ基、アミノ基、イソシアナート基が特に好ましい。
 L1a-Pは、下記一般式(F-1)で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000016
 一般式(D)で表される化合物は、d1が1~4で、RD1が一般式(F-1)で表される基であることが好ましく、d1が1で、RD1が一般式(F-1)で表される基であることがより好ましい。一般式(1)においては、R11~R16、X及びXの少なくとも4つが一般式(F-1)で表される基であることが好ましく、少なくとも1つが一般式(F-1)で表される基であることがより好ましい。一般式(2)においては、R21、R22、R23及びR24の少なくとも4つが一般式(F-1)で表される基であることが好ましく、少なくとも1つが一般式(F-1)で表される基であることがより好ましい。
 X31は、-O-又は>NHを表す。
 式中、R31は、水素原子、ヒドロキシ基、シアノ基、ハロゲン原子、アルキル基、アルケニル基、アルキニル基又はアリール基を表す。
 R31として採りうるアルキル基としては、特に限定されないが、炭素数1~24のアルキル基が好ましく、1~12のアルキル基がより好ましく、1~6のアルキル基が特に好ましい。
 R31として採りうるアルケニル基としては、特に限定されないが、炭素数2~24のアルケニル基が好ましく、2~12のアルケニル基がより好ましく、2~6のアルケニル基が特に好ましい。
 R31として採りうるアルキニル基としては、特に限定されないが、炭素数2~24のアルキニル基が好ましく、2~12のアルキニル基がより好ましく、2~6のアルキニル基が特に好ましい。
 R31として採りうるアリール基としては、特に限定されないが、炭素数6~22のアリール基が好ましく、6~14のアリール基がより好ましい。
 R31として採りうるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられ、フッ素原子、塩素原子又は臭素原子が好ましい。
 R31は、中でも、水素原子又はアルキル基が好ましく、水素原子又はメチルがより好ましい。
 R31が置換基を採りうる基(アルキル基、アルケニル基、アルキニル基又はアリール基)であるとき、R31はさらに置換基を有していてもよい。置換基としては後述する置換基Zが挙げられ、中でも、ハロゲン原子(フッ素原子等)、ヒドロキシ基、カルボキシ基、エステル基、アミド基が好ましい。
 L31は、L1aと同義である。中でも、アルキレン基(好ましくは炭素数1~12、さらに好ましくは1~6)、カルボニル基、エーテル基、イミノ基、又はこれらを組み合わせた連結基がより好ましい。炭素数1~4のアルキレン基、カルボニル基、エーテル基、イミノ基又はこれらを組み合わせた連結基が特に好ましい。
 L31が置換基を採りうる基であるとき、さらに置換基を有していてもよい。置換基としては上記置換基Tが挙げられ、中でも、ハロゲン原子(好ましくは、フッ素原子、塩素原子)、アルキル基、アシル基、カルバモイル基、ヒドロキシ基が好ましい。
 L31は一定以上の長さを有することが好ましい。環α(環α、一般式(1)又は(2)における環構造を構成する原子のうちL1aが結合する原子)とX31とを連結する最短原子数は、環αとPとを連結する最短原子数と同じである。
 以下に、上記2環以上の環構造を有する化合物の例を挙げるが、本発明がこれらにより限定して解釈されるものではない。なお、下記例示化合物において、m4は、1~100000を表し、n4は、1~100000を表す。
Figure JPOXMLDOC01-appb-C000017
 2環以上の環構造を有する化合物は、例えば、2環以上の環構造と反応点(例えば、ヒドロキシ基やカルボキシ基など)を有する化合物に重合性基(例えば、(メタ)アクリロイル基など)を含有する化合物を反応させて合成することにより得ることができる。
 バインダ粒子Bの平均粒子径は、50,000nm以下であり、1000nm以下であることが好ましく、500nm以下であることがより好ましく、300nm以下であることがさらに好ましく、250nm以下であることが特に好ましい。下限値は10nm以上であり、30nm以上であることが好ましく、50nm以上であることがさらに好ましく、100nm以上であることが特に好ましい。バインダ粒子Bの大きさを上記の範囲とすることにより、固体粒子等との抵抗被膜の面積が小さくなり、低抵抗化することができる。すなわち、良好な密着性と界面抵抗の抑制とを実現することができる。
 本発明において、バインダ粒子Bの平均粒子径は、イオン伝導性物質を内包した状態での平均粒子径をいう。
 なお、バインダ粒子Bの平均粒子径の測定方法は、バインダ粒子Aの平均粒子径の測定方法と同じである。
 バインダ粒子Bを構成するポリマーの質量平均分子量は、5,000以上が好ましく、10,000以上がより好ましく、30,000以上がさらに好ましい。上限としては、1,000,000以下が実質的であるが、架橋された態様も好ましい。
 なお、バインダ粒子Bを構成するポリマーの質量平均分子量は、バインダ粒子Aを構成するポリマーの数平均分子量の測定方法と同様にして測定することができる。
 加熱や電圧の印加によってポリマーの架橋が進行した場合には、上記分子量より大きな分子量となっていてもよい。好ましくは、全固体二次電池の使用開始時に、バインダ粒子Bを構成するポリマーが上記範囲の質量平均分子量であることである。
 本発明に用いられるバインダを構成するポリマーの水分濃度は、100ppm(質量基準)以下が好ましい。
 また、本発明に用いられるバインダを構成するポリマーは、晶析させて乾燥させてもよく、ポリマー溶液をそのまま用いてもよい。金属系触媒(ウレタン化、ポリエステル化触媒=スズ、チタン、ビスマス)は少ない方が好ましい。重合時に少なくするか、晶析で触媒を除くことで、共重合体中の金属濃度を、100ppm(質量基準)以下とすることが好ましい。
 各固体電解質層中のバインダの含有量は特に制限されない。各固体電解質層中、バインダの含有量は、無機固電解質100質量部に対して、0.1~50質量部であることが好ましく、0.5~40質量部であることがより好ましく、1~30質量部であることが特に好ましい。
 バインダを上記の範囲で用いることにより、一層効果的に無機固体電解質の結着性と界面抵抗の抑制性とを両立して実現することができる。
 本発明の積層体を構成する各固体電解質層において、バインダは1種を単独で用いても、複数の種類のものを組み合わせて用いてもよい。また、他の粒子と組み合わせて用いてもよい。
 なお、本発明に用いられるバインダは、常法により調製することができる。
 また、粒子化する方法としては、例えば、重合反応時にバインダ粒子を形成する方法、ポリマー溶液を沈殿させて粒子化する方法等が挙げられる。
(リチウム塩)
 本発明の積層体を構成する固体電解質層は、リチウム塩(支持電解質)を含有してもよい。
 リチウム塩としては、通常この種の製品に用いられるリチウム塩が好ましく、特に制限はなく、例えば、特開2015-088486の段落0082~0085記載のリチウム塩が好ましい。
 固体電解質層がリチウム塩を含む場合、リチウム塩の含有量は、各固体電解質層中、無機固体電解質100質量部に対して、0.1質量部以上が好ましく、5質量部以上がより好ましい。上限としては、50質量部以下が好ましく、20質量部以下がより好ましい。
(イオン液体)
 本発明の積層体を構成する固体電解質層は、イオン伝導度をより向上させるため、イオン液体を含有してもよい。イオン液体としては、特に限定されないが、イオン伝導度を効果的に向上させる観点から、上述したリチウム塩を溶解するものが好ましい。例えば、下記のカチオンと、アニオンとの組み合わせよりなる化合物が挙げられる。
 (i)カチオン
 カチオンとしては、イミダゾリウムカチオン、ピリジニウムカチオン、ピペリジニウムカチオン、ピロリジニウムカチオン、モルホリニウムカチオン、ホスホニウムカチオン及び第4級アンモニウムカチオン等が挙げられる。ただし、これらのカチオンは以下の置換基を有する。
 カチオンとしては、これらのカチオンを1種単独で用いてもよく、2以上組み合わせて用いることもできる。
 好ましくは、四級アンモニウムカチオン、ピペリジニウムカチオン又はピロリジニウムカチオンである。
 上記カチオンが有する置換基としては、アルキル基(炭素数1~8のアルキル基が好ましく、炭素数1~4のアルキル基がより好ましい。)、ヒドロキシアルキル基(炭素数1~3のヒドロキシアルキル基が好ましい。)、アルキルオキシアルキル基(炭素数2~8のアルキルオキシアルキル基が好ましく、炭素数2~4のアルキルオキシアルキル基がより好ましい。)、エーテル基、アリル基、アミノアルキル基(炭素数1~8のアミノアルキル基が好ましく、炭素数1~4のアミノアルキル基が好ましい。)、アリール基(炭素数6~12のアリール基が好ましく、炭素数6~8のアリール基がより好ましい。)が挙げられる。上記置換基はカチオン部位を含有する形で環状構造を形成していてもよい。置換基はさらに上記分散媒で記載した置換基を有していてもよい。なお、上記エーテル基は、他の置換基と組み合わされて用いられる。このような置換基として、アルキルオキシ基、アリールオキシ基等が挙げられる。
 (ii)アニオン
 アニオンとしては、塩化物イオン、臭化物イオン、ヨウ化物イオン、四フッ化ホウ素イオン、硝酸イオン、ジシアナミドイオン、酢酸イオン、四塩化鉄イオン、ビス(トリフルオロメタンスルホニル)イミドイオン、ビス(フルオロスルホニル)イミドイオン、ビス(パーフルオロブチルメタンスルホニル)イミドイオン、アリルスルホネートイオン、ヘキサフルオロリン酸イオン及びトリフルオロメタンスルホネートイオン等が挙げられる。
 アニオンとしては、これらのアニオンを1種単独で用いてもよく、2種以上組み合わせて用いることもできる。
 好ましくは、四フッ化ホウ素イオン、ビス(トリフルオロメタンスルホニル)イミドイオン、ビス(フルオロスルホニル)イミドイオン又はヘキサフルオロリン酸イオン、ジシアナミドイオン及びアリルスルホネートイオンであり、さらに好ましくはビス(トリフルオロメタンスルホニル)イミドイオン又はビス(フルオロスルホニル)イミドイオン及びアリルスルホネートイオンである。
 上記のイオン液体としては、例えば、1-アリル-3-エチルイミダゾリウムブロミド、1-エチル-3-メチルイミダゾリウムブロミド、1-(2-ヒドロキシエチル)-3-メチルイミダゾリウムブロミド、1-(2-メトキシエチル)-3-メチルイミダゾリウムブロミド、1-オクチル-3-メチルイミダゾリウムクロリド、N,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウムテトラフルオロボラート、1-エチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド、1-エチル-3-メチルイミダゾリウムビス(フルオロスルホニル)イミド、1-エチル-3-メチルイミダゾリウムジシアナミド、1-ブチル-1-メチルピロリジニウムビス(トリフルオロメタンスルホニル)イミド、トリメチルブチルアンモニウムビス(トリフルオロメタンスルホニル)イミド、N,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウム ビス(トリフルオロメタンスルホニル)イミド(DEME)、N-プロピル-N-メチルピロリジニウムビス(トリフルオロメタンスルホニル)イミド(PMP)、N-(2-メトキシエチル)-N-メチルピロリジニウム テトラフルオロボラート、1-ブチル-1-メチルピロリジニウム ビス(フルオロスルホニル)イミド、(2-アクリロイルエチル)トリメチルアンモニウムビス(トリフルオロメタンスルホニル)イミド、1-エチルー1-メチルピロリジニウムアリルスルホネート、1-エチルー3-メチルイミダゾリウムアリルスルホネート及び塩化トリヘキシルテトラデシルホスホニウムが挙げられる。
 各固体電解質層中のイオン液体の含有量は、無機固体電解質100質量部に対して0質量部以上が好ましく、1質量部以上がより好ましく、2質量部以上が最も好ましい。上限としては、50質量部以下が好ましく、20質量部以下がより好ましく、10質量部以下が特に好ましい。
 リチウム塩とイオン液体の質量比は、リチウム塩:イオン液体=1:20~20:1が好ましく、1:10~10:1がより好ましく、1:7~2:1が最も好ましい。
(線状構造体)
 本発明の積層体を構成する固体電解質層は、構造を補強するための線状構造体を含有してもよい。具体的には有機物、無機物からなる線状構造体を例示できる。
 有機物からなる線状構造体としては、例えば、セルロースナノファイバー(商品名:セリッシュ(ダイセルファインケム(株)製))、置換セルロースナノファイバー、ポリエステルナノファイバー(商品名:ナノフロント(帝人(株)製))、ポリアミドナノファイバー(商品名:ティアラ(ダイセルファインケム(株)製))、アクリルナノファイバー、ポリウレタンナノファイバー、ポリイミドナノファイバーが挙げられる。
 カーボンからなる線状構造体としては、例えばカーボンナノチューブ、カーボンナノファイバーが挙げられる。
 無機物からなる線状構造体としては、例えば、金属からなる線状構造体(銀ナノワイヤー、銅ナノワイヤー、ニッケルナノワイヤー、コバルトナノワイヤー、金ナノワイヤー等)、セラミックスからなる線状構造体(酸化アルミナノワイヤー、水酸化銅ナノワイヤー、ヒドロキシアパタイトナノワイヤー、酸化鉄水和物ナノワイヤー、酸化鉄ナノワイヤー、水酸化ニッケルナノワイヤー、酸化マグネシウムナノワイヤー、酸化モリブデンナノワイヤー、シリコンカーバイドナノワイヤー、酸化チタンナノワイヤー、酸化マンガンナノワイヤー、酸化ニッケルナノワイヤー、酸化タングステンナノワイヤー、酸化バナジウムナノワイヤー、酸化亜鉛ナノワイヤー等)、ガラスからなる線状構造体(シリカグラスナノファイバー等)が挙げられる。
 各固体電解質層中の線状構造体の含有量は、無機固体電解質100質量部に対して1~50質量%が好ましく、5~30質量部がより好ましい。
(支持体A)
 上記各固体電解質層は、上記離型フィルムとは別の支持体を含んでもよい。すなわち、本発明の積層体において、各固体電解質層の構成部材として支持体を用いてもよい。以下、このような支持体を支持体Aとも称する。支持体Aの形状として好ましくは、シート状の支持体に複数の貫通孔等の開口部を有しているものである。支持体Aは樹脂、ガラス又は繊維から形成されることが好ましい。
 上記樹脂として例えば、ポリカプロラクタム、ポリアルキレン、アクリル樹脂、ポリイミド、ポリカーボネート、ポリフェニレン、ポリフェニレンサルファイド、ポリテトラフルオロエチレン(PTFE)、ポリテトラフルオロエチレン(PTFE)-テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)及びナイロンが挙げられ、ポリカプロラクタム、ポリイミド、アクリル樹脂が好ましい。
 開口部を有するガラス支持体Aは、例えば、ウェットエッチング等でパターニングすることにより作製することができる。この方法において上記エッチングを効果的に行えるため、少量の金属イオンを含む感光性ガラスを用いることが好ましい。
 開口部の形状は特に限定されないが、例えばハニカム状、円形等が挙げられる。また、形状を有さない不定形の開口部(例えば繊維が合わさってできる、開口率の高い貫通孔)であってもよい。
[固体電解質含有シートの製造方法]
 本発明の固体電解質含有シートの製造方法は、少なくとも下記工程(1)~(3)と乾燥する工程とを有する、3層以上の固体電解質層の積層体を有する固体電解質含有シートの製造方法である。
工程(1):平均粒子径0.3~0.9μmの無機固体電解質とバインダとを含む固体電解質組成物を塗布して固体電解質層を形成する。
工程(2):平均粒子径1~5μmの無機固体電解質と粒子状バインダとを含む固体電解質組成物を塗布して固体電解質層を形成する。
工程(3):平均粒子径0.3~0.9μmの無機固体電解質とバインダとを含む固体電解質組成物を塗布して固体電解質層を形成する。
 ここで、上記工程(1)~(3)を行う順は特に制限されず、同時に行われてもよい。
 上記工程(2)により形成される固体電解質層が、上記工程(1)により形成される固体電解質層と、上記工程(3)により形成される固体電解質層の間に形成される。
 本発明の固体電解質含有シートの製造方法により、上記本発明の固体電解質含有シートを好適に製造することができる。すなわち、工程(1)の固体電解質組成物から、本発明の固体電解質含有シートの第1SE層及び第3SE層のいずれか一方を形成し、工程(3)の固体電解質組成物から、上記第1SE層及び第3SE層の他の一方を形成する。また、工程(2)の固体電解質組成物から、第2SE層を形成する。
 本発明の固体電解質含有シートの製造方法は、上記第4SE層を形成する工程を含むことが好ましい。本発明の固体電解質含有シートの製造方法において、工程(1)の固体電解質組成物から形成される固体電解質層と、工程(3)の固体電解質組成物から形成される固体電解質層の間に、短絡抑制層である固体電解質層を形成するための固体電解質組成物を塗布する工程(4)を含むことが好ましい。
 本発明の固体電解質含有シートの製造方法において、短絡抑制層が、第1SE層及び第3SE層のうちの一方に接するように工程(4)を行うことが好ましい。
 また、本発明の固体電解質含有シートの製造方法は、得ようとする固体電解質含有シートの形態に合わせて、「他のSE層」を形成する工程を含むことができる。
 上記工程(1)~(4)に用いられる固体電解質組成物及び「他のSE層」の形成に用いられる固体電解質組成物が含有する成分及び含有量は、上述した本発明の積層体が含有する成分及び含有量に対応する。
 なお、第4SE層における水銀圧入法で測定される空孔細孔半径は、工程(4)に用いられる固体電解質組成物の成分、含有量、本発明の積層体を形成する際の加圧時の圧力によって調整することができる。
<固体電解質組成物の調製>
 本発明の固体電解質含有シートの製造方法に用いられる固体電解質組成物は、常法により調製することができる。具体的には、無機固体電解質及びバインダと、必要により分散媒等の他の成分とを、混合又は添加することにより、調製できる。例えば、各種の混合機を用いて上記成分を混合することにより、調製できる。混合条件としては、特に限定されないが、例えば、ボールミル、ビーズミル、プラネタリミキサ―、ブレードミキサ―、ロールミル、ニーダー、ディスクミル等が挙げられる。
(分散媒)
 上記分散媒の具体例としては以下のものが挙げられる。
 アルコール化合物溶媒としては、例えば、メチルアルコール、エチルアルコール、1-プロピルアルコール、2-ブタノール、エチレングリコール、プロピレングリコール、グリセリン、1,6-ヘキサンジオール、1,3-ブタンジオール及び1,4-ブタンジオールが挙げられる。
 エーテル化合物溶媒としては、アルキレングリコールアルキルエーテル(エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコール、ジプロピレングリコール、プロピレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、トリエチレングリコール、ポリエチレングリコール、プロピレングリコールジメチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジブチルエーテル等)、ジアルキルエーテル(ジメチルエーテル、ジエチルエーテル、ジブチルエーテル等)、テトラヒドロフラン、ジオキサン(1,2-、1,3-及び1,4-の各異性体を含む)が挙げられる。
 アミド化合物溶媒としては、例えば、N,N-ジメチルホルムアミド、1-メチル-2-ピロリドン、2-ピロリジノン、1,3-ジメチル-2-イミダゾリジノン、ε-カプロラクタム、ホルムアミド、N-メチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルプロパンアミド及びヘキサメチルホスホリックトリアミドが挙げられる。
 アミノ化合物溶媒としては、例えば、トリエチルアミン及びトリブチルアミンが挙げられる。
 ケトン化合物溶媒としては、例えば、アセトン、メチルエチルケトン、ジエチルケトン、ジプロピルケトン、ジブチルケトン、ジイソブチルケトンが挙げられる。
 エステル化合物溶媒としては、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、酢酸ペンチル、酢酸ヘキシル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、プロピオン酸ブチル、酪酸メチル、酪酸エチル、酪酸プロピル、酪酸ブチル、イソ酪酸イソブチル、酪酸ペンチル、吉草酸メチル、吉草酸エチル、吉草酸プロピル、吉草酸ブチル、カプロン酸メチル、カプロン酸エチル、カプロン酸プロピル、カプロン酸ブチル等が挙げられる。
 芳香族化合物溶媒としては、例えば、ベンゼン、トルエン、キシレン及びメシチレンが挙げられる。
 脂肪族化合物溶媒としては、例えば、ヘキサン、ヘプタン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、デカリン、オクタン、ペンタン、シクロペンタン及びシクロオクタンが挙げられる。
 ニトリル化合物溶媒としては、例えば、アセトニトリル、プロピロニトリル及びブチロニトリルが挙げられる。
<積層体の形成方法>
 本発明の積層体は、上記固体電解質組成物を用いて形成することができる。以下、本発明の固体電解質含有シートの製造方法により、本発明の転写シートを製造する場合を例にとって説明する。
 離型フィルム(支持体)上に固体電解質組成物を塗布する方法は特に制限されないが、例えば、湿潤逐次塗布法及び塗布法が挙げられ、同時重層塗布法が好ましい。
(湿潤逐次塗布法)
 湿潤逐次塗布法は、例えば、特開2007-83625号公報の記載を参照して行うことができる。以下、図1に示す本発明の転写シート10Aの製造を例にとって説明する。
 離型フィルム4上に、固体電解質層3(第1SE層)を形成するための固体電解質組成物(分散媒を含むスラリー)を塗布し(工程(1))、第1SE層を形成する。
 続いて、第1SE層から分散媒が蒸発又は揮発しきる前に、第1SE層上に固体電解質層2(第2SE層)を形成するための固体電解質組成物(分散媒を含むスラリー)を塗布し(工程(2))、第2SE層を形成する。
 続いて、第2SE層から分散媒が蒸発又は揮発しきる前に、第2SE層上に、固体電解質層1(第3SE層)を形成するための固体電解質組成物(分散媒を含むスラリー)を塗布し(工程(3))、第3SE層を形成する。
 なお、上記線状構造体を用いる場合、例えば、工程(2)において、第1SE層から分散媒が蒸発又は揮発しきる前に、第2SE層を形成するための固体電解質組成物を含浸させた線状構造体を配置し、第2SE層を形成してもよい。線状構造体は、工程(1)及び(3)においても同様に用いることができる。
 また、上記支持体Aを用いる場合、例えば、工程(2)において、第1SE層から分散媒が蒸発又は揮発しきる前に、第1SE層上に貫通孔を有する支持体Aを配置し、第2SE層を形成するための固体電解質組成物を塗布し(工程(2))、貫通孔に固体電解質組成物(スラリー)を充填し第2SE層を形成してもよい。支持体Aは、工程(1)及び(3)においても同様に用いることができる。
 ここで、「第1SE層(第2SE層)から分散媒が蒸発又は揮発しきる前」とは、「第1SE層(第2SE層)が減率乾燥を示すようになる前」であることが好ましい。
 「第1SE層(第2SE層)が減率乾燥を示すようになる前」とは、通常、スラリーの塗布直後から数分間の過程を指し、この間においては、塗布された塗布層中の溶剤(分散媒)の含有量が時間に比例して減少する「恒率乾燥」の現象を示す。この「恒率乾燥」を示す時間については、例えば、「化学工学便覧」(頁707~712、丸善(株)発行、昭和55年10月25日)に記載されている。
 なお、スラリーの塗布は、例えば、エクストルージョンダイコーター、エアードクターコーター、ブレッドコーター、ロッドコーター、ナイフコーター、スクイズコーター、リバースロールコーター、バーコーター等の通常の塗布方法によって行うことができる。
(同時重層塗布法)
 同時重層塗布法は、例えば、特開2005-271283号公報及び特開2006-247967号公報の記載を参照して行うことができる。
 同時重層塗布は、例えば、エクストルージョンダイコーター、カーテンフローコーター等のコーターを用いて、少なくとも、工程(1)~(3)で用いる各固体電解質組成物を例えば離型フィルム上に同時に塗布する塗布方法により、行なうことができる。本発明において、同時に塗布するとは、例えば後述するように各固体電解質組成物が重層された状態で例えば離型フィルム上に塗布されることを意味し、離型フィルム上に塗布される時間若しくはタイミングが完全に一致する態様に限定されない。図1に示す転写シートを例にとると、各固体電解質層を形成するためのスラリーが同時重層塗布されることにより、第1~第3SE層が分散媒を含んだ状態(湿潤状態)で離型フィルム4上に積層され、図1に示す層構成となる。
 同時重層塗布を、例えば、エクストルージョンダイコーターにより行った場合、同時に吐出される3種のスラリー(第1SE層を形成するための固体電解質組成物、第2SE層を形成するための固体電解質組成物、及び第3SE層を形成するための固体電解質組成物)は、エクストルージョンダイコーターの吐出口附近で、即ち、支持体上に移る前に重層形成され、その状態で支持体上に重層塗布される。
(乾燥)
 全ての固体電解質組成物が塗布された後、乾燥する工程が行われる。乾燥温度及び乾燥時間は、スラリーに用いた分散媒により適宜に設定することができる。乾燥温度は、例えば、80~200℃であり、乾燥時間は、0.3~15分である。
 本発明において、本発明の効果を損なわない限り、本発明の積層体における乾燥後の各固体電解質層は、それぞれ、乾燥後も分散媒を含有してよい。例えば、固体電解質層の全質量中、1質量%以下とすることができる。
(加圧)
 本発明の固体電解質含有シートの製造方法は、全ての固体電解質層を、固体電解質組成物を塗布し、乾燥した後、加圧する工程を含んで形成することが好ましい。加圧する圧力は、得られる固体電解質含有シート中の無機固体電解質粒子及びバインダ粒子が粒子状の形態を保持できる範囲で調整される。例えば、1~100MPaである。
(保存)
 本発明の固体電解質含有シートの保存方法は特に制限されないが、ロールに巻き取った状態で保存することが好ましい。上記加圧は、固体電解質含有シートをロールに巻き取る前及び後のいずれに行ってもよいが、ロールに巻き取る前に加圧することが好ましい。
[全固体二次電池用電極シートの製造方法]
 本発明の全固体二次電池用電極シートの製造方法は、本発明の固体電解質含有シートの製造方法により得られた積層体を、電極活物質層上に転写する工程を含む。本発明の全固体二次電池用電極シートの製造方法は、上記固体電解質含有シートの製造方法を含む以外は、常法によって行うことができる。
 集電体となる金属箔上に、電極用組成物を塗布し、塗膜を形成(製膜)する工程を含む(介する)方法により、製造できる。金属箔上に導電体層形成用組成物を塗布し、導電体層を形成し、この導電体層上に電極用組成物を塗布してもよい。
 例えば、負極集電体である金属箔上に、負極用組成物として、負極活物質を含有する負極用組成物を塗布して負極活物質層を形成し、全固体二次電池用負極シートを作製する。次いで、この負極活物質層の上に、本発明の固体電解質含有シートの製造方法により得た転写シートの積層体を転写する。図1に示す転写シートを例にとると、固体電解質層1(第3SE層)が負極活物質層と接するようにして、全固体二次電池用負極シート上に転写シートを重ねる。転写シートを重ねた後、加圧し、固体電解質含有シートと負極活物質層を密着させる。必要に応じて加熱状況下で加圧してもよい。このようにして、本発明の全固体二次電池用負極シートを得ることができる。
 なお、本発明の全固体二次電池用電極シートの電極活物質層は、通常の全固体二次電池を構成する電極活物質層を用いることができる。このような電極活物質層を形成するための電極用組成物として、例えば、上記工程(1)又は(3)で用いられる固体電解質組成物に活物質を含有させた電極用組成物を用いることができる。
[全固体二次電池の製造方法]
 本発明の全固体二次電池の製造方法は、本発明の全固体二次電池用電極シートの製造方法を含む。本発明の全固体二次電池の製造方法は、上記全固体二次電池用電極シートの製造方法を含む以外は、常法によって行うことができる。
 例えば、上記作製した全固体二次電池用負極シート上の転写シート10Aから離型フィルム4を剥す。固体電解質層3上に、正極用組成物を塗布し正極活物質層を形成する。正極活物質層上に集電体を重ねることにより、図3に示す層構成を有する全固体二次電池100Aを得ることができる。必要によりこれを筐体に封入して所望の全固体二次電池とすることができる。
 別の方法として、次の方法が挙げられる。すなわち、上記のようにして、全固体二次電池用負極シートを作製する。また、正極集電体である金属箔上に、正極用組成物として、正極活物質を含有する正極用組成物を塗布して正極活物質層を形成し、全固体二次電池用正極シートを作製する。全固体二次電池用負極シートから離型フィルムを剥し、離型フィルムを有していた固体電解質層の上に、全固体二次電池用正極シートを、固体電解質層と活物質層とが接するように積層する。必要に応じて加熱状況下で加圧してもよい。このようにして、全固体二次電池を製造することができる。
(電極活物質層の形成(成膜))
 電極用組成物の塗布方法は、特に限定されず、適宜に選択できる。例えば、塗布(好ましくは湿式塗布)、スプレー塗布、スピンコート塗布、ディップコート、スリット塗布、ストライプ塗布及びバーコート塗布が挙げられる。
 このとき、電極用組成物は、塗布した後に乾燥処理を施してもよい。乾燥温度は特に限定されない。下限は30℃以上が好ましく、60℃以上がより好ましく、80℃以上がさらに好ましい。上限は、300℃以下が好ましく、250℃以下がより好ましく、200℃以下がさらに好ましい。このような温度範囲で加熱することで、分散媒を除去し、固体状態にすることができる。また、温度を高くしすぎず、全固体二次電池の各部材を損傷せずに済むため好ましい。これにより、全固体二次電池において、優れた総合性能を示し、かつ良好な結着性を得ることができる。
 全固体二次電池を作製した後に、全固体二次電池を加圧することが好ましい。加圧方法としては油圧シリンダープレス機等が挙げられる。加圧力としては、特に限定されず、一般的には50~1500MPaの範囲であることが好ましい。
 また、塗布した電極用組成物は、加圧と同時に加熱してもよい。加熱温度としては、特に限定されず、一般的には30~300℃の範囲である。無機固体電解質のガラス転移温度よりも高い温度でプレスすることもできる。
 加圧は塗布溶媒又は分散媒をあらかじめ乾燥させた状態で行ってもよいし、溶媒又は分散媒が残存している状態で行ってもよい。
 加圧中の雰囲気としては、特に限定されず、大気下、乾燥空気下(露点-20℃以下)及び不活性ガス中(例えばアルゴンガス中、ヘリウムガス中、窒素ガス中)などいずれでもよい。
 プレス時間は短時間(例えば数時間以内)で高い圧力をかけてもよいし、長時間(1日以上)かけて中程度の圧力をかけてもよい。例えば全固体二次電池の場合には、中程度の圧力をかけ続けるために、全固体二次電池の拘束具(ネジ締め圧等)を用いることもできる。
 プレス圧はシート面等の被圧部に対して均一であっても異なる圧であってもよい。
 プレス圧は被圧部の面積や膜厚に応じて変化させることができる。また同一部位を段階的に異なる圧力で変えることもできる。
 プレス面は平滑であっても粗面化されていてもよい。
(初期化)
 上記のようにして製造した全固体二次電池は、製造後又は使用前に初期化を行うことが好ましい。初期化は、特に限定されず、例えば、プレス圧を高めた状態で初充放電を行い、その後、全固体二次電池の一般使用圧力になるまで圧力を開放することにより、行うことができる。
[全固体二次電池の用途]
 本発明の全固体二次電池は種々の用途に適用することができる。適用態様には特に限定はないが、例えば、電子機器に搭載する場合、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、コードレスフォン子機、ページャー、ハンディーターミナル、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、電気シェーバー、トランシーバー、電子手帳、電卓、携帯テープレコーダー、ラジオ、バックアップ電源、メモリーカードなどが挙げられる。その他民生用として、自動車(電気自動車等)、電動車両、モーター、照明器具、玩具、ゲーム機器、ロードコンディショナー、時計、ストロボ、カメラ、医療機器(ペースメーカー、補聴器、肩もみ機など)などが挙げられる。更に、各種軍需用、宇宙用として用いることができる。また、太陽電池と組み合わせることもできる。
 以下に、実施例に基づき本発明についてさらに詳細に説明する。なお、本発明がこれにより限定して解釈されるものではない。以下の実施例において組成を表す「部」及び「%」は、特に断らない限り質量基準である。また、「室温」は25℃を意味する。
<バインダAの合成例>
 還流冷却管、ガス導入コックを付した2L三口フラスコに、マクロモノマーM-1の40質量%ヘプタン溶液を7.2g、アクリル酸メチル(和光純薬工業株式会社製)を12.4g、アクリル酸(和光純薬工業株式会社製)を6.7g、ヘプタン(和光純薬工業株式会社製)を207g、アゾイソブチロニトリル1.4gを添加し、流速200mL/minにて窒素ガスを10分間導入した後に、100℃に昇温した。別容器にて調製した液(マクロモノマーM-1の40質量%ヘプタン溶液を93.1g、アクリル酸メチルを222.8g、アクリル酸を120.0g、ヘプタン300.0g、アゾイソブチロニトリル2.1gを混合した液)を4時間かけて滴下した。滴下完了後、アゾイソブチロニトリル0.5gを添加した。その後100℃で2時間攪拌した後、室温まで冷却し、ろ過することでバインダAの分散液を得た。固形成分濃度は39.2%であった。
(マクロモノマーM-1の合成例)
 12-ヒドロキシステアリン酸(和光純薬工業株式会社製)の自己縮合体(GPCポリスチレンスタンダード数平均分子量:2,000)にグリシジルメタクリレート(東京化成工業株式会社製)を反応させマクロモノマーとしてそれをメタクリル酸メチルとグリシジルメタクリレート(東京化成工業株式会社製)と1:0.99:0.01(モル比)の割合で重合したポリマーにアクリル酸(和光純薬株式会社製)を反応させたマクロモノマーM-1を得た。このマクロモノマーM-1のSP値は9.3、数平均分子量は11000であった。
 下記に、バインダAを構成するポリマー及びマクロモノマーM-1の推定構造式を示す。
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
<バインダBの合成例>
 還流冷却管、ガス導入コックを付した1Lの3つ口フラスコにヘプタンを200質量部加え、流速200mL/minにて窒素ガスを10分間導入した後に室温から80℃に昇温した。攪拌しているヘプタン中に、別容器にて調製した液(アクリル酸ブチルA-5(和光純薬工業社製)90質量部、メタクリル酸メチルA-4(上記例示化合物、和光純薬工業社製)20質量部、アクリル酸A-1(上記例示化合物、和光純薬工業社製)10質量部、B-27(上記例示化合物、合成品)を20質量部、マクロモノマーMM-1を60質量部(固形分量)、重合開始剤V-601(商品名、和光純薬工業社製)を2.0質量部混合した液)を2時間かけて滴下し、その後80℃で2時間攪拌した。その後、得られた混合物にV-601をさらに1.0質量部添加し、90℃で2時間攪拌した。得られた溶液をヘプタンで希釈することで、バインダBの分散液を得た。
(B-27の合成)
 1Lの3つ口フラスコにコレステロール(東京化成工業社製)80g、こはく酸モノ(2-アクリロイルオキシエチル)(アルドリッチ社製)を50g、4-ジメチルアミノピリジン(東京化成工業社製)を5g、ジクロロメタンを500g加えた後、20℃で5分攪拌した。攪拌している溶液中に1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩(東京化成工業社製)52gを30分かけて添加し、20℃で5時間攪拌した。その後0.1M塩酸で3回洗浄し、硫酸マグネシウムで乾燥し、減圧留去を行った。得られたサンプルをシリカゲルカラムクロマトグラフィーで精製することでB-27を得た。
(マクロモノマーMM-1の合成)
 還流冷却管、ガス導入コックを付した1Lの3つ口フラスコにトルエンを190質量部加え、流速200mL/minにて窒素ガスを10分間導入した後に室温から80℃に昇温した。攪拌しているトルエン中に、別容器にて調製した液(下記処方α)を2時間かけて滴下し、80℃で2時間攪拌した。その後、V-601(和光純薬工業社製)を0.2質量部添加し、さらに95℃で2時間攪拌した。攪拌後95℃に保った溶液に2,2,6,6-テトラメチルピペリジン-1-オキシル(東京化成工業社製)を0.025質量部、メタクリル酸グリシジル(和光純薬工業社製)を13質量部、テトラブチルアンモニウムブロミド(東京化成工業社製)を2.5質量部加えて120℃で3時間攪拌した。得られた混合物を室温まで冷却したのちメタノールに加えて沈殿させ、沈殿物をろ取し、メタノールで2回洗浄後、ヘプタン300質量部を加えて溶解させた。得られた溶液を減圧下で濃縮することでマクロモノマーMM-1の溶液を得た。固形分濃度は43.4%、SP値は9.1、質量平均分子量は16,000であった。得られたマクロモノマーMM-1を以下に示す。
 (処方α)
 メタクリル酸ドデシル(和光純薬工業社製)         150質量部
 メタクリル酸メチル (例示化合物A-4、和光純薬工業社製) 59質量部
 3-メルカプトイソ酪酸 (東京化成工業社製)         2質量部
 V-601 (和光純薬工業社製)             1.9質量部
Figure JPOXMLDOC01-appb-C000020
-測定方法-
<固形分濃度の測定方法>
 バインダA又はBの分散液及びマクロモノマー溶液の固形分濃度は、下記方法に基づいて、測定した。
 7cmΦのアルミカップ内にバインダA若しくはBの分散液又はマクロモノマー溶液を約1.5g秤量し、少数点第3位までの秤量値を読み取った。続いて窒素雰囲気下で90℃2時間、続いて140℃2時間加熱し、乾燥させた。得られたアルミカップ内の残存物の質量を測り、下記式により固形分濃度を算出した。測定は、5回行い、最大値及び最小値を除いた、3回の平均を採用した。
固形分濃度(%)=アルミカップ内の残存物量(g)/バインダA若しくはBの分散液又はマクロモノマー溶液(g)
<平均分子量の測定>
 マクロモノマーM-1の数平均分子量及びマクロモノマーMM-1の質量平均分子量は、上記方法(条件2)により、測定した。
-硫化物系無機固体電解質(Li-P-S系ガラス)の合成-
 硫化物系無機固体電解質は、T.Ohtomo,A.Hayashi,M.Tatsumisago,Y.Tsuchida,S.Hama,K.Kawamoto,Journal of Power Sources,233,(2013),pp231-235及びA.Hayashi,S.Hama,H.Morimoto,M.Tatsumisago,T.Minami,Chem.Lett.,(2001),pp872-873の非特許文献を参考にして合成した。
 具体的には、アルゴン雰囲気下(露点-70℃)のグローブボックス内で、硫化リチウム(LiS、Aldrich社製、純度>99.98%)2.42kg、五硫化二リン(P、Aldrich社製、純度>99%)3.90kgをそれぞれ秤量し、メノウ製乳鉢に投入し、メノウ製乳鉢を用いて、5分間混合した。なお、LiS及びPはモル比でLiS:P=75:25とした。
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを66個投入し、上記硫化リチウムと五硫化二リンの混合物全量を投入し、アルゴン雰囲気下で容器を密閉した。フリッチュ社製遊星ボールミルP-7(商品名)に容器をセットし、温度25℃、回転数510rpmで20時間メカニカルミリングを行い、黄色粉体の硫化物系無機固体電解質(Li-P-S系ガラス、「LPS」とも称する。)6.20gを得た。
[実施例1]
<固体電解質含有シートの作製>
(第1固体電解質組成物の調製)
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、LPS 2.9g、バインダAの分散液を固形分換算で0.1g、分散媒としてトルエン12.3gを投入した。フリッチュ社製遊星ボールミルP-7(商品名)に容器をセットし、温度25℃、回転数300rpmで2時間混合し、粒径0.7μmのLPSを含有する、第1固体電解質層を形成するための固体電解質組成物(第1固体電解質用組成物)を調製した。
(第2固体電解質組成物の調製)
 ジルコニアビーズを30個、回転数を100rpm、混合する時間を30分にしたこと以外は、第1固体電解質用組成物の調製と同様にして、第2固体電解質層を形成するための固体電解質組成物(第2固体電解質用組成物)を調製した。第2固体電解質用組成物中のLPSの粒径は2.0μmであった。
(第3固体電解質組成物の調製)
 バインダAをバインダBに変更したこと以外は、第1固体電解質用組成物の調製と同様にして、第3固体電解質層を形成するための固体電解質組成物(第3固体電解質用組成物)を調製した。第3固体電解質用組成物中のLPSの粒径は0.7μmであった。
 固体電解質組成物中の無機固体電解質の粒径は、特開2015-088486号公報の段落<0142>に記載の方法により測定した。
(積層体の形成)
 上述の同時重層塗布法により、各固体電解質組成物を塗布し、図1に示す固体電解質含有シート10Aを作製した。
 上記で調製した固体電解質組成物を、A1N30-H(商品名、(株)UACJ製、厚み20μm、幅200mmのアルミニウム支持体)上に、後述のように全固体二次電池を形成し加圧した後の、第1固体電解質層の厚みが3μm、第2固体電解質層の厚みが24μm、第3固体電解質層の厚みが3μmとなるように、第1固体電解質組成物、第2固体電解質組成物、第3固体電解質組成物を、スマートラボコーター(テクノスマート(株)製)で同時重層塗布し、乾燥器中、150℃で3分乾燥後、20MPaで加圧後巻き取り、実施例1の固体電解質含有シートを作製した。
 図1に示すように、実施例1の固体電解質含有シート10Aは、支持体4、第1SE層3、第2SE層2、第3SE層4を有する。
<全固体二次電池の作製>
(正極シートの作製)
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、上記で合成したLi-P-S系ガラス2.8g、バインダAの分散液を固形分換算で0.2g、分散媒としてトルエン12.3gを投入した。フリッチュ社製遊星ボールミルP-7(商品名)に容器をセットし、温度25℃、回転数300rpmで2時間混合した。その後、活物質としてNMC(LiNi0.33Co0.33Mn0.33(アルドリッチ社製))7.0g、導電助剤としてアセチレンブラック(デンカ(株)製)を0.2g容器に投入し、同様に、遊星ボールミルP-7に容器をセットし、温度25℃、回転数100rpmで10分間混合を続け、正極用組成物を調製した。
 上記で調製した正極用組成物を、アルミ箔(正極集電体)上に、アプリケータ(商品名:SA-201ベーカー式アプリケータ、テスター産業社製)により30mg/cmの目付量となるように塗布し、80℃で1時間加熱後、さらに110℃で1時間乾燥させた。その後、ヒートプレス機を用いて、加熱(120℃)しながら加圧し(20MPa、1分間)、正極集電体上に正極活物質層を有する正極シートを作製した。
(負極シートの作製)
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、上記で合成したLi-P-S系ガラス2.8g、バインダBの分散液を固形分換算で0.2g、分散媒としてヘプタン12.3gを投入した。フリッチュ社製遊星ボールミルP-7に容器をセットし、温度25℃、回転数300rpmで2時間混合した。その後、活物質としてCGB20(商品名、日本黒鉛社製)7.0gを容器に投入し、同様に、遊星ボールミルP-7に容器をセットし、温度25℃、回転数200rpmで15分間混合を続け負極用組成物を調製した。
 上記で調製した負極用組成物を、SUS箔(負極集電体)上に、アプリケータ(商品名:SA-201ベーカー式アプリケータ、テスター産業社製)により15mg/cmの目付量となるように塗布し、80℃で1時間加熱後、さらに110℃で1時間乾燥させた。その後、ヒートプレス機を用いて、加熱(120℃)しながら加圧し(20MPa、1分間)、負極集電体上に負極活物質層を有する負極シートを作製した。
(電池形成)
 図3に示す層構成を有する、実施例1の全固体二次電池を形成した。
 上記で得られた固体電解質含有シートの固体電解質層と負極シートの負極活物質層が接するように重ね(一括転写)、50MPaで10秒加圧した。負極集電体9/負極活物質層8/第3SE層1/第2SE層2/第1SE層3/アルミニウム支持体4からなる部材を作製し、アルミニウム支持体4を剥離した後、直径15mmΦに切り出した。その後、2032型コインケース内で直径14mmΦに切り出した正極シートの正極活物質層7と第1SE層3が接するように重ね、600MPaで加圧後、コインケースをかしめ、実施例1の全固体二次電池を作製した。
 図3に示すように、実施例1の全固体二次電池の構成は、負極集電体9/負極活物質層8/第3SE層1/第2SE層2/第1SE層3/正極活物質層7/正極集電体6である。
[実施例2]
 下記表1に示す構成としたこと以外は実施例1と同様にして、図1に示す層構成を有する、実施例2の固体電解質含有シート10A及び図3に示す層構成を有する、実施例2の全固体二次電池100Aを作製した。
[実施例3]
 上述の湿潤塗布法により、各固体電解質組成物を塗布し、図1に示す、実施例3の固体電解質含有シート10Aを作製し、実施例3の固体電解質含有シートを用いて、実施例3の全固体二次電池を作製した。
 具体的には、アルミニウム支持体上に第1固体電解質組成物を塗布し第1固体電解質層(湿潤状態)を形成した。この第1固体電解質層上に、第2固体電解質層(湿潤状態)を形成した。この第2固体電解質層上に、第3固体電解質層を形成した。このように、逐次で固体電解質層を積層したこと以外は実施例1と同様にして、実施例3の固体電解質含有シート及び全固体二次電池を作製した。
[実施例4]
 巻き取り後に加圧(20MPa)したこと以外は実施例1と同様にして、図1に示す層構成を有する、実施例4の固体電解質含有シート10A及び図3に示す層構成を有する、実施例4の全固体二次電池100Aを作製した。
[実施例5]
(第4固体電解質組成物の調製)
 ジルコニアビーズを120個、回転数を500rpmにしたこと以外は、第1固体電解質用組成物の調製と同様にして、第4固体電解質層を形成するための固体電解質組成物(第4固体電解質用組成物)を調製した。第4固体電解質用組成物中のLPSの粒径は0.2μmであった。
(固体電解質含有シートの作製)
 図2に示す層構成を有する、実施例5の固体電解質含有シート10Bを作製した。
 第1~第4の固体電解質組成物を用いて、実施例1の固体電解質含有シートの作製と同様にして、実施例5の固体電解質含有シート10Bを作製した。図2に示すように、実施例5の固体電解質含有シート10Bの構成は、支持体4/第1SE層3/第2SE層2/第4SE層5/第3SE層4である。
-全固体二次電池の作製-
 実施例5の固体電解質含有シート10Bを用いたこと以外は、実施例1の全固体二次電池の作製と同様にして、図4に示す層構成を有する、実施例5の全固体二次電池100Bを作製した。図4に示すように、実施例5の全固体二次電池の構成は、負極集電体9/負極活物質層8/第3SE層1/第4SE層5(短絡抑制層)/第2SE層2/第1SE層3/正極活物質層7/正極集電体6である。
 下記方法により算出した、全固体二次電池中で本発明の積層体が有する短絡抑制層の空孔細孔半径は、4nmであった。
<空孔細孔半径の算出>
 第4固体電解質組成物を乾燥粉末化し、SUS板に挟んだ状態で電池形成時と同じ圧力600MPaで加圧し、600μm厚のペレットを成型した後、オートポアIV9520(商品名、Micromeritics社製)を用いて、空孔細孔半径1.8nm~100μmの空孔細孔分布を求めWashburnの式を用いて空孔細孔半径を算出した。水銀圧入法により算出した数値を用いた。
[実施例6]
 下記表1の構成としたこと以外は、実施例5の固体電解質含有シート及び実施例5の全固体二次電池と同様にして、実施例6の固体電解質含有シート及び実施例6の全固体二次電池を作製した。上記方法により算出した、全固体二次電池中で本発明の積層体が有する短絡抑制層の空孔細孔半径は、5nm以下であった。
[実施例7]
 構成を、支持体4/第1SE層3/第4SE層5/第2SE層2/第3SE層1としたこと以外は、実施例5の固体電解質含有シートと同様にして、実施例7の固体電解質含有シートを作製した。
 また、実施例7の固体電解質含有シートを用いたこと以外は、実施例5の全固体二次電池と同様にして、実施例7の全固体二次電池を作製した。上記方法により算出した、全固体二次電池中で本発明の積層体が有する短絡抑制層の空孔細孔半径は、5nm以下であった。
[実施例8~13]
 下記表1に示す無機固体電解質の粒径となるよう、各固体電解質組成物の調製において、ボール数、分散時間を変更したこと以外は、実施例1と同様にして、実施例8~13の固体電解質含有シート及び全固体二次電池を作製した。
[実施例14及び15]
 下記表1に示す構成としたこと以外は、実施例1と同様にして、実施例14及び15の固体電解質含有シート及び全固体二次電池を作製した。
[実施例16及び17]
 下記表1に示す無機固体電解質の粒径となるよう、各固体電解質組成物の調製において、ボール数、分散時間を変更したこと、及び/又は、固体電解質層の厚みを変更した以外は、実施例1と同様にして、実施例16及び17の固体電解質含有シート及び全固体二次電池を作製した。
[実施例18]
 下記表1の構成としたこと以外は、実施例5の固体電解質含有シート及び実施例5の全固体二次電池と同様にして、実施例18の固体電解質含有シート及び実施例18の全固体二次電池を作製した。上記方法により算出した、全固体二次電池中で本発明の積層体が有する短絡抑制層の空孔細孔半径は、5nm以下であった。なお、無機固体電解質の粒径は、固体電解質組成物の調製におけるボール数及び分散時間により調整した。
[実施例19]
 特開2017-103146号公報の実施例1を参照して、開口率88%の貫通孔を有するポリイミドシート(厚み40μm、開口の大きさは平均で3mm程度)を作製した。
 このポリイミドシートを用いたこと以外は実施例3と同様にして、実施例19の固体電解質含有シート及び全固体二次電池を作製した。
 具体的には、アルミニウム支持体上に第1固体電解質組成物を塗布し第1固体電解質層(湿潤状態)を形成した。この第1固体電解質層上に、上記ポリイミドシートを配置した。このポリイミドシートに、第2固体電解質組成物を塗布することにより貫通孔を満たし、第2固体電解質層(湿潤状態)を形成した。この第2固体電解質層上に、第3固体電解質層を形成した。このようにして、実施例19の固体電解質含有シート及び全固体二次電池を作製した。
[実施例20]
 特開2007-291367号公報の実施例1[実験1]を参照して、開口率80%の貫通孔を有するポリカプロラクトンシート(厚み50μm)を作製した。ポリイミドシートに変えてポリカプロラクトンシートを用いたこと以外は、実施例19と同様にして、実施例20の固体電解質含有シート及び全固体二次電池を作製した。
[実施例21]
 国際公開第2017/026118号の実施例5樹脂層形成工程を参照して、開口率80%の貫通孔を有するアクリル樹脂シート(厚み50μm、開口大きさは平均で2mm程度)を作製した。ポリイミドシートに変えてアクリル樹脂シートを用いたこと以外は、実施例19と同様にして、実施例21の固体電解質含有シート及び全固体二次電池を作製した。
[実施例22]
 以下のようにして、電界紡糸法により、ファイバーを用いた不織布を調製した。
 ジクロロメタン:N-メチル-2-ピロリドン(NMP)=8:2(質量比)の溶媒中に、セルローストリアセテート(ダイセル社製、商品名L-30)を溶解させた溶液(濃度4質量%)を調製した。この溶液を用いて、MECC社のNANON-3(商品名)により、印加電圧30kV、流束1.0mL/hrの条件で電界紡糸を行い、ファイバーを得た。このファイバーを集積し、不織布を得た。この時の不織布の厚みは下記に示す、固体電解質組成物を含浸し、シート及び電池形成後に厚みが25μmとなるように集積量を調整し、所定の厚みの不織布を得た。
 このようにして得た不織布に、第2固体電解質組成物を含浸させ、無機固体電解質含浸不織布(湿潤状態)を作製した。この無機固体電解質含浸不織布を用いたこと以外は実施例3と同様にして、実施例22の固体電解質含有シート及び全固体二次電池を作製した。アルミニウム支持体上に第1固体電解質組成物を塗布し第1固体電解質層(湿潤状態)を形成した。この第1固体電解質層上に、無機固体電解質含浸不織布を湿潤状態で配置し、第2固体電解質層(湿潤状態)を形成した。この第2固体電解質層上に、第3固体電解質層を形成した。このようにして、実施例22の固体電解質含有シート及び全固体二次電池を作製した。
 実施例22の全固体二次電池中、第2固体電解質層の厚みは25μmであった。
[比較例1]
 下記表1に示す構成としたこと以外は、実施例1と同様にして、比較例1の固体電解質含有シート及び全固体二次電池を作製した。
[比較例2]
 A1N30-H(アルミニウム支持体)上に、後述ように全固体二次電池を形成し加圧した後の、第1固体電解質層の厚みが3μmとなるようにスマートラボコーター(テクノスマート(株)製)で単層塗布し、乾燥機中、150℃で3分乾燥した。同様に、第1固体電解質層上に、第2固体電解質層の厚みが24μmとなるように、第2固体電解質組成物を塗布し乾燥した。さらに、第2固体電解質層上に、第3固体電解質層の厚みが3μmとなるように、第3固体電解質組成物を塗布し乾燥し固体電解質含有シートを得た。次いで、得られた固体電解質含有シートを20MPaで加圧後巻き取り、比較例2の固体電解質含有シートを作製した。
[比較例3~9]
 下記表1に示す構成としたこと以外は、実施例1と同様にして、比較例3~9の固体電解質含有シート及び全固体二次電池を作製した。なお、比較例3はバインダを含有していないため、シート化することができなかった。
[実施例101及び比較例101]
 下記表2に示す構成としたこと以外は、実施例1と同様にして、実施例101及び比較例101の固体電解質含有シート及び全固体二次電池を作製した。
[比較例102]
 下記表2に示す構成としたこと以外は、比較例2と同様にして、比較例102の固体電解質含有シート及び全固体二次電池を作製した。
[比較例103及104]
 下記表2に示す構成としたこと以外は、実施例1と同様にして、比較例103及104の固体電解質含有シート及び全固体二次電池を作製した。
(i)平均粒子径
 固体電解質層に含まれる無機固体電解質粒子及びバインダの平均粒子径の算出方法を以下に示す。
 上記で製造した全固体二次電池を解体し、イオンミリング装置(商品名「IM4000PLUS」、日立ハイテクノロジーズ社製)を用いて、加速電圧3kVの条件で断面出しを行った。走査型電子顕微鏡(SEM)で1画面中に粒子が400~500入る程度の倍率で撮影した画像10枚を、ImageJ(米国国立衛生研究所 NIH製ソフトウェア)を用いて2値化し、算出した面積から求めた面積換算径を平均粒子径とした。
(ii)固体電解質層の厚み
 SEM画像から各固体電解質層の厚みを算出した。
 下記表1及び<表の注>に、固体電解質層に含まれる無機固体電解質粒子及びバインダの平均粒子径、並びに、各固体電解質層の厚みを記載する。
 実施例及び比較例の固体電解質含有シート、並びに、実施例及び比較例の全固体二次電池の性能を以下の試験により評価した。
(1)膜強度
 JIS K5600-5-1に準拠し、マンドレル試験機を用いた耐屈曲性試験により、固体電解質含有シートの膜強度を評価した。
 幅50mm、長さ100mmの短冊状の固体電解質含有シートを用い、固体電解質層面をマンドレルとは逆側にセットし、直径違いのマンドレルを用いて、屈曲させた後、ヒビ及び割れの有無を目視で観察した。ヒビ及び/又は割れが発生していない場合、マンドレルの径(単位mm)を25、20、16、12、10、8、6、5、4、3、2と徐々に小さくしていき、ヒビ及び/又は割れが発生したマンドレルの径を記録した。ヒビ及び/又は割れが発生したマンドレルの径のうち最大ものが下記評価基準のいずれに含まれるかで評価した。AA、A、B及びCが本試験の合格である。
-評価基準-
AA:5mm未満
A:5mm以上10mm未満
B:10mm以上16mm未満
C:16mm以上20mm未満
D:20mm以上
(2)電池性能
 全固体二次電池を、東洋システム社製の充放電評価装置「TOSCAT-3000」(商品名)により測定した。全固体二次電池を電池電圧が4.2Vになるまで電流値0.2mAで充電した後、電池電圧が3.0Vになるまで電流値2.0mAで放電した。放電開始10秒後の電池電圧を以下の基準で読み取り、抵抗を評価した。
 評価基準を以下に示す。評価基準1は、表1における評価の基準であり、評価基準2は、表2における評価の基準である。評価基準1及び2のいずれにおいても、AA、A、B及びCが本試験の合格である。なお、表1及び2の電池性能評価における「-」は、強度が弱く、電池形成自体ができなかったため、電池性能評価ができなかったことを意味する。
-評価基準1-
AA:4.1V以上
A:4.05V以上4.1V未満
B:4.0V以上4.05V未満
C:3.95V以上4.0V未満
D:3.9V以上3.95V未満
-評価基準2-
AA:3.8V以上
A:3.75V以上3.8V未満
B:3.7V以上3.75V未満
C:3.65V以上3.7V未満
D:3.6V以上3.65V未満
(3)短絡
 全固体二次電池を、東洋システム社製の充放電評価装置「TOSCAT-3000」(商品名)により測定した。全固体二次電池を10セット作製し、電池電圧が4.2Vになるまで電流密度0.8mA/cmで急速充電し、短絡しなかった電池の数の割合を算出した。評価基準を以下に示す。AA、A、B及びCが本試験の合格である。なお、表1及び2の短絡評価における「-」は、強度が弱く、電池形成自体ができなかったため、短絡評価ができなかったことを意味する。
-評価基準-
AA:0%
A:0%超10%以下
B:10%超20%以下
C:20%超50%以下
D:50%超
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
<表の注>
Al:A1N30-H(商品名、(株)UACJ製 厚み20μm)
PET:セラピールHP2(商品名、東レフィルム加工社製、厚み38μm)
LPS:上記合成したLi-P-S系ガラス
バインダA:上記合成したバインダA、固体電解質層中の粒径:0.3μm
バインダB:上記合成したバインダB、固体電解質層中の粒径:0.3μm
バインダC:商品番号430072、アルドリッチ社製
「溶液」:バインダが固体電解質組成物中分散媒に溶解し、固体電解質層において粒子状で存在していないことを意味する。
層の位置B:第1SE層と第2SE層の間に第4SE層が設けられていることを意味する。
層の位置C:第2SE層と第3SE層の間に第4SE層が設けられていることを意味する。
Figure JPOXMLDOC01-appb-T000025
<表の注>LLZ:LiLaZr12(豊島製作所製)
 表1から明らかなように、比較例2、3、6、8及び9の固体電解質含有シートは膜強度が不合格であった。また、比較例1、2、4、5及び7の全固体二次電池は電池性能が不合格であった。これに対し、実施例1~22の固体電解質含有シートはいずれも膜強度が合格であり、実施例1~22の全固体二次電池は電池性能が合格であった。
 実施例1と実施例15の全固体二次電池の結果の比較から、積層体の両表面側に配置された2つの固体電解質層が含有するバインダのそれぞれが互いに異なることにより、電極活物質層と積層体との密着力を高めることができ、電池性能がより優れることが分かる。
 また、実施例1と実施例3の全固体二次電池の結果の比較から、積層体が同時重層塗布法により作製されることにより、より電池性能が優れることが分かる。
 表2から明らかなように、本発明の固体電解質含有シートは、酸化物系無機固体電解質を用いても優れた作用効果を奏することが分かる。
1 固体電解質層(第3SE層、第3固体電解質層)
2 固体電解質層(第2SE層、第2固体電解質層)
3 固体電解質層(第1SE層、第1固体電解質層)
4 離型フィルム(支持体)
5 固体電解質層(短絡抑制層、第4SE層)
6 正極集電体
7 正極活物質層
8 負極活物質層
9 負極集電体
11 作動部位
10A、10B 固体電解質含有シート(転写シート)
100A、100B 全固体二次電池

Claims (23)

  1.  3層以上の固体電解質層の積層体を有する固体電解質含有シートであって、
     前記固体電解質層は無機固体電解質とバインダとを含有し、
     前記3層以上の固体電解質層のうち、前記積層体の両表面側に配置された2つの固体電解質層が含有する無機固体電解質が平均粒子径0.3~0.9μmの粒子であり、
     前記積層体の両表面側に配置された2つの固体電解質層の間に配置された固体電解質層のうち、
    少なくとも1層の固体電解質層が含有する無機固体電解質が平均粒子径1~5μmの粒子であり、
    前記少なくとも1層の固体電解質層が含有するバインダが粒子状である、固体電解質含有シート。
  2.  前記積層体の両表面側に配置された2つの固体電解質層が含有するバインダのそれぞれが互いに異なる、請求項1に記載の固体電解質含有シート。
  3.  前記積層体の両表面側に配置された2つの固体電解質層が含有するバインダが粒子状である、請求項1又は2に記載の固体電解質含有シート。
  4.  前記積層体が有する全ての固体電解質層に含まれるバインダが粒子状である、請求項1~3のいずれか1項に記載の固体電解質含有シート。
  5.  前記積層体が有する全ての固体電解質層に含まれる無機固体電解質が硫化物系無機固体電解質である、請求項1~4のいずれか1項に記載の固体電解質含有シート。
  6.  4層以上の固体電解質層の積層体を有する、請求項1~5のいずれか1項に記載の固体電解質含有シートであって、
     前記積層体の両表面側に配置された2つの固体電解質層の間に配置された固体電解質層のうちの1層が短絡抑制層であり、前記短絡抑制層の水銀圧入法で測定される空孔細孔半径が5nm未満であり、前記短絡抑制層の厚さが4μm以下である、固体電解質含有シート。
  7.  前記短絡抑制層が、前記積層体の両表面側に配置された2つの固体電解質層のうちの一方に接する、請求項6に記載の固体電解質含有シート。
  8.  転写用である、請求項1~7のいずれか1項に記載の固体電解質含有シート。
  9.  請求項1~8のいずれか1項に記載の固体電解質含有シートが有する前記積層体と、前記積層体に隣接する電極活物質層とを有する全固体二次電池用電極シート。
  10.  請求項9に記載の全固体二次電池用電極シートを有する全固体二次電池。
  11.  請求項10に記載の全固体二次電池を有する電子機器。
  12.  請求項10に記載の全固体二次電池を有する電気自動車。
  13.  3層以上の固体電解質層の積層体を有する固体電解質含有シートの製造方法であって、
     平均粒子径0.3~0.9μmの無機固体電解質とバインダとを含む固体電解質組成物を塗布して固体電解質層を形成する工程(1)と、
     平均粒子径1~5μmの無機固体電解質と粒子状バインダとを含む固体電解質組成物を塗布して固体電解質層を形成する工程(2)と、
     平均粒子径0.3~0.9μmの無機固体電解質とバインダとを含む固体電解質組成物を塗布して固体電解質層を形成する工程(3)と、
     乾燥する工程と、を含み、
     前記工程(2)により形成される固体電解質層が、前記工程(1)により形成される固体電解質層と、前記工程(3)により形成される固体電解質層の間にある、固体電解質含有シートの製造方法。
  14.  前記工程(1)における固体電解質組成物が含むバインダと、前記工程(3)における固体電解質組成物が含むバインダとが、互いに異なる、請求項13に記載の固体電解質含有シートの製造方法。
  15.  前記3層以上の固体電解質層を湿潤状態で積層し、積層した前記3層以上の固体電解質層を乾燥する工程、をさらに含む、請求項13又は14に記載の固体電解質含有シートの製造方法。
  16.  乾燥した前記3層以上の固体電解質層を加圧する工程、をさらに含む、請求項13~15のいずれか1項に記載の固体電解質含有シートの製造方法。
  17.  加圧した前記3層以上の固体電解質層をロールに巻き取る工程、をさらに含む、請求項16に記載の固体電解質含有シートの製造方法。
  18.  4層以上の固体電解質層の積層体を有する、請求項13~17のいずれか1項に記載の固体電解質含有シートの製造方法であって、
     前記工程(1)により形成される固体電解質層と、前記工程(3)により形成される固体電解質層との間に、水銀圧入法で測定される空孔細孔半径が5nm未満であり、厚さが4μm以下である短絡抑制層を、短絡抑制層を形成するための固体電解質組成物を塗布して形成する工程(4)、をさらに含む、固体電解質含有シートの製造方法。
  19.  前記短絡抑制層が、前記積層体の両表面に配置された固体電解質層のうちの一方に接する、請求項18に記載の固体電解質含有シートの製造方法。
  20.  請求項13~19のいずれか1項に記載の固体電解質含有シートの製造方法により得られた固体電解質含有シートが有する前記積層体を、電極活物質層上に転写する工程を含む全固体二次電池用電極シートの製造方法。
  21.  請求項20に記載の全固体二次電池用電極シートの製造方法を含む、全固体二次電池の製造方法。
  22.  請求項21に記載の全固体二次電池の製造方法を含む、電子機器の製造方法。
  23.  請求項21に記載の全固体二次電池の製造方法を含む、電気自動車の製造方法。
PCT/JP2019/003270 2018-02-05 2019-01-31 固体電解質含有シート、全固体二次電池用電極シート、全固体二次電池、電子機器及び電気自動車、並びに、これらの製造方法 WO2019151363A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020207017707A KR20200089719A (ko) 2018-02-05 2019-01-31 고체 전해질 함유 시트, 전고체 이차 전지용 전극 시트, 전고체 이차 전지, 전자 기기와 전기 자동차, 및 이들의 제조 방법
JP2019569203A JP6985426B2 (ja) 2018-02-05 2019-01-31 固体電解質含有シート、全固体二次電池用電極シート、全固体二次電池、電子機器及び電気自動車、並びに、これらの製造方法
CN201980006762.3A CN111512487B (zh) 2018-02-05 2019-01-31 含固体电解质的片材、全固态二次电池、电极片、电子设备及电动汽车及这些的制造方法
EP19747290.5A EP3751657A4 (en) 2018-02-05 2019-01-31 SOLID ELECTROLYTHIC LAYER, SOLID SECONDARY BATTERY ELECTRODE LAYER, SOLID SECONDARY BATTERY, ELECTRONIC DEVICE, ELECTRIC VEHICLE, AND MANUFACTURING METHODS THEREFORE
US16/908,729 US20210104773A1 (en) 2018-02-05 2020-06-22 Solid electrolyte-containing sheet, electrode sheet for all-solid state secondary battery, all-solid state secondary battery, electronic apparatus, and electric vehicle, and methods of manufacturing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-018678 2018-02-05
JP2018018678 2018-02-05
JP2018087793 2018-04-27
JP2018-087793 2018-04-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/908,729 Continuation US20210104773A1 (en) 2018-02-05 2020-06-22 Solid electrolyte-containing sheet, electrode sheet for all-solid state secondary battery, all-solid state secondary battery, electronic apparatus, and electric vehicle, and methods of manufacturing the same

Publications (1)

Publication Number Publication Date
WO2019151363A1 true WO2019151363A1 (ja) 2019-08-08

Family

ID=67478391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003270 WO2019151363A1 (ja) 2018-02-05 2019-01-31 固体電解質含有シート、全固体二次電池用電極シート、全固体二次電池、電子機器及び電気自動車、並びに、これらの製造方法

Country Status (6)

Country Link
US (1) US20210104773A1 (ja)
EP (1) EP3751657A4 (ja)
JP (1) JP6985426B2 (ja)
KR (1) KR20200089719A (ja)
CN (1) CN111512487B (ja)
WO (1) WO2019151363A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020137354A1 (ja) * 2018-12-28 2020-07-02 パナソニックIpマネジメント株式会社 電池および電池の製造方法
WO2021075303A1 (ja) * 2019-10-18 2021-04-22 パナソニックIpマネジメント株式会社 電池
JP2021132005A (ja) * 2020-02-21 2021-09-09 トヨタ自動車株式会社 全固体電池
JP2022154448A (ja) * 2021-03-30 2022-10-13 トヨタ自動車株式会社 全固体電池用負極電極
WO2022254284A1 (ja) * 2021-06-02 2022-12-08 株式会社半導体エネルギー研究所 二次電池、電子機器及び飛行体
WO2024043566A1 (ko) * 2022-08-25 2024-02-29 에스케이온 주식회사 리튬 이차 전지용 양극 및 이를 포함하는 리튬 이차 전지
WO2024096065A1 (ja) * 2022-11-02 2024-05-10 日産自動車株式会社 固体電解質積層体、固体二次電池、及びその製造方法
JP7524869B2 (ja) 2021-09-24 2024-07-30 トヨタ自動車株式会社 固体電池

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102442344B1 (ko) * 2020-10-05 2022-09-14 한국화학연구원 리튬이차전지용 복합 전해질 적층막 및 이의 제조방법
TWI831180B (zh) * 2022-04-14 2024-02-01 鴻海精密工業股份有限公司 用於固態電池的複合式正極
WO2024211331A1 (en) * 2023-04-03 2024-10-10 Applied Materials, Inc. Current collector independent alkali-metal anode stack manufacturing and transfer

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005271283A (ja) 2004-03-23 2005-10-06 Fuji Photo Film Co Ltd 感熱記録材料の製造方法及び感熱記録材料
JP2006247967A (ja) 2005-03-09 2006-09-21 Fuji Photo Film Co Ltd インクジェット記録媒体、及びその製造方法
JP2007083625A (ja) 2005-09-22 2007-04-05 Fujifilm Corp インクジェット記録用媒体の製造方法
JP2007291367A (ja) 2006-03-28 2007-11-08 Hokkaido Univ 多孔フィルムの製造方法
JP2008135287A (ja) 2006-11-28 2008-06-12 Idemitsu Kosan Co Ltd 全固体電池用部材、該部材の製造方法並びに全固体電池
JP2013023654A (ja) 2011-07-25 2013-02-04 Showa Denko Kk カーボンコート箔塗工液用バインダー、カーボンコート箔塗工液、カーボンコート箔、リチウムイオン二次電池用電極、および、リチウムイオン二次電池
JP2013229187A (ja) 2012-04-25 2013-11-07 Showa Denko Kk カーボンコート箔塗工液用バインダー、カーボンコート箔塗工液、カーボンコート箔、リチウムイオン二次電池用電極、および、リチウムイオン二次電池
JP5686191B2 (ja) 2011-07-27 2015-03-18 トヨタ自動車株式会社 固体電池の製造方法
JP2015088486A (ja) 2013-09-25 2015-05-07 富士フイルム株式会社 固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池
JP2015220012A (ja) * 2014-05-15 2015-12-07 富士通株式会社 固体電解質構造体、及び全固体電池
JP2017010816A (ja) 2015-06-23 2017-01-12 トヨタ自動車株式会社 全固体電池の製造方法
JP2017037780A (ja) * 2015-08-10 2017-02-16 トヨタ自動車株式会社 全固体電池
WO2017026118A1 (ja) 2015-08-10 2017-02-16 富士フイルム株式会社 蛍光体含有フィルムおよびバックライトユニット
JP2017103146A (ja) 2015-12-03 2017-06-08 地方独立行政法人大阪府立産業技術総合研究所 固体電解質シート及びその製造方法、全固体電池、並びに全固体電池の製造方法
WO2017131093A1 (ja) 2016-01-27 2017-08-03 富士フイルム株式会社 固体電解質組成物、全固体二次電池用シート、全固体二次電池用電極シートおよび全固体二次電池、並びに、全固体二次電池用シート、全固体二次電池用電極シートおよび全固体二次電池の製造方法
WO2017138116A1 (ja) * 2016-02-10 2017-08-17 株式会社日立製作所 リチウムイオン電池およびその製造方法
JP2017204468A (ja) * 2016-05-09 2017-11-16 三星電子株式会社Samsung Electronics Co., Ltd. リチウム金属電池用負極、及びそれを含むリチウム金属電池
WO2017204028A1 (ja) * 2016-05-23 2017-11-30 富士フイルム株式会社 固体電解質組成物、固体電解質含有シートおよび全固体二次電池ならびに固体電解質含有シートおよび全固体二次電池の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6194098B1 (en) * 1998-12-17 2001-02-27 Moltech Corporation Protective coating for separators for electrochemical cells
JP5153065B2 (ja) * 2005-08-31 2013-02-27 株式会社オハラ リチウムイオン二次電池および固体電解質
JP5381636B2 (ja) * 2009-11-18 2014-01-08 コニカミノルタ株式会社 電池用固体電解質およびリチウムイオン二次電池
JP2015195183A (ja) * 2014-03-28 2015-11-05 富士フイルム株式会社 全固体二次電池、電池用電極シートの製造方法および全固体二次電池の製造方法
PL3276734T3 (pl) * 2015-03-25 2020-11-16 Zeon Corporation Bateria wtórna typu all solid
US10522873B2 (en) * 2015-12-15 2019-12-31 Sila Nanotechnologies Inc. Solid state electrolytes for safe metal and metal-ion batteries
JP6605996B2 (ja) * 2016-03-17 2019-11-13 株式会社東芝 電池、電池パック、および車両

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005271283A (ja) 2004-03-23 2005-10-06 Fuji Photo Film Co Ltd 感熱記録材料の製造方法及び感熱記録材料
JP2006247967A (ja) 2005-03-09 2006-09-21 Fuji Photo Film Co Ltd インクジェット記録媒体、及びその製造方法
JP2007083625A (ja) 2005-09-22 2007-04-05 Fujifilm Corp インクジェット記録用媒体の製造方法
JP2007291367A (ja) 2006-03-28 2007-11-08 Hokkaido Univ 多孔フィルムの製造方法
JP2008135287A (ja) 2006-11-28 2008-06-12 Idemitsu Kosan Co Ltd 全固体電池用部材、該部材の製造方法並びに全固体電池
JP2013023654A (ja) 2011-07-25 2013-02-04 Showa Denko Kk カーボンコート箔塗工液用バインダー、カーボンコート箔塗工液、カーボンコート箔、リチウムイオン二次電池用電極、および、リチウムイオン二次電池
JP5686191B2 (ja) 2011-07-27 2015-03-18 トヨタ自動車株式会社 固体電池の製造方法
JP2013229187A (ja) 2012-04-25 2013-11-07 Showa Denko Kk カーボンコート箔塗工液用バインダー、カーボンコート箔塗工液、カーボンコート箔、リチウムイオン二次電池用電極、および、リチウムイオン二次電池
JP2015088486A (ja) 2013-09-25 2015-05-07 富士フイルム株式会社 固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池
JP2015220012A (ja) * 2014-05-15 2015-12-07 富士通株式会社 固体電解質構造体、及び全固体電池
JP2017010816A (ja) 2015-06-23 2017-01-12 トヨタ自動車株式会社 全固体電池の製造方法
JP2017037780A (ja) * 2015-08-10 2017-02-16 トヨタ自動車株式会社 全固体電池
WO2017026118A1 (ja) 2015-08-10 2017-02-16 富士フイルム株式会社 蛍光体含有フィルムおよびバックライトユニット
JP2017103146A (ja) 2015-12-03 2017-06-08 地方独立行政法人大阪府立産業技術総合研究所 固体電解質シート及びその製造方法、全固体電池、並びに全固体電池の製造方法
WO2017131093A1 (ja) 2016-01-27 2017-08-03 富士フイルム株式会社 固体電解質組成物、全固体二次電池用シート、全固体二次電池用電極シートおよび全固体二次電池、並びに、全固体二次電池用シート、全固体二次電池用電極シートおよび全固体二次電池の製造方法
WO2017138116A1 (ja) * 2016-02-10 2017-08-17 株式会社日立製作所 リチウムイオン電池およびその製造方法
JP2017204468A (ja) * 2016-05-09 2017-11-16 三星電子株式会社Samsung Electronics Co., Ltd. リチウム金属電池用負極、及びそれを含むリチウム金属電池
WO2017204028A1 (ja) * 2016-05-23 2017-11-30 富士フイルム株式会社 固体電解質組成物、固体電解質含有シートおよび全固体二次電池ならびに固体電解質含有シートおよび全固体二次電池の製造方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"Chemical Engineering Handbook", 25 October 1980, MARUZEN INC., pages: 707 - 712
A. HAYASHIS. HAMAH. MORIMOTOM. TATSUMISAGOT. MINAMI, CHEM. LETT., 2001, pages 872,873
H. L. HOY, JOURNAL OF PAINTING, vol. 42, 1970, pages 76 - 118
J. H. SAUNDERSK. C. FRISCH ET AL.: "POLYURETHANES, CHEMISTRY AND TECHNOLOGY", CHEMISTRY, 1962, pages 48 - 53
See also references of EP3751657A4
T. OHTOMOA. HAYASHIM. TATSUMISAGOY. TSUCHIDAS. HAMAK. KAWAMOTO, JOURNAL OF POWER SOURCES, vol. 233, 2013, pages 231 - 235

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020137354A1 (ja) * 2018-12-28 2020-07-02 パナソニックIpマネジメント株式会社 電池および電池の製造方法
US12080853B2 (en) 2018-12-28 2024-09-03 Panasonic Intellectual Property Management Co., Ltd. Battery and production method for battery
WO2021075303A1 (ja) * 2019-10-18 2021-04-22 パナソニックIpマネジメント株式会社 電池
JP2021132005A (ja) * 2020-02-21 2021-09-09 トヨタ自動車株式会社 全固体電池
JP7218734B2 (ja) 2020-02-21 2023-02-07 トヨタ自動車株式会社 全固体電池
JP2022154448A (ja) * 2021-03-30 2022-10-13 トヨタ自動車株式会社 全固体電池用負極電極
JP7396320B2 (ja) 2021-03-30 2023-12-12 トヨタ自動車株式会社 全固体電池用負極電極
WO2022254284A1 (ja) * 2021-06-02 2022-12-08 株式会社半導体エネルギー研究所 二次電池、電子機器及び飛行体
JP7524869B2 (ja) 2021-09-24 2024-07-30 トヨタ自動車株式会社 固体電池
WO2024043566A1 (ko) * 2022-08-25 2024-02-29 에스케이온 주식회사 리튬 이차 전지용 양극 및 이를 포함하는 리튬 이차 전지
WO2024096065A1 (ja) * 2022-11-02 2024-05-10 日産自動車株式会社 固体電解質積層体、固体二次電池、及びその製造方法

Also Published As

Publication number Publication date
EP3751657A1 (en) 2020-12-16
KR20200089719A (ko) 2020-07-27
JPWO2019151363A1 (ja) 2020-10-22
CN111512487A (zh) 2020-08-07
JP6985426B2 (ja) 2021-12-22
CN111512487B (zh) 2024-03-26
US20210104773A1 (en) 2021-04-08
EP3751657A4 (en) 2021-03-31

Similar Documents

Publication Publication Date Title
WO2019151363A1 (ja) 固体電解質含有シート、全固体二次電池用電極シート、全固体二次電池、電子機器及び電気自動車、並びに、これらの製造方法
JP6567091B2 (ja) 固体電解質組成物、全固体二次電池用シート、全固体二次電池用電極シートおよび全固体二次電池、並びに、全固体二次電池用シート、全固体二次電池用電極シートおよび全固体二次電池の製造方法
JP7351960B2 (ja) 易接着層付集電体を用いた電極、全固体二次電池、電子機器及び電気自動車、並びに、電極及び全固体二次電池の製造方法
CN111406340B (zh) 固体电解质组合物、片材、电极片、电池及制造方法
WO2017099247A1 (ja) 固体電解質組成物、全固体二次電池用シート、全固体二次電池用電極シート及びその製造方法、並びに、全固体二次電池及びその製造方法
WO2017018456A1 (ja) 固体電解質組成物、全固体二次電池用電極シートおよび全固体二次電池ならびに全固体二次電池用電極シートおよび全固体二次電池の製造方法
JPWO2017099248A1 (ja) 固体電解質組成物、バインダー粒子、全固体二次電池用シート、全固体二次電池用電極シート及び全固体二次電池、並びに、これらの製造方法
US12034115B2 (en) Solid electrolyte composition, sheet for all-solid state secondary battery, electrode sheet for all-solid state secondary battery, and all-solid state secondary battery
JPWO2020022205A1 (ja) 固体電解質組成物、固体電解質含有シート、全固体二次電池用電極シート及び全固体二次電池、固体電解質含有シート及び全固体二次電池の製造方法、並びに、粒子状バインダーの製造方法
WO2019098008A1 (ja) 固体電解質組成物、全固体二次電池用シート、全固体二次電池用電極シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法
US11552300B2 (en) Electrode sheet for all-solid state secondary battery and all-solid state secondary battery
US20210184251A1 (en) Electrode composition, electrode sheet for all-solid state secondary battery, all-solid state secondary battery, and method of manufacturing electrode sheet for all-solid state secondary battery or manufacturing all-solid state secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19747290

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019569203

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207017707

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019747290

Country of ref document: EP

Effective date: 20200907