WO2024043566A1 - 리튬 이차 전지용 양극 및 이를 포함하는 리튬 이차 전지 - Google Patents

리튬 이차 전지용 양극 및 이를 포함하는 리튬 이차 전지 Download PDF

Info

Publication number
WO2024043566A1
WO2024043566A1 PCT/KR2023/011314 KR2023011314W WO2024043566A1 WO 2024043566 A1 WO2024043566 A1 WO 2024043566A1 KR 2023011314 W KR2023011314 W KR 2023011314W WO 2024043566 A1 WO2024043566 A1 WO 2024043566A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
metal oxide
oxide particles
material layer
Prior art date
Application number
PCT/KR2023/011314
Other languages
English (en)
French (fr)
Inventor
조윤지
김현지
이종혁
황창묵
Original Assignee
에스케이온 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이온 주식회사 filed Critical 에스케이온 주식회사
Publication of WO2024043566A1 publication Critical patent/WO2024043566A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a positive electrode for a lithium secondary battery and a lithium secondary battery including the same. More specifically, it relates to a positive electrode for a lithium secondary battery including a positive electrode active material layer with a multi-layer structure and a lithium secondary battery including the same.
  • Secondary batteries are batteries that can be repeatedly charged and discharged, and are widely used as a power source for portable electronic devices such as mobile phones and laptop PCs.
  • Lithium secondary batteries are being actively developed and applied because they have high operating voltage and energy density per unit weight, and are advantageous in charging speed and weight reduction.
  • a lithium secondary battery may include an electrode assembly including a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode, and an electrolyte solution impregnating the electrode assembly.
  • the positive electrode may include a positive electrode current collector and a positive electrode active material layer formed on the positive electrode current collector.
  • the positive electrode active material layer may include lithium metal oxide particles as a positive electrode active material.
  • the lithium metal oxide particles generally have the form of secondary particles in which a plurality of primary particles are morphologically aggregated, and the primary particles generally have a polycrystalline structure crystallographically.
  • lithium metal oxide particles having the secondary particle shape and polycrystalline structure may generate cracks within the particles when rolled in the anode manufacturing process. Additionally, during repeated charging and discharging of a lithium secondary battery, cracks within particles may occur due to insertion and detachment of lithium.
  • One object of the present disclosure is to provide a positive electrode active material for a lithium secondary battery with improved electrochemical performance and electrochemical stability.
  • One object of the present disclosure is to provide a lithium secondary battery with improved electrochemical performance and electrochemical stability.
  • a positive electrode for a lithium secondary battery includes a positive electrode current collector; And it may include a positive electrode active material layer formed on the positive electrode current collector.
  • the positive electrode active material layer is formed on the positive electrode current collector and includes a first positive electrode active material layer including first lithium metal oxide particles in the form of secondary particles in which a plurality of primary particles are aggregated; a second positive electrode active material layer formed on the first positive electrode active material layer and including second lithium metal oxide particles in the form of single particles; and a third positive electrode active material layer formed on the second positive electrode active material layer and including third lithium metal oxide particles in the form of secondary particles in which a plurality of primary particles are aggregated.
  • the anode may satisfy Equation 1.
  • the anode may satisfy Equation 2.
  • the anode may satisfy Equation 3.
  • T1 is the thickness of the first positive electrode active material layer in the SEM image measuring the cross-section of the positive electrode
  • T2 is the thickness of the second positive electrode active material layer in the SEM image
  • T3 is the thickness of the second positive electrode active material layer in the SEM image. This is the thickness of the third positive electrode active material layer.
  • the sum of the thicknesses of the first positive electrode active material layer, the second positive active material layer, and the third positive active material layer may be 40 to 160 ⁇ m.
  • the content of the first lithium metal oxide particles may be 90% by weight or more of the total weight of the first positive electrode active material layer.
  • the content of the second lithium metal oxide particles may be 90% by weight or more of the total weight of the second positive electrode active material layer.
  • the content of the third lithium metal oxide particles may be 90% by weight or more of the total weight of the third positive electrode active material layer.
  • each of the first lithium metal oxide particles and the second lithium metal oxide particles may contain nickel (Ni).
  • the concentration of nickel in the first lithium metal oxide particles may be greater than the concentration of nickel in the second lithium metal oxide particles.
  • each of the second lithium metal oxide particles and the third lithium metal oxide particles may contain nickel (Ni).
  • the concentration of nickel in the third lithium metal oxide particles may be greater than the concentration of nickel in the second lithium metal oxide particles.
  • the particle size (D 50 ) of the first lithium metal oxide particles may be larger than the particle size (D 50 ) of the second lithium metal oxide particles.
  • the particle diameter (D 50 ) of the third lithium metal oxide particles may be smaller than the particle diameter (D 50 ) of the first lithium metal oxide particles.
  • the ratio of the particle size (D 50 ) of the third lithium metal oxide particles to the particle size (D 50 ) of the second lithium metal oxide particles may be 0.75 or more and less than 1.4.
  • the particle diameter (D 50 ) of the first lithium metal oxide particles is 5 to 15 ⁇ m
  • the particle diameter (D 50 ) of each of the second lithium metal oxide particles and the third lithium metal oxide particles is 1. It may be from 5 ⁇ m.
  • a lithium secondary battery includes a positive electrode for the lithium secondary battery; And it may include a cathode opposing the anode.
  • a positive electrode for a lithium secondary battery with improved output characteristics, lifespan characteristics, high-temperature storage characteristics, and resistance characteristics can be provided.
  • a lithium secondary battery including the positive electrode and having improved output characteristics, lifespan characteristics, high-temperature storage characteristics, and resistance characteristics may be provided.
  • FIG. 1 is a schematic cross-sectional view of a positive electrode for a lithium secondary battery according to example embodiments.
  • FIGS. 2 and 3 are a plan view and a cross-sectional view, respectively, of a lithium secondary battery according to example embodiments.
  • a positive electrode for a lithium secondary battery including lithium metal oxide particles having a predetermined morphology and a positive electrode active material layer having a multilayer structure. Additionally, a lithium secondary battery including the positive electrode is provided.
  • FIG. 1 is a cross-sectional view schematically showing a positive electrode (hereinafter abbreviated as positive electrode) for a lithium secondary battery according to an embodiment of the present disclosure.
  • the positive electrode 100 may include a positive electrode current collector 105 and a positive electrode active material layer 110 formed on the positive electrode current collector 105.
  • the positive active material layer 110 may be formed on one side or both sides of the positive electrode current collector 105.
  • the cathode active material layer 110 may include a first cathode active material layer 112, a second cathode active material layer 114, and a third cathode active material layer 116 sequentially formed on the cathode current collector 105.
  • the first positive electrode active material layer 112 is formed directly on the positive electrode current collector 105, and the second positive active material layer 114 is formed directly on the first positive electrode active material layer 112,
  • the third positive electrode active material layer 116 may be formed by bonding on the second positive electrode active material layer 114.
  • the positive electrode active material layer 110 may include a positive electrode active material capable of inserting and desorbing lithium.
  • the positive electrode active material may include lithium metal oxide particles.
  • the lithium metal oxide particles include lithium cobalt-based oxide particles (LCO), lithium manganese-based oxide particles (LMO), lithium nickel-based oxide particles (LNO), lithium nickel-manganese oxide particles (LNMO), It may include lithium nickel-cobalt-manganese oxide particles (NCM), lithium nickel-cobalt-aluminum oxide particles (NCA), lithium iron phosphate oxide particles (LFP), and lithium excess oxide particles (OLO).
  • LCO lithium cobalt-based oxide particles
  • LMO lithium manganese-based oxide particles
  • LNO lithium nickel-based oxide particles
  • LNMO lithium nickel-manganese oxide particles
  • NCM lithium nickel-cobalt-aluminum oxide particles
  • NFP lithium iron phosphate oxide particles
  • OFLO lithium excess oxide particles
  • the first positive electrode active material layer 112 includes first lithium metal oxide particles in the form of secondary particles in which a plurality of primary particles are aggregated. can do.
  • the second positive electrode active material layer 114 may include second lithium metal oxide particles in the form of single particles.
  • the third positive electrode active material layer 116 may include third lithium metal oxide particles in the form of secondary particles in which a plurality of primary particles are aggregated.
  • the resistance characteristics of the positive electrode, the output characteristics of the lithium secondary battery, the lifespan characteristics, and High temperature storage characteristics can be improved.
  • the secondary particles and the single particles may be morphologically distinguished from each other.
  • the secondary particles and the single particles may be distinguished from each other based on a cross-sectional image of the particle measured with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the secondary particles include a plurality of primary particles, and boundaries of the primary particles can be observed in the SEM cross-sectional image.
  • the secondary particles may be aggregated from more than 10, more than 30, more than 50, or more than 100 primary particles.
  • the single particle may mean a monolith rather than an aggregate, and the boundaries of the primary particles, unlike the secondary particles, may not be observed in the SEM cross-sectional image.
  • fine particles for example, particles having a volume of 1/100 or less of the volume of the single particle
  • the corresponding shape is excluded from the concept of the single particle. It doesn't work.
  • the single particles may exist in contact with each other.
  • 2 to 10, 2 to 5, or 2 or 3 single particles may exist in contact.
  • the anode 100 may satisfy Equation 1 below. Accordingly, the lifespan characteristics and high-temperature storage characteristics of the lithium secondary battery can be further improved.
  • T2/(T1+T2+T3) may be between 0.2 and 0.5, or between 0.25 and 0.4.
  • the anode 100 may satisfy Equation 2 below. In this case, the resistance characteristics of the anode can be further improved.
  • T1/(T2+T3) can be from 0.15 to 0.7, 0.2 to 0.65, 0.3 to 0.6, or 0.4 to 0.6.
  • the anode 100 may satisfy Equation 3 below. In this case, the output characteristics of the lithium secondary battery can be further improved.
  • T3/(T1+T2) can be from 0.15 to 0.7, 0.2 to 0.65, 0.3 to 0.6, or 0.4 to 0.6.
  • T1 is the thickness of the first positive electrode active material layer 112 in the SEM image measuring the cross-section of the positive electrode
  • T2 is the thickness of the second positive active material layer 114
  • T3 is the thickness of the second positive electrode active material layer 114 in the SEM image. 3 This is the thickness of the positive electrode active material layer 116.
  • T2/(T1+T2+T3) may be between 0.25 and 0.4
  • T1/(T2+T3) may be between 0.4 and 0.6
  • T3/(T1+T2) may be between 0.4 and 0.6.
  • the thickness of the positive active material layer 110 is 20 to 500 ⁇ m, 30 to 450 ⁇ m, 35 to 300 ⁇ m, 40 to 250 ⁇ m, 40 to 450 ⁇ m. It may be 200 ⁇ m, 40 to 160 ⁇ m, 50 to 160 ⁇ m, 60 to 160 ⁇ m, or 80 to 160 ⁇ m.
  • the output characteristics, life characteristics, high temperature storage characteristics, and resistance characteristics of the lithium secondary battery can be further improved. Additionally, the energy density of lithium secondary batteries can be further improved.
  • the positive active material layer 110 may further include a conductive material and a binder.
  • the binder is polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoro propylene copolymer (PVDF-co-HFP), polyacrylonitrile, polymethyl methacrylate (PMMA)
  • PVDF polyvinylidene fluoride
  • PVDF-co-HFP vinylidene fluoride-hexafluoro propylene copolymer
  • PMMA polyacrylonitrile
  • PMMA polymethyl methacrylate
  • Organic binders such as; It may include an aqueous binder such as styrene-butadiene rubber (SBR).
  • SBR styrene-butadiene rubber
  • the binder may be used with a thickener such as carboxymethyl cellulose (CMC).
  • CMC carboxymethyl cellulose
  • the conductive material is a carbon-based conductive material such as graphite, graphene, carbon black, Denka black, and carbon nanotubes (CNTs); It may include metallic conductive materials such as perovskite materials such as tin, tin oxide, titanium oxide, LaSrCoO 3 , and LaSrMnO 3 .
  • the content of the first lithium metal oxide particles is 70% by weight or more, in one embodiment, 80% by weight or more, and in one embodiment, 90% by weight. It may be more than %.
  • the content of the second lithium metal oxide particles is 70% by weight or more, in one embodiment, 80% by weight or more, and in one embodiment, 90% by weight. It may be more than %.
  • the content of the third lithium metal oxide particles is 70% by weight or more, in one embodiment, 80% by weight or more, and in one embodiment, 90% by weight. It may be more than %.
  • the particle size (D 50 ) of the first lithium metal oxide particles may be larger than the particle size (D 50 ) of the second lithium metal oxide particles. Accordingly, the resistance characteristics of the anode can be further improved.
  • the particle diameter (D 50 ) of the third lithium metal oxide particles may be smaller than the particle diameter (D 50 ) of the first lithium metal oxide particles.
  • the particle diameter (D 50 ) of the first lithium metal oxide particles may be 3 to 20 ⁇ m, in one embodiment 4 to 18 ⁇ m, and in one embodiment 5 to 15 ⁇ m.
  • the particle diameter (D 50 ) of the second lithium metal oxide particles may be 1 to 9 ⁇ m, in one embodiment 1 to 7 ⁇ m, and in one embodiment 1 to 5 ⁇ m.
  • the particle diameter (D 50 ) of the third lithium metal oxide particles may be 1 to 9 ⁇ m, in one embodiment 1 to 7 ⁇ m, and in one embodiment 1 to 5 ⁇ m. Accordingly, the output characteristics of the lithium secondary battery can be further improved.
  • the particle size (D 50 ) is the particle size based on 50% of the volume cumulative particle size distribution, and can be measured by laser diffraction.
  • the ratio of the particle size (D 50 ) of the third lithium metal oxide particles to the particle size (D 50 ) of the second lithium metal oxide particles may be 0.75 or more and less than 1.4. Within the above range, the resistance characteristics of the positive electrode, the output characteristics of the lithium secondary battery, and fast charging performance can be further improved.
  • the ratio of the particle size (D 50 ) of the third lithium metal oxide particles to the particle size (D 50 ) of the second lithium metal oxide particles is 0.8 to 1.35, 0.85 to 1.3, 0.9 to 1.25, or 0.9. It may be from 0.9 to 1.2, or from 0.9 to 1.1.
  • each of the first lithium metal oxide particles, the second lithium metal oxide particles, and the third lithium metal oxide particles may contain nickel.
  • each of the first lithium metal oxide particles, the second lithium metal oxide particles, and the third lithium metal oxide particles may further contain cobalt and manganese.
  • each of the first lithium metal oxide particles, the second lithium metal oxide particles, and the third lithium metal oxide particles may be represented by Formula 1 below.
  • M1 and M2 are independently at least one of Co, Mn, Al, Zr, Ti, Cr, B, Mn, Ba, Si, Y, W and Sr, 0.9 ⁇ x ⁇ 1.2, 1.9 ⁇ y It may be ⁇ 2.1, 0 ⁇ a+b ⁇ 0.5.
  • the concentration of nickel in the first lithium metal oxide particles may be greater than the concentration of nickel in the second lithium metal oxide particles.
  • the concentration of nickel may refer to the molar ratio of nickel to the total number of moles of all elements excluding lithium and oxygen among lithium metal oxide particles. In this case, the capacity, lifespan characteristics, and high-temperature storage characteristics of the lithium secondary battery can be further improved.
  • the difference between the concentration of nickel in the first lithium metal oxide particles and the concentration of nickel in the second lithium metal oxide particles may be 0.05 or more, 0.1 or more, 0.2 or more, or 0.3 or more. Additionally, the difference in nickel concentration may be 0.5 or less.
  • the concentration of nickel in the third lithium metal oxide particles may be greater than the concentration of nickel in the second lithium metal oxide particles.
  • the difference between the concentration of nickel in the second lithium metal oxide particles and the concentration of nickel in the third lithium metal oxide particles may be 0.05 or more, 0.1 or more, 0.2 or more, or 0.3 or more. Additionally, the difference in nickel concentration may be 0.5 or less.
  • the first lithium metal oxide particles, the second lithium metal oxide particles, and the third lithium metal oxide particles may further contain a doping element.
  • the doping elements may include Al, Ti, Ba, Zr, Si, B, Mg, P, Sr, W, La, etc.
  • a coating layer may be formed on the surfaces of the first lithium metal oxide particles, the second lithium metal oxide particles, and the third lithium metal oxide particles.
  • the coating layer may contain Al, Ti, Ba, Zr, Si, B, Mg, P, Sr, W, La, etc.
  • Figure 2 is a plan view schematically showing a lithium secondary battery according to an embodiment of the present disclosure
  • Figure 3 is a cross-sectional view taken along line II' of Figure 2.
  • a lithium secondary battery may include a positive electrode 100 and a negative electrode 130 opposing the positive electrode 100.
  • the positive electrode 100 may be the positive electrode for a lithium secondary battery described above.
  • the negative electrode 130 may include a negative electrode current collector 125 and a negative electrode active material layer 120 formed on the negative electrode current collector 125.
  • the negative electrode active material layer 120 may be formed on one or both sides of the negative electrode current collector 125.
  • the negative electrode active material layer 120 may include a negative electrode active material.
  • the anode active material layer 120 may further include a binder, a conductive material, etc.
  • the negative electrode current collector 125 may include gold, stainless steel, nickel, aluminum, titanium, copper, or alloys thereof.
  • the negative electrode active material may be a material capable of inserting and desorbing lithium ions.
  • the negative electrode active material may include lithium alloy, carbon-based active material, silicon-based active material, etc., and these may be used alone or in combination of two or more.
  • the lithium alloy may include aluminum, zinc, bismuth, cadmium, antimony, silicon, lead, tin, gallium, indium, etc.
  • the carbon-based active material may include crystalline carbon, amorphous carbon, carbon composite, carbon fiber, etc.
  • the amorphous carbon may include hard carbon, coke, mesocarbon microbeads, mesophase pitch-based carbon fiber, etc.
  • the crystalline carbon may include natural graphite, artificial graphite, graphitized coke, graphitized MCMB, graphitized MPCF, etc.
  • the negative electrode active material may include a silicon-based active material.
  • the silicon-based active material may include Si, SiO x (0 ⁇ x ⁇ 2), Si/C, SiO/C, Si-Metal, etc. In this case, a lithium secondary battery with high capacity can be implemented.
  • the area of the cathode 130 may be larger than the area of the anode 100. Accordingly, lithium ions generated from the anode 100 can be smoothly moved to the cathode 130 without precipitating in the middle.
  • the anode 100 and the cathode 130 may be alternately and repeatedly arranged to form the electrode assembly 150.
  • a separator 140 may be interposed between the anode 100 and the cathode 130.
  • the electrode assembly 150 may be formed by winding, stacking, z-folding, etc. of the separator 140.
  • the separator 140 is a porous polymer film made of polyolefin polymer such as ethylene homopolymer, propylene homopolymer, ethylene-butene copolymer, ethylene-hexene copolymer, ethylene-methacrylate copolymer, etc. It can be included. Additionally, the separator 140 may include a non-woven fabric made of high melting point glass fiber, polyethylene terephthalate fiber, etc.
  • the electrode assembly 150 and the electrolyte solution may be accommodated together in the case 160 to form a lithium secondary battery.
  • the lithium secondary battery may be manufactured in a cylindrical shape, a square shape, a pouch shape, or a coin shape.
  • the electrolyte solution may include lithium salt and an organic solvent.
  • the lithium salt may be expressed as Li +
  • the lithium salt may include LiBF 4 , LiPF 6 , etc.
  • the organic solvent may include a carbonate-based solvent, an ester-based (carboxylate-based) solvent, an ether-based solvent, a ketone-based solvent, an alcohol-based solvent, an aprotic solvent, etc.
  • the carbonate-based solvent includes dimethyl carbonate (DMC; dimethyl carbonate), ethyl methyl carbonate (EMC; ethyl methyl carbonate), diethyl carbonate (DEC; diethyl carbonate), ethylene carbonate (EC; ethylene carbonate), etc. can do.
  • DMC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • DEC diethyl carbonate
  • EC ethylene carbonate
  • the ester-based solvent may include methyl propionate, ethyl propionate, propyl acetate, butyl acetate, ethyl acetate, butyrolactone, caprolactone, valerolactone, etc.
  • the ether-based solvent is dibutyl ether, tetraethylene glycol dimethyl ether (TEGDME), diethylene glycol dimethyl ether (DEGDME), and dimethoxyethane. ), tetrahydrofuran (THF), 2-methyltetrahydrofuran, etc.
  • the ketone-based solvent may include cyclohexanone, etc.
  • the alcohol-based solvent may include ethyl alcohol, isopropyl alcohol, etc.
  • the aprotic solvent may be a nitrile-based solvent, an amide-based solvent (e.g., dimethylformamide), a dioxolane-based solvent (e.g., 1,3-dioxolane), or a sulfolane-based solvent. It may include solvents, etc.
  • the lithium secondary battery is connected to the positive electrode 100 and includes a positive electrode lead 107 protruding to the outside of the case 160; and a negative electrode lead 127 that is connected to the negative electrode 130 and protrudes to the outside of the case 160.
  • the positive electrode lead 107 may be electrically connected to the positive electrode current collector 105.
  • the negative electrode lead 127 may be electrically connected to the negative electrode current collector 125.
  • the positive electrode current collector 105 may include a positive electrode tab 106 protruding on one side.
  • the positive electrode active material layer 110 may not be formed on the positive electrode tab 106.
  • the positive electrode tab 106 may be integrated with the positive electrode current collector 105 or may be connected to the positive electrode current collector 105 by welding or the like.
  • the positive electrode current collector 105 and the positive electrode lead 107 may be electrically connected through the positive electrode tab 106.
  • the negative electrode current collector 125 may include a negative electrode tab 126 protruding on one side.
  • the negative electrode active material layer 120 may not be formed on the negative electrode tab 126.
  • the negative electrode tab 126 may be integrated with the negative electrode current collector 125 or may be connected to the negative electrode current collector 125 by welding or the like.
  • the negative electrode current collector 125 and the negative electrode lead 127 may be electrically connected through the negative electrode tab 126.
  • a mixed solution was prepared by adding NiSO 4 , CoSO 4 and MnSO 4 to distilled water from which internal dissolved oxygen was removed at a molar ratio of 5:2:3.
  • the mixed solution, NaOH (precipitant) and NH 4 OH (chelating agent) were placed in a reactor, and coprecipitation reaction was performed for 30 hours to prepare metal hydroxide particles (Ni 0.5 Co 0.2 Mn 0.3 (OH) 2 ).
  • the metal hydroxide particles were dried at 80°C for 12 hours and then re-dried at 110°C for 12 hours.
  • a mixture was prepared by adding it to a dry high-speed mixer so that the molar ratio of the metal hydroxide particles and lithium hydroxide was 1:1.03.
  • the mixture was placed in a kiln, heated to 700°C at a rate of 2°C/min, and maintained at 700°C for 10 hours. During firing, oxygen gas was continuously passed through the furnace at a flow rate of 10 mL/min.
  • the fired product was cooled to room temperature, pulverized and classified to obtain lithium metal oxide particles (NCM 523; LiNi 0.5 Co 0.2 Mn 0.3 O 2 ) in the form of secondary particles.
  • NCM 523 lithium metal oxide particles
  • the particle size (D 50 ) of the lithium metal oxide particles was measured.
  • the particle size (D 50 ) is the particle size based on 50% of the volume cumulative particle size distribution, and was measured according to a laser diffraction method (microtrac MT 3000).
  • the measured particle diameter (D 50 ) was 10 ⁇ m.
  • a mixed solution was prepared by adding NiSO 4 , CoSO 4 and MnSO 4 to distilled water from which internal dissolved oxygen was removed at a molar ratio of 5:2:3.
  • the mixed solution, NaOH (precipitant) and NH 4 OH (chelating agent) were placed in a reactor, and coprecipitation reaction was performed for 72 hours to prepare metal hydroxide particles (Ni 0.5 Co 0.2 Mn 0.3 (OH) 2 ).
  • the metal hydroxide particles were dried at 100°C for 12 hours and then re-dried at 120°C for 12 hours.
  • a mixture was prepared by adding it to a dry high-speed mixer so that the molar ratio of the metal hydroxide particles and lithium hydroxide was 1:1.03.
  • the mixture was placed in a kiln, heated to 980°C at a rate of 2°C/min, and maintained at 980°C for 12 hours. During firing, oxygen gas was continuously passed through the furnace at a flow rate of 10 mL/min.
  • the fired product was cooled to room temperature, pulverized and classified to obtain single particle lithium metal oxide particles (LiNi 0.5 Co 0.2 Mn 0.3 O 2 ).
  • the particle size (D 50 ) of the lithium metal oxide particles was measured.
  • the particle size (D 50 ) is the particle size based on 50% of the volume cumulative particle size distribution, and was measured according to a laser diffraction method (microtrac MT 3000).
  • the measured particle diameter (D 50 ) was 5 ⁇ m.
  • the lithium metal oxide particles, carbon nanotubes (CNTs), and PVDF of Preparation Example 1-1 were mixed at a weight ratio of 98:1:1.
  • a first positive electrode slurry was prepared by dispersing in N-methyl-2-pyrrolidone (NMP).
  • the lithium metal oxide particles, carbon nanotubes (CNTs), and PVDF of Preparation Example 2-1 were mixed at a weight ratio of 98:1:1.
  • a second positive electrode slurry was prepared by dispersing in NMP.
  • the lithium metal oxide particles, carbon nanotubes (CNTs), and PVDF of Preparation Example 1-2 were mixed at a weight ratio of 98:1:1.
  • a third positive electrode slurry was prepared by dispersing in NMP.
  • the first anode slurry, the second anode slurry, and the third anode slurry were sequentially applied, dried, and rolled on an area excluding the protrusion of an aluminum foil having a protrusion (anode tab) on one side, thereby producing a first anode slurry.
  • a positive electrode including a positive electrode active material layer, a second positive electrode active material layer, and a third positive electrode active material layer was manufactured.
  • the density (i.e., rolled density) of the positive electrode active material layer was adjusted to 3.5 g/cc.
  • the total thickness of the positive electrode active material layer was adjusted to 150 ⁇ m.
  • the application amounts of the first to third positive electrode slurries were adjusted so that the first to third positive electrode active material layers satisfied the thickness relationship shown in Table 1.
  • the cathode slurry was applied onto a region of a copper foil having a protrusion (cathode tab) on one side, excluding the protrusion, and dried and rolled to prepare a cathode.
  • An electrode assembly was formed by interposing a polyethylene separator (20 ⁇ m thick) between the anode and the cathode.
  • An anode lead and a cathode lead were welded and connected to the anode tab and the cathode tab, respectively.
  • a 1 M LiPF 6 solution (mixed solvent of 30:70 v/v EC and EMC) was prepared. Based on the total weight of the electrolyte, FEC (Fluoroethylene carbonate) 1 wt%, LiPO 2 F 2 (Lithium difluorophosphate) 1 wt%, PS (1,3-propane sultone) 0.5 wt%, and PRS (Prop-1-ene-1,3- sultone) was added to 0.5 wt% to prepare an electrolyte solution.
  • FEC Fluoroethylene carbonate
  • LiPO 2 F 2 Lithium difluorophosphate
  • PS 1,3-propane sultone
  • PRS Prop-1-ene-1,3- sultone
  • the electrode assembly was stored inside a pouch so that some areas of the positive electrode lead and the negative electrode lead were exposed to the outside, and three sides except the electrolyte injection portion were sealed.
  • the electrolyte was placed inside the pouch, and the surface of the electrolyte injection portion was sealed to manufacture a lithium secondary battery.
  • the positive electrode and lithium were prepared in the same manner as in Example 1, except that the application amounts of the first to third positive electrode slurries were adjusted differently, and the thicknesses of the first to third positive electrode active material layers were adjusted differently.
  • a secondary battery was manufactured.
  • a positive electrode and a lithium secondary battery were manufactured in the same manner as in Example 1, except that the lithium metal oxide particles of Preparation Example 1-3 were used when preparing the third positive electrode slurry.
  • a positive electrode and a lithium secondary battery were manufactured in the same manner as in Example 1, except that the lithium metal oxide particles of Preparation Example 2-2 were used when preparing the second positive electrode slurry.
  • Example 2 In the same manner as Example 1, except that the lithium metal oxide particles of Preparation Example 1-4 were used when preparing the first positive electrode slurry, and the lithium metal oxide particles of Preparation Example 1-5 were used when preparing the third positive electrode slurry. A positive electrode and a lithium secondary battery were manufactured.
  • the first positive electrode slurry and the second positive electrode slurry were sequentially applied on aluminum foil, dried, and rolled to prepare a positive electrode including a first positive electrode active material layer and a second positive electrode active material layer.
  • the thickness of the first positive electrode active material layer and the thickness of the second positive electrode active material layer were adjusted to be 1:1.
  • the total thickness of the positive electrode active material layer was maintained the same as in Example 1.
  • a lithium secondary battery was manufactured in the same manner as Example 1, except that the positive electrode was used.
  • the second positive electrode slurry and the first positive electrode slurry were sequentially applied on aluminum foil, dried, and rolled to prepare a positive electrode including a first positive electrode active material layer and a second positive electrode active material layer.
  • the thickness of the first positive electrode active material layer and the thickness of the second positive electrode active material layer were adjusted to be 1:1.
  • the total thickness of the positive electrode active material layer was maintained the same as in Example 1.
  • a lithium secondary battery was manufactured in the same manner as Example 1, except that the positive electrode was used.
  • the second cathode slurry, the first cathode slurry, and the second cathode slurry were sequentially applied, dried, and rolled on an aluminum foil to form a first cathode active material layer, a second cathode active material layer, and a third cathode active material layer.
  • a lithium secondary battery was manufactured in the same manner as Example 1, except that the positive electrode was used.
  • the positive electrodes of Examples and Comparative Example 3 were cut in the width direction (i.e., the direction in which the minor axis of the positive electrode extends), and the cross sections were measured using a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the thickness T1, T2, and T3 of each of the first, second, and third positive electrode active material layers were measured.
  • a small amount of lithium metal oxide particles in the form of single particles may be mixed between lithium metal oxide particles in the form of secondary particles. Accordingly, a mixing area may be formed between the first positive electrode active material layer and the second positive electrode active material layer.
  • the thickness of the mixing area was considered to be the thickness of the layer (for example, the first positive electrode active material layer) into which single-particle lithium metal oxide particles are mixed.
  • Equations 1 to 3 were calculated from the measured T1 to T3.
  • the interfacial resistance (resistance between the positive electrode active material layer and the positive electrode current collector) and bulk resistance (resistance of the positive electrode active material layer) of the positive electrodes of Examples and Comparative Examples were measured.
  • the interface resistance and the bulk resistance were measured using HIOKI's RESISTIVITY METER.
  • An electric current was passed through the surface of the positive electrode active material layer, and the potential generated on the surface was measured at multiple points.
  • the anode was modeled as a three-dimensional resistance matrix, and the electric potential was calculated by flowing current through the three-dimensional resistance matrix in a computer simulation.
  • the resistance value when the measured surface potential distribution and the potential distribution on the simulation matched was taken as the bulk resistance. .
  • CC/CV charging (0.5C 4.2V, 0.05C CUT-OFF) and CC discharging (0.5C 2.7V CUT-OFF) were repeated three times at 25°C for the lithium secondary batteries of Examples and Comparative Examples, 3
  • the discharge capacity H1 was measured for the first time.
  • the lithium secondary battery was recharged by CC/CV (0.5C 4.2V 0.05C CUT-OFF).
  • the charged lithium secondary battery was stored at 60°C for 12 weeks, then left at room temperature for an additional 30 minutes, and the discharge capacity H2 was measured by CC discharge (0.5C 2.75V CUT-OFF).
  • Capacity retention rate was calculated as follows.
  • Capacity maintenance rate (%) H2/H1 ⁇ 100 (%)
  • the lithium secondary batteries of Examples and Comparative Examples were charged at 0.5C CC/CV (4.2V 0.05C CUT-OFF) at 25°C and then discharged at 0.5C CC until SOC was 60%.
  • the C-rate was changed to 0.2C 0.5C, 1C, 1.5C, 2C, 2.5C, and 3.0C, and DCIR R1 was measured by discharging and recharging for 10 seconds each.
  • the terminal point of the voltage was set to the equation of a straight line, and the slope was adopted as DCIR.
  • the charged lithium secondary battery was left exposed to air at 60°C for 12 weeks, then left at room temperature for an additional 30 minutes, and DCIR R2 was measured in the same manner as described above.
  • the internal resistance increase rate was calculated as follows.
  • the lithium secondary batteries of Examples and Comparative Examples were charged to SOC 100% (CC/CV 0.33C, 4.3V, 0.05C CUT OFF).
  • the charged lithium secondary battery was left in atmospheric conditions at 60°C.
  • the lithium secondary batteries of Examples and Comparative Examples were charged at 0.33C from 25°C to SOC 8%, and charged in steps of 2.5C-2.25C-2C-1.75C-1.5C-1.0C in the SOC 8 ⁇ 80% range. Then, it was charged again at 0.33C (4.3V, 0.05C cut-off) in the SOC 80-100% range for a total of 25 minutes. After adjusting the time to the same standard, CC was discharged to 2.5V at 0.33C.
  • the first discharge capacity S1 was measured, the charging and discharging were repeated 100 times, and the 100th discharge capacity S2 was measured.
  • the fast charging capacity maintenance rate was calculated according to the following equation.
  • the lithium secondary batteries of Examples and Comparative Examples were CC/CV charged (0.33C 4.3V 0.05C CUT-OFF) and CC discharged (0.33C 2.5V CUT-OFF) at 45°C.
  • the charging and discharging were repeated 500 times, and the discharge capacity C2 was measured at the 500th time.
  • Cycle capacity maintenance rate was calculated according to the formula below.
  • Cycle capacity maintenance rate (%) C2/C1 ⁇ 100(%)
  • Example 1 3.15 0.03 98 115 24 98 98 Example 2 2.89 0.03 96 114 15 99 98 Example 3 3.32 0.03 99 121 27 92 96 Example 4 3.38 0.03 99 120 26 94 96 Example 5 3.10 0.03 98 116 24 97 97 Example 6 3.31 0.03 99 122 25 90 96 Example 7 3.32 0.03 98 113 23 98 98 Example 8 3.35 0.03 98 117 22 94 98 Example 9 3.30 0.03 98 117 24 96 98 Example 10 3.33 0.03 93 116 18 98 95 Comparative Example 1 3.16 0.03 98 118 22 95 96 Comparative example 2 4.25 0.13 95 111 19 97 96 Comparative example 3 4.21 0.12 98 120 24 91
  • the lithium secondary batteries of Examples had improved positive electrode resistance characteristics, lifespan characteristics, high-temperature storage characteristics, and/or output characteristics compared to the lithium secondary batteries of Comparative Examples.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

예시적인 실시예들에 따른 리튬 이차 전지용 양극은 양극 집전체; 및 상기 양극 집전체 상에 형성된 양극 활물질층을 포함할 수 있다. 상기 양극 활물질층은 상기 양극 집전체 상에 형성되며, 2차 입자의 형태를 갖는 제1 리튬 금속 산화물 입자를 포함하는 제1 양극 활물질층; 상기 제1 양극 활물질층 상에 형성되며, 단입자의 형태를 갖는 제2 리튬 금속 산화물 입자를 포함하는 제2 양극 활물질층; 및 상기 제2 양극 활물질층 상에 형성되며, 2차 입자의 형태를 갖는 제3 리튬 금속 산화물 입자를 포함하는 제3 양극 활물질층을 포함할 수 있다.

Description

리튬 이차 전지용 양극 및 이를 포함하는 리튬 이차 전지
본 개시는 리튬 이차 전지용 양극 및 이를 포함하는 리튬 이차 전지에 관한 것이다. 보다 상세하게는, 다층 구조의 양극 활물질층을 포함하는 리튬 이차 전지용 양극 및 이를 포함하는 리튬 이차 전지에 관한 것이다.
이차 전지는 충전 및 방전이 반복 가능한 전지로서, 휴대폰, 노트북 PC 등과 같은 휴대용 전자 기기의 동력원으로 널리 적용되고 있다.
리튬 이차 전지는 작동 전압 및 단위 중량당 에너지 밀도가 높고, 충전 속도 및 경량화에 유리하다는 점에서 활발히 개발 및 적용되고 있다.
예를 들면, 리튬 이차 전지는 양극, 음극 및 상기 양극 및 상기 음극 사이에 개재되는 분리막을 포함하는 전극 조립체, 및 상기 전극 조립체를 함침시키는 전해액을 포함할 수 있다.
예를 들면, 상기 양극은 양극 집전체 및 상기 양극 집전체 상에 형성된 양극 활물질층을 포함할 수 있다. 예를 들면, 상기 양극 활물질층은 양극 활물질로서, 리튬 금속 산화물 입자를 포함할 수 있다.
상기 리튬 금속 산화물 입자는 형태학적으로 복수의 1차 입자들이 응집된 2차 입자의 형태를 갖고, 상기 1차 입자들은 결정학적으로 다결정의 구조를 갖는 것이 일반적이다.
그러나, 상기 2차 입자의 형태 및 다결정 구조를 갖는 리튬 금속 산화물 입자는 양극 제조 공정에서 압연시 입자 내 크랙이 발생할 수 있다. 또한, 리튬 이차 전지의 반복적인 충방전시 리튬의 삽입 및 탈리에 따라 입자 내 크랙이 발생할 수 있다.
이에 따라, 리튬 금속 산화물 입자 및 전해액의 부반응에 따른 가스 발생, 리튬 이차 전지의 수명 특성 저하 등의 문제가 발생할 수 있다. 또한, 상술한 문제들은 고온 환경에서 더욱 심화될 수 있다.
본 개시의 일 과제는 전기 화학적 성능 및 전기 화학적 안정성이 향상된 리튬 이차 전지용 양극 활물질을 제공하는 것이다.
본 개시의 일 과제는 전기 화학적 성능 및 전기 화학적 안정성이 향상된 리튬 이차 전지를 제공하는 것이다.
본 개시의 예시적인 실시예들에 따른 리튬 이차 전지용 양극은, 양극 집전체; 및 상기 양극 집전체 상에 형성된 양극 활물질층을 포함할 수 있다.
상기 양극 활물질층은 상기 양극 집전체 상에 형성되며, 복수의 1차 입자들이 응집된 2차 입자의 형태를 갖는 제1 리튬 금속 산화물 입자를 포함하는 제1 양극 활물질층; 상기 제1 양극 활물질층 상에 형성되며, 단입자의 형태를 갖는 제2 리튬 금속 산화물 입자를 포함하는 제2 양극 활물질층; 및 상기 제2 양극 활물질층 상에 형성되며, 복수의 1차 입자들이 응집된 2차 입자의 형태를 갖는 제3 리튬 금속 산화물 입자를 포함하는 제3 양극 활물질층을 포함할 수 있다.
일 실시예에 있어서, 상기 양극은 식 1을 만족할 수 있다.
[식 1]
0.2≤T2/(T1+T2+T3)≤0.7
일 실시예에 있어서, 상기 양극은 식 2를 만족할 수 있다.
[식 2]
0.15≤T1/(T2+T3)≤0.85
일 실시예에 있어서, 상기 양극은 식 3을 만족할 수 있다.
[식 3]
0.15≤T3/(T1+T2)≤0.85
식 1 내지 3에서, T1은 상기 양극의 단면을 측정한 SEM 이미지에서 상기 제1 양극 활물질층의 두께이며, T2는 상기 SEM 이미지에서 상기 제2 양극 활물질층의 두께이고, T3는 상기 SEM 이미지에서 상기 제3 양극 활물질층의 두께이다.
일 실시예에 있어서, 상기 제1 양극 활물질층의 두께, 상기 제2 양극 활물질층의 두께 및 상기 제3 양극 활물질층의 두께의 합은 40 내지 160 ㎛일 수 있다.
일 실시예에 있어서, 상기 제1 양극 활물질층 총 중량 중, 상기 제1 리튬 금속 산화물 입자의 함량은 90중량% 이상일 수 있다.
일 실시예에 있어서, 상기 제2 양극 활물질층 총 중량 중, 상기 제2 리튬 금속 산화물 입자의 함량은 90중량% 이상일 수 있다.
일 실시예에 있어서, 상기 제3 양극 활물질층 총 중량 중, 상기 제3 리튬 금속 산화물 입자의 함량은 90중량% 이상일 수 있다.
일 실시예에 있어서, 상기 제1 리튬 금속 산화물 입자 및 상기 제2 리튬 금속 산화물 입자 각각은, 니켈(Ni)을 함유할 수 있다. 상기 제1 리튬 금속 산화물 입자 중 니켈의 농도는 상기 제2 리튬 금속 산화물 입자 중의 니켈의 농도보다 클 수 있다.
일 실시예에 있어서, 상기 제2 리튬 금속 산화물 입자 및 상기 제3 리튬 금속 산화물 입자 각각은, 니켈(Ni)을 함유할 수 있다. 상기 제3 리튬 금속 산화물 입자 중 니켈의 농도는 상기 제2 리튬 금속 산화물 입자 중의 니켈의 농도보다 클 수 있다.
일 실시예에 있어서, 상기 제1 리튬 금속 산화물 입자의 입경(D50)은 상기 제2 리튬 금속 산화물 입자의 입경(D50)보다 클 수 있다.
일 실시예에 있어서, 상기 제3 리튬 금속 산화물 입자의 입경(D50)은 상기 제1 리튬 금속 산화물 입자의 입경(D50)보다 작을 수 있다.
일 실시예에 있어서, 상기 제2 리튬 금속 산화물 입자의 입경(D50)에 대한 상기 제3 리튬 금속 산화물 입자의 입경(D50)의 비율은 0.75 이상 및 1.4 미만일 수 있다.
일 실시예에 있어서, 상기 제1 리튬 금속 산화물 입자의 입경(D50)은 5 내지 15 ㎛이고, 상기 제2 리튬 금속 산화물 입자 및 상기 제3 리튬 금속 산화물 입자 각각의 입경(D50)은 1 내지 5 ㎛일 수 있다.
본 개시의 예시적인 실시예들에 따른 리튬 이차 전지는 상기 리튬 이차 전지용 양극; 및 상기 양극과 대향하는 음극을 포함할 수 있다.
본 개시의 예시적인 실시예들에 따르면, 출력 특성, 수명 특성, 고온 저장 특성 및 저항 특성이 향상된 리튬 이차 전지용 양극이 제공될 수 있다.
본 발명의 예시적인 실시예들에 따르면, 상기 양극을 포함하여, 출력 특성, 수명 특성, 고온 저장 특성 및 저항 특성이 향상된 리튬 이차 전지가 제공될 수 있다.
도 1은 예시적인 실시예들에 따른 리튬 이차 전지용 양극의 개략적인 단면도이다.
도 2 및 도 3은 각각, 예시적인 실시예들에 따른 리튬 이차 전지의 평면도 및 단면도이다.
본 개시의 예시적인 실시예들에 따르면, 소정의 형태(morphology)를 갖는 리튬 금속 산화물 입자를 포함하며 다층 구조를 갖는 양극 활물질층을 포함하는, 리튬 이차 전지용 양극이 제공된다. 또한, 상기 양극을 포함하는 리튬 이차 전지가 제공된다.
이하, 도면을 참조하여 본 개시의 예시적인 실시예들에 따른 리튬 이차 전지용 양극 및 리튬 이차 전지에 대해 상세히 설명한다. 다만, 도면 및 실시예들은 예시적인 것에 불과하며, 본 개시이 이에 제한되는 것은 아니다.
리튬 이차 전지용 양극
도 1은 본 개시의 일 실시예에 따른 리튬 이차 전지용 양극(이하, 양극으로 약칭)을 개략적으로 나타낸 단면도이다.
도 1을 참조하면, 양극(100)은 양극 집전체(105) 및 양극 집전체(105) 상에 형성된 양극 활물질층(110)을 포함할 수 있다. 양극 활물질층(110)은 양극 집전체(105)의 일면 상 또는 양면 상에 형성될 수 있다.
양극 활물질층(110)은 양극 집전체(105) 상에 순차적으로 형성된 제1 양극 활물질층(112), 제2 양극 활물질층(114) 및 제3 양극 활물질층(116)을 포함할 수 있다.
일 실시예에 있어서, 제1 양극 활물질층(112)은 양극 집전체(105) 상에 직접 형성되며, 제2 양극 활물질층(114)는 제1 양극 활물질층(112) 상에 직접 형성되고, 제3 양극 활물질층(116)은 제2 양극 활물질층(114)의 상에 집접 형성될 수 있다.
양극 활물질층(110)은 리튬을 삽입 및 탈리할 수 있는 양극 활물질을 포함할 수 있다. 예를 들면, 상기 양극 활물질은 리튬 금속 산화물 입자를 포함할 수 있다.
일 실시예에 있어서, 상기 리튬 금속 산화물 입자는 리튬 코발트계 산화물 입자(LCO), 리튬 망간계 산화물 입자(LMO), 리튬 니켈계 산화물 입자(LNO), 리튬 니켈-망간계 산화물 입자(LNMO), 리튬 니켈-코발트-망간계 산화물 입자(NCM), 리튬 니켈-코발트-알루미늄계 산화물 입자(NCA), 리튬 인산철계 산화물 입자(LFP), 리튬 과잉 산화물 입자(OLO) 등을 포함할 수 있다.
본 개시의 예시적인 실시예들에서, 제1 양극 활물질층(112)는 복수의 1차 입자(primary particle)들이 응집된 2차 입자(secondary particle)의 형태를 갖는 제1 리튬 금속 산화물 입자를 포함할 수 있다.
제2 양극 활물질층(114)은 단입자(single particle) 형태를 갖는 제2 리튬 금속 산화물 입자들을 포함할 수 있다.
제3 양극 활물질층(116)은 복수의 1차 입자들이 응집된 2차 입자의 형태를 갖는 제3 리튬 금속 산화물 입자를 포함할 수 있다.
예를 들면, 제1 양극 활물질층(112), 제2 양극 활물질층(114) 및 제3 양극 활물질층(116)의 조합에 따라, 양극의 저항 특성, 리튬 이차 전지의 출력 특성, 수명 특성 및 고온 저장 특성이 향상될 수 있다.
상기 2차 입자 및 상기 단입자는 서로 형태학적으로 구분될 수 있다. 예를 들면, 주사 전자 현미경(SEM; Scanning Electron Microscope)으로 측정한 입자의 단면 이미지를 기준으로, 상기 2차 입자 및 상기 단입자가 서로 구분될 수 있다.
예를 들면, 상기 2차 입자는 복수의 1차 입자들을 포함하며, SEM 단면 이미지에서 상기 1차 입자들의 경계(boundary)가 관찰될 수 있다. 예를 들면, 상기 2차 입자는 10개 초과, 30개 이상, 50개 이상 또는 100개 이상의 1차 입자들이 응집되어 있을 수 있다.
예를 들면, 상기 단입자는 응집체가 아닌 단일체(monolith)를 의미할 수 있고, SEM 단면 이미지에서 상기 2차 입자와 달리 1차 입자들의 경계가 관찰되지 않을 수 있다.
한편, 상기 단입자의 표면 상에 미세 입자(예를 들면, 상기 단입자의 체적에 대해 1/100 이하의 체적을 갖는 입자)들이 부착되어 있을 수 있고, 해당 형태가 상기 단입자의 개념에서 배제되지는 않는다.
예를 들면, 상기 단입자들은 서로 접하여 존재할 수도 있다. 예를 들면, 2 내지 10개, 2 내지 5개, 또는 2 또는 3개의 단입자들이 접하여 존재할 수 있다.
일 실시예에 있어서, 양극(100)은 하기 식 1을 만족할 수 있다. 이에 따라, 리튬 이차 전지의 수명 특성 및 고온 저장 특성이 보다 향상될 수 있다.
[식 1]
0.2≤T2/(T1+T2+T3)≤0.7
일부 실시예들에서, T2/(T1+T2+T3)는 0.2 내지 0.5, 또는 0.25 내지 0.4일 수 있다.
일 실시예에 있어서, 양극(100)은 하기 식 2를 만족할 수 있다. 이 경우, 양극의 저항 특성이 보다 향상될 수 있다.
[식 2]
0.15≤T1/(T2+T3)≤0.85
일부 실시예들에서, T1/(T2+T3)는 0.15 내지 0.7, 0.2 내지 0.65, 0.3 내지 0.6, 또는 0.4 내지 0.6일 수 있다.
일 실시예에 있어서, 양극(100)은 하기 식 3을 만족할 수 있다. 이 경우, 리튬 이차 전지의 출력 특성이 보다 향상될 수 있다.
[식 3]
0.15≤T3/(T1+T2)≤0.85
일부 실시예들에서, T3/(T1+T2)는 0.15 내지 0.7, 0.2 내지 0.65, 0.3 내지 0.6, 또는 0.4 내지 0.6일 수 있다.
식 1 내지 3에서, T1은 양극의 단면을 측정한 SEM 이미지에서 제1 양극 활물질층(112)의 두께이며, T2는 제2 양극 활물질층(114)의 두께이고, T3는 상기 SEM 이미지에서 제3 양극 활물질층(116)의 두께이다.
일부 실시예들에서, T2/(T1+T2+T3)는 0.25 내지 0.4이고 T1/(T2+T3)는 0.4 내지 0.6이며, T3/(T1+T2)는 0.4 내지 0.6일 수 있다. 상기 범위에서, 리튬 이차 전지의 출력 특성, 수명 특성, 고온 저장 특성 및 저항 특성이 더욱 향상될 수 있다.
일 실시예에 있어서, 양극 활물질층(110)의 두께(예를 들어, T1, T2 및 T3의 합)는 20 내지 500 ㎛, 30 내지 450 ㎛, 35 내지 300 ㎛, 40 내지 250 ㎛, 40 내지 200 ㎛, 40 내지 160 ㎛, 50 내지 160 ㎛, 60 내지 160 ㎛, 또는 80 내지 160 ㎛일 수 있다. 상기 범위에서, 리튬 이차 전지의 출력 특성, 수명 특성, 고온 저장 특성 및 저항 특성이 더욱 향상될 수 있다. 또한, 리튬 이차 전지의 에너지 밀도가 보다 향상될 수 있다.
일 실시예에 있어서, 양극 활물질층(110)은 도전재 및 바인더를 더 포함할 수 있다.
일부 실시예들에서, 상기 바인더는 폴리비닐리덴 플루오라이드(PVDF), 비닐리덴 플루오라이드-헥사플루오로 프로필렌 코폴리머(PVDF-co-HFP), 폴리아크릴로니트릴, 폴리메틸메타크릴레이트(PMMA) 등의 유기계 바인더; 스티렌-부타디엔 러버(SBR) 등의 수계 바인더를 포함할 수 있다. 예를 들면, 상기 바인더는 카르복시메틸 셀룰로오스(CMC)와 같은 증점제와 함께 사용될 수도 있다.
일부 실시예들에서, 상기 도전재는 흑연, 그래핀, 카본 블랙, 덴카 블랙, 탄소나노튜브(CNT) 등의 탄소계 도전재; 주석, 산화주석, 산화티타늄, LaSrCoO3, LaSrMnO3 등의 페로브스카이트(perovskite) 물질 등의 금속계 도전재를 포함할 수 있다.
일 실시예에 있어서, 제1 양극 활물질층(112) 총 중량 중, 상기 제1 리튬 금속 산화물 입자의 함량은 70중량% 이상, 일 실시예에 있어서 80중량% 이상, 일 실시예에 있어서 90중량% 이상일 수 있다.
일 실시예에 있어서, 제2 양극 활물질층(114) 총 중량 중, 상기 제2 리튬 금속 산화물 입자의 함량은 70중량% 이상, 일 실시예에 있어서 80중량% 이상, 일 실시예에 있어서 90중량% 이상일 수 있다.
일 실시예에 있어서, 제3 양극 활물질층(112) 총 중량 중, 상기 제3 리튬 금속 산화물 입자의 함량은 70중량% 이상, 일 실시예에 있어서 80중량% 이상, 일 실시예에 있어서 90중량% 이상일 수 있다.
일 실시예에 있어서, 상기 제1 리튬 금속 산화물 입자의 입경(D50)은 상기 제2 리튬 금속 산화물 입자의 입경(D50)보다 클 수 있다. 이에 따라, 양극의 저항 특성이 보다 향상될 수 있다.
일 실시예에 있어서, 상기 제3 리튬 금속 산화물 입자의 입경(D50)은 상기 제1 리튬 금속 산화물 입자의 입경(D50)보다 작을 수 있다.
일 실시예에 있어서, 상기 제1 리튬 금속 산화물 입자의 입경(D50)은 3 내지 20 ㎛, 일 실시예에 있어서 4 내지 18 ㎛, 일 실시예에 있어서 5 내지 15 ㎛일 수 있다.
일 실시예에 있어서, 상기 제2 리튬 금속 산화물 입자의 입경(D50)은 1 내지 9 ㎛, 일 실시예에 있어서 1 내지 7 ㎛, 일 실시예에 있어서 1 내지 5 ㎛일 수 있다.
일 실시예에 있어서, 상기 제3 리튬 금속 산화물 입자의 입경(D50)은 1 내지 9 ㎛, 일 실시예에 있어서 1 내지 7 ㎛, 일 실시예에 있어서 1 내지 5 ㎛일 수 있다. 이에 따라, 리튬 이차 전지의 출력 특성이 보다 향상될 수 있다.
예를 들면, 상기 입경(D50)은 체적 누적 입경 분포 50% 기준에서의 입경이며, 레이저 회절법에 의해 측정할 수 있다.
일 실시예에 있어서, 상기 제2 리튬 금속 산화물 입자의 입경(D50)에 대한 상기 제3 리튬 금속 산화물 입자의 입경(D50)의 비율은 0.75 이상 및 1.4 미만일 수 있다. 상기 범위에서 양극의 저항 특성, 리튬 이차 전지의 출력 특성, 급속 충전 성능이 보다 향상될 수 있다.
일부 실시예들에서, 상기 제2 리튬 금속 산화물 입자의 입경(D50)에 대한 상기 제3 리튬 금속 산화물 입자의 입경(D50)의 비율은 0.8 내지 1.35, 0.85 내지 1.3, 0.9 내지 1.25, 0.9 내지 1.2, 또는 0.9 내지 1.1일 수 있다.
일 실시예에 있어서, 상기 제1 리튬 금속 산화물 입자, 상기 제2 리튬 금속 산화물 입자 및 상기 제3 리튬 금속 산화물 입자 각각은, 니켈을 함유할 수 있다.
일부 실시예들에서, 상기 제1 리튬 금속 산화물 입자, 상기 제2 리튬 금속 산화물 입자 및 상기 제3 리튬 금속 산화물 입자 각각은, 코발트 및 망간을 더 함유할 수 있다.
일부 실시예들에서, 상기 제1 리튬 금속 산화물 입자, 상기 제2 리튬 금속 산화물 입자 및 상기 제3 리튬 금속 산화물 입자 각각은, 하기 화학식 1로 표시될 수 있다.
[화학식 1]
LixNi(1-a-b)M1aM2bOy
화학식 1에서, M1 및 M2는 독립적으로, Co, Mn, Al, Zr, Ti, Cr, B, Mn, Ba, Si, Y, W 및 Sr 중 적어도 하나이고, 0.9≤x≤1.2, 1.9≤y≤2.1, 0≤a+b≤0.5일 수 있다.
일부 실시예들에서, 0.9≤x≤1.1일 수 있다.
일부 실시예들에서, 0<a+b≤0.4, 0<a+b≤0.3 또는 0<a+b≤0.2일 수 있다.
일 실시예에 있어서, 상기 제1 리튬 금속 산화물 입자 중 니켈의 농도는 상기 제2 리튬 금속 산화물 입자 중의 니켈의 농도보다 클 수 있다. 상기 니켈의 농도는 리튬 금속 산화물 입자 중 리튬 및 산소를 제외한 전체 원소들 총 몰수에 대한 니켈의 몰비를 의미할 수 있다. 이 경우, 리튬 이차 전지의 용량, 수명 특성 및 고온 저장 특성이 보다 향상될 수 있다.
일부 실시예들에서, 상기 제1 리튬 금속 산화물 입자 중 니켈의 농도 및 상기 제2 리튬 금속 산화물 입자 중 니켈의 농도의 차는 0.05 이상, 0.1 이상, 0.2 이상, 0.3 이상일 수 있다. 또한, 상기 니켈의 농도의 차는 0.5 이하일 수 있다.
일 실시예에 있어서, 상기 제3 리튬 금속 산화물 입자 중 니켈의 농도는 상기 제2 리튬 금속 산화물 입자 중의 니켈의 농도보다 클 수 있다.
일부 실시예들에서, 상기 제2 리튬 금속 산화물 입자 중 니켈의 농도 및 상기 제3 리튬 금속 산화물 입자 중 니켈의 농도의 차는 0.05 이상, 0.1 이상, 0.2 이상, 0.3 이상일 수 있다. 또한, 상기 니켈의 농도의 차는 0.5 이하일 수 있다.
일 실시예에 있어서, 상기 제1 리튬 금속 산화물 입자, 상기 제2 리튬 금속 산화물 입자 및 상기 제3 리튬 금속 산화물 입자는 도핑 원소를 더 함유할 수 있다. 예를 들면, 상기 도핑 원소는 Al, Ti, Ba, Zr, Si, B, Mg, P, Sr, W, La 등을 포함할 수 있다.
일 실시예에 있어서, 상기 제1 리튬 금속 산화물 입자, 상기 제2 리튬 금속 산화물 입자 및 상기 제3 리튬 금속 산화물 입자의 표면 상에 코팅층이 형성될 수 있다. 예를 들면, 상기 코팅층은 Al, Ti, Ba, Zr, Si, B, Mg, P, Sr, W, La 등을 함유할 수 있다.
리튬 이차 전지
도 2는 본 개시의 일 실시예에 따른 리튬 이차 전지를 개략적으로 나타낸 평면도이며, 도 3은 도 2의 I-I'의 라인을 따라 절단한 단면도이다.
도 2 및 3을 참조하면, 리튬 이차 전지는 양극(100) 및 양극(100)과 대향하는 음극(130)을 포함할 수 있다.
양극(100)은 상술한 리튬 이차 전지용 양극일 수 있다.
음극(130)은 음극 집전체(125) 및 음극 집전체(125) 상에 형성된 음극 활물질층(120)을 포함할 수 있다. 예를 들면, 음극 활물질층(120)은 음극 집전체(125)의 일면 또는 양면 상에 형성될 수 있다.
예를 들면, 음극 활물질층(120)은 음극 활물질을 포함할 수 있다. 일 실시예에 있어서, 음극 활물질층(120)은 바인더, 도전재 등을 더 포함할 수 있다.
예를 들면, 음극 집전체(125)는 금, 스테인레스강, 니켈, 알루미늄, 티탄, 구리 또는 이들의 합금을 포함할 수 있다.
예를 들면, 상기 음극 활물질은 리튬 이온을 삽입 및 탈리할 수 있는 물질일 수 있다. 예를 들면, 상기 음극 활물질은 리튬 합금, 탄소계 활물질, 실리콘계 활물질 등을 포함할 수 있고, 이들은 단독으로 사용되거나 2 이상이 조합되어 사용될 수도 있다.
예를 들면, 상기 리튬 합금은 알루미늄, 아연, 비스무스, 카드뮴, 안티몬, 실리콘, 납, 주석, 갈륨, 인듐 등을 포함할 수 있다.
예를 들면, 상기 탄소계 활물질은 결정질 탄소, 비정질 탄소, 탄소 복합체, 탄소 섬유 등을 포함할 수 있다. 예를 들면, 상기 비정질 탄소는 하드 카본, 코크스, 메조카본 마이크로비드, 메조페이스피치계 탄소 섬유 등을 포함할 수 있다. 예를 들면, 상기 결정질 탄소는 천연 흑연, 인조 흑연, 흑연화 코크스, 흑연화 MCMB, 흑연화 MPCF 등을 포함할 수 있다.
일 실시예에 있어서, 상기 음극 활물질은 실리콘계 활물질을 포함할 수 있다. 예를 들면, 상기 실리콘계 활물질은 Si, SiOx(0<x<2), Si/C, SiO/C, Si-Metal 등을 포함할 수 있다. 이 경우, 고용량을 갖는 리튬 이차 전지를 구현할 수 있다.
일부 실시예들에서, 음극(130)의 면적은 양극(100)의 면적보다 클 수 있다. 이에 따라, 양극(100)으로부터 생성된 리튬 이온이 중간에 석출되지 않고 음극(130)으로 원활히 이동될 수 있다.
예를 들면, 양극(100) 및 음극(130)이 교대로 반복적으로 배치되어 전극 조립체(150)를 형성할 수 있다.
일 실시예에 있어서, 양극(100) 및 음극(130) 사이에 분리막(140)이 개재될 수 있다. 예를 들면, 분리막(140)의 권취(winding), 적층(stacking), 지그재그-접음(z-folding) 등에 의해 전극 조립체(150)가 형성될 수 있다.
일 실시예에 있어서, 분리막(140)은 에틸렌 단독 중합체, 프로필렌 단독 중합체, 에틸렌-부텐 공중합체, 에틸렌-헥센 공중합체, 에틸렌-메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 포함할 수 있다. 또한, 분리막(140)은 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 형성된 부직포를 포함할 수 있다.
예를 들면, 전극 조립체(150) 및 전해액이 케이스(160) 내에 함께 수용되어 리튬 이차 전지를 형성할 수 있다.
예를 들면, 상기 리튬 이차 전지는 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등으로 제조될 수 있다.
예를 들면, 상기 전해액은 리튬염 및 유기 용매를 포함할 수 있다.
일 실시예에 있어서, 상기 리튬염은 Li+X-로 표현될 수 있다. 예를 들면, 상기 X-는 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, PF6 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N- , CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN-, (CF3CF2SO2)2N- 등일 수 있다.
일부 실시예들에서, 상기 리튬염은 LiBF4, LiPF6 등을 포함할 수 있다.
일 실시예에 있어서, 상기 유기 용매는 카보네이트계 용매, 에스테르계(카복실레이트계) 용매, 에테르계 용매, 케톤계 용매, 알코올계 용매, 비양성자성 용매 등을 포함할 수 있다.
예를 들면, 상기 카보네이트계 용매는 디메틸 카보네이트(DMC; dimethyl carbonate), 에틸 메틸 카보네이트(EMC; ethyl methyl carbonate), 디에틸 카보네이트(DEC; diethyl carbonate), 에틸렌 카보네이트(EC; ethylene carbonate) 등을 포함할 수 있다.
예를 들면, 상기 에스테르계 용매는 메틸 프로피오네이트, 에틸 프로피오네이트, 프로필 아세테이트, 부틸 아세테이트, 에틸 아세테이트, 부티로락톤, 카프로락톤, 발레로락톤 등을 포함할 수 있다.
예를 들면, 상기 에테르계 용매는 디부틸에테르(dibutyl ether), 테트라에틸렌글리콜 디메틸에테르(TEGDME; tetraethylene glycol dimethyl ether), 디에틸렌글리콜 디메틸에테르(DEGDME; diethylene glycol dimethyl ether), 디메톡시에탄(dimethoxyethane), 테트라히드로퓨란(THF; tetrahydrofuran), 2-메틸 테트라히드로퓨란(2-methyltetrahydrofuran) 등을 포함할 수 있다.
예를 들면, 상기 케톤계 용매는 시클로헥사논(cyclohexanone) 등을 포함할 수 있다.
예를 들면, 상기 알코올계 용매는 에틸 알코올(ethyl alcohol), 이소프로필 알코올(isopropyl alcohol) 등을 포함할 수 있다.
예를 들면, 상기 비양성자성 용매는 니트릴계 용매, 아미드계 용매(예를 들어, 디메틸포름아미드), 디옥솔란계 용매(예를 들어, 1,3-디옥솔란), 설포란(sulfolane)계 용매 등을 포함할 수 있다.
일 실시예에 있어서, 리튬 이차 전지는 양극(100)과 연결되며, 케이스(160)의 외부로 돌출된 양극 리드(107); 및 음극(130)과 연결되며, 케이스(160)의 외부로 돌출된 음극 리드(127)를 포함할 수 있다.
예를 들면, 양극 리드(107)는 양극 집전체(105)와 전기적으로 연결될 수 있다. 또한, 음극 리드(127)는 음극 집전체(125)와 전기적으로 연결될 수 있다.
양극 집전체(105)는 일측에 돌출된 양극 탭(106)을 포함할 수 있다. 양극 탭(106) 상에는 양극 활물질층(110)이 형성되어 있지 않을 수 있다. 양극 탭(106)은 양극 집전체(105)와 일체이거나, 용접 등에 의해 연결되어 있을 수 있다. 양극 탭(106)을 통해 양극 집전체(105) 및 양극 리드(107)가 전기적으로 연결되어 있을 수 있다.
음극 집전체(125)는 일측에 돌출된 음극 탭(126)을 포함할 수 있다. 음극 탭(126) 상에는 음극 활물질층(120)이 형성되어 있지 않을 수 있다. 음극 탭(126)은 음극 집전체(125)와 일체이거나, 용접 등에 의해 연결되어 있을 수 있다. 음극 탭(126)을 통해 음극 집전체(125) 및 음극 리드(127)가 전기적으로 연결되어 있을 수 있다.
이하, 본 발명의 예시적인 실시예를 기재한다. 그러나 하기 실시예는 본 발명의 일 실시예일뿐 본 발명이 하기 실시예에 한정되는 것은 아니다.
제조예 1-1: 2차 입자 형태를 갖는 NCM 523(D50=10 ㎛) 제조
내부 용존 산소를 제거한 증류수에 NiSO4, CoSO4 및 MnSO4를 5:2:3의 몰비로 투입하여, 혼합 용액을 제조하였다.
상기 혼합 용액, NaOH(침전제) 및 NH4OH(킬라이팅제)를 반응기에 넣고, 30시간 공침 반응을 진행하여, 금속 수산화물 입자(Ni0.5Co0.2Mn0.3(OH)2)를 제조하였다. 상기 금속 수산화물 입자를 80℃에서 12시간 건조한 후, 110℃에서 12시간 재건조하였다.
상기 금속 수산화물 입자 및 수산화 리튬의 몰비가 1:1.03이 되도록 건식 고속 혼합기에 투입하여, 혼합물을 제조하였다.
상기 혼합물을 소성로에 넣고 2℃/min의 속도로 700℃까지 승온하고, 700℃에서 10시간 유지하였다. 소성 동안, 상기 소성로에 연속적으로 10 mL/min의 유속으로 산소 가스를 통과시켰다.
소성이 종료된 후, 소성물을 실온까지 냉각하고, 분쇄 및 분급하여, 2차 입자의 형태의 리튬 금속 산화물 입자(NCM 523; LiNi0.5Co0.2Mn0.3O2)를 수득하였다.
상기 리튬 금속 산화물 입자의 입경(D50)을 측정하였다. 입경(D50)은 체적 누적 입경 분포 50% 기준에서의 입경이며, 레이저 회절법(microtrac MT 3000)에 따라 측정하였다. 측정된 입경(D50)은 10 ㎛이었다.
제조예 1-2: 2차 입자 형태를 갖는 NCM 523(D50=5 ㎛) 제조
공침 반응 진행 시간을 달리한 것을 제외하고 제조예 1-1과 동일하게 진행하여 2차 입자 형태의 리튬 금속 산화물 입자(D50=5 ㎛)를 제조하였다.
제조예 1-3: 2차 입자 형태를 갖는 NCM 523(D50=7 ㎛) 제조
공침 반응 진행 시간을 달리한 것을 제외하고 제조예 1-1과 동일하게 진행하여 2차 입자 형태의 리튬 금속 산화물 입자(D50=7 ㎛)를 제조하였다.
제조예 1-4: 2차 입자 형태를 갖는 NCM 811(D50=10 ㎛) 제조
NiSO4, CoSO4 및 MnSO4를 8:1:1의 몰비로 사용한 것을 제외하고 제조예 1-1과 동일하게 진행하여 2차 입자 형태의 리튬 금속 산화물 입자(NCM 811; LiNi0.8Co0.1Mn0.1O2, D50=10 ㎛)를 제조하였다.
제조예 1-5: 2차 입자 형태를 갖는 NCM 811(D50=5 ㎛) 제조
공침 반응 진행 시간을 달리한 것을 제외하고 제조예 1-4와 동일하게 진행하여 2차 입자 형태의 리튬 금속 산화물 입자(D50=5 ㎛)를 제조하였다.
제조예 2-1: 단입자 형태를 갖는 NCM 523(D50=5 ㎛) 제조
내부 용존 산소를 제거한 증류수에 NiSO4, CoSO4 및 MnSO4를 5:2:3의 몰비로 투입하여, 혼합 용액을 제조하였다.
상기 혼합 용액, NaOH(침전제) 및 NH4OH(킬라이팅제)를 반응기에 넣고, 72시간 공침 반응을 진행하여, 금속 수산화물 입자(Ni0.5Co0.2Mn0.3(OH)2)를 제조하였다. 상기 금속 수산화물 입자를 100℃에서 12시간 건조한 후, 120℃에서 12시간 재건조하였다.
상기 금속 수산화물 입자 및 수산화 리튬의 몰비가 1:1.03이 되도록 건식 고속 혼합기에 투입하여, 혼합물을 제조하였다.
상기 혼합물을 소성로에 넣고 2℃/min의 속도로 980℃까지 승온하고, 980℃에서 12시간 유지하였다. 소성 동안, 상기 소성로에 연속적으로 10 mL/min의 유속으로 산소 가스를 통과시켰다.
소성이 종료된 후, 소성물을 실온까지 냉각하고, 분쇄 및 분급하여, 단입자 형태의 리튬 금속 산화물 입자(LiNi0.5Co0.2Mn0.3O2)를 수득하였다.
상기 리튬 금속 산화물 입자의 입경(D50)을 측정하였다. 입경(D50)은 체적 누적 입경 분포 50% 기준에서의 입경이며, 레이저 회절법(microtrac MT 3000)에 따라 측정하였다. 측정된 입경(D50)은 5 ㎛이었다.
제조예 2-2: 단입자 형태를 갖는 NCM 523(D50=7 ㎛) 제조
공침 반응 진행 시간을 달리한 것을 제외하고 제조예 2-1과 동일하게 진행하여, 단입자 형태의 리튬 금속 산화물 입자(D50=7 ㎛)를 제조하였다.
실시예들 및 비교예들
실시예 1
(1) 양극(3층 구조의 양극 활물질층을 포함)의 제조
제조예 1-1의 리튬 금속 산화물 입자, 탄소나노튜브(CNT) 및 PVDF를 98:1:1의 중량비로 N-메틸-2-피롤리돈(NMP)에 분산시켜 제1 양극 슬러리를 제조하였다.
제조예 2-1의 리튬 금속 산화물 입자, 탄소나노튜브(CNT) 및 PVDF를 98:1:1의 중량비로 NMP에 분산시켜 제2 양극 슬러리를 제조하였다.
제조예 1-2의 리튬 금속 산화물 입자, 탄소나노튜브(CNT) 및 PVDF를 98:1:1의 중량비로 NMP에 분산시켜 제3 양극 슬러리를 제조하였다.
일측에 돌출부(양극탭)를 갖는 알루미늄 박의 상기 돌출부를 제외한 영역 상에, 상기 제1 양극 슬러리, 상기 제2 양극 슬러리 및 상기 제3 양극 슬러리를 순차적으로 도포하고, 건조 및 압연하여, 제1 양극 활물질층, 제2 양극 활물질층 및 제3 양극 활물질층을 포함하는 양극을 제조하였다.
양극 활물질층의 밀도(즉, 압연 밀도)는 3.5 g/cc로 조절하였다. 양극 활물질층의 총 두께는 150 ㎛로 조절하였다. 상기 제1 양극 슬러리 내지 상기 제3 양극 슬러리의 도포량은 상기 제1 양극 활물질층 내지 제3 양극 활물질층이 표 1에 기재된 두께 관계를 만족하도록 조절하였다.
(2) 리튬 이차 전지의 제조
인조 흑연, 탄소 나노 튜브(CNT), SBR) 및 CMC를 95:3:1:1의 중량비로 증류수에 분산시켜, 음극 슬러리를 제조하였다.
일측에 돌출부(음극탭)를 갖는 구리 박의 상기 돌출부를 제외한 영역 상에, 상기 음극 슬러리를 도포하고, 건조 및 압연하여 음극을 제조하였다.
상기 양극 및 상기 음극 사이에 폴리에틸렌 분리막(두께 20 ㎛)을 개재하여 전극 조립체를 형성하였다. 상기 양극 탭 및 상기 음극 탭에 각각 양극 리드 및 음극 리드를 용접하여 연결하였다.
1 M의 LiPF6 용액(30:70 v/v EC 및 EMC의 혼합 용매)을 준비하였다. 전해액 총 중량 기준, FEC(Fluoroethylene carbonate) 1wt%, LiPO2F2(Lithium difluorophosphate) 1 wt%, PS(1,3-Propane sultone) 0.5 wt% 및 PRS(Prop-1-ene-1,3-sultone) 0.5 wt%가 되도록 첨가하여, 전해액을 제조하였다.
상기 양극 리드 및 상기 음극 리드의 일부 영역이 외부로 노출되도록, 상기 전극 조립체를 파우치의 내부에 수납하고, 전해액 주액부 면을 제외한 3면을 실링하였다.
상기 전해액을 상기 파우치의 내부에 넣고, 상기 전해액 주액부 면을 실링하여 리튬 이차 전지를 제조하였다.
실시예 2 내지 7
상기 제1 양극 슬러리 내지 상기 제3 양극 슬러리의 도포량을 다르게 조절하여, 상기 제1 양극 활물질층 내지 상기 제3 양극 활물질층의 두께를 다르게 조절한 것을 제외하고, 실시예 1과 동일하게 양극 및 리튬 이차 전지를 제조하였다.
단, 양극 활물질층의 총 두께는 실시예 1과 동일하게 유지하였다.
실시예 8
상기 제3 양극 슬러리 제조시 제조예 1-3의 리튬 금속 산화물 입자를 사용한 것을 제외하고, 실시예 1과 동일하게 양극 및 리튬 이차 전지를 제조하였다.
실시예 9
상기 제2 양극 슬러리 제조시 제조예 2-2의 리튬 금속 산화물 입자를 사용한 것을 제외하고, 실시예 1과 동일하게 양극 및 리튬 이차 전지를 제조하였다.
실시예 10
상기 제1 양극 슬러리 제조시 제조예 1-4의 리튬 금속 산화물 입자를 사용하고, 상기 제3 양극 슬러리 제조시 제조예 1-5의 리튬 금속 산화물 입자를 사용한 것을 제외하고, 실시예 1과 동일하게 양극 및 리튬 이차 전지를 제조하였다.
비교예 1
알루미늄 박 상에 상기 제1 양극 슬러리 및 상기 제2 양극 슬러리를 순차적으로 도포하고, 건조 및 압연하여, 제1 양극 활물질층 및 제2 양극 활물질층을 포함하는 양극을 제조하였다.
상기 제1 양극 활물질층의 두께 및 상기 제2 양극 활물질층의 두께는 1:1이 되도록 조절하였다. 양극 활물질층의 총 두께는 실시예 1과 동일하게 유지하였다.
상기 양극을 사용한 것을 제외하고 실시예 1과 동일하게 리튬 이차 전지를 제조하였다.
비교예 2
알루미늄 박 상에 상기 제2 양극 슬러리 및 상기 제1 양극 슬러리를 순차적으로 도포하고, 건조 및 압연하여, 제1 양극 활물질층 및 제2 양극 활물질층을 포함하는 양극을 제조하였다.
상기 제1 양극 활물질층의 두께 및 상기 제2 양극 활물질층의 두께는 1:1이 되도록 조절하였다. 양극 활물질층의 총 두께는 실시예 1과 동일하게 유지하였다.
상기 양극을 사용한 것을 제외하고 실시예 1과 동일하게 리튬 이차 전지를 제조하였다.
비교예 3
알루미늄 박 상에 상기 제2 양극 슬러리, 상기 제1 양극 슬러리 및 상기 제2 양극 슬러리를 순차적으로 도포하고, 건조 및 압연하여, 제1 양극 활물질층, 제2 양극 활물질층 및 제3 양극 활물질층을 포함하는 양극을 제조하였다.
상기 양극을 사용한 것을 제외하고 실시예 1과 동일하게 리튬 이차 전지를 제조하였다.
실험예 1: 제1 양극 활물질층 내지 제3 양극 활물질층의 두께 측정
실시예들 및 비교예 3의 양극을 폭 방향(즉, 양극의 단축이 연장하는 방향)으로 절단하여, 단면을 주사 전자 현미경(SEM)으로 측정하였다.
상기 SEM 단면 이미지에서, 제1 양극 활물질층, 제2 양극 활물질 및 제3 양극 활물질층 각각의 두께 T1, T2 및 T3를 측정하였다.
다만, 압연시, 단입자 형태의 리튬 금속 산화물 입자들이 2차 입자 형태의 리튬 금속 산화물 입자들 사이로 소량 혼입될 수 있다. 이에 따라, 상기 제1 양극 활물질층 및 상기 제2 양극 활물질층의 사이에 혼입 영역이 형성될 수 있다. 상기 혼입 영역의 두께는 단입자 형태의 리튬 금속 산화물 입자가 혼입되는 층(예를 들어, 제1 양극 활물질층)의 두께로 간주하였다.
측정된 T1 내지 T3으로 하기 식 1 내지 식 3의 값을 계산하였다.
[식 1]
T2/(T1+T2+T3)
[식 2]
T1/(T2+T3)
[식 3]
T3/(T1+T2)
실험예 2: 양극 bulk 저항 및 계면 저항 측정
실시예들 및 비교예들의 양극의 계면 저항(양극 활물질층 및 양극 집전체 사이의 저항) 및 벌크 저항(양극 활물질층의 저항)을 측정하였다.
상기 계면 저항 및 상기 벌크 저항은 HIOKI社의 RESISTIVITY METER를 사용하여 측정하였다.
상기 양극 활물질층 표면에 전류를 흘려 상기 표면에서 발생하는 전위를 다점 측정하였다. 상기 양극을 3차원 저항 매트릭스로 모델링하고, 컴퓨터 시뮬레이션에서 상기 3차원 저항 매트릭스에 전류를 흘려 전위를 계산하였으며, 실측한 표면 전위 분포와 시뮬레이션 상의 전위 분포가 일치했을 때의 저항 값을 벌크 저항으로 하였다.
실험예 3
(1) 고온 저장 용량 유지율 측정
실시예들 및 비교예들의 리튬 이차 전지를 25℃에서 CC/CV 충전(0.5C 4.2V, 0.05C CUT-OFF) 및 CC 방전(0.5C 2.7V CUT-OFF)을 3회 반복 진행하여, 3회째 방전 용량 H1을 측정하였다.
리튬 이차 전지를 다시 CC/CV 충전(0.5C 4.2V 0.05C CUT-OFF)하였다.
충전된 리튬 이차 전지를 60℃에서 12주 동안 보관한 후, 상온에서 30분 동안 추가 방치하고, CC 방전(0.5C 2.75V CUT-OFF)하여 방전 용량 H2를 측정하였다.
용량 유지율을 하기와 같이 계산하였다.
용량 유지율(%) = H2/H1 × 100(%)
(2) 고온 저장 DCIR 증가율 측정
실시예들 및 비교예들의 리튬 이차 전지를 25℃에서 0.5C CC/CV 충전(4.2V 0.05C CUT-OFF)한 후, SOC 60%까지 0.5C CC 방전하였다.
SOC 60% 지점에서 C-rate를 0.2C 0.5C, 1C, 1.5C, 2C, 2.5C 및 3.0C로 변화시키며 각각 10초 동안 방전 및 보충전하여 DCIR R1을 측정하였다.
상기 방전 및 보충전 진행시, 전압의 종단 지점을 직선의 방정식으로 하여, 그 기울기를 DCIR로 채택하였다.
충전된 리튬 이차 전지를 60℃에서 대기 중 노출 조건에서 12주 동안 방치한 후, 상온에서 30분 동안 추가 방치하고, 상술한 방법과 동일하게 DCIR R2를 측정하였다.
내부 저항 증가율은 하기와 같이 계산하였다.
내부 저항 증가율(%) = (R2-R1)/R1 × 100(%)
(3) VENT 시점 확인
실시예들 및 비교예들의 리튬 이차 전지를 SOC 100%까지 충전(CC/CV 0.33C, 4.3V, 0.05C CUT OFF)하였다.
충전된 리튬 이차 전지를 60℃의 대기 조건에서 방치하였다.
파우치의 실링 부분에 벤트(vent)가 발생하는 시점을 확인하였다.
실링부가 부풀었거나, 별도의 공기 방출 구멍이 발생한 경우, 벤트가 발생한 것으로 평가하였다.
실험예 4
(1) 급속 충전 용량 유지율 측정
실시예들 및 비교예들의 리튬 이차 전지를 25℃에서 SOC 8%까지 0.33C로 충전하고, SOC 8~80% 구간에서 2.5C-2.25C-2C-1.75C-1.5C-1.0C 단계 별로 충전하고, SOC 80~100% 구간에서 다시 0.33C로 충전(4.3V, 0.05C cut-off)하여 총합 25분 동안 충전하였다. 시간을 동일한 기준으로 맞춘 후, 0.33C로 2.5V까지 CC 방전하였다.
1회째 방전 용량 S1을 측정하고, 상기 충전 및 방전을 100회 반복 진행하여, 100회째 방전 용량 S2를 측정하였다.
급속 충전 용량 유지율은 하기 식과 같이 계산하였다.
급속 충전 용량 유지율(%) = S2/S1 × 100(%)
(2) Cycle 용량 유지율(life-span) 측정
실시예들 및 비교예들의 리튬 이차 전지들을 45℃에서 CC/CV 충전(0.33C 4.3V 0.05C CUT-OFF) 및 CC 방전(0.33C 2.5V CUT-OFF) 하였다.
상기 충전 및 상기 방전을 반복적으로 500회 진행하여, 500회째 방전 용량 C2를 측정하였다.
Cycle 용량 유지율은 하기 식에 따라 계산되었다.
Cycle 용량 유지율(%) = C2/C1×100(%)
제1 양극
활물질층
제2 양극
활물질층
제3 양극
활물질층
T2/
(T1+T2+T3)
T1/
(T2+T3)
T3/
(T1+T2)
실시예1 2차입자
NCM 523
D50=10㎛
단입자
NCM 523
D50=5㎛
2차입자
NCM 523
D50=5㎛
0.33 0.5 0.5
실시예2 2차입자NCM 523
D50=10㎛
단입자
NCM 523
D50=5㎛
2차입자
NCM 523
D50=5㎛
0.18 0.69 0.69
실시예3 2차입자NCM 523
D50=10㎛
단입자
NCM 523
D50=5㎛
2차입자
NCM 523
D50=5㎛
0.72 0.16 0.16
실시예4 2차입자
NCM 523
D50=10㎛
단입자
NCM 523
D50=5㎛
2차입자
NCM 523
D50=5㎛
0.67 0.11 0.30
실시예5 2차입자NCM 523
D50=10㎛
단입자
NCM 523
D50=5㎛
2차입자
NCM 523
D50=5㎛
0.33 0.88 0.25
실시예6 2차입자NCM 523
D50=10㎛
단입자
NCM 523
D50=5㎛
2차입자
NCM 523
D50=5㎛
0.67 0.30 0.11
실시예7 2차입자NCM 523
D50=10㎛
단입자
NCM 523
D50=5㎛
2차입자
NCM 523
D50=5㎛
0.33 0.25 0.88
실시예8 2차입자NCM 523
D50=10㎛
단입자
NCM 523
D50=5㎛
2차입자
NCM 523
D50=7㎛
0.33 0.5 0.5
실시예9 2차입자NCM 523
D50=10㎛
단입자
NCM 523
D50=7㎛
2차입자
NCM 523
D50=5㎛
0.33 0.5 0.5
실시예10 2차입자NCM 811
D50=10㎛
단입자
NCM 523
D50=5㎛
2차입자
NCM 811
D50=5㎛
0.33 0.5 0.5
비교예1 2차입자NCM523
D50=10㎛
단입자
NCM 523
D50=5㎛
- 0.5 0.5 -
비교예2 단입자NCM 523
D50=5㎛
2차입자
NCM523
D50=10㎛
- 0.5 0.5 -
비교예3 단입자
NCM 523
D50=5㎛
2차입자
NCM523
D50=10㎛
단입자
NCM 523
D50=5㎛
0.33 0.5 0.5
양극
Bulk
저항
(Ωcm)
양극
계면
저항
(Ωcm²)
고온저장
용량유지율
(%)
고온저장
DCIR증가율
(%)
벤트
시점
(Weeks)
급속충전
용량유지율
(%)
cycle
용량유지율
(%)
실시예1 3.15 0.03 98 115 24 98 98
실시예2 2.89 0.03 96 114 15 99 98
실시예3 3.32 0.03 99 121 27 92 96
실시예4 3.38 0.03 99 120 26 94 96
실시예5 3.10 0.03 98 116 24 97 97
실시예6 3.31 0.03 99 122 25 90 96
실시예7 3.32 0.03 98 113 23 98 98
실시예8 3.35 0.03 98 117 22 94 98
실시예9 3.30 0.03 98 117 24 96 98
실시예10 3.33 0.03 93 116 18 98 95
비교예1 3.16 0.03 98 118 22 95 96
비교예2 4.25 0.13 95 111 19 97 96
비교예3 4.21 0.12 98 120 24 91 94
상기 표 1 및 표 2를 참조하면, 실시예들의 리튬 이차 전지들은 비교예들의 리튬 이차 전지들에 비해 양극의 저항 특성, 수명 특성, 고온 저장 특성 및/또는 출력 특성이 향상되었다.

Claims (15)

  1. 양극 집전체;
    상기 양극 집전체 상에 형성되며, 1차 입자들이 응집된 2차 입자의 형태를 갖는 제1 리튬 금속 산화물 입자를 포함하는 제1 양극 활물질층;
    상기 제1 양극 활물질층 상에 형성되며, 단입자의 형태를 갖는 제2 리튬 금속 산화물 입자를 포함하는 제2 양극 활물질층; 및
    상기 제2 양극 활물질층 상에 형성되며, 1차 입자들이 응집된 2차 입자의 형태를 갖는 제3 리튬 금속 산화물 입자를 포함하는 제3 양극 활물질층을 포함하는, 리튬 이차 전지용 양극.
  2. 청구항 1에 있어서, 식 1을 만족하는, 리튬 이차 전지용 양극:
    [식 1]
    0.2≤T2/(T1+T2+T3)≤0.7
    (식 1에서, T1은 상기 양극의 단면을 측정한 SEM 이미지에서 상기 제1 양극 활물질층의 두께이며,
    T2는 상기 SEM 이미지에서 상기 제2 양극 활물질층의 두께이고,
    T3는 상기 SEM 이미지에서 상기 제3 양극 활물질층의 두께임).
  3. 청구항 1에 있어서, 식 2를 만족하는, 리튬 이차 전지용 양극:
    [식 2]
    0.15≤T1/(T2+T3)≤0.85
    (식 2에서, T1은 상기 양극의 단면을 측정한 SEM 이미지에서 상기 제1 양극 활물질층의 두께이며,
    T2는 상기 SEM 이미지에서 상기 제2 양극 활물질층의 두께이고,
    T3는 상기 SEM 이미지에서 상기 제3 양극 활물질층의 두께임).
  4. 청구항 1에 있어서, 식 3을 만족하는, 리튬 이차 전지용 양극:
    [식 3]
    0.15≤T3/(T1+T2)≤0.85
    (식 3에서, T1은 상기 양극의 단면을 측정한 SEM 이미지에서 상기 제1 양극 활물질층의 두께이며,
    T2는 상기 SEM 이미지에서 상기 제2 양극 활물질층의 두께이고,
    T3는 상기 SEM 이미지에서 상기 제3 양극 활물질층의 두께임).
  5. 청구항 1에 있어서, 상기 제1 양극 활물질층의 두께, 상기 제2 양극 활물질층의 두께 및 상기 제3 양극 활물질층의 두께의 합은 40 내지 180 ㎛인, 리튬 이차 전지용 양극.
  6. 청구항 1에 있어서, 상기 제1 양극 활물질층 총 중량 중, 상기 제1 리튬 금속 산화물 입자의 함량은 90중량% 이상인, 리튬 이차 전지용 양극.
  7. 청구항 1에 있어서, 상기 제2 양극 활물질층 총 중량 중, 상기 제2 리튬 금속 산화물 입자의 함량은 90중량% 이상인, 리튬 이차 전지용 양극.
  8. 청구항 1에 있어서, 상기 제3 양극 활물질층 총 중량 중, 상기 제3 리튬 금속 산화물 입자의 함량은 90중량% 이상인, 리튬 이차 전지용 양극.
  9. 청구항 1에 있어서, 상기 제1 리튬 금속 산화물 입자 및 상기 제2 리튬 금속 산화물 입자 각각은, 니켈(Ni)을 함유하고,
    상기 제1 리튬 금속 산화물 입자 중 니켈의 농도는 상기 제2 리튬 금속 산화물 입자 중의 니켈의 농도보다 큰, 리튬 이차 전지용 양극.
  10. 청구항 1에 있어서, 상기 제2 리튬 금속 산화물 입자 및 상기 제3 리튬 금속 산화물 입자 각각은, 니켈(Ni)을 함유하고,
    상기 제3 리튬 금속 산화물 입자 중 니켈의 농도는 상기 제2 리튬 금속 산화물 입자 중의 니켈의 농도보다 큰, 리튬 이차 전지용 양극.
  11. 청구항 1에 있어서, 상기 제1 리튬 금속 산화물 입자의 입경(D50)은 상기 제2 리튬 금속 산화물 입자의 입경(D50)보다 큰, 리튬 이차 전지용 양극.
  12. 청구항 1에 있어서, 상기 제3 리튬 금속 산화물 입자의 입경(D50)은 상기 제1 리튬 금속 산화물 입자의 입경(D50)보다 작은, 리튬 이차 전지용 양극.
  13. 청구항 1에 있어서, 상기 제2 리튬 금속 산화물 입자의 입경(D50)에 대한 상기 제3 리튬 금속 산화물 입자의 입경(D50)의 비율은 0.75 이상 및 1.4 미만인, 리튬 이차 전지용 양극.
  14. 청구항 1에 있어서, 상기 제1 리튬 금속 산화물 입자의 입경(D50)은 5 내지 15 ㎛이고,
    상기 제2 리튬 금속 산화물 입자 및 상기 제3 리튬 금속 산화물 입자 각각의 입경(D50)은 1 내지 5 ㎛인, 리튬 이차 전지용 양극.
  15. 청구항 1의 리튬 이차 전지용 양극; 및
    상기 양극과 대향하는 음극을 포함하는, 리튬 이차 전지.
PCT/KR2023/011314 2022-08-25 2023-08-02 리튬 이차 전지용 양극 및 이를 포함하는 리튬 이차 전지 WO2024043566A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220106999A KR20240028797A (ko) 2022-08-25 2022-08-25 리튬 이차 전지용 양극 및 이를 포함하는 리튬 이차 전지
KR10-2022-0106999 2022-08-25

Publications (1)

Publication Number Publication Date
WO2024043566A1 true WO2024043566A1 (ko) 2024-02-29

Family

ID=90013487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/011314 WO2024043566A1 (ko) 2022-08-25 2023-08-02 리튬 이차 전지용 양극 및 이를 포함하는 리튬 이차 전지

Country Status (2)

Country Link
KR (1) KR20240028797A (ko)
WO (1) WO2024043566A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013120724A (ja) * 2011-12-08 2013-06-17 Sony Corp 電極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
WO2019151363A1 (ja) * 2018-02-05 2019-08-08 富士フイルム株式会社 固体電解質含有シート、全固体二次電池用電極シート、全固体二次電池、電子機器及び電気自動車、並びに、これらの製造方法
KR20200135060A (ko) * 2019-05-24 2020-12-02 삼성에스디아이 주식회사 리튬 이차전지용 양극, 이의 제조방법 및 이를 포함한 리튬 이차전지
JP2022112207A (ja) * 2021-01-21 2022-08-02 プライムプラネットエナジー&ソリューションズ株式会社 非水電解質二次電池
KR20220116943A (ko) * 2021-02-16 2022-08-23 에스케이온 주식회사 리튬 이차 전지

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210119905A (ko) 2020-03-25 2021-10-06 삼성에스디아이 주식회사 양극 활물질, 이를 포함한 양극 및 리튬이차전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013120724A (ja) * 2011-12-08 2013-06-17 Sony Corp 電極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
WO2019151363A1 (ja) * 2018-02-05 2019-08-08 富士フイルム株式会社 固体電解質含有シート、全固体二次電池用電極シート、全固体二次電池、電子機器及び電気自動車、並びに、これらの製造方法
KR20200135060A (ko) * 2019-05-24 2020-12-02 삼성에스디아이 주식회사 리튬 이차전지용 양극, 이의 제조방법 및 이를 포함한 리튬 이차전지
JP2022112207A (ja) * 2021-01-21 2022-08-02 プライムプラネットエナジー&ソリューションズ株式会社 非水電解質二次電池
KR20220116943A (ko) * 2021-02-16 2022-08-23 에스케이온 주식회사 리튬 이차 전지

Also Published As

Publication number Publication date
KR20240028797A (ko) 2024-03-05

Similar Documents

Publication Publication Date Title
WO2018135822A1 (ko) 비수전해액용 첨가제, 이를 포함하는 리튬 이차전지용 비수전해액 및 리튬 이차전지
WO2018135889A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2020111543A1 (ko) 팔면체 구조의 리튬 망간계 양극 활물질, 이를 포함하는 양극 및 리튬 이차전지
WO2021154026A1 (ko) 이차전지용 양극 활물질 전구체, 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2018093152A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2021040388A1 (ko) 비수 전해질 및 이를 포함하는 리튬 이차전지
WO2018135890A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2022092831A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2020222469A1 (ko) 리튬 이차 전지용 비수 전해질 및 이를 포함하는 리튬 이차 전지
WO2019151725A1 (ko) 고온 저장 특성이 향상된 리튬 이차전지
WO2020180160A1 (ko) 리튬 이차전지
WO2018131952A1 (ko) 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2021020805A1 (ko) 복합 음극 활물질, 이의 제조방법, 이를 포함하는 음극, 및 이차전지
WO2020153791A1 (ko) 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
WO2022119313A1 (ko) 양극 활물질 전구체, 이의 제조방법 및 양극 활물질
WO2023063648A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2022182162A1 (ko) 양극 활물질, 이를 포함하는 양극 및 이차 전지
WO2024043566A1 (ko) 리튬 이차 전지용 양극 및 이를 포함하는 리튬 이차 전지
WO2020180125A1 (ko) 리튬 이차전지
WO2021194220A1 (ko) 이차전지용 전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수 전해액 및 리튬 이차전지
WO2021241976A1 (ko) 이차전지용 전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수 전해액 및 리튬 이차전지
WO2018139808A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2023003378A1 (ko) 리튬 이차 전지
WO2023059074A1 (ko) 리튬 이차 전지
WO2022235047A1 (ko) 리튬 이차전지용 양극 활물질, 이를 포함하는 양극 및 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23857601

Country of ref document: EP

Kind code of ref document: A1