WO2022202394A1 - 組成物、磁性粒子含有硬化物、磁性粒子導入基板、電子材料 - Google Patents

組成物、磁性粒子含有硬化物、磁性粒子導入基板、電子材料 Download PDF

Info

Publication number
WO2022202394A1
WO2022202394A1 PCT/JP2022/010807 JP2022010807W WO2022202394A1 WO 2022202394 A1 WO2022202394 A1 WO 2022202394A1 JP 2022010807 W JP2022010807 W JP 2022010807W WO 2022202394 A1 WO2022202394 A1 WO 2022202394A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
magnetic particles
mass
composition
particles
Prior art date
Application number
PCT/JP2022/010807
Other languages
English (en)
French (fr)
Inventor
哲志 宮田
達郎 石川
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to EP22775186.4A priority Critical patent/EP4317294A4/en
Priority to KR1020237030160A priority patent/KR20230146036A/ko
Priority to CN202280019890.3A priority patent/CN116964697A/zh
Priority to JP2023509011A priority patent/JPWO2022202394A1/ja
Publication of WO2022202394A1 publication Critical patent/WO2022202394A1/ja
Priority to US18/462,738 priority patent/US20230420167A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08L101/06Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D135/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least another carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D135/02Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D161/00Coating compositions based on condensation polymers of aldehydes or ketones; Coating compositions based on derivatives of such polymers
    • C09D161/04Condensation polymers of aldehydes or ketones with phenols only
    • C09D161/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D171/00Coating compositions based on polyethers obtained by reactions forming an ether link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D171/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/69Particle size larger than 1000 nm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • H01F1/26Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated by macromolecular organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/33Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials mixtures of metallic and non-metallic particles; metallic particles having oxide skin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/36Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles
    • H01F1/37Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles in a bonding agent
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2265Oxides; Hydroxides of metals of iron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2265Oxides; Hydroxides of metals of iron
    • C08K2003/2275Ferroso-ferric oxide (Fe3O4)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/006Additives being defined by their surface area
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/01Magnetic additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances

Definitions

  • the present invention relates to compositions, magnetic particle-containing cured products, magnetic particle-introduced substrates, and electronic materials.
  • the degree of integration of electronic circuits is increasing.
  • a coating type composition containing magnetic particles By using such a composition, it is possible to mount magnetic bodies in any shape, so electronic devices can be made smaller and have higher performance than the conventional method of arranging individual pieces of magnetic bodies on a chip. It's easy to do.
  • Patent Document 1 "80 to 93% by weight of a magnetic material as component (A) containing at least one of Sendust alloy powder, Ni--Zn ferrite powder, and Mn--Zn ferrite powder, and component (B) A soft magnetic powder composition characterized by containing 7 to 20% by weight of a polymeric material as.
  • the present inventor prepared a coating-type composition containing magnetic particles with reference to the composition described in Patent Document 1 and examined its performance as a hole-filling composition.
  • the magnetic permeability of the material is low, and the fluidity of the composition itself is low, making it difficult to fill the holes by coating, and/or voids and cracks, etc. during the hole filling process. It was found that voids may occur due to That is, the inventors have found that there is room for further improvement in the magnetic permeability and hole-filling aptitude of the resulting cured product of the above composition.
  • Compositions used in electronic materials are also required to have excellent storage stability and low magnetic loss in the resulting cured product as basic properties.
  • a composition containing magnetic particles and an organic solvent The magnetic particles contain magnetic particles X having a sphericity of 100 to 120, The magnetic particles X contain ferrite particles, Among the magnetic particles X, the content of magnetic particles having an equivalent circle diameter of less than 11 ⁇ m is 15 to 70% by mass with respect to the total mass of the magnetic particles X, The composition, wherein the magnetic particles X have a volume average particle diameter of 5 to 50 ⁇ m. [2] The composition according to [1], wherein the magnetic particles X further contain alloy particles.
  • binder component contains at least one of an epoxy compound and an oxetane compound.
  • the composition according to any one of [1] to [10], wherein the content of the organic solvent is 1 to 15% by mass relative to the total mass of the composition.
  • a magnetic particle-containing cured product formed from the composition according to any one of [1] to [11].
  • a magnetic particle-introduced substrate comprising a substrate having holes formed thereon and the magnetic particle-containing cured product of [12] placed in the holes.
  • An electronic material comprising the magnetic particle-introduced substrate of [13].
  • cured material excellent in high magnetic permeability and low magnetic loss, is excellent in hole filling aptitude, and is excellent also in storage stability can be provided. Further, according to the present invention, it is possible to provide a magnetic particle-containing cured product formed using the above composition. Further, according to the present invention, it is possible to provide a magnetic particle-introduced substrate and an electronic material containing the magnetic particle-containing cured product.
  • the present invention will be described in detail below. The description of the constituent elements described below may be made based on representative embodiments of the present invention, but the present invention is not limited to such embodiments.
  • the notation that does not indicate substituted or unsubstituted includes groups having substituents as well as groups not having substituents. do.
  • an "alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
  • organic group as used herein refers to a group containing at least one carbon atom.
  • actinic ray or “radiation” refers to, for example, the emission line spectrum of a mercury lamp, far ultraviolet rays represented by excimer lasers, extreme ultraviolet rays (EUV light: Extreme Ultraviolet), X-rays, and electron beams ( EB means Electron Beam) and the like.
  • light means actinic rays or radiation.
  • exposure means, unless otherwise specified, not only exposure by the emission line spectrum of a mercury lamp, far ultraviolet rays represented by excimer lasers, extreme ultraviolet rays, X-rays, and EUV light, but also electron beams, It also includes writing with particle beams such as ion beams.
  • (meth)acrylate represents acrylate and methacrylate
  • (meth)acryl represents acrylic and methacryl
  • (meth)acryloyl represents acryloyl and methacryloyl.
  • the “solid content” of the composition means a component that forms a magnetic particle-containing cured product (hereinafter sometimes abbreviated as “cured product”), and the composition contains a solvent (organic solvent, water etc.) means all ingredients except the solvent.
  • a solvent organic solvent, water etc.
  • a liquid component is also regarded as a solid content.
  • boiling point means normal boiling point unless otherwise specified.
  • the weight average molecular weight (Mw) is a polystyrene conversion value by the GPC (Gel Permeation Chromatography) method.
  • the GPC method uses HLC-8020GPC (manufactured by Tosoh), TSKgel SuperHZM-H, TSKgel SuperHZ4000, TSKgel SuperHZ2000 (manufactured by Tosoh, 4.6 mm ID ⁇ 15 cm) as columns, and THF (tetrahydrofuran) as an eluent. Based on method used.
  • each component may be used singly or in combination of two or more substances corresponding to each component.
  • the content of the component refers to the total content of the substances used in combination unless otherwise specified.
  • compositions of the present invention are A composition comprising magnetic particles and an organic solvent
  • the magnetic particles include magnetic particles X having a sphericity of 100 to 120 (hereinafter also simply referred to as “magnetic particles X”),
  • the magnetic particles X contain ferrite particles (hereinafter also referred to as “ferrite particles X”),
  • ferrite particles X the content of magnetic particles having an equivalent circle diameter of less than 11 ⁇ m (hereinafter also referred to as “magnetic particles X less than 11 ⁇ m”) is 15 to 70% by mass with respect to the total mass of the magnetic particles X.
  • the magnetic particles X have a volume average particle diameter of 5 to 50 ⁇ m.
  • the ferrite particles X correspond to ferrite particles having a sphericity of 100 to 120, and the magnetic particles X of less than 11 ⁇ m have an equivalent circle diameter of less than 11 ⁇ m and have a sphericity of 100 to 120. Corresponds to magnetic particles.
  • the composition having the above constitution can form a cured product excellent in high magnetic permeability and low magnetic loss, is excellent in hole-filling aptitude, and is also excellent in storage stability.
  • the composition is excellent in hole-filling suitability means that it exhibits sufficient fluidity in the liquid state from the viewpoint of coating properties, and in the state after curing, voids such as voids and cracks are suppressed from the viewpoint of strength. intended to be Although this is not clear in detail, the present inventors presume as follows.
  • the main characteristics of the composition of the present invention are that it contains magnetic particles X (magnetic particles X) having a sphericity of 100 to 120, that the magnetic particles X contain ferrite particles, Among the magnetic particles X, the content of magnetic particles having an equivalent circle diameter of less than 11 ⁇ m is 15 to 70% by mass with respect to the total mass of the magnetic particles X, and the volume average particle diameter of the magnetic particles X is 5. and the point that it is ⁇ 50 ⁇ m. In the following description, the feature point may also be referred to as "feature point A". The inventors of the present invention have recently found that a composition using ferrite particles as magnetic particles may result in a cured product with low magnetic loss but low magnetic permeability.
  • the resulting cured product can achieve both low magnetic loss and high magnetic permeability.
  • the cured product contains ferrite particles as magnetic particles, resulting in a low magnetic loss, and the filling rate of the magnetic particles in the cured product is high (in other words, the magnetic particles are not contained in the cured product.
  • the high magnetic permeability is caused by the close distance between the magnetic particles in the cured product, which tends to form a close-packed structure.
  • composition of the present invention contains an organic solvent.
  • feature point B may also be referred to as "feature point B".
  • the composition since the composition has characteristic point B, it has excellent hole-filling aptitude and excellent storage stability.
  • the composition of the present invention exhibits the desired effect through synergism of the action mechanisms of the above configuration.
  • the magnetic permeability of the cured product formed from the composition is higher, the magnetic loss of the cured product formed from the composition is lower, the hole-filling suitability of the composition is better, and / or the composition
  • the better storage stability of a product is sometimes referred to as "the effect of the present invention is better.”
  • the composition includes magnetic particles.
  • One type of magnetic particles may be used alone, or two or more types may be used.
  • the content of the magnetic particles (the total content when multiple types are included) is preferably 85% by mass or more, and 90% by mass or more, based on the total solid content of the composition. is more preferable, and 92% by mass or more is even more preferable.
  • the upper limit is preferably 99% by mass or less, more preferably 98% by mass or less, still more preferably 97% by mass or less, relative to the total solid content of the composition. It is even more preferably not more than 95% by mass, and particularly preferably not more than 95% by mass.
  • the magnetic particles essentially contain magnetic particles X having a sphericity of 100 to 120 (magnetic particles X), but may contain magnetic particles other than the magnetic particles X.
  • the magnetic particles include magnetic particles X having a sphericity of 100 to 120 (magnetic particles X), and among the magnetic particles X, magnetic particles having an equivalent circle diameter of less than 11 ⁇ m (magnetic particles X less than 11 ⁇ m) are included. The amount is 15 to 70% by weight relative to the total weight of the magnetic particles X. Further, the volume average particle diameter of the magnetic particles X is 5 to 50 ⁇ m.
  • magnetic particles having an equivalent circle diameter of 11 ⁇ m or more are also referred to as “magnetic particles X of 11 ⁇ m or more”.
  • the magnetic particles X of 11 ⁇ m or more correspond to magnetic particles having an equivalent circle diameter of 11 ⁇ m or more and a sphericity of 100 to 120.
  • the content of the magnetic particles X in the composition is preferably 10% by mass or more, more preferably 25% by mass or more, based on the total mass of the magnetic particles. It is more preferably 50% by mass or more, even more preferably 75% by mass or more, particularly preferably 85% by mass or more, and most preferably 90% by mass or more. In addition, as the upper limit, it is preferable that it is 100 mass % or less. It is also preferable that the content of the magnetic particles X with respect to the total mass of the magnetic particles satisfies the above numerical range in the procedure for measuring sphericity and the like for 1,000 particles, which will be described later.
  • the content of the magnetic particles X in the composition is preferably 85% by mass or more, more preferably 90% by mass or more, and 92% by mass or more, based on the total solid content of the composition. More preferably.
  • the upper limit is preferably 99% by mass or less, more preferably 98% by mass or less, still more preferably 97% by mass or less, relative to the total solid content of the composition. It is even more preferably not more than 95% by mass, and particularly preferably not more than 95% by mass.
  • the content of magnetic particles having an equivalent circle diameter of less than 11 ⁇ m is 15 to 70% by mass with respect to the total mass of the magnetic particles X.
  • the content of the magnetic particles X less than 11 ⁇ m is the total content of the magnetic particles X less than 11 ⁇ m and the magnetic particles X having an equivalent circle diameter of 11 ⁇ m or more (the magnetic particles X of 11 ⁇ m or more) among the magnetic particles X. 15 to 70% by mass.
  • the magnetic permeability of the resulting cured product is inferior.
  • the content of the magnetic particles X having a diameter of less than 11 ⁇ m is preferably 40% by mass or more with respect to the total mass of the magnetic particles X from the viewpoint of further improving the magnetic permeability of the resulting cured product.
  • the magnetic particles X in the composition have a volume average particle diameter (MV (Mean Volume Diameter)) of 5 to 50 ⁇ m. If the volume average particle size of the magnetic particles X is less than 5 ⁇ m, the magnetic permeability of the cured product will be poor. On the other hand, if the volume average particle diameter of the magnetic particles X exceeds 50 ⁇ m, the fluidity of the composition will be poor, and the magnetic permeability of the resulting cured product will be poor.
  • the volume average particle diameter of the magnetic particles X is preferably 7 to 40 ⁇ m, more preferably 8 to 30 ⁇ m.
  • the magnetic particles are observed using a field emission scanning electron microscope (FE-SEM) (for example, "S-4800H” manufactured by Hitachi High-Technologies Corporation), and the magnetic particles are observed in an arbitrary observation field. 1000 particles are randomly selected and photographed.
  • FE-SEM field emission scanning electron microscope
  • the obtained image information is introduced into an image analysis device (for example, image analysis software "Image-Pro PLUS” manufactured by Media Cybernetics, etc.) via an interface for analysis, and the projected perimeter of each particle is calculated.
  • the projected area is determined, and the obtained value is used to determine the sphericity of each particle by the following formula (1). That is, for each of 1000 grains, the projected perimeter, projected area, and sphericity based thereon are obtained.
  • the projected perimeter and projected area mean the projected perimeter and projected area of the primary particles.
  • the sphericity is represented by the following formula (1). That is, the value obtained by dividing the square of the projected perimeter of the magnetic grains by the projected area of the magnetic grains is further divided by 4 ⁇ , and the resulting value is multiplied by 100.
  • Formula (1): Sphericality ⁇ [(projected perimeter of magnetic particles) 2 /(projected area of magnetic particles)]/4 ⁇ x 100
  • the equivalent circle diameter is calculated from the projected area of the magnetic particle obtained by the above procedure.
  • the equivalent circle diameter is the diameter of a perfect circle having the same projected area as that of the magnetic particles during observation.
  • the magnetic particles X have a sphericity of 100 to 120.
  • the magnetic particles X having an equivalent circle diameter of less than 11 ⁇ m are magnetic particles X of less than 11 ⁇ m
  • the magnetic particles X having an equivalent circle diameter of 11 ⁇ m or more are magnetic particles X of 11 ⁇ m or more.
  • the volume of each magnetic particle X among the 1000 magnetic particles to be measured is calculated by the following formula (2).
  • Formula (2): Volume (equivalent circle diameter of magnetic particles) 3 ⁇ ( ⁇ /6)
  • the elemental composition is analyzed based on energy dispersive X-ray spectroscopy (EDS) for the 1,000 magnetic particles to be measured.
  • EDS energy dispersive X-ray spectroscopy
  • S-4800H manufactured by Hitachi High-Technologies Corporation can also analyze the elemental composition based on the EDS method.
  • the types of particles in the magnetic particles X for example, ferrite particles, alloy particles, etc.
  • the metal content in the magnetic particles X and the like can be identified.
  • the mass of each particle is also determined based on the obtained various values and the specific gravity of the magnetic particles.
  • the content (% by mass) of the magnetic particles X having a diameter of less than 11 ⁇ m with respect to the total mass of the magnetic particles X is obtained.
  • the content (% by mass) of the magnetic particles X with respect to the total mass of the magnetic particles and the content (% by mass) of the magnetic particles X with a diameter of 11 ⁇ m or more relative to the total mass of the magnetic particles X are also obtained by the above measurement.
  • the volume average particle diameter (MV) of the magnetic particles X in the composition can also be determined based on the volume and circle equivalent diameter of each magnetic particle obtained by the above measurement.
  • the volume average particle diameter (MV) of the ferrite particles X which will be described later, can also be obtained by performing the above measurement.
  • the type of magnetic particles contained in the composition (type of magnetic particles X and types of magnetic particles other than magnetic particles X, etc.), sphericity, content of magnetic particles X less than 11 ⁇ m with respect to total mass of magnetic particles X (% by mass), the volume average particle diameter (MV) of the magnetic particles X, and/or the volume average particle diameter (MV) of the ferrite particles X described later are specified in advance, refer to those specified values.
  • the above measurement may be carried out after extracting the powder of the magnetic particles from the composition containing the magnetic particles and the organic solvent by any method (calcination, sedimentation, etc.), or the composition containing the magnetic particles and the organic solvent. It may also be performed on a film formed from the composition. Among others, the above measurement is preferably performed on a film formed from the composition.
  • the film may be a coating film, or may be a film after curing when the composition is a composition containing a curable compound such as a thermosetting compound and a photocurable compound.
  • the magnetic particles X contain ferrite particles (ferrite particles X).
  • the ferrite particles X are, in other words, ferrite particles having a sphericity of 100-120.
  • the magnetic particles X may contain magnetic particles other than the ferrite particles X (other magnetic particles X).
  • the ferrite particles X will be described in detail below.
  • the ferrite particles X contain at least one metal atom selected from the group consisting of Ni, Mn, Fe, and Co (meaning Fe atoms contained other than Fe atoms in Fe 2 O 3 ). Among them, it is more preferable to contain a Ni atom in that the effects of the present invention are more excellent.
  • the ferrite particles X may contain materials other than Ni, Mn, Fe, and Co (Fe atoms contained in addition to Fe atoms in Fe 2 O 3 are intended.) Specific examples thereof include , Al, Si, S, Sc, Ti, V, Cu, Y, Mo, Rh, Pd, Ag, Sn, Sb, Te, Ba, Ta, W, Re, Au, Bi, La, Ce, Pr, Nd , P, Zn, Sr, Zr, Cr, Nb, Pb, Ca, B, C, N, and O.
  • the ferrite particles X include Ni ferrite, Mn ferrite, and spinel ferrite (preferably Ni--Zn ferrite, Mn--Zn ferrite, or Fe--Mn ferrite).
  • Ni ferrite, Ni--Zn ferrite, or Fe--Mn ferrite is preferred, Ni ferrite or Ni--Zn ferrite is more preferred, and Ni--Zn ferrite is even more preferred, in that the effects of the present invention are more excellent.
  • At least part of the surface of the ferrite particles X may be provided with a surface layer. Since the ferrite particles X have a surface layer, the ferrite particles X can be provided with a function according to the material of the surface layer.
  • the surface layer may be an inorganic layer or an organic layer, preferably an organic layer.
  • metal oxides, metal nitrides, metal carbides, metal phosphate compounds, Metal borate compounds or silicic acid compounds for example, silicate esters such as tetraethyl orthosilicate and silicates such as sodium silicate
  • elements contained in these compounds include Fe, Al, Ca, Mn, Zn, Mg, V, Cr, Y, Ba, Sr, Ge, Zr, Ti, Si, and rare earth elements.
  • materials constituting the inorganic layer obtained using the inorganic layer-forming compound include silicon oxide, germanium oxide, titanium oxide, aluminum oxide, zirconium oxide, and magnesium oxide. It may be a layer containing the above.
  • organic layer-forming compounds include acrylic monomers. Specific examples of acrylic monomers include compounds described in paragraphs 0022 to 0023 of JP-A-2019-067960. Examples of the material forming the organic layer obtained using the organic layer-forming compound include acrylic resins.
  • the thickness of the surface layer is not particularly limited, it is preferably 3 to 1000 nm from the viewpoint that the function of the surface layer is more exhibited.
  • the BET specific surface area of the ferrite particles X is preferably 0.25 m 2 /g or less, more preferably 0.15 m 2 /g or less, from the viewpoint of more excellent effects of the present invention. It is more preferably 0.10 m 2 /g or less.
  • the lower limit is not particularly limited, and is, for example, 0.01 m 2 /g or more.
  • the BET specific surface area is 0.25 m 2 /g or less, and the volume average particle diameter (MV) is 7 ⁇ m or more in terms of more excellent effects of the present invention. mentioned.
  • the volume average particle diameter (MV) is more preferably 10 ⁇ m or more, and even more preferably 20 ⁇ m or more.
  • the BET specific surface area of ferrite particles X is measured by a nitrogen adsorption method. Specifically, it is measured by JIS Z8830:2013, a method for measuring the specific surface area of powder (solid) by gas adsorption.
  • the ferrite particles X may be used singly or in combination of two or more.
  • the content of the ferrite particles X is preferably more than 30% by mass and less than 85% by mass, more preferably more than 30% by mass and less than 60% by mass, relative to the total mass of the magnetic particles X. It is also preferable that the content of the ferrite particles X with respect to the total mass of the magnetic particles X satisfies the numerical range described above in the procedure for measuring the sphericity and the like for 1000 particles.
  • the magnetic particles X may contain magnetic particles other than the ferrite particles X (hereinafter also referred to as "other magnetic particles X").
  • Other magnetic particles X are intended to be magnetic particles having a sphericity of 100 to 120 other than ferrite particles. Other magnetic particles X will be described in detail below.
  • Other magnetic particles X contain metal atoms.
  • the metal atoms referred to here also include metalloid atoms such as boron, silicon, germanium, arsenic, antimony, and tellurium.
  • the metal atom is an alloy containing a metal element (preferably a magnetic alloy), a metal oxide (preferably a magnetic oxide), a metal nitride (preferably a magnetic oxide), or a metal carbide (preferably magnetic carbide) may be contained in the magnetic particles.
  • the content of the metal atoms is preferably 50 to 100% by mass, more preferably 75 to 100% by mass, and even more preferably 95 to 100% by mass with respect to the total mass of the other magnetic particles X.
  • the metal atom is not particularly limited, it preferably contains at least one metal atom selected from the group consisting of Fe, Ni, and Mn, and more preferably contains an Fe atom.
  • the content of at least one metal atom selected from the group consisting of Fe, Ni, and Mn is the total mass of the metal atoms in the other magnetic particles X is preferably 50% by mass or more, more preferably 60% by mass or more, and even more preferably 70% by mass or more.
  • the upper limit of the content is not particularly limited, and is, for example, 100% by mass or less, preferably 98% by mass or less, and more preferably 95% by mass or less.
  • the metal atoms are Fe atoms, and that the Fe atoms account for 50% by mass or more of the total mass of the metal atoms in the other magnetic particles X, in order to obtain a more excellent effect of the present invention.
  • the other magnetic grains X contain Fe atoms, the other magnetic grains X are preferably not ferrite grains.
  • Other magnetic particles X may contain materials other than Fe, Ni, and Mn. Specific examples thereof include Al, Si, S, Sc, Ti, V, Cu, Y, Mo, Rh, Pd , Ag, Sn, Sb, Te, Ba, Ta, W, Re, Au, Bi, La, Ce, Pr, Nd, P, Zn, Sr, Zr, Co, Cr, Nb, Pb, Ca, B, C , N, and O.
  • the other magnetic particles X contain metal atoms other than Fe, Ni and Mn, they preferably contain one or more selected from the group consisting of Si, Cr, B and Mo.
  • the other magnetic particles X are preferably alloy particles having a sphericity of 100 to 120 (hereinafter also referred to as "alloy particles X").
  • the alloy particles X more preferably contain Fe atoms from the viewpoint that the effects of the present invention are more excellent.
  • Metal atoms other than Fe atoms in the alloy particles X include Ni atoms and Co atoms.
  • the content of Fe atoms is preferably 50% by mass or more, more preferably 60% by mass or more, more preferably 70% by mass, based on the content of metal atoms in the alloy particles X.
  • the above is more preferable.
  • the upper limit of the content is not particularly limited, and is, for example, 100% by mass or less, preferably 98% by mass or less, and more preferably 95% by mass or less.
  • other magnetic particles X include Fe—Co alloy particles (preferably permendur), Fe—Ni alloy particles (eg, permalloy), Fe—Zr alloy particles, and Fe—Mn alloy. particles, Fe—Si alloy particles, Fe—Al alloy particles, Ni—Mo alloy particles (preferably supermalloy), Fe—Ni—Co alloy particles, Fe—Si—Cr alloy particles, Fe— Si—B alloy particles, Fe—Si—Al alloy particles (preferably, sendust), Fe—Si—B—C alloy particles, Fe—Si—B—Cr alloy particles, Fe—Si—B— Alloy particles such as Cr--C-based alloy particles, Fe--Co--Si--B-based alloy particles, Fe--Si--B--Nb-based alloy particles, Fe nanocrystalline alloy particles, Fe-based amorphous alloy particles, and Co-based amorphous alloy particles etc.
  • Fe—Co alloy particles preferably permendur
  • Fe—Ni alloy particles eg, permallo
  • the alloy may be amorphous.
  • soft magnetic particles are particularly preferable in terms of lower loss.
  • soft magnetic particles include Fe-based amorphous alloy particles, Fe--Si--Cr-based alloy particles, Fe nanocrystalline alloy particles, Fe--Ni--Co-based alloy particles, Co-based amorphous alloy particles, and Ni--Mo-based alloy particles. , Ni ferrite particles, and Mn ferrite particles.
  • At least part of the surface of the other magnetic particles X may be provided with a surface layer. Since the other magnetic particles X have the surface layer in this way, the other magnetic particles X can be provided with a function according to the material of the surface layer.
  • the surface layer includes an inorganic layer or an organic layer, and an organic layer is preferred.
  • the inorganic layer-forming compound and the organic layer-forming compound capable of forming the surface layer of the other magnetic particles X the same inorganic layer-forming compounds and organic layer-forming compounds capable of forming the surface layer of the ferrite particles X can be used. material can be used.
  • the thickness of the surface layer is not particularly limited, it is preferably 3 to 1000 nm from the viewpoint that the function of the surface layer is more exhibited.
  • Other magnetic particles X may be used singly or in combination of two or more.
  • the content of the other magnetic particles X is preferably 15 to 70% by mass, more preferably 40 to 60% by mass, based on the total mass of the magnetic particles X. It is also preferable that the content of the other magnetic particles X with respect to the total mass of the magnetic particles X satisfies the numerical range described above in the procedure for measuring the sphericity of 1,000 particles.
  • the ferrite particles X may be included in the composition as either magnetic particles X of 11 ⁇ m or more and magnetic particles X of less than 11 ⁇ m. , 11 ⁇ m or more are contained in the composition as magnetic particles X.
  • other magnetic particles X may be included in the composition as magnetic particles X of 11 ⁇ m or more and magnetic particles X of less than 11 ⁇ m. In terms of superiority, it is preferable that the magnetic particles X of less than 11 ⁇ m are included in the composition.
  • the other magnetic particles X are preferably alloy particles X in that the effects of the present invention are more excellent.
  • the composition contains an organic solvent.
  • the lower limit of the boiling point of the organic solvent is preferably 55° C. or higher, more preferably 80° C. or higher, still more preferably 100° C. or higher, and particularly preferably 160° C. or higher, from the viewpoint of more excellent effects of the present invention.
  • the upper limit of the boiling point of the solvent is not particularly limited, it is preferably 400°C or less.
  • organic solvents examples include acetone (boiling point 56°C), methyl ethyl ketone (boiling point 79.6°C), ethanol (boiling point 78.4°C), cyclohexane (boiling point 80.8°C), and ethyl acetate (boiling point 77.1°C).
  • ethylene dichloride (boiling point 83.5°C), tetrahydrofuran (boiling point 66°C), cyclohexanone (boiling point 155.6°C), toluene (boiling point 110°C), ethylene glycol monomethyl ether (boiling point 124°C), ethylene glycol monoethyl ether ( boiling point 135°C), ethylene glycol dimethyl ether (boiling point 84°C), propylene glycol monomethyl ether (boiling point 120°C), propylene glycol monoethyl ether (boiling point 132°C), acetylacetone (boiling point 140°C), cyclopentanone (boiling point 131°C) , ethylene glycol monomethyl ether acetate (boiling point 144.5°C), ethylene glycol ethyl ether acetate (boiling point 145°C), ethylene glycol
  • a preferred embodiment of the organic solvent contained in the composition includes at least one organic solvent having a boiling point of 80°C or higher (preferably a boiling point of 100°C or higher, more preferably a boiling point of 160°C or higher).
  • a preferred embodiment of the organic solvent contained in the composition includes an embodiment containing an acetate-based solvent.
  • acetate solvent is intended a solvent containing one or more acetate groups in the molecule.
  • the number of acetate groups contained in the acetate-based solvent is preferably 2 or more from the viewpoint that the effects of the present invention are more excellent.
  • the upper limit is not particularly limited, it is, for example, 6 or less.
  • the acetate-based solvent preferably has a boiling point of 160° C. or higher.
  • Acetate-based solvents containing two or more acetate groups in the molecule include compounds represented by formula (1A).
  • Formula (1A) M—(O—C( O)—CH 3 ) m
  • M represents an m-valent linking group.
  • m represents 2 to 6;
  • X 11 , X 21 , X 31 , X 41 and X 51 each independently represent an organic group.
  • organic groups represented by X 11 , X 21 , X 31 , X 41 and X 51 include hetero atoms (hetero atoms include, for example, nitrogen, oxygen and sulfur atoms).
  • the heteroatom may be contained in the form of -O-, -S-, -SO 2 -, -NR 1 -, -CO-, or a linking group in which two or more of these are combined.
  • hydrocarbon groups formed from hydrocarbons that may contain Specifically, a linear or branched aliphatic hydrocarbon group, an aliphatic hydrocarbon cyclic group, an aromatic hydrocarbon cyclic group, a heterocyclic group, or a plurality thereof, which may contain a heteroatom, Combined linking groups are preferred.
  • the hydrocarbon group which may contain a heteroatom as the organic group represented by X 11 is formed by removing two hydrogen atoms from the above hydrocarbon which may contain a heteroatom.
  • the hydrocarbon group which may contain a heteroatom as the organic group represented by X 21 means a divalent group, and the hydrocarbon group which may contain a heteroatom is a hydrocarbon group which may contain three hydrogen atoms.
  • the hydrocarbon group which may contain a heteroatom as the organic group represented by X 31 above means a trivalent group formed by removing one of the above hydrocarbon groups which may contain a heteroatom.
  • the hydrocarbon group optionally containing a heteroatom as the organic group represented by X41 means a tetravalent group formed by removing four hydrogen atoms from hydrogen, and the above heteroatom is
  • the hydrocarbon group optionally containing a heteroatom as the organic group represented by X 51 above means a pentavalent group formed by removing five hydrogen atoms from a hydrocarbon which may contain , means a hexavalent group formed by removing six hydrogen atoms from the above hydrocarbon which may contain a heteroatom.
  • R 1 above represents a hydrogen atom or a substituent.
  • the substituent is not particularly limited, for example, an alkyl group (preferably having 1 to 6 carbon atoms, which may be linear or branched) is preferable.
  • the number of carbon atoms in the linear or branched aliphatic hydrocarbon group is not particularly limited, but is preferably 1 to 12, more preferably 1 to 10, and even more preferably 3 to 6.
  • An alkylene group is mentioned as said aliphatic hydrocarbon group.
  • the number of carbon atoms in the aliphatic hydrocarbon ring group is not particularly limited, it is preferably 3 to 30, more preferably 6 to 20, even more preferably 6 to 15, and particularly preferably 6 to 12.
  • the alicyclic group may be either monocyclic or polycyclic, and may be a spiro ring. Examples of the alicyclic ring constituting the monocyclic alicyclic group include monocyclic cycloalkanes such as cyclopentane, cyclohexane, and cyclooctane.
  • Examples of the alicyclic ring constituting the polycyclic alicyclic group include polycyclic cycloalkanes such as norbornane, tricyclodecane, tetracyclodecane, tetracyclododecane, and adamantane.
  • the number of carbon atoms in the aromatic hydrocarbon ring constituting the aromatic hydrocarbon ring group is not particularly limited, but is preferably 6 to 30, more preferably 6 to 20, still more preferably 6 to 15, and particularly 6 to 12. preferable.
  • the aromatic hydrocarbon group may be monocyclic or polycyclic. Examples of the aromatic hydrocarbon ring include benzene ring and naphthalene ring.
  • the number of carbon atoms in the heterocyclic ring constituting the heterocyclic group is not particularly limited, but is preferably 3 to 25, more preferably 3 to 20, still more preferably 6 to 20, particularly preferably 6 to 15, and 6 to 10. Most preferred.
  • the heterocyclic ring may be either monocyclic or polycyclic, and may be either an aromatic heterocyclic ring or an aliphatic heterocyclic ring.
  • the heterocycle may be a spirocycle.
  • Aromatic heterocycles include, for example, furan rings, thiophene rings, benzofuran rings, benzothiophene rings, dibenzofuran rings, dibenzothiophene rings, and pyridine rings. Examples of aliphatic heterocyclic rings include tetrahydropyran ring, lactone ring, sultone ring, decahydroisoquinoline ring and the like.
  • L 11 , L 12 , L 21 to L 23 , L 31 to L 34 , L 41 to L 45 and L 51 to L 56 are each independently , represents a single bond or a divalent linking group.
  • the divalent linking groups represented by L 11 , L 12 , L 21 to L 23 , L 31 to L 34 , L 41 to L 45 and L 51 to L 56 are not particularly limited, but an alkylene group, - It is preferably a divalent linking group of one or more selected from the group consisting of CO—, —CONR N —, —O— and —S— or a combination of two or more thereof.
  • the alkylene group may be linear, branched, or cyclic.
  • the number of carbon atoms in the alkylene group is preferably 1-10, more preferably 1-4.
  • the alkylene group may further have a substituent.
  • said RN represents a hydrogen atom or a substituent.
  • the substituent is not particularly limited, for example, an alkyl group (preferably having 1 to 6 carbon atoms, which may be linear or branched) is preferable.
  • One mode of the divalent linking group M is a substituted or unsubstituted alkylene group.
  • the alkylene group is preferably linear or branched.
  • the number of carbon atoms is preferably 1-12, more preferably 1-10, and even more preferably 3-6.
  • M which is a trivalent linking group
  • a group represented by the following formula (1a) can be mentioned.
  • RA represents a hydrogen atom or a substituent.
  • L 1 represents a single bond or an optionally substituted alkylene group having 1 to 6 carbon atoms.
  • three L1's may be the same or different.
  • the substituent represented by R A is not particularly limited, and examples thereof include a monovalent organic group, preferably an optionally substituted alkyl group having 1 to 6 carbon atoms, and substituted It is more preferably an alkyl group having 1 to 3 carbon atoms which may have a group. Although the substituent is not particularly limited, for example, a hydroxyl group can be mentioned.
  • RA is preferably a hydrogen atom.
  • the optionally substituted alkylene group having 1 to 6 carbon atoms represented by L 1 is preferably an optionally substituted alkyl group having 1 to 3 carbon atoms. Although the substituent is not particularly limited, for example, a hydroxyl group can be mentioned.
  • Specific examples of the compound represented by formula (1A) include 1,4-BDDA, 1,6-HDDA, 1,3-BGDA, PGDA, and glycerol triacetic acid.
  • An organic solvent may be used individually by 1 type, and may be used 2 or more types.
  • the content of the organic solvent in the composition (the total content when multiple types are included) is preferably 1 to 15% by mass relative to the total mass of the composition. It is more preferably 7 to 12% by mass from the viewpoint that the effects of the present invention are more excellent.
  • the content of the organic solvent is 1% by mass or more with respect to the total mass of the composition, the composition has excellent fluidity.
  • the content of the organic solvent is 15% by mass or less with respect to the total mass of the composition, the hole-filling aptitude is more excellent.
  • the composition preferably contains one or more components (binder components) selected from the group consisting of resins and resin precursors. That is, the binder component may be the resin itself or a precursor of the resin (resin precursor).
  • compositions using the resin itself include, for example, compositions containing the magnetic particles described above, an organic solvent, and a resin dissolved or dispersed in the organic solvent. By evaporating the organic solvent of this composition, the resin is precipitated, and a composition in which the resin functions as a binder (binding material) is obtained.
  • the resin precursor is a component that can be polymerized and/or crosslinked by a predetermined curing treatment with heat or light (such as ultraviolet light) to form a resin.
  • the resin thus formed functions as a binder in the cured product.
  • resin precursors include curable compounds such as thermosetting compounds and photocurable compounds. These compounds may be monomers, oligomers, or polymers.
  • the composition preferably further includes a curing agent and/or a curing accelerator, which will be described later.
  • the binder component preferably contains at least one of an epoxy compound and an oxetane compound from the viewpoint that the effects of the present invention are more excellent.
  • An epoxy compound intends a compound having one or more epoxy groups in the molecule
  • an oxetane compound intends a compound having one or more oxetanyl groups in the molecule.
  • the content of the binder component is preferably 1 to 24% by mass, more preferably 1 to 15% by mass, still more preferably 1 to 12% by mass, and particularly preferably 1 to 10% by mass, relative to the total mass of the composition. , 1 to 7% by weight is most preferred.
  • the content of the binder component is preferably 0.8 to 24% by mass, more preferably 0.8 to 15% by mass, still more preferably 0.8 to 12% by mass, based on the total solid content of the composition. 0.8-10% by weight is even more preferred, 0.8-8% by weight is particularly preferred, and 0.8-7% by weight is most preferred.
  • a preferred embodiment of the binder component includes (meth)acrylic resins, epoxy resins, ene-thiol resins, polycarbonate resins, polyether resins, polyarylate resins, polysulfone resins, polyethersulfone resins, polyphenylene resins, and polyarylene ether phosphine.
  • epoxy resins include epoxy resins that are glycidyl etherified compounds of phenolic compounds, epoxy resins that are glycidyl etherified compounds of various novolak resins, alicyclic epoxy resins, aliphatic epoxy resins, heterocyclic epoxy resins, glycidyl ester-based Epoxy resins, glycidylamine-based epoxy resins, epoxy resins obtained by glycidylating halogenated phenols, condensation products of silicon compounds having epoxy groups and other silicon compounds, and polymerizable unsaturated compounds having epoxy groups and their and copolymers with other polymerizable unsaturated compounds.
  • Epoxy resins include Marproof G-0150M, G-0105SA, G-0130SP, G-0250SP, G-1005S, G-1005SA, G-1010S, G-2050M, G-01100, G-01758 (NOF). Co., Ltd., epoxy group-containing polymer) and the like may also be used.
  • norbornene resin is preferable from the viewpoint of improving heat resistance.
  • Commercially available norbornene resins include, for example, the ARTON series (for example, ARTON F4520) manufactured by JSR Corporation.
  • Examples of commercially available polyvinyl acetal resins include "KS-1” manufactured by Sekisui Chemical Co., Ltd., and the like.
  • Commercially available phenoxy resins include, for example, "YX7553BH30" (manufactured by Mitsubishi Chemical Corporation).
  • a preferred embodiment of the binder component also includes resins described in Examples of International Publication No. 2016/088645.
  • a preferred embodiment of the binder component is a resin having an ethylenically unsaturated group (for example, a (meth)acryloyl group) in the side chain, and the main chain and the ethylenically unsaturated group are alicyclic
  • a resin bonded via a divalent linking group having a structure is also included.
  • a preferred embodiment of the binder component also includes resins or resin precursors having ring-polymerizable groups such as epoxy groups and oxetanyl groups.
  • Resins or resin precursors having ring-polymerizable groups such as epoxy groups and oxetanyl groups include, for example, polymers having epoxy groups in side chains, and polymerizable monomers or oligomers having two or more epoxy groups in the molecule. Specific examples thereof include bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolak type epoxy resin, cresol novolak type epoxy resin, and aliphatic epoxy resin. These resins may be commercially available products, or may be obtained by introducing an epoxy group into the side chain of the polymer.
  • paragraph 0191 of JP-A-2012-155288 can be referred to, and the contents thereof are incorporated herein.
  • ADEKA RESIN EP-4000S, EP-4003S, EP-4010S, EP-4011S manufactured by ADEKA
  • NC-2000, NC-3000, NC-7300, XD-1000, EPPN- 501, EPPN-502 manufactured by ADEKA
  • JER1031S JER1031S.
  • bisphenol A type epoxy resins and bisphenol F type epoxy resins include ZX1059 (manufactured by Nippon Steel Chemical & Materials Co., Ltd.) and 828US (manufactured by Mitsubishi Chemical Corporation).
  • phenol novolak type epoxy resins include JER-157S65, JER-152, JER-154, JER-157S70 (manufactured by Mitsubishi Chemical Corporation) and the like.
  • polymerizable monomers or oligomers having two or more epoxy groups in the molecule ZX1658GS (liquid 1,4-glycidylcyclohexane type epoxy resin, manufactured by Nippon Steel Chemical & Materials Co., Ltd.), HP-4700 (naphthalene type 4 Functional epoxy resin, manufactured by DIC Corporation), NC3000L (biphenyl-type epoxy resin, manufactured by Nippon Kayaku Co., Ltd.), and the like can also be used.
  • polymers having oxetanyl groups in side chains and polymerizable monomers or oligomers having two or more oxetanyl groups in the molecule include Aron oxetane OXT-121, OXT-221, OX-SQ, PNOX (above, manufactured by Toagosei Co., Ltd.) can be used.
  • the introduction reaction includes, for example, tertiary amines such as triethylamine and benzylmethylamine, dodecyltrimethylammonium chloride, tetramethylammonium chloride, tetraethylammonium chloride, and the like. , pyridine, triphenylphosphine or the like as a catalyst in an organic solvent at a reaction temperature of 50 to 150° C. for a predetermined time.
  • the amount of the alicyclic epoxy unsaturated compound introduced can be controlled so that the resulting resin has an acid value in the range of 5 to 200 KOH ⁇ mg/g.
  • the weight average molecular weight of the resin can be in the range of 500 to 5,000,000 (preferably 1,000 to 500,000).
  • those having a glycidyl group as an epoxy group such as glycidyl (meth)acrylate and allyl glycidyl ether can also be used.
  • paragraph 0045 of JP-A-2009-265518 can be referred to, and the contents thereof are incorporated into the specification of the present application.
  • a preferred embodiment of the binder component also includes a resin having an acid group, a basic group, or an amide group.
  • a resin having an acid group, a basic group, or an amide group is preferable because it easily functions as a dispersant for dispersing the magnetic particles, and the effects of the present invention are more excellent.
  • the acid group include a carboxy group, a phosphoric acid group, a sulfo group, a phenolic hydroxyl group, and the like, and a carboxy group is preferable from the viewpoint that the effects of the present invention are more excellent.
  • Basic groups include amino groups (groups obtained by removing one hydrogen atom from ammonia, primary amines or secondary amines) and imino groups.
  • the resin preferably has a carboxy group or an amide group from the viewpoint that the effects of the present invention are more excellent.
  • the acid value of the resin is preferably from 10 to 500 mgKOH/g, more preferably from 30 to 400 mgKOH/g, from the viewpoint that the effects of the present invention are more excellent.
  • a preferred embodiment of the binder component also includes, for example, a resin having a repeating unit containing a graft chain (hereinafter also referred to as "resin A").
  • a resin having a repeating unit containing a graft chain can effectively function as a dispersant for magnetic particles.
  • the longer the graft chain the higher the steric repulsion effect and the better the dispersibility of the magnetic particles.
  • the graft chain preferably has 40 to 10,000 atoms excluding hydrogen atoms, more preferably 50 to 2,000 atoms excluding hydrogen atoms, and the number of atoms excluding hydrogen atoms is More preferably 60-500.
  • the term "graft chain” as used herein refers to the length from the base of the main chain (the atom bonded to the main chain in a group branched from the main chain) to the end of the group branched from the main chain.
  • the graft chain preferably contains a polymer structure, and examples of such polymer structures include poly(meth)acrylate structures (e.g., poly(meth)acrylic structures), polyester structures, polyurethane structures, polyurea structures. structures, polyamide structures, and polyether structures.
  • the grafted chain is selected from the group consisting of a polyester structure, a polyether structure, and a poly(meth)acrylate structure in order to improve the interaction between the grafted chain and the solvent, thereby enhancing the dispersibility of the magnetic particles.
  • a graft chain containing at least one type is preferable, and a graft chain containing at least one of a polyester structure and a polyether structure is more preferable.
  • Resin A may be a resin obtained using a macromonomer containing a graft chain (a monomer having a polymer structure and forming a graft chain by bonding to the main chain).
  • the macromonomer containing a graft chain (monomer having a polymer structure and forming a graft chain by bonding to the main chain) is not particularly limited, but a macromonomer containing a reactive double bond group can be preferably used. .
  • AA-6, AA-10, AB-6, AS-6, AN-6 and AW-6. , AA-714, AY-707, AY-714, AK-5, AK-30, and AK-32 all trade names, manufactured by Toagosei Co., Ltd.
  • Blenmer PP-100, Blenmer PP-500, Blenmer PP-800, Blenmer PP-1000, Blenmer 55-PET-800, Blenmer PME-4000, Blenmer PSE-400, Blenmer PSE-1300, and Blenmer 43PAPE-600B are Used.
  • AA-6, AA-10, AB-6, AS-6, AN-6, or Blemmer PME-4000 are preferred.
  • Resin A preferably contains at least one structure selected from the group consisting of polymethyl acrylate, polymethyl methacrylate, and cyclic or chain polyesters, polymethyl acrylate, polymethyl methacrylate, And more preferably at least one structure selected from the group consisting of linear polyesters, polymethyl acrylate structure, polymethyl methacrylate structure, polycaprolactone structure, and the group consisting of polyvalerolactone structure More preferably, it contains at least one more selected structure.
  • the resin A may contain one of the above structures, or may contain a plurality of these structures.
  • the polycaprolactone structure refers to a structure containing a ring-opened structure of ⁇ -caprolactone as a repeating unit.
  • the polyvalerolactone structure refers to a structure containing, as a repeating unit, a ring-opened structure of ⁇ -valerolactone.
  • the polycaprolactone structure described above can be introduced into the resin A.
  • the resin A contains a repeating unit in which j and k are 4 in formula (1) and formula (2) described later
  • the polyvalerolactone structure described above can be introduced into the resin.
  • the resin A contains a repeating unit in which X 5 in formula (4) described later is a hydrogen atom and R 4 is a methyl group
  • the polymethyl acrylate structure described above can be introduced into the resin A.
  • the resin A contains a repeating unit in which X 5 in formula (4) described later is a methyl group and R 4 is a methyl group
  • the polymethyl methacrylate structure described above can be introduced into the resin A.
  • the resin A contains the formula (5) which will be described later, when it contains a repeating unit in which j in the formula (5) is 5, the polycaprolactone structure described above can be introduced into the resin A.
  • the resin A contains the formula (5) described later, when it contains a repeating unit in which j is 4 in the formula (5), the polyvalerolactone structure described above can be introduced into the resin.
  • the content of resin A is preferably 1 to 24% by mass, more preferably 1 to 15% by mass, and further 1 to 12% by mass, relative to the total mass of the composition.
  • 1 to 10% by weight is particularly preferred, and 1 to 7% by weight is most preferred.
  • the content of resin A is preferably 0.8 to 24% by mass, more preferably 0.8 to 15% by mass, still more preferably 0.8 to 12% by mass, relative to the total solid content of the composition. 0.8-10% by weight is even more preferred, 0.8-8% by weight is particularly preferred, and 0.8-7% by weight is most preferred.
  • a preferred embodiment of the resin A is a resin containing a repeating unit containing a polyalkyleneimine structure and a polyester structure (hereinafter "resin A1").
  • the repeating unit containing a polyalkyleneimine structure and a polyester structure preferably contains a polyalkyleneimine structure in the main chain and a polyester structure as a graft chain.
  • the above polyalkyleneimine structure is a polymer structure containing two or more identical or different alkyleneimine chains.
  • Specific examples of the alkyleneimine chain include alkyleneimine chains represented by the following formulas (4A) and (4B).
  • R X1 and R X2 each independently represent a hydrogen atom or an alkyl group.
  • a 1 represents an integer of 2 or more;
  • * 1 represents a bonding position with a polyester chain, an adjacent alkyleneimine chain, or a hydrogen atom or a substituent.
  • R 1 X3 and R 1 X4 each independently represent a hydrogen atom or an alkyl group.
  • a2 represents an integer of 2 or more.
  • the alkyleneimine chain represented by the formula (4B) is a polyester chain having an anionic group, and the anionic group contained in the N + and the polyester chain specified in the formula (4B) form a salt cross-linking group.
  • * in formulas (4A) and (4B) and * 2 in formula (4B) each independently represent a position to be bonded to an adjacent alkyleneimine chain, a hydrogen atom or a substituent. * in the formulas (4A) and (4B) preferably represents a position that bonds to the adjacent alkyleneimine chain.
  • R X1 and R X2 in formula (4A) and R X3 and R X4 in formula (4B) each independently represent a hydrogen atom or an alkyl group.
  • the number of carbon atoms in the alkyl group is preferably 1 to 6 carbon atoms, more preferably 1 to 3 carbon atoms.
  • both R 1 X1 and R 1 X2 are preferably hydrogen atoms.
  • both R 1 X3 and R 1 X4 are preferably hydrogen atoms.
  • a1 in formula (4A) and a2 in formula (4B) are not particularly limited as long as they are integers of 2 or more.
  • the upper limit is preferably 10 or less, more preferably 6 or less, still more preferably 4 or less, still more preferably 2 or 3, and particularly preferably 2.
  • * represents a bonding position with an adjacent alkyleneimine chain, a hydrogen atom, or a substituent.
  • substituents include substituents such as alkyl groups (eg, alkyl groups having 1 to 6 carbon atoms).
  • a polyester chain may be bonded as a substituent.
  • the alkyleneimine chain represented by formula (4A) is preferably linked to the polyester chain at the * 1 position described above. Specifically, the carbonyl carbon in the polyester chain is preferably bonded at the * 1 position described above.
  • Examples of the polyester chain include a polyester chain represented by the following formula (5A).
  • the polyester chain contains an anionicity (preferably oxygen anion O ⁇ ), and this anionicity and N + in formula (4B) are salts. It is preferred to form a cross-linking group.
  • Such a polyester chain includes a polyester chain represented by the following formula (5B).
  • L X1 in formula (5A) and L X2 in formula (5B) each independently represent a divalent linking group.
  • the divalent linking group preferably includes an alkylene group having 3 to 30 carbon atoms.
  • b 11 in formula (5A) and b 21 in formula (5B) each independently represent an integer of 2 or more, preferably an integer of 6 or more, and the upper limit thereof is, for example, 200 or less.
  • b 12 in formula (5A) and b 22 in formula (5B) each independently represent 0 or 1;
  • X A in formula (5A) and X B in formula (5B) each independently represent a hydrogen atom or a substituent.
  • substituents include alkyl groups, alkoxy groups, polyalkyleneoxyalkyl groups, and aryl groups.
  • the alkyl group (which may be linear, branched, or cyclic) and the alkyl group contained in the alkoxy group (which may be linear, branched, or cyclic). ) has 1 to 30 carbon atoms, preferably 1 to 10.
  • the alkyl group may further have a substituent, and examples of the substituent include a hydroxyl group and a halogen atom (halogen atoms include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom). .
  • a polyalkyleneoxyalkyl group is a substituent represented by R X6 (OR X7 ) p (O) q —.
  • R 1 X6 represents an alkyl group
  • R 1 X7 represents an alkylene group
  • p represents an integer of 2 or more
  • q represents 0 or 1.
  • the alkyl group represented by R X6 is synonymous with the alkyl group represented by XA.
  • examples of the alkylene group represented by R 1 X7 include groups obtained by removing one hydrogen atom from the alkyl group represented by XA.
  • p is an integer of 2 or more, and its upper limit is, for example, 10 or less, preferably 5 or less.
  • the aryl group includes, for example, an aryl group having 6 to 24 carbon atoms (either monocyclic or polycyclic).
  • the aryl group may further have a substituent, and examples of the substituent include an alkyl group, a halogen atom, and a cyano group.
  • polyester chain examples include ⁇ -caprolactone, ⁇ -caprolactone, ⁇ -propiolactone, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valerolactone, enantholactone, ⁇ -butyrolactone, ⁇ -hexanolactone, ⁇ -octa Nolactone, ⁇ -hexalanolactone, ⁇ -octanolactone, ⁇ -dodecanolactone, ⁇ -methyl- ⁇ -butyrolactone, and lactide (either L-form or D-form), etc.
  • a structure obtained by ring-opening a lactone is preferred, and a structure obtained by ring-opening ⁇ -caprolactone or ⁇ -valerolactone is more preferred.
  • the resin containing repeating units containing a polyalkyleneimine structure and a polyester structure can be synthesized according to the synthesis method described in Japanese Patent No. 5923557.
  • a resin containing a repeating unit containing a polyalkyleneimine structure and a polyester structure a resin containing a repeating unit containing a polyalkyleneimine structure and a polyester structure disclosed in Japanese Patent No. 5923557 can be considered, and these contents are described in the present specification. incorporated into.
  • the weight average molecular weight of Resin A1 is not particularly limited, it is preferably 3,000 or more, more preferably 4,000 or more, even more preferably 5,000 or more, and particularly preferably 6,000 or more. Moreover, as an upper limit, for example, 300,000 or less is preferable, 200,000 or less is more preferable, 100,000 or less is still more preferable, and 50,000 or less is especially preferable.
  • resin A2 Another preferred embodiment of resin A is a resin containing a repeating unit containing a graft chain shown below (hereinafter "resin A2").
  • Resin A2 preferably contains a repeating unit represented by any one of the following formulas (1) to (4) as a repeating unit containing a graft chain, and the following formula (1A), More preferably, it contains a repeating unit represented by any one of the following formula (2A), the following formula (3A), the following formula (3B), and the following (4).
  • W 1 , W 2 , W 3 and W 4 each independently represent an oxygen atom or NH.
  • W 1 , W 2 , W 3 and W 4 are preferably oxygen atoms.
  • X 1 , X 2 , X 3 , X 4 and X 5 each independently represent a hydrogen atom or a monovalent organic group.
  • X 1 , X 2 , X 3 , X 4 and X 5 are each independently preferably a hydrogen atom or an alkyl group having 1 to 12 carbon atoms (carbon atoms) from the viewpoint of synthetic restrictions, Each independently, a hydrogen atom or a methyl group is more preferred, and a methyl group is even more preferred.
  • Y 1 , Y 2 , Y 3 and Y 4 each independently represent a divalent linking group, and the linking group is not particularly restricted structurally.
  • Specific examples of the divalent linking groups represented by Y 1 , Y 2 , Y 3 and Y 4 include the following linking groups (Y-1) to (Y-21).
  • a and B respectively mean the bonding sites with the left terminal group and the right terminal group in formulas (1) to (4).
  • (Y-2) or (Y-13) is more preferable from the viewpoint of ease of synthesis.
  • Z 1 , Z 2 , Z 3 and Z 4 each independently represent a hydrogen atom or a monovalent substituent.
  • the structure of the substituent is not particularly limited, but specifically includes an alkyl group, a hydroxyl group, an alkoxy group, an aryloxy group, a heteroaryloxy group, an alkylthioether group, an arylthioether group, a heteroarylthioether group, and an amino and the like.
  • the groups represented by Z 1 , Z 2 , Z 3 and Z 4 are preferably groups having a steric repulsion effect from the viewpoint of improving dispersibility, and each independently has 5 to 5 carbon atoms.
  • alkyl groups or alkoxy groups are more preferable, and among them, particularly independently each independently a branched alkyl group having 5 to 24 carbon atoms, a cyclic alkyl group having 5 to 24 carbon atoms, or an alkoxy group having 5 to 24 carbon atoms groups are more preferred.
  • the alkyl group contained in the alkoxy group may be linear, branched, or cyclic.
  • the substituents represented by Z 1 , Z 2 , Z 3 and Z 4 are groups containing a curable group such as (meth)acryloyl group, epoxy group and/or oxetanyl group. is also preferred.
  • Examples of the group containing a curable group include "--O-alkylene group-(--O-alkylene group-) AL -(meth)acryloyloxy group".
  • AL represents an integer of 0 to 5, with 1 being preferred.
  • the above alkylene groups each independently preferably have 1 to 10 carbon atoms.
  • the substituent is preferably a hydroxyl group.
  • the substituent may be a group containing an onium structure.
  • a group containing an onium structure is a group having an anion portion and a cation portion. Examples of the anion moiety include a partial structure containing an oxygen anion (—O ⁇ ).
  • the oxygen anion (—O ⁇ ) is directly bound to the end of the repeating structure to which n, m, p, or q is attached in the repeating units represented by formulas (1) to (4).
  • n that is, the right end of -(-O- CjH2j - CO- ) n-
  • the cation of the cation portion of the group containing the onium structure include an ammonium cation.
  • the cation moiety is a partial structure containing a cationic nitrogen atom (>N + ⁇ ).
  • the cationic nitrogen atom (>N + ⁇ ) preferably binds to 4 substituents (preferably organic groups), of which 1 to 4 are preferably alkyl groups having 1 to 15 carbon atoms. .
  • one or more (preferably one) of the four substituents is preferably a group containing a curable group such as a (meth)acryloyl group, an epoxy group, and/or an oxetanyl group. .
  • Examples of the group containing the curable group, which the substituent can be include, for example, the above-mentioned "-O-alkylene group-(-O-alkylene group-) AL -(meth)acryloyloxy group", " -alkylene group-(-O-alkylene group-) AL1 -(meth)acryloyloxy group”.
  • AL1 represents an integer of 1 to 5, with 1 being preferred.
  • the above alkylene groups each independently preferably have 1 to 10 carbon atoms. When the alkylene group has a substituent, the substituent is preferably a hydroxyl group.
  • n, m, p, and q are each independently an integer of 1-500.
  • j and k each independently represent an integer of 2-8.
  • j and k in formulas (1) and (2) are preferably integers of 4 to 6, more preferably 5.
  • n and m are, for example, integers of 2 or more, preferably 6 or more, more preferably 10 or more, and even more preferably 20 or more.
  • the resin A2 contains a polycaprolactone structure and a polyvalerolactone structure
  • the sum of the repeating number of the polycaprolactone structure and the repeating number of the polyvalerolactone is preferably an integer of 10 or more, and an integer of 20 or more. is more preferred.
  • R 3 represents a branched or linear alkylene group, preferably an alkylene group having 1 to 10 carbon atoms, more preferably an alkylene group having 2 or 3 carbon atoms. When p is 2 to 500, multiple R 3 may be the same or different.
  • R4 represents a hydrogen atom or a monovalent organic group, and the structure of this monovalent substituent is not particularly limited. R 4 is preferably a hydrogen atom, an alkyl group, an aryl group, or a heteroaryl group, more preferably a hydrogen atom or an alkyl group.
  • the alkyl group includes a linear alkyl group having 1 to 20 carbon atoms, a branched alkyl group having 3 to 20 carbon atoms, or a cyclic alkyl group having 5 to 20 carbon atoms.
  • a straight-chain alkyl group having 1 to 20 carbon atoms is preferable, and a straight-chain alkyl group having 1 to 6 carbon atoms is even more preferable.
  • formula (4) when q is 2 to 500, multiple X 5 and R 4 present in the graft chain may be the same or different.
  • the resin A2 may contain at least two types of repeating units each having a different structure and containing a graft chain. That is, the molecule of resin A2 may contain repeating units represented by formulas (1) to (4) having different structures, and in formulas (1) to (4), n, m, p, And, when q each represents an integer of 2 or more, in formulas (1) and (2), j and k in the side chain may contain structures different from each other, and formulas (3) and (4) , multiple R 3 , R 4 , and X 5 present in the molecule may be the same or different.
  • the repeating unit represented by formula (1) is more preferably a repeating unit represented by the following formula (1A). Further, the repeating unit represented by formula (2) is more preferably a repeating unit represented by the following formula (2A).
  • X 1 , Y 1 , Z 1 , and n have the same meanings as X 1 , Y 1 , Z 1 , and n in Formula (1), and the preferred ranges are also the same.
  • X 2 , Y 2 , Z 2 and m have the same meanings as X 2 , Y 2 , Z 2 and m in Formula (2), and the preferred ranges are also the same.
  • repeating unit represented by formula (3) is more preferably a repeating unit represented by the following formula (3A) or (3B).
  • X 3 , Y 3 , Z 3 and p have the same meanings as X 3 , Y 3 , Z 3 and p in formula (3), and the preferred ranges are also the same. is.
  • Resin A2 more preferably contains a repeating unit represented by formula (1A) as a repeating unit containing a graft chain.
  • the resin A2 contains repeating units represented by the above formulas (1) to (4), it further contains a repeating unit represented by the following formula (5) as another repeating unit containing a graft chain. It is also preferable to have
  • n represents an integer of 1 to 50, preferably an integer of 2 to 30, more preferably an integer of 2 to 10, and an integer of 2 to 5. preferable.
  • j represents an integer of 2 to 8, preferably an integer of 4 to 6, and more preferably 5.
  • X5 and Z5 have the same meanings as X1 and Z1 in formula ( 1 ), respectively, and the preferred embodiments are also the same.
  • the content of the repeating unit containing the graft chain is, in terms of mass, for example 2 to 100% by mass, preferably 2 to 95% by mass, and 2 to 90% by mass with respect to the total mass of the resin A2. is more preferred, and 5 to 30% by mass is even more preferred.
  • the repeating unit containing the graft chain is included within this range, the effects of the present invention are more excellent.
  • Resin A2 may also contain a hydrophobic repeating unit that is different from the repeating unit containing the graft chain (that is, does not correspond to the repeating unit containing the graft chain).
  • a hydrophobic repeating unit is a repeating unit that does not have an acid group (eg, carboxylic acid group, sulfonic acid group, phosphoric acid group, phenolic hydroxyl group, etc.).
  • the hydrophobic repeating unit is preferably a (corresponding) repeating unit derived from a compound (monomer) having a ClogP value of 1.2 or more, and is a repeating unit derived from a compound having a ClogP value of 1.2 to 8. is more preferable. As a result, the effects of the present invention can be exhibited more reliably.
  • ClogP values were obtained from Daylight Chemical Information System, Inc. It is a value calculated with the program "CLOGP” available from This program provides "calculated logP” values calculated by the fragment approach of Hansch, Leo (see below). The fragment approach is based on the chemical structure of a compound, dividing the chemical structure into substructures (fragments) and summing the logP contributions assigned to the fragments to estimate the logP value of the compound. The details are described in the following documents. ClogP values calculated by the program CLOGP v4.82 are used herein. A. J. Leo, Comprehensive Medicinal Chemistry, Vol. 4, C.I. Hansch, P.; G. Sammnens, J.; B. Taylor and C.I. A. Ramsden, Eds.
  • log P means the common logarithm of the partition coefficient P (Partition Coefficient), and is a quantitative measure of how an organic compound is partitioned in a two-phase system of oil (generally 1-octanol) and water. It is a physical property value expressed as a numerical value, and is shown by the following formula.
  • log P log (coil/water)
  • Coil represents the molar concentration of the compound in the oil phase
  • Cwater represents the molar concentration of the compound in the aqueous phase. If the value of logP is greater than 0, the oil solubility increases, and if the absolute value becomes negative, the water solubility increases, and there is a negative correlation with the water solubility of the organic compound. widely used as.
  • Resin A2 preferably contains, as hydrophobic repeating units, one or more repeating units selected from repeating units derived from monomers represented by the following formulas (i) to (iii).
  • R 1 , R 2 , and R 3 are each independently a hydrogen atom, a halogen atom (e.g., a fluorine atom, a chlorine atom, a bromine atom, etc.), or It represents an alkyl group having 1 to 6 carbon atoms (eg, methyl group, ethyl group, propyl group, etc.).
  • R 1 , R 2 and R 3 are preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, more preferably a hydrogen atom or a methyl group. More preferably, R 2 and R 3 are hydrogen atoms.
  • X represents an oxygen atom (--O--) or an imino group (--NH--), preferably an oxygen atom.
  • the divalent linking group includes a divalent aliphatic group (e.g., alkylene group, substituted alkylene group, alkenylene group, substituted alkenylene group, alkynylene group, substituted alkynylene group), divalent aromatic group (e.g., arylene group , substituted arylene group), divalent heterocyclic group, oxygen atom (—O—), sulfur atom (—S—), imino group (—NH—), substituted imino group (—NR 31 —, where R 31 is an aliphatic group, an aromatic group or a heterocyclic group), a carbonyl group (-CO-), and combinations thereof.
  • a divalent aliphatic group e.g., alkylene group, substituted alkylene group, alkenylene group, substituted alkenylene group, alkynylene group, substituted alkynylene group
  • divalent aromatic group e.g., arylene group , substituted arylene group
  • a divalent aliphatic group may have a cyclic structure or a branched structure.
  • the number of carbon atoms in the aliphatic group is preferably 1-20, more preferably 1-15, even more preferably 1-10.
  • the aliphatic group may be an unsaturated aliphatic group or a saturated aliphatic group, but a saturated aliphatic group is preferred.
  • the aliphatic group may have a substituent. Examples of substituents include halogen atoms, aromatic groups, heterocyclic groups, and the like.
  • the number of carbon atoms in the divalent aromatic group is preferably 6-20, more preferably 6-15, even more preferably 6-10.
  • the aromatic group may have a substituent. Examples of substituents include halogen atoms, aliphatic groups, aromatic groups, heterocyclic groups, and the like.
  • the divalent heterocyclic group preferably contains a 5- or 6-membered ring as the heterocyclic ring.
  • a heterocyclic ring may be condensed with another heterocyclic ring, an aliphatic ring, or an aromatic ring.
  • L is preferably a divalent linking group containing a single bond, an alkylene group, or an oxyalkylene structure.
  • the oxyalkylene structure is more preferably an oxyethylene structure or an oxypropylene structure.
  • L may also contain a polyoxyalkylene structure containing two or more repeating oxyalkylene structures.
  • As the polyoxyalkylene structure a polyoxyethylene structure or a polyoxypropylene structure is preferable.
  • the polyoxyethylene structure is represented by -(OCH 2 CH 2 )n-, where n is preferably an integer of 2 or more, more preferably an integer of 2-10.
  • Z is an aliphatic group (e.g., alkyl group, substituted alkyl group, unsaturated alkyl group, substituted unsaturated alkyl group), aromatic group (e.g., aryl group, substituted aryl group, arylene group, substituted arylene group) , heterocyclic groups, and combinations thereof.
  • These groups include an oxygen atom (--O--), a sulfur atom (--S--), an imino group (--NH--), a substituted imino group (---NR 31 --, where R 31 is an aliphatic group, an aromatic group or heterocyclic group) or a carbonyl group (--CO--).
  • the aliphatic group may have a cyclic structure or a branched structure.
  • the number of carbon atoms in the aliphatic group is preferably 1-20, more preferably 1-15, even more preferably 1-10.
  • Aliphatic groups further include ring-assembled hydrocarbon groups, bridged cyclic hydrocarbon groups, and examples of ring-assembled hydrocarbon groups include bicyclohexyl, perhydronaphthalenyl, biphenyl, and 4 -cyclohexylphenyl group and the like are included.
  • bridged cyclic hydrocarbon ring examples include pinane, bornane, norpinane, norbornane, bicyclooctane ring (bicyclo[2.2.2]octane ring, bicyclo[3.2.1]octane ring, etc.) and the like.
  • Cyclic hydrocarbon rings, tricyclic hydrocarbon rings such as homobredan, adamantane, tricyclo[5.2.1.0 2,6 ]decane and tricyclo[4.3.1.1 2,5 ]undecane rings , as well as tetracyclo[4.4.0.1 2,5 .
  • Bridged cyclic hydrocarbon rings also include condensed cyclic hydrocarbon rings such as perhydronaphthalene (decalin), perhydroanthracene, perhydrophenanthrene, perhydroacenaphthene, perhydrofluorene, perhydroindene, and A condensed ring in which a plurality of 5- to 8-membered cycloalkane rings such as a perhydrophenalene ring are condensed is also included.
  • a saturated aliphatic group is preferable to an unsaturated aliphatic group.
  • the aliphatic group may have a substituent. Examples of substituents include halogen atoms, aromatic groups and heterocyclic groups. However, an aliphatic group does not have an acid group as a substituent.
  • the number of carbon atoms in the aromatic group is preferably 6-20, more preferably 6-15, even more preferably 6-10.
  • the aromatic group may have a substituent. Examples of substituents include halogen atoms, aliphatic groups, aromatic groups, and heterocyclic groups. However, the aromatic group does not have an acid group as a substituent.
  • the heterocyclic group preferably contains a 5- or 6-membered ring as the heterocyclic ring.
  • the heterocyclic ring may be condensed with another heterocyclic ring, an aliphatic ring or an aromatic ring.
  • the heterocyclic group does not have an acid group as a substituent.
  • R 4 , R 5 , and R 6 each independently represent a hydrogen atom, a halogen atom (e.g., a fluorine atom, a chlorine atom, a bromine atom, etc.), or have 1 to 6 carbon atoms.
  • L and Z are synonymous with the above groups.
  • R 4 , R 5 and R 6 are preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, more preferably a hydrogen atom.
  • R 1 , R 2 and R 3 are hydrogen atoms or methyl groups, and L is a single bond or an alkylene group or 2 containing an oxyalkylene structure
  • Compounds in which a valence linking group, X is an oxygen atom or an imino group, and Z is an aliphatic group, a heterocyclic group, or an aromatic group are preferred.
  • R 1 is a hydrogen atom or a methyl group
  • L is an alkylene group
  • Z is an aliphatic group, a heterocyclic group, or an aromatic Compounds that are radicals are preferred.
  • R 4 , R 5 and R 6 are a hydrogen atom or a methyl group, and Z is an aliphatic group, a heterocyclic group or an aromatic Compounds that are radicals are preferred.
  • Representative examples of the compounds represented by formulas (i) to (iii) include radically polymerizable compounds selected from acrylic acid esters, methacrylic acid esters, styrenes, and the like.
  • Examples of typical compounds represented by formulas (i) to (iii) include compounds described in paragraphs 0089 to 0093 of JP-A-2013-249417. incorporated into.
  • the content of the hydrophobic repeating unit is preferably 10 to 90% by mass, more preferably 20 to 80% by mass, in terms of mass, relative to the total mass of the resin A2.
  • the resin A2 may have a functional group capable of interacting with the magnetic particles.
  • the resin A2 preferably further contains a repeating unit containing a functional group capable of interacting with the magnetic particles.
  • Functional groups capable of interacting with magnetic particles include, for example, acid groups, basic groups, coordinating groups, and reactive functional groups.
  • the resin A2 contains an acid group, a basic group, a coordinating group, or a reactive functional group, the repeating unit containing an acid group, the repeating unit containing a basic group, and the coordinating group are It is preferable that a repeating unit having a functional group having reactivity be included.
  • the repeating unit containing an acid group may be the same repeating unit as the repeating unit containing the graft chain, or may be a different repeating unit. (ie, does not correspond to the hydrophobic repeating units described above).
  • Acid groups which are functional groups capable of forming interactions with magnetic particles, include, for example, carboxylic acid groups, sulfonic acid groups, phosphoric acid groups, and phenolic hydroxyl groups. , a phosphoric acid group, and more preferably a carboxylic acid group.
  • Carboxylic acid groups have good adsorptive power to magnetic particles and high dispersibility. That is, the resin A2 preferably further contains a repeating unit containing at least one of a carboxylic acid group, a sulfonic acid group, and a phosphoric acid group.
  • Resin A2 may have one or more repeating units containing an acid group.
  • the content thereof is preferably 5 to 80% by mass, more preferably 10 to 60% by mass, based on the total mass of the resin A2.
  • Basic groups that are functional groups capable of interacting with magnetic particles include, for example, primary amino groups, secondary amino groups, tertiary amino groups, N-atom-containing heterocycles, and amide groups.
  • a preferred basic group is a tertiary amino group because of its good adsorptive power to magnetic particles and high dispersibility.
  • Resin A2 may contain one or more of these basic groups. When the resin A2 contains a repeating unit containing a basic group, the content is preferably 0.01 to 50% by mass, more preferably 0.01 to 30% by mass, based on the total mass of the resin A2 in terms of mass. more preferred.
  • the coordinating group which is a functional group capable of forming an interaction with the magnetic particles
  • the reactive functional group include acetylacetoxy group, trialkoxysilyl group, isocyanate group, acid anhydride, and acid Chlorides and the like can be mentioned.
  • a preferred functional group is an acetylacetoxy group because it has good adsorptive power to magnetic particles and high dispersibility of magnetic particles.
  • Resin A2 may have one or more of these groups. When the resin A2 contains a repeating unit containing a coordinating group or a repeating unit containing a reactive functional group, the content of these in terms of mass is 10 to 10 with respect to the total mass of the resin A2. 80% by mass is preferred, and 20 to 60% by mass is more preferred.
  • the resin A2 contains a functional group capable of forming an interaction with the magnetic particles in addition to the graft chain, it is sufficient that the resin A2 contains a functional group capable of forming an interaction with the various magnetic particles.
  • the resin contained in the composition preferably contains one or more repeating units selected from repeating units derived from monomers represented by formulas (iv) to (vi) below.
  • R 11 , R 12 , and R 13 are each independently a hydrogen atom, a halogen atom (e.g., fluorine atom, chlorine atom, bromine atom, etc.), or carbon It represents an alkyl group with a number of 1 to 6 (eg, methyl group, ethyl group, propyl group, etc.).
  • R 11 , R 12 and R 13 are preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, more preferably a hydrogen atom or a methyl group.
  • R 12 and R 13 are more preferably hydrogen atoms.
  • X 1 in formula (iv) represents an oxygen atom (--O--) or an imino group (--NH--), preferably an oxygen atom.
  • Y in formula (v) represents a methine group or a nitrogen atom.
  • L 1 in formulas (iv) to (v) represents a single bond or a divalent linking group.
  • the definition of the divalent linking group is the same as the definition of the divalent linking group represented by L in formula (i) above.
  • L 1 is preferably a divalent linking group containing a single bond, an alkylene group, or an oxyalkylene structure.
  • the oxyalkylene structure is more preferably an oxyethylene structure or an oxypropylene structure.
  • L 1 may contain a polyoxyalkylene structure containing two or more repeating oxyalkylene structures.
  • a polyoxyethylene structure or a polyoxypropylene structure is preferable.
  • the polyoxyethylene structure is represented by -(OCH 2 CH 2 ) n -, where n is preferably an integer of 2 or more, more preferably an integer of 2-10.
  • Z 1 represents a functional group capable of forming an interaction with the magnetic particles other than the graft chain, preferably a carboxylic acid group or a tertiary amino group, and a carboxylic acid group more preferred.
  • R 14 , R 15 , and R 16 each independently represent a hydrogen atom, a halogen atom (e.g., fluorine atom, chlorine atom, bromine atom, etc.), a C 1-6 represents an alkyl group (eg, methyl group, ethyl group, propyl group, etc.), -Z 1 , or L 1 -Z 1 ;
  • L 1 and Z 1 are synonymous with L 1 and Z 1 above, and preferred examples are also the same.
  • R 14 , R 15 and R 16 are preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, more preferably a hydrogen atom.
  • R 11 , R 12 and R 13 are each independently a hydrogen atom or a methyl group, and L 1 is an alkylene group or a bivalent divalent group containing an oxyalkylene structure
  • a compound in which X 1 is an oxygen atom or an imino group and Z 1 is a carboxylic acid group is preferred.
  • R 11 is a hydrogen atom or a methyl group
  • L 1 is an alkylene group
  • Z 1 is a carboxylic acid group
  • Y is a methine group.
  • compounds in which R 14 , R 15 and R 16 are each independently a hydrogen atom or a methyl group and Z 1 is a carboxylic acid group are preferable.
  • monomers represented by formulas (iv) to (vi) are shown below.
  • monomers include methacrylic acid, crotonic acid, isocrotonic acid, a reaction product of a compound containing an addition-polymerizable double bond and a hydroxyl group in the molecule (e.g., 2-hydroxyethyl methacrylate) and succinic anhydride.
  • a reaction product of a compound containing an addition-polymerizable double bond and a hydroxyl group in the molecule and phthalic anhydride a reaction product of a compound containing an addition-polymerizable double bond and a hydroxyl group in the molecule and tetrahydroxyphthalic anhydride , a reaction product of a compound containing an addition-polymerizable double bond and a hydroxyl group in the molecule and trimellitic anhydride, a reaction product of a compound containing an addition-polymerizable double bond and a hydroxyl group in the molecule and pyromellitic anhydride, acrylic acid, acrylic acid dimer, acrylic acid oligomer, maleic acid, itaconic acid, fumaric acid, 4-vinylbenzoic acid, vinylphenol, and 4-hydroxyphenylmethacrylamide.
  • the content of the repeating unit containing a functional group capable of forming an interaction with the magnetic particles is, in terms of mass, that of the resin A2 in terms of interaction with the magnetic particles, stability over time, and permeability to the developer. 0.05 to 90% by mass is preferable, 1.0 to 80% by mass is more preferable, and 10 to 70% by mass is even more preferable with respect to the total mass.
  • the resin A2 may contain an ethylenically unsaturated group.
  • the ethylenically unsaturated group is not particularly limited, examples thereof include a (meth)acryloyl group, a vinyl group, a styryl group, and the like, and a (meth)acryloyl group is preferred.
  • the resin A2 preferably contains a repeating unit containing an ethylenically unsaturated group in the side chain, and a repeating unit containing an ethylenically unsaturated group in the side chain and derived from (meth)acrylate (hereinafter referred to as Also referred to as "a (meth)acrylic repeating unit containing an ethylenically unsaturated group in the side chain").
  • the (meth)acrylic repeating unit containing an ethylenically unsaturated group in the side chain is, for example, a glycidyl group or an alicyclic It is obtained by addition reaction of an ethylenically unsaturated compound containing an epoxy group.
  • a (meth)acrylic repeating unit containing an ethylenically unsaturated group in the side chain can be obtained.
  • the content is preferably 30 to 70% by mass, more preferably 40 to 60% by mass, based on the total mass of the resin A2.
  • the resin A2 may contain other curable groups in addition to the ethylenically unsaturated groups.
  • Other curable groups include, for example, epoxy groups and oxetanyl groups.
  • Examples of (meth)acrylic repeating units containing other curable groups in side chains include repeating units derived from glycidyl (meth)acrylate.
  • the content is preferably 5 to 50% by mass, more preferably 10 to 30% by mass, based on the total mass of the resin A2 in terms of mass. .
  • the resin A2 is, for the purpose of improving various performances such as film-forming ability, as long as the effect of the present invention is not impaired, other repeating units having various functions different from the repeating units described above. It may also have a unit.
  • other repeating units include repeating units derived from radically polymerizable compounds selected from acrylonitriles, methacrylonitriles, and the like.
  • One or more of these other repeating units can be used in the resin A2, and the content thereof is preferably 0 to 80% by mass, preferably 10 to 60% by mass, based on the total mass of the resin A2 in terms of mass. % is more preferred.
  • the acid value of resin A2 is not particularly limited, but is preferably 0 to 400 mgKOH/g, more preferably 10 to 350 mgKOH/g, still more preferably 30 to 300 mgKOH/g, further preferably 50 to 200 mgKOH/g. is particularly preferred. If the acid value of the resin A2 is 50 mgKOH/g or more, the sedimentation stability of the magnetic particles can be further improved.
  • the acid value can be calculated, for example, from the average content of acid groups in the compound. Also, by changing the content of repeating units containing acid groups in the resin, a resin having a desired acid value can be obtained.
  • the weight average molecular weight of resin A2 is not particularly limited, but is preferably 3,000 or more, more preferably 4,000 or more, even more preferably 5,000 or more, and particularly preferably 6,000 or more. Moreover, as an upper limit, for example, 300,000 or less is preferable, 200,000 or less is more preferable, 100,000 or less is still more preferable, and 50,000 or less is especially preferable. Resin A2 can be synthesized based on a known method.
  • a preferred embodiment of the binder component also includes a resin-type rheology control agent.
  • the rheology control agent is a component that imparts thixotropic properties to the composition, exhibiting high viscosity when the shear force (shear rate) is low and low viscosity when the shear force (shear rate) is high.
  • the resin-type rheology control agent means a resin having the properties described above, and a resin different from the resin A described above.
  • the resin-type rheology control agent includes, for example, a compound having one or more (preferably two or more) adsorptive groups and further having a sterically repulsive structural group.
  • the weight average molecular weight of the resin-type rheology control agent is preferably 2,000 or more, preferably in the range of 2,000 to 50,000.
  • a specific example of the resin type rheology control agent is a resin type organic rheology control agent among the organic rheology control agents described later.
  • the content of the resin-type rheology control agent is preferably 1 to 24% by mass, more preferably 1 to 15% by mass, more preferably 1 to 15% by mass, based on the total mass of the composition.
  • the binder component contains a resin-type rheology control agent
  • the content of the resin-type rheology control agent is preferably 0.8 to 24% by mass, more preferably 0.8 to 15% by mass, based on the total solid content of the composition. % is more preferred, 0.8 to 12% by weight is more preferred, 0.8 to 10% by weight is even more preferred, 0.8 to 8% by weight is particularly preferred, and 0.8 to 7% by weight is most preferred.
  • a preferred embodiment of the binder component also includes a polymerizable compound.
  • the molecular weight (or weight average molecular weight) of the polymerizable compound is not particularly limited, it is preferably 2000 or less.
  • its content is preferably 1 to 24% by mass, more preferably 1 to 15% by mass, even more preferably 1 to 12% by mass, relative to the total mass of the composition, 1 to 10% by weight is particularly preferred, and 1 to 7% by weight is most preferred.
  • the binder component contains a polymerizable compound
  • its content is preferably 0.8 to 24% by mass, more preferably 0.8 to 15% by mass, based on the total solid content of the composition, and 0.8 to 12% by weight is more preferred, 0.8 to 10% by weight is even more preferred, 0.8 to 8% by weight is particularly preferred, and 0.8 to 7% by weight is most preferred.
  • the polymerizable compound includes, for example, a compound containing a group containing an ethylenically unsaturated bond (hereinafter also simply referred to as "ethylenically unsaturated group").
  • the polymerizable compound is preferably a compound containing one or more ethylenically unsaturated bonds, more preferably a compound containing two or more, still more preferably a compound containing three or more, and particularly preferably a compound containing five or more.
  • the upper limit is, for example, 15 or less.
  • Examples of ethylenically unsaturated groups include vinyl groups, (meth)allyl groups, and (meth)acryloyl groups.
  • the polymerizable compound for example, the compounds described in paragraph 0050 of JP-A-2008-260927 and paragraph 0040 of JP-A-2015-068893 can be used, and the above contents are incorporated herein.
  • the polymerizable compound may be in any chemical form such as monomers, prepolymers, oligomers, mixtures thereof, and multimers thereof.
  • the polymerizable compound is preferably a 3- to 15-functional (meth)acrylate compound, more preferably a 3- to 6-functional (meth)acrylate compound.
  • a compound containing one or more ethylenically unsaturated groups and having a boiling point of 100°C or higher is also preferable.
  • the compounds described in paragraph 0227 of JP-A-2013-029760 and paragraphs 0254 to 0257 of JP-A-2008-292970 can be considered, the contents of which are incorporated herein.
  • Polymerizable compounds include dipentaerythritol triacrylate (commercially available as KAYARAD D-330; manufactured by Nippon Kayaku), dipentaerythritol tetraacrylate (commercially available as KAYARAD D-320; manufactured by Nippon Kayaku), Dipentaerythritol penta(meth)acrylate (commercially available as KAYARAD D-310; manufactured by Nippon Kayaku Co., Ltd.), dipentaerythritol hexa(meth)acrylate (commercially available as KAYARAD DPHA; manufactured by Nippon Kayaku Co., Ltd., A-DPH) -12E; manufactured by Shin-Nakamura Chemical Co., Ltd.), and structures in which these (meth)acryloyl groups are via ethylene glycol residues or propylene glycol residues (for example, SR454, SR499, commercially available from Sartomer) preferable.
  • KAYARAD D-330 manufactured by N
  • oligomeric types can also be used.
  • NK Ester A-TMMT penentaerythritol tetraacrylate, manufactured by Shin-Nakamura Chemical Co., Ltd.
  • KAYARAD RP-1040 penentaerythritol tetraacrylate, manufactured by Shin-Nakamura Chemical Co., Ltd.
  • KAYARAD DPEA-12LT KAYARAD DPHA LT
  • KAYARAD RP-3060 KAYARAD DPEA-12
  • KAYARAD DPEA-12 all trade names , manufactured by Nippon Kayaku Co., Ltd.
  • the polymerizable compound may have acid groups such as carboxylic acid groups, sulfonic acid groups, and phosphoric acid groups.
  • acid groups such as carboxylic acid groups, sulfonic acid groups, and phosphoric acid groups.
  • an ester of an aliphatic polyhydroxy compound and an unsaturated carboxylic acid is preferable, and an unreacted hydroxyl group of the aliphatic polyhydroxy compound is reacted with a non-aromatic carboxylic acid anhydride to form an acid group.
  • a compound in which the aliphatic polyhydroxy compound is pentaerythritol and/or dipentaerythritol is more preferred.
  • Examples of commercially available products include Aronix TO-2349, M-305, M-510 and M-520 manufactured by Toagosei Co., Ltd.
  • the acid value of the polymerizable compound containing an acid group is preferably 0.1-40 mgKOH/g, more preferably 5-30 mgKOH/g.
  • the acid value of the polymerizable compound is 0.1 mgKOH/g or more, the development dissolution property is good, and when it is 40 mgKOH/g or less, it is advantageous in terms of production and/or handling. Furthermore, the photopolymerization performance is good and the curability is excellent.
  • a compound containing a caprolactone structure is also a preferred embodiment.
  • the compound containing a caprolactone structure is not particularly limited as long as it contains a caprolactone structure in the molecule.
  • examples include ⁇ -caprolactone-modified polyfunctional (meth)acrylates obtained by esterifying polyhydric alcohols such as glycerin, diglycerol, or trimethylolmelamine with (meth)acrylic acid and ⁇ -caprolactone.
  • a compound containing a caprolactone structure represented by the following formula (Z-1) is preferable.
  • R 1 represents a hydrogen atom or a methyl group
  • m represents the number of 1 or 2
  • "*" represents a bond
  • R 1 represents a hydrogen atom or a methyl group
  • "*" represents a bond
  • Commercially available polymerizable compounds containing a caprolactone structure include M-350 (trade name) (trimethylolpropane triacrylate) manufactured by Toagosei
  • a compound represented by the following formula (Z-4) or (Z-5) can also be used as the polymerizable compound.
  • E represents -((CH 2 ) y CH 2 O)- or ((CH 2 ) y CH(CH 3 )O)-, and y represents an integer of 0 to 10, and X represents a (meth)acryloyl group, a hydrogen atom, or a carboxylic acid group.
  • the total number of (meth)acryloyl groups is 3 or 4
  • m represents an integer of 0-10, and the sum of m is an integer of 0-40.
  • formula (Z-5) the total number of (meth)acryloyl groups is 5 or 6
  • n represents an integer of 0-10, and the sum of each n is an integer of 0-60.
  • m is preferably an integer of 0-6, more preferably an integer of 0-4.
  • the sum of m is preferably an integer of 2 to 40, more preferably an integer of 2 to 16, and even more preferably an integer of 4 to 8.
  • n is preferably an integer of 0-6, more preferably an integer of 0-4.
  • the sum of n is preferably an integer of 3-60, more preferably an integer of 3-24, and even more preferably an integer of 6-12.
  • -((CH 2 ) y CH 2 O)- or ((CH 2 ) y CH(CH 3 )O)- in formula (Z-4) or formula (Z-5) is A form in which the terminal is bound to X is preferred.
  • the compounds represented by formula (Z-4) or formula (Z-5) may be used singly or in combination of two or more.
  • formula (Z-5) a form in which all six X are acryloyl groups, a compound in which all six X are acryloyl groups in formula (Z-5), and among six X,
  • a preferred embodiment is a mixture with a compound having at least one hydrogen atom. With such a configuration, the developability can be further improved.
  • the total content of the compound represented by formula (Z-4) or formula (Z-5) in the polymerizable compound is preferably 20% by mass or more, more preferably 50% by mass or more.
  • pentaerythritol derivatives and/or dipentaerythritol derivatives are more preferred.
  • the polymerizable compound may contain a cardo skeleton.
  • a polymerizable compound containing a 9,9-bisarylfluorene skeleton is preferred.
  • examples of the polymerizable compound containing a cardo skeleton include, but are not limited to, Oncoat EX series (manufactured by Nagase & Co., Ltd.) and Ogsol (manufactured by Osaka Gas Chemicals Co., Ltd.).
  • the polymerizable compound is also preferably a compound containing an isocyanuric acid skeleton as a central nucleus.
  • Examples of such polymerizable compounds include NK Ester A-9300 (manufactured by Shin-Nakamura Chemical Co., Ltd.).
  • the content of ethylenically unsaturated groups in the polymerizable compound (meaning the value obtained by dividing the number of ethylenically unsaturated groups in the polymerizable compound by the molecular weight (g/mol) of the polymerizable compound) is 5.0 mmol/ g or more is preferable.
  • the upper limit is not particularly limited, it is generally 20.0 mmol/g or less.
  • a compound having an epoxy group and/or an oxetanyl group is also preferable as the polymerizable compound.
  • the polymerizable compound preferably has one or more epoxy groups and/or oxetanyl groups, more preferably 2 to 10 groups.
  • the epoxy group and/or oxetanyl group (preferably epoxy group) may be condensed with a cyclic group (such as an alicyclic group).
  • the cyclic group condensed with an epoxy group and/or an oxetanyl group preferably has 5 to 15 carbon atoms.
  • the portion other than the condensed epoxy group and/or oxetanyl group may be monocyclic or polycyclic.
  • One cyclic group may be fused with only one epoxy group or oxetanyl group, or may be fused with two or more epoxy groups and/or oxetanyl groups.
  • polymerizable compounds include monofunctional or polyfunctional glycidyl ether compounds.
  • the polymerizable compound may be, for example, (poly)alkylene glycol diglycidyl ether.
  • the polymerizable compound may be, for example, a glycidyl ether compound of trihydric or higher polyhydric alcohols such as glycerol, sorbitol, and (poly)glycerol.
  • the polymerizable compound is a compound containing a caprolactone structure represented by the above formula (Z-1), in which the group represented by the formula (Z-2) is changed to the following formula (Z-2E), the formula (Z A compound in which the group represented by -3) is changed to a group represented by formula (Z-3E) may also be used.
  • m represents a number of 1 or 2
  • X and Y each independently represents a hydrogen atom or a substituent (preferably an alkyl group, preferably having 1 to 3 carbon atoms), and "*" indicates a bond.
  • X and Y each independently represent a hydrogen atom or a substituent (preferably an alkyl group, preferably having 1 to 3 carbon atoms), and "*" represents a bond.
  • the polymerizable compound may be a group represented by the formula (Z-3E) or a compound represented by the above formula (Z-4) in which X is changed to represent a hydrogen atom.
  • formula (Z-4) modified in this way the total number of groups represented by formula (Z-3E) is 2 to 4.
  • the polymerizable compound may be a group represented by the formula (Z-3E) or a compound represented by the above formula (Z-5) in which X is changed to represent a hydrogen atom.
  • the total number of groups represented by formula (Z-3E) is 2 to 6 (preferably 5 or 6).
  • the polymerizable compound may be a compound having a structure in which N (N) cyclic groups condensed with an epoxy group and/or an oxetanyl group are linked via a linking group.
  • N is an integer of 2 or more, preferably an integer of 2 to 6, more preferably 2.
  • the total number of atoms other than hydrogen atoms in the linking group is preferably 1-20, more preferably 2-6.
  • examples of the linking group include an alkyleneoxycarbonyl group.
  • polymerizable compounds include polyfunctional aliphatic glycidyl ether compounds such as Denacol EX-212L, EX-214L, EX-216L, EX-321L, EX-850L (manufactured by Nagase ChemteX Corporation). are mentioned. Although these are low-chlorine products, EX-212, EX-214, EX-216, EX-314, EX-321, EX-614, EX-850, etc., which are not low-chlorine products, can also be used. As a commercially available product, Celoxide 2021P (manufactured by Daicel Corporation, polyfunctional epoxy monomer) can also be used. As a commercial product, EHPE 3150 (manufactured by Daicel Corporation, polyfunctional epoxy/oxiranyl monomer) can also be used.
  • EHPE 3150 manufactured by Daicel Corporation, polyfunctional epoxy/oxiranyl monomer
  • the composition may also contain a rheology control agent.
  • the rheology control agent is a component that imparts thixotropic properties to the composition, exhibiting high viscosity when the shear force (shear rate) is low and low viscosity when the shear force (shear rate) is high.
  • the content of the rheology control agent is preferably 0.1 to 24% by mass, more preferably 0.1 to 15% by mass, more preferably 0.1 to 15% by mass, based on the total mass of the composition. 5 to 12% by weight is more preferred, 0.5 to 10% by weight is particularly preferred, and 0.5 to 7% by weight is most preferred.
  • the content of the rheology control agent is preferably 0.1 to 24% by mass, more preferably 0.1 to 15% by mass, still more preferably 0.5 to 12% by mass, relative to the total solid content of the composition. 0.5 to 10% by weight is even more preferred, 0.5 to 8% by weight is particularly preferred, and 0.5 to 7% by weight is most preferred.
  • the content of the rheology control agent mentioned above does not include the resin-type rheology control agent.
  • the resin-type rheology control agent corresponds to the resin that is the binder component described above.
  • rheology control agents examples include organic rheology control agents and inorganic rheology control agents, with organic rheology control agents being preferred.
  • the content of the organic rheology control agent is preferably 0.1 to 24% by mass, more preferably 0.1 to 15% by mass, based on the total mass of the composition.
  • 0.5 to 12% by mass is more preferable, 0.5 to 10% by mass is particularly preferable, and 0.5 to 7% by mass is most preferable.
  • the content of the organic rheology control agent is preferably 0.1 to 24% by mass, more preferably 0.1 to 15% by mass, more preferably 0.5 to 12% by mass, relative to the total solid content of the composition.
  • the above content of the organic rheology control agent does not include the resin type rheology control agent.
  • the resin-type rheology control agent corresponds to the resin that is the binder component described above.
  • One type of organic rheology control agent may be used alone, or two or more types may be used.
  • Organic rheology control agents include, for example, compounds having one or more (preferably two or more) adsorptive groups and further having sterically repulsive structural groups.
  • the adsorption group interacts with the surface of the magnetic particles to adsorb the organic rheology control agent to the surface of the magnetic particles.
  • the adsorptive groups include acid groups, basic groups, and amide groups.
  • the acid group includes, for example, a carboxy group, a phosphoric acid group, a sulfo group, a phenolic hydroxyl group, and an acid anhydride group thereof (an acid anhydride group of the carboxy group, etc.), and the effects of the present invention are more excellent. From the point of view, a carboxy group is preferable.
  • Basic groups include, for example, an amino group (a group obtained by removing one hydrogen atom from ammonia, a primary amine or a secondary amine) and an imino group.
  • the adsorptive group is preferably a carboxy group or an amide group, more preferably a carboxy group.
  • the steric repulsive structural group has a sterically bulky structure, thereby introducing steric hindrance to the magnetic particles to which the organic rheology control agent is adsorbed, and maintaining an appropriate space between the magnetic particles.
  • the steric repulsion structure group for example, a chain group is preferable, a long-chain fatty acid group is more preferable, and a long-chain alkyl group is still more preferable.
  • the organic rheology control agent also preferably has a hydrogen-bonding unit.
  • the hydrogen-bonding unit is a partial structure that functions to build a hydrogen-bonding network between the organic rheology control agents and between the organic rheology control agent and other components.
  • the organic rheology control agent that contributes to the formation of the network may or may not be adsorbed on the surface of the magnetic particles.
  • the hydrogen bonding units may be the same or different from the adsorptive groups described above. When the hydrogen-bonding units are the same as the above-mentioned adsorptive groups, some of the above-mentioned adsorptive groups are bound to the surface of the magnetic particles and the other part functions as hydrogen-bonding units.
  • a carboxy group or an amide group is preferable as the hydrogen-bonding unit.
  • a carboxy group as a hydrogen-bonding unit is preferable because it is easily incorporated into a curing reaction when producing a cured product, and an amide group is preferable because the composition has excellent stability over time.
  • the organic rheology control agent when the organic rheology control agent is a resin, the organic rheology control agent, which is a resin, may or may not have a repeating unit containing the above-described graft chain.
  • the organic rheology control agent, which is a resin does not substantially have the above-mentioned repeating unit containing a graft chain
  • the content of the above-mentioned repeating unit containing a graft chain with respect to the total mass of the organic rheology control agent, which is a resin is , preferably less than 2% by mass, more preferably 1% by mass or less, and even more preferably less than 0.1% by mass.
  • a lower limit is 0 mass % or more.
  • the organic rheology control agent is selected from the group consisting of polycarboxylic acid (compound having two or more carboxy groups), polycarboxylic anhydride (compound having two or more acid anhydride groups consisting of carboxy groups), and amide wax. are preferably one or more. These may be resins or may be other than resins. In addition, these may correspond to aggregation control agents and/or aggregation dispersing agents, which will be described later.
  • organic rheology control agents include modified urea, urea-modified polyamides, fatty acid amides, polyurethanes, polyamideamides, polymeric urea derivatives, and salts thereof (such as carboxylates).
  • Modified urea is a reaction product of an isocyanate monomer or its adduct and an organic amine.
  • Modified urea is modified with a polyoxyalkylene polyol (polyoxyethylene polyol, polyoxypropylene polyol, etc.) and/or an alkyd chain or the like.
  • a urea-modified polyamide is, for example, a compound containing a urea bond and a compound obtained by introducing a medium polar group or a low polar group to the terminal thereof.
  • Medium polar groups or low polar groups include, for example, polyoxyalkylene polyols (polyoxyethylene polyols, polyoxypropylene polyols, etc.) and alkyd chains.
  • a fatty acid amide is a compound having a long-chain fatty acid group and an amide group in the molecule. These may be resins or may be other than resins. In addition, these may correspond to aggregation control agents and/or aggregation dispersing agents, which will be described later.
  • the molecular weight of the organic rheology control agent (the weight average molecular weight if it has a molecular weight distribution) is preferably in the range of 200-50,000.
  • the acid value is preferably 5-400 mgKOH/g.
  • the organic rheology control agent has an amine acid value, the amine value is preferably 5-300 mgKOH/g.
  • Organic rheology control agents also include aggregation control agents.
  • the aggregation control agent may be a resin or a non-resin.
  • Aggregation control agents bind to relatively dense aggregates such as magnetic particles, and can also disperse components such as resin precursors in the composition to create bulky aggregates. It has functions. When the composition contains an aggregation control agent, hard cake formation of the magnetic particles in the composition is suppressed, and bulky aggregates are formed, which can improve redispersibility.
  • Aggregation control agents include, for example, cellulose derivatives.
  • cellulose derivatives include carboxymethylcellulose, methylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, hydroxypropylethylcellulose, and salts thereof.
  • the content of the aggregation control agent is preferably 0.1 to 24% by mass, more preferably 0.1 to 15% by mass, more preferably 0.1 to 15% by mass, based on the total mass of the composition. 5 to 12% by weight is more preferred, 0.5 to 10% by weight is particularly preferred, and 0.5 to 7% by weight is most preferred.
  • the content of the aggregation control agent is preferably 0.1 to 24% by mass, more preferably 0.1 to 15% by mass, still more preferably 0.5 to 12% by mass, relative to the total solid content of the composition. 0.5 to 10% by weight is even more preferred, 0.5 to 8% by weight is particularly preferred, and 0.5 to 7% by weight is most preferred.
  • the above content of the aggregation control agent does not include the resin-type rheology control agent.
  • the resin-type rheology control agent corresponds to the resin that is the binder component described above.
  • Organic rheology control agents also include flocculating dispersants.
  • the aggregation dispersant may be a resin or may be other than a resin.
  • the flocculating dispersant adsorbs to the surface of the magnetic particles, and while separating the magnetic particles from each other, the interaction between the dispersing agents keeps the distance between the magnetic particles at a certain level or more, preventing the magnetic particles from directly aggregating. It has the function of being able to As a result, agglomeration of the magnetic particles is suppressed, and even if agglomerates are formed, relatively low-density agglomerates are formed.
  • components such as resin precursors can be dispersed in the composition to form bulky aggregates, which can improve redispersibility.
  • Alkylolammonium salts of polybasic acids are preferred as the aggregation dispersant.
  • Polybasic acid may have two or more acid groups, for example, acidic polymers containing repeating units having acid groups (e.g., polyacrylic acid, polymethacrylic acid, polyvinylsulfonic acid, polyphosphoric acid, etc. ).
  • Polybasic acids other than the above include polymers obtained by polymerizing unsaturated fatty acids such as crotonic acid.
  • Alkylolammonium salts of polybasic acids are obtained by reacting these polybasic acids with alkylolammonium. Salts obtained by such reactions usually contain the following partial structures.
  • the alkylol ammonium salt of polybasic acid is preferably a polymer containing a plurality of the above partial structures.
  • the weight average molecular weight is preferably 1,000 to 100,000, more preferably 5,000 to 20,000.
  • the polybasic acid alkylol ammonium salt polymer binds to the surface of the magnetic particles, and by hydrogen bonding with other aggregated dispersant molecules, the main chain structure of the polymer enters between the magnetic particles and separates the magnetic particles. can be separated.
  • One preferred embodiment of the aggregation dispersant includes (a) saturated aliphatic monocarboxylic acids and hydroxy group-containing aliphatic monocarboxylic acids, and (b) at least one of polybasic acids, and (c) Amide waxes, which are condensation products obtained by dehydration condensation with at least one of diamines and tetraamines.
  • the saturated aliphatic monocarboxylic acids preferably have 12-22 carbon atoms. Specific examples include lauric acid, myristic acid, pentadecyl acid, palmitic acid, margaric acid, stearic acid, nonadecanic acid, arachidic acid, and behenic acid.
  • the hydroxy group-containing aliphatic monocarboxylic acids preferably have 12 to 22 carbon atoms. Specific examples include 12-hydroxystearic acid and dihydroxystearic acid. These saturated aliphatic monocarboxylic acids and hydroxy group-containing aliphatic monocarboxylic acids may be used alone or in combination.
  • Polybasic acids are preferably dibasic or higher carboxylic acids having 2 to 12 carbon atoms, more preferably dicarboxylic acids.
  • dicarboxylic acids include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, 1,10-decanedicarboxylic acid and 1,12-dodecane.
  • Aliphatic dicarboxylic acids such as dicarboxylic acids; aromatic dicarboxylic acids such as phthalic acid, isophthalic acid and terephthalic acid; 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid Acids and cycloaliphatic dicarboxylic acids such as cyclohexylsuccinic acid. These polybasic acids may be used alone or in combination.
  • Diamines preferably have 2 to 14 carbon atoms. Specifically, ethylenediamine, 1,3-propanediamine, 1,4-butanediamine, hexamethylenediamine, metaxylenediamine, tolylenediamine, paraxylenediamine, phenylenediamine, isophoronediamine, 1,10-decanediamine, 1,12-dodecanediamine, 4,4-diaminodicyclohexylmethane, and 4,4-diaminodiphenylmethane.
  • the tetraamines preferably have 2 to 14 carbon atoms. Specific examples include butane-1,1,4,4-tetramine and pyrimidine-2,4,5,6-tetraamine. These diamines and tetraamines may be used alone or in combination.
  • the amide wax may be obtained as a mixture of compounds with different molecular weights.
  • Amide wax is preferably a compound represented by the following chemical formula (I).
  • the amide wax may be a single compound or a mixture.
  • A is a saturated aliphatic monocarboxylic acid and/or a saturated aliphatic monocarboxylic acid containing a hydroxy group
  • B is a dehydroxylated group residue of a polybasic acid
  • C is a diamine and/or tetraamine.
  • m is 0 ⁇ m ⁇ 5.
  • One preferred embodiment of the aggregation dispersant is a compound represented by the following formula (II).
  • R 1 represents a monovalent linear aliphatic hydrocarbon group having 10 to 25 carbon atoms
  • R 2 and R 3 each independently represent a represents a divalent aliphatic hydrocarbon group, a divalent alicyclic hydrocarbon group having 6 carbon atoms, or a divalent aromatic hydrocarbon group
  • R 4 is a divalent aliphatic hydrocarbon group having 1 to 8 carbon atoms
  • each of R 5 and R 6 independently represents a monovalent aliphatic hydrocarbon group having 1 to 3 carbon atoms or a hydroxyalkyl ether group.
  • L 1 to L 3 each independently represent an amide bond, and when L 1 and L 3 are —CONH—, L 2 is —NHCO— and L 1 and L 3 are —NHCO -, then L 2 is -CONH-.
  • R 1 is a monovalent linear aliphatic hydrocarbon group having 10 to 25 carbon atoms, such as decyl, lauryl, myristyl, pentadecyl, stearyl, palmityl, nonadecyl, eicosyl, and , a linear alkyl group such as a behenyl group; a linear alkenyl group such as a decenyl group, a pentadecenyl group, an oleyl group, and an eicosenyl group; a linear alkynyl group such as a pentadecynyl group, an octadecynyl group, and a nonadecynyl group mentioned.
  • R 1 is preferably a monovalent linear aliphatic hydrocarbon group having 14 to 25 carbon atoms, more preferably a monovalent linear aliphatic hydrocarbon group having 18 to 21 carbon atoms.
  • the linear aliphatic hydrocarbon group is preferably an alkyl group.
  • Examples of the divalent aliphatic hydrocarbon group having 2, 4, 6 or 8 carbon atoms in R 2 and R 3 include ethylene group, n-butylene group, n-hexylene group and n-octylene group. be done.
  • Examples of the divalent alicyclic hydrocarbon group having 6 carbon atoms for R 2 and R 3 include 1,4-cyclohexylene group, 1,3-cyclohexylene group and 1,2-cyclohexylene group. mentioned.
  • Examples of divalent aromatic hydrocarbon groups for R 2 and R 3 include arylenes having 6 to 10 carbon atoms such as 1,4-phenylene group, 1,3-phenylene group and 1,2-phenylene group. groups.
  • R 2 and R 3 are preferably divalent aliphatic hydrocarbon groups having 2, 4, 6 or 8 carbon atoms, and divalent aliphatic hydrocarbon groups having 2, 4 or 6 carbon atoms in terms of excellent thickening effect.
  • An aliphatic hydrocarbon group is more preferred, a divalent aliphatic hydrocarbon group having 2 or 4 carbon atoms is even more preferred, and a divalent aliphatic hydrocarbon group having 2 carbon atoms is more preferred.
  • the divalent aliphatic hydrocarbon group is preferably a linear alkylene group.
  • R 4 represents a divalent aliphatic hydrocarbon group having 1 to 8 carbon atoms, and among them, a linear or branched alkylene group is preferable in terms of excellent thickening effect, and a linear alkylene group is more preferred.
  • the number of carbon atoms in the divalent aliphatic hydrocarbon group in R 4 is 1 to 8, preferably 1 to 7, more preferably 3 to 7, more preferably 3 to 6, from the viewpoint of excellent thickening effect. 3 to 5 are particularly preferred. Therefore, R 4 is preferably a linear or branched alkylene group having 1 to 8 carbon atoms, more preferably a linear alkylene group having 1 to 7 carbon atoms, and a linear alkylene group having 3 to 7 carbon atoms. is more preferred, a straight-chain alkylene group having 3 to 6 carbon atoms is particularly preferred, and a straight-chain alkylene group having 3 to 5 carbon atoms is most preferred.
  • Examples of monovalent aliphatic hydrocarbon groups having 1 to 3 carbon atoms for R 5 and R 6 include linear or Branched-chain alkyl group; linear or branched-chain alkenyl group having 2 to 3 carbon atoms such as vinyl group, 1-methylvinyl group and 2-propenyl group; carbon number such as ethynyl group and propynyl group 2 to 3 linear or branched alkynyl groups and the like are included.
  • Hydroxyalkyl ether groups for R 5 and R 6 include, for example, mono- or di(hydroxy)C 1-3 alkyl groups such as 2-hydroxyethoxy, 2-hydroxypropoxy and 2,3-dihydroxypropoxy groups. Ether groups can be mentioned.
  • R 5 and R 6 are each independently preferably a monovalent aliphatic hydrocarbon group having 1 to 3 carbon atoms, more preferably a linear or branched alkyl group having 1 to 3 carbon atoms, and A linear alkyl group having a number of 1 to 3 is more preferred, and a methyl group is particularly preferred.
  • Aggregating dispersants include, for example, ANTI-TERRA-203, 204, 206, and 250 (all trade names, manufactured by BYK): ANTI-TERRA-U (trade name, manufactured by BYK): DISPER BYK-102 , 180, 191 (both product names, manufactured by BYK): BYK-P105 (product name, manufactured by BYK): TEGO Disper 630, 700 (both product names, manufactured by Evonik Degussa Japan): Tarlen VA- 705B (trade name, manufactured by Kyoeisha Chemical Co., Ltd.): FLOWNON RCM-300TL, RCM-230AF (trade name, manufactured by Kyoeisha Chemical Co., Ltd., amide wax), and the like.
  • the content of the aggregation dispersant is preferably 0.1 to 24% by mass, more preferably 0.1 to 15% by mass, more preferably 0.1 to 15% by mass, based on the total mass of the composition. 5 to 12% by weight is more preferred, 0.5 to 10% by weight is particularly preferred, and 0.5 to 7% by weight is most preferred.
  • the content of the aggregation dispersant is preferably 0.1 to 24% by mass, more preferably 0.5 to 15% by mass, still more preferably 0.1 to 12% by mass, relative to the total solid content of the composition. 0.5 to 10% by weight is even more preferred, 0.5 to 8% by weight is particularly preferred, and 0.5 to 7% by weight is most preferred.
  • the above content of the aggregation dispersant does not include the resin-type rheology control agent.
  • the resin-type rheology control agent corresponds to the resin that is the binder component described above.
  • Inorganic rheology control agents include, for example, bentonite, silica, calcium carbonate, and smectite.
  • the mass content ratio of the rheology-controlling agent to the organic solvent is preferably 0.09 or more, in order to further enhance the effects of the present invention.
  • the upper limit is not particularly limited, it is preferably 0.30 or less, more preferably 0.20 or less.
  • the composition may contain a curing agent.
  • a curing agent when the composition contains a compound having an epoxy group and/or an oxetanyl group as a binder component, the composition also preferably contains a curing agent.
  • curing agents include phenolic curing agents, naphthol curing agents, acid anhydride curing agents, active ester curing agents, benzoxazine curing agents, cyanate ester curing agents, carbodiimide curing agents, and amine adducts. system curing agents.
  • the curing agent may be used singly or in combination of two or more.
  • phenol-based curing agents and naphthol-based curing agents include “MEH-7700”, “MEH-7810” and “MEH-7851” manufactured by Meiwa Kasei Co., Ltd., “NHN” manufactured by Nippon Kayaku Co., Ltd., “CBN”, “GPH”, Nippon Steel & Sumikin Chemical Co., Ltd. "SN-170”, “SN-180”, “SN-190”, “SN-475”, “SN-485”, “SN-495”, “SN-375”, “SN-395”, DIC “LA-7052", “LA-7054”, “LA-3018”, “LA-3018-50P”, “LA-1356”, “TD2090” ”, and “TD-2090-60M”.
  • Acid anhydride curing agents include curing agents having one or more acid anhydride groups in one molecule.
  • Specific examples of acid anhydride curing agents include phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, methylnadic anhydride, and hydrogenated methylnadic acid.
  • acid anhydride-based curing agents include "HNA-100”, “MH-700”, “MTA-15”, “DDSA”, “HF-08”, “OSA” manufactured by Shin Nippon Rika Co., Ltd. "YH306”, “YH307” manufactured by Mitsubishi Chemical Co., Ltd., “H-TMAn” manufactured by Mitsubishi Gas Chemical Co., Ltd., “HN-2200” manufactured by Hitachi Chemical Co., Ltd., “HN-2000”, “HN-5500”, “MHAC -P” and the like.
  • Active ester curing agents include compounds having 3 or more highly reactive ester groups per molecule, such as phenol esters, thiophenol esters, N-hydroxyamine esters, and esters of heterocyclic hydroxy compounds. It is preferably used.
  • the active ester curing agent includes an active ester compound containing a dicyclopentadiene type diphenol structure, an active ester compound containing a naphthalene structure, an active ester compound containing an acetylated phenol novolac, and an active ester compound containing a benzoylated phenol novolac. is preferred.
  • the “dicyclopentadiene-type diphenol structure” represents a divalent structural unit composed of phenylene-dicyclopentalene-phenylene.
  • active ester curing agents include, as active ester compounds containing a dicyclopentadiene type diphenol structure, "EXB9451”, “EXB9460”, “EXB9460S”, "HPC-8000”, “HPC-8000H”, “ HPC-8000-65T”, “HPC-8000H-65TM”, “EXB-8000L”, “EXB-8000L-65TM” (manufactured by DIC); active ester compounds containing naphthalene structures: “EXB9416-70BK” and “EXB -8150-65T” (manufactured by DIC Corporation); “DC808” (manufactured by Mitsubishi Chemical Corporation) as an active ester compound containing an acetylated phenol novolak; "YLH1026” (manufactured by Mitsubishi Chemical Corporation) as an active ester compound containing a benzoylated phenol novolac “DC808” (manufactured by Mitsubishi Chemical Corporation) as
  • benzoxazine-based curing agents include “JBZ-OP100D” and “ODA-BOZ” manufactured by JFE Chemical; “HFB2006M” manufactured by Showa Polymer Co., Ltd.; “Fa” and the like are included.
  • cyanate ester curing agents include “PT30” and “PT60” (both phenol novolac type polyfunctional cyanate ester resins), “BA230” and “BA230S75” (part of bisphenol A dicyanate) manufactured by Lonza Japan Co., Ltd. or a prepolymer that is entirely triazined to form a trimer), and the like.
  • carbodiimide curing agents include “V-03” and “V-07” manufactured by Nisshinbo Chemical Co., Ltd.
  • amine adduct type curing agents include, for example, Amicure PN-23 and PN-50 (manufactured by Ajinomoto Fine-Techno Co., Ltd.).
  • the ratio of the content of the compound having an epoxy group (or the compound having an oxetanyl group) to the content of the curing agent is the equivalent ratio of the epoxy group (or compound having an oxetanyl group) in the compound having an epoxy group to the reactive group (active hydrogen group such as hydroxyl group in the curing agent) in the curing agent (the number of epoxy groups ( or number of oxetanyl groups)”/“number of reactive groups”) is preferably 30/70 to 70/30, more preferably 40/60 to 60/40, and 45/55 to 55/ An amount of 45 is more preferred.
  • the composition contains a compound having an epoxy group, a compound having an oxetanyl group, and a curing agent
  • the reaction between the compound having an epoxy group and an oxetanyl group in the compound having an epoxy group and the reactive group in the curing agent preferably satisfies the above numerical range.
  • the content of the curing agent is preferably 0.001 to 3.5% by mass, more preferably 0.01 to 3.5% by mass, relative to the total mass of the composition.
  • the content of the curing agent is preferably 0.001 to 3.5% by mass, more preferably 0.01 to 3.5% by mass, based on the total solid content of the composition.
  • the composition may contain a curing accelerator.
  • a curing accelerator when the composition contains a compound having an epoxy group and/or an oxetanyl group as a binder component, the composition preferably contains a curing accelerator.
  • Curing accelerators include, for example, triphenylphosphine, methyltributylphosphonium dimethylphosphate, trisorthotolylphosphine, and boron trifluoride amine complexes.
  • Commercially available phosphate curing accelerators include Hishicolin PX-4MP (manufactured by Nippon Kagaku Kogyo Co., Ltd.).
  • curing accelerators include 2-methylimidazole (trade name; 2MZ), 2-undecylimidazole (trade name; C11-Z), 2-heptadecylimidazole (trade name; C17Z), 1,2 -dimethylimidazole (trade name; 1.2DMZ), 2-ethyl-4-methylimidazole (trade name; 2E4MZ), 2-phenylimidazole (trade name; 2PZ), 2-phenyl-4-methylimidazole (trade name; 2P4MZ), 1-benzyl-2-methylimidazole (trade name; 1B2MZ), 1-benzyl-2-phenylimidazole (trade name; 1B2PZ), 1-cyanoethyl-2-methylimidazole (trade name; 2MZ-CN), 1-cyanoethyl-2-undecylimidazole (trade name; C11Z-CN), 1-cyanoethyl-2-phenylimidazolium trimellitate (
  • the compounds described in paragraph 0052 of JP-A-2004-43405 are also included as triarylphosphine-based curing accelerators.
  • Examples of phosphorus-based curing accelerators in which triphenylborane is added to triarylphosphine include compounds described in paragraph 0024 of JP-A-2014-5382.
  • the content of the curing accelerator is preferably 0.0002 to 3% by mass, more preferably 0.002 to 2% by mass, still more preferably 0.01 to 1% by mass, relative to the total mass of the composition.
  • the content of the curing accelerator is preferably 0.0002 to 3% by mass, more preferably 0.002 to 2% by mass, still more preferably 0.02 to 1% by mass, based on the total solid content of the composition.
  • the composition may contain a polymerization initiator. Above all, when the composition contains a compound containing an ethylenically unsaturated group as a binder component, the composition preferably contains a polymerization initiator.
  • the polymerization initiator is not particularly limited, and known polymerization initiators can be used. Examples of polymerization initiators include photopolymerization initiators and thermal polymerization initiators.
  • the composition contains a polymerization initiator its content is preferably 0.5 to 10% by mass, more preferably 0.5 to 5% by mass, based on the total mass of the composition, and 0.5 to 3% by mass is more preferred.
  • the composition contains a polymerization initiator, its content is preferably 0.8 to 5% by mass, more preferably 0.8 to 4% by mass, based on the total solid content of the composition, and 1.5 ⁇ 3% by mass is more preferred.
  • thermal polymerization initiators examples include 2,2′-azobisisobutyronitrile (AIBN), 3-carboxypropionitrile, azobismalenonitrile, and dimethyl-(2,2′)-azobis(2 -methyl propionate) [V-601], and organic peroxides such as benzoyl peroxide, lauroyl peroxide, and potassium persulfate.
  • AIBN 2,2′-azobisisobutyronitrile
  • 3-carboxypropionitrile 3-carboxypropionitrile
  • azobismalenonitrile examples
  • organic peroxides such as benzoyl peroxide, lauroyl peroxide, and potassium persulfate.
  • organic peroxides such as benzoyl peroxide, lauroyl peroxide, and potassium persulfate.
  • Specific examples of the polymerization initiator include, for example
  • the photopolymerization initiator is not particularly limited as long as it can initiate polymerization of the polymerizable compound, and known photopolymerization initiators can be used.
  • a photopolymerization initiator having photosensitivity from the ultraviolet region to the visible light region is preferable. Further, it may be an activator that produces some action with a photoexcited sensitizer to generate an active radical, or an initiator that initiates cationic polymerization depending on the type of the polymerizable compound.
  • the photopolymerization initiator preferably contains at least one compound having a molar extinction coefficient of at least 50 within the range of 300 to 800 nm (more preferably 330 to 500 nm).
  • photopolymerization initiators include halogenated hydrocarbon derivatives (e.g., compounds containing a triazine skeleton, compounds containing an oxadiazole skeleton, etc.), acylphosphine compounds such as acylphosphine oxide, hexaarylbiimidazole, and oxime derivatives. oxime compounds, organic peroxides, thio compounds, ketone compounds, aromatic onium salts, aminoacetophenone compounds, hydroxyacetophenone, and the like.
  • Specific examples of the photopolymerization initiator can be referred to, for example, paragraphs 0265 to 0268 of JP-A-2013-029760, the contents of which are incorporated herein.
  • an aminoacetophenone-based initiator described in JP-A-10-291969 and an acylphosphine-based initiator described in Japanese Patent No. 4225898 can also be used.
  • hydroxyacetophenone compounds that can be used include Omnirad-184, Omnirad-1173, Omnirad-500, Omnirad-2959, and Omnirad-127 (trade names, all manufactured by IGM Resins B.V.).
  • the aminoacetophenone compound for example, commercially available products Omnirad-907, Omnirad-369, and Omnirad-379EG (trade names, all manufactured by IGM Resins B.V.) can be used.
  • the aminoacetophenone compound the compound described in JP-A-2009-191179, whose absorption wavelength is matched to a long-wave light source such as a wavelength of 365 nm or a wavelength of 405 nm, can also be used.
  • a long-wave light source such as a wavelength of 365 nm or a wavelength of 405 nm
  • the acylphosphine compound commercially available products Omnirad-819 and Omnirad-TPO (trade names, both manufactured by IGM Resins B.V.) can be used.
  • an oxime ester polymerization initiator (oxime compound) is more preferable.
  • oxime compounds are preferred because they have high sensitivity and high polymerization efficiency, and can be easily designed to have a high colorant content in the composition.
  • Specific examples of the oxime compound include compounds described in JP-A-2001-233842, compounds described in JP-A-2000-080068, and compounds described in JP-A-2006-342166.
  • oxime compounds include 3-benzoyloxyiminobutane-2-one, 3-acetoxyiminobutane-2-one, 3-propionyloxyiminobutane-2-one, 2-acetoxyiminopentane-3-one, 2-acetoxyimino-1-phenylpropan-1-one, 2-benzoyloxyimino-1-phenylpropan-1-one, 3-(4-toluenesulfonyloxy)iminobutane-2-one, and 2-ethoxy and carbonyloxyimino-1-phenylpropan-1-one.
  • J. C. S. Perkin II (1979) pp. 1653-1660
  • IRGACURE-OXE01 manufactured by BASF
  • IRGACURE-OXE02 manufactured by BASF
  • IRGACURE-OXE03 manufactured by BASF
  • IRGACURE-OXE04 manufactured by BASF
  • TR-PBG-304 manufactured by Changzhou Strong Electronic New Materials Co., Ltd.
  • Adeka Arkles NCI-831 Adeka Arkles NCI-930
  • N-1919 carboxymethylcellulose
  • An initiator manufactured by ADEKA
  • oxime compounds other than those described above compounds described in Japanese Patent Publication No. 2009-519904 in which an oxime is linked to the carbazole N-position; compounds described in US Pat. No. 7,626,957 in which a hetero substituent is introduced at the benzophenone moiety; Compounds described in JP-A-2010-015025 and US Pat. Compounds described in US Pat. No. 7,556,910 containing a skeleton in the same molecule; compounds described in JP-A-2009-221114 having an absorption maximum at 405 nm and good sensitivity to a g-line light source; may be used.
  • the oxime compound is preferably a compound represented by the following formula (OX-1). Further, even if the NO bond of the oxime compound is the (E)-isomer oxime compound, the (Z)-isomer oxime compound, or the mixture of the (E)-isomer and the (Z)-isomer. good.
  • R and B each independently represent a monovalent substituent
  • A represents a divalent organic group
  • Ar represents an aryl group.
  • the monovalent substituent represented by R is preferably a monovalent nonmetallic atomic group.
  • monovalent nonmetallic atomic groups include alkyl groups, aryl groups, acyl groups, alkoxycarbonyl groups, aryloxycarbonyl groups, heterocyclic groups, alkylthiocarbonyl groups, and arylthiocarbonyl groups.
  • these groups may have one or more substituents.
  • the substituents described above may be further substituted with other substituents.
  • substituents include halogen atoms, aryloxy groups, alkoxycarbonyl groups or aryloxycarbonyl groups, acyloxy groups, acyl groups, alkyl groups, and aryl groups.
  • the monovalent substituent represented by B is preferably an aryl group, a heterocyclic group, an arylcarbonyl group, or a heterocyclic carbonyl group, and an aryl group or a heterocyclic group is preferable. These groups may have one or more substituents. Examples of the substituent include the substituents described above.
  • the divalent organic group represented by A is preferably an alkylene group having 1 to 12 carbon atoms, a cycloalkylene group, or an alkynylene group. These groups may have one or more substituents. Examples of the substituent include the substituents described above.
  • An oxime compound containing a fluorine atom can also be used as a photopolymerization initiator.
  • Specific examples of the oxime compound containing a fluorine atom include compounds described in JP-A-2010-262028; compounds 24, 36 to 40 described in JP-A-2014-500852; described compound (C-3); and the like. The contents of which are incorporated herein.
  • R 1 and R 2 are each independently an alkyl group having 1 to 20 carbon atoms, an alicyclic hydrocarbon group having 4 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, or represents an arylalkyl group having 7 to 30 carbon atoms, and when R 1 and R 2 are phenyl groups, the phenyl groups may combine to form a fluorene group, and R 3 and R 4 are each independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms or a heterocyclic group having 4 to 20 carbon atoms, and X is a direct bond or carbonyl indicates a group.
  • R 1 , R 2 , R 3 and R 4 have the same definitions as R 1 , R 2 , R 3 and R 4 in formula (1), and R 5 is -R 6 , -OR6 , -SR6 , -COR6 , -CONR6R6 , -NR6COR6 , -OCOR6 , -COOR6 , -SCOR6 , -OCSR6 , -COSR6 , -CSOR6 , —CN, a halogen atom, or a hydroxyl group, and R 6 is an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms, or an arylalkyl group having 7 to 30 carbon atoms, or 4 to 4 carbon atoms 20 represents a heterocyclic group, X represents a direct bond or a carbonyl group, and a represents an integer of
  • R 1 is an alkyl group having 1 to 20 carbon atoms, an alicyclic hydrocarbon group having 4 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, or an aryl group having 7 to 30 carbon atoms.
  • R 3 and R 4 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms, or carbon It represents a heterocyclic group of numbers 4 to 20, and X represents a direct bond or a carbonyl group.
  • R 1 , R 3 and R 4 have the same definitions as R 1 , R 3 and R 4 in formula (3)
  • R 5 is -R 6 , -OR 6 , —SR 6 , —COR 6 , —CONR 6 R 6 , —NR 6 COR 6 , —OCOR 6 , —COOR 6 , —SCOR 6 , —OCSR 6 , —COSR 6 , —CSOR 6 , —CN, halogen atoms,
  • a hydroxyl group is represented, and R 6 is an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms, or a heterocyclic group having 4 to 20 carbon atoms.
  • X represents a direct bond or a carbonyl group
  • a represents an integer of 0-4.
  • R 1 and R 2 are preferably methyl group, ethyl group, n-propyl group, i-propyl group, cyclohexyl group or phenyl group.
  • R3 is preferably a methyl group , an ethyl group, a phenyl group, a tolyl group, or a xylyl group.
  • R 4 is preferably an alkyl group having 1 to 6 carbon atoms or a phenyl group.
  • R5 is preferably a methyl group, ethyl group, phenyl group, tolyl group or naphthyl group.
  • X is preferably a direct bond.
  • R 1 is preferably a methyl group, an ethyl group, an n-propyl group, an i-propyl group, a cyclohexyl group, or a phenyl group.
  • R3 is preferably a methyl group , an ethyl group, a phenyl group, a tolyl group, or a xylyl group.
  • R 4 is preferably an alkyl group having 1 to 6 carbon atoms or a phenyl group.
  • R5 is preferably a methyl group, ethyl group, phenyl group, tolyl group or naphthyl group.
  • X is preferably a direct bond.
  • Specific examples of the compounds represented by formulas (1) and (2) include compounds described in paragraphs 0076 to 0079 of JP-A-2014-137466. The contents of which are incorporated herein.
  • oxime compounds preferably used in the composition are shown below.
  • the oxime compound represented by general formula (C-13) is more preferable.
  • compounds described in Table 1 of WO 2015-036910 pamphlet can also be used, and the above contents are incorporated herein.
  • the oxime compound preferably has a maximum absorption wavelength in the wavelength range of 350 to 500 nm, more preferably has a maximum absorption wavelength in the wavelength range of 360 to 480 nm, and still more preferably has high absorbance at wavelengths of 365 nm and 405 nm. .
  • the molar extinction coefficient of the oxime compound at 365 nm or 405 nm is preferably 1,000 to 300,000, more preferably 2,000 to 300,000, even more preferably 5,000 to 200,000, from the viewpoint of sensitivity.
  • the molar extinction coefficient of the compound can be measured by a known method, for example, with a UV-visible spectrophotometer (Varian Cary-5 spectrophotometer), using ethyl acetate, and measuring at a concentration of 0.01 g / L. is preferred. You may use a photoinitiator in combination of 2 or more types as needed.
  • paragraph 0052 of JP-A-2008-260927, paragraphs 0033 to 0037 of JP-A-2010-097210, and paragraph 0044 of JP-A-2015-068893. can also be used, the contents of which are incorporated herein.
  • an oxime initiator described in Korean Patent Publication No. 10-2016-0109444 can be used.
  • the composition may contain a polymerization inhibitor.
  • the polymerization inhibitor is not particularly limited, and known polymerization inhibitors can be used.
  • Examples of polymerization inhibitors include phenol-based polymerization inhibitors (e.g., p-methoxyphenol, 2,5-di-tert-butyl-4-methylphenol, 2,6-di-tert-butyl-4-methylphenol, 4,4'-thiobis(3-methyl-6-t-butylphenol), 2,2'-methylenebis(4-methyl-6-t-butylphenol), 4-methoxynaphthol, etc.); hydroquinone-based polymerization inhibitors (e.g.
  • hydroquinone, 2,6-di-tert-butyl hydroquinone, etc. hydroquinone, 2,6-di-tert-butyl hydroquinone, etc.); quinone polymerization inhibitors (e.g., benzoquinone, etc.); free radical polymerization inhibitors (e.g., 2,2,6,6-tetramethylpiperidine 1-oxyl free radical, 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl free radical, etc.); nitrobenzene-based polymerization inhibitors (e.g., nitrobenzene, 4-nitrotoluene, etc.); and phenothiazine-based polymerization inhibitors agents (eg, phenothiazine, 2-methoxyphenothiazine, etc.); Among them, a phenol polymerization inhibitor or a free radical polymerization inhibitor is preferable.
  • free radical polymerization inhibitors e.g., 2,2,6,6-tetramethylpipe
  • the effect of the polymerization inhibitor is remarkable when used together with a resin containing a curable group.
  • the content of the polymerization inhibitor in the composition is not particularly limited, but is preferably 0.0001 to 0.5% by mass, more preferably 0.0001 to 0.2% by mass, based on the total mass of the composition. , 0.0001 to 0.05 mass % is more preferable.
  • the content of the polymerization inhibitor is preferably 0.0001 to 0.5% by mass, more preferably 0.0001 to 0.2% by mass, and 0.0001 to 0.5% by mass, based on the total solid content of the composition. 05% by mass is more preferred.
  • the composition may contain a surfactant.
  • a surfactant contributes to improving the coatability of the composition.
  • the content of the surfactant is preferably 0.001 to 2.0% by mass, and 0.005 to 0.5% by mass, based on the total mass of the composition. More preferably, 0.005 to 0.1% by mass is even more preferable.
  • the content of the surfactant is preferably 0.001 to 2.0% by mass, more preferably 0.005 to 0.5% by mass, and 0.01 to 0.1% by mass, based on the total solid content of the composition. % by mass is more preferred.
  • surfactants include fluorine surfactants, nonionic surfactants, cationic surfactants, anionic surfactants, and silicone surfactants.
  • the composition contains a fluorosurfactant
  • the composition's liquid properties are further improved. That is, when a film is formed using a composition containing a fluorosurfactant, the interfacial tension between the surface to be coated and the coating liquid is reduced to improve the wettability of the surface to be coated. Improves applicability to Therefore, even when a thin film having a thickness of about several ⁇ m is formed with a small amount of liquid, it is effective in that a film having a uniform thickness with little unevenness in thickness can be formed more favorably.
  • the fluorine content in the fluorine-based surfactant is preferably 3-40% by mass, more preferably 5-30% by mass, and even more preferably 7-25% by mass.
  • a fluorosurfactant having a fluorine content within this range is effective in uniformity of the thickness of the coating film and/or liquid saving, and has good solubility in the composition.
  • JP 2014-041318 Paragraph Nos. 0060 to 0064 (corresponding International Publication No. 2014/017669 Paragraph Nos. 0060 to 0064) surfactants described in, JP 2011- Examples include surfactants described in paragraphs 0117 to 0132 of JP-A-132503 and surfactants described in JP-A-2020-008634, the contents of which are incorporated herein.
  • Commercially available fluorosurfactants include Megafac F-171, F-172, F-173, F-176, F-177, F-141, F-142, F-143 and F-144.
  • a block polymer can also be used as the fluorosurfactant, and specific examples thereof include the compounds described in JP-A-2011-089090.
  • silicone-based surfactants include KF6001 and KF6007 (manufactured by Shin-Etsu Chemical Co., Ltd.).
  • perfluoroalkylsulfonic acid and its salts and perfluoroalkylcarboxylic acid and its salts may be regulated.
  • perfluoroalkylsulfonic acid especially perfluoroalkylsulfonic acid having 6 to 8 carbon atoms in the perfluoroalkyl group
  • perfluoroalkylcarboxylic acid In particular, the content of the perfluoroalkylcarboxylic acid having 6 to 8 carbon atoms in the perfluoroalkyl group) and its salt is preferably 0.01 to 1,000 ppb based on the total solid content of the composition.
  • the composition may be substantially free of perfluoroalkylsulfonic acid and its salts and perfluoroalkylcarboxylic acid and its salts.
  • perfluoroalkylsulfonic acid and its salt and a compound that can substitute for perfluoroalkylcarboxylic acid and its salt, perfluoroalkylsulfonic acid and its salt, and perfluoroalkylcarboxylic acid and a composition substantially free of its salts.
  • Compounds that can substitute for regulated compounds include, for example, compounds excluded from regulation due to differences in the number of carbon atoms in perfluoroalkyl groups. However, the above content does not prevent the use of perfluoroalkylsulfonic acid and its salts, and perfluoroalkylcarboxylic acid and its salts.
  • the composition may contain perfluoroalkylsulfonic acids and their salts, and perfluoroalkylcarboxylic acids and their salts, within the maximum permissible range.
  • the composition also preferably contains a silane coupling agent as an adhesion aid.
  • a silane coupling agent include N-phenyl-3-aminopropyltrimethoxysilane, phenyltrimethoxysilane, N-(2-aminoethyl)3-aminopropylmethyldimethoxysilane, N-(2-amino ethyl) 3-aminopropylmethyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, vinyltrimethoxysilane, N-(2-(vinylbenzylamino)ethyl) 3-aminopropyltrimethoxysilane silane hydrochloride, 3-methacryloxypropyltrimethoxysilane, 3-chloropropylmethyldimethoxysilane, 3-chloropropyltrimethoxysilane, and
  • silane coupling agents include, for example, Shin-Etsu Chemical Co., Ltd. KBM series, KBE series (eg, KBM-573, KBM-103), and the like.
  • the content of the adhesion aid is preferably 0.05 to 2% by mass, more preferably 0.05 to 1% by mass, based on the total mass of the composition. 0.05 to 0.8 mass % is more preferred.
  • the content of the adhesion aid is preferably 0.05 to 2% by mass, more preferably 0.05 to 1% by mass, and further 0.05 to 0.8% by mass, based on the total solid content of the composition. preferable.
  • composition may further contain other optional ingredients other than those mentioned above.
  • optional ingredients include sensitizers, co-sensitizers, plasticizers, diluents, sensitizers, fillers, rubber components, etc., and auxiliary agents (e.g., antifoaming agents, flame retardants, leveling agents, Known additives such as release accelerators, antioxidants, fragrances, surface tension modifiers, chain transfer agents, etc.) may be added as necessary.
  • a preferred embodiment of the composition includes a composition containing magnetic particles, an organic solvent, and one or more components selected from the group consisting of resins and resin precursors.
  • the above composition is a composition containing magnetic particles, an organic solvent, and at least one compound selected from the group consisting of epoxy compounds and oxetane compounds in that the effects of the present invention are more excellent. and more preferably a composition containing magnetic particles, an organic solvent, at least one compound selected from the group consisting of epoxy compounds and oxetane compounds, and a rheology control agent.
  • At least one compound selected from the group consisting of epoxy compounds and oxetane compounds has a molecular weight of 2000 or less (preferably a molecular weight of 1000 or less, more preferably a molecular weight of 600 or less) is preferable.
  • the composition when the composition contains a curing component that is cured by light, the composition preferably further contains a photopolymerization initiator.
  • the composition when the composition contains a curing component that is cured by heat, the composition may further contain a thermal polymerization initiator.
  • the composition may contain a compound containing one or more of epoxy groups and oxetanyl groups.
  • the viscosity of the composition at 23° C. is 1 to 10,000 Pa s because the sedimentation stability of the magnetic particles is superior. is preferred, 1 to 5,000 Pa ⁇ s is more preferred, and 1 to 1,000 Pa ⁇ s is even more preferred.
  • the viscosity of the composition at 23° C. can be measured using MCR-102 (manufactured by Anton Paar).
  • the composition can be prepared by mixing each of the above components by a known mixing method (for example, a mixing method using a stirrer, homogenizer, high-pressure emulsifier, wet pulverizer, wet disperser, or the like).
  • a mixing method for example, a mixing method using a stirrer, homogenizer, high-pressure emulsifier, wet pulverizer, wet disperser, or the like.
  • each component may be mixed together, or each component may be dissolved or dispersed in a solvent and then mixed sequentially.
  • there are no particular restrictions on the order of addition and working conditions when blending For example, when using a plurality of types of other resins, they may be blended together or may be blended in multiple batches for each type.
  • the composition can be suitably used as a hole-filling composition for holes such as via holes and through holes provided in a substrate.
  • the composition preferably contains a resin precursor as a binder component, and an epoxy compound and/or an oxetanyl compound is contained from the viewpoint that the effects of the present invention are more excellent. It is more preferable to stay
  • an example of a specific hole-filling procedure includes a method including steps 1 to 3 below.
  • Step 1 On a substrate provided with holes such as via holes and through holes, for example, a slit coating method, an inkjet method, a spin coating method, a casting coating method, a roll coating method, a screen printing method, and the like are known.
  • a step of applying the composition by the coating method of Step 2 and filling the hole with the composition Step 2 By heating the composition on the substrate that has undergone Step 1, for example, at about 120 to 180 ° C. for about 30 to 90 minutes , a step of curing the epoxy compound and/or oxetanyl compound in the composition.
  • Step 3 A step of removing unnecessary portions protruding from the substrate surface of the cured product by physical polishing to make a flat surface.
  • step 2 is changed to a step including exposure treatment for irradiating actinic rays or radiation. is preferred.
  • the composition is formed into a film.
  • the composition preferably contains a resin precursor as a binder component, and the composition contains an epoxy compound and/or an oxetanyl compound from the viewpoint that the effect of the present invention is more excellent. is more preferred.
  • Films formed from the composition are suitably used as electronic components such as antennas and inductors installed in electronic communication equipment and the like.
  • the film thickness of the film formed from the composition is preferably 1 to 10,000 ⁇ m, more preferably 10 to 1,000 ⁇ m, particularly preferably 15 to 800 ⁇ m, from the viewpoint of better magnetic permeability.
  • the cured product (magnetic particle-containing cured product) of the present invention is formed using the composition of the present invention described above.
  • the shape of the cured product of the present invention is not particularly limited. For example, as described above, it may be a shape that conforms to the shape of the hole provided in the substrate, or it may be a film.
  • the cured product of the present invention is obtained, for example, by curing the above composition.
  • the composition preferably contains a resin precursor as a binder component, and more preferably contains an epoxy compound and/or an oxetanyl compound in terms of better effects of the present invention.
  • the method for producing the cured product is not particularly limited, it preferably includes the following steps. ⁇ Composition layer forming process ⁇ Curing process
  • the method for producing the cured product of the present invention will be described, taking as an example the production method in which the shape of the cured product is a film.
  • the film-like cured product is hereinafter referred to as a magnetic particle-containing cured film.
  • composition layer forming step the composition is applied onto a substrate (support) or the like to form a composition layer (composition layer).
  • the substrate may be, for example, a wiring substrate having an antenna section or an inductor section.
  • composition layer applied on the substrate may be heated (pre-baked), and pre-baking can be performed, for example, at a temperature of 50 to 140° C. for 10 to 1800 seconds using a hot plate, an oven, or the like. Prebaking is preferably performed especially when the composition contains a solvent.
  • the curing step is not particularly limited as long as the composition layer can be cured, and includes heat treatment for heating the composition layer, and exposure treatment for irradiating the composition layer with actinic rays or radiation.
  • the heat treatment can be performed continuously or batchwise using a heating means such as a hot plate, a convection oven (hot air circulation dryer), or a high-frequency heater.
  • the heating temperature in the heat treatment is preferably 120 to 260°C, more preferably 150 to 240°C.
  • the heating time is not particularly limited, but is preferably 10 to 1800 seconds.
  • the pre-baking in the composition layer forming step may also serve as the heat treatment in the curing step.
  • the method of irradiating actinic rays or radiation is not particularly limited, but it is preferable to irradiate through a photomask having patterned openings. Exposure is preferably carried out by irradiation with radiation. Radiation that can be used for exposure is preferably ultraviolet such as g-line, h-line or i-line, and a high-pressure mercury lamp is preferred as a light source. The irradiation intensity is preferably 5-1500 mJ/cm 2 , more preferably 10-1000 mJ/cm 2 . When the composition contains a thermal polymerization initiator, the composition layer may be heated in the exposure treatment. Although the heating temperature is not particularly limited, 80 to 250°C is preferable.
  • the heating time is not particularly limited, it is preferably 30 to 300 seconds.
  • the post-heating step described later may also be performed. In other words, when the composition layer is heated in the exposure process, the method for producing the magnetic particle-containing cured film need not include a post-heating step.
  • a developing step is a step of developing the exposed composition layer to form a magnetic particle-containing cured film.
  • the type of developer used in the development process is not particularly limited, but an alkaline developer that does not damage circuits and the like is desirable.
  • the developing temperature is, for example, 20 to 30.degree.
  • the development time is, for example, 20 to 90 seconds. In order to remove the residue better, in recent years, it may be carried out for 120 to 180 seconds. Furthermore, in order to further improve the residue removability, the process of shaking off the developer every 60 seconds and then supplying new developer may be repeated several times.
  • the alkaline developer is preferably an alkaline aqueous solution prepared by dissolving an alkaline compound in water to a concentration of 0.001 to 10% by mass (preferably 0.01 to 5% by mass).
  • Alkaline compounds include, for example, sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, aqueous ammonia, ethylamine, diethylamine, dimethylethanolamine, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropyl ammonium hydroxide, tetrabutylammonium hydroxy, benzyltrimethylammonium hydroxide, choline, pyrrole, piperidine, and 1,8-diazabicyclo[5.4.0]-7-undecene, etc. (of which organic alkali preferable.).
  • it is generally washed with water after development.
  • post-baking When exposure processing is performed in the curing step, heat processing (post-baking) is preferably performed after the curing step.
  • a post-bake is a heat treatment for complete curing.
  • the heating temperature is preferably 240° C. or lower, more preferably 220° C. or lower. Although there is no particular lower limit, it is preferably 50° C. or higher, more preferably 100° C. or higher, in consideration of efficient and effective treatment. Also, the heating time is not particularly limited, but is preferably 10 to 1800 seconds.
  • Post-baking can be performed continuously or batchwise using heating means such as a hot plate, a convection oven (hot air circulation dryer), or a high-frequency heater.
  • the above post-baking is preferably performed in an atmosphere with a low oxygen concentration.
  • the oxygen concentration is preferably 19% by volume or less, more preferably 15% by volume or less, even more preferably 10% by volume or less, particularly preferably 7% by volume or less, and most preferably 3% by volume or less. Although there is no particular lower limit, 10 ppm by volume or more is practical.
  • the composition preferably further contains a UV curing agent.
  • the UV curing agent is preferably a UV curing agent that can be cured at a wavelength shorter than 365 nm, which is the exposure wavelength of the polymerization initiator added for the lithography process by ordinary i-line exposure.
  • UV curing agents include Ciba Irgacure 2959 (trade name).
  • the composition layer is preferably made of a material that cures at a wavelength of 340 nm or less. Although there is no particular lower limit for the wavelength, it is generally 220 nm or more.
  • the exposure amount of UV irradiation is preferably 100 to 5000 mJ, more preferably 300 to 4000 mJ, even more preferably 800 to 3500 mJ.
  • This UV curing step is preferably performed after the exposure treatment in order to perform low-temperature curing more effectively. It is preferable to use an ozoneless mercury lamp as an exposure light source.
  • the magnetic particle-introduced substrate of the present invention comprises a substrate having holes formed therein, and the cured product (hardened product containing magnetic particles) of the present invention arranged in the holes.
  • the hole may be a through hole or a recess.
  • the substrate having holes include wiring substrates having via holes, through holes, and the like.
  • the method for forming the cured product of the present invention is as described above.
  • the magnetic particle-introduced substrate can be applied to, for example, electronic materials such as inductors.
  • Table 1 shows the magnetic particles used in Table 2.
  • the "ferrite or alloy” column in Table 1 indicates whether the magnetic particles are ferrite particles or alloy particles. When the magnetic particles are ferrite particles, they are represented by "F”, and when the magnetic particles are alloy particles, they are represented by "A”.
  • the "Fe content” column in Table 1 represents the content (% by mass) of Fe atoms with respect to the content of metal atoms in the alloy particles when the magnetic particles are alloy particles. When the content (% by mass) of Fe atoms is 50% by mass or more, it is represented by “U”, and when the content (% by mass) of Fe atoms is less than 50% by mass, it is represented by "L”.
  • the "average sphericity” column in Table 1 is a value calculated by the following procedure. First, magnetic particles are observed using an FE-SEM ("S-4800H” manufactured by Hitachi High-Technologies Corporation), and 1000 magnetic particles are randomly selected and photographed in an arbitrary observation field. Next, the obtained image information is introduced into an image analysis device (image analysis software "Image-Pro PLUS” manufactured by Media Cybernetics, Inc.) via an interface for analysis, and the projected perimeter and projected area of each particle are calculated. is obtained, and the obtained value is used to obtain the sphericity of each particle according to the following formula (1). That is, for each of the 1000 grains, the projected perimeter, projected area, and sphericity based thereon are obtained.
  • the projected perimeter and projected area mean the projected perimeter and projected area of the primary particles.
  • Formula (1): sphericity ⁇ [(projected perimeter of magnetic particles) 2 /(projected area of magnetic particles)]/4 ⁇ x 100 Next, the average value of the sphericity of 1000 particles was obtained, and this was defined as the average sphericity.
  • volume average particle diameter column in Table 1 represents the volume average diameter (MV (Mean Volume Diameter), unit: ⁇ m).
  • the volume average particle size is also obtained by the above procedure. Specifically, the equivalent circle diameter is calculated for each particle based on the projected area of the magnetic particles obtained by the above procedure. Next, the volume of each of the 1,000 particles to be measured is obtained based on this equivalent circle diameter, and the volume average diameter of the 1,000 particles is calculated from the obtained value.
  • the "BET specific surface area (m 2 /g)" column in Table 1 represents values measured by the nitrogen adsorption method.
  • the measurement method conforms to the JIS Z8830:2013 method for measuring the specific surface area of powder (solid) by gas adsorption.
  • Magnetic particles P-22 in Table 1 Particles organically coated with reference to Japanese Patent Application Laid-Open No. 2016-60682 for FeMn-based ferrite 3
  • Magnetic particles P-23 in Table 1 For FeMn-based ferrite 3
  • P-24 magnetic particles in Table 1 P-24 magnetic particles in Table 1: FeMn ferrite 5 with organic coating
  • Magnetic particles of P-25 in Table 1 Particles in which FeMn-based ferrite 5 is inorganic-coated (coated with SiO 2 of 100 nm using powder ALD)
  • Additives 1 Various components shown in the column of Additives 1 are shown below.
  • ⁇ B-1 Product name “FLOWNON RCM-100” (fatty acid ester / aromatic ester, manufactured by Kyoeisha Chemical Co., Ltd., solid content concentration: 100% by mass)
  • ⁇ B-2 Product name “Tallen VA705B” (higher fatty acid amide, manufactured by Kyoeisha Chemical Co., Ltd., solid content concentration: 100% by mass)
  • B-3 Product name “BYK P-105” (polymer of low molecular weight unsaturated carboxylic acid, manufactured by BYK, solid content concentration: 100% by mass)
  • ⁇ B-4 the following compound (weight average molecular weight: 10000) (solid concentration: 100% by mass).
  • the numerical value attached to each repeating unit of the main chain represents the mass ratio
  • the numerical value attached to the side chain represents the number of repetitions.
  • ⁇ B-7 Product name “Celoxide 2021P” (3′,4′-epoxycyclohexylmethyl 3,4-epoxycyclohexane carboxylate, manufactured by Daicel Chemical Industries, Ltd., solid content concentration: 100% by mass)
  • B-8 Product name “Denacol EX-314” (glycerol polyglycidyl ether, manufactured by Nagase ChemteX Corporation, solid content concentration: 100% by mass)
  • ⁇ B-9 Product name “KAYARAD RP-1040” (the following compound, manufactured by Nippon Kayaku Co., Ltd., solid content concentration: 100% by mass)
  • ⁇ B-10 Product name “ZX1059” (mixture of bisphenol A type epoxy resin and bisphenol F type epoxy resin, manufactured by Nippon Steel Chemical & Materials Co., Ltd., solid content concentration: 100% by mass)
  • B-11 Product name “HP-4700” (naphthalene-type tetrafunctional epoxy resin, manufactured by DIC Corporation, solid content concentration: 100% by mass)
  • B-12 Product name “YX7553BH30” (phenoxy resin, manufactured by Mitsubishi Chemical Corporation, solid content concentration: 30% by mass, dilution solvent: MEK / cyclohexanone)
  • ⁇ B-13 Product name “KS-1” (polyvinyl acetal resin, manufactured by Sekisui Chemical Co., Ltd., solid content concentration: 100% by mass)
  • B-14 Product name “828US” (bisphenol A type epoxy resin, manufactured by Mitsubishi Chemical Corporation, solid content concentration: 100% by mass)
  • ⁇ Curing agent/curing accelerator> ⁇ A-1: Product name “Hishikorin PX-4MP” (phosphate-based epoxy curing accelerator, manufactured by Nippon Kagaku Kogyo Co., Ltd., solid content concentration: 100% by mass)
  • ⁇ A-2 Product name “LA-7054” (Novolac type phenolic resin curing agent, manufactured by DIC Corporation, solid content concentration: 60% by mass, dilution solvent: MEK)
  • A-3 Product name “2E4MZ” (2-ethyl-4-methylimidazole (curing accelerator), manufactured by Shikoku Kasei Co., Ltd., solid content concentration: 100% by mass)
  • A-7 Product name “HNA-100” (acid anhydride-based curing agent, manufactured by Shin Nippon Rika Co., Ltd., solid content concentration: 100% by mass)
  • A-6 A compound having the following structure (solid concentration: 100% by mass)
  • compositions of Examples and Comparative Examples Components other than the solvent listed in Table 2 were mixed so as to obtain the composition (parts by mass) shown in Table 2, and the mixture was charged into a closed container made of PTFE (polytetrafluoroethylene). Subsequently, after adding a solvent so as to have the composition (parts by mass) shown in Table 2, the container was sealed and dispersed at 50 G for 1 hour using a RAM (low frequency resonance acoustic mixer) manufactured by Resodyn. By doing so, the composition of each example and comparative example was prepared.
  • the "binder component" shown in Table 2 corresponds to the post-addition resin.
  • each composition of Examples and Comparative Examples was applied onto a substrate using an applicator with a gap of 100 ⁇ m, and dried at 230° C. for 900 seconds to obtain a film. Then, using an FE-SEM (“S-4800H” manufactured by Hitachi High-Technologies Co., Ltd.), the magnetic particles in the resulting film were observed. I chose the particles and photographed them. Next, the obtained image information is introduced into an image analysis device (image analysis software "Image-Pro PLUS" manufactured by Media Cybernetics Inc.) via an interface for analysis, and the projected perimeter and projected area of each particle are calculated. , and using the obtained values, the sphericity of each particle was determined according to the following formula (1). That is, for each of the 1000 grains, the projected perimeter and projected area (respectively intended to be the projected perimeter and projected area of the primary grain) and the sphericity based thereon were obtained.
  • the equivalent circle diameter was calculated from the projected area of the magnetic particles obtained by the above procedure.
  • magnetic particles having a sphericity of 100 to 120 were designated as magnetic particles X.
  • magnetic particles having an equivalent circle diameter of less than 11 ⁇ m are defined as magnetic particles X of less than 11 ⁇ m
  • magnetic particles having an equivalent circle diameter of 11 ⁇ m or more are defined as magnetic particles X of 11 ⁇ m or more.
  • the volume of each magnetic particle X among the 1000 magnetic particles to be measured was calculated by the following formula (2).
  • Formula (2): Volume (equivalent circle diameter of magnetic particles) 3 ⁇ ( ⁇ /6)
  • the elemental composition of the 1000 magnetic particles to be measured was also analyzed. Further, the mass of each particle was obtained based on the obtained various values and the specific gravity of the magnetic particles.
  • the content (% by mass) of the magnetic particles X having a diameter of less than 11 ⁇ m with respect to the total mass of the magnetic particles X was obtained.
  • the volume average particle diameter (MV) of the magnetic particles X in the composition was determined based on the volume and circle equivalent diameter of each magnetic particle obtained by the above measurement.
  • the content of the magnetic particles X in the 1000 magnetic particles to be measured was 90% by mass or more with respect to the total mass of the 1000 magnetic particles.
  • the composition was visually observed to determine the distance d'1 from the gas-liquid interface to the interface between the transparent region and the opaque region, and the distance d'2 from the gas-liquid interface to the bottom of the sample bottle. was measured. Sedimentation stability was evaluated according to the following criteria using distance d1 and distance d2, and distance d'1 and distance d'2. Table 2 shows the results.
  • a substrate was prepared by coating CT4000 (Fuji Film Electronic Materials Co., Ltd.) on a Si Wafer having a thickness of 100 ⁇ m.
  • CT4000 Fluji Film Electronic Materials Co., Ltd.
  • Each of the compositions of Examples and Comparative Examples was applied onto the obtained substrate using an applicator with a gap of 100 ⁇ m to obtain a coating film.
  • the applied composition was a composition containing no photopolymerization initiator
  • the resulting coating film was heat-dried at 100 ° C. for 120 seconds, and then further 230 A cured film-coated substrate was produced by heating at °C for 15 minutes.
  • the applied composition is a composition containing a photopolymerization initiator
  • exposure treatment is performed under the conditions of 1000 mJ/cm 2 with a proximity exposure machine, and further heating is performed at 230 ° C. for 10 minutes.
  • a substrate with a cured film was produced.
  • the cured film-coated substrate thus obtained was cut into pieces each having a size of 1 cm ⁇ 2.8 cm to prepare a sample substrate for measurement.
  • PER-01 a high-frequency magnetic permeability measuring device manufactured by Keycom Co., Ltd.
  • the magnetic properties of the film on each sample substrate for measurement was measured.
  • a substrate with a cured film was produced in the same manner as in [Permeability, Magnetic Loss] described above, and this substrate was used as a sample substrate for measurement.
  • an electrode was vapor-deposited on the cured film of the cured film-coated substrate, and an alternating electric field was applied in the in-plane direction to measure impedance.
  • the insulation properties of the cured film were evaluated using the resistance value ⁇ A [ ⁇ m] at 1 Hz. “3”: 5 ⁇ 10 6 ⁇ A “2”: 1 ⁇ 10 6 ⁇ A ⁇ 5 ⁇ 10 6 “1”: ⁇ A ⁇ 1 ⁇ 10 6
  • Table 2 is shown below.
  • Presence or absence of ferrite particles in magnetic particles X in Table 2, "P” indicates that magnetic particles X contain ferrite particles, and “N” indicates that magnetic particles X do not contain ferrite particles.
  • the content (% by mass) of magnetic particles having an equivalent circle diameter of less than 11 ⁇ m in the magnetic particles X means that the equivalent circle diameter of the magnetic particles X is less than 11 ⁇ m with respect to the total mass of the magnetic particles X. is intended to be the content (% by mass) of magnetic particles (magnetic particles X less than 11 ⁇ m).
  • the composition of the present invention has excellent storage stability, is excellent in hole-filling aptitude, and can form a cured product with excellent magnetic properties (high magnetic permeability and small magnetic loss). It became clear. Further, for example, from the results of Examples 1 to 11, when the average sphericity of the magnetic particles X of 11 ⁇ m or more used as the magnetic particles X is 110 or less (in other words, the magnetic particles X of 11 ⁇ m or more in the composition are more It was confirmed that the hole-filling aptitude is better when the particles are nearly spherical (see Example 5, etc.).
  • the magnetic particles X of less than 11 ⁇ m are alloy particles, and the Fe atom content is 50% by mass based on the total metal atoms of the alloy particles. It was confirmed that the magnetic loss of the formed cured product was smaller in the above cases. Further, for example, from a comparison of Examples 1 to 11 and Examples 19 to 21, when the content of the magnetic particles X less than 11 ⁇ m is 40 to 60% by mass with respect to the total mass of the magnetic particles X, the hardening formed It was confirmed that the magnetic permeability of the material was higher and the insulation was further improved.
  • the content of the organic solvent in the composition is 7 to 12% by mass with respect to the total mass of the composition, and the mass content ratio of the rheology control agent to the organic solvent ( It was confirmed that when the rheology control agent/organic solvent) is 0.09 to 0.2, storage stability and hole-filling aptitude are more excellent.
  • the composition contained at least one of a silane coupling agent and a dispersant, or the magnetic particles X contained an inorganic film or an organic film. It was confirmed that the storage stability was further improved when coated with In Examples 39 and 40, both the magnetic particles X of 11 ⁇ m or more and the magnetic particles X of less than 11 ⁇ m are ferrite particles. Confirmed to be improved.
  • Example 17 it was confirmed that magnetic permeability increases when the BET specific surface area of the ferrite particles is 0.25 m 2 /g or less. Specifically, it was confirmed that in Example 51, compared with Example 17, the BET specific surface area of the ferrite particles was smaller, so that the compactness was increased and the magnetic permeability was increased. Moreover, in Example 53, it was confirmed that compared with Example 17, the BET specific surface area of the ferrite particles was large, so that the compactness was lowered, the magnetic permeability was lowered, and the magnetic loss was increased.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Soft Magnetic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明の第1の課題は、高透磁率及び低磁気損失に優れた硬化物を形成でき、ホール充填適性に優れ、且つ、保存安定性にも優れる組成物を提供することである。また、本発明の第2の課題は、上記組成物を用いて形成される磁性粒子含有硬化物を提供することである。また、本発明の第3の課題は、上記磁性粒子含有硬化物を含む磁性粒子導入基板及び電子材料を提供することである。 本発明の組成物は、磁性粒子と、有機溶媒と、を含む組成物であって、 上記磁性粒子が、真球度が100~120である磁性粒子Xを含み、 上記磁性粒子Xが、フェライト粒子を含み、 上記磁性粒子Xのうち、円相当径が11μm未満の磁性粒子の含有量が、上記磁性粒子Xの全質量に対して、15~70質量%であり、 上記磁性粒子Xの体積平均粒子径が5~50μmである。

Description

組成物、磁性粒子含有硬化物、磁性粒子導入基板、電子材料
 本発明は、組成物、磁性粒子含有硬化物、磁性粒子導入基板、及び電子材料に関する。
 電子デバイスの高性能化及び小型化に伴い、電子回路はその集積度を増している。このような集積度の向上するための素材の一つとして、磁性粒子を含む塗布型の組成物が存在する。このような組成物を使用すれば任意の形状で磁性体を実装可能となるため、従来の磁性体の個片をチップ上に配置する方式よりも、電子デバイスの小型化及び高性能化を実現しやすい。
 例えば、特許文献1では、「センダスト合金粉末、Ni-Znフェライト粉末、及びMn-Znフェライト粉末の中の少なくとも一種を含む成分(A)としての磁性材料80~93重量%と、成分(B)としての高分子材料7~20重量%とを含むことを特徴とする軟磁性粉末組成物。」を開示している。
特開2017-043749号公報
 ところで、昨今、磁性粒子を含有する塗布型の組成物を使用して、基板の孔部(ホール)内に磁性体を充填してなる磁性粒子導入基板を作製する試みがなされている。
 今般、本発明者は、特許文献1に記載された組成物を参照して磁性粒子を含む塗布型の組成物を調製してホール充填用組成物としての性能を検討したところ、形成される硬化物の透磁率が低い場合があること、並びに、組成物自体の流動性が低いため塗布によるホールへの充填処理が困難である、及び/又は、ホールへの充填処理の際にボイド及びクラック等による空隙が発生する場合があることを知見した。すなわち、上記組成物には、得られる硬化物の透磁率とホール充填適性について更なる改善の余地があることを知見した。
 また、電子材料に用いられる組成物には、保存安定性に優れること、及び、得られる硬化物の磁気損失が低いことも基本性能として求められている。
 そこで、本発明は、高透磁率及び低磁気損失に優れた硬化物を形成でき、ホール充填適性に優れ、且つ、保存安定性にも優れる組成物を提供することを課題とする。
 また、本発明は、上記組成物を用いて形成される磁性粒子含有硬化物を提供することを課題とする。
 また、本発明は、上記磁性粒子含有硬化物を含む磁性粒子導入基板及び電子材料を提供することを課題とする。
 本発明者は、上記課題を解決すべく鋭意検討した結果、以下の構成により上記課題を解決できることを見出した。
 〔1〕 磁性粒子と、有機溶媒と、を含む組成物であって、
 上記磁性粒子が、真球度が100~120である磁性粒子Xを含み、
 上記磁性粒子Xが、フェライト粒子を含み、
 上記磁性粒子Xのうち、円相当径が11μm未満の磁性粒子の含有量が、上記磁性粒子Xの全質量に対して、15~70質量%であり、
 上記磁性粒子Xの体積平均粒子径が5~50μmである、組成物。
 〔2〕 上記磁性粒子Xが、更に、合金粒子を含む、〔1〕に記載の組成物。
 〔3〕 上記円相当径が11μm未満の磁性粒子が上記合金粒子であり、円相当径が11μm以上の磁性粒子が上記フェライト粒子である、〔2〕に記載の組成物。
 〔4〕 上記合金粒子中、Fe原子の含有量が、金属原子の含有量に対して、50質量%以上である、〔2〕又は〔3〕に記載の組成物。
 〔5〕 上記フェライト粒子が、Ni原子を含む、〔1〕~〔4〕のいずれかに記載の組成物。
 〔6〕 上記フェライト粒子のBET比表面積が、0.25m/g以下である、〔1〕~〔5〕のいずれかに記載の組成物。
 〔7〕 更に、樹脂及び樹脂前駆体からなる群から選ばれる1種以上のバインダ成分を含む、〔1〕~〔6〕のいずれかに記載の組成物。
 〔8〕 上記バインダ成分が、エポキシ化合物及びオキセタン化合物の少なくとも1種を含む、〔7〕に記載の組成物。
 〔9〕 上記磁性粒子Xの少なくとも一部が、その表面に表面層を有する、〔1〕~〔8〕のいずれかに記載の組成物。
 〔10〕 上記表面層が有機層である、〔9〕に記載の組成物。
 〔11〕 上記有機溶媒の含有量が、組成物の全質量に対して、1~15質量%である、〔1〕~〔10〕のいずれかに記載の組成物。
 〔12〕 〔1〕~〔11〕のいずれかに記載の組成物を用いて形成される、磁性粒子含有硬化物。
 〔13〕 孔部が形成された基板と、上記孔部内に配置された〔12〕に記載の磁性粒子含有硬化物と、を備えた、磁性粒子導入基板。
 〔14〕 〔13〕に記載の磁性粒子導入基板を含む、電子材料。
 本発明によれば、高透磁率及び低磁気損失に優れた硬化物を形成でき、ホール充填適性に優れ、且つ、保存安定性にも優れる組成物を提供できる。
 また、本発明によれば、上記組成物を用いて形成される磁性粒子含有硬化物を提供できる。
 また、本発明によれば、上記磁性粒子含有硬化物を含む磁性粒子導入基板及び電子材料を提供できる。
 以下、本発明について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされる場合があるが、本発明はそのような実施態様に限定されない。
 本明細書中における基(原子団)の表記について、本発明の趣旨に反しない限り、置換及び無置換を記していない表記は、置換基を有さない基と共に置換基を有する基をも包含する。例えば、「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含する。また、本明細書中における「有機基」とは、少なくとも1個の炭素原子を含む基をいう。
 本明細書中における「活性光線」又は「放射線」とは、例えば、水銀灯の輝線スペクトル、エキシマレーザーに代表される遠紫外線、極紫外線(EUV光: Extreme Ultraviolet)、X線、及び、電子線(EB:Electron Beam)等を意味する。本明細書中における「光」とは、活性光線又は放射線を意味する。
 本明細書中における「露光」とは、特に断らない限り、水銀灯の輝線スペクトル、エキシマレーザーに代表される遠紫外線、極紫外線、X線、及び、EUV光等による露光のみならず、電子線、及び、イオンビーム等の粒子線による描画も含む。
 本明細書において、「~」とはその前後に記載される数値を下限値及び上限値として含む意味で使用される。
 本明細書において、(メタ)アクリレートはアクリレート及びメタクリレートを表し、(メタ)アクリルはアクリル及びメタクリルを表し、(メタ)アクリロイルはアクリロイル及びメタクリロイルを表す。
 本明細書において、組成物の「固形分」とは、磁性粒子含有硬化物(以下「硬化物」と略記する場合もある)を形成する成分を意味し、組成物が溶媒(有機溶媒、水等)を含有する場合、溶媒を除いたすべての成分を意味する。また、硬化物を形成する成分であれば、液体状の成分も固形分とみなす。
 本明細書において、「沸点」とは、特に断りのない限り、標準沸点を意味する。
 また、本明細書において重量平均分子量(Mw)は、GPC(Gel Permeation Chromatography:ゲル浸透クロマトグラフィー)法によるポリスチレン換算値である。
 本明細書においてGPC法は、HLC-8020GPC(東ソー製)を用い、カラムとしてTSKgel SuperHZM-H、TSKgel SuperHZ4000、TSKgel SuperHZ2000(東ソー製、4.6mmID×15cm)を、溶離液としてTHF(テトラヒドロフラン)を用いる方法に基づく。
 また、本明細書において、各成分は、特段の断りが無い限り、各成分に該当する物質を1種単独でも用いても、2種以上を併用してもよい。ここで、各成分について2種以上の物質を併用する場合、その成分についての含有量とは、特段の断りが無い限り、併用した物質の合計の含有量を指す。
[組成物]
 本発明の組成物は、
 磁性粒子と、有機溶媒と、を含む組成物であって、
 上記磁性粒子が、真球度が100~120である磁性粒子X(以下、単に「磁性粒子X」ともいう。)を含み、
 上記磁性粒子Xが、フェライト粒子(以下「フェライト粒子X」ともいう。)を含み、
 上記磁性粒子Xのうち、円相当径が11μm未満の磁性粒子(以下「11μm未満磁性粒子X」ともいう。)の含有量が、上記磁性粒子Xの全質量に対して、15~70質量%であり、
 上記磁性粒子Xの体積平均粒子径が5~50μmである。
 なお、換言すると、フェライト粒子Xとは、真球度が100~120であるフェライト粒子に相当し、11μm未満磁性粒子Xとは、円相当径が11μm未満の真球度が100~120である磁性粒子に相当する。
 上記構成の組成物は、高透磁率及び低磁気損失に優れた硬化物を形成でき、ホール充填適性に優れ、且つ、保存安定性にも優れる。なお、組成物がホール充填適性に優れるとは、液状態において塗布性の観点から十分な流動性を示す、及び、硬化後の状態では、強度の観点からボイド及びクラック等の空隙が抑制されていることを意図する。
 これは、詳細には明らかではないが、本発明者らは以下のように推測している。
 まず、本発明の組成物の主な特徴点として、真球度が100~120である磁性粒子X(磁性粒子X)を含む点と、上記磁性粒子Xがフェライト粒子を含んでいる点と、上記磁性粒子Xのうち、円相当径が11μm未満の磁性粒子の含有量が磁性粒子Xの全質量に対して15~70質量%である点と、上記磁性粒子Xの体積平均粒子径が5~50μmである点と、が挙げられる。
 なお、以下においては、上記特徴点を「特徴点A」ということもある。
 今般、本発明者らは、磁性粒子としてフェライト粒子を使用した組成物は、得られる硬化物の磁気損失が低くなるものの、透磁率が低くなる場合があることを知見した。これに対して、組成物が特徴点Aを備える場合、得られる硬化物は、低磁気損失と高透磁率を両立できることを明らかとした。この理由としては、硬化物が磁性粒子としてフェライト粒子を含むことに起因して低い磁気損失が発現し、更に、硬化物内における磁性粒子の充填率が高く(換言すると硬化物内において磁性粒子が最密充填構造になりやすく)硬化物内で磁性粒子同士の距離が近いことに起因して高い透磁率が発現していると推測している。
 また、本発明の組成物の他の特徴点として、有機溶剤を含む点が挙げられる。なお、以下においては、上記特徴点を「特徴点B」ということもある。
 本発明者らは、組成物が特徴点Aに加えて更に特徴点Bを備えていることも、上述した硬化物の透磁率を向上させる要因の一つであると考えている。また、組成物が特徴点Bを備えていることによりホール充填適性に優れるとともに、保存安定性にも優れる。
 すなわち、本発明の組成物は、上記構成による作用機序の相乗によって所望の効果を発現する。なお、以下において、組成物により形成される硬化物の透磁率がより高い、組成物により形成される硬化物の磁気損失がより低い、組成物のホール充填適性がより優れる、及び/又は、組成物の保存安定性がより優れることを、「本発明の効果がより優れる」ということもある。
 以下において、組成物中に含まれ得る各成分について詳述する。
〔磁性粒子〕
 組成物は、磁性粒子を含む。
 磁性粒子は、1種単独で使用してもよく、2種以上使用してもよい。
 組成物中、磁性粒子の含有量(複数種含まれる場合にはその合計含有量)は、組成物の全固形分に対して、85質量%以上であるのが好ましく、90質量%以上であるのがより好ましく、92質量%以上であるのが更に好ましい。また、上限値としては、組成物の全固形分に対して、99質量%以下であるのが好ましく、98質量%以下であるのがより好ましく、97質量%以下であるのが更に好ましく、96質量%以下であるのが更により好ましく、95質量%以下であるのが特に好ましい。
 磁性粒子は、真球度が100~120である磁性粒子X(磁性粒子X)を必須で含むが、磁性粒子X以外の磁性粒子を含んでいてもよい。
<<真球度が100~120である磁性粒子X(磁性粒子X)>>
 上記磁性粒子は、真球度が100~120である磁性粒子X(磁性粒子X)を含み、上記磁性粒子Xのうち、円相当径が11μm未満の磁性粒子(11μm未満磁性粒子X)の含有量が、磁性粒子Xの全質量に対して、15~70質量%である。また、上記磁性粒子Xの体積平均粒子径は、5~50μmである。
 なお、以下においては、上記磁性粒子Xのうち、円相当径が11μm以上の磁性粒子を「11μm以上磁性粒子X」ともいう。なお、換言すると、11μm以上磁性粒子Xとは、円相当径が11μm以上の真球度が100~120である磁性粒子に相当する。
 組成物中、磁性粒子Xの含有量は、磁性粒子の全質量に対して、10質量%以上であるのが好ましく、25質量%以上であるのがより好ましく、本発明の効果がより優れる点で、50質量%以上であるのが更に好ましく、75質量%以上であるのが更により好ましく、85質量%以上であるのが特に好ましく、90質量%以上であるのが最も好ましい。なお、その上限値としては、100質量%以下であるのが好ましい。なお、後述する1000粒子を対象とする真球度等の測定手順において、磁性粒子の全質量に対する磁性粒子Xの含有量が上記数値範囲を満たすのも好ましい。
 また、組成物中、磁性粒子Xの含有量は、組成物の全固形分に対して、85質量%以上であるのが好ましく、90質量%以上であるのがより好ましく、92質量%以上であるのが更に好ましい。また、上限値としては、組成物の全固形分に対して、99質量%以下であるのが好ましく、98質量%以下であるのがより好ましく、97質量%以下であるのが更に好ましく、96質量%以下であるのが更により好ましく、95質量%以下であるのが特に好ましい。
 また、磁性粒子Xのうち、円相当径が11μm未満の磁性粒子(11μm未満磁性粒子X)の含有量は、磁性粒子Xの全質量に対して、15~70質量%である。換言すると、11μm未満磁性粒子Xの含有量は、11μm未満磁性粒子Xと磁性粒子Xのうちの円相当径が11μm以上の磁性粒子(11μm以上磁性粒子X)との合計含有量に対して、15~70質量%である。11μm未満磁性粒子Xの含有量が磁性粒子Xの全質量に対して15質量%未満である場合、又は、70質量%超である場合、形成される硬化物は透磁率が劣る。
 11μm未満磁性粒子Xの含有量は、形成される硬化物の透磁率がより向上する点で、磁性粒子Xの全質量に対して40質量%以上であるのが好ましい。
 また、組成物中の磁性粒子Xの体積平均粒子径(MV(Mean Volume Diameter))は、5~50μmである。
 磁性粒子Xの体積平均粒子径が5μm未満である場合、硬化物は透磁率が劣る。一方で、磁性粒子Xの体積平均粒子径が50μm超である場合、組成物の流動性が劣り、また形成される硬化物の透磁率が劣る。
 磁性粒子Xの体積平均粒子径としては、7~40μmが好ましく、8~30μmがより好ましい。
<真球度、磁性粒子Xの全質量に対する11μm未満磁性粒子Xの含有量(質量%)、及び、磁性粒子Xの体積平均粒子径(MV)の測定手順>
 以下において、真球度、11μm未満磁性粒子Xの含有量(質量%)、及び、磁性粒子Xの体積平均粒子径(MV)の測定手順について詳述する。
 まず、電界放出型走査電子顕微鏡(FE-SEM)(例えば、(株)日立ハイテクノロジーズ社製の「S-4800H」等)を用いて磁性粒子を観察し、任意の観察視野において、磁性粒子を無作為に1000粒子選んで撮影する。
 次いで、得られた画像情報を、インターフェースを介して画像解析装置(例えば、メディアサイバネティクス社製画像解析ソフト「Image-Pro PLUS」等)に導入して解析を行い、各1粒子毎の投影周囲長及び投影面積を求め、得られた値を用いて下記数式(1)によって各1粒子毎の真球度を求める。つまり、1000粒子の各々について、投影周囲長及び投影面積とそれに基づく真球度とを求める。
 なお、投影周囲長及び投影面積は、一次粒子の投影周囲長及び投影面積を意図している。
 真球度は、下記数式(1)で表される。すなわち、磁性粒子の投影周囲長を2乗した数値を磁性粒子の投影面積で除して得られた数値をさらに4πで除し、得られた数値を100倍にすることで得られる。
 数式(1):真球度={[(磁性粒子の投影周囲長)/(磁性粒子の投影面積)]/4π}×100
 また、1粒子毎に、上記手順により得られた磁性粒子の投影面積から円相当径を算出する。円相当径とは、観察時の磁性粒子の投影面積と同じ投影面積をもつ真円を想定したときの当該円の直径である。
 上記測定対象である1000粒子の磁性粒子のうち、真球度が100~120である磁性粒子が磁性粒子Xである。また、この磁性粒子Xのうち、円相当径が11μm未満の磁性粒子が11μm未満磁性粒子Xであり、円相当径が11μm以上の磁性粒子が11μm以上磁性粒子Xである。
 また、上記測定対象である1000粒子の磁性粒子のうちの磁性粒子Xについて、下記数式(2)によって1粒子毎に体積を算出する。
 数式(2):体積=(磁性粒子の円相当径)×(π/6)
 また、上記測定対象である1000粒子の磁性粒子に対して、エネルギー分散型X線分析法(EDS:Energy Dispersive X-ray Spectroscopy)に基づいて元素組成を解析する。なお、(株)日立ハイテクノロジーズ社製の「S-4800H」では、EDS法に基づく元素組成の解析も可能である。上記元素組成解析により、磁性粒子X中の粒子の種類(例えばフェライト粒子及び合金粒子等)、及び、磁性粒子X中の金属含有量等を同定できる。更に、得られた各種値と磁性粒子の比重とに基づいて、各粒子の質量も求められる。
 上記測定を実施することにより、磁性粒子Xの全質量に対する11μm未満磁性粒子Xの含有量(質量%)が求められる。また、上記測定によって、磁性粒子の全質量に対する磁性粒子Xの含有量(質量%)、及び、磁性粒子Xの全質量に対する11μm以上磁性粒子Xの含有量(質量%)も求められる。
 また上記測定を実施して得られる、磁性粒子の1粒子毎の体積及び円相当径に基づいて、組成物中の磁性粒子Xの体積平均粒子径(MV)も求められる。
 また、上記測定を実施することにより、後述するフェライト粒子Xの体積平均粒子径(MV)も求められる。
 なお、組成物中に含まれる磁性粒子の種類(磁性粒子Xの種類及び磁性粒子X以外の磁性粒子の種類等)、真球度、磁性粒子Xの全質量に対する11μm未満磁性粒子Xの含有量(質量%)、磁性粒子Xの体積平均粒子径(MV)、及び/又は、後述するフェライト粒子Xの体積平均粒子径(MV)が予め特定されている場合、それらの特定された値を参照してもよい。
 上記測定は、磁性粒子と有機溶媒とを含む組成物から任意の方法(焼成、沈降)等で磁性粒子の粉体を取り出した上で実施してもよいし、磁性粒子と有機溶媒とを含む組成物から形成される膜に対して実施してもよい。なかでも、上記測定は、組成物から形成される膜に対して実施されることが好ましい。上記膜は、塗膜であってもよいし、組成物が熱硬化性化合物及び光硬化性化合物等の硬化性化合物を含む組成物である場合には硬化後の膜であってもよい。
<フェライト粒子X>
 磁性粒子Xは、フェライト粒子(フェライト粒子X)を含む。
 フェライト粒子Xは、換言すると、真球度が100~120であるフェライト粒子である。なお、後述するように、磁性粒子Xは、フェライト粒子X以外の他の磁性粒子(他の磁性粒子X)を含んでいてもよい。
 以下、フェライト粒子Xについて詳述する。
 フェライト粒子Xとしては、Ni、Mn、Fe、及びCo(Fe中のFe原子以外に含まれるFe原子を意図する。)からなる群から選択される少なくとも1種の金属原子を含んでいるのが好ましく、本発明の効果がより優れる点で、なかでも、Ni原子を含んでいるのがより好ましい。
 また、フェライト粒子Xは、Ni、Mn、Fe、及びCo(Fe中のFe原子以外に含まれるFe原子を意図する。)以外の材料を含んでいてもよく、その具体例としては、Al、Si、S、Sc、Ti、V、Cu、Y、Mo、Rh、Pd、Ag、Sn、Sb、Te、Ba、Ta、W、Re、Au、Bi、La、Ce、Pr、Nd、P、Zn、Sr、Zr、Cr、Nb、Pb、Ca、B、C、N、及び、Oが挙げられる。
 フェライト粒子Xの具体例としては、例えば、Niフェライト、Mnフェライト、及び、スピネルフェライト(好ましくは、Ni-Zn系フェライト、Mn-Zn系フェライト、又は、Fe-Mn系フェライト)等が挙げられる。本発明の効果がより優れる点で、Niフェライト、Ni-Zn系フェライト、又は、Fe-Mn系フェライトが好ましく、Niフェライト又はNi-Zn系フェライトがより好ましく、Ni-Zn系フェライトが更に好ましい。
 フェライト粒子Xの表面の少なくとも一部には、表面層が設けられていてもよい。フェライト粒子Xが表面層を有していることで、フェライト粒子Xに表面層の材質に応じた機能を付与できる。
 表面層としては、無機層又は有機層が挙げられ、有機層であるのが好ましい。
 無機層形成用化合物としては、絶縁性、ガスバリヤ性、及び、化学安定性の少なくとも1つに優れる表面層を形成できる点から、金属酸化物、金属窒化物、金属炭化物、リン酸金属塩化合物、ホウ酸金属塩化合物、又は、ケイ酸化合物(例えば、オルトケイ酸テトラエチル等のケイ酸エステル、ケイ酸ソーダ等のケイ酸塩)が好ましい。これらの化合物に含まれる元素の具体例としては、Fe、Al、Ca、Mn、Zn、Mg、V、Cr、Y、Ba、Sr、Ge、Zr、Ti、Si、及び、希土類元素が挙げられる。
 無機層形成用化合物を用いて得られる無機層を構成する材料としては、酸化ケイ素、酸化ゲルマニウム、酸化チタン、酸化アルミニウム、酸化ジルコニウム、及び、酸化マグネシウム等が挙げられ、無機層はこれらを2種以上含む層であってもよい。
 有機層形成用化合物としては、アクリルモノマーが挙げられる。アクリルモノマーの具体例としては、特開2019-067960号公報の段落0022~0023に記載の化合物が挙げられる。
 有機層形成用化合物を用いて得られる有機層を構成する材料としては、アクリル樹脂が挙げられる。
 表面層の厚みは特に限定されないが、表面層の機能がより発揮される点から、3~1000nmが好ましい。
 フェライト粒子XのBET比表面積としては、本発明の効果がより優れる点で、0.25m/g以下であるのが好ましく、なかでも、0.15m/g以下であるのがより好ましく、0.10m/g以下であるのが更に好ましい。なお、下限値としては特に制限されず、例えば、0.01m/g以上である。
 また、フェライト粒子Xの一態様として、本発明の効果がより優れる点で、BET比表面積が0.25m/g以下であり、且つ、体積平均粒子径(MV)が7μm以上である態様が挙げられる。上記態様において、体積平均粒子径(MV)としては、10μm以上がより好ましく、20μm以上が更に好ましい。
 フェライト粒子XのBET比表面積は、窒素吸着法により測定される。
 具体的には、JIS Z8830:2013ガス吸着による粉体(固体)の比表面積測定方法により測定される。
 フェライト粒子Xは、1種を単独で用いても、2種以上を併用してもよい。
 フェライト粒子Xの含有量は、磁性粒子Xの全質量に対して、30質量%超85質量%未満であるのが好ましく、30質量%超60質量%未満であるのがより好ましい。なお、既述の1000粒子を対象とする真球度等の測定手順において、磁性粒子Xの全質量に対するフェライト粒子Xの含有量が上記数値範囲を満たすのも好ましい。
<フェライト粒子X以外の他の磁性粒子(他の磁性粒子X)>
 磁性粒子Xは、フェライト粒子X以外の他の磁性粒子(以下「他の磁性粒子X」ともいう。)を含んでいてもよい。他の磁性粒子Xとは、フェライト粒子以外の真球度が100~120である磁性粒子を意図している。
 以下、他の磁性粒子Xについて詳述する。
 他の磁性粒子Xは、金属原子を含む。
 なお、ここでいう金属原子としては、ホウ素、ケイ素、ゲルマニウム、ヒ素、アンチモン、及び、テルルのような半金属原子も含まれる。
 上記金属原子は、金属元素を含む合金(好ましくは、磁性合金)、金属酸化物(好ましくは、磁性酸化物)、金属窒化物(好ましくは、磁性酸化物)、又は、金属炭化物(好ましくは、磁性炭化物)として、磁性粒子に含まれていてもよい。
 他の磁性粒子Xの全質量に対する上記金属原子の含有量は、50~100質量%が好ましく、75~100質量%がより好ましく、95~100質量%が更に好ましい。
 上記金属原子としては特に制限されないが、Fe、Ni、及び、Mnからなる群から選択される少なくとも1種の金属原子を含んでいるのが好ましく、Fe原子を含んでいるのがより好ましい。
 Fe、Ni、及び、Mnからなる群から選択される少なくとも1種の金属原子の含有量(複数種含まれる場合には、その合計含有量)は、他の磁性粒子Xにおける金属原子の全質量に対して、50質量%以上が好ましく、60質量%以上がより好ましく、70質量%以上が更に好ましい。上記含有量の上限値は特に制限されず、例えば、100質量%以下であり、98質量%以下が好ましく、95質量%以下がより好ましい。
 なかでも、本発明の効果がより優れる点で、上記金属原子としてはFe原子であり、Fe原子が他の磁性粒子Xにおける金属原子の全質量に対して50質量%以上であるのが好ましい。
 ただし、他の磁性粒子XがFe原子を含む場合、他の磁性粒子Xは、フェライト粒子でないのが好ましい。
 他の磁性粒子XはFe、Ni、及び、Mn以外の材料を含んでいてもよく、その具体例としては、Al、Si、S、Sc、Ti、V、Cu、Y、Mo、Rh、Pd、Ag、Sn、Sb、Te、Ba、Ta、W、Re、Au、Bi、La、Ce、Pr、Nd、P、Zn、Sr、Zr、Co、Cr、Nb、Pb、Ca、B、C、N、及び、Oが挙げられる。
 他の磁性粒子XがFe、Ni及び、Mn以外の金属原子を含む場合、Si、Cr、B、及び、Moからなる群から選択される1種以上を含むのが好ましい。
 他の磁性粒子Xとしては、本発明の効果がより優れる点で、合金粒子であるのが好ましい。換言すると、他の磁性粒子Xとしては、真球度が100~120である合金粒子(以下「合金粒子X」ともいう。)であるのが好ましい。
 合金粒子Xとしては、なかでも、本発明の効果がより優れる点で、Fe原子を含むのがより好ましい。
 合金粒子X中のFe原子以外の金属原子としては、Ni原子及びCo原子等が挙げられる。
 合金粒子XがFe原子を含む場合、Fe原子の含有量としては、合金粒子X中の金属原子の含有量に対して、50質量%以上が好ましく、60質量%以上がより好ましく、70質量%以上が更に好ましい。上記含有量の上限値は特に制限されず、例えば、100質量%以下であり、98質量%以下が好ましく、95質量%以下がより好ましい。
 他の磁性粒子Xの具体例としては、Fe-Co系合金粒子(好ましくは、パーメンジュール)、Fe-Ni系合金粒子(例えば、パーマロイ)、Fe-Zr系合金粒子、Fe-Mn系合金粒子、Fe-Si系合金粒子、Fe-Al系合金粒子、Ni-Mo系合金粒子(好ましくは、スーパーマロイ)、Fe-Ni-Co系合金粒子、Fe-Si-Cr系合金粒子、Fe-Si-B系合金粒子、Fe-Si-Al系合金粒子(好ましくは、センダスト)、Fe-Si-B-C系合金粒子、Fe-Si-B-Cr系合金粒子、Fe-Si-B-Cr-C系合金粒子、Fe-Co-Si-B系合金粒子、Fe-Si-B-Nb系合金粒子、Feナノ結晶合金粒子、Fe基アモルファス合金粒子及びCo基アモルファス合金粒子等の合金粒子等が挙げられる。なお、上記合金は、アモルファスであってもよい。
 他の磁性粒子Xとしては、なかでも、より損失が低い点で、軟磁性粒子であるのが好ましい。軟磁性粒子としては、例えば、Fe基アモルファス合金粒子、Fe-Si-Cr系合金粒子、Feナノ結晶合金粒子、Fe-Ni-Co系合金粒子、Co基アモルファス合金粒子、Ni-Mo系合金粒子、Niフェライト粒子、及びMnフェライト粒子等が挙げられる。
 他の磁性粒子Xの表面の少なくとも一部には、表面層が設けられていてもよい。このように、他の磁性粒子Xが表面層を有していることで、他の磁性粒子Xに表面層の材質に応じた機能を付与できる。
 表面層としては、無機層又は有機層が挙げられ、有機層が好ましい。
 他の磁性粒子Xの表面層を形成し得る無機層形成用化合物及び有機層形成用化合物としては、フェライト粒子Xの表面層を形成し得る無機層形成用化合物及び有機層形成用化合物と同様の材料を使用できる。また、表面層の厚みは特に限定されないが、表面層の機能がより発揮される点から、3~1000nmが好ましい。
 他の磁性粒子Xは、1種を単独で用いても、2種以上を併用してもよい。
 他の磁性粒子Xの含有量は、磁性粒子Xの全質量に対して、15~70質量%であるのが好ましく、40~60質量%であるのがより好まししい。なお、既述の1000粒子を対象とする真球度の測定手順において、磁性粒子Xの全質量に対する他の磁性粒子Xの含有量が上記数値範囲を満たすのも好ましい。
 本発明の組成物中、フェライト粒子Xは、11μm以上磁性粒子X及び11μm未満磁性粒子Xのいずれの磁性粒子として組成物中に含まれていてもよいが、本発明の効果がより優れる点で、11μm以上磁性粒子Xとして組成物中に含まれているのが好ましい。
 また、本発明の組成物中、他の磁性粒子Xは、11μm以上磁性粒子X及び11μm未満磁性粒子Xのいずれの磁性粒子として組成物中に含まれていてもよいが、本発明の効果がより優れる点で、11μm未満磁性粒子Xとして組成物中に含まれているのが好ましい。このとき、本発明の効果がより優れる点で、他の磁性粒子Xとしては、合金粒子Xであるのが好ましい。
〔有機溶媒〕
 組成物は、有機溶媒を含む。
 有機溶媒の沸点の下限値としては、55℃以上が好ましく、本発明の効果がより優れる点で、80℃以上がより好ましく、100℃以上が更に好ましく、160℃以上が特に好ましい。なお、溶媒の沸点の上限値としては特に制限されないが、400℃以下が好ましい。
 有機溶媒としては、例えば、アセトン(沸点56℃)、メチルエチルケトン(沸点79.6℃)、エタノール(沸点78.4℃)、シクロヘキサン(沸点80.8℃)、酢酸エチル(沸点77.1℃)、エチレンジクロライド(沸点83.5℃)、テトラヒドロフラン(沸点66℃)、シクロヘキサノン(沸点155.6℃)、トルエン(沸点110℃)、エチレングリコールモノメチルエーテル(沸点124℃)、エチレングリコールモノエチルエーテル(沸点135℃)、エチレングリコールジメチルエーテル(沸点84℃)、プロピレングリコールモノメチルエーテル(沸点120℃)、プロピレングリコールモノエチルエーテル(沸点132℃)、アセチルアセトン(沸点140℃)、シクロペンタノン(沸点131℃)、エチレングリコールモノメチルエーテルアセテート(沸点144.5℃)、エチレングリコールエチルエーテルアセテート(沸点145℃)、エチレングリコールモノイソプロピルエーテル(沸点141℃)、ジアセトンアルコール(沸点166℃)、エチレングリコールモノブチルエーテルアセテート(沸点192℃)、1,4-ブタンジオールジアセテート(「1,4-BDDA」、沸点232℃)、1,6-ヘキサンジオールジアセテート(「1,6-HDDA」、沸点260℃)、1,3-ブチレングリコールジアセテート(「1,3-BGDA」、沸点232℃)、プロピレングリコールジアセテート(「PGDA」、沸点190℃)、グリセロール三酢酸(沸点260℃)、3-メトキシ-1プロパノール(沸点150℃)、3-メトキシ-1-ブタノール(沸点161℃)、ジエチレングリコールモノメチルエーテル(沸点194℃)、ジエチレングリコールモノエチルエーテル(沸点202℃)、ジエチレングリコールジメチルエーテル(沸点162℃)、ジエチレングリコールジエチルエーテル(沸点188℃)、プロピレングリコールモノメチルエーテルアセテート(「PGMEA」、沸点146℃)、プロピレングリコールモノエチルエーテルアセテート(沸点146℃)、N,N-ジメチルホルムアミド(沸点153℃)、ジメチルスルホキシド(沸点189℃)、γ-ブチロラクトン(沸点204℃)、酢酸エチル(沸点77.1℃)、酢酸ブチル(沸点126℃)、乳酸メチル(沸点144℃)、N-メチル-2-ピロリドン(沸点202℃)、及び、乳酸エチル(沸点154℃)等が挙げられるが、これらに制限されない。
 組成物が含む有機溶媒の好適態様の一例として、沸点が80℃以上(好ましくは、沸点が100℃以上、より好ましくは沸点が160℃以上)の有機溶媒を少なくとも1種含む態様が挙げられる。
 また、組成物が含む有機溶媒の好適態様の他の一例として、アセテート系溶媒を含む態様も挙げられる。
 アセテート系溶媒とは、分子中にアセテート基を1個以上含む溶媒を意図する。アセテート系溶媒が含むアセテート基の数としては、本発明の効果がより優れる点で、2個以上であるのが好ましい。なお、上限としては特に制限されないが、例えば、6個以下である。アセテート系溶媒としては、沸点が160℃以上であるのが好ましい。
 分子中にアセテート基を2個以上含むアセテート系溶媒としては、式(1A)で表される化合物が挙げられる。
 式(1A)  M-(O-C(=O)-CH
 式(1A)中、Mは、m価の連結基を表す。mは、2~6を表す。
 m価(m=2~6)の連結基であるMとしては、例えば、下記式(M-1)~(M-5)で表される連結基が挙げられる。
Figure JPOXMLDOC01-appb-C000001
 上記式(M-1)~(M-5)中、X11、X21、X31、X41、及びX51は、各々独立に、有機基を表す。
 X11、X21、X31、X41、及びX51で表される有機基としては、具体的には、ヘテロ原子(ヘテロ原子としては、例えば、窒素原子、酸素原子、及び硫黄原子が挙げられる。また、ヘテロ原子は、例えば、-O-、-S-、-SO2-、-NR-、-CO-、又はこれらを2種以上組み合わせた連結基の形態で含まれていてもよい。)を含んでいてもよい炭化水素から形成される炭化水素基が挙げられる。具体的には、ヘテロ原子を含んでいてもよい直鎖状若しくは分岐鎖状の脂肪族炭化水素基、脂肪族炭化水素環基、芳香族炭化水素環基、複素環基、又はこれらの複数を組み合わせた連結基が好ましい。
 なお、上記X11で表される有機基としてのヘテロ原子を含んでいてもよい炭化水素基とは、上述のヘテロ原子を含んでいてもよい炭化水素から水素原子を2つ除いて形成される2価の基を意味し、上記X21で表される有機基としてのヘテロ原子を含んでいてもよい炭化水素基とは、上述のヘテロ原子を含んでいてもよい炭化水素から水素原子を3つ除いて形成される3価の基を意味し、上記X31で表される有機基としてのヘテロ原子を含んでいてもよい炭化水素基とは、上述のヘテロ原子を含んでいてもよい炭化水素から水素原子を4つ除いて形成される4価の基を意味し、上記X41で表される有機基としてのヘテロ原子を含んでいてもよい炭化水素基とは、上述のヘテロ原子を含んでいてもよい炭化水素から水素原子を5つ除いて形成される5価の基を意味し、上記X51で表される有機基としてのヘテロ原子を含んでいてもよい炭化水素基とは、上述のヘテロ原子を含んでいてもよい炭化水素から水素原子を6つ除いて形成される6価の基を意味する。
 上記Rは、水素原子又は置換基を表す。上記置換基としては特に制限されないが、例えば、アルキル基(好ましくは炭素数1~6。直鎖状でも分岐鎖状でもよい。)が好ましい。
 上述した、ヘテロ原子を含んでいてもよい直鎖状若しくは分岐鎖状の脂肪族炭化水素基、脂肪族炭化水素環基、芳香族炭化水素環基、及び複素環基は、更に置換基を有していてもよい。
 上記直鎖状又は分岐鎖状の脂肪族炭化水素基の炭素数としては特に制限されないが、1~12が好ましく、1~10がより好ましく、3~6が更に好ましい。
 上記脂肪族炭化水素基としては、アルキレン基が挙げられる。
 上記脂肪族炭化水素環基(脂環基)の炭素数としては特に制限されないが、3~30が好ましく、6~20がより好ましく、6~15が更に好ましく、6~12が特に好ましい。脂環基は、単環式及び多環式のいずれであってもよく、スピロ環であってもよい。単環式の脂環基を構成する脂環としては、例えば、シクロペンタン、シクロヘキサン、及びシクロオクタン等の単環のシクロアルカンが挙げられる。多環式の脂環基を構成する脂環としては、例えば、ノルボルナン、トリシクロデカン、テトラシクロデカン、テトラシクロドデカン、及びアダマンタン等の多環のシクロアルカンが挙げられる。
 上記芳香族炭化水素環基を構成する芳香族炭化水素環の炭素数としては特に制限されないが、6~30が好ましく、6~20がより好ましく、6~15が更に好ましく、6~12が特に好ましい。芳香族炭化水素基としては、単環式であってもよく、多環式であってもよい。上記芳香族炭化水素環としては、例えば、ベンゼン環及びナフタレン環等が挙げられる。
 上記複素環基を構成する複素環の炭素数としては特に制限されないが、3~25が好ましく、3~20がより好ましく、6~20が更に好ましく、6~15が特に好ましく、6~10が最も好ましい。また、上記複素環としては、単環式及び多環式のいずれであってもよく、芳香族複素環及び脂肪族複素環のいずれであってもよい。更に、上記複素環は、スピロ環であってもよい。芳香族複素環としては、例えば、フラン環、チオフェン環、ベンゾフラン環、ベンゾチオフェン環、ジベンゾフラン環、ジベンゾチオフェン環、及びピリジン環が挙げられる。脂肪族複素環としては、例えば、テトラヒドロピラン環、ラクトン環、スルトン環、及びデカヒドロイソキノリン環等が挙げられる。
 上記式(M-1)~(M-5)中、L11、L12、L21~L23、L31~L34、L41~L45、及びL51~L56は、各々独立に、単結合又は2価の連結基を表す。
 L11、L12、L21~L23、L31~L34、L41~L45、及びL51~L56で表される2価の連結基としては特に制限されないが、アルキレン基、-CO-、-CONR-、-O-、及び-S-からなる群より選ばれる1種以上又は2種以上を組み合わせた2価の連結基であるのが好ましい。
 上記アルキレン基としては、直鎖状、分岐鎖状、及び環状のいずれであってもよい。アルキレン基の炭素数としては、1~10が好ましく、1~4がより好ましい。
 上記アルキレン基は、更に置換基を有していてもよい。
 なお、上記Rは、水素原子又は置換基を表す。上記置換基としては特に制限されないが、例えば、アルキル基(好ましくは炭素数1~6。直鎖状でも分岐鎖状でもよい。)が好ましい。
 上記式(M-1)~(M-5)中、*は、式(1A)中に明示されるアセチル基((O-C(=O)-CH))との結合位置を表す。
 なお、2価の連結基であるMの一態様としては、置換又は無置換のアルキレン基が挙げられる。
 上記アルキレン基としては、直鎖状又は分岐鎖状が好ましい。また、炭素数としては、1~12が好ましく、1~10がより好ましく、3~6が更に好ましい。
 また、3価の連結基であるMの一態様としては、下記式(1a)で表される基が挙げられる。
 式(1a)  R-C-(L-*)
 式(1a)中、Rは、水素原子又は置換基を表す。Lは、単結合、又は、置換基を有していてもよい炭素数1~6のアルキレン基を表す。*は、式(1A)中に明示されるアセチル基((O-C(=O)-CH))との結合位置を表す。また、3個存在するLは、互いに同一であっても、異なっていてもよい。
 Rで表される置換基としては特に制限されず、例えば、1価の有機基が挙げられ、置換基を有していてもよい炭素数1~6のアルキル基であるのが好ましく、置換基を有していてもよい炭素数1~3のアルキル基であるのがより好ましい。なお、置換基としては特に制限されないが、例えば、水酸基が挙げられる。
 Rとしては、水素原子であるのが好ましい。
 Lで表される置換基を有していてもよい炭素数1~6のアルキレン基としては、置換基を有していてもよい炭素数1~3のアルキル基であるのが好ましい。なお、置換基としては特に制限されないが、例えば、水酸基が挙げられる。
 式(1A)で表される化合物の具体例としては、例えば、1,4-BDDA、1,6-HDDA、1,3-BGDA、PGDA、及びグリセロール三酢酸等が挙げられる。
 有機溶媒は、1種単独で使用してもよく、2種以上使用してもよい。
 組成物中における有機溶媒の含有量(複数種含まれる場合にはその合計含有量)は、組成物の全質量に対して1~15質量%であるのが好ましい。本発明の効果がより優れる点で、7~12質量%であるのがより好ましい。有機溶媒の含有量が、組成物の全質量に対して1質量%以上の場合、組成物は流動性により優れる。また、有機溶媒の含有量が、組成物の全質量に対して15質量%以下の場合、ホール充填適性がより優れる。
〔バインダ成分〕
 組成物は、樹脂及び樹脂前駆体からなる群から選ばれる1種以上の成分(バインダ成分)を含むのが好ましい。つまり、バインダ成分は、樹脂そのものであってもよいし、樹脂の前駆体(樹脂前駆体)であってもよい。
 樹脂そのものを使用する組成物としては、例えば、上述した磁性粒子と、有機溶媒と、上記有機溶媒中に溶解又は分散した樹脂とを含む組成物が挙げられる。この組成物の有機溶媒が蒸発することで、上記樹脂が析出し、上記樹脂がバインダ(結着材)として機能する組成物が得られる。
 樹脂前駆体としては、熱又は光(紫外光等)等による所定の硬化処理によって重合及び/又は架橋が進行して樹脂を形成し得る成分である。このように形成された樹脂が、硬化物中でバインダ(結着材)として機能する。
 樹脂前駆体としては、具体的には、熱硬化性化合物及び光硬化性化合物等の硬化性化合物が挙げられる。これらの化合物は、モノマー、オリゴマー、及び、ポリマーのいずれでもよい。なお、バインダ成分として樹脂前駆体を含む場合、組成物は、後述する硬化剤及び/又は硬化促進剤を更に含むのが好ましい。
 バインダ成分は、本発明の効果がより優れる点で、エポキシ化合物及びオキセタン化合物の少なくとも1種を含むのが好ましい。エポキシ化合物とは、エポキシ基を分子中に1個以上有する化合物を意図し、オキセタン化合物とは、オキセタニル基を分子中に1個以上有する化合物を意図する。
 バインダ成分の含有量は、組成物の全質量に対して、1~24質量%が好ましく、1~15質量%がより好ましく、1~12質量%が更に好ましく、1~10質量%が特に好ましく、1~7質量%が最も好ましい。
 バインダ成分の含有量は、組成物の全固形分に対して、0.8~24質量%が好ましく、0.8~15質量%がより好ましく、0.8~12質量%が更に好ましく、0.8~10質量%が更により好ましく、0.8~8質量%が特に好ましく、0.8~7質量%が最も好ましい。
 以下において、バインダ成分の具体例について説明する。
 バインダ成分の好適な一態様としては、(メタ)アクリル樹脂、エポキシ樹脂、エン・チオール樹脂、ポリカーボネート樹脂、ポリエーテル樹脂、ポリアリレート樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリフェニレン樹脂、ポリアリーレンエーテルホスフィンオキシド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリオレフィン樹脂、環状オレフィン樹脂、ポリエステル樹脂、スチレン樹脂、及び、フェノキシ樹脂等が挙げられる。これらの樹脂から1種を単独で使用してもよく、2種以上を混合して使用してもよい。
 エポキシ樹脂としては、例えばフェノール化合物のグリシジルエーテル化物であるエポキシ樹脂、各種ノボラック樹脂のグリシジルエーテル化物であるエポキシ樹脂、脂環式エポキシ樹脂、脂肪族系エポキシ樹脂、複素環式エポキシ樹脂、グリシジルエステル系エポキシ樹脂、グリシジルアミン系エポキシ樹脂、ハロゲン化フェノール類をグリシジル化したエポキシ樹脂、エポキシ基をもつケイ素化合物とそれ以外のケイ素化合物との縮合物、並びに、エポキシ基を持つ重合性不飽和化合物とそれ以外の他の重合性不飽和化合物との共重合体等が挙げられる。
 また、エポキシ樹脂は、マープルーフG-0150M、G-0105SA、G-0130SP、G-0250SP、G-1005S、G-1005SA、G-1010S、G-2050M、G-01100、G-01758(日油(株)製、エポキシ基含有ポリマー)などを使用してもよい。
 環状オレフィン樹脂としては、耐熱性向上の観点からノルボルネン樹脂が好ましい。ノルボルネン樹脂の市販品としては、例えば、JSR(株)製のARTONシリーズ(例えば、ARTON F4520)等が挙げられる。
 ポリビニルアセタール樹脂の市販品としては、例えば、積水化学工業(株)製の「KS-1」等が挙げられる。
 また、フェノキシ樹脂の市販品としては、例えば、「YX7553BH30」(三菱ケミカル(株)社製)が挙げられる。
 また、バインダ成分の好適な一態様としては、国際公開第2016/088645号の実施例に記載の樹脂も挙げられる。
 また、バインダ成分の好適な一態様としては、側鎖にエチレン性不飽和基(例えば、(メタ)アクリロイル基を有する)樹脂であって、且つ、主鎖とエチレン性不飽和基とが脂環構造を有する2価の連結基を介して結合した樹脂も挙げられる。
 また、バインダ成分の好適な一態様としては、エポキシ基及びオキセタニル基等の環重合性基を有する樹脂又は樹脂前駆体も挙げられる。
 エポキシ基及びオキセタニル基等の環重合性基を有する樹脂又は樹脂前駆体としては、例えば、側鎖にエポキシ基を有するポリマー、及び、分子内に2個以上のエポキシ基を有する重合性モノマー又はオリゴマーが挙げられ、その具体例としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、及び、脂肪族エポキシ樹脂等が挙げられる。
 これらの樹脂は、市販品を用いてもよいし、ポリマーの側鎖へエポキシ基を導入することによっても得られる。
 市販品としては、例えば、特開2012-155288号公報の段落0191等の記載を参酌でき、これらの内容は本願明細書に組み込まれる。
 その他にも、ADEKA RESIN EP-4000S、同EP-4003S、同EP-4010S、同EP-4011S(以上、ADEKA社製)、NC-2000、NC-3000、NC-7300、XD-1000、EPPN-501、EPPN-502(以上、ADEKA社製)、JER1031S等も挙げられる。
 また、ビスフェノールA型エポキシ樹脂及びビスフェノールF型エポキシ樹脂の具体例としては、例えば、ZX1059(日鉄ケミカル&マテリアル社製)、828US(三菱ケミカル社製)も挙げられる。
 さらに、フェノールノボラック型エポキシ樹脂の市販品として、JER-157S65、JER-152、JER-154、JER-157S70(以上、三菱ケミカル社製)等が挙げられる。
 また、分子内に2個以上のエポキシ基を有する重合性モノマー又はオリゴマーとしては、ZX1658GS(液状1,4-グリシジルシクロヘキサン型エポキシ樹脂、日鉄ケミカル&マテリアル社製)、HP-4700(ナフタレン型4官能エポキシ樹脂、DIC社製)、及びNC3000L(ビフェニル型エポキシ樹脂、日本化薬社製)等も使用できる。
 側鎖にオキセタニル基を有するポリマー、及び、上述の分子内に2個以上のオキセタニル基を有する重合性モノマー又はオリゴマーの具体例としては、アロンオキセタンOXT-121、OXT-221、OX-SQ、PNOX(以上、東亞合成社製)を用いることができる。
 ポリマー側鎖にエポキシ基を導入してエポキシ基を有する樹脂を合成する場合、導入反応は、例えばトリエチルアミン、ベンジルメチルアミン等の3級アミン、ドデシルトリメチルアンモニウムクロライド、テトラメチルアンモニウムクロライド、テトラエチルアンモニウムクロライド等の4級アンモニウム塩、ピリジン、トリフェニルホスフィン等を触媒として有機溶媒中、反応温度50~150℃で所定時間反応させることにより行える。脂環式エポキシ不飽和化合物の導入量は得られる樹脂の酸価が5~200KOH・mg/gを満たす範囲になるように制御することができる。また、樹脂の重量平均分子量は、500~5000000(好ましくは1000~500000)の範囲とすることができる。
 脂環式エポキシ不飽和化合物の代わりに、グリシジル(メタ)アクリレートやアリルグリシジルエーテル等のエポキシ基としてグリシジル基を有するものも使用可能である。このようなものとしては、例えば特開2009-265518号公報の段落0045等の記載を参酌でき、これらの内容は本願明細書に組み込まれる。
 また、バインダ成分の好適な一態様としては、酸基、塩基性基、又はアミド基を有する樹脂も挙げられる。酸基、塩基性基、又はアミド基を有する樹脂は、磁性体粒子を分散させる分散剤としての機能を発揮しやすく、本発明の効果がより優れる点から好適である。
 酸基としては、カルボキシ基、リン酸基、スルホ基、及び、フェノール性水酸基等が挙げられ、本発明の効果がより優れる点から、カルボキシ基が好ましい。
 塩基性基としては、アミノ基(アンモニア、1級アミン又は2級アミンから水素原子を1つ除いた基)、及び、イミノ基が挙げられる。
 なかでも、本発明の効果がより優れる点から、樹脂は、カルボキシ基又はアミド基を有することが好ましい。
 樹脂が酸基を有する場合、樹脂の酸価は、本発明の効果がより優れる点から、10~500mgKOH/gが好ましく、30~400mgKOH/gがより好ましい。
<グラフト鎖を含む繰り返し単位を有する樹脂(樹脂A)>
 バインダ成分の好適な一態様としては、例えば、グラフト鎖を含む繰り返し単位を有する樹脂(以下、「樹脂A」ともいう。)も挙げられる。グラフト鎖を含む繰り返し単位を有する樹脂は、磁性粒子の分散剤として有効に機能し得る。
 グラフト鎖を含む繰り返し単位において、グラフト鎖が長くなると立体反発効果が高くなり磁性粒子の分散性は向上する。一方、グラフト鎖が長すぎると磁性粒子への吸着力が低下して、磁性粒子の分散性は低下する傾向となる。このため、グラフト鎖は、水素原子を除いた原子数が40~10000であることが好ましく、水素原子を除いた原子数が50~2000であることがより好ましく、水素原子を除いた原子数が60~500であることが更に好ましい。
 ここで、グラフト鎖とは、主鎖の根元(主鎖から枝分かれしている基において主鎖に結合する原子)から、主鎖から枝分かれしている基の末端までを示す。
 また、グラフト鎖は、ポリマー構造を含んでいることが好ましく、このようなポリマー構造としては、例えば、ポリ(メタ)アクリレート構造(例えば、ポリ(メタ)アクリル構造)、ポリエステル構造、ポリウレタン構造、ポリウレア構造、ポリアミド構造、及び、ポリエーテル構造等が挙げられる。
 グラフト鎖と溶媒との相互作用性を向上させ、それにより磁性粒子の分散性を高めるために、グラフト鎖は、ポリエステル構造、ポリエーテル構造、及び、ポリ(メタ)アクリレート構造からなる群から選ばれる少なくとも1種を含むグラフト鎖であることが好ましく、ポリエステル構造及びポリエーテル構造の少なくともいずれかを含むグラフト鎖であることがより好ましい。
 樹脂Aは、グラフト鎖を含むマクロモノマー(ポリマー構造を有し、主鎖に結合してグラフト鎖を構成するモノマー)を用いて得られる樹脂であってもよい。
 グラフト鎖を含むマクロモノマー(ポリマー構造を有し、主鎖に結合してグラフト鎖を構成するモノマー)としては、特に制限されないが、反応性二重結合性基を含むマクロモノマーを好適に使用できる。
 上記グラフト鎖を含む繰り返し単位に対応し、樹脂Aの合成に好適に用いられる市販のマクロモノマーとしては、AA-6、AA-10、AB-6、AS-6、AN-6、AW-6、AA-714、AY-707、AY-714、AK-5、AK-30、及び、AK-32(いずれも商品名、東亞合成社製)、並びに、ブレンマーPP-100、ブレンマーPP-500、ブレンマーPP-800、ブレンマーPP-1000、ブレンマー55-PET-800、ブレンマーPME-4000、ブレンマーPSE-400、ブレンマーPSE-1300、及び、ブレンマー43PAPE-600B(いずれも商品名、日油社製)が用いられる。このなかでも、AA-6、AA-10、AB-6、AS-6、AN-6、又は、ブレンマーPME-4000が好ましい。
 樹脂Aは、ポリアクリル酸メチル、ポリメタクリル酸メチル、及び、環状又は鎖状のポリエステルからなる群より選択される少なくとも1種の構造を含むことが好ましく、ポリアクリル酸メチル、ポリメタクリル酸メチル、及び、鎖状のポリエステルからなる群より選択される少なくとも1種の構造を含むことがより好ましく、ポリアクリル酸メチル構造、ポリメタクリル酸メチル構造、ポリカプロラクトン構造、及び、ポリバレロラクトン構造からなる群より選択される少なくとも1種の構造を含むことが更に好ましい。樹脂Aは、上記構造を1種単独で含んでいてもよいし、これらの構造を複数含んでいてもよい。
 ここで、ポリカプロラクトン構造とは、ε-カプロラクトンを開環した構造を繰り返し単位として含む構造をいう。ポリバレロラクトン構造とは、δ-バレロラクトンを開環した構造を繰り返し単位として含む構造をいう。
 なお、樹脂Aが後述する式(1)及び後述する式(2)におけるj及びkが5である繰り返し単位を含む場合、樹脂A中に、上述したポリカプロラクトン構造を導入できる。
 また、樹脂Aが後述する式(1)及び後述する式(2)におけるj及びkが4である繰り返し単位を含む場合、樹脂中に、上述したポリバレロラクトン構造を導入できる。
 また、樹脂Aが後述する式(4)におけるXが水素原子であり、Rがメチル基である繰り返し単位を含む場合、樹脂A中に、上述したポリアクリル酸メチル構造を導入できる。
 また、樹脂Aが後述する式(4)におけるXがメチル基であり、Rがメチル基である繰り返し単位を含む場合、樹脂A中に、上述したポリメタクリル酸メチル構造を導入できる。
 なお、樹脂Aが後述する式(5)を含む場合、式(5)におけるjが5である繰り返し単位を含む場合、樹脂A中に、上述したポリカプロラクトン構造を導入できる。
 また、樹脂Aが後述する式(5)を含む場合、式(5)におけるjが4である繰り返し単位を含む場合、樹脂中に、上述したポリバレロラクトン構造を導入できる。
 組成物が樹脂Aを含有する場合、樹脂Aの含有量は、組成物の全質量に対して、1~24質量%が好ましく、1~15質量%がより好ましく、1~12質量%が更に好ましく、1~10質量%が特に好ましく、1~7質量%が最も好ましい。
 樹脂Aの含有量は、組成物の全固形分に対して、0.8~24質量%が好ましく、0.8~15質量%がより好ましく、0.8~12質量%が更に好ましく、0.8~10質量%が更により好ましく、0.8~8質量%が特に好ましく、0.8~7質量%が最も好ましい。
(樹脂A1)
 樹脂Aの好適な一態様としては、ポリアルキレンイミン構造とポリエステル構造を含む繰り返し単位を含む樹脂(以下「樹脂A1」)が挙げられる。ポリアルキレンイミン構造とポリエステル構造を含む繰り返し単位は、主鎖にポリアルキレンイミン構造を含み、グラフト鎖としてポリエステル構造を含むことが好ましい。
 上記ポリアルキレンイミン構造とは、同一又は異なるアルキレンイミン鎖を2つ以上含む重合構造である。アルキレンイミン鎖としては、具体的には下記式(4A)及び下記式(4B)で表されるアルキレンイミン鎖が挙げられる。
Figure JPOXMLDOC01-appb-C000002
 式(4A)中、RX1及びRX2は、それぞれ独立に、水素原子又はアルキル基を表す。aは、2以上の整数を表す。*はポリエステル鎖、隣接するアルキレンイミン鎖、又は、水素原子若しくは置換基との結合位置を表す。
Figure JPOXMLDOC01-appb-C000003
 式(4B)中、RX3及びRX4は、それぞれ独立に水素原子又はアルキル基を表す。aは、2以上の整数を表す。式(4B)で表されるアルキレンイミン鎖は、アニオン性基を有するポリエステル鎖と、式(4B)中に明示されるNとポリエステル鎖に含まれるアニオン性基が塩架橋基を形成することにより、結合する。
 式(4A)及び式(4B)中の*、及び、式(4B)中の*は、それぞれ独立に、隣接するアルキレンイミン鎖、又は、水素原子若しくは置換基と結合する位置を表す。
 式(4A)及び式(4B)中の*としては、なかでも、隣接するアルキレンイミン鎖と結合する位置を表すことが好ましい。
 式(4A)中のRX1及びRX2、並びに式(4B)中のRX3及びRX4は、それぞれ独立に、水素原子又はアルキル基を表す。
 アルキル基の炭素数としては、炭素数1~6が好ましく、炭素数1~3が好ましい。
 式(4A)中、RX1及びRX2としては、いずれも水素原子であることが好ましい。
 式(4B)中、RX3及びRX4としては、いずれも水素原子であることが好ましい。
 式(4A)中のa及び式(4B)中のaとしては、2以上の整数であれば特に制限されない。その上限値としては10以下が好ましく、6以下がより好ましく、4以下が更に好ましく、2又は3が更に好ましく、2が特に好ましい。
 式(4A)及び式(4B)中、*は、隣接するアルキレンイミン鎖、又は、水素原子若しくは置換基との結合位置を表す。
 上記置換基としては、例えばアルキル基(例えば炭素数1~6のアルキル基)等の置換基が挙げられる。また、置換基として、ポリエステル鎖が結合してもよい。
 式(4A)で表されるアルキレンイミン鎖は、上述した*1の位置で、ポリエステル鎖と連結していることが好ましい。具体的には、ポリエステル鎖中のカルボニル炭素が、上述した*1の位置で結合することが好ましい。
 上記ポリエステル鎖としては、下記式(5A)で表されるポリエステル鎖が挙げられる。
Figure JPOXMLDOC01-appb-C000004
 アルキレンイミン鎖が式(4B)で表されるアルキレンイミン鎖である場合、ポリエステル鎖はアニオン性(好ましくは酸素アニオンO)を含み、このアニオン性と式(4B)中のNとが塩架橋基を形成することが好ましい。
 このようなポリエステル鎖としては、下記式(5B)で表されるポリエステル鎖が挙げられる。
Figure JPOXMLDOC01-appb-C000005
 式(5A)中のLX1、及び、式(5B)中のLX2は、それぞれ独立に、2価の連結基を表す。2価の連結基としては、好ましくは炭素数3~30のアルキレン基が挙げられる。
 式(5A)中のb11、及び、式(5B)中のb21は、それぞれ独立に2以上の整数を表し、6以上の整数が好ましく、その上限は、例えば、200以下である。
 式(5A)中のb12、及び、式(5B)中のb22は、それぞれ独立に0又は1を表す。
 式(5A)中のX、及び、式(5B)中のXは、それぞれ独立に、水素原子又は置換基を表す。置換基としては、アルキル基、アルコキシ基、ポリアルキレンオキシアルキル基、及び、アリール基等が挙げられる。
 上記アルキル基(直鎖状、分岐鎖状、及び、環状のいずれでもよい。)、及び、上記アルコキシ基中に含まれるアルキル基(直鎖状、分岐鎖状、及び、環状のいずれでもよい。)の炭素数としては、1~30が挙げられ、1~10が好ましい。また、上記アルキル基は更に置換基を有していてもよく、置換基としては、水酸基及びハロゲン原子(ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、及び、ヨウ素原子等)が挙げられる。
 ポリアルキレンオキシアルキル基とは、RX6(ORX7(O)-で表される置換基である。RX6はアルキル基を表し、RX7はアルキレン基を表し、pは2以上の整数を表し、qは、0又は1を表す。
 RX6で表されるアルキル基は、Xで表されるアルキル基と同義である。また、RX7で表されるアルキレン基としては、Xで表されるアルキル基から水素原子を1つ除いた基が挙げられる。
 pは、2以上の整数であり、その上限値としては、例えば10以下であり、5以下が好ましい。
 アリール基としては、例えば、炭素数6~24のアリール基(単環及び多環のいずれであってもよい。)が挙げられる。
 上記アリール基は更に置換基を有していてもよく、置換基としては、アルキル基、ハロゲン原子、及び、シアノ基等が挙げられる。
 上記ポリエステル鎖としては、ε-カプロラクトン、δ-カプロラクトン、β-プロピオラクトン、γ-ブチロラクトン、δ-バレロラクトン、γ-バレロラクトン、エナントラクトン、β-ブチロラクトン、γ-ヘキサノラクトン、γ-オクタノラクトン、δ-ヘキサラノラクトン、δ-オクタノラクトン、δ-ドデカノラクトン、α-メチル-γ-ブチロラクトン、及び、ラクチド(L体であってもD体であってもよい。)等のラクトンを開環した構造が好ましく、ε-カプロラクトン又はδ-バレロラクトンを開環した構造がより好ましい。
 ポリアルキレンイミン構造とポリエステル構造を含む繰り返し単位を含む樹脂としては、特許第5923557号に記載の合成方法に準じて合成できる。
 ポリアルキレンイミン構造とポリエステル構造を含む繰り返し単位を含む樹脂としては、特許第5923557号に開示されたポリアルキレンイミン構造とポリエステル構造を含む繰り返し単位を含む樹脂を参酌でき、これらの内容は本願明細書に組み込まれる。
 樹脂A1の重量平均分子量は特に制限されないが、例えば、3,000以上が好ましく、4,000以上がより好ましく、5,000以上が更に好ましく、6,000以上が特に好ましい。また、上限値としては、例えば、300,000以下が好ましく、200,000以下がより好ましく、100,000以下が更に好ましく、50,000以下が特に好ましい。
(樹脂A2)
 また、樹脂Aの他の好適な一態様としては、以下に示すグラフト鎖を含む繰り返し単位を含む樹脂(以下「樹脂A2」)が挙げられる。
・グラフト鎖を含む繰り返し単位
 樹脂A2は、グラフト鎖を含む繰り返し単位として、下記式(1)~式(4)のいずれかで表される繰り返し単位を含むことが好ましく、下記式(1A)、下記式(2A)、下記式(3A)、下記式(3B)、及び、下記(4)のいずれかで表される繰り返し単位を含むことがより好ましい。
Figure JPOXMLDOC01-appb-C000006
 式(1)~(4)において、W、W、W、及び、Wは、それぞれ独立に、酸素原子又はNHを表す。W、W、W、及び、Wは、酸素原子であることが好ましい。
 式(1)~(4)において、X、X、X、X、及び、Xは、それぞれ独立に、水素原子又は1価の有機基を表す。X、X、X、X、及び、Xは、合成上の制約の点からは、それぞれ独立に、水素原子又は炭素数(炭素原子数)1~12のアルキル基が好ましく、それぞれ独立に、水素原子又はメチル基がより好ましく、メチル基が更に好ましい。
 式(1)~(4)において、Y、Y、Y、及び、Yは、それぞれ独立に、2価の連結基を表し、連結基は特に構造上制約されない。Y、Y、Y、及び、Yで表される2価の連結基として、具体的には、下記の(Y-1)~(Y-21)の連結基等が挙げられる。下記に示した構造において、A及びBはそれぞれ、式(1)~(4)における左末端基、右末端基との結合部位を意味する。下記に示した構造のうち、合成の簡便性から、(Y-2)又は(Y-13)がより好ましい。
Figure JPOXMLDOC01-appb-C000007
 式(1)~(4)において、Z、Z、Z、及び、Zは、それぞれ独立に水素原子又は1価の置換基を表す。上記置換基の構造は、特に制限されないが、具体的には、アルキル基、水酸基、アルコキシ基、アリールオキシ基、ヘテロアリールオキシ基、アルキルチオエーテル基、アリールチオエーテル基、ヘテロアリールチオエーテル基、及び、アミノ基等が挙げられる。これらのなかでも、Z、Z、Z、及び、Zで表される基としては、特に分散性向上の点から、立体反発効果を含む基が好ましく、それぞれ独立に炭素数5~24のアルキル基又はアルコキシ基がより好ましく、そのなかでも、特にそれぞれ独立に炭素数5~24の分岐鎖状アルキル基、炭素数5~24の環状アルキル基、又は、炭素数5~24のアルコキシ基が更に好ましい。なお、アルコキシ基中に含まれるアルキル基は、直鎖状、分岐鎖状、及び、環状のいずれでもよい。
 また、Z、Z、Z、及び、Zで表される置換基は、(メタ)アクリロイル基、エポキシ基、及び/又は、オキセタニル基等の硬化性基を含有する基であるのも好ましい。上記硬化性基を含有する基としては、例えば、「-O-アルキレン基-(-O-アルキレン基-)AL-(メタ)アクリロイルオキシ基」が挙げられる。ALは、0~5の整数を表し、1が好ましい。上記アルキレン基は、それぞれ独立に、炭素数1~10が好ましい。上記アルキレン基が置換基を有する場合、置換基は、水酸基が好ましい。
 上記置換基は、オニウム構造を含有する基であってもよい。
 オニウム構造を含有する基は、アニオン部とカチオン部とを有する基である。アニオン部としては、例えば、酸素アニオン(-O)を含有する部分構造が挙げられる。なかでも、酸素アニオン(-O)は、式(1)~(4)で表される繰り返し単位において、n、m、p、又は、qが付された繰り返し構造の末端に直接結合していることが好ましく、式(1)で表される繰り返し単位において、nが付された繰り返し構造の末端(つまり、-(-O-C2j-CO-)-における右端)に直接結合していることがより好ましい。
 オニウム構造を含有する基の、カチオン部のカチオンとしては、例えば、アンモニウムカチオンが挙げられる。カチオン部がアンモニウムカチオンである場合、カチオン部はカチオン性窒素原子(>N<)を含有する部分構造である。カチオン性窒素原子(>N<)は、4個の置換基(好ましくは有機基)に結合することが好ましく、そのうちの1~4個が炭素数1~15のアルキル基であることが好ましい。また、4個の置換基のうちの1個以上(好ましくは1個)が、(メタ)アクリロイル基、エポキシ基、及び/又は、オキセタニル基等の硬化性基を含有する基であるのも好ましい。上記置換基がなり得る、上記硬化性基を含有する基としては、例えば、上述の「-O-アルキレン基-(-O-アルキレン基-)AL-(メタ)アクリロイルオキシ基」のほか、「-アルキレン基-(-O-アルキレン基-)AL1-(メタ)アクリロイルオキシ基」が挙げられる。AL1は、1~5の整数を表し、1が好ましい。上記アルキレン基は、それぞれ独立に、炭素数1~10が好ましい。上記アルキレン基が置換基を有する場合、置換基は、水酸基が好ましい。
 式(1)~(4)において、n、m、p、及び、qは、それぞれ独立に、1~500の整数である。
 また、式(1)及び(2)において、j及びkは、それぞれ独立に、2~8の整数を表す。式(1)及び(2)におけるj及びkは、4~6の整数が好ましく、5がより好ましい。
 また、式(1)及び(2)において、n及びmは、例えば2以上の整数であり、6以上の整数が好ましく、10以上の整数がより好ましく、20以上の整数が更に好ましい。また、樹脂A2が、ポリカプロラクトン構造、及び、ポリバレロラクトン構造を含む場合、ポリカプロラクトン構造の繰り返し数と、ポリバレロラクトンの繰返し数の和としては、10以上の整数が好ましく、20以上の整数がより好ましい。
 式(3)中、Rは分岐鎖状又は直鎖状のアルキレン基を表し、炭素数1~10のアルキレン基が好ましく、炭素数2又は3のアルキレン基がより好ましい。pが2~500のとき、複数存在するRは互いに同じであっても異なっていてもよい。
 式(4)中、Rは水素原子又は1価の有機基を表し、この1価の置換基の構造は特に制限されない。Rとしては、水素原子、アルキル基、アリール基、又は、ヘテロアリール基が好ましく、水素原子又はアルキル基がより好ましい。Rがアルキル基である場合、アルキル基としては、炭素数1~20の直鎖状アルキル基、炭素数3~20の分岐鎖状アルキル基、又は、炭素数5~20の環状アルキル基が好ましく、炭素数1~20の直鎖状アルキル基がより好ましく、炭素数1~6の直鎖状アルキル基が更に好ましい。式(4)において、qが2~500のとき、グラフト鎖中に複数存在するX及びRは互いに同じであっても異なっていてもよい。
 また、樹脂A2は、2種以上の構造が異なる、グラフト鎖を含む繰り返し単位を含んでいてもよい。すなわち、樹脂A2の分子中に、互いに構造の異なる式(1)~(4)で示される繰り返し単位を含んでいてもよく、また、式(1)~(4)においてn、m、p、及び、qがそれぞれ2以上の整数を表す場合、式(1)及び(2)においては、側鎖中にj及びkが互いに異なる構造を含んでいてもよく、式(3)及び(4)においては、分子内に複数存在するR、R、及び、Xは互いに同じであっても異なっていてもよい。
 式(1)で表される繰り返し単位としては、下記式(1A)で表される繰り返し単位であることがより好ましい。
 また、式(2)で表される繰り返し単位としては、下記式(2A)で表される繰り返し単位であることがより好ましい。
Figure JPOXMLDOC01-appb-C000008
 式(1A)中、X、Y、Z、及び、nは、式(1)におけるX、Y、Z、及び、nと同義であり、好ましい範囲も同様である。式(2A)中、X、Y、Z、及び、mは、式(2)におけるX、Y、Z、及び、mと同義であり、好ましい範囲も同様である。
 また、式(3)で表される繰り返し単位としては、下記式(3A)又は式(3B)で表される繰り返し単位であることがより好ましい。
Figure JPOXMLDOC01-appb-C000009
 式(3A)又は(3B)中、X、Y、Z、及び、pは、式(3)におけるX、Y、Z、及び、pと同義であり、好ましい範囲も同様である。
 樹脂A2は、グラフト鎖を含む繰り返し単位として、式(1A)で表される繰り返し単位を含むことがより好ましい。
 また、樹脂A2が上述した式(1)~(4)で表される繰り返し単位を含む場合、更にグラフト鎖を含む他の繰り返し単位として、下記式(5)で表される繰り返し単位を含んでいるのも好ましい。
Figure JPOXMLDOC01-appb-C000010
 式(5)において、nは、1~50の整数を表し、2~30の整数であるのが好ましく、2~10の整数であるのがより好ましく、2~5の整数であるのが更に好ましい。
 また、jは、2~8の整数を表し、4~6の整数が好ましく、5がより好ましい。
 また、式(5)において、X及びZは、各々、式(1)中のX及びZと同義であり、好適態様も同じである。
 樹脂A2において、グラフト鎖を含む繰り返し単位の含有量は、質量換算で、樹脂A2の全質量に対して、例えば2~100質量%であり、2~95質量%が好ましく、2~90質量%がより好ましく、5~30質量%が更に好ましい。グラフト鎖を含む繰り返し単位がこの範囲内で含まれると、本発明の効果がより優れる。
・疎水性繰り返し単位
 また、樹脂A2は、グラフト鎖を含む繰り返し単位とは異なる(すなわち、グラフト鎖を含む繰り返し単位には相当しない)疎水性繰り返し単位を含んでいてもよい。ただし、本明細書において、疎水性繰り返し単位は、酸基(例えば、カルボン酸基、スルホン酸基、リン酸基、フェノール性水酸基等)を有さない繰り返し単位である。
 疎水性繰り返し単位は、ClogP値が1.2以上の化合物(モノマー)に由来する(対応する)繰り返し単位であることが好ましく、ClogP値が1.2~8の化合物に由来する繰り返し単位であることがより好ましい。これにより、本発明の効果をより確実に発現できる。
 ClogP値は、Daylight Chemical Information System, Inc.から入手できるプログラム「CLOGP」で計算された値である。このプログラムは、Hansch, Leoのフラグメントアプローチ(下記文献参照)により算出される「計算logP」の値を提供する。フラグメントアプローチは化合物の化学構造に基づいており、化学構造を部分構造(フラグメント)に分割し、そのフラグメントに対して割り当てられたlogP寄与分を合計して化合物のlogP値を推算している。その詳細は以下の文献に記載されている。本明細書では、プログラムCLOGP v4.82により計算したClogP値を用いる。
 A. J. Leo, Comprehensive Medicinal Chemistry, Vol.4, C. Hansch, P. G. Sammnens, J. B. Taylor and C. A. Ramsden, Eds., p.295, Pergamon Press, 1990 C. Hansch & A. J. Leo. SUbstituent Constants For Correlation Analysis in Chemistry and Biology. John Wiley & Sons. A.J. Leo. Calculating logPoct from structure. Chem. Rev., 93, 1281-1306, 1993.
 logPは、分配係数P(Partition Coefficient)の常用対数を意味し、ある有機化合物が油(一般的には1-オクタノール)と水の2相系の平衡でどのように分配されるかを定量的な数値として表す物性値であり、以下の式で示される。
  logP=log(Coil/Cwater)
 式中、Coilは油相中の化合物のモル濃度を、Cwaterは水相中の化合物のモル濃度を表す。
 logPの値が0をはさんでプラスに大きくなると油溶性が増し、マイナスで絶対値が大きくなると水溶性が増し、有機化合物の水溶性と負の相関があり、有機化合物の親疎水性を見積るパラメータとして広く利用されている。
 樹脂A2は、疎水性繰り返し単位として、下記式(i)~(iii)で表される単量体に由来の繰り返し単位から選択された1種以上の繰り返し単位を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000011
 上記式(i)~(iii)中、R、R、及び、Rは、それぞれ独立に、水素原子、ハロゲン原子(例えば、フッ素原子、塩素原子、及び、臭素原子等)、又は、炭素数が1~6のアルキル基(例えば、メチル基、エチル基、及び、プロピル基等)を表す。
 R、R、及び、Rは、水素原子又は炭素数が1~3のアルキル基であることが好ましく、水素原子又はメチル基であることがより好ましい。R及びRは、水素原子であることが更に好ましい。
 Xは、酸素原子(-O-)又はイミノ基(-NH-)を表し、酸素原子が好ましい。
 Lは、単結合又は2価の連結基である。2価の連結基としては、2価の脂肪族基(例えば、アルキレン基、置換アルキレン基、アルケニレン基、置換アルケニレン基、アルキニレン基、置換アルキニレン基)、2価の芳香族基(例えば、アリーレン基、置換アリーレン基)、2価の複素環基、酸素原子(-O-)、硫黄原子(-S-)、イミノ基(-NH-)、置換イミノ基(-NR31-、ここでR31は脂肪族基、芳香族基又は複素環基)、カルボニル基(-CO-)、及び、これらの組合せ等が挙げられる。
 2価の脂肪族基は、環状構造又は分岐構造を有していてもよい。脂肪族基の炭素数は、1~20が好ましく、1~15がより好ましく、1~10が更に好ましい。脂肪族基は不飽和脂肪族基であっても飽和脂肪族基であってもよいが、飽和脂肪族基が好ましい。また、脂肪族基は、置換基を有していてもよい。置換基の例は、ハロゲン原子、芳香族基、及び、複素環基等が挙げられる。
 2価の芳香族基の炭素数は、6~20が好ましく、6~15がより好ましく、6~10が更に好ましい。また、芳香族基は置換基を有していてもよい。置換基の例は、ハロゲン原子、脂肪族基、芳香族基、及び、複素環基等が挙げられる。
 2価の複素環基は、複素環として5員環又は6員環を含むことが好ましい。複素環に他の複素環、脂肪族環、又は、芳香族環が縮合していてもよい。また、複素環基は置換基を有していてもよい。置換基の例としては、ハロゲン原子、水酸基、オキソ基(=O)、チオキソ基(=S)、イミノ基(=NH)、置換イミノ基(=N-R32、ここでR32は脂肪族基、芳香族基、又は、複素環基)、脂肪族基、芳香族基、及び、複素環基が挙げられる。
 Lは、単結合、アルキレン基又はオキシアルキレン構造を含む2価の連結基が好ましい。オキシアルキレン構造は、オキシエチレン構造又はオキシプロピレン構造がより好ましい。また、Lは、オキシアルキレン構造を2以上繰り返して含むポリオキシアルキレン構造を含んでいてもよい。ポリオキシアルキレン構造としては、ポリオキシエチレン構造又はポリオキシプロピレン構造が好ましい。ポリオキシエチレン構造は、-(OCHCH)n-で表され、nは、2以上の整数が好ましく、2~10の整数がより好ましい。
 Zとしては、脂肪族基(例えば、アルキル基、置換アルキル基、不飽和アルキル基、置換不飽和アルキル基、)、芳香族基(例えば、アリール基、置換アリール基、アリーレン基、置換アリーレン基)、複素環基、及び、これらの組み合わせが挙げられる。これらの基には、酸素原子(-O-)、硫黄原子(-S-)、イミノ基(-NH-)、置換イミノ基(-NR31-、ここでR31は脂肪族基、芳香族基又は複素環基)、又は、カルボニル基(-CO-)が含まれていてもよい。
 脂肪族基は、環状構造又は分岐構造を有していてもよい。脂肪族基の炭素数は、1~20が好ましく、1~15がより好ましく、1~10が更に好ましい。脂肪族基には、更に環集合炭化水素基、架橋環式炭化水素基が含まれ、環集合炭化水素基の例としては、ビシクロヘキシル基、パーヒドロナフタレニル基、ビフェニル基、及び、4-シクロヘキシルフェニル基等が含まれる。架橋環式炭化水素環として、例えば、ピナン、ボルナン、ノルピナン、ノルボルナン、ビシクロオクタン環(ビシクロ[2.2.2]オクタン環、及び、ビシクロ[3.2.1]オクタン環等)等の2環式炭化水素環、ホモブレダン、アダマンタン、トリシクロ[5.2.1.02,6]デカン、及び、トリシクロ[4.3.1.12,5]ウンデカン環等の3環式炭化水素環、並びに、テトラシクロ[4.4.0.12,5.17,10]ドデカン、及び、パーヒドロ-1,4-メタノ-5,8-メタノナフタレン環等の4環式炭化水素環等が挙げられる。また、架橋環式炭化水素環には、縮合環式炭化水素環、例えば、パーヒドロナフタレン(デカリン)、パーヒドロアントラセン、パーヒドロフェナントレン、パーヒドロアセナフテン、パーヒドロフルオレン、パーヒドロインデン、及び、パーヒドロフェナレン環等の5~8員シクロアルカン環が複数個縮合した縮合環も含まれる。
 脂肪族基は不飽和脂肪族基よりも飽和脂肪族基の方が好ましい。また、脂肪族基は、置換基を有していてもよい。置換基の例は、ハロゲン原子、芳香族基及び複素環基が挙げられる。ただし、脂肪族基は、置換基として酸基を有さない。
 芳香族基の炭素数は、6~20が好ましく、6~15がより好ましく、6~10が更に好ましい。また、芳香族基は置換基を有していてもよい。置換基の例は、ハロゲン原子、脂肪族基、芳香族基、及び、複素環基が挙げられる。ただし、芳香族基は、置換基として酸基を有さない。
 複素環基は、複素環として5員環又は6員環を含むことが好ましい。複素環に他の複素環、脂肪族環又は芳香族環が縮合していてもよい。また、複素環基は置換基を有していてもよい。置換基の例としては、ハロゲン原子、水酸基、オキソ基(=O)、チオキソ基(=S)、イミノ基(=NH)、置換イミノ基(=N-R32、ここでR32は脂肪族基、芳香族基又は複素環基)、脂肪族基、芳香族基、及び、複素環基が挙げられる。ただし、複素環基は、置換基として酸基を有さない。
 上記式(iii)中、R、R、及び、Rは、それぞれ独立に、水素原子、ハロゲン原子(例えば、フッ素原子、塩素原子、及び、臭素原子等)、炭素数が1~6のアルキル基(例えば、メチル基、エチル基、及び、プロピル基等)、Z、又は、L-Zを表す。ここでL及びZは、上記における基と同義である。R、R、及び、Rとしては、水素原子、又は、炭素数が1~3のアルキル基が好ましく、水素原子がより好ましい。
 上記式(i)で表される単量体として、R、R、及び、Rが水素原子、又は、メチル基であって、Lが単結合又はアルキレン基若しくはオキシアルキレン構造を含む2価の連結基であって、Xが酸素原子又はイミノ基であって、Zが脂肪族基、複素環基、又は、芳香族基である化合物が好ましい。
 また、上記式(ii)で表される単量体として、Rが水素原子又はメチル基であって、Lがアルキレン基であって、Zが脂肪族基、複素環基、又は、芳香族基である化合物が好ましい。また、上記式(iii)で表される単量体として、R、R、及び、Rが水素原子又はメチル基であって、Zが脂肪族基、複素環基、又は、芳香族基である化合物が好ましい。
 式(i)~(iii)で表される代表的な化合物の例としては、アクリル酸エステル類、メタクリル酸エステル類、及び、スチレン類等から選ばれるラジカル重合性化合物が挙げられる。
 なお、式(i)~(iii)で表される代表的な化合物の例としては、特開2013-249417号公報の段落0089~0093に記載の化合物を参照でき、これらの内容は本明細書に組み込まれる。
 樹脂A2において、疎水性繰り返し単位の含有量は、質量換算で、樹脂A2の全質量に対して、10~90質量%が好ましく、20~80質量%がより好ましい。
・磁性粒子と相互作用を形成し得る官能基
 樹脂A2は、磁性粒子と相互作用を形成し得る官能基を有していてもよい。
 樹脂A2は、磁性粒子と相互作用を形成し得る官能基を含む繰り返し単位を更に含むことが好ましい。
 磁性粒子と相互作用を形成し得る官能基としては、例えば、酸基、塩基性基、配位性基、及び、反応性を有する官能基等が挙げられる。
 樹脂A2が、酸基、塩基性基、配位性基、又は、反応性を有する官能基を含む場合、それぞれ、酸基を含む繰り返し単位、塩基性基を含む繰り返し単位、配位性基を含む繰り返し単位、又は、反応性を有する官能基を有する繰り返し単位を含むことが好ましい。
 酸基を含む繰り返し単位は、上記のグラフト鎖を含む繰り返し単位と同一の繰り返し単位であっても、異なる繰り返し単位であってもよいが、酸基を含む繰り返し単位は、上記の疎水性繰り返し単位とは異なる繰り返し単位である(すなわち、上記の疎水性繰り返し単位には相当しない)。
 磁性粒子と相互作用を形成し得る官能基である酸基としては、例えば、カルボン酸基、スルホン酸基、リン酸基、及び、フェノール性水酸基等があり、カルボン酸基、スルホン酸基、及び、リン酸基のうち少なくとも1種が好ましく、カルボン酸基がより好ましい。カルボン酸基は、磁性粒子への吸着力が良好で、かつ、分散性が高い。
 すなわち、樹脂A2は、カルボン酸基、スルホン酸基、及び、リン酸基のうち少なくとも1種を含む繰り返し単位を更に含むことが好ましい。
 樹脂A2は、酸基を含む繰り返し単位を1種又は2種以上有してもよい。
 樹脂A2が酸基を含む繰り返し単位を含む場合、その含有量は、質量換算で、樹脂A2の全質量に対して、5~80質量%が好ましく、10~60質量%がより好ましい。
 磁性粒子と相互作用を形成し得る官能基である塩基性基としては、例えば、第1級アミノ基、第2級アミノ基、第3級アミノ基、N原子を含むヘテロ環、及び、アミド基等があり、好ましい塩基性基は、磁性粒子への吸着力が良好で、かつ、分散性が高い点で、第3級アミノ基である。樹脂A2は、これらの塩基性基を1種又は2種以上含んでいてもよい。
 樹脂A2が塩基性基を含む繰り返し単位を含む場合、その含有量は、質量換算で、樹脂A2の全質量に対して、0.01~50質量%が好ましく、0.01~30質量%がより好ましい。
 磁性粒子と相互作用を形成し得る官能基である配位性基、及び、反応性を有する官能基としては、例えば、アセチルアセトキシ基、トリアルコキシシリル基、イソシアネート基、酸無水物、及び、酸塩化物等が挙げられる。好ましい官能基は、磁性粒子への吸着力が良好で、磁性粒子の分散性が高い点で、アセチルアセトキシ基である。樹脂A2は、これらの基を1種又は2種以上有してもよい。
 樹脂A2が、配位性基を含む繰り返し単位、又は、反応性を有する官能基を含む繰り返し単位を含む場合、これらの含有量は、質量換算で、樹脂A2の全質量に対して、10~80質量%が好ましく、20~60質量%がより好ましい。
 上記樹脂A2が、グラフト鎖以外に、磁性粒子と相互作用を形成し得る官能基を含む場合、上記の各種の磁性粒子と相互作用を形成し得る官能基を含んでいればよく、これらの官能基がどのように導入されているかは特に制限されない。例えば、組成物に含まれる樹脂は、下記式(iv)~(vi)で表される単量体に由来の繰り返し単位から選択された1種以上の繰り返し単位を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000012
 式(iv)~(vi)中、R11、R12、及び、R13は、それぞれ独立に、水素原子、ハロゲン原子(例えば、フッ素原子、塩素原子、及び、臭素原子等)、又は、炭素数が1~6のアルキル基(例えば、メチル基、エチル基、及び、プロピル基等)を表す。
 式(iv)~(vi)中、R11、R12、及び、R13としては、水素原子、又は、炭素数が1~3のアルキル基が好ましく、水素原子又はメチル基がより好ましい。一般式(iv)中、R12及びR13としては、水素原子が更に好ましい。
 式(iv)中のXは、酸素原子(-O-)又はイミノ基(-NH-)を表し、酸素原子が好ましい。
 また、式(v)中のYは、メチン基又は窒素原子を表す。
 また、式(iv)~(v)中のLは、単結合又は2価の連結基を表す。2価の連結基の定義は、上述した式(i)中のLで表される2価の連結基の定義と同じである。
 Lは、単結合、アルキレン基又はオキシアルキレン構造を含む2価の連結基が好ましい。オキシアルキレン構造は、オキシエチレン構造又はオキシプロピレン構造がより好ましい。また、Lは、オキシアルキレン構造を2以上繰り返して含むポリオキシアルキレン構造を含んでいてもよい。ポリオキシアルキレン構造としては、ポリオキシエチレン構造又はポリオキシプロピレン構造が好ましい。ポリオキシエチレン構造は、-(OCHCH-で表され、nは、2以上の整数が好ましく、2~10の整数がより好ましい。
 式(iv)~(vi)中、Zは、グラフト鎖以外に磁性粒子と相互作用を形成し得る官能基を表し、カルボン酸基、又は、第3級アミノ基が好ましく、カルボン酸基がより好ましい。
 式(vi)中、R14、R15、及び、R16は、それぞれ独立に、水素原子、ハロゲン原子(例えば、フッ素原子、塩素原子、及び、臭素原子等)、炭素数が1~6のアルキル基(例えば、メチル基、エチル基、及び、プロピル基等)、-Z、又は、L-Zを表す。ここでL及びZは、上記におけるL及びZと同義であり、好ましい例も同様である。R14、R15、及び、R16としては、水素原子、又は、炭素数が1~3のアルキル基が好ましく、水素原子がより好ましい。
 式(iv)で表される単量体として、R11、R12、及び、R13がそれぞれ独立に水素原子又はメチル基であって、Lがアルキレン基又はオキシアルキレン構造を含む2価の連結基であって、Xが酸素原子又はイミノ基であって、Zがカルボン酸基である化合物が好ましい。
 また、式(v)で表される単量体として、R11が水素原子又はメチル基であって、Lがアルキレン基であって、Zがカルボン酸基であって、Yがメチン基である化合物が好ましい。
 更に、式(vi)で表される単量体として、R14、R15、及び、R16がそれぞれ独立に水素原子又はメチル基であって、Zがカルボン酸基である化合物が好ましい。
 以下に、式(iv)~(vi)で表される単量体(化合物)の代表的な例を示す。
 単量体の例としては、メタクリル酸、クロトン酸、イソクロトン酸、分子内に付加重合性二重結合及び水酸基を含む化合物(例えば、メタクリル酸2-ヒドロキシエチル)とコハク酸無水物との反応物、分子内に付加重合性二重結合及び水酸基を含む化合物とフタル酸無水物との反応物、分子内に付加重合性二重結合及び水酸基を含む化合物とテトラヒドロキシフタル酸無水物との反応物、分子内に付加重合性二重結合及び水酸基を含む化合物と無水トリメリット酸との反応物、分子内に付加重合性二重結合及び水酸基を含む化合物とピロメリット酸無水物との反応物、アクリル酸、アクリル酸ダイマー、アクリル酸オリゴマー、マレイン酸、イタコン酸、フマル酸、4-ビニル安息香酸、ビニルフェノール、及び、4-ヒドロキシフェニルメタクリルアミド等が挙げられる。
 磁性粒子と相互作用を形成し得る官能基を含む繰り返し単位の含有量は、磁性粒子との相互作用、経時安定性、及び、現像液への浸透性の点から、質量換算で、樹脂A2の全質量に対して、0.05~90質量%が好ましく、1.0~80質量%がより好ましく、10~70質量%が更に好ましい。
・エチレン性不飽和基
 樹脂A2は、エチレン性不飽和基を含んでいてもよい。
 エチレン性不飽和基としては特に制限されないが、例えば、(メタ)アクリロイル基、ビニル基、及び、スチリル基等が挙げられ、(メタ)アクリロイル基が好ましい。
 樹脂A2としては、なかでも、側鎖にエチレン性不飽和基を含む繰り返し単位を含むことが好ましく、側鎖にエチレン性不飽和基を含み、且つ(メタ)アクリレートに由来する繰り返し単位(以下、「側鎖にエチレン性不飽和基を含む(メタ)アクリル系繰り返し単位」ともいう。)を含むことがより好ましい。
 側鎖にエチレン性不飽和基を含む(メタ)アクリル系繰り返し単位は、例えば、カルボン酸基を含む(メタ)アクリル系繰り返し単位を含む樹脂A2中の上記カルボン酸基に、グリシジル基又は脂環式エポキシ基を含むエチレン性不飽和化合物を付加反応させて得られる。このようにして導入されたエチレン性不飽和基(グリシジル基又は脂環式エポキシ基)を反応させれば、側鎖にエチレン性不飽和基を含む(メタ)アクリル系繰り返し単位を得ることができる。
 樹脂A2がエチレン性不飽和基を含む繰り返し単位を含む場合、その含有量は、質量換算で、樹脂A2の全質量に対して、30~70質量%が好ましく、40~60質量%がより好ましい。
・その他の硬化性基
 樹脂A2は、エチレン性不飽和基以外にもその他の硬化性基を含んでいてもよい。
 その他の硬化性基としては、例えば、エポキシ基及びオキセタニル基が挙げられる。
 樹脂A2としては、なかでも、側鎖にその他の硬化性基を含む繰り返し単位を含むことが好ましく、側鎖にその他の硬化性基を含み、且つ(メタ)アクリレートに由来する繰り返し単位(以下、「側鎖にその他の硬化性基を含む(メタ)アクリル系繰り返し単位」ともいう。)を含むことがより好ましい。
 側鎖にその他の硬化性基を含む(メタ)アクリル系繰り返し単位は、例えば、(メタ)アクリル酸グリシジルに由来する繰り返し単位が挙げられる。
 樹脂A2がその他の硬化性基を含む繰り返し単位を含む場合、その含有量は、質量換算で、樹脂A2の全質量に対して、5~50質量%が好ましく、10~30質量%がより好ましい。
・その他の繰り返し単位
 更に、樹脂A2は、膜形成能等の諸性能を向上する目的で、本発明の効果を損なわない限りにおいて、上述の繰り返し単位とは異なる、種々の機能を有する他の繰り返し単位を更に有していてもよい。
 このような、他の繰り返し単位としては、例えば、アクリロニトリル類及びメタクリロニトリル類等から選ばれるラジカル重合性化合物に由来の繰り返し単位が挙げられる。
 樹脂A2は、これらの他の繰り返し単位を1種又は2種以上使用でき、その含有量は、質量換算で、樹脂A2の全質量に対して、0~80質量%が好ましく、10~60質量%がより好ましい。
・樹脂A2の物性
 樹脂A2の酸価としては特に制限されないが、例えば、0~400mgKOH/gが好ましく、10~350mgKOH/gがより好ましく、30~300mgKOH/gが更に好ましく、50~200mgKOH/gの範囲が特に好ましい。
 樹脂A2の酸価が50mgKOH/g以上であれば、磁性粒子の沈降安定性をより向上できる。
 本明細書において酸価は、例えば、化合物中における酸基の平均含有量から算出できる。また、樹脂中における酸基を含む繰り返し単位の含有量を変えることで、所望の酸価を有する樹脂を得られる。
 樹脂A2の重量平均分子量は特に制限されないが、例えば、3,000以上が好ましく、4,000以上がより好ましく、5,000以上が更に好ましく、6,000以上が特に好ましい。また、上限値としては、例えば、300,000以下が好ましく、200,000以下がより好ましく、100,000以下が更に好ましく、50,000以下が特に好ましい。
 樹脂A2は、公知の方法に基づいて合成できる。
 なお、樹脂A2の具体例の例としては、特開2013-249417号公報の段落0127~0129に記載の高分子化合物を参照でき、これらの内容は本明細書に組み込まれる。
 また、樹脂A2としては、特開2010-106268号公報の段落0037~0115(対応するUS2011/0124824の段落0075~0133欄)のグラフト共重合体も使用でき、これらの内容は援用でき、本明細書に組み込まれる。
<樹脂型レオロジーコントロール剤>
 バインダ成分の好適な一態様としては、樹脂型レオロジーコントロール剤も挙げられる。
 レオロジーコントロール剤は、せん断力(せん断速度)が低い場合には高粘度を示し、せん断力(せん断速度)が高い場合には低粘度を示すチキソトロピック性を組成物に付与する成分である。
 本明細書において、樹脂型レオロジーコントロール剤とは、上述の特性を有する樹脂を意味し、上述の樹脂Aとは異なる樹脂を意味する。
 樹脂型レオロジーコントロール剤は、例えば、吸着基を1以上(好ましくは2以上)有し、更に、立体反発構造基を有する化合物が挙げられる。
 樹脂型レオロジーコントロール剤の重量平均分子量は、2000以上であるのが好ましく、2000~50000の範囲が好ましい。
 樹脂型レオロジーコントロール剤の具体的な態様の一例としては、後述する有機系レオロジーコントロール剤のうち、樹脂型である有機系レオロジーコントロール剤が該当する。
 バインダ成分が樹脂型レオロジーコントロール剤を含む場合、樹脂型レオロジーコントロール剤の含有量は、組成物の全質量に対して、1~24質量%が好ましく、1~15質量%がより好ましく、1~12質量%が更に好ましく、1~10質量%が特に好ましく、1~7質量%が最も好ましい。
 また、バインダ成分が樹脂型レオロジーコントロール剤を含む場合、樹脂型レオロジーコントロール剤の含有量は、組成物の全固形分に対して、0.8~24質量%が好ましく、0.8~15質量%がより好ましく、0.8~12質量%が更に好ましく、0.8~10質量%が更により好ましく、0.8~8質量%が特に好ましく、0.8~7質量%が最も好ましい。
<重合性化合物>
 バインダ成分の好適な一態様としては、重合性化合物も挙げられる。
 重合性化合物の分子量(又は重量平均分子量)は、特に制限されないが、2000以下が好ましい。
 バインダ成分が重合性化合物を含む場合、その含有量は、組成物の全質量に対して、1~24質量%が好ましく、1~15質量%がより好ましく、1~12質量%が更に好ましく、1~10質量%が特に好ましく、1~7質量%が最も好ましい。
 バインダ成分が重合性化合物を含む場合、その含有量は、組成物の全固形分に対して、0.8~24質量%が好ましく、0.8~15質量%がより好ましく、0.8~12質量%が更に好ましく、0.8~10質量%が更により好ましく、0.8~8質量%が特に好ましく、0.8~7質量%が最も好ましい。
(エチレン性不飽和結合を含む基を含む化合物)
 重合性化合物は、例えば、エチレン性不飽和結合を含む基(以下、単に「エチレン性不飽和基」ともいう)を含む化合物が挙げられる。
 重合性化合物としては、エチレン性不飽和結合を1個以上含む化合物が好ましく、2個以上含む化合物がより好ましく、3個以上含む化合物が更に好ましく、5個以上含む化合物が特に好ましい。上限は、例えば、15個以下である。エチレン性不飽和基としては、例えば、ビニル基、(メタ)アリル基、及び、(メタ)アクリロイル基等が挙げられる。
 重合性化合物としては、例えば、特開2008-260927号公報の段落0050、及び、特開2015-068893号公報の段落0040に記載されている化合物を使用でき、上記の内容は本明細書に組み込まれる。
 重合性化合物としては、例えば、モノマー、プレポリマー、オリゴマー、及び、これらの混合物、並びに、これらの多量体等の化学的形態のいずれであってもよい。
 上記重合性化合物としては、3~15官能の(メタ)アクリレート化合物が好ましく、3~6官能の(メタ)アクリレート化合物がより好ましい。
 重合性化合物としては、エチレン性不飽和基を1個以上含む、沸点が100℃以上の化合物も好ましい。例えば、特開2013-029760号公報の段落0227、特開2008-292970号公報の段落0254~0257に記載の化合物を参酌でき、この内容は本明細書に組み込まれる。
 重合性化合物としては、ジペンタエリスリトールトリアクリレート(市販品としてはKAYARAD D-330;日本化薬社製)、ジペンタエリスリトールテトラアクリレート(市販品としてはKAYARAD D-320;日本化薬社製)、ジペンタエリスリトールペンタ(メタ)アクリレート(市販品としてはKAYARAD D-310;日本化薬社製)、ジペンタエリスリトールヘキサ(メタ)アクリレート(市販品としてはKAYARAD DPHA;日本化薬社製、A-DPH-12E;新中村化学社製)、及び、これらの(メタ)アクリロイル基がエチレングリコール残基又はプロピレングリコール残基を介している構造(例えば、サートマー社から市販されている、SR454、SR499)が好ましい。これらのオリゴマータイプも使用できる。また、NKエステルA-TMMT(ペンタエリスリトールテトラアクリレート、新中村化学社製)、KAYARAD RP-1040、KAYARAD DPEA-12LT、KAYARAD DPHA LT、KAYARAD RP-3060、及び、KAYARAD DPEA-12(いずれも商品名、日本化薬社製)等を使用してもよい。
 重合性化合物としては、カルボン酸基、スルホン酸基、及び、リン酸基等の酸基を有していてもよい。酸基を含む重合性化合物としては、脂肪族ポリヒドロキシ化合物と不飽和カルボン酸とのエステルが好ましく、脂肪族ポリヒドロキシ化合物の未反応の水酸基に非芳香族カルボン酸無水物を反応させて酸基を持たせた重合性化合物がより好ましく、このエステルにおいて、脂肪族ポリヒドロキシ化合物がペンタエリスリトール及び/又はジペンタエリスリトールである化合物が更に好ましい。市販品としては、例えば、東亞合成社製の、アロニックスTO-2349、M-305、M-510、及び、M-520等が挙げられる。
 酸基を含む重合性化合物の酸価としては、0.1~40mgKOH/gが好ましく、5~30mgKOH/gがより好ましい。重合性化合物の酸価が0.1mgKOH/g以上であれば、現像溶解特性が良好であり、40mgKOH/g以下であれば、製造及び/又は取扱い上、有利である。更には、光重合性能が良好で、硬化性に優れる。
 重合性化合物としては、カプロラクトン構造を含む化合物も好ましい態様である。
 カプロラクトン構造を含む化合物としては、分子内にカプロラクトン構造を含む限り特に制限されないが、例えば、トリメチロールエタン、ジトリメチロールエタン、トリメチロールプロパン、ジトリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、グリセリン、ジグリセロール、又は、トリメチロールメラミン等の多価アルコールと、(メタ)アクリル酸及びε-カプロラクトンとをエステル化して得られる、ε-カプロラクトン変性多官能(メタ)アクリレートが挙げられる。なかでも下記式(Z-1)で表されるカプロラクトン構造を含む化合物が好ましい。
Figure JPOXMLDOC01-appb-C000013
 式(Z-1)中、6個のRは全てが下記式(Z-2)で表される基であるか、又は、6個のRのうち1~5個が下記式(Z-2)で表される基であり、残余が下記式(Z-3)で表される基である。
Figure JPOXMLDOC01-appb-C000014
 式(Z-2)中、Rは水素原子又はメチル基を示し、mは1又は2の数を示し、「*」は結合手を示す。
Figure JPOXMLDOC01-appb-C000015
 式(Z-3)中、Rは水素原子又はメチル基を示し、「*」は結合手を示す。
 カプロラクトン構造を含む重合性化合物としては、例えば、日本化薬からKAYARAD DPCAシリーズとして市販されており、DPCA-20(上記式(Z-1)~(Z-3)においてm=1、式(Z-2)で表される基の数=2、Rが全て水素原子である化合物)、DPCA-30(同式、m=1、式(Z-2)で表される基の数=3、Rが全て水素原子である化合物)、DPCA-60(同式、m=1、式(Z-2)で表される基の数=6、Rが全て水素原子である化合物)、及び、DPCA-120(同式においてm=2、式(Z-2)で表される基の数=6、Rが全て水素原子である化合物)等が挙げられる。また、カプロラクトン構造を含む重合性化合物の市販品としては、東亞合成社製M-350(商品名)(トリメチロールプロパントリアクリレート)も挙げられる。
 重合性化合物としては、下記式(Z-4)又は(Z-5)で表される化合物も使用できる。
Figure JPOXMLDOC01-appb-C000016
 式(Z-4)及び(Z-5)中、Eは、-((CHCHO)-、又は、((CHCH(CH)O)-を表し、yは、0~10の整数を表し、Xは、(メタ)アクリロイル基、水素原子、又は、カルボン酸基を表す。
 式(Z-4)中、(メタ)アクリロイル基の合計は3個又は4個であり、mは0~10の整数を表し、各mの合計は0~40の整数である。
 式(Z-5)中、(メタ)アクリロイル基の合計は5個又は6個であり、nは0~10の整数を表し、各nの合計は0~60の整数である。
 式(Z-4)中、mは、0~6の整数が好ましく、0~4の整数がより好ましい。
 また、各mの合計は、2~40の整数が好ましく、2~16の整数がより好ましく、4~8の整数が更に好ましい。
 式(Z-5)中、nは、0~6の整数が好ましく、0~4の整数がより好ましい。
 また、各nの合計は、3~60の整数が好ましく、3~24の整数がより好ましく、6~12の整数が更に好ましい。
 また、式(Z-4)又は式(Z-5)中の-((CHCHO)-又は((CHCH(CH)O)-は、酸素原子側の末端がXに結合する形態が好ましい。
 式(Z-4)又は式(Z-5)で表される化合物は1種単独で用いてもよいし、2種以上併用してもよい。特に、式(Z-5)において、6個のX全てがアクリロイル基である形態、式(Z-5)において、6個のX全てがアクリロイル基である化合物と、6個のXのうち、少なくとも1個が水素原子ある化合物との混合物である態様が好ましい。このような構成として、現像性をより向上できる。
 また、式(Z-4)又は式(Z-5)で表される化合物の重合性化合物中における全含有量としては、20質量%以上が好ましく、50質量%以上がより好ましい。
 式(Z-4)又は式(Z-5)で表される化合物のなかでも、ペンタエリスリトール誘導体及び/又はジペンタエリスリトール誘導体がより好ましい。
 また、重合性化合物としては、カルド骨格を含んでいてもよい。
 カルド骨格を含む重合性化合物としては、9,9-ビスアリールフルオレン骨格を含む重合性化合物が好ましい。
 カルド骨格を含む重合性化合物としては、制限されないが、例えば、オンコートEXシリーズ(長瀬産業社製)及びオグソール(大阪ガスケミカル社製)等が挙げられる。
 重合性化合物は、イソシアヌル酸骨格を中心核として含む化合物も好ましい。このような重合性化合物の例としては、例えば、NKエステルA-9300(新中村化学社製)が挙げられる。
 重合性化合物のエチレン性不飽和基の含有量(重合性化合物中のエチレン性不飽和基の数を、重合性化合物の分子量(g/mol)で除した値を意味する)は5.0mmol/g以上が好ましい。上限は特に制限されないが、一般に、20.0mmol/g以下である。
(エポキシ基及び/又はオキセタニル基を有する化合物)
 重合性化合物としては、エポキシ基及び/又はオキセタニル基を有する化合物であるのも好ましい。
 重合性化合物は、エポキシ基及び/又はオキセタニル基を、1個以上有することが好ましく、2~10個有することがより好ましい。
 重合性化合物において、エポキシ基及び/又はオキセタニル基(好ましくはエポキシ基)は、環状基(脂環基等)と縮環していてもよい。エポキシ基及び/又はオキセタニル基と縮環した環状基は、炭素数5~15が好ましい。また、上記環状基において、縮環しているエポキシ基及び/又はオキセタニル基以外の部分は、単環でも多環でもよい。1つの環状基には、1つだけエポキシ基又はオキセタニル基が縮環していてもよいし、2以上のエポキシ基及び/又はオキセタニル基が縮環していてもよい。
 重合性化合物としては、例えば、単官能又は多官能グリシジルエーテル化合物が挙げられる。
 重合性化合物は、例えば、(ポリ)アルキレングリコールジグリシジルエーテルであってもよい。
 重合性化合物は、例えば、グリセロール、ソルビトール、及び(ポリ)グリセロール等の3価以上の多価アルコールのグリシジルエーテル化合物であってもよい。
 重合性化合物は、上述の式(Z-1)で表されるカプロラクトン構造を含む化合物において、式(Z-2)で表される基が下記式(Z-2E)に変更され、式(Z-3)で表される基が式(Z-3E)で表される基に変更された化合物でもよい。
Figure JPOXMLDOC01-appb-C000017
 式(Z-2E)中、mは1又は2の数を示し、X及びYはそれぞれ独立に水素原子又は置換基(好ましくはアルキル基、好ましくは炭素数1~3)を示し、「*」は結合手を示す。
 式(Z-3E)中、X及びYはそれぞれ独立に水素原子又は置換基(好ましくはアルキル基、好ましくは炭素数1~3)を示し、「*」は結合手を示す。
 重合性化合物は、Xが、式(Z-3E)で表される基、又は、水素原子を表すように変更された上述の式(Z-4)で表される化合物でもよい。
 このように変更された式(Z-4)中、式(Z-3E)で表される基の合計は2~4個である。
 重合性化合物は、Xが、式(Z-3E)で表される基、又は、水素原子を表すように変更された上述の式(Z-5)で表される化合物でもよい。
 このように変更された式(Z-5)中、式(Z-3E)で表される基の合計は2~6個(好ましくは5又は6)である。
 重合性化合物は、エポキシ基及び/又はオキセタニル基と縮環した環状基のN個(が連結基を介して結合された構造の化合物でもよい。
 Nは、2以上の整数であり、2~6の整数が好ましく、2がより好ましい。上記連結基は、水素原子以外の原子の数の合計が、1~20であることが好ましく、2~6であることがより好ましい。Nが2である場合、上記連結基としては、例えば、アルキレンオキシカルボニル基が挙げられる。
 重合性化合物の市販品としては、デナコール EX-212L、EX-214L、EX-216L、EX-321L、EX-850L、(以上、ナガセケムテックス(株)製)等の多官能脂肪族グリシジルエーテル化合物が挙げられる。これらは、低塩素品であるが、低塩素品ではない、EX-212、EX-214、EX-216、EX-314、EX-321、EX-614、EX-850等も同様に使用できる。
 また、市販品としては、セロキサイド 2021P(ダイセル社製、多官能エポキシモノマー)も使用できる。
 また、市販品としては、EHPE 3150(ダイセル社製、多官能エポキシ/オキシラニルモノマー)も使用できる。
〔レオロジーコントロール剤〕
 組成物は、レオロジーコントロール剤を含んでいてもよい。
 レオロジーコントロール剤は、せん断力(せん断速度)が低い場合には高粘度を示し、せん断力(せん断速度)が高い場合には低粘度を示すチキソトロピック性を組成物に付与する成分である。
 組成物がレオロジーコントロール剤を含む場合、レオロジーコントロール剤の含有量は、組成物の全質量に対して、0.1~24質量%が好ましく、0.1~15質量%がより好ましく、0.5~12質量%が更に好ましく、0.5~10質量%が特に好ましく、0.5~7質量%が最も好ましい。
 レオロジーコントロール剤の含有量は、組成物の全固形分に対して、0.1~24質量%が好ましく、0.1~15質量%がより好ましく、0.5~12質量%が更に好ましく、0.5~10質量%が更により好ましく、0.5~8質量%が特に好ましく、0.5~7質量%が最も好ましい。
 なお、上記のレオロジーコントロール剤の含有量は、樹脂型レオロジーコントロール剤を含めない含有量である。樹脂型レオロジーコントロール剤は、上述したバインダ成分である樹脂に該当する。
 レオロジーコントロール剤としては、有機系レオロジーコントロール剤及び無機系レオロジーコントロール剤が挙げられ、有機系レオロジーコントロール剤が好ましい。
<有機系レオロジーコントロール剤>
 組成物が有機系レオロジーコントロール剤を含む場合、有機系レオロジーコントロール剤の含有量は、組成物の全質量に対して、0.1~24質量%が好ましく、0.1~15質量%がより好ましく、0.5~12質量%が更に好ましく、0.5~10質量%が特に好ましく、0.5~7質量%が最も好ましい。
 有機系レオロジーコントロール剤の含有量は、組成物の全固形分に対して、0.1~24質量%が好ましく、0.1~15質量%がより好ましく、0.5~12質量%が更に好ましく、0.5~10質量%が更により好ましく、0.5~8質量%が特に好ましく、0.5~7質量%が最も好ましい。
 なお、上記の有機系レオロジーコントロール剤の含有量は、樹脂型レオロジーコントロール剤を含めない含有量である。樹脂型レオロジーコントロール剤は、上述したバインダ成分である樹脂に該当する。
 有機系レオロジーコントロール剤は1種単独で使用してもよく2種以上使用してもよい。
 有機系レオロジーコントロール剤は、例えば、吸着基を1以上(好ましくは2以上)有し、更に、立体反発構造基を有する化合物が挙げられる。
 吸着基は、磁性粒子の表面と相互作用して、有機系レオロジーコントロール剤を磁性粒子の表面に吸着させる。
 上記吸着基としては、例えば、酸基、塩基性基、及び、アミド基が挙げられる。
 酸基としては、例えば、カルボキシ基、リン酸基、スルホ基、フェノール性水酸基、及び、これらの酸無水物基(カルボキシ基の酸無水物基等)が挙げられ、本発明の効果がより優れる点から、カルボキシ基が好ましい。
 塩基性基としては、例えば、アミノ基(アンモニア、1級アミン又は2級アミンから水素原子を1つ除いた基)、及び、イミノ基が挙げられる。
 なかでも吸着基は、カルボキシ基又はアミド基が好ましく、カルボキシ基がより好ましい。
 立体反発構造基は、立体的に嵩高い構造を有することで、有機系レオロジーコントロール剤が吸着した磁性粒子に立体障害を導入し、磁性粒子同士の間に適度な空間を保持させる。立体反発構造基としては、例えば、鎖状基が好ましく長鎖脂肪酸基がより好ましく、長鎖アルキル基が更に好ましい。
 有機系レオロジーコントロール剤は、水素結合性ユニットを有することも好ましい。
 水素結合性ユニットは、有機系レオロジーコントロール剤同士、並びに、有機系レオロジーコントロール剤及び他の成分の間で、水素結合性のネットワークを構築するために機能する部分構造である。上記ネットワークの形成に寄与する有機系レオロジーコントロール剤は、磁性粒子の表面に吸着していてもよく、していなくてもよい。
 水素結合性ユニットは上述の吸着基と同じであってもよく異なっていてもよい。水素結合性ユニットが上述の吸着基と同じである場合、上記吸着基の一部が磁性粒子の表面に結合し、他の一部が水素結合性ユニットとして機能する。
 水素結合性ユニットとしては、カルボキシ基又はアミド基が好ましい。水素結合性ユニットとしてのカルボキシ基は硬化物を作製する際に硬化反応に組み込みやすい点で好ましく、アミド基は組成物の経時安定性がより優れる点で好ましい。
 有機レオロジーコントロール剤が樹脂である場合、樹脂である有機レオロジーコントロール剤は、上述したグラフト鎖を含む繰り返し単位を有してもよいし、実質的に有していなくてもよい。樹脂である有機レオロジーコントロール剤が上述したグラフト鎖を含む繰り返し単位を実質的に有さない場合、樹脂である有機レオロジーコントロール剤の全質量に対して上述したグラフト鎖を含む繰り返し単位の含有量は、2質量%未満が好ましく、1質量%以下がより好ましく、0.1質量%未満が更に好ましい。下限は0質量%以上である。
 有機系レオロジーコントロール剤は、ポリカルボン酸(カルボキシ基を2以上有する化合物)、ポリ無水カルボン酸(カルボキシ基同士からなる酸無水物基を2以上有する化合物)、及び、アマイドワックスからなる群から選択される1種以上が好ましい。
 これらは、樹脂であってもよいし、樹脂以外であってもよい。
 また、これらは、後述する、凝集コントロール剤、及び/又は、凝集分散剤に該当していてもよい。
 また、有機系レオロジーコントロール剤としては、例えば、変性ウレア、ウレア変性ポリアマイド、脂肪酸アマイド、ポリウレタン、ポリアミドアマイド、高分子ウレア誘導体、及び、その塩(カルボン酸塩等)等が挙げられる。
 変性ウレアは、イソシアネート単量体又はそのアダクト体と有機アミンとの反応物である。変性ウレアは、ポリオキシアルキレンポリオール(ポリオキシエチレンポリオール、ポリオキシプロピレンポリオール等)、及び/又は、アルキド鎖等で変性されている。ウレア変性ポリアマイドは、例えば、尿素結合を含有する化合物とこれらに中極性基又は低極性基を末端に導入した化合物である。中極性基又は低極性基としては、例えば、ポリオキシアルキレンポリオール(ポリオキシエチレンポリオール、ポリオキシプロピレンポリオール等)、及び、アルキド鎖が挙げられる。脂肪酸アマイドは、分子内に長鎖脂肪酸基とアミド基とを有する化合物である。
 これらは、樹脂であってもよいし樹脂以外であってもよい。
 また、これらは、後述する、凝集コントロール剤、及び/又は、凝集分散剤に該当していてもよい。
 有機系レオロジーコントロール剤の分子量(分子量分布を有する場合は重量平均分子量)は、200~50000の範囲が好ましい。
 有機系レオロジーコントロール剤が、酸価を有する場合、酸価は5~400mgKOH/gが好ましい。
 有機系レオロジーコントロール剤が、アミン酸価を有する場合、アミン価は5~300mgKOH/gが好ましい。
(凝集コントロール剤)
 有機系レオロジーコントロール剤としては、凝集コントロール剤も挙げられる。凝集コントロール剤は樹脂であってもよいし樹脂以外であってもよい。
 凝集コントロール剤は、磁性粒子のような相対的に密度の高い凝集体に対して結合し、更に、樹脂前駆体等の成分を組成物中に分散し、嵩高い凝集体を作ることができるという機能を備える。
 組成物が凝集コントロール剤を含む場合、組成物中の磁性粒子のハードケーキ化が抑制され、更に嵩高い凝集体が形成されるため、再分散性が向上し得る。
 凝集コントロール剤としては、例えば、セルロース誘導体が挙げられる。
 セルロース誘導体としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシプロピルエチルセルロース、及び、それらの塩等が挙げられる。
 組成物が凝集コントロール剤を含む場合、凝集コントロール剤の含有量は、組成物の全質量に対して、0.1~24質量%が好ましく、0.1~15質量%がより好ましく、0.5~12質量%が更に好ましく、0.5~10質量%が特に好ましく、0.5~7質量%が最も好ましい。
 凝集コントロール剤の含有量は、組成物の全固形分に対して、0.1~24質量%が好ましく、0.1~15質量%がより好ましく、0.5~12質量%が更に好ましく、0.5~10質量%が更により好ましく、0.5~8質量%が特に好ましく、0.5~7質量%が最も好ましい。
 なお、上記の凝集コントロール剤の含有量は、樹脂型レオロジーコントロール剤を含めない含有量である。樹脂型レオロジーコントロール剤は、上述したバインダ成分である樹脂に該当する。
(凝集分散剤)
 有機系レオロジーコントロール剤としては、凝集分散剤も挙げられる。
 凝集分散剤は樹脂であってもよいし樹脂以外であってもよい。
 凝集分散剤は、磁性粒子の表面に吸着し、磁性粒子を相互に離間させながら、分散剤間の相互作用により磁性粒子同士の距離を一定以上に保ち、磁性粒子同士が直接凝集することを防ぐことができるという機能を備える。この結果として、磁性粒子の凝集が抑制され、凝集体が形成される場合であっても、相対的に密度の低い凝集体が形成される。更に、組成物中に樹脂前駆体等の成分を組成物中に分散し、嵩高い凝集体を作ることができため、再分散性が向上し得る。
 凝集分散剤としては、多塩基酸のアルキロールアンモニウム塩が好ましい。
 多塩基酸は、酸基を2個以上有していればよく、例えば、酸基を有する繰り返し単位を含む酸性ポリマー(例えば、ポリアクリル酸、ポリメタクリル酸、ポリビニルスルホン酸、及び、ポリリン酸等)が挙げられる。また、上記以外の多塩基酸としては、クロトン酸等の不飽和脂肪酸を重合させたポリマーが挙げられる。多塩基酸のアルキロールアンモニウム塩は、これらの多塩基酸にアルキロールアンモニウムを反応させることにより得られる。このような反応によって得られた塩は、通常、以下の部分構造を含む。
 -C(=O)-N(-R)(-R-OH)
 ここで、Rはアルキル基、Rはアルキレン基である。
 多塩基酸のアルキロールアンモニウム塩としては、上記部分構造を複数含むポリマーであるのが好ましい。多塩基酸のアルキロールアンモニウム塩がポリマーである場合、重量平均分子量としては、1,000~100,000が好ましく、5,000~20,000がより好ましい。多塩基酸のアルキロールアンモニウム塩のポリマーは、磁性粒子の表面に結合し、また他の凝集分散剤分子と水素結合することにより、ポリマーの主鎖構造が磁性粒子間に入り込み、磁性粒子同士を離間させ得る。
 凝集分散剤の好適態様の一つとしては、(a)飽和脂肪族モノカルボン酸類及びヒドロキシ基含有脂肪族モノカルボン酸類、並びに、(b)多塩基酸類の少なくとも何れかの酸類と、(c)ジアミン類及びテトラアミン類の少なくとも何れかのアミン類と、が脱水縮合した縮合物であるアマイドワックスが挙げられる。
 上記(a)~(c)は、モル比で(a):(b):(c)=1~3:0~5:1~6となるように用いることが好ましい。
 飽和脂肪族モノカルボン酸類は、炭素数12~22であるのが好ましい。具体的には、ラウリン酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、マルガリン酸、ステアリン酸、ノナデカン酸、アラキジン酸、及び、ベヘン酸等が挙げられる。
 ヒドロキシ基含有脂肪族モノカルボン酸類は、炭素数12~22であるのが好ましい。具体的には、12-ヒドロキシステアリン酸、及び、ジヒドロキシステアリン酸が挙げられる。
 これらの飽和脂肪族モノカルボン酸類及びヒドロキシ基含有脂肪族モノカルボン酸類は、単独で使用してもよく、複数を併用してもよい。
 多塩基酸類は、炭素数2~12の二塩基酸以上のカルボン酸が好ましく、ジカルボン酸がより好ましい。
 このようなジカルボン酸としては、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、1,10-デカンジカルボン酸、及び、1,12-ドデカンジカルボン酸のような脂肪族ジカルボン酸;フタル酸、イソフタル酸、及び、テレフタル酸のような芳香族ジカルボン酸;1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、及び、シクロヘキシルコハク酸のような脂環式ジカルボン酸が挙げられる。これらの多塩基酸類は単独で使用してもよく、複数を併用してもよい。
 ジアミン類は、炭素数2~14であるのが好ましい。具体的には、エチレンジアミン、1,3-プロパンジアミン、1,4-ブタンジアミン、ヘキサメチレンジアミン、メタキシレンジアミン、トリレンジアミン、パラキシレンジアミン、フェニレンジアミン、イソホロンジアミン、1,10-デカンジアミン、1,12-ドデカンジアミン、4,4-ジアミノジシクロヘキシルメタン、及び、4,4-ジアミノジフェニルメタンが挙げられる。
 テトラアミン類は、炭素数2~14であるのが好ましい。具体的には、ブタン-1,1,4,4-テトラアミン、及び、ピリミジン-2,4,5,6-テトラアミンが挙げられる。これらのジアミン類及びテトラアミン類は単独で使用してもよく、複数を併用してもよい。
 ジアミン類及びテトラアミン類の量は、飽和脂肪族モノカルボン酸又はヒドロキシ基含有脂肪族モノカルボン酸のモル数と、多塩基酸類のモル数とに従って、カルボキシ基の総数とアミノ基の総数とが当量となるように、調整される。例えば、脂肪族モノカルボン酸2モルに対して、多塩基酸類である脂肪族ジカルボン酸nモル(n=0~5)である場合、ジアミン類を(n+1)モルとすると、酸とアミンとが当量となる。
 このアマイドワックスは、異なる分子量を有する複数の化合物の混合物として得られ手もよい。アマイドワックスは、下記化学式(I)で表される化合物が好ましい。なお、アマイドワックスは、単一の化合物であってもよく、混合物であってもよい。
 A-C-(B-C)-A・・・(I)
 式(I)中、Aは飽和脂肪族モノカルボン酸及び/又はヒドロキシ基含有飽和脂肪族モノカルボン酸の脱水酸基残基、Bは多塩基酸の脱水酸基残基、Cはジアミン及び/又はテトラアミンの脱水素残基、mは0≦m≦5である。
 凝集分散剤の好適態様の一つとしては、下記式(II)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000018
 式(II)中、Rは、炭素数10~25の1価の直鎖状脂肪族炭化水素基を表し、R及びRはそれぞれ独立に、炭素数2、4、6若しくは8の2価の脂肪族炭化水素基、炭素数6の2価の脂環式炭化水素基、又は、2価の芳香族炭化水素基を表し、Rは、炭素数1~8の2価の脂肪族炭化水素基を表し、R及びRはそれぞれ独立に、炭素数1~3の1価の脂肪族炭化水素基、又は、ヒドロキシアルキルエーテル基を表す。
 式(II)中、L~Lはそれぞれ独立にアミド結合を表し、LとLが-CONH-である場合、Lは-NHCO-であり、LとLが-NHCO-である場合、Lは-CONH-である。
 Rは炭素数10~25の1価の直鎖状脂肪族炭化水素基であり、例えば、デシル基、ラウリル基、ミリスチル基、ペンタデシル基、ステアリル基、パルミチル基、ノナデシル基、エイコシル基、及び、ベヘニル基等の直鎖状アルキル基;デセニル基、ペンタデセニル基、オレイル基、及び、エイコセニル基等の直鎖状アルケニル基;ペンタデシニル基、オクタデシニル基、及び、ノナデシニル基等の直鎖状アルキニル基が挙げられる。
 なかでも、Rは、炭素数14~25の1価の直鎖状脂肪族炭化水素基が好ましく、炭素数18~21の1価の直鎖状脂肪族炭化水素基がより好ましい。直鎖状脂肪族炭化水素基は、アルキル基が好ましい。
 R及びRにおける炭素数2、4、6若しくは8の2価の脂肪族炭化水素基としては、例えば、エチレン基、n-ブチレン基、n-ヘキシレン基、及び、n-オクチレン基が挙げられる。
 R及びRにおける炭素数6の2価の脂環式炭化水素基としては、例えば、1,4-シクロヘキシレン基、1,3-シクロヘキシレン基、及び、1,2-シクロヘキシレン基が挙げられる。
 R及びRにおける2価の芳香族炭化水素基としては、例えば、1,4-フェニレン基、1,3-フェニレン基、及び、1,2-フェニレン基等の炭素数6~10のアリーレン基が挙げられる。
 なかでも、R及びRは、増粘効果に優れる点で、炭素数2、4、6若しくは8の2価の脂肪族炭化水素基が好ましく、炭素数2、4若しくは6の2価の脂肪族炭化水素基がより好ましく、炭素数2若しくは4の2価の脂肪族炭化水素基が更に好ましく、炭素数2の2価の脂肪族炭化水素基がより好ましい。2価の脂肪族炭化水素基は、直鎖状アルキレン基が好ましい。
 Rは、炭素数1~8の2価の脂肪族炭化水素基を表し、なかでも、増粘効果に優れる点で、直鎖状又は分岐鎖状アルキレン基が好ましく、直鎖状アルキレン基がより好ましい。
 また、Rにおける2価の脂肪族炭化水素基の炭素数は、1~8であり、増粘効果に優れる点で、1~7が好ましく、3~7がより好ましく、3~6が更に好ましく、3~5が特に好ましい。
 したがって、Rは、炭素数1~8の直鎖状又は分岐鎖状アルキレン基が好ましく、炭素数1~7の直鎖状アルキレン基がより好ましく、炭素数3~7の直鎖状アルキレン基が更に好ましく、炭素数3~6の直鎖状アルキレン基が特に好ましく、炭素数3~5の直鎖状アルキレン基が最も好ましい。
 R及びRにおける炭素数1~3の1価の脂肪族炭化水素基としては、例えば、メチル基、エチル基、プロピル基、及び、イソプロピル基等の炭素数1~3の直鎖状又は分岐鎖状アルキル基;ビニル基、1-メチルビニル基、及び、2-プロペニル基等の炭素数2~3の直鎖状又は分岐鎖状アルケニル基;エチニル基、及び、プロピニル基等の炭素数2~3の直鎖状又は分岐鎖状アルキニル基等が挙げられる。
 R及びRにおけるヒドロキシアルキルエーテル基としては、例えば、2-ヒドロキシエトキシ基、2-ヒドロキシプロポキシ基、及び、2,3-ジヒドロキシプロポキシ基等の、モノ又はジ(ヒドロキシ)C1-3アルキルエーテル基が挙げられる。
 なかでも、R及びRはそれぞれ独立に、炭素数1~3の1価の脂肪族炭化水素基が好ましく、炭素数1~3の直鎖状又は分岐鎖状アルキル基がより好ましく、炭素数1~3の直鎖状アルキル基が更に好ましく、メチル基が特に好ましい。
 式(II)で表される化合物としては、下記式(II-1)~(II-9)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000019
 凝集分散剤としては、例えばANTI-TERRA-203、同204、同206、同250(いずれも商品名、BYK社製):ANTI-TERRA-U(商品名、BYK社製):DISPER BYK-102、同180、同191(いずれも商品名、BYK社製):BYK-P105(商品名、BYK社製):TEGO Disper630、同700(いずれも商品名、エボニックデグサジャパン社製):ターレン VA-705B(商品名、共栄社化学社製):FLOWNON RCM-300TL、同RCM-230AF(商品名、共栄社化学社製、アマイドワックス)等が挙げられる。
 組成物が凝集分散剤を含む場合、凝集分散剤の含有量は、組成物の全質量に対して、0.1~24質量%が好ましく、0.1~15質量%がより好ましく、0.5~12質量%が更に好ましく、0.5~10質量%が特に好ましく、0.5~7質量%が最も好ましい。
 凝集分散剤の含有量は、組成物の全固形分に対して、0.1~24質量%が好ましく、0.5~15質量%がより好ましく、0.1~12質量%が更に好ましく、0.5~10質量%が更により好ましく、0.5~8質量%が特に好ましく、0.5~7質量%が最も好ましい。
 なお、上記の凝集分散剤の含有量は、樹脂型レオロジーコントロール剤を含めない含有量である。樹脂型レオロジーコントロール剤は、上述したバインダ成分である樹脂に該当する。
<無機系レオロジーコントロール剤>
 無機系レオロジーコントロール剤としては、例えば、ベントナイト、シリカ、炭酸カルシウム、及び、スメクタイトが挙げられる。
 組成物中、本発明の効果がより優れる点で、有機溶媒に対するレオロジーコントロール剤の質量含有量比(レオロジーコントロール剤/有機溶媒)が0.09以上であるのが好ましい。なお、上限値としては特に制限されないが、0.30以下が好ましく、0.20以下がより好ましい。
〔硬化剤〕
 組成物は、硬化剤を含んでいてもよい。
 なかでも、組成物が、バインダ成分としてエポキシ基及び/又はオキセタニル基を有する化合物を含有している場合、組成物は、硬化剤を含んでいるのも好ましい。
 硬化剤としては、例えば、フェノール系硬化剤、ナフトール系硬化剤、酸無水物系硬化剤、活性エステル系硬化剤、ベンゾオキサジン系硬化剤、シアネートエステル系硬化剤、カルボジイミド系硬化剤、及びアミンアダクト系硬化剤が挙げられる。
 硬化剤は、1種単独で用いてもよく、2種以上を併用してもよい。
 フェノール系硬化剤及びナフトール系硬化剤の具体例としては、例えば、明和化成社製の「MEH-7700」、「MEH-7810」、「MEH-7851」、日本化薬社製の「NHN」、「CBN」、「GPH」、新日鉄住金化学社製の「SN-170」、「SN-180」、「SN-190」、「SN-475」、「SN-485」、「SN-495」、「SN-375」、「SN-395」、DIC社製の「LA-7052」、「LA-7054」、「LA-3018」、「LA-3018-50P」、「LA-1356」、「TD2090」、及び「TD-2090-60M」等が挙げられる。
 酸無水物系硬化剤としては、1分子内中に1個以上の酸無水物基を有する硬化剤が挙げられる。
 酸無水物系硬化剤の具体例としては、無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、メチルナジック酸無水物、水素化メチルナジック酸無水物、トリアルキルテトラヒドロ無水フタル酸、ドデセニル無水コハク酸、5-(2,5-ジオキソテトラヒドロ-3-フラニル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物、無水トリメリット酸、無水ピロメリット酸、ベンソフェノンテトラカルボン酸二無水物、ビフェニルテトラカルボン酸二無水物、ナフタレンテトラカルボン酸二無水物、オキシジフタル酸二無水物、3,3’-4,4’-ジフェニルスルホンテトラカルボン酸二無水物、1,3,3a,4,5,9b-ヘキサヒドロ-5-(テトラヒドロ-2,5-ジオキソ-3-フラニル)-ナフト[1,2-C]フラン-1,3-ジオン、エチレングリコールビス(アンヒドロトリメリテート)、及びスチレンとマレイン酸とが共重合したスチレン・マレイン酸樹脂などのポリマー型の酸無水物等が挙げられる。
 酸無水物系硬化剤の市販品としては、新日本理化社製の「HNA-100」、「MH-700」、「MTA-15」、「DDSA」、「HF-08」、「OSA」、三菱ケミカル社製の「YH306」、「YH307」、三菱ガス化学社製の「H-TMAn」、日立化成社製の「HN-2200」、「HN-2000」、「HN-5500」、「MHAC-P」等が挙げられる。
 活性エステル系硬化剤としては、フェノールエステル類、チオフェノールエステル類、N-ヒドロキシアミンエステル類、複素環ヒドロキシ化合物のエステル類等の反応活性の高いエステル基を1分子中に3個以上有する化合物が好ましく用いられる。
 活性エステル系硬化剤としては、ジシクロペンタジエン型ジフェノール構造を含む活性エステル化合物、ナフタレン構造を含む活性エステル化合物、フェノールノボラックのアセチル化物を含む活性エステル化合物、フェノールノボラックのベンゾイル化物を含む活性エステル化合物が好ましい。なお、「ジシクロペンタジエン型ジフェノール構造」とは、フェニレン-ジシクロペンタレン-フェニレンからなる2価の構造単位を表す。
 活性エステル系硬化剤の市販品としては、ジシクロペンタジエン型ジフェノール構造を含む活性エステル化合物として、「EXB9451」、「EXB9460」、「EXB9460S」、「HPC-8000」、「HPC-8000H」、「HPC-8000-65T」、「HPC-8000H-65TM」、「EXB-8000L」、「EXB-8000L-65TM」(DIC社製);ナフタレン構造を含む活性エステル化合物として「EXB9416-70BK」、「EXB-8150-65T」(DIC社製);フェノールノボラックのアセチル化物を含む活性エステル化合物として「DC808」(三菱ケミカル社製);フェノールノボラックのベンゾイル化物を含む活性エステル化合物として「YLH1026」(三菱ケミカル社製);フェノールノボラックのアセチル化物である活性エステル系硬化剤として「DC808」(三菱ケミカル社製);フェノールノボラックのベンゾイル化物である活性エステル系硬化剤として「YLH1026」(三菱ケミカル社製)、「YLH1030」(三菱ケミカル社製)、「YLH1048」(三菱ケミカル社製);等が挙げられる。
 ベンゾオキサジン系硬化剤の具体例としては、JFEケミカル社製の「JBZ-OP100D」、「ODA-BOZ」;昭和高分子社製の「HFB2006M」、四国化成工業社製の「P-d」、「F-a」等が挙げられる。
 シアネートエステル系硬化剤の具体例としては、ロンザジャパン社製の「PT30」及び「PT60」(いずれもフェノールノボラック型多官能シアネートエステル樹脂)、「BA230」、「BA230S75」(ビスフェノールAジシアネートの一部又は全部がトリアジン化され三量体となったプレポリマー)等が挙げられる。
 カルボジイミド系硬化剤の具体例としては、日清紡ケミカル社製の「V-03」、「V-07」等が挙げられる。
 アミンアダクト型の硬化剤の市販品としては、例えば、アミキュアPN-23、PN-50(以上、味の素ファインテクノ(株)製)等が挙げられる。
 組成物が、エポキシ基を有する化合物(又はオキセタニル基を有する化合物)と硬化剤とを含む場合、エポキシ基を有する化合物(又はオキセタニル基を有する化合物)の含有量と硬化剤の含有量との比は、エポキシ基を有する化合物中のエポキシ基(又はオキセタニル基を有する化合物)と、硬化剤中の反応基(硬化剤中の水酸基等の活性水素基)との当量比(「エポキシ基の数(又はオキセタニル基の数)」/「反応基の数」)が、30/70~70/30となる量が好ましく、40/60~60/40となる量がより好ましく、45/55~55/45となる量が更に好ましい。
 また、組成物が、エポキシ基を有する化合物、オキセタニル基を有する化合物、及び硬化剤を含む場合、エポキシ基を有する化合物中のエポキシ基及びオキセタニル基を有する化合物と、硬化剤中の反応基との当量比(「エポキシ基の数及びオキセタニル基の数」/「反応基の数」)が上記数値範囲を満たすのが好ましい。
 硬化剤の含有量は、組成物の全質量に対して、0.001~3.5質量%が好ましく、0.01~3.5質量%がより好ましい。
 硬化剤の含有量は、組成物の全固形分に対して、0.001~3.5質量%が好ましく、0.01~3.5質量%がより好ましい。
〔硬化促進剤〕
 組成物は、硬化促進剤を含んでいてもよい。
 なかでも、組成物が、バインダ成分としてエポキシ基及び/又はオキセタニル基を有する化合物を含有している場合、組成物は、硬化促進剤を含んでいるのも好ましい。
 硬化促進剤としては、例えば、トリフェニルホスフィン、メチルトリブチルホスホニウムジメチルホスフェート、トリスオルトトリルホスフィン、及び、三フッ化ホウ素アミン錯体が挙げられる。ホスフェート系硬化促進剤の市販品としては、ヒシコーリンPX-4MP(日本化学工業社製)が挙げられる。
 硬化促進剤としては、その他にも、2-メチルイミダゾール(商品名;2MZ)、2-ウンデシルイミダゾール(商品名;C11-Z)、2-ヘプタデシルイミダゾール(商品名;C17Z)、1,2-ジメチルイミダゾール(商品名;1.2DMZ)、2-エチル-4-メチルイミダゾール(商品名;2E4MZ)、2-フェニルイミダゾール(商品名;2PZ)、2-フェニル-4-メチルイミダゾール(商品名;2P4MZ)、1-ベンジル-2-メチルイミダゾール(商品名;1B2MZ)、1-ベンジル-2-フェニルイミダゾール(商品名;1B2PZ)、1-シアノエチル-2-メチルイミダゾール(商品名;2MZ-CN)、1-シアノエチル-2-ウンデシルイミダゾール(商品名;C11Z-CN)、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト(商品名;2PZCNS-PW)、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン(商品名;2MZ-A)、2,4-ジアミノ-6-[2’-ウンデシルイミダゾリル-(1’)]-エチル-s-トリアジン(商品名;C11Z-A)、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン(商品名;2E4MZ-A)、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物(商品名;2MA-OK)、2-フェニル-4,5-ジヒドロキシメチルイミダゾール(商品名;2PHZ-PW)、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール(商品名;2P4MHZ-PW)、1-シアノエチル-2-フェニルイミダゾール(商品名;2PZ-CN)、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン(商品名;2MZA-PW)、及び、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物(商品名;2MAOK-PW)等のイミダゾール系硬化促進剤等が挙げられる(いずれも四国化成工業(株)製)。更に、トリアリールホスフィン系の硬化促進剤として特開2004-43405号公報の段落0052に記載の化合物も挙げられる。トリアリールホスフィンにトリフェニルボランが付加したリン系硬化促進剤として、特開2014-5382の段落0024に記載の化合物も挙げられる。
 硬化促進剤の含有量は、組成物の全質量に対して、0.0002~3質量%が好ましく、0.002~2質量%がより好ましく、0.01~1質量%が更に好ましい。
 硬化促進剤の含有量は、組成物の全固形分に対して、0.0002~3質量%が好ましく、0.002~2質量%がより好ましく、0.02~1質量%が更に好ましい。
〔重合開始剤〕
 組成物は、重合開始剤を含んでいてもよい。
 なかでも、組成物が、バインダ成分としてエチレン性不飽和基を含む化合物を含有している場合、組成物は、重合開始剤を含有するのが好ましい。
 重合開始剤としては特に制限されず、公知の重合開始剤を使用できる。重合開始剤としては、例えば、光重合開始剤及び熱重合開始剤等が挙げられる。
 組成物が重合開始剤を含有する場合、その含有量は、組成物の全質量に対して、0.5~10質量%が好ましく、0.5~5質量%がより好ましく、0.5~3質量%が更に好ましい。
 組成物が重合開始剤を含有する場合、その含有量は、組成物の全固形分に対して、0.8~5質量%が好ましく、0.8~4質量%がより好ましく、1.5~3質量%が更に好ましい。
<熱重合開始剤>
 熱重合開始剤としては、例えば、2,2’-アゾビスイソブチロニトリル(AIBN)、3-カルボキシプロピオニトリル、アゾビスマレノニトリル、及び、ジメチル-(2,2’)-アゾビス(2-メチルプロピオネート)[V-601]等のアゾ化合物、並びに、過酸化ベンゾイル、過酸化ラウロイル、及び、過硫酸カリウム等の有機過酸化物が挙げられる。
 重合開始剤の具体例としては、例えば、加藤清視著「紫外線硬化システム」(株式会社総合技術センター発行:平成元年)の第65~148頁に記載されている重合開始剤等が挙げられる。
<光重合開始剤>
 光重合開始剤としては、重合性化合物の重合を開始できれば特に制限されず、公知の光重合開始剤を使用できる。光重合開始剤としては、例えば、紫外線領域から可視光領域に対して感光性を有する光重合開始剤が好ましい。また、光励起された増感剤と何らかの作用を生じ、活性ラジカルを生成する活性剤であってもよく、重合性化合物の種類に応じてカチオン重合を開始させるような開始剤であってもよい。
 また、光重合開始剤は、300~800nm(330~500nmがより好ましい。)の範囲内に少なくとも50のモル吸光係数を有する化合物を、少なくとも1種含んでいることが好ましい。
 光重合開始剤としては、例えば、ハロゲン化炭化水素誘導体(例えば、トリアジン骨格を含む化合物、オキサジアゾール骨格を含む化合物、等)、アシルホスフィンオキサイド等のアシルホスフィン化合物、ヘキサアリールビイミダゾール、オキシム誘導体等のオキシム化合物、有機過酸化物、チオ化合物、ケトン化合物、芳香族オニウム塩、アミノアセトフェノン化合物、及び、ヒドロキシアセトフェノン等が挙げられる。
 光重合開始剤の具体例としては、例えば、特開2013-029760号公報の段落0265~0268を参酌でき、この内容は本明細書に組み込まれる。
 光重合開始剤としては、より具体的には、例えば、特開平10-291969号公報に記載のアミノアセトフェノン系開始剤、及び、特許第4225898号公報に記載のアシルホスフィン系開始剤も使用できる。
 ヒドロキシアセトフェノン化合物としては、例えば、Omnirad-184、Omnirad-1173、Omnirad-500、Omnirad-2959、及び、Omnirad-127(商品名、いずれもIGM Resins B.V.社製)を使用できる。
 アミノアセトフェノン化合物としては、例えば、市販品であるOmnirad-907、Omnirad-369、及び、Omnirad-379EG(商品名、いずれもIGM Resins B.V.社製)を使用できる。アミノアセトフェノン化合物としては、波長365nm又は波長405nm等の長波光源に吸収波長がマッチングされた特開2009-191179公報に記載の化合物も使用できる。
 アシルホスフィン化合物としては、市販品であるOmnirad-819、及び、Omnirad-TPO(商品名、いずれもIGM Resins B.V.社製)を使用できる。
 光重合開始剤として、オキシムエステル系重合開始剤(オキシム化合物)がより好ましい。特にオキシム化合物は高感度で重合効率が高く、組成物中における色材の含有量を高く設計しやすいため好ましい。
 オキシム化合物の具体例としては、特開2001-233842号公報に記載の化合物、特開2000-080068号公報に記載の化合物、又は、特開2006-342166号公報に記載の化合物を使用できる。
 オキシム化合物としては、例えば、3-ベンゾイロキシイミノブタン-2-オン、3-アセトキシイミノブタン-2-オン、3-プロピオニルオキシイミノブタン-2-オン、2-アセトキシイミノペンタン-3-オン、2-アセトキシイミノ-1-フェニルプロパン-1-オン、2-ベンゾイロキシイミノ-1-フェニルプロパン-1-オン、3-(4-トルエンスルホニルオキシ)イミノブタン-2-オン、及び、2-エトキシカルボニルオキシイミノ-1-フェニルプロパン-1-オン等が挙げられる。
 また、J.C.S.Perkin II(1979年)pp.1653-1660、J.C.S.Perkin II(1979年)pp.156-162、Journal of Photopolymer Science and Technology(1995年)pp.202-232、特開2000-066385号公報に記載の化合物、特開2000-080068号公報、特表2004-534797号公報、及び、特開2006-342166号公報に記載の化合物等も挙げられる。
 市販品ではIRGACURE-OXE01(BASF社製)、IRGACURE-OXE02(BASF社製)、IRGACURE-OXE03(BASF社製)、又は、IRGACURE-OXE04(BASF社製)も好ましい。また、TR-PBG-304(常州強力電子新材料有限公司製)、アデカアークルズNCI-831、アデカアークルズNCI-930(ADEKA社製)、又は、N-1919(カルバゾール・オキシムエステル骨格含有光開始剤(ADEKA社製))も使用できる。
 また上記記載以外のオキシム化合物として、カルバゾールN位にオキシムが連結した特表2009-519904号公報に記載の化合物;ベンゾフェノン部位にヘテロ置換基が導入された米国特許第7626957号公報に記載の化合物;色素部位にニトロ基が導入された特開2010-015025号公報及び米国特許公開2009-292039号明細書に記載の化合物;国際公開第2009-131189号パンフレットに記載のケトオキシム化合物;及びトリアジン骨格とオキシム骨格を同一分子内に含む米国特許第7556910号明細書に記載の化合物;405nmに吸収極大を有しg線光源に対して良好な感度を有する特開2009-221114号公報に記載の化合物;等を用いてもよい。
 例えば、特開2013-029760号公報の段落0274~0275を参酌でき、この内容は本明細書に組み込まれる。
 具体的には、オキシム化合物としては、下記式(OX-1)で表される化合物が好ましい。なお、オキシム化合物のN-O結合が(E)体のオキシム化合物であっても、(Z)体のオキシム化合物であっても、(E)体と(Z)体との混合物であってもよい。
Figure JPOXMLDOC01-appb-C000020
 式(OX-1)中、R及びBはそれぞれ独立に1価の置換基を表し、Aは2価の有機基を表し、Arはアリール基を表す。
 式(OX-1)中、Rで表される1価の置換基としては、1価の非金属原子団が好ましい。
 1価の非金属原子団としては、アルキル基、アリール基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、複素環基、アルキルチオカルボニル基、及び、アリールチオカルボニル基等が挙げられる。また、これらの基は、1以上の置換基を有していてもよい。また、前述した置換基は、更に他の置換基で置換されていてもよい。
 置換基としてはハロゲン原子、アリールオキシ基、アルコキシカルボニル基又はアリールオキシカルボニル基、アシルオキシ基、アシル基、アルキル基、及び、アリール基等が挙げられる。
 式(OX-1)中、Bで表される1価の置換基としては、アリール基、複素環基、アリールカルボニル基、又は、複素環カルボニル基が好ましく、アリール基、又は、複素環基が好ましい。これらの基は1以上の置換基を有していてもよい。置換基としては、前述した置換基が例示できる。
 式(OX-1)中、Aで表される2価の有機基としては、炭素数1~12のアルキレン基、シクロアルキレン基、又は、アルキニレン基が好ましい。これらの基は1以上の置換基を有していてもよい。置換基としては、前述した置換基が例示できる。
 光重合開始剤として、フッ素原子を含むオキシム化合物も使用できる。フッ素原子を含むオキシム化合物の具体例としては、特開2010-262028号公報に記載の化合物;特表2014-500852号公報に記載の化合物24、36~40;及び特開2013-164471号公報に記載の化合物(C-3);等が挙げられる。この内容は本明細書に組み込まれる。
 光重合開始剤として、下記一般式(1)~(4)で表される化合物も使用できる。
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
 式(1)において、R及びRは、それぞれ独立に、炭素数1~20のアルキル基、炭素数4~20の脂環式炭化水素基、炭素数6~30のアリール基、又は、炭素数7~30のアリールアルキル基を表し、R及びRがフェニル基の場合、フェニル基同士が結合してフルオレン基を形成してもよく、R及びRは、それぞれ独立に、水素原子、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基又は炭素数4~20の複素環基を表し、Xは、直接結合又はカルボニル基を示す。
 式(2)において、R、R、R、及び、Rは、式(1)におけるR、R、R、及び、Rと同義であり、Rは、-R、-OR、-SR、-COR、-CONR、-NRCOR、-OCOR、-COOR、-SCOR、-OCSR、-COSR、-CSOR、-CN、ハロゲン原子、又は、水酸基を表し、Rは、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基、又は、炭素数4~20の複素環基を表し、Xは、直接結合又はカルボニル基を表し、aは0~4の整数を表す。
 式(3)において、Rは、炭素数1~20のアルキル基、炭素数4~20の脂環式炭化水素基、炭素数6~30のアリール基、又は、炭素数7~30のアリールアルキル基を表し、R及びRは、それぞれ独立に、水素原子、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基、又は、炭素数4~20の複素環基を表し、Xは、直接結合又はカルボニル基を示す。
 式(4)において、R、R、及び、Rは、式(3)におけるR、R、及び、Rと同義であり、Rは、-R、-OR、-SR、-COR、-CONR、-NRCOR、-OCOR、-COOR、-SCOR、-OCSR、-COSR、-CSOR、-CN、ハロゲン原子、又は、水酸基を表し、Rは、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基、又は、炭素数4~20の複素環基を表し、Xは、直接結合又はカルボニル基を表し、aは0~4の整数を表す。
 上記式(1)及び(2)において、R及びRは、メチル基、エチル基、n-プロピル基、i-プロピル基、シクロヘキシル基、又は、フェニル基が好ましい。Rはメチル基、エチル基、フェニル基、トリル基、又は、キシリル基が好ましい。Rは炭素数1~6のアルキル基又はフェニル基が好ましい。Rはメチル基、エチル基、フェニル基、トリル基、又は、ナフチル基が好ましい。Xは直接結合が好ましい。
 また、上記式(3)及び(4)において、Rは、メチル基、エチル基、n-プロピル基、i-プロピル基、シクロヘキシル基、又は、フェニル基が好ましい。Rはメチル基、エチル基、フェニル基、トリル基、又は、キシリル基が好ましい。Rは炭素数1~6のアルキル基、又は、フェニル基が好ましい。Rはメチル基、エチル基、フェニル基、トリル基、又は、ナフチル基が好ましい。Xは直接結合が好ましい。
 式(1)及び式(2)で表される化合物の具体例としては、例えば、特開2014-137466号公報の段落0076~0079に記載された化合物が挙げられる。この内容は本明細書に組み込まれる。
 上記組成物に好ましく使用されるオキシム化合物の具体例を以下に示す。以下に示すオキシム化合物のなかでも、一般式(C-13)で表されるオキシム化合物がより好ましい。
 また、オキシム化合物としては、国際公開第2015-036910号パンフレットのTable1に記載の化合物も使用でき、上記の内容は本明細書に組み込まれる。
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
 オキシム化合物は、350~500nmの波長領域に極大吸収波長を有することが好ましく、360~480nmの波長領域に極大吸収波長を有することがより好ましく、365nm及び405nmの波長の吸光度が高いことが更に好ましい。
 オキシム化合物の365nm又は405nmにおけるモル吸光係数は、感度の点から、1,000~300,000が好ましく、2,000~300,000がより好ましく、5,000~200,000が更に好ましい。
 化合物のモル吸光係数は、公知の方法を使用できるが、例えば、紫外可視分光光度計(Varian社製Cary-5 spctrophotometer)にて、酢酸エチルを用い、0.01g/Lの濃度で測定することが好ましい。
 光重合開始剤は、必要に応じて2種以上を組み合わせて使用してもよい。
 また、光重合開始剤としては、特開第2008-260927号公報の段落0052、特開第2010-097210号公報の段落0033~0037、及び、特開第2015-068893号公報の段落0044に記載の化合物も使用でき、上記の内容は本明細書に組み込まれる。また、韓国公開特許第10-2016-0109444号公報に記載のオキシム開始剤も使用できる。
〔重合禁止剤〕
 組成物は、重合禁止剤を含んでいてもよい。
 重合禁止剤としては特に制限されず、公知の重合禁止剤を使用できる。重合禁止剤としては、例えば、フェノール系重合禁止剤(例えば、p-メトキシフェノール、2,5-ジ-tert-ブチル-4-メチルフェノール、2,6-ジtert-ブチル-4-メチルフェノール、4,4’-チオビス(3-メチル-6-t-ブチルフェノール)、2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)、4-メトキシナフトール等);ハイドロキノン系重合禁止剤(例えば、ハイドロキノン、2,6-ジ-tert-ブチルハイロドロキノン等);キノン系重合禁止剤(例えば、ベンゾキノン等);フリーラジカル系重合禁止剤(例えば、2,2,6,6-テトラメチルピペリジン1-オキシルフリーラジカル、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン1-オキシルフリーラジカル等);ニトロベンゼン系重合禁止剤(例えば、ニトロベンゼン、4-ニトロトルエン等);及びフェノチアジン系重合禁止剤(例えば、フェノチアジン、2-メトキシフェノチアジン等);等が挙げられる。
 なかでも、フェノール系重合禁止剤、又は、フリーラジカル系重合禁止剤が好ましい。
 重合禁止剤は、硬化性基を含む樹脂と共に用いる場合にその効果が顕著である。
 組成物中における重合禁止剤の含有量としては特に制限されないが、組成物の全質量に対して、0.0001~0.5質量%が好ましく、0.0001~0.2質量%がより好ましく、0.0001~0.05質量%が更に好ましい。
 重合禁止剤の含有量は、組成物の全固形分に対しては、0.0001~0.5質量%が好ましく、0.0001~0.2質量%がより好ましく、0.0001~0.05質量%が更に好ましい。
〔界面活性剤〕
 組成物は、界面活性剤を含んでいてもよい。界面活性剤は、組成物の塗布性向上に寄与する。
 組成物が、界面活性剤を含む場合、界面活性剤の含有量は、組成物の全質量に対して、0.001~2.0質量%が好ましく、0.005~0.5質量%がより好ましく、0.005~0.1質量%が更に好ましい。
 界面活性剤の含有量は、組成物の全固形分に対して、0.001~2.0質量%が好ましく、0.005~0.5質量%がより好ましく、0.01~0.1質量%が更に好ましい。
 界面活性剤としては、例えば、フッ素系界面活性剤、ノニオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤、及び、シリコーン系界面活性剤等が挙げられる。
 例えば、組成物がフッ素系界面活性剤を含めば、組成物の液特性(特に、流動性)がより向上する。即ち、フッ素系界面活性剤を含む組成物を用いて膜形成する場合においては、被塗布面と塗布液との界面張力を低下させて、被塗布面への濡れ性が改善され、被塗布面への塗布性が向上する。このため、少量の液量で数μm程度の薄膜を形成した場合であっても、厚さムラの小さい均一厚の膜形成をより好適に行える点で有効である。
 フッ素系界面活性剤中のフッ素含有率は、3~40質量%が好ましく、5~30質量%がより好ましく、7~25質量%が更に好ましい。フッ素含有率がこの範囲内であるフッ素系界面活性剤は、塗布膜の厚さの均一性及び/又は省液性の点で効果的であり、組成物中における溶解性も良好である。
 フッ素系界面活性剤としては、特開2014-041318号公報の段落番号0060~0064(対応する国際公開第2014/017669号の段落番号0060~0064)等に記載の界面活性剤、特開2011-132503号公報の段落番号0117~0132に記載の界面活性剤、特開2020-008634号公報に記載の界面活性剤が挙げられ、これらの内容は本明細書に組み込まれる。フッ素系界面活性剤の市販品としては、例えば、メガファックF-171、F-172、F-173、F-176、F-177、F-141、F-142、F-143、F-144、F-437、F-475、F-477、F-479、F-482、F-554、F-555-A、F-556、F-557、F-558、F-559、F-560、F-561、F-565、F-563、F-568、F-575、F-780、EXP、MFS-330、R-41、R-41-LM、R-01、R-40、R-40-LM、R-43、RS-43、TF-1956、RS-90、R-94、RS-72-K、DS-21(以上、DIC(株)製)、フロラードFC430、FC431、FC171(以上、住友スリーエム(株)製)、サーフロンS-382、SC-101、SC-103、SC-104、SC-105、SC-1068、SC-381、SC-383、S-393、KH-40(以上、AGC(株)製)、PolyFox PF636、PF656、PF6320、PF6520、PF7002(以上、OMNOVA社製)、フタージェント710FM、610FM、601AD、601ADH2、602A、215M、245F(以上、株)NEOS製)等が挙げられる。
 フッ素系界面活性剤としてブロックポリマーも使用でき、具体例としては、例えば特開第2011-089090号公報に記載されたが化合物が挙げられる。
 シリコーン系界面活性剤としては、例えば、KF6001及びKF6007(信越化学工業社製)が挙げられる。
 環境規制の観点から、パーフルオロアルキルスルホン酸及びその塩、並びにパーフルオロアルキルカルボン酸及びその塩の使用が規制されることがある。
 組成物中における上記化合物の含有量を小さくする場合、パーフルオロアルキルスルホン酸(特にパーフルオロアルキル基の炭素数が6~8のパーフルオロアルキルスルホン酸)及びその塩、並びにパーフルオロアルキルカルボン酸(特にパーフルオロアルキル基の炭素数が6~8のパーフルオロアルキルカルボン酸)及びその塩の含有量としては、組成物の全固形分に対して、0.01~1,000ppbであることが好ましく、0.05~500ppbであることがより好ましく、0.1~300ppbであることが更に好ましい。また、組成物は、パーフルオロアルキルスルホン酸及びその塩、並びにパーフルオロアルキルカルボン酸及びその塩を実質的に含まなくてもよい。例えば、パーフルオロアルキルスルホン酸及びその塩の代替となり得る化合物、並びにパーフルオロアルキルカルボン酸及びその塩の代替となり得る化合物を用いることで、パーフルオロアルキルスルホン酸及びその塩、並びにパーフルオロアルキルカルボン酸及びその塩を実質的に含まない組成物としてもよい。規制化合物の代替となり得る化合物としては、例えば、パーフルオロアルキル基の炭素数の違いによって規制対象から除外された化合物が挙げられる。ただし、上記した内容は、パーフルオロアルキルスルホン酸及びその塩、並びにパーフルオロアルキルカルボン酸及びその塩の使用を妨げるものではない。組成物は、許容される最大の範囲内で、パーフルオロアルキルスルホン酸及びその塩、並びにパーフルオロアルキルカルボン酸及びその塩を含んでもよい。
〔密着助剤〕
 組成物は、密着助剤として、シランカップリング剤を含むのも好ましい。
 シランカップリング剤としては、具体的に、N-フェニル-3-アミノプロピルトリメトキシシラン、フェニルトリメトキシシラン、N-(2-アミノエチル)3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)3-アミノプロピルメチルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、ビニルトリメトキシシラン、N-(2-(ビニルベンジルアミノ)エチル)3-アミノプロピルトリメトキシシラン塩酸塩、3-メタクリロキシプロピルトリメトキシシラン、3-クロロプロピルメチルジメトキシシラン、及び3-クロロプロピルトリメトキシシラン等が挙げられる。
 シランカップリング剤の市販品としては、例えば、信越化学工業株社製のKBMシリーズ、KBEシリーズ等(例えば、KBM-573、KBM-103)等が挙げられる。
 組成物が、密着助剤を含む場合、密着助剤の含有量は、組成物の全質量に対して、0.05~2質量%が好ましく、0.05~1質量%がより好ましく、0.05~0.8質量%が更に好ましい。
 密着助剤の含有量は、組成物の全固形分に対して、0.05~2質量%が好ましく、0.05~1質量%がより好ましく、0.05~0.8質量%が更に好ましい。
〔その他の任意成分〕
 組成物は、上述した成分以外のその他の任意成分を更に含んでいてもよい。例えば、増感剤、共増感剤、可塑剤、希釈剤、感脂化剤、フィラー、及びゴム成分等が挙げられ、更に、助剤類(例えば、消泡剤、難燃剤、レベリング剤、剥離促進剤、酸化防止剤、香料、表面張力調整剤、及び、連鎖移動剤等)等の公知の添加剤を必要に応じて加えてもよい。
〔組成物の好適態様の一例〕
 組成物の好適な態様の一例として、磁性粒子と、有機溶媒と、樹脂及び樹脂前駆体からなる群から選ばれる1種以上の成分とを含む組成物が挙げられる。上記組成物は、本発明の効果がより優れる点で、なかでも、磁性粒子と、有機溶媒と、エポキシ化合物及びオキセタン化合物からなる群より選ばれる少なくとも1種の化合物と、を含む組成物であるのが好ましく、磁性粒子と、有機溶媒と、エポキシ化合物及びオキセタン化合物からなる群より選ばれる少なくとも1種の化合物と、レオロジーコントロール剤と、を含む組成物であるのがより好ましい。
 また、上記組成物の好適な態様の一例において、なかでも、エポキシ化合物及びオキセタン化合物からなる群より選ばれる少なくとも1種の化合物は、分子量が2000以下(好ましくは分子量が1000以下、より好ましくは分子量600以下)の低分子型化合物であるのが好ましい。
 なお、組成物が光により硬化する硬化成分を含む場合、組成物は更に光重合開始剤を含むのが好ましい。組成物が熱により硬化する硬化成分を含む場合、組成物は更に熱重合開始剤を含んでいてもよい。組成物がエポキシ基及びオキセタニル基の1種以上を含む化合物を含む場合、組成物は、硬化促進剤を含んでいてもよい。
〔組成物の物性〕
 組成物の23℃における粘度は、レオメーターの回転速度(せん断速度)が0.1(1/s)である場合、磁性粒子の沈降安定性がより優れる点から、1~10,000Pa・sが好ましく、1~5,000Pa・sがより好ましく、1~1,000Pa・sが更に好ましい。
 ここで、組成物の23℃における粘度は、MCR-102(アントンパール社製)を用いて測定できる。
〔組成物の製造方法〕
 組成物は、上記の各成分を公知の混合方法(例えば、撹拌機、ホモジナイザー、高圧乳化装置、湿式粉砕機、又は、湿式分散機等を用いた混合方法)により混合して調製できる。
 組成物の調製に際しては、各成分を一括配合してもよいし、各成分をそれぞれ、溶媒に溶解又は分散した後に逐次配合してもよい。また、配合する際の投入順序及び作業条件は特に制限されない。例えば、その他の樹脂を複数種類使用する場合、それらを一括で配合してもよく、種類ごとに複数回に分けて配合してもよい。
〔用途〕
 組成物は、基板に設けられたバイアホールやスルーホール等の孔部のホール充填用組成物として好適に使用できる。
 組成物をホール充填用組成物として使用する場合、組成物は、バインダ成分として樹脂前駆体を含んでいるのが好ましく、本発明の効果がより優れる点で、エポキシ化合物及び/又はオキセタニル化合物を含んでいるのがより好ましい。
 組成物がバインダ成分としてエポキシ化合物及び/又はオキセタニル化合物を含む場合、ホール充填の具体的な手順の一例としては、例えば、以下の工程1~3を含む方法が挙げられる。
 工程1:バイアホールやスルーホール等の孔部が設けられた基板上に、例えば、スリット塗布法、インクジェット法、回転塗布法、流延塗布法、ロール塗布法、及び、スクリーン印刷法等の公知の塗布方法により組成物を塗布して孔部に組成物を充填する工程
 工程2:工程1を経た基板における組成物を、例えば、約120~180℃で約30~90分程度加熱することにより、組成物中のエポキシ化合物及び/又はオキセタニル化合物を硬化させる工程
 工程3:硬化物の基板表面からはみ出している不要部分を物理研磨により除去して平坦面とする工程
 なお、組成物がバインダ成分として光硬化系の樹脂前駆体を含む場合、上記工程1~3の手順において、工程2を、活性光線又は放射線を照射する露光処理を含む工程に変更して実施することが好ましい。
 また、組成物は、膜状に成形されるのも好ましい。
 なお、組成物を硬化する場合、組成物としては、バインダ成分として樹脂前駆体を含んでいるのが好ましく、本発明の効果がより優れる点で、エポキシ化合物及び/又はオキセタニル化合物を含んでいるのがより好ましい。
 組成物により形成される膜は、電子通信機器等に装備されるアンテナ及びインダクタ等の電子部品として好適に用いられる。
 組成物により形成される膜の膜厚は、透磁率により優れる点から、1~10000μmが好ましく、10~1000μmがより好ましく、15~800μmが特に好ましい。
[硬化物(磁性粒子含有硬化物)]
 本発明の硬化物(磁性粒子含有硬化物)は、上述の本発明の組成物を用いて形成される。本発明の硬化物の形状は特に制限されず、例えば、既述のとおり、基板に設けられた孔部の形状に適合した形状であってもよいし、膜状であってもよい。
〔硬化物の製造方法〕
 本発明の硬化物は、例えば、上記組成物を硬化して得られる。
 組成物を硬化する場合、組成物は、バインダ成分として樹脂前駆体を含んでいるのが好ましく、本発明の効果がより優れる点で、エポキシ化合物及び/又はオキセタニル化合物を含んでいるのがより好ましい。
 硬化物の製造方法としては特に制限されないが、以下の工程を含むことが好ましい。
・組成物層形成工程
・硬化工程
 以下では、硬化物の形状が膜である場合の製造方法を例に挙げて、本発明の硬化物の製造方法について述べる。なお、以下では膜状の硬化物を磁性粒子含有硬化膜と称する。
<組成物層形成工程>
 組成物層形成工程においては、基板(支持体)等の上に組成物を付与して、組成物の層(組成物層)を形成する。基板としては、例えば、アンテナ部又はインダクタ部を有する配線基板であってもよい。
 基板上への組成物の適用方法としては、スリット塗布法、インクジェット法、回転塗布法、流延塗布法、ロール塗布法、及び、スクリーン印刷法等の各種の塗布方法を適用できる。組成物層の膜厚としては、1~10000μmが好ましく、10~1000μmがより好ましく、15~800μmが更に好ましい。基板上に塗布された組成物層を加熱(プリベーク)してもよく、プリベークは、例えば、ホットプレート、オーブン等で50~140℃の温度で10~1800秒間で行える。プリベークは、なかでも、組成物が溶媒を含む場合に行われることが好ましい。
<硬化工程>
 硬化工程としては、組成物層を硬化できるのであれば特に制限されないが、組成物層を加熱する加熱処理、及び、組成物層を活性光線又は放射線を照射する露光処理等が挙げられる。
 加熱処理を行う場合、加熱処理は、例えば、ホットプレート、コンベクションオーブン(熱風循環式乾燥機)、又は、高周波加熱機等の加熱手段を用いて、連続式又はバッチ式で行える。
 加熱処理における加熱温度は、120~260℃が好ましく、150~240℃がより好ましい。また、加熱時間としては特に制限されないが、10~1800秒間が好ましい。
 なお、組成物層形成工程におけるプリベークが、硬化工程における加熱処理を兼ねていてもよい。
 露光処理を行う場合、活性光線又は放射線の照射方法としては特に制限されないが、パターン状の開口部を有するフォトマスクを介して照射することが好ましい。
 露光は、放射線の照射により行うことが好ましい。露光に際して使用できる放射線としては、g線、h線、又は、i線等の紫外線が好ましく、光源としては高圧水銀灯が好まれる。照射強度は5~1500mJ/cmが好ましく、10~1000mJ/cmがより好ましい。
 なお、組成物が熱重合開始剤を含む場合、上記露光処理において、組成物層を加熱してもよい。加熱温度として特に制限されないが、80~250℃が好ましい。また、加熱時間としては特に制限されないが、30~300秒間が好ましい。
 なお、露光処理において、組成物層を加熱する場合、後述する後加熱工程を兼ねてもよい。言い換えれば、露光処理において、組成物層を加熱する場合、磁性粒子含有硬化膜の製造方法は後加熱工程を含有しなくてもよい。
<現像工程>
 硬化工程において露光処理を行う場合、現像工程を更に含んでいてもよい。
 現像工程は、露光後の上記組成物層を現像して磁性粒子含有硬化膜を形成する工程である。本工程により、露光処理における光未照射部分の組成物層が溶出し、光硬化した部分だけが残り、パターン状の磁性粒子含有硬化膜が得られる。
 現像工程で使用される現像液の種類は特に制限されないが、回路等にダメージを起こさないアルカリ現像液が望ましい。
 現像温度としては、例えば、20~30℃である。
 現像時間は、例えば、20~90秒間である。残渣をよりよく除去するため、近年では120~180秒間実施する場合もある。更には、残渣除去性をより向上するため、現像液を60秒ごとに振り切り、更に新たに現像液を供給する工程を数回繰り返す場合もある。
 アルカリ現像液としては、アルカリ性化合物を濃度が0.001~10質量%(好ましくは0.01~5質量%)となるように水に溶解して調製されたアルカリ性水溶液が好ましい。
 アルカリ性化合物は、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム,硅酸ナトリウム、メタ硅酸ナトリウム、アンモニア水、エチルアミン、ジエチルアミン、ジメチルエタノールアミン、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシ、ベンジルトリメチルアンモニウムヒドロキシド、コリン、ピロール、ピペリジン、及び、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン等が挙げられる(このうち、有機アルカリが好ましい。)。
 なお、アルカリ現像液として用いた場合は、一般に現像後に水で洗浄処理が施される。
<ポストベーク>
 硬化工程において露光処理を行う場合、硬化工程の後に、加熱処理(ポストベーク)を行うことが好ましい。ポストベークは、硬化を完全にするための加熱処理である。現像工程を実施する場合は、現像工程後にポストベークを実施することが好ましい。その加熱温度は、240℃以下が好ましく、220℃以下がより好ましい。下限は特にないが、効率的かつ効果的な処理を考慮すると、50℃以上が好ましく、100℃以上がより好ましい。また、加熱時間としては特に制限されないが、10~1800秒間が好ましい。
 ポストベークは、ホットプレート、コンベクションオーブン(熱風循環式乾燥機)、又は、高周波加熱機等の加熱手段を用いて、連続式又はバッチ式で行える。
 上記のポストベークは、低酸素濃度の雰囲気下で行うことが好ましい。その酸素濃度は、19体積%以下が好ましく、15体積%以下がより好ましく、10体積%以下が更に好ましく、7体積%以下が特に好ましく、3体積%以下が最も好ましい。下限は特にないが、10体積ppm以上が実際的である。
 また、上記の加熱によるポストベークに変え、UV(紫外線)照射によって硬化を完遂させてもよい。
 この場合、組成物は、更にUV硬化剤を含むことが好ましい。UV硬化剤は、通常のi線露光によるリソグラフィー工程のために添加する重合開始剤の露光波長である365nmより短波の波長で硬化できるUV硬化剤が好ましい。UV硬化剤としては、例えば、チバ イルガキュア 2959(商品名)が挙げられる。UV照射を行う場合においては、組成物層が波長340nm以下で硬化する材料であることが好ましい。波長の下限値は特にないが、220nm以上が一般的である。またUV照射の露光量は100~5000mJが好ましく、300~4000mJがより好ましく、800~3500mJが更に好ましい。このUV硬化工程は、露光処理の後に行うことが、低温硬化をより効果的に行うために、好ましい。露光光源はオゾンレス水銀ランプを使用することが好ましい。
[磁性粒子導入基板、電子材料]
 本発明の磁性粒子導入基板は、孔部が形成された基板と、上記孔部内に配置された本発明の硬化物(磁性粒子含有硬化物)とを備える。
 孔部は、貫通孔であっても、凹部であってもよい。孔部が形成された基板としては、バイアホールやスルーホール等が形成された配線基板が挙げられる。本発明の硬化物の形成方法については、既述のとおりである。
 上記磁性粒子導入基板は、例えば、インダクタ等の電子材料に適用できる。
 以下に実施例に基づいて本発明をさらに詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、及び処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。
 なお、以下において、特段の断りがない限り「%」は「質量%」を意味し、「部」は「質量部」を示す。
[組成物の調製に使用した各種成分]
 組成物の調製にあたって、表2に記載の各成分を準備した。表2に記載の各成分の概要を以下に示す。
〔磁性粒子〕
 表1に、表2にて使用する磁性粒子を示す。
 表1の「フェライト又は合金」欄は、磁性粒子がフェライト粒子であるか、又は、合金粒子であるかを示す。磁性粒子がフェライト粒子である場合には「F」で表し、磁性粒子が合金粒子である場合には「A」で表す。
 表1の「Fe含有量」欄は、磁性粒子が合金粒子である場合における、合金粒子中の金属原子の含有量に対するFe原子の含有量(質量%)を表す。Fe原子の含有量(質量%)が50質量%以上である場合には「U」で表し、Fe原子の含有量(質量%)が50質量%未満である場合には「L」で表す。
 また、表1の「平均真球度」欄は、以下の手順により算出された値である。
 まず、FE-SEM((株)日立ハイテクノロジーズ社製の「S-4800H」)を用いて磁性粒子を観察し、任意の観察視野において、磁性粒子を無作為に1000粒子選んで撮影する。
 次いで、得られた画像情報を、インターフェースを介して画像解析装置(メディアサイバネティクス社製画像解析ソフト「Image-Pro PLUS」)に導入して解析を行い、各1粒子毎の投影周囲長及び投影面積を求め、得られた値を用いて下記数式(1)によって各1粒子毎の真球度を求める。つまり、1000粒子の各々について、投影周囲長及び投影面積とそれに基づく真球度とを求める。
 なお、投影周囲長及び投影面積は、一次粒子の投影周囲長及び投影面積を意図している。
 数式(1):真球度={[(磁性粒子の投影周囲長)/(磁性粒子の投影面積)]/4π}×100
 次いで、1000粒子の真球度の平均値を求め、これを平均真球度とした。
 また、表1の「体積平均粒子径」欄は、体積平均径(MV(Mean Volume Diameter)、単位:μm)を表す。なお、体積平均粒子径も上記手順により求められる。具体的には、上記手順により得られた磁性粒子の投影面積に基づいて、1粒子毎に円相当径を算出する。次いで、この円相当径に基づいて測定対象である1000粒子の各々について体積を求め、得られた値から1000粒子の体積平均径を算出する。
 また、表1の「BET比表面積(m/g)」欄は、窒素吸着法により測定された値を表す。測定方法は、JIS Z8830:2013 ガス吸着による粉体(固体)の比表面積測定方法に準じる。
Figure JPOXMLDOC01-appb-T000025
 表1中のP-22の磁性粒子:FeMn系フェライト3に対して特開2016-60682号公報を参照にして有機被覆した粒子
 表1中のP-23の磁性粒子:FeMn系フェライト3に対して無機被覆(粉体ALDを用いて100nmのSiOを被覆)した粒子
 表1中のP-24の磁性粒子:FeMn系フェライト5に対して特開2016-60682号公報を参照にして有機被覆した粒子
 表1中のP-25の磁性粒子:FeMn系フェライト5に対して無機被覆(粉体ALDを用いて100nmのSiOを被覆)した粒子
 表1中のP-26の磁性粒子:AW2-08 PF-3F(エプソンアトミックス(株)製)に対して特開2016-60682号公報を参照にして有機被覆した粒子
 表1中のP-27の磁性粒子:AW2-08PF-3F(エプソンアトミックス(株)製)に対して無機被覆(粉体ALDを用いて100nmのSiOを被覆)した粒子
 表1中のP-28~P-30の磁性粒子:例えば特開2006-160560号公報等に開示されている一般的な球状フェライト粒子の製法において、焼成処理時の温度及び/又は時間を調整することで、ほぼ同一粒子径にてBET比表面積が異なる粒子を作製した。
〔添加剤1〕
 以下に、添加剤1欄に示す各種成分を示す。
・B-1:製品名「FLOWNON RCM-100」(脂肪酸エステル/芳香族エステル、共栄社化学社製、固形分濃度:100質量%)
・B-2:製品名「ターレン VA705B」(高級脂肪酸アマイド、共栄社化学社製、固形分濃度:100質量%)
・B-3:製品名「BYK P-105」(低分子量不飽和カルボン酸のポリマー、BYK社製、固形分濃度:100質量%)
・B-4:下記化合物(重量平均分子量10000)(固形分濃度:100質量%)。なお、主鎖の各繰り返し単位に付された数値は質量比を表し、側鎖に付された数値は繰り返し数を表す。
Figure JPOXMLDOC01-appb-C000026
・B-7:製品名「セロキサイド2021P」(3’,4’-エポキシシクロヘキシルメチル3,4-エポキシシクロヘキサンカルボキシレート、ダイセル化学工業社製、固形分濃度:100質量%)
・B-8:製品名「デナコールEX-314」(グリセロールポリグリシジルエーテル、ナガセケムテックス社製、固形分濃度:100質量%)
・B-9:製品名「KAYARAD RP-1040」(下記化合物、日本化薬社製、固形分濃度:100質量%)
Figure JPOXMLDOC01-appb-C000027
・B-10:製品名「ZX1059」(ビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂の混合品、日鉄ケミカル&マテリアル社製、固形分濃度:100質量%)
・B-11:製品名「HP-4700」(ナフタレン型4官能エポキシ樹脂、DIC社製、固形分濃度:100質量%)
・B-12:製品名「YX7553BH30」(フェノキシ樹脂、三菱ケミカル社製、固形分濃度:30質量%、希釈溶媒:MEK/シクロヘキサノン)
・B-13:製品名「KS-1」(ポリビニルアセタール樹脂、積水化学工業社製、固形分濃度:100質量%)
・B-14:製品名「828US」(ビスフェノールA型エポキシ樹脂、三菱ケミカル社製、固形分濃度:100質量%)
〔添加剤2〕
 以下に、添加剤2欄に示す各種成分を示す。
<硬化剤/硬化促進剤>
・A-1:製品名「ヒシコーリンPX-4MP」(ホスフェート系エポキシ硬化促進剤、日本化学工業社製、固形分濃度:100質量%)
・A-2:製品名「LA-7054」(ノボラック型フェノール樹脂硬化剤、DIC社製、固形分濃度:60質量%、希釈溶媒:MEK)
・A-3:製品名「2E4MZ」(2-エチル-4-メチルイミダゾール(硬化促進剤)、四国化成社製、固形分濃度:100質量%)
・A-7:製品名「HNA-100」(酸無水物系硬化剤、新日本理化社製、固形分濃度:100質量%)
<フィラー>
・A-4:製品名「SO-C2」(シリカ粒子、アドマテックス社製、固形分濃度:100質量%)
<シランカップリング剤>
・A-5:製品名「KBM-573」(N-フェニル-3-アミノプロピルトリメトキシシラン、信越化学工業社製、固形分濃度:100質量%)
<光重合開始剤>
・A-6:下記の構造の化合物(固形分濃度:100質量%)
Figure JPOXMLDOC01-appb-C000028
〔添加剤3〕
 以下に、添加剤3欄に示す各種成分を示す。
<界面活性剤>
・Sur-1:製品名「KF6001」(シリコーン系界面活性剤、信越化学工業社製、固形分濃度:100質量%)
〔有機溶媒〕
・S-1:PGMEA(プロピレングリコールモノメチルエーテルアセテート、TCI社製)
・S-2:1,6-HDDA(1,6-ヘキサンジオールジアセテート、ダイセル化学工業社製)
・S-3:グリセロール三酢酸(富士フイルム和光純薬社製)
・S-4:シクロヘキサノン(富士フイルム和光純薬社製)
・S-5:MEK(メチルエチルケトン、富士フイルム和光純薬社製)
・S-6:トルエン(富士フイルム和光純薬社製)
・S-7:エタノール(富士フイルム和光純薬社製)
・S-8:純水(富士フイルム和光純薬社製)
〔実施例及び比較例の組成物の調製〕
 表2に示す組成(質量部)になるように表2に記載の溶媒以外の成分を混合して、PTFE(ポリテトラフルオロエチレン)製の密閉容器に投入した。続いて、表2に示す組成(質量部)になるように溶媒を添加した後、容器を密閉して、Resodyn社製のRAM(低周波共振音響ミキサー)を用いて、50G、1時間で分散することで、各実施例及び比較例の組成物を調製した。
 なお、表2に示す「バインダ成分」は、後添加樹脂に相当する。
〔真球度、磁性粒子Xの全質量に対する11μm未満磁性粒子Xの含有量(質量%)、及び、磁性粒子Xの体積平均粒子径(MV)〕
 以下において、真球度、磁性粒子Xの全質量に対する11μm未満磁性粒子Xの含有量(質量%)、及び、磁性粒子Xの体積平均粒子径(MV)の測定手順について詳述する。
 基板上に、実施例及び比較例の各組成物をギャップ100μmのアプリケーターを使用して塗布して、230℃にて900秒間の乾燥条件で乾燥して膜を得た。
 次いで、FE-SEM((株)日立ハイテクノロジーズ社製の「S-4800H」)を用いて、得られた膜中の磁性粒子を観察し、任意の観察視野において、磁性粒子を無作為に1000粒子選んで撮影した。
 次いで、得られた画像情報を、インターフェースを介して画像解析装置(メディアサイバネティクス社製画像解析ソフト「Image-Pro PLUS」)に導入して解析を行い、各1粒子毎の投影周囲長及び投影面積を求め、得られた値を用いて下記数式(1)によって各1粒子毎の真球度を求めた。つまり、1000粒子の各々について、投影周囲長及び投影面積(各々、一次粒子の投影周囲長及び投影面積を意図している。)とそれに基づく真球度とを求めた。
 数式(1):真球度={[(磁性粒子の投影周囲長)/(磁性粒子の投影面積)]/4π}×100
 また、1粒子毎に、上記手順により得られた磁性粒子の投影面積から円相当径を算出した。
 上記測定対象である1000粒子の磁性粒子のうち、真球度が100~120である磁性粒子を磁性粒子Xとした。また、この磁性粒子Xのうち、円相当径が11μm未満の磁性粒子を11μm未満磁性粒子Xとし、円相当径が11μm以上の磁性粒子を11μm以上磁性粒子Xとした。
 また、上記測定対象である1000粒子の磁性粒子のうちの磁性粒子Xについて、下記数式(2)によって1粒子毎に体積を算出した。
 数式(2):体積=(磁性粒子の円相当径)×(π/6)
 また、上述の(株)日立ハイテクノロジーズ社製の「S-4800H」を使用して、上記測定対象である1000粒子の磁性粒子の元素組成の解析も実施した。更に、得られた各種値と磁性粒子の比重とに基づいて、各粒子の質量を求めた。
 上記測定を実施することにより、磁性粒子Xの全質量に対する11μm未満磁性粒子Xの含有量(質量%)を求めた。また上記測定により得られる磁性粒子の1粒子毎の体積及び円相当径に基づいて、組成物中の磁性粒子Xの体積平均粒子径(MV)を求めた。
 これらの結果を表2に示す。
 なお、実施例の各組成物において、上記測定対象である1000粒子の磁性粒子中、磁性粒子Xの含有量は、1000粒子の磁性粒子の全質量に対して、90質量%以上であった。
[評価]
〔保存安定性〕
 上記のようにして得られた組成物の3mLをガラス製のサンプル瓶(直径23mm×高さ35mmの円柱形)に投入し、密閉した後、25℃で6か月間静置した。
 その後、サンプル瓶中の組成物を目視にて観察して、気液界面から、透明な領域と不透明な領域との界面までの距離d1、及び、気液界面からサンプル瓶の底面までの距離d2を測定した。
 続いて、同じサンプル瓶を、タイテック社製振盪機Se-08を用いて、3300r/minにて、30秒間撹拌したあと、25℃で12時間静置した。その後、組成物を目視にて観察して、気液界面から、透明な領域と不透明な領域との界面までの距離d’1、及び、気液界面からサンプル瓶の底面までの距離d’2を測定した。
 距離d1及び距離d2、並びに、距離d’1及び距離d’2を用いて以下の基準によって、沈降安定性を評価した。結果を表2に示す。
<評価基準>
 「5」:0.1≧d1/d2≧0、且つ、0.1≧d1’/d2’≧0
(経時で液が完全に分離しない)
 「4」:0.2≧d1/d2>0.1、且つ、0.1≧d1’/d2’≧0
(経時で液が若干分離するが、撹拌で戻る)
 「3」:0.3≧d1/d2>0.2、且つ、0.1≧d1’/d2’≧0
(経時で液が分離するが、撹拌で戻る)
 「2」:0.3<d1/d2、且つ、0.1≧d1’/d2’≧0
(経時で液が大幅に分離するが、撹拌で戻る)
 「1」:0.3<d1/d2、且つ、d1’/d2’>0.1
(経時で液が大幅に分離し、撹拌しても戻らない)
〔充填適性〕
 厚さ0.8mmのFR-4基板を用意し、直径0.4mmのスルーホールを形成した。
 続いて、DP-320(ニューロング精密工業)を使用して、実施例及び比較例の各組成物を上記スルーホールに埋め込む処理を実施した。次いで、組成物が光重合開始剤を含有しない組成物であった場合は、得られた組成物埋め込み後の基板を160℃にて1時間加熱することで組成物の硬化を実施した。また、組成物が光重合開始剤を含有する組成物であった場合は、プロキシミティ露光機にて1000mJ/cmの条件で露光処理を行い、更に、230℃で10分間加熱することで組成物の硬化を実施した。
 得られた基板に対して研磨処理を行うことで埋め込み部分の断面を露出させ、SEM(Scanning Electron Microscope)によって内部状態を観察した。
 n=30で画像を取得し、Image Jにより算出した空隙の割合を平均化し、充填適性の指標とした。具体的には、平均化により得られた値(Va)に基づいて、下記評価基準に基づいて評価を実施した。なお、Va値が小さいほど、硬化物内にボイド及びクラック等による空隙が少なく良好である。
<評価基準>
 「5」:3%>Va
 「4」:5%>Va≧3%
 「3」:8%>Va≧5%
 「2」:15%>Va≧8%
 「1」:Va≧15%、又は、流動性がなく塗布できない
〔透磁率、磁気損失〕
<測定用サンプル基板の作製>
 厚み100μmのSi Wafer上に、CT4000(富士フイルムエレクトロニクスマテリアルズ社)を塗布した基板を作製した。
 得られた基板上に、実施例及び比較例の各組成物をギャップ100μmのアプリケーターを使用して塗布して塗膜を得た。次いで、塗布した組成物が光重合開始剤を含有しない組成物であった場合は、得られた塗膜に対して、100℃にて120秒間の乾燥条件で加熱乾燥を実施した後、さらに230℃にて15分間加熱を実施することにより、硬化膜付き基板を作製した。また、塗布した組成物が光重合開始剤を含有する組成物であった場合は、プロキシミティ露光機にて1000mJ/cmの条件で露光処理を行い、更に、230℃で10分間加熱を実施することにより、硬化膜付き基板を作製した。
 次いで、得られた硬化膜付き基板を、基板ごと1cm×2.8cmのサイズに割断し、測定用サンプル基板を作製した。
 次いで、PER-01(キーコム社製、高周波透磁率測定装置)を使用して、得られた各測定用サンプル基板における膜の磁気特性(60MHzにおける比透磁率(μ’A)及び磁気損失(tanδA))を測定した。
<評価基準(透磁率)>
 「5」:20<μ’A
 「4」:18<μ’A≦20
 「3」:15<μ’A≦18
 「2」:10<μ’A≦15
 「1」:μ’A≦10
<評価基準(磁気損失)>
 「5」:0.05>tanδA
 「4」:0.07>tanδA≧0.05
 「3」:0.10>tanδA≧0.07
 「2」:0.15>tanδA≧0.10
 「1」:tanδA≧0.15
〔絶縁性〕
 上述の〔透磁率、磁気損失〕と同様の方法にて硬化膜付き基板を作製し、これを測定用サンプル基板とした。
 次いで、上記硬化膜付き基板の硬化膜に上に電極を蒸着し、面内方向に交流電場をかけてインピーダンス測定を行った。1Hzにおける抵抗値ΩA[Ωm]の値を使用して、硬化膜の絶縁性を評価した。
 「3」:5×10<ΩA
 「2」:1×10<ΩA≦5×10
 「1」:ΩA≦1×10
 以下に、表2を示す。
 表2中「磁性粒子X中のフェライト粒子の有無」欄において、磁性粒子Xがフェライト粒子を含む場合を「P」で表し、磁性粒子Xがフェライト粒子を含まない場合を「N」で表す。
 表2中「磁性粒子X中の円相当径が11μm未満の磁性粒子の含有量(質量%)」とは、磁性粒子Xの全質量に対する、磁性粒子X中に含まれる円相当径が11μm未満の磁性粒子(11μm未満磁性粒子X)の含有量(質量%)を意図する。
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
 表2の結果から、本発明の組成物は、保存安定性に優れるとともに、ホール充填適性に優れ、且つ、磁気特性に優れる(透磁率が高く、磁気損失が小さい)硬化物を形成可能であることが明らかとなった。
 また、例えば、実施例1~11の結果から、11μm以上磁性粒子Xとして使用される磁性粒子の平均真球度が110以下である場合(換言すると、組成物中の11μm以上磁性粒子Xがより真球に近い場合)、ホール充填適性がより優れることが確認された(実施例5等参照)。
 また、例えば、実施例1~11の結果から、11μm以上磁性粒子XがFeMn系フェライト粒子又はNiZn系フェライト粒子である場合、形成される硬化物の磁気損失がより小さいことが確認された(実施例9~11等参照)。
 また、例えば、実施例1~11と実施例12~15の対比から、11μm以上磁性粒子Xと11μm未満磁性粒子Xがいずれもフェライト粒子である場合、形成される硬化物の透磁率が低くなる場合があることが分かる。一方で、硬化物の絶縁性はより向上することが確認された。
 また、例えば、実施例1~11と実施例16~18の対比から、11μm未満磁性粒子Xが合金粒子であって、且つ、Fe原子含有量が合金粒子の全金属原子に対して50質量%以上である場合、形成される硬化物の磁気損失がより小さいことが確認された。
 また、例えば、実施例1~11と実施例19~21の対比から、11μm未満磁性粒子Xの含有量が磁性粒子Xの全質量に対して40~60質量%である場合、形成される硬化物の透磁率がより高く、また、絶縁性がより向上することが確認された。
 また、例えば、実施例1~11と実施例23及び24の対比から、組成物中の有機溶媒の含有量が、組成物の全質量に対して7~12質量%である場合、ホール充填適性がより優れることが確認された。
 また、例えば、実施例1~11と実施例25~29の結果から、組成物中の磁性粒子の含有量が、組成物の全質量に対して92質量%以上である場合、形成される硬化物の透磁率がより高いことが確認された。一方で、組成物中の磁性粒子の含有量が、組成物の全質量に対して95質量%以下である場合、形成される硬化物の磁気損失がより小さいことが確認された。また、実施例27及び28の結果から、レオロジーコントロール剤の含有量が多い場合、硬化物にボイドが発生し易いことが確認された。実施例27~29の結果から、組成物中の有機溶媒の含有量が、組成物の全質量に対して7~12質量%であり、且つ、有機溶媒に対するレオロジーコントロール剤の質量含有量比(レオロジーコントロール剤/有機溶媒)が0.09~0.2である場合、保存安定性とホール充填適性がより優れることが確認された。
 また、例えば、実施例1~11と実施例32の結果から、硬化成分として低分子型エポキシ化合物を使用した場合、樹脂型のエポキシ化合物を使用した場合と比べると、ホール充填適性がより優れることが確認された。
 また、例えば、実施例1~11と実施例36~43の結果から、組成物がシランカップリング剤及び分散剤のいずれか1種以上を含むか、又は、磁性粒子Xが無機膜若しくは有機膜で被覆されている場合、保存安定性がより向上することが確認された。なお、実施例39及び40では、11μm以上磁性粒子Xと11μm未満磁性粒子Xがいずれもフェライト粒子であることから、形成される硬化物の透磁率が低くなる一方で、硬化物の絶縁性はより向上することが確認された。
 また、例えば、実施例1~11と実施例49の対比から、有機溶媒が沸点が80℃以上の溶剤を含む場合、ホール充填適性がより優れることが確認された。
 また、実施例17と実施例51~53の対比から、フェライト粒子のBET比表面積が0.25m/g以下である場合、透磁率が高くなることが確認された。具体的には、実施例51は、実施例17と比べると、フェライト粒子のBET比表面積が小さいので緻密度が上がり透磁率が高くなることが確認された。また、実施例53では、実施例17と比べると、フェライト粒子のBET比表面積が大きいので緻密度が下がり、透磁率が低くなり且つ磁気損失が高くなることが確認された。

Claims (14)

  1.  磁性粒子と、有機溶媒と、を含む組成物であって、
     前記磁性粒子が、真球度が100~120である磁性粒子Xを含み、
     前記磁性粒子Xが、フェライト粒子を含み、
     前記磁性粒子Xのうち、円相当径が11μm未満の磁性粒子の含有量が、前記磁性粒子Xの全質量に対して、15~70質量%であり、
     前記磁性粒子Xの体積平均粒子径が5~50μmである、組成物。
  2.  前記磁性粒子Xが、更に、合金粒子を含む、請求項1に記載の組成物。
  3.  前記円相当径が11μm未満の磁性粒子が前記合金粒子であり、円相当径が11μm以上の磁性粒子が前記フェライト粒子である、請求項2に記載の組成物。
  4.  前記合金粒子中、Fe原子の含有量が、金属原子の含有量に対して、50質量%以上である、請求項2又は3に記載の組成物。
  5.  前記フェライト粒子が、Ni原子を含む、請求項1~4のいずれか1項に記載の組成物。
  6.  前記フェライト粒子のBET比表面積が、0.25m/g以下である、請求項1~5のいずれか1項に記載の組成物。
  7.  更に、樹脂及び樹脂前駆体からなる群から選ばれる1種以上のバインダ成分を含む、請求項1~6のいずれか1項に記載の組成物。
  8.  前記バインダ成分が、エポキシ化合物及びオキセタン化合物の少なくとも1種を含む、請求項7に記載の組成物。
  9.  前記磁性粒子Xの少なくとも一部が、その表面に表面層を有する、請求項1~8のいずれか1項に記載の組成物。
  10.  前記表面層が有機層である、請求項9に記載の組成物。
  11.  前記有機溶媒の含有量が、組成物の全質量に対して、1~15質量%である、請求項1~10のいずれか1項に記載の組成物。
  12.  請求項1~11のいずれか1項に記載の組成物を用いて形成される、磁性粒子含有硬化物。
  13.  孔部が形成された基板と、前記孔部内に配置された請求項12に記載の磁性粒子含有硬化物と、を備えた、磁性粒子導入基板。
  14.  請求項13に記載の磁性粒子導入基板を含む、電子材料。
PCT/JP2022/010807 2021-03-22 2022-03-11 組成物、磁性粒子含有硬化物、磁性粒子導入基板、電子材料 WO2022202394A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP22775186.4A EP4317294A4 (en) 2021-03-22 2022-03-11 COMPOSITION, MAGNETIC PARTICLE-CONTAINING CURED PRODUCT, SUBSTRATE INTRODUCED IN MAGNETIC PARTICLES AND ELECTRONIC MATERIAL
KR1020237030160A KR20230146036A (ko) 2021-03-22 2022-03-11 조성물, 자성 입자 함유 경화물, 자성 입자 도입 기판, 전자 재료
CN202280019890.3A CN116964697A (zh) 2021-03-22 2022-03-11 组合物、含磁性粒子的固化物、磁性粒子导入基板、电子材料
JP2023509011A JPWO2022202394A1 (ja) 2021-03-22 2022-03-11
US18/462,738 US20230420167A1 (en) 2021-03-22 2023-09-07 Composition, magnetic particle-containing cured substance, magnetic particle-introduced substrate, and electronic material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-047695 2021-03-22
JP2021047695 2021-03-22
JP2021-141336 2021-08-31
JP2021141336 2021-08-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/462,738 Continuation US20230420167A1 (en) 2021-03-22 2023-09-07 Composition, magnetic particle-containing cured substance, magnetic particle-introduced substrate, and electronic material

Publications (1)

Publication Number Publication Date
WO2022202394A1 true WO2022202394A1 (ja) 2022-09-29

Family

ID=83394924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010807 WO2022202394A1 (ja) 2021-03-22 2022-03-11 組成物、磁性粒子含有硬化物、磁性粒子導入基板、電子材料

Country Status (6)

Country Link
US (1) US20230420167A1 (ja)
EP (1) EP4317294A4 (ja)
JP (1) JPWO2022202394A1 (ja)
KR (1) KR20230146036A (ja)
TW (1) TW202302466A (ja)
WO (1) WO2022202394A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023145500A1 (ja) * 2022-01-31 2023-08-03 富士フイルム株式会社 組成物の製造方法、磁性材料、電子部品

Citations (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05335156A (ja) * 1992-06-02 1993-12-17 Tokin Corp フェライトコアの絶縁方法
JPH07235410A (ja) * 1994-02-22 1995-09-05 Yamauchi Corp 樹脂結合型軟質磁性体
JPH10291969A (ja) 1996-12-06 1998-11-04 Ciba Specialty Chem Holding Inc 新規α−アミノアセトフェノン光開始剤
JP2000066385A (ja) 1998-08-18 2000-03-03 Ciba Specialty Chem Holding Inc 高感度で高レジスト厚さのi線ホトレジスト用スルホニルオキシム類
JP2000080068A (ja) 1998-06-26 2000-03-21 Ciba Specialty Chem Holding Inc 新規o―アシルオキシム光開始剤
JP2001233842A (ja) 1999-12-15 2001-08-28 Ciba Specialty Chem Holding Inc オキシムエステルの光開始剤
JP2004043405A (ja) 2002-07-15 2004-02-12 Hokko Chem Ind Co Ltd 高純度トリアリールホスフィンの工業的な製造法
JP2004534797A (ja) 2001-06-11 2004-11-18 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド 組み合わされた構造を有するオキシムエステルの光開始剤
JP2006160560A (ja) 2004-12-07 2006-06-22 Nitto Denko Corp 球状焼結フェライト粒子およびそれを用いた半導体封止用樹脂組成物ならびにそれを用いて得られる半導体装置
JP2008260927A (ja) 2007-03-20 2008-10-30 Toray Ind Inc 黒色樹脂組成物、樹脂ブラックマトリクス、カラーフィルターおよび液晶表示装置
JP2008292970A (ja) 2006-09-27 2008-12-04 Fujifilm Corp 化合物及びその互変異性体、金属錯体化合物、感光性着色硬化性組成物、カラーフィルタ、及びその製造方法
JP4225898B2 (ja) 2001-08-21 2009-02-18 チバ ホールディング インコーポレーテッド 深色モノ−及びビス−アシルホスフィンオキシド及びスルフィド並びに光開始剤としてのこれらの使用
JP2009519904A (ja) 2005-12-01 2009-05-21 チバ ホールディング インコーポレーテッド オキシムエステル光開始剤
US7556910B2 (en) 2005-12-01 2009-07-07 LF Chem, Ltd. Photosensitive composition comprising triazine-based photoactive compound containing oxime ester
JP2009191179A (ja) 2008-02-15 2009-08-27 Toyo Ink Mfg Co Ltd 光重合開始剤、重合性組成物、および重合物の製造方法。
JP2009221114A (ja) 2008-03-13 2009-10-01 Fujifilm Corp 重合開始機能を有する化合物、重合開始剤、重合性組成物、カラーフィルタ及びその製造方法、ならびに固体撮像素子
WO2009131189A1 (ja) 2008-04-25 2009-10-29 三菱化学株式会社 ケトオキシムエステル系化合物及びその利用
JP2009265518A (ja) 2008-04-28 2009-11-12 Fujifilm Corp 感光性組成物、固体撮像素子用感光性組成物、固体撮像素子用遮光性カラーフィルタ、及び固体撮像素子
US20090292039A1 (en) 2006-12-27 2009-11-26 Adeka Corporation Oxime ester compound and photopolymerization initiator containing the same
US7626957B2 (en) 2003-04-04 2009-12-01 Samsung Electronics Co., Ltd. Home agent management apparatus and method
JP2010015025A (ja) 2008-07-04 2010-01-21 Adeka Corp 特定の光重合開始剤を含有する感光性組成物
JP2010097210A (ja) 2008-09-18 2010-04-30 Toray Ind Inc 感光性黒色樹脂組成物、樹脂ブラックマトリクス基板、カラーフィルター基板および液晶表示装置
JP2010106268A (ja) 2008-10-03 2010-05-13 Fujifilm Corp 分散組成物、重合性組成物、遮光性カラーフィルタ、固体撮像素子、液晶表示装置、ウェハレベルレンズ、及び撮像ユニット
JP2010262028A (ja) 2009-04-30 2010-11-18 Nippon Steel Chem Co Ltd ブラックマトリックス用感光性樹脂組成物
JP2011089090A (ja) 2009-10-26 2011-05-06 Toray Ind Inc ポリエステル樹脂組成物、その製造方法、およびフィルム
JP2011132503A (ja) 2009-11-25 2011-07-07 Sumitomo Chemical Co Ltd 樹脂組成物及び表示装置
JP2012155288A (ja) 2011-01-28 2012-08-16 Fujifilm Corp 感光性樹脂組成物、硬化膜の製造方法、硬化膜、有機el表示装置および液晶表示装置
JP2013029760A (ja) 2011-07-29 2013-02-07 Fujifilm Corp 着色硬化性組成物、着色硬化膜、カラーフィルタ、パターン形成方法、カラーフィルタの製造方法、固体撮像素子及び画像表示装置
JP2013164471A (ja) 2012-02-09 2013-08-22 Jsr Corp 硬化性樹脂組成物、表示素子用硬化膜、表示素子用硬化膜の形成方法及び表示素子
JP2013249417A (ja) 2012-06-01 2013-12-12 Fujifilm Corp 分散組成物、並びに、これを用いた、重合性組成物、遮光性カラーフィルタ、固体撮像素子、液晶表示装置、ウエハレベルレンズ、及び、撮像ユニット
JP2014500852A (ja) 2010-10-05 2014-01-16 ビーエーエスエフ ソシエタス・ヨーロピア ベンゾカルバゾール化合物のオキシムエステル誘導体ならびに前記誘導体の光重合性の組成物における光開始剤としての使用
JP2014005382A (ja) 2012-06-25 2014-01-16 Hokko Chem Ind Co Ltd エポキシ樹脂組成物、およびその硬化物
WO2014017669A1 (en) 2012-07-27 2014-01-30 Fujifilm Corporation Near infrared absorptive liquid composition, near infrared cut filter using the same, method of manufacturing the same, and camera module and method of manufacturing the same
JP2014137466A (ja) 2013-01-16 2014-07-28 Jsr Corp 感放射線性着色組成物、着色硬化膜及び表示素子
WO2015036910A1 (en) 2013-09-10 2015-03-19 Basf Se Oxime ester photoinitiators
JP2015068893A (ja) 2013-09-27 2015-04-13 東レ株式会社 樹脂ブラックマトリクス基板
JP2016060682A (ja) 2014-09-19 2016-04-25 パウダーテック株式会社 球状フェライト粉、該球状フェライト粉を含有する樹脂組成物、及び該樹脂組成物を用いた成型体
JP5923557B2 (ja) 2013-06-24 2016-05-24 富士フイルム株式会社 磁気記録媒体および磁気記録媒体用塗料組成物
WO2016088645A1 (ja) 2014-12-04 2016-06-09 Jsr株式会社 固体撮像装置
KR20160109444A (ko) 2015-03-11 2016-09-21 동우 화인켐 주식회사 청색 감광성 수지 조성물, 컬러필터 및 이를 포함하는 액정표시장치
JP2016219643A (ja) * 2015-05-22 2016-12-22 Tdk株式会社 複合磁性体、及びそれを用いた高周波磁性部品
JP2017043749A (ja) 2015-08-28 2017-03-02 介面光電股▲ふん▼有限公司 軟磁性粉末組成物及び磁性素子の製造方法
JP2019067960A (ja) 2017-10-02 2019-04-25 味の素株式会社 インダクタ基板の製造方法
JP2020008634A (ja) 2018-07-04 2020-01-16 三菱ケミカル株式会社 感光性樹脂組成物、隔壁、有機電界発光素子、画像表示装置及び照明
WO2020044649A1 (ja) * 2018-08-28 2020-03-05 富士フイルム株式会社 マグネトプランバイト型六方晶フェライトの粉体の製造方法及び電波吸収体の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111886939A (zh) * 2018-03-23 2020-11-03 味之素株式会社 通孔填充用糊料

Patent Citations (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05335156A (ja) * 1992-06-02 1993-12-17 Tokin Corp フェライトコアの絶縁方法
JPH07235410A (ja) * 1994-02-22 1995-09-05 Yamauchi Corp 樹脂結合型軟質磁性体
JPH10291969A (ja) 1996-12-06 1998-11-04 Ciba Specialty Chem Holding Inc 新規α−アミノアセトフェノン光開始剤
JP2000080068A (ja) 1998-06-26 2000-03-21 Ciba Specialty Chem Holding Inc 新規o―アシルオキシム光開始剤
JP2000066385A (ja) 1998-08-18 2000-03-03 Ciba Specialty Chem Holding Inc 高感度で高レジスト厚さのi線ホトレジスト用スルホニルオキシム類
JP2001233842A (ja) 1999-12-15 2001-08-28 Ciba Specialty Chem Holding Inc オキシムエステルの光開始剤
JP2006342166A (ja) 2001-06-11 2006-12-21 Ciba Specialty Chem Holding Inc 組み合わされた構造を有するオキシムエステルの光開始剤
JP2004534797A (ja) 2001-06-11 2004-11-18 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド 組み合わされた構造を有するオキシムエステルの光開始剤
JP4225898B2 (ja) 2001-08-21 2009-02-18 チバ ホールディング インコーポレーテッド 深色モノ−及びビス−アシルホスフィンオキシド及びスルフィド並びに光開始剤としてのこれらの使用
JP2004043405A (ja) 2002-07-15 2004-02-12 Hokko Chem Ind Co Ltd 高純度トリアリールホスフィンの工業的な製造法
US7626957B2 (en) 2003-04-04 2009-12-01 Samsung Electronics Co., Ltd. Home agent management apparatus and method
JP2006160560A (ja) 2004-12-07 2006-06-22 Nitto Denko Corp 球状焼結フェライト粒子およびそれを用いた半導体封止用樹脂組成物ならびにそれを用いて得られる半導体装置
JP2009519904A (ja) 2005-12-01 2009-05-21 チバ ホールディング インコーポレーテッド オキシムエステル光開始剤
US7556910B2 (en) 2005-12-01 2009-07-07 LF Chem, Ltd. Photosensitive composition comprising triazine-based photoactive compound containing oxime ester
JP2008292970A (ja) 2006-09-27 2008-12-04 Fujifilm Corp 化合物及びその互変異性体、金属錯体化合物、感光性着色硬化性組成物、カラーフィルタ、及びその製造方法
US20090292039A1 (en) 2006-12-27 2009-11-26 Adeka Corporation Oxime ester compound and photopolymerization initiator containing the same
JP2008260927A (ja) 2007-03-20 2008-10-30 Toray Ind Inc 黒色樹脂組成物、樹脂ブラックマトリクス、カラーフィルターおよび液晶表示装置
JP2009191179A (ja) 2008-02-15 2009-08-27 Toyo Ink Mfg Co Ltd 光重合開始剤、重合性組成物、および重合物の製造方法。
JP2009221114A (ja) 2008-03-13 2009-10-01 Fujifilm Corp 重合開始機能を有する化合物、重合開始剤、重合性組成物、カラーフィルタ及びその製造方法、ならびに固体撮像素子
WO2009131189A1 (ja) 2008-04-25 2009-10-29 三菱化学株式会社 ケトオキシムエステル系化合物及びその利用
JP2009265518A (ja) 2008-04-28 2009-11-12 Fujifilm Corp 感光性組成物、固体撮像素子用感光性組成物、固体撮像素子用遮光性カラーフィルタ、及び固体撮像素子
JP2010015025A (ja) 2008-07-04 2010-01-21 Adeka Corp 特定の光重合開始剤を含有する感光性組成物
JP2010097210A (ja) 2008-09-18 2010-04-30 Toray Ind Inc 感光性黒色樹脂組成物、樹脂ブラックマトリクス基板、カラーフィルター基板および液晶表示装置
JP2010106268A (ja) 2008-10-03 2010-05-13 Fujifilm Corp 分散組成物、重合性組成物、遮光性カラーフィルタ、固体撮像素子、液晶表示装置、ウェハレベルレンズ、及び撮像ユニット
US20110124824A1 (en) 2008-10-03 2011-05-26 Fujifilm Corporation Dispersion composition, polymerizable composition, light-shielding color filter, solid-state image pick-up element, liquid crystal display device, wafer level lens, and image pick-up unit
JP2010262028A (ja) 2009-04-30 2010-11-18 Nippon Steel Chem Co Ltd ブラックマトリックス用感光性樹脂組成物
JP2011089090A (ja) 2009-10-26 2011-05-06 Toray Ind Inc ポリエステル樹脂組成物、その製造方法、およびフィルム
JP2011132503A (ja) 2009-11-25 2011-07-07 Sumitomo Chemical Co Ltd 樹脂組成物及び表示装置
JP2014500852A (ja) 2010-10-05 2014-01-16 ビーエーエスエフ ソシエタス・ヨーロピア ベンゾカルバゾール化合物のオキシムエステル誘導体ならびに前記誘導体の光重合性の組成物における光開始剤としての使用
JP2012155288A (ja) 2011-01-28 2012-08-16 Fujifilm Corp 感光性樹脂組成物、硬化膜の製造方法、硬化膜、有機el表示装置および液晶表示装置
JP2013029760A (ja) 2011-07-29 2013-02-07 Fujifilm Corp 着色硬化性組成物、着色硬化膜、カラーフィルタ、パターン形成方法、カラーフィルタの製造方法、固体撮像素子及び画像表示装置
JP2013164471A (ja) 2012-02-09 2013-08-22 Jsr Corp 硬化性樹脂組成物、表示素子用硬化膜、表示素子用硬化膜の形成方法及び表示素子
JP2013249417A (ja) 2012-06-01 2013-12-12 Fujifilm Corp 分散組成物、並びに、これを用いた、重合性組成物、遮光性カラーフィルタ、固体撮像素子、液晶表示装置、ウエハレベルレンズ、及び、撮像ユニット
JP2014005382A (ja) 2012-06-25 2014-01-16 Hokko Chem Ind Co Ltd エポキシ樹脂組成物、およびその硬化物
WO2014017669A1 (en) 2012-07-27 2014-01-30 Fujifilm Corporation Near infrared absorptive liquid composition, near infrared cut filter using the same, method of manufacturing the same, and camera module and method of manufacturing the same
JP2014041318A (ja) 2012-07-27 2014-03-06 Fujifilm Corp 近赤外線吸収性組成物、これを用いた近赤外線カットフィルタ及びその製造方法、並びに、カメラモジュール及びその製造方法
JP2014137466A (ja) 2013-01-16 2014-07-28 Jsr Corp 感放射線性着色組成物、着色硬化膜及び表示素子
JP5923557B2 (ja) 2013-06-24 2016-05-24 富士フイルム株式会社 磁気記録媒体および磁気記録媒体用塗料組成物
WO2015036910A1 (en) 2013-09-10 2015-03-19 Basf Se Oxime ester photoinitiators
JP2015068893A (ja) 2013-09-27 2015-04-13 東レ株式会社 樹脂ブラックマトリクス基板
JP2016060682A (ja) 2014-09-19 2016-04-25 パウダーテック株式会社 球状フェライト粉、該球状フェライト粉を含有する樹脂組成物、及び該樹脂組成物を用いた成型体
WO2016088645A1 (ja) 2014-12-04 2016-06-09 Jsr株式会社 固体撮像装置
KR20160109444A (ko) 2015-03-11 2016-09-21 동우 화인켐 주식회사 청색 감광성 수지 조성물, 컬러필터 및 이를 포함하는 액정표시장치
JP2016219643A (ja) * 2015-05-22 2016-12-22 Tdk株式会社 複合磁性体、及びそれを用いた高周波磁性部品
JP2017043749A (ja) 2015-08-28 2017-03-02 介面光電股▲ふん▼有限公司 軟磁性粉末組成物及び磁性素子の製造方法
JP2019067960A (ja) 2017-10-02 2019-04-25 味の素株式会社 インダクタ基板の製造方法
JP2020008634A (ja) 2018-07-04 2020-01-16 三菱ケミカル株式会社 感光性樹脂組成物、隔壁、有機電界発光素子、画像表示装置及び照明
WO2020044649A1 (ja) * 2018-08-28 2020-03-05 富士フイルム株式会社 マグネトプランバイト型六方晶フェライトの粉体の製造方法及び電波吸収体の製造方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
A. J. LEO: "Calculating logPoct from structure", CHEM. REV., vol. 93, 1993, pages 1281 - 1306
A. J. LEO: "Comprehensive Medicinal Chemistry", vol. 4, 1990, PERGAMON PRESS, pages: 295
J. C. S. PERKIN II, 1979, pages 1653 - 1660
JOURNAL OF PHOTOPOLYMER SCIENCE AND TECHNOLOGY, 1995, pages 202 - 232
KIYOMI KATO: "Ultraviolet Curing System", 1989, GL SCIENCES INC., pages: 65 - 148

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023145500A1 (ja) * 2022-01-31 2023-08-03 富士フイルム株式会社 組成物の製造方法、磁性材料、電子部品

Also Published As

Publication number Publication date
US20230420167A1 (en) 2023-12-28
JPWO2022202394A1 (ja) 2022-09-29
EP4317294A4 (en) 2024-08-21
KR20230146036A (ko) 2023-10-18
TW202302466A (zh) 2023-01-16
EP4317294A1 (en) 2024-02-07

Similar Documents

Publication Publication Date Title
TWI745366B (zh) 硬化性樹脂組成物、乾膜、硬化物及印刷配線板
WO2019087985A1 (ja) ネガ型感光性樹脂組成物、硬化膜、並びに有機elディスプレイ及びその製造方法
JP6379458B2 (ja) パターンを有する樹脂層を製造する方法、及びそれに用いられる樹脂組成物
US20220375668A1 (en) Magnetic particle-containing composition, magnetic particle-containing film, and electronic component
WO2021117395A1 (ja) 磁性粒子含有膜、積層体及び電子部品
US20230420167A1 (en) Composition, magnetic particle-containing cured substance, magnetic particle-introduced substrate, and electronic material
US20230220231A1 (en) Composition, magnetic particle-containing cured substance, magnetic particle-introduced substrate, and electronic material
CN114634683A (zh) 树脂组合物、固化物、树脂片材、电路基板、半导体芯片封装、半导体装置及结构体
JP7530973B2 (ja) 組成物、磁性粒子含有膜、及び、電子部品
WO2023189325A1 (ja) 組成物、磁性材料、電子部品
WO2015087946A1 (ja) 複合樹脂組成物および該樹脂組成物の製造方法
WO2023054565A1 (ja) 磁性粒子含有組成物の製造方法、磁性粒子含有組成物、磁性粒子含有硬化物、磁性粒子導入基板、電子材料
WO2022163335A1 (ja) 感光性樹脂組成物、硬化膜、電子部品、アンテナ素子、半導体パッケージおよび化合物
JP7229337B2 (ja) 感光性樹脂組成物、硬化膜、インダクタ、アンテナ
WO2022059706A1 (ja) 組成物、磁性粒子含有膜、及び、電子部品
CN116964697A (zh) 组合物、含磁性粒子的固化物、磁性粒子导入基板、电子材料
JP2024149513A (ja) 組成物、磁性粒子含有膜、及び、電子部品
WO2023145500A1 (ja) 組成物の製造方法、磁性材料、電子部品
WO2024043162A1 (ja) 組成物収容体
WO2022138734A1 (ja) 組成物、磁性粒子含有硬化物、及び、電子部品
JP2023169259A (ja) 組成物、膜、硬化膜、硬化膜の製造方法、電子部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775186

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237030160

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237030160

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 202280019890.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023509011

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022775186

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022775186

Country of ref document: EP

Effective date: 20231023