WO2021261212A1 - 射出成型性に優れるアクリルゴム - Google Patents

射出成型性に優れるアクリルゴム Download PDF

Info

Publication number
WO2021261212A1
WO2021261212A1 PCT/JP2021/021348 JP2021021348W WO2021261212A1 WO 2021261212 A1 WO2021261212 A1 WO 2021261212A1 JP 2021021348 W JP2021021348 W JP 2021021348W WO 2021261212 A1 WO2021261212 A1 WO 2021261212A1
Authority
WO
WIPO (PCT)
Prior art keywords
acrylic rubber
weight
rubber
acrylic
molecular weight
Prior art date
Application number
PCT/JP2021/021348
Other languages
English (en)
French (fr)
Inventor
浩文 増田
孝文 川中
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to KR1020227043672A priority Critical patent/KR20230027021A/ko
Priority to CN202180056584.2A priority patent/CN116157424A/zh
Priority to JP2022531666A priority patent/JPWO2021261212A1/ja
Publication of WO2021261212A1 publication Critical patent/WO2021261212A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • C08F2/24Emulsion polymerisation with the aid of emulsifying agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/14Treatment of polymer emulsions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/012Additives activating the degradation of the macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to acrylic rubber, a method for producing the same, a rubber composition and a crosslinked rubber, and more specifically, an acrylic rubber having excellent injection moldability, strength characteristics, compression-resistant permanent strain resistance and water resistance, a method for producing the same, and the acrylic.
  • the present invention relates to a rubber composition containing rubber and a rubber crosslinked product obtained by cross-linking the rubber composition.
  • Acrylic rubber is a polymer containing acrylic acid ester as a main component, and is generally known as rubber having excellent heat resistance, oil resistance, and ozone resistance, and is widely used in automobile-related fields and the like.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 11-124257 describes carbon-carbon double bonds such as ethyl acrylate, butyl acrylate, methoxyethyl acrylate, acrylonitrile, and allyl methacrylate and cyclopentenyloxyethyl acrylate.
  • Patent Document 2 Japanese Unexamined Patent Publication No. 5-86137 discloses a method for producing acrylic rubber, in which polymerization is started with an organic radical generator, a chain transfer agent is added to a monomer emulsified solution, and the acrylic rubber is continuously administered. ing. Specifically, an appropriate amount of a monomer mixture containing crosslinkable monomers such as 2- (2-cyanoethoxy) ethyl acrylate, ethyl acrylate, n-butyl acrylate, and vinyl chloroacetate and allyl glycidyl ether.
  • crosslinkable monomers such as 2- (2-cyanoethoxy) ethyl acrylate, ethyl acrylate, n-butyl acrylate, and vinyl chloroacetate and allyl glycidyl ether.
  • One-fifth of the mixture of n-dodecyl mercaptan is 1 part by weight of polyoxyethylene lauryl ether, 4 parts by weight of sodium lauryl sulfate, 0.7 part by weight of disodium hydrogen phosphate, and 0.3 part by weight of sodium dihydrogen phosphate.
  • the acrylic rubber obtained by this method has problems that the injection moldability is not sufficient and the storage stability, water resistance and strength characteristics are inferior.
  • Patent Document 3 International Publication No. 2019/188709 pamphlet
  • a monomer component composed of ethyl acrylate, butyl acrylate, methoxyethyl acrylate and monobutyl fumarate, water and sodium lauryl sulfate, and the pressure is reduced.
  • sodium aldehyde sulfoxylate and cumenhydroperoxide which is an organic radical generator, are added to start emulsion polymerization at normal pressure and normal temperature, and the polymerization conversion rate becomes 95% by weight.
  • the acrylic rubber obtained by this method has problems of inferior injection moldability, storage stability, and water resistance.
  • Patent Document 4 International Publication No. 2018/110703 is charged with a monomer component composed of ethyl acrylate and mono-n-butyl fumarate, water and sodium dodecyl sulfate, and is subjected to vacuum degassing and nitrogen substitution. After sufficiently removing oxygen by performing 3 degrees, azobis (isobutyronitrile) and ethyl-2-methyl-2-phenylteranylpropinate, which are organic radical generators, are added, and the temperature is 50 degrees under normal pressure. A method of initiating a polymerization reaction, polymerizing until the polymerization conversion rate reaches 89%, coagulating with a calcium chloride solution, washing with water, and drying to produce acrylic rubber is disclosed. However, the acrylic rubber obtained by this method has problems of inferior injection moldability, Banbury processability, storage stability, and water resistance.
  • Patent Document 5 Japanese Unexamined Patent Publication No. 2019-11977 describes ethyl acrylate, butyl acrylate, methoxyethyl acrylate and monobutyl maleate.
  • a monomer emulsion consisting of pure water, sodium lauryl sulfate and polyoxyethylene dodecyl ether as an emulsifier was used as a monomer component, and then a part of the monomer emulsion was put into a polymerization reaction tank to form a nitrogen stream. After cooling to 12 ° C.
  • the remaining monomer emulsion, ferrous sulfate, sodium ascorbate and potassium persulfate aqueous solution as an inorganic radical generator are continuously added dropwise over 3 hours.
  • the emulsion was continuously emulsified and polymerized at 23 ° C. for 1 hour, and after the polymerization conversion rate reached 97% by weight, the temperature was raised to 85 ° C., and then sodium sulfate was continuously added to separate the solidified and filtered water.
  • the hydrous crumb was washed 4 times with water, 1 time with acid and 1 time with pure water, and then acrylic rubber was continuously produced into a sheet in an extrusion dryer having a screw, and hexamethylene diamine carbamate and the like were obtained.
  • a method of cross-linking with an aliphatic polyvalent amine compound of the above is disclosed.
  • the sheet-shaped acrylic rubber obtained by this method has problems that it is inferior in injection moldability and storage stability, and that the water resistance of the crosslinked product is inferior.
  • Patent Document 6 Japanese Unexamined Patent Publication No. 1-135811 describes a monomer component composed of ethyl acrylate, caprolactone-added acrylic acid ester, cyanoethyl acrylate and vinyl chloroacetate, and n-dodecyl mercaptan as a chain transfer agent. 1/4 amount of the monomer mixture is emulsified with sodium lauryl sulfate, polyethylene glycol nonylphenyl ether and distilled water, and sodium sulfite and ammonium persulfate as an inorganic radical generator are added to initiate polymerization, and the temperature is 60.
  • the remaining monomer mixture and the 2% ammonium persulfate aqueous solution were added dropwise at ° C for 2 hours, and the latex having a polymerization conversion rate of 96 to 99%, in which polymerization was continued for another 2 hours after the addition, was added to the sodium chloride aqueous solution at 80 ° C.
  • a method of producing acrylic rubber by solidifying, washing thoroughly with water, and then drying to produce acrylic rubber and cross-linking with sulfur is disclosed.
  • the acrylic rubber obtained by this method has problems of inferior injection moldability, storage stability, and water resistance.
  • Patent Document 7 Japanese Unexamined Patent Publication No. 62-64809 describes a compound of at least one of an acrylic acid alkyl ester and an acrylic acid alkoxyalkyl ester in an amount of 50 to 99.9% by weight, dihydrodicyclopentenyl as an unsaturated carboxylic acid.
  • the number average molecular weight (Mn) in terms of polystyrene using tetrahydrofuran as a developing solvent is 200 to 1.2 million, and the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) is 10 or less.
  • Acrylic rubber capable of sulfur sulfurization is disclosed. Specific examples thereof include monomer components including ethyl acrylate and radical crosslinkable dihydrodicyclopentenyl acrylate, sodium lauryl sulfate as an emulsifier, potassium persulfate as an inorganic radical generator, and a molecular weight regulator.
  • Octyl thioglycolate and t-dodecyl mercaptan are added in varying amounts, with a number average molecular weight (Mn) of 53-1.15 million, a weight average molecular weight (Mw) of 354 to 6.26 million, and a weight average molecular weight (Mw) and a number average molecular weight.
  • Acrylate rubber having a ratio (Mw / Mn) to (Mn) of 4.7 to 8 is disclosed.
  • the number average molecular weight (Mw) is as large as 5 million and the ratio (Mw / Mn) between the weight average molecular weight (Mw) and the number average molecular weight (Mn) is as narrow as 1.4.
  • the number average molecular weight (Mn) is as small as 200,000, and the ratio (Mw / Mn) between the weight average molecular weight (Mw) and the number average molecular weight (Mn) may be extremely wide as 17. Examples are shown in Comparative Examples.
  • the acrylic rubber obtained by this method is inferior in injection moldability, and in the crosslinking reaction, sulfur as a crosslinking agent and a vulcanization accelerator are added and kneaded with a roll, and then in a vulcanization press at 100 kg / cm 2 170.
  • sulfur as a crosslinking agent and a vulcanization accelerator are added and kneaded with a roll, and then in a vulcanization press at 100 kg / cm 2 170.
  • long-term cross-linking is required at ° C for 15 minutes and further at 175 ° C for 4 hours in a gear oven, and the obtained cross-linked product is inferior in water resistance, compression resistance permanent strain characteristics and strength characteristics, and There were problems such as inferior change in physical properties after thermal deterioration.
  • the present invention has been made in view of the actual conditions of the prior art, and is an acrylic rubber excellent in injection moldability, water resistance, compression permanent strain resistance and strength characteristics, a method for producing the same, and a rubber composition containing the acrylic rubber. And it is an object of the present invention to provide a rubber crosslinked product formed by cross-linking the same.
  • a specific monomer component containing an ion-reactive group-containing monomer has a weight average molecular weight (Mw), a weight average molecular weight (Mw), and a number average molecular weight. It was found that acrylic rubber having a specific ratio (Mw / Mn) to (Mn) and a specific ash content and ash content component is highly excellent in injection moldability, water resistance, compression set resistance, and strength characteristics. rice field. In particular, it has been found that the injection moldability of the acrylic rubber of the present invention is remarkably excellent in all of the properties of shape forming property, fusion property and mold releasability.
  • the present inventors also obtained from organic radical generators such as diisopropylbenzenehydroperoxide and reducing agents after emulsifying a specific monomer component containing an ion-reactive group-containing monomer with water and an emulsifier.
  • the emulsion polymerization is started in the presence of a redox catalyst, and the emulsion polymerization is carried out by adding the chain transfer agent in batches during the polymerization without adding the chain transfer agent at the initial stage, and the emulsion-polymerized emulsion is coagulated by a specific method.
  • the present inventors have a weight average molecular weight (Mw) and a ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of acrylic rubber. It has been found that it is important to keep (Mw / Mn) in a specific region. In order to produce such acrylic rubber, the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) is narrow and injection moldability is achieved only by emulsion polymerization using an organic radical generator. Although inferior, it was found that this can be achieved by adding a chain transfer agent in batches during the polymerization.
  • the acrylic rubber emulsion-polymerized using an inorganic radical generator has a too wide ratio (Mw / Mn) between the weight average molecular weight (Mw) and the number average molecular weight (Mn) and is inferior to injection molding.
  • the present inventors also dry the acrylic rubber by using a specific extrusion dryer, and by melt-kneading and drying the acrylic rubber under the optimum share conditions using the specific extrusion drying.
  • the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) is widened without impairing the weight average molecular weight (Mw).
  • the present inventors also have acrylic rubber having a bonding unit of an ionic reactive group-containing monomer that ionically reacts with a cross-linking agent such as a carboxyl group, an epoxy group or a chlorine atom, and having a weight average molecular weight in a specific range. , It was found that it is remarkably excellent in normal physical properties including compression resistance permanent strain characteristics and strength characteristics.
  • the present inventors also copolymerized the above-mentioned prior art ethyl acrylate and dihydrodicyclopentenyl acrylate in the GPC measurement of the ion-reactive acrylic rubber in which the monomer containing the ion-reactive group was copolymerized.
  • a specific solvent having a higher SP value than tetrahydrofuran was used as the developing solvent. It was found that the acrylic rubber can be dissolved cleanly and measured with good reproducibility, and the injection moldability, water resistance, compression permanent strain resistance and strength characteristics of acrylic rubber can be highly controlled by setting each characteristic value within a specific range.
  • the present inventors have found that the amount of ash and the ash component in acrylic rubber are greatly affected.
  • the cleaning efficiency and the ash removal efficiency at the time of dehydration can be remarkably improved, and as a result, the ash content of acrylic rubber can be remarkably reduced and the water resistance can be improved.
  • the present inventors also used not only the above-mentioned ash content and ash component amount, but also when a phosphate ester salt or a sulfate ester salt was used as an emulsifier, and / or an alkali metal salt or a Group 2 metal of the periodic table as a coagulant. It has been found that the water resistance of acrylic rubber can be remarkably improved when salt is used, and the mold releasability is remarkably excellent.
  • the present inventors have also found that the smaller the amount of gel of the insoluble matter of methyl ethyl ketone in the acrylic rubber, the better the injection moldability, the compression resistance permanent strain property and the strength property, and the better the Banbury processability. ..
  • the amount of gel of the insoluble methyl ethyl ketone in acrylic rubber is generated during the polymerization reaction, and in particular, when the polymerization conversion rate is increased in order to improve the strength characteristics, it rapidly increases and is difficult to control, but it is difficult to control it in the latter half of the polymerization reaction.
  • the acrylic rubber is melted in a screw type twin-screw extruder in a screw type twin-screw extruder in a state where the gel amount of the specific solvent insoluble component that has increased rapidly is substantially free of water. It was found that it disappears by kneading and drying, and the vanbury processability of acrylic rubber can be significantly improved.
  • the present inventors also have high strength characteristics and Banbury workability of acrylic rubber extruded and dried in a molten state in a state where almost all water is removed (water content is less than 1% by weight) by a screw type twin-screw extruder. I found that it was balanced.
  • the present inventors have also found that the larger the specific gravity of acrylic rubber, the better the injection moldability, water resistance, strength characteristics, compression permanent strain resistance, and storage stability.
  • the acrylic rubber of the present invention which has a specific ion-reactive group such as a carboxyl group, an epoxy group, and a chlorine atom, is adhesive and has a high affinity with air, so that once air is entrained, it is difficult to remove, and a water-containing crumb.
  • the directly dried crumb-shaped acrylic rubber entrained a large amount of air (the specific gravity became smaller) and deteriorated the storage stability.
  • the present inventors can remove some air and improve the storage stability of the acrylic rubber by compressing the crumb-shaped acrylic rubber with a high-pressure baler or the like to form a veil. It has been found that acrylic rubber, which is dried with a shaft extruder and extruded in the form of an air-free sheet and laminated, can produce acrylic rubber which contains almost no air (high specific density) and has extremely excellent storage stability. The present inventors have also found that the specific gravity including the content of such air can be measured according to the method A of JIS K6268 crosslinked rubber-density measurement using the difference in buoyancy.
  • the present inventors also have acrylic rubber that has been dried under reduced pressure or melted and extruded under reduced pressure by a screw-type twin-screw extruder, and has characteristics of storage stability, injection moldability, and strength characteristics. We have found that it is excellent and highly balanced.
  • the present inventors also have a monomer composition of acrylic rubber, a type of ionic reactive group, a molecular weight distribution focusing on a high molecular weight region (Mz / Mw), and a complex viscosity ratio at 60 ° C. ([ ⁇ ] 60 ° C. ), Ratio of complex viscosity at 100 ° C ([ ⁇ ] 100 ° C) to complex viscosity at 60 ° C ([ ⁇ ] 60 ° C) ([ ⁇ ] 100 ° C / [ ⁇ ] 60 ° C), identification in ash It has been found that by setting the element amount and the specific element amount ratio within a specific range, the injection moldability, water resistance, compression set resistance, and strength characteristics can be further enhanced.
  • the present inventors have found that by using an ionic crosslinkable organic compound as a crosslinking agent, each property of a rubber crosslinked product having excellent crosslinkability and obtained is further improved.
  • the present inventors further, in the rubber composition containing the acrylic rubber, the filler and the cross-linking agent of the present invention, by blending carbon black or silica as the filler, the Banbury processability, the injection moldability, and the short time can be shortened. It has been found that the crosslinked product is excellent in crosslinkability, and the crosslinked product is highly excellent in water resistance, strength characteristics and compression set resistance.
  • the present inventors also preferably use an organic compound, a polyvalent compound or an ionic cross-linking compound as the cross-linking agent, and for example, the ionic reactivity of acrylic rubber such as an amine group, an epoxy group, a carboxyl group or a thiol group.
  • the present inventors have completed the present invention based on these findings.
  • a binding unit derived from at least one (meth) acrylic acid ester selected from the group consisting of (meth) acrylic acid alkyl ester and (meth) acrylic acid alkoxyalkyl ester, containing an ionic reactive group consists of a bonding unit derived from a monomer and, if necessary, a bonding unit derived from another monomer, and has a weight average molecular weight (Mw) of 1 to 5 million, a weight average molecular weight (Mw) and a number average molecular weight (Mn). ) Is in the range of 1.5 to 3 and the ash content is 0.3% by weight or less, and the total amount of sodium, sulfur, calcium, magnesium and phosphorus in the ash content is 80% by weight.
  • the acrylic rubber described above is provided.
  • the ratio (Mz / Mw) of the z average molecular weight (Mz) to the weight average molecular weight (Mw) is preferably 1.3 or more. In the acrylic rubber of the present invention, the ratio (Mz / Mw) of the z average molecular weight (Mz) to the weight average molecular weight (Mw) is preferably 4 or less.
  • the number average molecular weight (Mn) is preferably in the range of 400,000 to 1.1 million.
  • the weight average molecular weight (Mw), the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) (Mw / Mn, or the z average molecular weight (Mz) and the weight average molecular weight (Mw)). It is preferable that the ratio (Mz / Mw) with the above is the absolute molecular weight or the absolute molecular weight distribution measured by the GPC-MALS method.
  • the measuring solvent of the GPC-MALS method is a dimethylformamide-based solvent.
  • the monomer composition of the acrylic rubber is derived from at least one (meth) acrylic acid ester selected from the group consisting of (meth) acrylic acid alkyl ester and (meth) acrylic acid alkoxyalkyl ester. It is composed of 50 to 99.99% by weight of the binding unit, 0.01 to 10% by weight of the binding unit derived from the ionic reactive group-containing monomer, and 0 to 40% by weight of the binding unit derived from other monomers. Is preferable.
  • the ion-reactive group is preferably a carboxyl group or an epoxy group.
  • the gel amount is preferably 50% by weight or less.
  • the gel amount is preferably 30% by weight or less. In the acrylic rubber of the present invention, it is preferable that all the values obtained by arbitrarily measuring the gel amount at 20 points are within the range of (average value ⁇ 5)% by weight. In the acrylic rubber of the present invention, the specific gravity is preferably 0.8 or more. In the acrylic rubber of the present invention, the total amount of magnesium and phosphorus in the ash is preferably 50% by weight or more.
  • the ratio of magnesium to phosphorus in the ash is preferably in the range of 0.4 to 2.5 in terms of weight ratio.
  • the complex viscosity at 60 ° C. ([ ⁇ ] 60 ° C.) is preferably 15,000 [Pa ⁇ s] or less.
  • the ratio of the complex viscosity at 100 ° C. ([ ⁇ ] 100 ° C.) to the complex viscosity at 60 ° C. ([ ⁇ ] 60 ° C.) ([ ⁇ ] 100 ° C./[ ⁇ ] 60 ° C.) is preferably 0.7 or more.
  • it is preferably in the form of a sheet or a veil.
  • the acrylic rubber of the present invention is preferably emulsion-polymerized using a phosphoric acid ester salt or a sulfate ester salt as an emulsifier, and the emulsion polymerized solution is an alkali metal salt or a Group 2 metal salt of the periodic table as a coagulant. It is preferable that it is coagulated and dried by using it. Further, the acrylic rubber of the present invention is preferably melt-kneaded and dried after solidification, and the melt-kneading and drying are carried out in a state of substantially no moisture. It is preferable that the above-mentioned melt kneading and drying are performed under reduced pressure. Further, in the acrylic rubber of the present invention, it is preferable that the acrylic rubber is cooled at a cooling rate of 40 ° C./hr or more after the above-mentioned melt kneading and drying.
  • the water-containing crumb having a particle diameter in the range of 710 ⁇ m to 6.7 mm and having a proportion of 50% by weight or more is washed, dehydrated and dried.
  • At least one (meth) acrylic acid ester selected from the group consisting of (meth) acrylic acid alkyl ester and (meth) acrylic acid alkoxyalkyl ester, an ion-reactive group-containing monomer, And, if necessary, an emulsion step of emulsifying a monomer component composed of other monomers with water and an emulsifier, and polymerization is started in the presence of a redox catalyst composed of an organic radical generator and a reducing agent.
  • a chain transfer agent is added in batches to continue the polymerization to obtain an emulsion polymerization solution, and the obtained emulsion polymerization solution is added to a stirring coagulation solution to coagulate and form a water-containing crumb.
  • Production of acrylic rubber including a solidification step to be produced, a cleaning step to wash the generated hydrous crumb, a dehydration step to dehydrate the washed hydrous crumb, and a drying step to dry the dehydrated hydrous crumb to less than 1% by weight. The method is provided.
  • the method for producing acrylic rubber of the present invention is preferably the method for producing acrylic rubber described above.
  • the method for producing acrylic rubber of the present invention it is preferable to carry out emulsion polymerization using a phosphoric acid ester salt or a sulfate ester salt as an emulsifier in the emulsion polymerization step, and the polymerization solution produced in the emulsion polymerization step is an alkali metal salt or a periodic table. It is preferable to coagulate by contacting with a coagulant containing a Group 2 metal salt in Table 2.
  • the polymerization liquid produced in the emulsion polymerization step is corroded with a coagulant to solidify, and then melt-kneaded and dried. It is preferable that the melt kneading and drying are carried out under reduced pressure. Further, in the method for producing acrylic rubber of the present invention, it is preferable to perform the melt kneading and drying by a screw type twin-screw extruder for drying the hydrous crumb, and the screw type twin screw extrusion during the melt kneading and drying. The maximum torque of the dryer is preferably in the range of 5 to 125 Nm. Further, in the method for producing acrylic rubber of the present invention, it is preferable to cool the acrylic rubber after melt kneading and drying at a cooling rate of 40 ° C./hr or more.
  • the coagulant concentration of the coagulant is preferably 1% by weight or more.
  • the stirring number of the coagulating liquid being stirred is 100 rpm or more.
  • the peripheral speed of the agitated coagulant is preferably 1 m / s or more.
  • a reducing agent is added afterwards in the emulsion polymerization step.
  • a rubber composition containing the above-mentioned rubber component containing acrylic rubber, a filler and a cross-linking agent.
  • the filler is a reinforcing filler. Further, in the rubber composition of the present invention, it is preferable that the filler is carbon blacks. Further, in the rubber composition of the present invention, it is preferable that the filler is silica.
  • the cross-linking agent is an organic cross-linking agent. Further, in the rubber composition of the present invention, it is preferable that the cross-linking agent is a polyvalent compound. Further, in the rubber composition of the present invention, it is preferable that the cross-linking agent is an ionic cross-linking compound. Further, in the rubber composition of the present invention, it is preferable that the cross-linking agent is an ionic cross-linking organic compound. Further, in the rubber composition of the present invention, it is preferable that the cross-linking agent is a polyvalent ion organic compound.
  • the ion of the ion-crosslinkable compound, the ion-crosslinkable organic compound or the polyvalent ion-organic compound as the cross-linking agent is selected from the group consisting of an amino group, an epoxy group, a carboxyl group and a thiol group. It is preferably at least one ionic reactive group.
  • the cross-linking agent is at least one polyvalent ion compound selected from the group consisting of a polyvalent amine compound, a polyvalent epoxy compound, a polyvalent carboxylic acid compound and a polyvalent thiol compound. Is preferable.
  • the content of the cross-linking agent is preferably in the range of 0.001 to 20 parts by weight with respect to 100 parts by weight of the rubber component.
  • the rubber composition of the present invention preferably further contains an anti-aging agent.
  • the anti-aging agent is preferably an amine-based anti-aging agent.
  • a method for producing a rubber composition in which a rubber component containing acrylic rubber, a filler and, if necessary, an antiaging agent are mixed, and then a cross-linking agent is mixed.
  • a rubber crosslinked product obtained by cross-linking the above rubber composition is further provided.
  • the crosslinking of the rubber composition is performed after molding. Further, in the rubber crosslinked product of the present invention, it is preferable that the cross-linking of the rubber composition performs primary cross-linking and secondary cross-linking.
  • acrylic rubber having highly excellent injection moldability, water resistance, compression set resistance and strength characteristics, an efficient production method thereof, a high quality rubber composition containing the acrylic rubber, and the like.
  • Crosslinked rubber crosslinked products are provided.
  • the acrylic rubber of the present invention is a bonding unit derived from at least one (meth) acrylic acid ester selected from the group consisting of (meth) acrylic acid alkyl ester and (meth) acrylic acid alkoxyalkyl ester, and an ion-reactive group-containing simple substance. It consists of a binding unit derived from an ester and, if necessary, a binding unit derived from other monomers, and has a weight average molecular weight (Mw) of 1 to 5 million, a weight average molecular weight (Mw) and a number average molecular weight (Mn).
  • Mw weight average molecular weight
  • the monomer component of the acrylic rubber of the present invention contains at least one (meth) acrylic acid ester selected from the group consisting of (meth) acrylic acid alkyl ester and (meth) acrylic acid alkoxyalkyl ester, and an ionic reactive group. It consists of a monomer and other monomers copolymerizable as needed.
  • (meth) acrylic acid ester is used as a general term for esters of acrylic acid and / or methacrylic acid.
  • the (meth) acrylic acid alkyl ester is not particularly limited, but usually has a (meth) acrylic acid alkyl ester having an alkyl group having 1 to 12 carbon atoms, preferably a (meth) acrylic having an alkyl having 1 to 8 carbon atoms.
  • An acid alkyl ester, more preferably a (meth) acrylic acid alkyl ester having an alkyl group having 2 to 6 carbon atoms is used.
  • the (meth) acrylic acid alkyl ester examples include methyl (meth) acrylic acid, ethyl (meth) acrylic acid, n-propyl (meth) acrylic acid, isopropyl (meth) acrylic acid, and n- (meth) acrylic acid.
  • examples thereof include butyl, isobutyl (meth) acrylate, n-hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, and among these, ethyl (meth) acrylate, (meth). ) N-butyl acrylate is preferable, and ethyl acrylate and n-butyl acrylate are more preferable.
  • the (meth) acrylic acid alkoxyalkyl ester is not particularly limited, but usually has a (meth) acrylic acid alkoxyalkyl ester having 2 to 12 alkoxyalkyl groups, preferably a (meth) acrylic having 2 to 8 alkoxyalkyl groups.
  • An acid alkoxyalkyl ester, more preferably a (meth) acrylic acid alkoxy ester having an alkoxyalkyl group having 2 to 6 carbon atoms is used.
  • (meth) acrylate alkoxyalkyl ester examples include methoxymethyl (meth) acrylate, methoxyethyl (meth) acrylate, methoxypropyl (meth) acrylate, methoxybutyl (meth) acrylate, and (meth) acrylic.
  • examples thereof include ethoxymethyl acid, ethoxyethyl (meth) acrylate, propoxyethyl (meth) acrylate, butoxyethyl (meth) acrylate and the like.
  • methoxyethyl (meth) acrylate, ethoxyethyl (meth) acrylate and the like are preferable, and methoxyethyl acrylate and ethoxyethyl acrylate are more preferable.
  • At least one (meth) acrylic acid ester selected from the group consisting of these (meth) acrylic acid alkyl esters and (meth) acrylic acid alkoxyalkyl esters may be used alone or in combination of two or more. These proportions in the total components of the weight are usually 50-99.99% by weight, preferably 62-99.95% by weight, more preferably 74-99.9% by weight, particularly preferably 80-99.5% by weight. %, Most preferably in the range of 87 to 99% by weight, the acrylic rubber is highly excellent in weather resistance, heat resistance and oil resistance.
  • the ionic reactive group-containing monomer is not particularly limited as long as it is a functional group involved in the ionic reaction and is appropriately selected according to the purpose of use, but usually consists of a group consisting of a carboxyl group, an epoxy group and a chlorine atom.
  • Examples thereof include a monomer having at least one functional group selected, preferably a monomer having a carboxyl group and an epoxy group, and more preferably a monomer having a carboxyl group, and the crosslinkability for a short time is used. It is suitable because it can highly improve the compression-resistant permanent strain resistance and water resistance of the crosslinked product.
  • the monomer having a carboxyl group is not particularly limited, but an ethylenically unsaturated carboxylic acid can be preferably used.
  • the ethylenically unsaturated carboxylic acid include ethylenically unsaturated monocarboxylic acid, ethylenically unsaturated dicarboxylic acid, and ethylenically unsaturated dicarboxylic acid monoester, and among these, ethylenically unsaturated dicarboxylic acid monoester. It is preferable that the ester can further enhance the compression resistance permanent strain property when the acrylic rubber is used as a rubber crosslinked product.
  • the ethylenically unsaturated monocarboxylic acid is not particularly limited, but an ethylenically unsaturated monocarboxylic acid having 3 to 12 carbon atoms is preferable, for example, acrylic acid, methacrylic acid, ⁇ -ethylacrylic acid, crotonic acid, and the like. Examples include cinnamic acid.
  • the ethylenically unsaturated dicarboxylic acid is not particularly limited, but is preferably an ethylenically unsaturated dicarboxylic acid having 4 to 12 carbon atoms, and examples thereof include butendionic acids such as fumaric acid and maleic acid, itaconic acid, and citraconic acid. Can be mentioned.
  • the ethylenically unsaturated dicarboxylic acid includes those existing as an anhydride.
  • the ethylenically unsaturated dicarboxylic acid monoester is not particularly limited, but is usually an ethylenically unsaturated dicarboxylic acid having 4 to 12 carbon atoms and an alkyl monoester having 1 to 12 carbon atoms, preferably 4 to 12 carbon atoms.
  • Examples thereof include ethylenically unsaturated dicarboxylic acid of 6 and an alkyl monoester having 2 to 8 carbon atoms, more preferably an alkyl monoester having 2 to 6 carbon atoms of butendionic acid having 4 carbon atoms.
  • ethylenically unsaturated dicarboxylic acid monoester examples include monomethyl fumarate, monoethyl fumarate, monon-butyl fumarate, monomethyl maleate, monoethyl maleate, monon-butyl maleate, monocyclopentyl fumarate, and fumaric acid.
  • Butendionic acid monoalkyl esters such as monocyclohexyl acid, monocyclohexenyl fumarate, monocyclopentyl maleate, monocyclohexyl maleate; monomethyl itaconate, monoethyl itaconate, monon-butyl itaconate, monocyclohexyl itaconate, etc. Examples thereof include monoalkyl esters; among these, mono n-butyl fumarate and mono n-butyl maleate are preferable, and mono n-butyl fumarate is particularly preferable.
  • Examples of the monomer having an epoxy group include an epoxy group-containing (meth) acrylic acid ester such as glycidyl (meth) acrylate; and an epoxy group-containing vinyl ether such as allyl glycidyl ether and vinyl glycidyl ether.
  • the monomer having a chlorine atom is not particularly limited, but for example, an unsaturated alcohol ester of a saturated carboxylic acid containing a chlorine atom, a (meth) acrylic acid chloroalkyl ester, and a (meth) acrylic acid chloroacyloxy.
  • Examples thereof include unsaturated monomers contained.
  • the unsaturated alcohol ester of the chlorine atom-containing saturated carboxylic acid include vinyl chloroacetate, vinyl 2-chloropropionate, and allyl chloroacetic acid.
  • Specific examples of (meth) acrylic acid chloroalkyl ester include (meth) acrylic acid chloromethyl, (meth) acrylic acid 1-chloroethyl, (meth) acrylic acid 2-chloroethyl, and (meth) acrylic acid 1,2-dichloroethyl. , (Meta) acrylic acid 2-chloropropyl, (meth) acrylic acid 3-chloropropyl, (meth) acrylic acid 2,3-dichloropropyl and the like.
  • (meth) acrylic acid chloroacyloxyalkyl ester examples include (meth) acrylic acid 2- (chloroacetoxy) ethyl, (meth) acrylic acid 2- (chloroacetoxy) propyl, and (meth) acrylic acid 3- (chloro). Examples thereof include acetoxy) propyl and 3- (hydroxychloroacetoxy) propyl (meth) acrylate.
  • Examples of the (meth) acrylic acid (chloroacetylcarbamoyloxy) alkyl ester include (meth) acrylic acid 2- (chloroacetylcarbamoyloxy) ethyl and (meth) acrylic acid 3- (chloroacetylcarbamoyloxy) propyl. Be done.
  • Specific examples of the chlorine atom-containing unsaturated ether include chloromethyl vinyl ether, 2-chloroethyl vinyl ether, 3-chloropropyl vinyl ether, 2-chloroethyl allyl ether, 3-chloropropyl allyl ether and the like.
  • chlorine atom-containing unsaturated ketone examples include 2-chloroethyl vinyl ketone, 3-chloropropyl vinyl ketone, 2-chloroethyl allyl ketone and the like.
  • chloromethyl group-containing aromatic vinyl compound examples include p-chloromethylstyrene, m-chloromethylstyrene, o-chloromethylstyrene, p-chloromethyl- ⁇ -methylstyrene and the like.
  • Specific examples of the chlorine atom-containing unsaturated amide include N-chloromethyl (meth) acrylamide.
  • Specific examples of the chloroacetyl group-containing unsaturated monomer include 3- (hydroxychloroacetoxy) propyl allyl ether and p-vinylbenzylchloroacetic acid ester.
  • ion-reactive group-containing monomers are used alone or in combination of two or more, and the ratio in the total components of the monomer is usually 0.01 to 10% by weight, preferably 0.05 to 8%. It is in the range of% by weight, more preferably 0.1 to 6% by weight, particularly preferably 0.5 to 5% by weight, and most preferably 1 to 3% by weight.
  • any monomer copolymerizable with the above-mentioned monomer can be used.
  • aromatic vinyls such as styrene, ⁇ -methylstyrene and divinylbenzene
  • ethylenically unsaturated nitriles such as acrylonitrile and methacrylonitrile
  • acrylamide-based monomers such as acrylamide and methacrylicamide
  • ethylene Ethylene-based monomers such as propylene, vinyl acetate, ethyl vinyl ether, and butyl vinyl ether.
  • the ratio in the total components of the monomer is usually 0 to 40% by weight, preferably 0 to 30% by weight, and more preferably 0. It is suppressed to the range of about 20% by weight, particularly preferably 0 to 15% by weight, and most preferably 0 to 10% by weight.
  • the acrylic rubber of the present invention is composed of the above-mentioned monomer components, and has a weight average molecular weight (Mw), a ratio (Mw / Mn) of a weight average molecular weight (Mw) to a number average molecular weight (Mn), an ash content, and an ash component amount. Is within a specific range.
  • the monomer of the acrylic rubber of the present invention is at least one (meth) acrylic acid ester selected from the group consisting of (meth) acrylic acid alkyl ester and (meth) acrylic acid alkoxyalkyl ester, and an ion-reactive group-containing simple substance. It consists of binding units from the metric and other monomers contained as needed, each proportion in the acrylic rubber from the group consisting of (meth) acrylic acid alkyl esters and (meth) acrylic acid alkoxyalkyl esters.
  • the binding unit derived from at least one (meth) acrylic acid ester selected is usually 50-99.99% by weight, preferably 62-99.95% by weight, more preferably 74-99.9% by weight, particularly preferably.
  • the bond unit derived from the ionic reactive group-containing monomer is usually 0.01 to 10% by weight, preferably 0.05. It is in the range of -8% by weight, more preferably 0.1 to 6% by weight, particularly preferably 0.5 to 5% by weight, most preferably 1 to 3% by weight, and the binding unit derived from other monomers is. , Usually in the range of 0 to 40% by weight, preferably 0 to 30% by weight, more preferably 0 to 20% by weight, particularly preferably 0 to 15% by weight, and most preferably 0 to 10% by weight.
  • properties such as short-time crosslinkability, compression set resistance, weather resistance, heat resistance, and oil resistance are highly balanced and suitable.
  • the weight average molecular weight (Mw) of the acrylic rubber of the present invention is 1 million to 5 million, preferably 1.1 million to 4 million, more preferably 1.2 million to 3 million, particularly preferably 1.5 million to 2.5 million, and most preferably 160.
  • Mw weight average molecular weight
  • the range is in the range of 10,000 to 2.2 million, the injection moldability, strength characteristics, and compression resistance permanent strain characteristics of acrylic rubber are highly balanced and suitable.
  • the number average molecular weight (Mn) of the acrylic rubber of the present invention is not particularly limited, but is usually 300,000 to 1,500,000, preferably 350,000 to 1,300,000, more preferably 400,000 to 1,100,000, and particularly preferably. When the range is 500,000 to 1,000,000, most preferably 550,000 to 750,000, the injection moldability, strength characteristics and compression resistance permanent strain characteristics of acrylic rubber are highly balanced and suitable.
  • the z average molecular weight (Mz) of the acrylic rubber of the present invention is not particularly limited and may be appropriately selected depending on the intended use, but is usually 1.5 million or more, preferably 2 million or more, more preferably 2.5 million or more. Especially preferably, it is 3 million or more.
  • the z average molecular weight (Mz) of the acrylic rubber of the present invention is also usually 1.5 million to 6 million, preferably 1.8 million to 5.5 million, more preferably 2 million to 5 million, particularly preferably 2.2 million to 4.5 million, most preferably.
  • the range is preferably in the range of 2.5 million to 4 million, the injection moldability, the Banbury processability, the strength characteristic, and the compression resistance permanent strain characteristic of the acrylic rubber are highly balanced and preferable.
  • the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of the acrylic rubber of the present invention is 1.5 to 3, preferably 1.8 to 2.7, and more preferably 2 to 2.
  • 2.6 particularly preferably in the range of 2.2 to 2.6, is suitable because the injection moldability of acrylic rubber, the strength characteristics when crosslinked, and the compression resistance permanent strain characteristics are highly balanced.
  • the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of the acrylic rubber of the present invention is in this range, the shape-forming property, fusion property and fusion property of the acrylic rubber are injection moldable. Both of the releasability characteristics are remarkably excellent, and the strength characteristics as a crosslinked product and the compression-resistant permanent strain resistance are highly balanced and suitable.
  • the molecular weight distribution focusing on the high molecular weight region of the acrylic rubber of the present invention is not particularly limited, but is usually the ratio (Mz / Mw) of the z average molecular weight (Mz) and the weight average molecular weight (Mw).
  • Mz z average molecular weight
  • Mw weight average molecular weight
  • the weight average molecular weight (Mw) is 1.3 or more, preferably 1.4 or more, more preferably 1.5 or more, particularly preferably 1.6 or more, and most preferably 1.7 or more, the weight average molecular weight (Mw) is excessive. It is suitable because it can prevent deterioration of mold releasability and shape formation (burr generation) when it becomes small.
  • the molecular weight distribution (Mz / Mw) focusing on the high molecular weight region of the acrylic rubber of the present invention is also usually 4 or less, preferably 3 or less, more preferably 2.5 or less, particularly preferably 2.2 or less, and most. When it is preferably 2 or less, it is preferable because it is possible to prevent deterioration of shape formability (insufficient shape) and fusion when the weight average molecular weight (Mw) becomes excessively large.
  • the molecular weight distribution (Mz / Mw) focusing on the high molecular weight region of the acrylic rubber of the present invention is further usually 1.3 to 3, preferably 1.4 to 2.5, and more preferably 1.5 to 2. 2. Especially preferably in the range of 1.6 to 2, most preferably 1.7 to 1.9, the injection moldability and the Banbury workability can be highly improved without impairing the strength characteristics of the acrylic rubber. Is.
  • the measurement of the molecular weight (Mn, Mw, Mz) and the molecular weight distribution (Mw / Mn, Mz / Mw) of the acrylic rubber of the present invention is not particularly limited, but the absolute molecular weight (Mn, Mw, Mz) by the GPC-MALS method is not particularly limited. ), Absolute molecular weight distribution (Mw / Mn, Mz / Mw), each characteristic can be accurately obtained and is suitable.
  • the measuring solvent of the GPC-MALS method for measuring the molecular weight (Mn, Mw, Mz) and the molecular weight distribution (Mw / Mn, Mz / Mw) of the acrylic rubber of the present invention is one that can dissolve and measure the acrylic rubber of the present invention.
  • a dimethylformamide-based solvent is preferable.
  • the dimethylformamide-based solvent used is not particularly limited as long as it contains dimethylformamide as a main component, but it can be used with 100% dimethylformamide or by adding a polar substance to dimethylformamide.
  • the proportion of dimethylformamide in the dimethylformamide-based solvent is 90% by weight or more, preferably 95% by weight or more, and more preferably 97% by weight or more.
  • the compound to be added to dimethylformamide is not particularly limited, but in the present invention, lithium chloride is added to dimethylformamide at a concentration of 0.05 mol / L and 37% concentrated hydrochloric acid is added at a concentration of 0.01%, respectively.
  • the solution is suitable.
  • the ash content of the acrylic rubber of the present invention is 0.3% by weight or less, preferably 0.2% by weight or less, more preferably 0.18% by weight or less, particularly preferably 0.15% by weight or less, and most preferably 0.
  • it is .13% by weight or less and is in this range, the fusion of water resistance, storage stability, strength characteristics, processability and injection moldability as acrylic rubber is highly balanced and suitable.
  • the lower limit of the ash content of the acrylic rubber of the present invention is not particularly limited and may be appropriately selected depending on the intended use, but is usually 0.0001% by weight or more, preferably 0.0005% by weight or more, more preferably. Is 0.001% by weight or more, particularly preferably 0.005% by weight or more, and most preferably 0.01% by weight or more, the metal adhesion of the rubber is reduced, the workability is excellent, and the injection moldability is excellent. It is particularly suitable because it has excellent releasability.
  • the ash content is usually 0.0001 to 0. .3% by weight, preferably 0.0005 to 0.2% by weight, more preferably 0.001 to 0.18% by weight, particularly preferably 0.005 to 0.15% by weight, most preferably 0.01 to 0.01% by weight. It is in the range of 0.13% by weight.
  • the total amount of sodium, magnesium, calcium, phosphorus and sulfur in the ash content of the acrylic rubber of the present invention is 80% by weight or more, preferably 90% by weight or more, more preferably 95% by weight or more, the water resistance of the acrylic rubber. It is suitable because the properties, the fusion property of injection molding, and the releasability are highly improved.
  • the total amount of magnesium and phosphorus in the ash content of the acrylic rubber of the present invention is not particularly limited and may be appropriately selected according to the purpose of use, but is usually 30% by weight or more, preferably 50% by weight or more. When it is preferably 70% by weight or more, particularly preferably 80% by weight or more, and most preferably 90% by weight or more, the water resistance, strength characteristics, injection molding fusion and releasability and processability of acrylic rubber are highly high. Balanced and suitable.
  • the amount of magnesium in the ash content of the acrylic rubber of the present invention is not particularly limited and is appropriately selected depending on the intended use, but is usually 10% by weight or more, preferably 15 to 60% by weight, and more preferably 20 to 50% by weight. %, Especially preferably in the range of 25 to 45% by weight, most preferably in the range of 30 to 40% by weight.
  • the amount of phosphorus in the ash content of the acrylic rubber of the present invention is not particularly limited and is appropriately selected depending on the intended use, but is usually 10% by weight or more, preferably 20 to 90% by weight, and more preferably 30 to 80% by weight. %, Especially preferably in the range of 40 to 70% by weight, most preferably in the range of 50 to 60% by weight.
  • the ratio of magnesium to phosphorus ([Mg] / [P]) in the ash content of the acrylic rubber of the present invention is not particularly limited and may be appropriately selected according to the purpose of use, but is usually 0 in terms of weight ratio. In the range of 0.4 to 2.5, preferably 0.45 to 1.2, more preferably 0.45 to 1, particularly preferably 0.5 to 0.8, and most preferably 0.55 to 0.7. At one point, the water resistance, strength characteristics, fusion of injection molding, mold releasability and processability of acrylic rubber are highly balanced and suitable.
  • the ash content in the acrylic rubber is mainly derived from the emulsifier used when emulsifying the monomer component and emulsion polymerization and the coagulant used when coagulating the emulsion polymerization solution.
  • the contents of magnesium and phosphorus in the ash change not only depending on the conditions of the emulsion polymerization step and the solidification step, but also the conditions of each subsequent step.
  • anionic emulsifiers In order to achieve a high balance between water resistance, strength characteristics, injection molding fusion and releasability and processability of acrylic rubber, anionic emulsifiers, cationic emulsifiers or nonionic emulsifiers, which will be described later, are particularly preferable as emulsifiers. It is preferable to use an anionic emulsifier, more preferably a phosphate ester salt or a sulfate ester salt.
  • the water resistance of acrylic rubber is uniquely correlated with the amount of ash in the acrylic rubber and the total amount of sodium, magnesium, calcium, phosphorus and sulfur in the ash. By using the above emulsifier, the water resistance of acrylic rubber is unique. , Strength characteristics, fusion of injection molding, releasability and processability can be more highly balanced and suitable.
  • a metal salt described later preferably an alkali metal salt or the second periodic table, is particularly used as a coagulant. It is preferable to use a group metal salt.
  • the water resistance of acrylic rubber is uniquely correlated with the amount of ash in the acrylic rubber and the total amount of sodium, magnesium, calcium, phosphorus and sulfur in the ash. Water resistance, strength characteristics, fusion of injection molding, mold releasability and processability are more highly balanced and suitable.
  • the glass transition temperature (Tg) of the acrylic rubber of the present invention may be appropriately selected depending on the intended use of the acrylic rubber, but is usually 20 ° C. or lower, preferably 10 ° C. or lower, more preferably 0 ° C. or lower. It has excellent workability and cold resistance and is suitable.
  • the lower limit of the glass transition temperature (Tg) of acrylic rubber is not particularly limited, but is usually ⁇ 80 ° C. or higher, preferably ⁇ 60 ° C. or higher, and more preferably ⁇ 40 ° C. or higher.
  • the complex viscosity ([ ⁇ ] 100 ° C.) of the acrylic rubber of the present invention at 100 ° C. is not particularly limited and may be appropriately selected according to the purpose of use, but is usually 15,000 [Pa ⁇ s] or less. It is preferably 1,000 to 10,000 [Pa ⁇ s], more preferably 2,000 to 8,000 [Pa ⁇ s], particularly preferably 3,000 to 5,000 [Pa ⁇ s], and most preferably. When it is in the range of 3,500 to 4,000 [Pa ⁇ s], it is excellent in processability, oil resistance, injection moldability and shape retention, and is suitable.
  • the ratio ([ ⁇ ] 100 ° C / [ ⁇ ] 60 ° C) of the acrylic rubber of the present invention to the complex viscosity ([ ⁇ ] 100 ° C) at 100 ° C and the complex viscosity ([ ⁇ ] 60 ° C) at 60 ° C is There is no particular limitation, and it may be appropriately selected according to the purpose of use, but it is usually 0.5 or more, preferably 0.6 or more, and more preferably 0.7 or more.
  • the amount of gel of the acrylic rubber of the present invention is not particularly limited and may be appropriately selected depending on the intended use, but is usually 50% by weight or less, preferably 30% by weight or less, more preferably 30% by weight or less in terms of the amount of methyl ethyl ketone insoluble. When it is 15% by weight or less, particularly preferably 10% by weight or less, and most preferably 5% by weight or less, the processability and injection moldability at the time of kneading of Banbury and the like are highly improved and preferable.
  • the value when the gel amount of the acrylic rubber of the present invention is arbitrarily measured at 20 points is not particularly limited, but all 20 points are preferably within the range of (average value ⁇ 5)% by weight (preferably (). Average value ⁇ 3) When all 20 points are within the range of% by weight, there is no workability variation and various physical properties of the rubber mixture and rubber crosslinked product are stabilized, which is suitable. It should be noted that the value when the gel amount of the acrylic rubber veil is arbitrarily measured at 20 points is within the range of the average value ⁇ 5, and it is (average value -5) to (average value + 5) weight%. It means that all the measured gel amounts of 20 points are included in the range of, for example, when the average value of the measured gel amounts is 20% by weight, all 20 points are within the range of 15 to 25% by weight. It means that the measured value of is entered.
  • the acrylic rubber of the present invention is obtained by melt-kneading and drying the water-containing crumbs produced in the solidification step by a screw-type twin-screw extruder with almost all water removed (water content less than 1% by weight). Sometimes Banbury workability and strength characteristics are highly balanced and suitable.
  • the specific gravity of the acrylic rubber of the present invention is not particularly limited, but is usually 0.7 or more, preferably 0.8 or more, more preferably 0.9 or more, particularly preferably 0.95 or more, and most preferably. When it is 1 or more, almost no air is contained therein, and it is excellent in storage stability and suitable.
  • the specific gravity of the acrylic rubber molded product of the present invention is also usually 0.7 to 1.6, preferably 0.8 to 1.5, more preferably 0.9 to 1.4, and particularly preferably 0.95 to. When it is in the range of 1.3, most preferably 1.0 to 1.2, productivity, storage stability, cross-linking property stability of the cross-linked product, etc. are highly balanced and suitable.
  • the specific gravity of the acrylic rubber of the present invention is obtained by dividing the mass by the capacity including voids, that is, the mass measured in the air divided by the buoyancy, and is usually JIS K6268 crosslinked rubber-method A for density measurement. It is measured according to.
  • the hydrous crumb generated in the solidification step is dried under reduced pressure by a screw type twin-screw extruder, or melted under reduced pressure and extruded and dried for storage stability and injection. It is suitable because it is particularly excellent in moldability and strength characteristics and is highly balanced.
  • the water content of the acrylic rubber of the present invention is not particularly limited and is appropriately selected according to the purpose of use, but is usually less than 1% by weight, preferably 0.8% by weight or less, more preferably 0.6% by weight or less.
  • the vulcanization characteristics of acrylic rubber are optimized, and the characteristics such as heat resistance and water resistance are highly improved, which is suitable.
  • the pH of the acrylic rubber of the present invention is not particularly limited and may be appropriately selected depending on the purpose of use, but is usually 6 or less, preferably 2 to 6, more preferably 2.5 to 5.5, and most preferably. Is suitable because the storage stability of acrylic rubber is highly improved when the value is in the range of 3 to 5.
  • the Mooney viscosity (ML1 + 4,100 ° C.) of the acrylic rubber of the present invention is not particularly limited and may be appropriately selected depending on the intended use, but is usually 10 to 150, preferably 20 to 100, and more preferably 25 to. When the range is 70, the processability and strength characteristics of acrylic rubber are highly balanced and suitable.
  • the shape of the acrylic rubber of the present invention is not particularly limited and may be appropriately selected depending on the intended use. For example, it may be powdery, crumbly, strandic, sheety, veiled or the like, but is preferable. It is suitable because it has excellent workability and storage stability when it is in the form of a sheet or a veil.
  • the thickness of the acrylic rubber of the present invention in the form of a sheet is not particularly limited and may be appropriately selected depending on the intended use, but is usually 1 to 40 mm, preferably 2 to 35 mm, more preferably 3 to 30 mm. Most preferably, when it is in the range of 5 to 25 mm, workability, storage stability and productivity are highly balanced and suitable.
  • the width of the sheet-shaped acrylic rubber of the present invention is appropriately selected depending on the intended use, but is particularly excellent in handleability when it is usually in the range of 300 to 1200 mm, preferably 400 to 1000 mm, and more preferably 500 to 800 mm. Suitable.
  • the length of the sheet-shaped acrylic rubber sheet of the present invention is not particularly limited, but is particularly excellent in handleability when it is usually in the range of 300 to 1200 mm, preferably 400 to 1000 mm, and more preferably 500 to 800 mm. Suitable.
  • the size of the acrylic rubber of the present invention when it is in the shape of a veil is not particularly limited and is appropriately selected according to the purpose of use, but the width is usually 100 to 800 mm, preferably 200 to 500 mm, and more preferably 250 to.
  • the range is 450 mm
  • the length is usually 300 to 1,200 mm, preferably 400 to 1,000 mm, more preferably 500 to 800 mm
  • the height (thickness) is usually 50 to 500 mm, preferably 100 to 100. It is suitable to be in the range of 300 mm, more preferably 150 to 250 mm.
  • the shape of the veil-shaped acrylic rubber of the present invention is not limited, and is appropriately selected depending on the purpose of use of the acrylic rubber veil, but in many cases, a rectangular parallelepiped is suitable.
  • the method for producing acrylic rubber is not particularly limited, but for example, at least one (meth) acrylic acid selected from the group consisting of (meth) acrylic acid alkyl ester and (meth) acrylic acid alkoxyalkyl ester.
  • the polymerization is started in the presence of a redox catalyst, and a chain transfer agent is added in batches during the polymerization to continue the polymerization to obtain an emulsion polymerization solution, and the obtained emulsion polymerization solution is stirred.
  • the drying step to be carried out and the method for producing acrylic rubber including the above can be mentioned.
  • (Emulsification process) In the emulsification step in the method for producing acrylic rubber of the present invention, at least one (meth) acrylic acid ester selected from the group consisting of (meth) acrylic acid alkyl ester and (meth) acrylic acid alkoxyalkyl ester, ion-reactive. This is a step of emulsifying a monomer component composed of a group-containing monomer and, if necessary, other monomers with water and an emulsifier.
  • the monomer component used in the present invention contains at least one (meth) acrylic acid ester selected from the group consisting of (meth) acrylic acid alkyl ester and (meth) acrylic acid alkoxyalkyl ester, and an ionic reactive group. It is composed of a monomer and other monomers copolymerizable as necessary, and is the same as the above-mentioned examples and preferable ranges of the monomer components.
  • the amount of the monomer component used is also as described above, and in the emulsion polymerization, each monomer may be appropriately selected so as to have the above composition of the acrylic rubber of the present invention.
  • the emulsifier used in the present invention is not particularly limited, and examples thereof include an anionic emulsifier, a cationic emulsifier, and a nonionic emulsifier, and an anionic emulsifier is preferable.
  • the anionic emulsifier is not particularly limited, for example, salts of fatty acids such as myristic acid, palmitic acid, oleic acid, linolenic acid; alkylbenzene sulfonates such as sodium dodecylbenzenesulfonate; sulfate esters such as sodium laurylsulfate.
  • Phosphate ester salts such as salts and polyoxyalkylene alkyl ether phosphate ester salts; alkyl sulfosuccinates and the like can be mentioned.
  • phosphoric acid ester salts and sulfate ester salts are preferable, phosphoric acid ester salts are particularly preferable, and divalent phosphoric acid ester salts are most preferable, and the water resistance, strength characteristics, and injection molding of the obtained acrylic rubber are preferable. It is possible to highly balance the fusion property, mold releasability and processability of the ester.
  • the water resistance of the acrylic rubber obtained is preferably an alkali metal salt of a phosphate ester or a sulfate ester, and more preferably a sodium salt of a phosphate ester or a sulfate ester. It is suitable because it can highly balance the properties, strength characteristics, mold releasability and processability.
  • the divalent phosphoric acid ester salt is not particularly limited as long as it can be used as an emulsifier in the emulsification polymerization reaction, but is not particularly limited.
  • Examples thereof include ester salts, among which these metal salts are preferable, these alkali metal salts are more preferable, and these sodium salts are most preferable.
  • alkyloxypolyoxyalkylene phosphate ester salt examples include alkyloxypolyoxyethylene phosphoric acid ester salts and alkyloxypolyoxypropylene phosphate ester salts. Among these, alkyloxypolyoxyethylene phosphoric acid is used. Ester salts are preferred.
  • alkyloxypolyoxyethylene phosphoric acid ester examples include octyloxydioxyethylene phosphoric acid ester, octyloxytrioxyethylene phosphoric acid ester, octyloxytetraoxyethylene phosphoric acid ester, and decyloxytetraoxyethylene phosphoric acid ester.
  • alkyloxypolyoxypropylene phosphate ester examples include octyloxydioxypropylene phosphate, octyloxytrioxypropylene phosphate, octyloxytetraoxypropylene phosphate, and decyloxytetraoxypropylene phosphate.
  • alkylphenyloxypolyoxyalkylene phosphate ester examples include alkylphenyloxypolyoxyethylene phosphate and alkylphenyloxypolyoxypropylene phosphate, among which alkylphenyloxypoly is used.
  • Oxyethylene phosphate ester salts are preferred.
  • alkylphenyloxypolyoxyethylene phosphate ester examples include methyloxyoxytetraoxyethylene phosphate, ethylphenyloxytetraoxyethylene phosphate, butylphenyloxytetraoxyethylene phosphate, and hexylphenyloxytetra.
  • alkylphenyloxypolyoxypropylene phosphate ester examples include methylphenyloxytetraoxypropylene phosphate, ethylphenyloxytetraoxypropylene phosphate, butylphenyloxytetraoxypropylene phosphate, and hexylphenyloxytetra.
  • a monovalent phosphoric acid ester salt such as a di (alkyloxypolyoxyalkylene) phosphoric acid ester sodium salt can be used alone or in combination with a divalent phosphoric acid ester salt.
  • the sulfate ester salt include sodium lauryl sulfate, potassium lauryl sulfate, ammonium lauryl sulfate, sodium mystyl sulfate, sodium polyoxyethylene alkyl sulfate, sodium polyoxyethylene alkylaryl sulfate, and the like, and sodium lauryl sulfate is preferable.
  • cationic emulsifier examples include alkyltrimethylammonium chloride, dialkylammonium chloride, benzylammonium chloride and the like.
  • nonionic emulsifier examples include polyoxyalkylene fatty acid esters such as polyoxyethylene stearate ester; polyoxyalkylene alkyl ethers such as polyoxyethylene dodecyl ether; polyoxyalkylene alkyl phenol ethers such as polyoxyethylene nonylphenyl ether; and poly.
  • examples thereof include oxyethylene sorbitan alkyl ester, and polyoxyalkylene alkyl ether and polyoxyalkylene alkyl phenol ether are preferable, and polyoxyethylene alkyl ether and polyoxyethylene alkyl phenol ether are more preferable.
  • Each of these emulsifiers can be used alone or in combination of two or more, and the amount used is usually 0.01 to 10 parts by weight, preferably 0, with respect to 100 parts by weight of the monomer component. It is in the range of 1 to 5 parts by weight, more preferably 1 to 3 parts by weight.
  • the method of mixing the monomer component, water and emulsifier may follow a conventional method.
  • the amount of water used is usually 1 to 1000 parts by weight, preferably 5 to 500 parts by weight, more preferably 4 to 300 parts by weight, and particularly preferably 3 to 150 parts by weight, based on 100 parts by weight of the monomer component. Most preferably, it is in the range of 20 to 80 parts by weight.
  • Emmulsion polymerization process In the emulsion polymerization step in the method for producing acrylic rubber of the present invention, polymerization is started in the presence of a redox catalyst composed of an organic radical generator and a reducing agent, and a chain transfer agent is sequentially post-added during the polymerization to carry out the polymerization. This is a step of continuously obtaining an emulsion polymerization solution.
  • the polymerization catalyst used in the present invention is characterized by using a redox catalyst composed of an organic radical generator and a reducing agent, and is suitable because the injection moldability and strength characteristics of the obtained acrylic rubber can be highly improved. In particular, it is suitable because the injection moldability of acrylic rubber produced by using an organic radical generator can be highly improved.
  • the organic radical generator is not particularly limited as long as it is usually used in emulsion polymerization, and examples thereof include organic peroxides and azo compounds.
  • the organic peroxide is not particularly limited as long as it is a known organic peroxide used in emulsion polymerization.
  • 2,2-di (4,4-di- (t-butylperoxy) cyclohexyl) propane for example, 2,2-di (4,4-di- (t-butylperoxy) cyclohexyl) propane.
  • azo compound examples include azobisisoptironitrile, 4,4'-azobis (4-cyanovaleric acid), 2,2'-azobis [2- (2-imidazolin-2-yl) propane, 2,2. '-Azobis (Propane-2-Carboamidine), 2,2'-Azobis [N- (2-carboxyethyl) -2-Methylpropaneamide], 2,2'-Azobis ⁇ 2- [1- (2- (2- (2-) Hydroxyethyl) -2-imidazolin-2-yl] propane ⁇ , 2,2'-azobis (1-imino-1-pyrrolidino-2-methylpropane) and 2,2'-azobis ⁇ 2-methyl-N- [ 1,1-bis (hydroxymethyl) -2-hydroxyethyl] propanamide ⁇ and the like.
  • organic radical generators can be used alone or in combination of two or more, and the amount used is usually 0.0001 to 5 parts by weight, preferably 0.0001 to 5 parts by weight, based on 100 parts by weight of the monomer component. Is in the range of 0.0005 to 1 part by weight, more preferably 0.001 to 0.5 part by weight.
  • the reducing agent used in the present invention is not particularly limited as long as it is usually used in emulsion polymerization, but preferably at least two kinds of reducing agents are used, and it is a metal ion compound in a reduced state. It is suitable because the injection moldability and strength characteristics of acrylic rubber, which can be obtained by combining with other reducing agents, can be more highly balanced.
  • the metal ion compound in the reduced state is not particularly limited, and examples thereof include ferrous sulfate, sodium hexamethylenediamine tetraacetate, and ferrous naphthenate, and among these, ferrous sulfate is preferable.
  • These metal ion compounds in the reduced state can be used alone or in combination of two or more, and the amount used is usually 0.000001 to 0. With respect to 100 parts by weight of the monomer component. It is in the range of 01 parts by weight, preferably 0.00001 to 0.001 parts by weight, and more preferably 0.00005 to 0.0005 parts by weight.
  • the reducing agent other than the metal ion compound in the reduced state used in the present invention is not particularly limited, and is, for example, ascorbic acid such as ascorbic acid, sodium ascorbate, potassium ascorbate or a salt thereof; erythorbic acid, sodium erythorbicate.
  • Elysorbic acid such as potassium erythorbinate or a salt thereof; sulphinate such as sodium hydroxymethane sulfine; sodium sulfite, potassium sulfite, sodium hydrogen sulfite, sodium aldehyde hydrogen sulfite, sulfite of potassium hydrogen sulfite; sodium pyrosulfate, pyro Pyro sulfites such as potassium sulfite, sodium pyrosulfate, potassium pyrosulfate; thiosulfates such as sodium thiosulfate, potassium thiosulfate; Pyroarophosphate or a salt thereof; Pyroarophosphate or a salt thereof such as Pyrophosic acid, Sodium Pyrophosphite, Potassium Pyrophosphite, Sodium Pyrophosphite, Potassium hydrogen Pyrophosphite; Sodium formaldehyde sulfoxylate and the like. Be done. Among these, al
  • reducing agents other than the metal ion compound in the reduced state can be used alone or in combination of two or more, and the amount used is usually 0.001 with respect to 100 parts by weight of the monomer component. It is in the range of ⁇ 1 part by weight, preferably 0.005 to 0.5 part by weight, and more preferably 0.01 to 0.1 part by weight.
  • a preferred combination of the metal ion compound in the reduced state and the other reducing agent is a combination of ferrous sulfate and ascorbic acid or a salt thereof and / or sodium formaldehyde sulfoxylate, and more preferably ferrous sulfate. It is a combination with alcorbic acid or a salt thereof.
  • the amount of ferrous sulfate used at this time is usually 0.000001 to 0.01 parts by weight, preferably 0.00001 to 0.001 parts by weight, and more preferably 0, based on 100 parts by weight of the monomer component.
  • the amount of ascorbic acid or a salt thereof and / or sodium formaldehyde sulfoxylate is usually 0.001 to 1 part by weight, preferably 0.001 to 1 part by weight, based on 100 parts by weight of both components. It is in the range of 0.005 to 0.5 parts by weight, more preferably 0.01 to 0.1 parts by weight.
  • the amount of water used in the emulsion polymerization reaction may be only the amount used at the time of emulsification of the monomer component, but is usually 10 to 1000 parts by weight, preferably 50 to 50 parts by weight with respect to 100 parts by weight of the monomer component used for polymerization. It is adjusted to be in the range of 500 parts by weight, more preferably 80 to 400 parts by weight, and most preferably 100 to 300 parts by weight.
  • the method of the emulsion polymerization reaction may be a conventional method, and may be a batch method, a semi-batch method, or a continuous method.
  • the polymerization temperature and the polymerization time are not particularly limited and can be appropriately selected from the type of the polymerization initiator to be used and the like.
  • the polymerization time is usually 0.5 to 100 hours, preferably 1 to 10 hours.
  • the emulsion polymerization reaction is an exothermic reaction, and if not controlled, the temperature may rise and the polymerization reaction can be shortened.
  • the emulsion polymerization reaction temperature is usually 35 ° C. or lower, preferably 0 to 35 ° C., more preferably. Is preferably controlled at 5 to 30 ° C., particularly preferably 10 to 25 ° C., because the strength characteristics of the produced acrylic rubber and the processability at the time of kneading such as Banbury are highly balanced.
  • the present invention is characterized in that the chain transfer agent is not added at the initial stage but is added in batches during the polymerization, whereby an acrylic rubber having a high molecular weight component and a low molecular weight component separated can be produced. , The strength characteristics and injection moldability of the produced acrylic rubber are highly balanced and suitable.
  • the chain transfer agent used is not particularly limited as long as it is usually used in emulsion polymerization, and for example, a mercaptan compound can be preferably used.
  • an alkyl mercaptan compound having 2 to 20 carbon atoms preferably an alkyl mercaptan compound having 5 to 15 carbon atoms, and more preferably an alkyl mercaptan compound having 6 to 14 carbon atoms can be used.
  • the alkyl mercaptan compound may be any of n-alkyl mercaptan compound, sec-alkyl mercaptan compound and t-alkyl mercaptan compound, but is preferably n-alkyl mercaptan compound and t-alkyl mercaptan compound, and more preferably n-alkyl.
  • it is a mercaptan compound, the effect of the chain transfer agent can be stably exhibited, and the injection moldability of the produced acrylic rubber can be highly improved, which is suitable.
  • alkyl mercaptan compound examples include n-pentyl mercaptan, n-hexyl mercaptan, n-heptyl mercaptan, n-octyl mercaptan, n-decyl mercaptan, n-dodecyl mercaptan, n-tridecane mercaptan, and n-tetradecyl mercaptan.
  • chain transfer agents can be used alone or in combination of two or more.
  • the amount of the chain transfer agent used is not particularly limited, but is usually 0.0001 to 1 part by weight, preferably 0.0005 to 0.5 part by weight, based on 100 parts by weight of the monomer component.
  • the strength of the acrylic rubber produced is preferably in the range of 0.001 to 0.5 parts by weight, particularly preferably 0.005 to 0.1 parts by weight, and most preferably 0.01 to 0.06 parts by weight. It is suitable because the characteristics and injection moldability are highly balanced.
  • the present invention is characterized in that the chain transfer agent is not added at the initial stage of polymerization but is added in batches during the polymerization, and high molecular weight components and low molecular weight components of the acrylic rubber to be produced are produced and the molecular weight distribution is distributed. It is suitable because it can highly balance the strength characteristics and the injection moldability with the above as a specific range.
  • the number of batch post-additions of the chain transfer agent is not particularly limited and is appropriately selected depending on the purpose of use, but is usually 1 to 5 times, preferably 2 to 4 times, more preferably 2 to 3 times. Particularly preferably, the strength characteristics and the injection moldability of the acrylic rubber produced when the number of times is twice can be highly balanced, which is preferable.
  • the time to start the batch post-addition of the chain transfer agent is not particularly limited and is appropriately selected according to the purpose of use, but is usually 20 minutes or later after the start of the polymerization, preferably 30 minutes or later after the start of the polymerization.
  • the strength characteristics and injection moldability of acrylic rubber produced are more preferably 30 to 200 minutes after the start of polymerization, particularly preferably 35 to 150 minutes after the start of polymerization, and most preferably 40 to 120 minutes. It can be balanced and is suitable.
  • the amount to be added per batch in the batch post-addition of the chain transfer agent is not particularly limited and is appropriately selected according to the purpose of use, but is usually 0.00005 to 100 parts by weight of the monomer component. 0.5 parts by weight, preferably 0.0001 to 0.1 parts by weight, more preferably 0.0005 to 0.05 parts by weight, particularly preferably 0.001 to 0.03 parts by weight, most preferably 0.002. It is suitable because the strength characteristics and the injection moldability of the acrylic rubber produced when it is in the range of about 0.02 parts by weight can be highly balanced.
  • the polymerization reaction can be continued for usually 30 minutes or longer, preferably 45 minutes or longer, more preferably 1 hour or longer, and then terminated.
  • the reducing agent of the redox catalyst can be post-added during the polymerization, and the strength characteristics and the injection moldability of the acrylic rubber produced by doing so can be highly balanced, which is preferable. ..
  • the reducing agent to be added after the polymerization As the reducing agent to be added after the polymerization, the above-mentioned examples of the reducing agent and the preferable range are the same. In the present invention, ascorbic acid or a salt thereof is suitable as the reducing agent to be added later.
  • the amount of the reducing agent to be added after the polymerization is not particularly limited and may be appropriately selected according to the purpose of use, but is usually 0.0001 to 1 with respect to 100 parts by weight of the monomer component.
  • weight preferably 0.0005 to 0.5 parts by weight, more preferably 0.001 to 0.5 parts by weight, particularly preferably 0.005 to 0.1 parts by weight, most preferably 0.01 to 0.
  • productivity of acrylic rubber production is excellent, and the strength characteristics and injection moldability of the produced acrylic rubber can be highly balanced, which is suitable.
  • the reducing agent added after the polymerization may be continuous or batch, but is preferably batch.
  • the number of times the reducing agent is added in batches during the polymerization is not particularly limited, but is usually 1 to 5 times, preferably 1 to 3 times, and more preferably 1 to 2 times.
  • the ratio of the amount of ascorbic acid or a salt thereof added at the initial stage to the amount of ascorbic acid or a salt thereof added afterwards is exceptional.
  • the weight ratio of "initially added ascorbic acid or a salt thereof" / "a batch post-added ascorbic acid or a salt thereof” is usually 1/9 to 8/2, preferably 2/8 to 2. When it is in the range of 6/4, more preferably 3/7 to 5/5, the productivity of acrylic rubber production is excellent, and the strength characteristics and injection moldability of the produced acrylic rubber can be highly balanced, which is suitable.
  • the timing of the post-addition of the reducing agent is not particularly limited and is appropriately selected according to the purpose of use. However, it is usually 1 hour or later after the start of polymerization, preferably 1 to 3 hours after the start of polymerization, and more preferably 1. When it is in the range of 5 to 2.5 hours, the productivity of acrylic rubber production is excellent, and the strength characteristics and injection moldability of the produced acrylic rubber can be highly balanced, which is suitable.
  • the amount of the reducing agent added per batch in the batch post-addition is not particularly limited and is appropriately selected according to the purpose of use, but is usually 0.00005 to 0 with respect to 100 parts by weight of the monomer component.
  • the operation after the addition of the reducing agent is not particularly limited, but the polymerization reaction can be terminated after the polymerization reaction is continued for usually 30 minutes or longer, preferably 45 minutes or longer, more preferably 1 hour or longer.
  • the polymerization conversion rate of the emulsion polymerization reaction is 90% by weight or more, preferably 95% by weight or more, and the acrylic rubber produced at this time is suitable because it has excellent strength characteristics and no monomeric odor.
  • a polymerization inhibitor may be used to terminate the polymerization.
  • the coagulation step in the method for producing acrylic rubber of the present invention is a step of adding the obtained emulsion polymerization solution to the stirring coagulation liquid and coagulating it to form a hydrous crumb.
  • the solid content concentration of the emulsion polymer used in this coagulation reaction is not particularly limited, but is usually adjusted to the range of 5 to 50% by weight, preferably 10 to 45% by weight, and more preferably 20 to 40% by weight. Will be done.
  • the coagulant used in the coagulant is not particularly limited, but usually a metal salt is used.
  • the metal salt include alkali metals, Group 2 metal salts of the Periodic Table, and other metal salts, preferably alkali metal salts, Group 2 metal salts of the Periodic Table, and more preferably Group 2 metals of the Periodic Table. It is suitable because it can highly balance the water resistance, strength characteristics, fusion property of injection molding, mold releasability and processability of the acrylic rubber obtained when it is a salt, particularly preferably a magnesium salt.
  • alkali metal salt examples include sodium salts such as sodium chloride, sodium nitrate and sodium sulfate; potassium salts such as potassium chloride, potassium nitrate and potassium sulfate; and lithium salts such as lithium chloride, lithium nitrate and lithium sulfate.
  • sodium salts are preferable, and sodium chloride and sodium sulfate are particularly preferable.
  • Examples of the Group 2 metal salt in the periodic table include magnesium chloride, calcium chloride, magnesium nitrate, calcium nitrate, magnesium sulfate, calcium sulfate and the like, and calcium chloride and magnesium sulfate are preferable.
  • metal salts include, for example, zinc chloride, titanium chloride, manganese chloride, iron chloride, cobalt chloride, nickel chloride, aluminum chloride, tin chloride, zinc nitrate, titanium nitrate, manganese nitrate, iron nitrate, cobalt nitrate, nickel nitrate. , Aluminum nitrate, tin nitrate, zinc sulfate, titanium sulfate, manganese sulfate, iron sulfate, cobalt sulfate, nickel sulfate, aluminum sulfate, tin sulfate and the like.
  • Each of these coagulants can be used alone or in combination of two or more, and the amount thereof is usually 0.01 to 100 parts by weight, preferably 0, with respect to 100 parts by weight of the monomer component. It is in the range of 1 to 50 parts by weight, more preferably 1 to 30 parts by weight. When the coagulant is in this range, it is preferable because it can sufficiently improve the coagulation of the acrylic rubber and highly improve the compression-resistant permanent strain resistance and the water resistance when the acrylic rubber is crosslinked.
  • the particle size of the water-containing crumb In the solidification step of the present invention, it is particularly preferable to focus the particle size of the water-containing crumb to be generated in a specific region, because the cleaning efficiency and the ash removal efficiency at the time of dehydration are significantly improved.
  • the proportion of the water-containing crumb to be produced in the range of 710 ⁇ m to 6.7 mm (passing 6.7 mm without passing through 710 ⁇ m) is not particularly limited, but is usually 30% by weight or more, preferably 30% by weight or more, based on the total water-containing crumb. Is preferably 50% by weight or more, more preferably 60% by weight or more, particularly preferably 70% by weight or more, and most preferably 80% by weight or more because the water resistance of the acrylic rubber can be significantly improved.
  • the ratio of the water-containing crumb to be produced in the range of 710 ⁇ m to 4.75 mm (passing 4.75 mm without passing through 710 ⁇ m) is not particularly limited, but is usually 30% by weight or more with respect to the total water-containing crumb.
  • the water resistance of the acrylic rubber can be significantly improved when the content is preferably 50% by weight or more, more preferably 60% by weight or more, particularly preferably 70% by weight or more, and most preferably 80% by weight or more.
  • the proportion of the water-containing crumbs produced in the range of 710 ⁇ m to 3.35 mm (passing 3.35 mm without passing through 710 ⁇ m) is not particularly limited, but is usually 20% by weight or more with respect to the total water-containing crumbs.
  • the water resistance of the acrylic rubber can be significantly improved when the content is preferably 30% by weight or more, more preferably 40% by weight or more, particularly preferably 50% by weight or more, and most preferably 60% by weight or more.
  • the means for generating the particle size of the hydrous crumb within the above range is not particularly limited, but for example, the coagulant (coagulant aqueous solution) in which the emulsified polymer is stirred by the contact method between the emulsified polymer and the coagulant. ), Or by setting the coagulant concentration of the coagulant, the number of agitated coagulants and the peripheral speed within a specific range.
  • the coagulant used is usually used as an aqueous solution, and the coagulant concentration in the aqueous solution is usually 0.1 to 20% by weight, preferably 0.5 to 15% by weight, more preferably 1 to 10% by weight.
  • the particle size of the hydrous crumb generated when the range is in the range of 1.5 to 5 can be uniformly focused in a specific region, which is preferable.
  • the temperature of the coagulant is not particularly limited, but is preferably 40 ° C. or higher, preferably 40 to 90 ° C., more preferably 50 to 80 ° C., to generate a uniform water-containing crumb.
  • a method of contacting the emulsified heavy liquid and the coagulating liquid a method of adding the emulsion polymerization liquid to the agitated coagulating liquid is selected, and the acrylic rubber which can obtain remarkably excellent cleaning efficiency and dehydration efficiency of the produced hydrous crumb. It is suitable because it can highly improve the water resistance and storage stability of.
  • the stirring speed (rotation speed) of the coagulated liquid being stirred is, that is, the rotation speed of the stirring blade of the stirring device, and is not particularly limited, but is usually 100 rpm or more, preferably 200 rpm or more, more preferably 200 to 1000 rpm. It is particularly preferably in the range of 300 to 900 rpm, and most preferably in the range of 400 to 800 rpm.
  • the rotation speed is such that the water-containing crumb particle size is small and uniform, and the crumb particle size is excessively large and small by setting the rotation speed to be equal to or higher than the above lower limit. It is possible to suppress the formation of a substance, and by setting it to the upper limit or less, it is possible to more easily control the solidification reaction.
  • the peripheral speed of the coagulated liquid being stirred that is, the speed of the outer periphery of the stirring blade of the stirring device is not particularly limited, but the water-containing crumb particle size generated by being vigorously stirred to a certain degree is smaller and It can be made uniform and is preferable, usually 0.5 m / s or more, preferably 1 m / s or more, more preferably 1.5 m / s or more, particularly preferably 2 m / s or more, and most preferably 2.5 m / s or more. ..
  • the upper limit of the peripheral speed is not particularly limited, but is usually solidified when it is 50 m / s or less, preferably 30 m / s or less, more preferably 25 m / s or less, and most preferably 20 m / s or less. It is suitable because the reaction can be easily controlled.
  • a water-containing crumb produced by setting the above conditions of the coagulation reaction (contact method, solid content concentration of emulsion polymerization solution, concentration and temperature of coagulation liquid, rotation speed and peripheral speed of coagulation liquid at the time of stirring, etc.) in a specific range.
  • the shape and crumb diameter of the product are uniform and focused, the removal of emulsifiers and coagulants during cleaning and dehydration is significantly improved, and the water resistance and storage stability of the resulting acrylic rubber can be greatly improved. Suitable.
  • the cleaning step in the method for producing acrylic rubber of the present invention is a step of cleaning the water-containing crumb produced above.
  • the cleaning method is not particularly limited, and for example, the generated hydrous crumb can be mixed with a large amount of water.
  • the amount of water added for washing is not particularly limited, but the amount per washing with water is usually 50 parts by weight or more, preferably 50 to 15,000 parts by weight, based on 100 parts by weight of the monomer component. It is preferable because the amount of ash in the acrylic rubber can be effectively reduced when the amount is preferably in the range of 100 to 10,000 parts by weight, more preferably 500 to 5,000 parts by weight.
  • the temperature of the water used is not particularly limited, but it is preferable to use hot water, usually 40 ° C. or higher, preferably 40 to 100 ° C., more preferably 50 to 90 ° C., and particularly when 60 to 80 ° C. It is optimal because it can significantly improve the cleaning efficiency.
  • the temperature of the water used is equal to or higher than the above-mentioned lower limit, the emulsifier and coagulant are liberated from the water-containing crumb to further improve the cleaning efficiency.
  • the cleaning time is not particularly limited, but is usually in the range of 1 to 120 minutes, preferably 2 to 60 minutes, and more preferably 3 to 30 minutes.
  • the number of washings is also not particularly limited, and is usually 1 to 10 times, preferably 1 to 5 times, and more preferably 2 to 3 times. From the viewpoint of reducing the residual amount of the coagulant in the finally obtained acrylic rubber, it is desirable that the number of washings with water is large, but the shape of the water-containing crumb and the diameter of the water-containing crumb are set within a specific range as described above. By setting the cleaning temperature within the above range, the number of washings with water can be significantly reduced.
  • the dehydration step in the method for producing acrylic rubber of the present invention is a step of dehydrating the washed hydrous crumb.
  • the method for dehydrating the water-containing crumb is not particularly limited as long as it can squeeze out the water from the water-containing crumb, and can usually be performed using a dehydrator or the like. As a result, the amount of ash content of the emulsifier and coagulant contained in the water-containing crumb that could not be removed in the cleaning step can be reduced, and the water resistance of the acrylic rubber can be significantly improved, which is preferable.
  • the dehydrator is not particularly limited, and for example, a centrifuge, a squeezer, a screw type extruder, or the like can be used, but in particular, the screw type extruder can highly reduce the water content of the water-containing crumb. Suitable.
  • the adhesive acrylic rubber adheres between the wall surface and the slit and can usually be dehydrated only to about 45 to 55% by weight.
  • the screw type extruder is suitable because it has a mechanism for forcibly squeezing out water.
  • the water content of the hydrous crumb after dehydration is not limited, but is usually in the range of 1 to 50% by weight, preferably 1 to 40% by weight, more preferably 10 to 40% by weight, and more preferably 15 to 35% by weight. ..
  • the dehydration time can be shortened and deterioration of the acrylic rubber can be suppressed, while by setting it to be equal to or lower than the above upper limit, the amount of ash can be sufficiently reduced.
  • the drying step in the method for producing acrylic rubber of the present invention is a step of drying the dehydrated hydrous crumb to less than 1% by weight.
  • the method for drying the hydrous crumb after dehydration is not particularly limited, but can be performed using, for example, a screw type twin-screw extruder.
  • the screw type twin-screw extruder used is not particularly limited as long as it is an extruder having two screws, but in the present invention, a screw type twin-screw extruder having two screws is particularly used. It is suitable because it can highly balance the injection moldability, Banbury processability and strength characteristics of acrylic rubber obtained by drying the hydrous crumb under the condition of high share.
  • acrylic rubber can be obtained by melting and extrusion-drying a water-containing crumb in a screw-type twin-screw extruder.
  • the drying temperature (set temperature) of the screw type twin-screw extruder may be appropriately selected, but is usually in the range of 100 to 250 ° C, preferably 110 to 200 ° C, and more preferably 120 to 180 ° C.
  • Acrylic rubber is suitable because it can be dried efficiently without discoloration or deterioration.
  • the hydrous crumb generated in the solidification step is melt-kneaded and dried in a screw-type twin-screw extruder under reduced pressure without impairing the injection moldability and strength characteristics of the acrylic rubber. It is suitable because it has a high degree of stability.
  • the degree of depressurization in the screw type twin-screw extruder suitable for removing the air contained in the acrylic rubber and improving the storage stability may be appropriately selected, but is usually 1 to 50 kPa, preferably 1 to 50 kPa. Is in the range of 2 to 30 kPa, more preferably 3 to 20 kPa.
  • the water-containing crumb produced in the solidification step is melt-kneaded and dried in a state where almost all water is removed by a screw-type twin-screw extruder, and the injection moldability and strength characteristics of acrylic rubber are obtained. It is suitable because the Banbury workability is highly improved without impairing.
  • the state in which most of the water has been removed, which can highly enhance the Banbury workability, may be appropriately selected, but the water content of the acrylic rubber is usually less than 1% by weight, preferably 0.8% by weight or less, more preferably. Is 0.6% by weight or less.
  • melt kneading or “melt kneading and drying” as used in the present invention means that acrylic rubber is kneaded (mixed) or extruded in a molten state in a screw type twin-screw extruder, and the stage thereof. It means that acrylic rubber is kneaded in a molten (plasticized) state by a screw-type twin-screw extruder and then extruded and dried.
  • the maximum torque of the screw type twin-screw extruder used in the present invention is not particularly limited, but is usually 5 to 125 Nm, preferably 10 to 100 Nm, and more preferably 10 to 50 Nm. Particularly preferably, when the range is in the range of 15 to 45 Nm, the injection moldability, Banbury processability and strength characteristics of the produced acrylic rubber can be highly balanced, which is preferable.
  • the specific power of the screw type twin-screw extruder used in the present invention is not particularly limited, but is usually 0.01 to 0.3 [kW ⁇ h / kg] or more, preferably 0.05 to 0. Highly high in injection moldability, Banbury workability and strength characteristics of acrylic rubber obtained when it is in the range of 25 [kw ⁇ h / kg], more preferably 0.1 to 0.2 [kW ⁇ h / kg]. Balanced and suitable.
  • the specific power of the screw type twin-screw extruder used in the present invention is not particularly limited, but is usually 0.1 to 0.6 [A ⁇ h / kg] or more, preferably 0.15 to 0. Highly high in injection moldability, Banbury workability and strength characteristics of acrylic rubber obtained when it is in the range of 55 [A ⁇ h / kg], more preferably 0.2 to 0.5 [A ⁇ h / kg]. Balanced and suitable.
  • the shear rate of the screw type twin-screw extruder used in the present invention is not particularly limited, but is usually 5 to 150 [1 / s] or more, preferably 10 to 100 [1 / s], more preferably.
  • Acrylic rubber obtained in the range of 25 to 75 [1 / s] is suitable because it has a high balance of storage stability, injection moldability, Banbury processability and strength characteristics.
  • the shear viscosity of the acrylic rubber in the screw type twin-screw extruder used in the present invention is not particularly limited, but is usually 4000 to 8000 [Pa ⁇ s] or less, preferably 4500 to 7500 [Pa ⁇ s]. More preferably, the storage stability, injection moldability, Banbury processability and strength characteristics of the acrylic rubber obtained in the range of 5000 to 7000 [Pa ⁇ s] are highly balanced and preferable.
  • the cooling rate of the acrylic rubber after melt-kneading and drying is usually 40 ° C./hr or more, preferably 50 ° C./hr or more, more preferably 100 ° C./hr or more, and particularly preferably 150 ° C.
  • the scorch stability of the acrylic rubber composition is remarkably excellent and suitable.
  • the acrylic rubber of the present invention thus obtained is excellent in injection moldability, strength characteristics and water resistance, and can be used for various purposes.
  • the shape of the acrylic rubber of the present invention is not particularly limited and is selected according to the purpose of use. Examples thereof include powder, crumb, strand, sheet and veil, and the sheet and veil are used for work. It has excellent properties and storage stability and is suitable.
  • the method for producing a sheet-shaped or veil-shaped acrylic rubber of the present invention is not particularly limited, but the water-containing crumb after cleaning is a dehydration barrel having a dehydration slit, a drying barrel under reduced pressure, and a screw having a die at the tip.
  • Sheet-shaped acrylic rubber can be easily extruded from the die by dehydrating to a water content of 1 to 40% by weight in a dehydration barrel using a mold twin-screw extruder and then drying to less than 1% by weight in a drying barrel.
  • the veil-shaped acrylic rubber can be easily manufactured by laminating the extruded sheet-shaped dry rubber to form a veil.
  • the water-containing crumb supplied to the screw type twin-screw extruder is one in which free water is removed (drained) after washing.
  • draining process it is preferable to provide a draining step for separating free water from the water-containing crumb after washing with a draining machine in order to improve the dehydration efficiency.
  • a known one can be used without any particular limitation, and examples thereof include a wire mesh, a screen, an electric sieve, and the like, preferably a wire mesh and a screen.
  • the opening of the drainer is not particularly limited, but when it is usually in the range of 0.01 to 5 mm, preferably 0.1 to 1 mm, and more preferably 0.2 to 0.6 mm, the water content crumb loss is small. Moreover, draining can be done efficiently, which is suitable.
  • the water content of the water-containing crumb after draining is not particularly limited, but is usually 50 to 80% by weight, preferably 50 to 70% by weight, and more. It is preferably in the range of 50 to 60% by weight.
  • the temperature of the water-containing crumb after draining that is, the temperature of the water-containing crumb put into the dehydration / drying step is not particularly limited, but is usually 40 ° C. or higher, preferably 40 to 100 ° C., more preferably 50 to 90 ° C.
  • the specific heat is as high as 1.5 to 2.5 KJ / kg ⁇ K as in the acrylic rubber of the present invention. It is suitable because difficult water-containing crumbs can be efficiently dehydrated and dried using a screw-type twin-screw extruder.
  • Dehydration of the water-containing crumb is performed in a dehydration barrel in a screw-type twin-screw extruder with a dehydration slit.
  • the opening of the dehydration slit may be appropriately selected according to the usage conditions, but is usually in the range of 0.01 to 5 mm, preferably 0.1 to 1 mm, and more preferably 0.2 to 0.6 mm.
  • the water-containing crumb loss is small and the water-containing crumb can be efficiently dehydrated, which is suitable.
  • the number of dehydration barrels in the screw type twin-screw extruder is not particularly limited, but is usually a plurality, preferably 2 to 10, more preferably 3 to 6, and sticky acrylic rubber. It is suitable for efficient dehydration.
  • Exhaust steam is defined as pre-drying to distinguish it.
  • the water discharged from the dehydration slit in the dehydration of the water-containing crumb may be in a liquid (drainage) state or a steam state (exhaust steam), but it is carried out using a screw type twin-screw extruder equipped with a plurality of dehydration barrels. In this case, it is preferable to combine drainage and exhaust steam because the adhesive acrylic rubber can be efficiently dehydrated.
  • the selection of a drainage type dehydration barrel or a steam exhaust type dehydration barrel of a screw type twin-screw extruder equipped with three or more dehydration barrels may be appropriately performed according to the purpose of use, but ash in acrylic rubber usually produced. If the amount is to be reduced, the number of drainage barrels is increased, and if the amount of water is to be reduced, the number of drainage type barrels is increased.
  • the set temperature of the dehydration barrel is appropriately selected depending on the monomer composition, ash content, water content, operating conditions, etc. of the acrylic rubber, but is usually 60 to 150 ° C., preferably 70 to 140 ° C., more preferably 80 to 80 to It is in the range of 130 ° C.
  • the set temperature of the dehydration barrel for dehydrating in the drained state is usually 60 ° C. to 120 ° C., preferably 70 to 110 ° C., and more preferably 80 to 100 ° C.
  • the set temperature of the dehydration barrel for dehydration in the exhaust steam state is usually in the range of 100 to 150 ° C., preferably 105 to 140 ° C., and more preferably 110 to 130 ° C.
  • the water content after dehydration of the drainage type dehydration that squeezes water from the water-containing crumb is not particularly limited, but is usually 1 to 40% by weight, preferably 5 to 35% by weight, and more preferably 10 to 35% by weight. Sometimes productivity and ash removal efficiency are well balanced and suitable.
  • the acrylic rubber adheres to the dehydration slit portion and can hardly be dehydrated (water content is up to about 45 to 55% by weight). ),
  • the water content can be reduced to this extent by using a screw type twin-screw extruder having a dehydration slit and forcibly squeezed with a screw.
  • the water content after drainage in the drainage type dehydration barrel portion is usually 5 to 40% by weight, preferably 10 to 40% by weight, more preferably. Is 15 to 35% by weight, and the water content after pre-drying in the exhaust steam type dehydration barrel portion is usually 1 to 30% by weight, preferably 3 to 20% by weight, and more preferably 5 to 15% by weight.
  • the dehydration time can be shortened and deterioration of acrylic rubber can be suppressed, and by setting it to be lower than the upper limit, the amount of ash can be sufficiently reduced.
  • Drying of the hydrous crumb after dehydration is characterized in that it is performed in the drying barrel portion under reduced pressure by a screw type twin-screw extrusion dryer having a drying barrel portion.
  • the storage stability of the acrylic rubber can be highly enhanced by melting the acrylic rubber under reduced pressure and extruding and drying it.
  • the storage stability of acrylic rubber can be largely correlated with the specific gravity of acrylic rubber and can be controlled, but when the specific gravity is large and a high degree of storage stability is controlled, it can be controlled by the degree of decompression of extrusion drying or the like.
  • the degree of decompression of the drying barrel may be appropriately selected, but when it is usually 1 to 50 kPa, preferably 2 to 30 kPa, more preferably 3 to 20 kPa, the water-containing crumb can be efficiently dried and the air in the acrylic rubber can be removed. It is suitable because it can be removed and the storage stability of acrylic rubber can be significantly improved.
  • the set temperature of the drying barrel may be appropriately selected, but when it is usually in the range of 100 to 250 ° C., preferably 110 to 200 ° C., more preferably 120 to 180 ° C., there is no discoloration or deterioration of the acrylic rubber. It is suitable because it can be dried efficiently and the amount of gel of the insoluble matter of methyl ethyl ketone in the sheet-shaped or veil-shaped acrylic rubber can be reduced.
  • the number of drying barrels in the screw type twin-screw extruder is not particularly limited, but is usually a plurality, preferably 2 to 10, and more preferably 3 to 8.
  • the degree of decompression may be an approximate degree of decompression for all the dry barrels, or may be changed.
  • the set temperature may be an approximate temperature for all the dry barrels or may be changed, but it is closer to the discharge part (closer to the die) than the temperature of the introduction part (closer to the dehydration barrel). It is preferable to raise the temperature of (1) because the drying efficiency can be improved.
  • the water content of the dried rubber after drying is usually less than 1% by weight, preferably 0.8% by weight or less, and more preferably 0.6% by weight or less.
  • the methyl ethyl ketone insoluble in sheet-shaped or veil-shaped acrylic rubber is melt-extruded with the water content of the dried rubber set to this value (with almost all water removed), especially in a screw-type twin-screw extruder. It is suitable because the amount of gel can be reduced.
  • acrylic rubber melt-kneaded or melt-kneaded and dried with a screw-type twin-screw extruder, preferably sheet-shaped or veil-shaped acrylic rubber has a high balance between strength characteristics and Banbury processability.
  • melt kneading or “melt kneading and drying” as used in the present invention means that acrylic rubber is kneaded (mixed) or extruded in a molten state in a screw type twin-screw extruder, and the stage thereof. It means that acrylic rubber is kneaded in a molten (plasticized) state by a screw-type twin-screw extruder and then extruded and dried.
  • the shear rate applied to the drying barrel of the screw type twin-screw extruder in a state where the acrylic rubber does not contain water is not particularly limited, but is usually 5 [1 / s].
  • the storage stability, injection moldability, and Banbury processing of the sheet-shaped or veil-shaped acrylic rubber obtained in the range of preferably 10 to 400 [1 / s], more preferably 20 to 250 [1 / s]. It is suitable because the properties, strength characteristics and compression resistance permanent strain characteristics are highly balanced.
  • the shear viscosity of acrylic rubber in the screw type twin-screw extruder used in the present invention, particularly in a drying barrel, is not particularly limited, but is usually 12000 [Pa ⁇ s] or less, preferably 1000 to 12000 [Pa ⁇ s]. ], More preferably 2000 to 10000 [Pa ⁇ s], particularly preferably 3000 to 7000 [Pa ⁇ s], most preferably 4000 to 6000 [Pa ⁇ s], in the form of a sheet or veil.
  • Acrylic rubber is suitable because it has a high balance of storage stability, injection moldability, Banbury processability and strength characteristics.
  • the extruded dry rubber is suitable because the die shape is made into a substantially rectangular shape and the die is formed into a sheet, so that air entrainment is small, the specific gravity is large, and the dry rubber is excellent in storage stability.
  • the resin pressure in the die portion is not particularly limited, but is usually in the range of 0.1 to 10 MPa, preferably 0.5 to 5 MPa, and more preferably 1 to 3 MPa. It is suitable because it has less entrainment (high specific gravity) and is excellent in productivity.
  • the screw length (L) of the screw type twin-screw extruder to be used may be appropriately selected according to the purpose of use, but is usually in the range of 3000 to 15000 mm, preferably 4000 to 10000 mm, and more preferably 4500 to 8000 mm. Is.
  • the screw diameter (D) of the screw type twin-screw extruder to be used may be appropriately selected according to the purpose of use, but is usually in the range of 50 to 250 mm, preferably 100 to 200 mm, and more preferably 120 to 160 mm. Is.
  • the ratio (L / D) of the screw length (L) to the screw diameter (D) of the screw type twin-screw extruder used is not particularly limited, but is usually 10 to 100, preferably 20 to 20. When it is in the range of 80, more preferably 30 to 60, the water content can be less than 1% by weight without causing a decrease in the molecular weight or burning of the dried rubber, which is preferable.
  • the rotation speed (N) of the screw type twin-screw extruder used may be appropriately selected according to various conditions, but is usually 10 to 1000 rpm, preferably 50 to 750 rpm, more preferably 100 to 500 rpm, and most preferably. It is preferable that the water content of the sheet-shaped or veil-shaped acrylic rubber and the gel amount of the insoluble methyl ethyl ketone can be efficiently reduced at 120 to 300 rpm.
  • the extrusion amount (Q) of the screw type twin-screw extruder used is not particularly limited, but is usually 100 to 1500 kg / hr, preferably 300 to 1200 kg / hr, more preferably 400 to 1000 kg / hr, and most preferably. It is in the range of 500 to 800 kg / hr.
  • the ratio (Q / N) of the extrusion amount (Q) to the rotation speed (N) of the screw type twin-screw extruder used is not particularly limited, but is usually 2 to 10, preferably 3 to 8. , More preferably in the range of 4-6.
  • the maximum torque of the screw type twin-screw extruder used is not particularly limited, but is usually 5 to 125 Nm, preferably 10 to 100 Nm, more preferably 10 to 50 Nm, and particularly preferably. Is suitable because it can highly balance the injection moldability, Banbury processability and strength characteristics of the sheet-shaped or veil-shaped acrylic rubber to be manufactured when the range is in the range of 15 to 45 Nm.
  • the specific power of the screw type twin-screw extruder used is not particularly limited, but is usually 0.01 to 0.3 [kW ⁇ h / kg] or more, preferably 0.05 to 0.2 [kW].
  • ⁇ H / kg] more preferably in the range of 0.1 to 0.2 [kW ⁇ h / kg]
  • the specific power of the screw type twin-screw extruder used is not particularly limited, but is usually 0.1 to 0.6 [A ⁇ h / kg] or more, preferably 0.15 to 0.55 [A].
  • ⁇ H / kg] more preferably in the range of 0.2 to 0.5 [A ⁇ h / kg] the injection moldability, Banbury processability and strength characteristics of the sheet-shaped or veil-shaped acrylic rubber obtained. Highly balanced and suitable.
  • the shear rate of the screw type twin-screw extruder used is not particularly limited, but is usually 5 to 150 [1 / s] or more, preferably 10 to 100 [1 / s], and more preferably 25 to 75.
  • the sheet-like or bale-like acrylic rubber obtained in the range of [1 / s] has a high balance of storage stability, injection moldability, Banbury processability and strength characteristics, and is suitable.
  • the shear viscosity of the acrylic rubber in the screw type twin-screw extruder used is not particularly limited, but is usually 4000 to 8000 [Pa ⁇ s] or less, preferably 4500 to 7500 [Pa ⁇ s], more preferably.
  • the sheet-like or veil-like acrylic rubber obtained in the range of 5000 to 7000 [Pa ⁇ s] has a high balance of storage stability, injection moldability, Banbury processability and strength characteristics, and is suitable.
  • an extruder having a biaxial screw because dehydration, drying and molding can be performed under high share conditions.
  • the shape of the dried rubber extruded from the screw-type twin-screw extruder is sheet-like, and at this time, the specific gravity can be increased without entraining air, and the storage stability is highly improved, which is suitable.
  • the sheet-shaped dry rubber extruded from the screw-type twin-screw extruder is usually cooled and cut to be used as the sheet-shaped acrylic rubber.
  • the thickness of the sheet-shaped dry rubber extruded from the screw-type twin-screw extruder is not particularly limited, but is usually 1 to 40 mm, preferably 2 to 35 mm, more preferably 3 to 30 mm, and most preferably 5 to 25 mm. It is suitable because it has excellent workability and productivity when it is within the range of. In particular, since the thermal conductivity of the sheet-shaped dried rubber is as low as 0.15 to 0.35 W / mK, the thickness of the sheet-shaped dried rubber is usually 1 to 30 mm when the cooling efficiency is increased and the productivity is significantly improved.
  • the range is preferably 2 to 25 mm, more preferably 3 to 15 mm, and particularly preferably 4 to 12 mm.
  • the width of the sheet-shaped dry rubber extruded from the screw-type twin-screw extruder is appropriately selected according to the purpose of use, but is usually in the range of 300 to 1200 mm, preferably 400 to 1000 mm, and more preferably 500 to 800 mm. ..
  • the temperature of the dried rubber extruded from the screw type twin-screw extruder is not particularly limited, but is usually in the range of 100 to 200 ° C, preferably 110 to 180 ° C, and more preferably 120 to 160 ° C.
  • the water content of the dried rubber extruded from the screw type twin-screw extruder is not particularly limited, but is usually less than 1% by weight, preferably 0.8% by weight or less, and more preferably 0.6% by weight or less. ..
  • the complex viscosity ([ ⁇ ] 100 ° C.) of the sheet-shaped dry rubber extruded from the screw-type twin-screw extruder at 100 ° C. is not particularly limited, but is usually 1500 to 6000 [Pa ⁇ s], preferably 1500 to 6000 [Pa ⁇ s]. Is in the range of 2000 to 5000 [Pa ⁇ s], more preferably 2500 to 4500 [Pa ⁇ s], and most preferably 3000 to 4000 [Pa ⁇ s]. Is highly balanced and suitable. That is, when it is set to the lower limit or more, the extrudability can be improved, and when it is set to the upper limit or less, the shape of the sheet-shaped dried rubber can be suppressed from collapsing or breaking.
  • the sheet-shaped dry rubber extruded from the screw-type twin-screw extruder may be folded and used as it is, but usually it can be cut and used.
  • the cutting of the sheet-shaped dry rubber is not particularly limited, but since the acrylic rubber of the present invention has strong adhesiveness, the sheet-shaped dry rubber must be cooled before continuously cutting without entraining air. It is preferable to do it.
  • the cutting temperature of the sheet-shaped dry rubber is not particularly limited, but is preferably 60 ° C. or lower, preferably 55 ° C. or lower, more preferably 50 ° C. or lower, in which the cutability and productivity are highly balanced. Is.
  • the complex viscosity ([ ⁇ ] 60 ° C.) of the sheet-shaped dried rubber at 60 ° C. is not particularly limited, but is usually 15,000 [Pa ⁇ s] or less, preferably 2000 to 10,000 [Pa ⁇ ⁇ . s], more preferably 2,500 to 7,000 [Pa ⁇ s], most preferably 2,700 to 5,500 [Pa ⁇ s] without entraining air and continuously cutting. Is suitable.
  • the ratio ([ ⁇ ] 100 ° C / [ ⁇ ] 60 ° C) between the complex viscosity ([ ⁇ ] 100 ° C) at 100 ° C and the complex viscosity ([ ⁇ ] 60 ° C) at 60 ° C of the sheet-shaped dried rubber is There is no particular limitation and it may be appropriately selected according to the purpose of use, but it is usually 0.5 or more, preferably 0.6 or more, more preferably 0.7 or more, and the complex viscosity of the sheet-shaped dried rubber at 100 ° C.
  • the cooling method of the sheet-shaped dried rubber is not particularly limited and may be left at room temperature. However, since the heat conductivity of the sheet-shaped dried rubber is very small, 0.15 to 0.35 W / mK, it is blown or blown. Forced cooling such as an air cooling method under cooling, a watering method of spraying water, or a dipping method of immersing in water is preferable for increasing productivity, and an air cooling method of blowing air or cooling is particularly preferable.
  • the sheet-shaped dry rubber can be extruded from a screw-type extruder onto a conveyor such as a belt conveyor, and can be conveyed and cooled while blowing cold air.
  • the temperature of the cold air is not particularly limited, but is usually in the range of 0 to 25 ° C, preferably 5 to 25 ° C, and more preferably 10 to 20 ° C.
  • the length to be cooled is not particularly limited, but is usually cut when it is 40 ° C./hr or more, preferably 50 ° C./hr or more, more preferably 100 ° C./hr or more, and particularly preferably 150 ° C./hr or more. Is easy and suitable.
  • the cooling rate of the sheet-shaped dry rubber is usually 40 ° C./hr or more, preferably 50 ° C./hr or more, more preferably 100 ° C./hr or more, and particularly preferably 150 ° C./hr or more.
  • the acrylic rubber composition is excellent in scorch stability and suitable.
  • the cutting length of the sheet-shaped dried rubber is not particularly limited and is appropriately selected according to the purpose of use, but is usually in the range of 100 to 800 mm, preferably 200 to 500 mm, and more preferably 250 to 450 mm.
  • the sheet-shaped acrylic rubber thus obtained is superior in operability as compared with crumb-shaped acrylic rubber, and is also excellent in injection moldability, cross-linking property, strength property and compression set resistance, storage stability, Banbury workability and water resistance. It has excellent properties and can be used as it is or laminated and veiled.
  • the method for producing a veil-shaped acrylic rubber of the present invention is not particularly limited, but a veil-shaped acrylic rubber having excellent storage stability with less air entrainment can be obtained by laminating the sheet-shaped acrylic rubber, which is preferable. be.
  • the laminating temperature of the sheet-shaped acrylic rubber is not particularly limited, but is suitable because air entrained during laminating can be released when it is usually 30 ° C. or higher, preferably 35 ° C. or higher, and more preferably 40 ° C. or higher.
  • the number of laminated layers may be appropriately selected according to the size or weight of the veil-shaped acrylic rubber.
  • the veil-shaped acrylic rubber of the present invention is integrated by the weight of the laminated sheet-shaped acrylic rubber.
  • the veil-shaped acrylic rubber of the present invention thus obtained is superior in operability as compared with crumb-shaped acrylic rubber, and is excellent in injection moldability, cross-linking property, strength property and compression permanent strain resistance, as well as storage stability and Banbury processability. It also has excellent water resistance, and the veil-shaped acrylic rubber can be used as it is or by cutting a required amount and putting it into a mixer such as a Banbury or a roll.
  • the rubber composition of the present invention is characterized by containing a rubber component including the acrylic rubber, a filler and a cross-linking agent.
  • the acrylic rubber of the present invention may be used alone, or, if necessary, the acrylic rubber of the present invention and other rubber components may be used in combination. May be good.
  • the content of the acrylic rubber of the present invention in the rubber component may be selected according to the purpose of use, and is, for example, usually 30% by weight or more, preferably 50% by weight or more, and more preferably 70% by weight or more.
  • the other rubber components to be combined with the acrylic rubber of the present invention are not particularly limited, and are, for example, natural rubber, polybutadiene rubber, polyisoprene rubber, styrene-butadiene rubber, acrylonitrile-butadiene rubber, silicon rubber, fluororubber, and olefin type.
  • examples thereof include elastomers, styrene-based elastomers, vinyl chloride-based elastomers, polyester-based elastomers, polyamide-based elastomers, polyurethane-based elastomers, and polysiloxane-based elastomers.
  • the shape of these other rubber components may be any of a crumb shape, a strand shape, a veil shape, a sheet shape, a powder shape and the like.
  • the content of other rubber components in the entire rubber component is appropriately selected within a range that does not impair the effects of the present invention, and is, for example, usually 70% by weight or less, preferably 50% by weight or less, and more preferably 30% by weight or less. ..
  • the filler contained in the rubber composition is not particularly limited, and examples thereof include a reinforcing filler and a non-reinforcing filler, and a rubber composition vanbury is preferably a reinforcing filler. It is suitable because it is excellent in processability, injection moldability and cross-linking property in a short time, and is highly excellent in water resistance, strength property and compression set resistance property of the crosslinked product.
  • Examples of the reinforcing filler include carbon blacks such as furnace black, acetylene black, thermal black, channel black and graphite; silicas such as wet silica, dry silica and colloidal silica; and the like.
  • Examples of the non-reinforcing filler include quartz powder, silica soil, zinc flower, basic magnesium carbonate, active calcium carbonate, magnesium silicate, aluminum silicate, titanium dioxide, talc, aluminum sulfate, calcium sulfate, barium sulfate and the like. be able to.
  • fillers can be used alone or in combination of two or more, and the blending amount thereof is appropriately selected within a range not impairing the effect of the present invention, and is usually used with respect to 100 parts by weight of the rubber component. It is in the range of 1 to 200 parts by weight, preferably 10 to 150 parts by weight, and more preferably 20 to 100 parts by weight.
  • the cross-linking agent used in the rubber composition is not particularly limited, and a conventionally known cross-linking agent is selected according to the purpose of use. Examples thereof include inorganic cross-linking agents such as sulfur compounds and organic cross-linking agents, which are preferable. Is an organic cross-linking agent.
  • the cross-linking agent may be either a polyvalent compound or a monovalent compound, but a polyvalent compound having two or more reactivity is preferable.
  • the cross-linking agent may be either an ionic cross-linking compound or a radical cross-linking compound, but is preferably an ionic cross-linking compound.
  • the organic cross-linking agent is not particularly limited, but an ion-crosslinkable organic compound is preferable, and a polyvalent ion-organic compound is particularly preferable.
  • the cross-linking agent is a polyvalent ion organic compound (polyvalent ion cross-linking compound)
  • the rubber composition is excellent in Banbury processability, injection moldability and short-time cross-linking property, and the water resistance and strength of the cross-linked product are excellent. It is particularly suitable because it has excellent characteristics and compression resistance permanent strain characteristics.
  • the "ion" of the ionic crosslinkable or polyvalent ion is an ionic reactive ion, and is particularly special as long as it ionically reacts with the ionic reactive group of the ionic reactive group-containing monomer of the acrylic rubber.
  • an ion crosslinkable organic compound having an ionic reactive group such as an amine group, an epoxy group, a carboxyl group and a thiol group can be mentioned.
  • polyvalent ion organic compound examples include a polyvalent amine compound, a polyvalent epoxy compound, a polyvalent carboxylic acid compound, a polyvalent thiol compound, and the like, preferably a polyvalent amine compound and a polyvalent thiol compound, more preferably. Is a polyvalent amine compound.
  • polyvalent amine compound examples include aliphatic polyvalent amine compounds such as hexamethylenediamine, hexamethylenediamine carbamate, N, N'-dicinnamylidene-1,6-hexanediamine; 4,4'-methylenedianiline, p.
  • hexamethylenediamine carbamate 2,2'-bis [4- (4-aminophenoxy) phenyl] propane and the like are preferable.
  • these carbonates can also be preferably used.
  • These polyvalent amine compounds are particularly preferably used in combination with a carboxyl group-containing acrylic rubber or an epoxy group-containing acrylic rubber.
  • a triazine thiol compound is preferably used, for example, 6-trimercapto-s-triazine, 2-anilino-4,6-dithiol-s-triazine, 1-dibutylamino-3,5. -Dimercaptotriazine, 2-dibutylamino-4,6-dithiol-s-triazine, 1-phenylamino-3,5-dimercaptotriazine, 2,4,6-trimercapto-1,3,5-triazine, Examples thereof include 1-hexylamino-3,5-dimercaptotriazine.
  • These triazine thiol compounds are particularly preferably used in combination with acrylic rubber containing a chlorine atom.
  • polyvalent organic compounds examples include polyvalent carboxylic acid compounds such as tetradecanedioic acid and dithiocarbamate metal salts such as zinc dimethyldithiocarbamate. These other polyvalent organic compounds are particularly preferably used in combination with an epoxy group-containing acrylic rubber.
  • cross-linking agents can be used individually or in combination of two or more, and the blending amount thereof is usually 0.001 to 20 parts by weight, preferably 0.1 to 10 parts by weight, based on 100 parts by weight of the rubber component. Parts, more preferably 0.1 to 5 parts by weight.
  • the blending amount of the cross-linking agent in this range, it is possible to make the mechanical strength of the rubber cross-linked product excellent while making the rubber elasticity sufficient, which is preferable.
  • the rubber composition of the present invention can be blended with an antiaging agent as needed.
  • the type of antiaging agent is not particularly limited, but is, for example, 2,6-di-t-butyl-4-methylphenol, 2,6-di-t-butylphenol, butylhydroxyanisole, 2,6-di-t.
  • anti-aging agents can be used alone or in combination of two or more, and the blending amount thereof is 0.01 to 15 parts by weight, preferably 0.1 to 100 parts by weight, based on 100 parts by weight of the rubber component. It is in the range of 10 parts by weight, more preferably 1 to 5 parts by weight.
  • the rubber composition of the present invention contains the above-mentioned rubber component containing the acrylic rubber of the present invention, a filler and a cross-linking agent as essential components, and if necessary, an anti-aging agent, and further, if necessary, in the art.
  • Other commonly used additives such as cross-linking aids, cross-linking accelerators, cross-linking retarders, silane coupling agents, plasticizers, processing aids, rubbers, pigments, colorants, antistatic agents, foaming agents, etc. Can be arbitrarily blended.
  • These other compounding agents can be used alone or in combination of two or more, and the compounding amount thereof is appropriately selected as long as the effect of the present invention is not impaired.
  • Examples of the method for producing the rubber composition of the present invention include a method of mixing a rubber component containing acrylic rubber of the present invention, a filler, a cross-linking agent, an antiaging agent and other compounding agents which can be contained as needed.
  • any means used in the conventional rubber processing field for example, an open roll, a Banbury mixer, various kneaders and the like can be used.
  • the mixing procedure of each component may be carried out by a normal procedure performed in the field of rubber processing. For example, a component that is difficult to react or decompose by heat is sufficiently mixed, and then a component that easily reacts or decomposes by heat is used. It is preferable to mix a certain cross-linking agent or the like at a temperature at which reaction or decomposition does not occur in a short time.
  • the rubber crosslinked product of the present invention is obtained by cross-linking the above rubber composition.
  • the rubber crosslinked product of the present invention is formed by using the rubber composition of the present invention with a molding machine corresponding to a desired shape, for example, an extruder, an injection molding machine, a compressor or a roll, and is crosslinked by heating. It can be produced by carrying out a reaction and fixing the shape as a rubber crosslinked product. In this case, cross-linking may be performed after molding in advance, or cross-linking may be performed at the same time as molding.
  • the molding temperature is usually 10 to 200 ° C, preferably 25 to 150 ° C.
  • the crosslinking temperature is usually 100 to 250 ° C., preferably 130 to 220 ° C., more preferably 150 to 200 ° C.
  • the crosslinking time is usually 0.1 minutes to 10 hours, preferably 1 minute to 5 hours.
  • a method used for cross-linking rubber such as press heating, steam heating, oven heating, and hot air heating may be appropriately selected.
  • the rubber crosslinked product of the present invention may be further heated for secondary cross-linking depending on the shape, size, etc. of the rubber cross-linked product.
  • the secondary cross-linking varies depending on the heating method, cross-linking temperature, shape and the like, but is preferably carried out for 1 to 48 hours.
  • the heating method and heating temperature may be appropriately selected.
  • the rubber crosslinked product of the present invention has excellent compression-resistant permanent strain resistance and water resistance while maintaining basic rubber properties such as tensile strength, elongation, and hardness.
  • the rubber crosslinked product of the present invention makes use of the above characteristics, for example, O-ring, packing, diaphragm, oil seal, shaft seal, bearing seal, mechanical seal, well head seal, seal for electric / electronic equipment, air compression equipment.
  • Sealing material such as seals; rocker cover gasket attached to the connection between the cylinder block and the cylinder head, oil pan gasket attached to the connection between the oil pan and the cylinder head or the transmission case, positive electrode, electrolyte plate and negative electrode.
  • gaskets such as gaskets for fuel cell separators and gaskets for the top cover of hard disk drives mounted between a pair of housings that sandwich a unit cell equipped with; cushioning material, anti-vibration material; wire coating material; industrial belts; tubes -Preferably used as hoses; sheets; etc.
  • the rubber cross-linked product of the present invention is also used as an extruded mold product and a mold cross-linked product for automobile applications, for example, fuel oil for fuel tanks such as fuel hoses, filler neck hoses, bent hoses, paper hoses, and oil hoses. It is suitably used for various hoses such as air hoses such as system hoses, turbo air hoses and mission control hoses, radiator hoses, heater hoses, brake hoses and air conditioner hoses.
  • FIG. 1 is a diagram schematically showing an example of an acrylic rubber manufacturing system having an apparatus configuration used for manufacturing acrylic rubber according to an embodiment of the present invention.
  • the acrylic rubber production system 1 shown in FIG. 1 can be used.
  • the acrylic rubber manufacturing system 1 shown in FIG. 1 is composed of an emulsion polymerization reactor (not shown), a coagulation device 3, a cleaning device 4, a drainer 43, and a screw type twin-screw extruder.
  • the emulsion polymerization reactor is configured to perform the treatment related to the emulsion polymerization step described above.
  • this emulsion polymerization reactor has, for example, a polymerization reaction tank, a temperature control unit for controlling the reaction temperature, a motor, and a stirring device including a stirring blade.
  • water and an emulsifier are mixed with a monomer component for forming acrylic rubber and emulsified while being appropriately stirred with a stirrer, and a redox catalyst consisting of an organic radical generator and a reducing agent is present.
  • the emulsion polymerization reactor may be a batch type, a semi-batch type, or a continuous type, and may be any of a tank type reactor and a tube type reactor.
  • the coagulation device 3 shown in FIG. 1 is configured to perform the process related to the above-mentioned coagulation step.
  • the coagulation device 3 includes, for example, a stirring tank 30, a heating unit 31 for heating the inside of the stirring tank 30, and a temperature control unit (not shown) for controlling the temperature inside the stirring tank 30. It has a stirring device 34 including a motor 32 and a stirring blade 33, and a drive control unit (not shown) that controls the rotation speed and rotation speed of the stirring blade 33.
  • a hydrous crumb can be generated by bringing the emulsion polymerization solution obtained by the emulsion polymerization reactor into contact with the coagulation liquid and coagulating it.
  • a method of adding the emulsion polymerization solution to the stirring coagulation liquid is adopted for the contact between the emulsion polymerization solution and the coagulation liquid. That is, a water-containing crumb is generated by filling the stirring tank 30 of the coagulation device 3 with a coagulation liquid and adding and contacting the emulsion polymerization liquid with the coagulation liquid to coagulate the emulsion polymerization liquid.
  • the heating unit 31 of the coagulation device 3 is configured to heat the coagulation liquid filled in the stirring tank 30. Further, the temperature control unit of the coagulation device 3 controls the temperature inside the stirring tank 30 by controlling the heating operation by the heating unit 31 while monitoring the temperature inside the stirring tank 30 measured by the thermometer. It is configured. The temperature of the coagulating liquid in the stirring tank 30 is controlled by the temperature control unit to be usually in the range of 40 ° C. or higher, preferably 40 to 90 ° C., and more preferably 50 to 80 ° C.
  • the stirring device 34 of the coagulating device 3 is configured to stir the coagulating liquid filled in the stirring tank 30.
  • the stirring device 34 includes a motor 32 that generates rotational power, and a stirring blade 33 that extends in a direction perpendicular to the rotation axis of the motor 32.
  • the stirring blade 33 can flow the coagulating liquid by rotating around the rotation axis by the rotational power of the motor 32 in the coagulating liquid filled in the stirring tank 30.
  • the shape and size of the stirring blade 33, the number of installations, and the like are not particularly limited.
  • the drive control unit of the coagulation device 3 is configured to control the rotational drive of the motor 32 of the stirring device 34 to set the rotation speed and the rotation speed of the stirring blade 33 of the stirring device 34 to predetermined values.
  • the rotation of the stirring blade 33 is controlled by the drive control unit so that the stirring number of the coagulating liquid is usually in the range of 100 rpm or more, preferably 200 to 1000 rpm, more preferably 300 to 900 rpm, and particularly preferably 400 to 800 rpm. Will be done.
  • the peripheral speed of the coagulant is usually 0.5 m / s or more, preferably 1 m / s or more, more preferably 1.5 m / s or more, particularly preferably 2 m / s or more, and most preferably 2.5 m / s or more.
  • the rotation of the stirring blade 33 is controlled by the drive control unit. Further, the drive control unit agitates the coagulant so that the upper limit of the peripheral speed is usually 50 m / s or less, preferably 30 m / s or less, more preferably 25 m / s or less, and most preferably 20 m / s or less.
  • the rotation of the wing 33 is controlled.
  • the cleaning device 4 shown in FIG. 1 is configured to perform the processing related to the above-mentioned cleaning step.
  • the cleaning device 4 includes, for example, a cleaning tank 40, a heating unit 41 for heating the inside of the cleaning tank 40, and a temperature control unit (not shown) for controlling the temperature inside the cleaning tank 40.
  • a temperature control unit not shown for controlling the temperature inside the cleaning tank 40.
  • the water-containing crumb generated by the coagulation device 3 is mixed with a large amount of water for cleaning, so that the amount of ash in the finally obtained acrylic rubber can be effectively reduced.
  • the heating unit 41 of the cleaning device 4 is configured to heat the inside of the cleaning tank 40. Further, the temperature control unit of the cleaning device 4 controls the temperature inside the cleaning tank 40 by controlling the heating operation by the heating unit 41 while monitoring the temperature inside the cleaning tank 40 measured by the thermometer. It is configured. As described above, the temperature of the washing water in the washing tank 40 is usually controlled to be in the range of 40 ° C. or higher, preferably 40 to 100 ° C., more preferably 50 to 90 ° C., and most preferably 60 to 80 ° C. Ru.
  • the water-containing crumb washed by the washing device 4 is supplied to the screw type twin-screw extruder 5 that performs the dehydration step and the drying step. At this time, it is preferable that the water-containing crumb after washing is supplied to the screw type twin-screw extruder 5 through a drainer 43 capable of separating free water.
  • a drainer 43 capable of separating free water.
  • a wire mesh, a screen, an electric sieve, or the like can be used.
  • the temperature of the water-containing crumb is preferably 40 ° C. or higher, more preferably 60 ° C. or higher.
  • the temperature of the water-containing crumb when supplied to the screw type twin-screw extruder 5 is set to 60 ° C. or higher. It may be possible to maintain it, and even if it is heated so that the temperature of the water-containing crumb is 40 ° C. or higher, preferably 60 ° C.
  • the screw type twin-screw extruder 5 shown in FIG. 1 is configured to perform the processes related to the above-mentioned dehydration step and drying step.
  • a centrifuge, a squeezer, or the like may be used as the dehydrator for performing the treatment related to the dehydration step, and the drying step may be performed.
  • a hot air dryer, a vacuum dryer, an expander dryer, a kneader type dryer, or the like may be used as the dryer for performing the above treatment.
  • the screw type twin-screw extruder 5 is configured to mold the dried rubber obtained through the dehydration step and the drying step into a predetermined shape and discharge it.
  • the screw type twin-screw extruder 5 has a dehydration barrel portion 53 having a function as a dehydrator for dehydrating the hydrous crumb washed by the cleaning device 4, and a function as a dryer for drying the hydrous crumb.
  • the drying barrel portion 54 is provided, and a die 59 having a molding function for forming a water-containing crumb is provided on the downstream side of the screw type twin-screw extruder 5.
  • FIG. 2 shows the configuration of a specific example suitable for the screw type twin-screw extruder 5 shown in FIG.
  • the screw type twin-screw extruder 5 can suitably perform the above-mentioned dehydration / drying step.
  • the screw-type twin-screw extruder 5 shown in FIG. 2 is a twin-screw-type extruder / dryer provided with a pair of screws (not shown) in the barrel unit 51.
  • the screw type twin-screw extruder 5 has a drive unit 50 that rotationally drives a pair of screws in the barrel unit 51. With this configuration, acrylic rubber can be dried with an optimum share, which is suitable.
  • the drive unit 50 is attached to the upstream end (left end in FIG. 2) of the barrel unit 51. Further, the screw type twin-screw extruder 5 has a die 59 at the downstream end (right end in FIG. 2) of the barrel unit 51.
  • the barrel unit 51 has a supply barrel portion 52, a dehydration barrel portion 53, and a dry barrel portion 54 from the upstream side to the downstream side (from the left side to the right side in FIG. 2).
  • the supply barrel portion 52 is composed of two supply barrels, that is, a first supply barrel 52a and a second supply barrel 52b.
  • the dehydration barrel portion 53 is composed of three dehydration barrels, that is, a first dehydration barrel 53a, a second dehydration barrel 53b, and a third dehydration barrel 53c.
  • the dry barrel portion 54 has eight dry barrels, that is, a first dry barrel 54a, a second dry barrel 54b, a third dry barrel 54c, a fourth dry barrel 54d, and a fifth dry barrel 54e. , A sixth dry barrel 54f, a seventh dry barrel 54g, and an eighth dry barrel 54h.
  • the barrel unit 51 is configured by connecting the 13 divided barrels 52a to 52b, 53a to 53c, 54a to 54h from the upstream side to the downstream side.
  • the water-containing crumbs in the barrels 52a to 52b, 53a to 53c, 54a to 54h are individually heated by heating the barrels 52a to 52b, 53a to 53c, 54a to 54h individually.
  • Each has a heating means (not shown) for heating to a predetermined temperature.
  • the heating means includes a number corresponding to each barrel 52a to 52b, 53a to 53c, 54a to 54h.
  • a heating means for example, a configuration is adopted in which high temperature steam is supplied from the steam supply means to the steam distribution jacket formed in each barrel 52a to 52b, 53a to 53c, 54a to 54h. It is not limited to this.
  • the screw type twin-screw extruder 5 has a temperature control means (not shown) that controls a set temperature of each heating means corresponding to each barrel 52a to 52b, 53a to 53c, 54a to 54h.
  • the number of supply barrels, dehydration barrels, and dry barrels constituting each barrel portion 52, 53, 54 in the barrel unit 51 is not limited to the mode shown in FIG. 2, and the acrylic rubber to be dried is not limited to the mode shown in FIG.
  • the number can be set according to the water content of the water-containing crumb.
  • the number of supply barrels installed in the supply barrel portion 52 is, for example, 1 to 3.
  • the number of dehydration barrels installed in the dehydration barrel portion 53 is preferably, for example, 2 to 10, and more preferably 3 to 6, because the water-containing crumbs of the adhesive acrylic rubber can be efficiently dehydrated.
  • the number of dry barrels installed in the dry barrel portion 54 is preferably, for example, 2 to 10, and more preferably 3 to 8.
  • the pair of screws in the barrel unit 51 are rotationally driven by a drive means such as a motor housed in the drive unit 50.
  • the pair of screws extend from the upstream side to the downstream side in the barrel unit 51, and by being rotationally driven, the water-containing crumbs supplied to the supply barrel portion 52 can be conveyed to the downstream side while being mixed. It has become like.
  • the pair of screws is preferably a biaxial meshing type in which the peaks and valleys are meshed with each other, whereby the dehydration efficiency and the drying efficiency of the hydrous crumb can be improved.
  • the rotation direction of the pair of screws may be the same direction or different directions, but from the viewpoint of self-cleaning performance, a type that rotates in the same direction is preferable.
  • the screw shape of the pair of screws is not particularly limited as long as it is a shape required for each barrel portion 52, 53, 54, and is not particularly limited.
  • the supply barrel portion 52 is a region for supplying the water-containing crumb into the barrel unit 51.
  • the first supply barrel 52a of the supply barrel portion 52 has a feed port 55 for supplying a water-containing crumb in the barrel unit 51.
  • the dehydration barrel portion 53 is a region for separating and discharging a liquid (serum water) containing a coagulant or the like from the water-containing crumb.
  • the first to third dehydration barrels 53a to 53c constituting the dehydration barrel portion 53 each have dehydration slits 56a, 56b, 56c for discharging the water content of the water-containing crumb to the outside.
  • a plurality of each dehydration slit 56a, 56b, 56c is formed in each dehydration barrel 53a to 53c, respectively.
  • the slit widths that is, the openings of the dehydration slits 56a, 56b, 56c may be appropriately selected according to the usage conditions, and are usually 0.01 to 5 mm, the loss of the water-containing crumb is small, and the water-containing crumb is dehydrated. It is preferably 0.1 to 1 mm, and more preferably 0.2 to 0.6 mm from the viewpoint that the above can be efficiently performed.
  • the dehydration barrel portion 53 is suitable because the water content of the adhesive acrylic rubber can be efficiently reduced by combining drainage and exhaust steam.
  • which of the first to third dehydration barrels 53a to 53c is used for drainage or exhaust steam may be appropriately set according to the purpose of use, but is usually manufactured.
  • the dehydration barrel portion 53 has four dehydration barrels
  • drainage may be performed by three dehydration barrels on the upstream side, and steam may be exhausted by one dehydration barrel on the downstream side.
  • steam may be exhausted by one dehydration barrel on the downstream side.
  • the set temperature of the dehydration barrel portion 53 is usually in the range of 60 to 150 ° C, preferably 70 to 140 ° C, more preferably 80 to 130 ° C, and is dehydrated in the drained state.
  • the set temperature of the dehydration barrel to be dehydrated is usually 60 ° C. to 120 ° C., preferably 70 to 110 ° C., more preferably 80 to 100 ° C.
  • the set temperature of the dehydration barrel to be dehydrated in the exhausted steam state is usually 100 to 150 ° C. It is preferably in the range of 105 to 140 ° C, more preferably 110 to 130 ° C.
  • the drying barrel portion 54 is a region for drying the hydrous crumb after dehydration under reduced pressure.
  • the second dry barrel 54b, the fourth dry barrel 54d, the sixth dry barrel 54f, and the eighth dry barrel 54h are It has vent ports 58a, 58b, 58c, 58d for degassing, respectively. Vent pipes (not shown) are connected to the vent openings 58a, 58b, 58c, and 58d, respectively.
  • Vacuum pumps (not shown) are connected to the ends of each vent pipe, and the operation of these vacuum pumps reduces the pressure inside the drying barrel portion 54 to a predetermined pressure.
  • the screw type extruder 5 has a pressure control means (not shown) that controls the operation of these vacuum pumps to control the degree of decompression in the drying barrel portion 54.
  • the degree of decompression in the dry barrel portion 54 may be appropriately selected, but as described above, it is usually set to 1 to 50 kPa, preferably 2 to 30 kPa, and more preferably 3 to 20 kPa.
  • the set temperature in the drying barrel portion 54 may be appropriately selected, but as described above, it is usually set to 100 to 250 ° C, preferably 110 to 200 ° C, and more preferably 120 to 180 ° C.
  • the set temperature in all the dry barrels 54a to 54h may be an approximate value or may be different, but the upstream side (dehydration barrel portion). It is preferable to set the temperature on the downstream side (die 59 side) to a higher temperature than the temperature on the 53 side) because the drying efficiency is improved.
  • the die 59 is a mold arranged at the downstream end of the barrel unit 51 and has a discharge port having a predetermined nozzle shape.
  • the acrylic rubber dried by the drying barrel portion 54 is extruded into a shape corresponding to a predetermined nozzle shape by passing through the discharge port of the die 59.
  • the acrylic rubber passing through the die 59 can be molded into various shapes such as granular, columnar, round bar, and sheet depending on the nozzle shape of the die 59, but in the present invention, it is molded into a sheet.
  • a breaker plate or wire mesh may or may not be provided between the screw and the die 59.
  • the water-containing crumb of acrylic rubber obtained through the cleaning step is supplied to the supply barrel portion 52 from the feed port 55.
  • the water-containing crumb supplied to the supply barrel portion 52 is sent from the supply barrel portion 52 to the dehydration barrel portion 53 by the rotation of the pair of screws in the barrel unit 51.
  • the dehydration barrel portion 53 as described above, the water contained in the water-containing crumb is drained and exhausted from the dehydration slits 56a, 56b, 56c provided in the first to third dehydration barrels 53a to 53c, respectively. ,
  • the hydrous crumb is dehydrated.
  • the water-containing crumb dehydrated by the dehydration barrel portion 53 is sent to the dry barrel portion 54 by the rotation of a pair of screws in the barrel unit 51.
  • the hydrous crumb sent to the dry barrel portion 54 is plastically mixed to form a melt, which generates heat and is carried to the downstream side while raising the temperature. Then, the water contained in the melt of the acrylic rubber is vaporized, and the water (steam) is discharged to the outside through the vent pipes (not shown) connected to the vent ports 58a, 58b, 58c, 58d, respectively.
  • the hydrous crumb is dried and becomes a melt of acrylic rubber, and the acrylic rubber is supplied to the die 59 by the rotation of a pair of screws in the barrel unit 51 and is supplied from the die 59. Extruded.
  • the rotation speed (N) of the pair of screws in the barrel unit 51 may be appropriately selected according to various conditions, and is usually 10 to 1000 rpm, and the water content of acrylic rubber and the insoluble content of methyl ethyl ketone are efficiently reduced. From the point of view, it is preferably 50 to 750 rpm, more preferably 100 to 500 rpm, and most preferably 120 to 300 rpm.
  • the extrusion amount (Q) of acrylic rubber is not particularly limited, but is usually 100 to 1500 kg / hr, preferably 300 to 1200 kg / hr, more preferably 400 to 1000 kg / hr, and 500 to 800 kg / hr. hr is the most preferable.
  • the ratio (Q / N) of the extrusion amount (Q) of the acrylic rubber to the rotation speed (N) of the screw is not particularly limited, but is usually 1 to 20, preferably 2 to 10, and more preferably 3 to. It is 8, and 4 to 6 are particularly preferable.
  • the maximum torque in the barrel unit 51 is not particularly limited, but is usually 5 to 125 Nm, preferably 10 to 100 Nm, more preferably 10 to 50 Nm, and particularly preferably 15 to 45 Nm. Is the range of.
  • the specific power in the barrel unit 51 is not particularly limited, but is usually 0.01 to 0.3 [kW ⁇ h / kg] or more, preferably 0.05 to 0.25 [kW ⁇ h / kg]. More preferably, it is in the range of 0.1 to 0.2 [kW ⁇ h / kg].
  • the specific power in the barrel unit 51 is not particularly limited, but is usually 0.1 to 0.6 [A ⁇ h / kg] or more, preferably 0.15 to 0.55 [A ⁇ h / kg]. More preferably, it is in the range of 0.2 to 0.5 [A.h / kg].
  • the shear rate in the barrel unit 51 is not particularly limited, but is usually 5 to 150 [1 / s] or more, preferably 10 to 100 [1 / s], and more preferably 25 to 75 [1 / s]. The range.
  • the shear viscosity of the acrylic rubber in the barrel unit 51 is not particularly limited, but is usually 4000 to 8000 [Pa ⁇ s] or less, preferably 4500 to 7500 [Pa ⁇ s], and more preferably 5000 to 7000 [Pa ⁇ s]. s].
  • the cooling device 6 shown in FIG. 1 is configured to cool the dried rubber obtained through the dehydration step by the dehydrator and the drying step by the dryer.
  • the cooling method by the cooling device 6 various methods including an air cooling method by blowing air or cooling, a water spraying method of spraying water, a dipping method of immersing in water, and the like can be adopted. Further, the dried rubber may be cooled by leaving it at room temperature.
  • the dried rubber discharged from the screw type extruder 5 is extruded into various shapes such as granular, columnar, round bar, and sheet depending on the nozzle shape of the die 59. Is molded into a sheet shape.
  • the transport type cooling device 60 for cooling the sheet-shaped dry rubber 10 formed into a sheet shape will be described with reference to FIG.
  • FIG. 3 shows the configuration of a transport type cooling device 60 suitable as the cooling device 6 shown in FIG.
  • the transport type cooling device 60 shown in FIG. 3 is configured to cool by an air cooling method while transporting the sheet-shaped dry rubber 10 discharged from the discharge port of the die 59 of the screw type extruder 5.
  • this transport type cooling device 60 the sheet-shaped dry rubber discharged from the screw type extruder 5 can be suitably cooled.
  • the transport type cooling device 60 shown in FIG. 3 is used, for example, directly connected to the die 59 of the screw type extruder 5 shown in FIG. 2 or installed in the vicinity of the die 59.
  • the transport type cooling device 60 blows cold air to the conveyor 61 that conveys the sheet-shaped dry rubber 10 discharged from the die 59 of the screw type extruder 5 in the direction of arrow A in FIG. 3 and the sheet-shaped dry rubber 10 on the conveyor 61. It has a cooling means 65 for spraying.
  • the conveyor 61 has rollers 62 and 63, and a conveyor belt 64 that is wound around the rollers 62 and 63 and on which the sheet-shaped dry rubber 10 is placed.
  • the conveyor 61 is configured to continuously convey the sheet-shaped dry rubber 10 discharged from the die 59 of the screw type extruder 5 to the downstream side (right side in FIG. 3) on the conveyor belt 64.
  • the cooling means 65 is not particularly limited, but has, for example, a structure capable of blowing cooling air sent from a cooling air generating means (not shown) onto the surface of the sheet-shaped dry rubber 10 on the conveyor belt 64. And so on.
  • the length (length of the portion where the cooling air can be blown) L1 of the conveyor 61 and the cooling means 65 of the transport type cooling device 60 is not particularly limited, but is, for example, 10 to 100 m, preferably 20 to 50 m. ..
  • the transport speed of the sheet-shaped dry rubber 10 in the transport-type cooling device 60 is the length L1 of the conveyor 61 and the cooling means 65, the discharge speed of the sheet-shaped dry rubber 10 discharged from the die 59 of the screw type extruder 5. It may be appropriately adjusted according to the target cooling rate, cooling time, etc., but is, for example, 10 to 100 m / hr, more preferably 15 to 70 m / hr.
  • the sheet-shaped dry rubber 10 discharged from the die 59 of the screw type extruder 5 is conveyed by the conveyor 61, and the sheet-shaped dry rubber 10 is transported from the cooling means 65 to the sheet-shaped dry rubber 10.
  • the sheet-shaped dry rubber 10 is cooled by blowing cooling air.
  • the transport type cooling device 60 is not particularly limited to a configuration including one conveyor 61 and one cooling means 65 as shown in FIG. 3, and two or more conveyors 61 and two or more corresponding conveyors 61. It may be configured to include the cooling means 65 of the above. In that case, the total length of each of the two or more conveyors 61 and the cooling means 65 may be within the above range.
  • the bale device 7 shown in FIG. 1 is configured to extrude from a screw type extruder 5 and further process a dry rubber cooled by the cooling device 6 to produce a bale which is a block.
  • the screw type extruder 5 can extrude the dried rubber into various shapes such as granular, columnar, round bar, and sheet, and the bale device 7 has various shapes as described above. It is configured to veil dry rubber molded into a shape.
  • the weight and shape of the bale-shaped acrylic rubber produced by the bale-forming device 7 are not particularly limited, but for example, a veil-shaped acrylic rubber having a substantially rectangular parallelepiped shape of about 20 kg is produced.
  • the bale-forming device 7 may be provided with, for example, a bale, and the bale-shaped acrylic rubber may be manufactured by compressing the cooled dried rubber with the bale.
  • the bale-forming device 7 arranged on the downstream side of the transport-type cooling device 60 shown in FIG. 3 may be provided with a cutting mechanism for cutting the sheet-shaped dry rubber 10.
  • the cutting mechanism of the bale device 7 continuously cuts the cooled sheet-shaped dry rubber 10 at predetermined intervals and processes the cooled sheet-shaped dry rubber 16 into a cut sheet-shaped dry rubber 16 having a predetermined size. It is configured as follows. By laminating a plurality of cut sheet-shaped dry rubbers 16 cut to a predetermined size by a cutting mechanism, a veil-shaped acrylic rubber in which the cut-sheet-shaped dry rubbers 16 are laminated can be manufactured.
  • the cut-sheet-shaped dried rubber 16 When producing a veil-shaped acrylic rubber in which the cut-sheet-shaped dried rubber 16 is laminated, it is preferable to laminate the cut-sheet-shaped dried rubber 16 at 40 ° C. or higher, for example. By laminating the cut sheet-shaped dry rubber 16 at 40 ° C. or higher, good air release is realized by further cooling and compression by its own weight.
  • [Polymer composition] Regarding the monomer composition in acrylic rubber, the monomer composition of each monomer unit in acrylic rubber was confirmed by 1 H-NMR, and the activity of the reactive group remained in the acrylic rubber and each of them.
  • the reactive group content was confirmed by the following method.
  • the content ratio of each monomer unit in the acrylic rubber was calculated from the amount used in the polymerization reaction of each monomer and the polymerization conversion rate. Specifically, since the polymerization reaction was an emulsion polymerization reaction and the polymerization conversion rate was approximately 100% in which none of the unreacted monomers could be confirmed, the content ratio of each monomer unit in the rubber was The amount used for each monomer was the same.
  • the content of the reactive group in the acrylic rubber was measured by the following method.
  • the amount of carboxyl group was calculated by dissolving a sample (acrylic rubber) in acetone and performing potentiometric titration with a potassium hydroxide solution.
  • the amount of epoxy group was calculated by dissolving the sample in methyl ethyl ketone, adding a specified amount of hydrochloric acid to react with the epoxy group, and titrating the remaining amount of hydrochloric acid with potassium hydroxide.
  • the amount of chlorine was calculated by completely burning the sample in a combustion flask, absorbing the generated chlorine in water, and titrating with silver nitrate.
  • the molecular weight (Mw, Mn, Mz) and molecular weight distribution (Mw / Mn and Mz / Mw) of acrylic rubber are such that lithium chloride is 0.05 mol / L and 37% concentrated hydrochloric acid is 0.01% in dimethylformamide as a solvent. It is an absolute molecular weight and an absolute molecular weight distribution measured by the GPC-MALS method using the solutions added in 1.
  • the "GPC-MALS method” has the following contents.
  • the GPC (gel permeation chromatography) method is a type of liquid chromatography that separates based on the difference in molecular size.
  • the configuration of the gel permeation chromatography multi-angle light scattering photometer which is this device, consists of a pump (LC-20ADOpt manufactured by Shimadzu Corporation), a differential refractometer (Optilab rEX Wyatt Technology) as a detector, and a multi-angle It consists of a light scattering detector (DAWN HELEOS, manufactured by Waitt Technology).
  • the measurement conditions and measurement method by the GPC device are as follows. Column: TSKgel ⁇ -M 2 pieces ( ⁇ 7.8 mm x 30 cm, manufactured by Tosoh Corporation) Column temperature: 40 ° C Flow velocity: 0.8 ml / mm Sample preparation: 5 ml of a solvent was added to 10 mg of a rubber sample, and the mixture was gently stirred at room temperature (dissolution was visually confirmed). After that, filtration was performed using a 0.5 ⁇ m filter.
  • Glass transition temperature (Tg) The glass transition temperature (Tg) of acrylic rubber was measured using a differential scanning calorimeter (DSC, product name "X-DSC7000", manufactured by Hitachi High-Tech Science Co., Ltd.).
  • the specific gravity of the acrylic rubber was measured according to the method A of JIS K6268 crosslinked rubber-density measurement.
  • the measured value obtained by the following measuring method is the density, but the density of water is 1 Mg / m 3 and the specific gravity is used.
  • the specific gravity of the rubber sample obtained according to the method A of JIS K6268 cross-linked rubber-density measurement is the mass divided by the capacity including the voids of the rubber sample, and is the JIS K6268 cross-linked rubber-density measurement. It is obtained by dividing the density of the rubber sample measured according to the method A by the density of water (when the density of the rubber sample is divided by the density of water, the numerical values are the same and the unit is lost).
  • the specific gravity of the rubber sample is determined based on the following procedure.
  • a 2.5 g test piece is cut out from a rubber sample that has been allowed to stand at a standard temperature (23 ° C ⁇ 2 ° C) for at least 3 hours, and a thin piece having a mass of less than 0.010 g is cut out from a hook on a chemical balance having an accuracy of 1 mg.
  • Using nylon thread suspend the test piece so that the bottom of the test piece is 25 mm above the distribution tray for the chemical balance, and measure the mass (m1) of the test piece twice up to mg in the air.
  • the water content was measured according to JIS K6230-1: Oven A (volatile content measurement) method.
  • Mooney viscosity (ML1 + 4,100 ° C) Mooney viscosity (ML1 + 4,100 ° C.) was measured according to the uncrosslinked rubber physical test method of JIS K6300.
  • the injection moldability was evaluated by observing and scoring shape formability, mold releasability, and fusion property using a small injection molding machine (SLIM15-30: manufactured by Daihan Co., Ltd.), and comprehensively evaluating the total score according to the following criteria.
  • shape formability and mold releasability prepare a mold in the shape of three cylindrical shapes (A: 4 mm ⁇ , B: 3 mm ⁇ , C: 2 mm ⁇ ) with different diameters with a shaft length of more than 150 mm, and screw temperature to this mold.
  • the rubber composition was flowed in under the conditions of 90 ° C., injection time of 30 seconds, and injection pressure of 7 MPa, and after cross-linking at a mold temperature of 170 ° C.
  • the injection-molded cylindrical molded product was taken out, and the cylindrical molded product was taken out. And the mold was observed and scored according to the following criteria.
  • For fusion prepare a mold in the shape of a fusion observation band with a thickness of 0.5 mm, a width of 5 mm, and a length of 40 mm, in which 5 mm ⁇ pipes are connected to each of both ends in the length direction.
  • the rubber composition was flowed into the fusion observation zone from each of the above under the conditions of a screw temperature of 90 ° C., an injection time of 30 seconds, and an injection pressure of 7 MPa, and the rubber composition in the fusion observation body was crosslinked at a mold temperature of 170 ° C. for 1 minute and 30 seconds.
  • a cylindrical molded product can be manufactured in all of A, B, and C, and the shape of the tip of the molded product is completely followed by the mold in all cases, and no burr formation is observed.
  • the cylindrical molded product can be manufactured in A and B, but the molded product cannot be manufactured in half in C.
  • 1 point Molded product can be manufactured in A, but molded product cannot be completely manufactured in B.
  • the water resistance of the rubber sample is determined by immersing the crosslinked product of the rubber sample in distilled water at a temperature of 85 ° C. for 100 hours in accordance with JIS K6258, performing a dipping test, measuring the volume change rate before and after dipping, and referencing Comparative Example 2.
  • An index of 100 was calculated and evaluated according to the following criteria. ⁇ : 1 or less ⁇ : 1 or more and 5 or less ⁇ : 5 or more and 10 or less ⁇ : 10 or more and 50 or less ⁇ : 50 or more
  • the compression set resistance characteristic of the rubber sample was evaluated according to the following criteria by measuring the compression set rate after leaving the rubber crosslinked product of the rubber sample at 175 ° C. for 90 hours in a state of being compressed by 25% according to JIS K6262. .. ⁇ : The compression set is less than 15% ⁇ : The compression set is 15% or more.
  • the normal physical properties of the rubber sample were evaluated according to the following criteria by measuring the breaking strength, 100% tensile stress and breaking elongation of the crosslinked rubber sample of the rubber sample according to JIS K6251. (1) The breaking strength was evaluated as ⁇ when it was 10 MPa or more and ⁇ when it was less than 10 MPa. (2) The 100% tensile stress was evaluated as ⁇ for 5 MPa or more and ⁇ for less than 5 MPa. (3) The elongation at break was evaluated as ⁇ for 150% or more and ⁇ for less than 150%.
  • the variation in the gel amount of the rubber sample is evaluated by measuring the gel amount of 20 points arbitrarily selected from 20 parts (20 kg) of the rubber sample and evaluating based on the following criteria. ⁇ : Calculate the average value of the measured 20-point gel amount, and include all the measured 20 points within the range of the average value ⁇ 3. ⁇ : Calculate the average value of the measured 20-point gel amount.
  • Example 1 As shown in Table 2-1 in a mixing container equipped with a homomixer, 46 parts of pure water, 48.5 parts of ethyl acrylate as a monomer component, 50 parts of n-butyl acrylate and mono n-butyl fumarate. A monomer emulsion was obtained by adding 1.5 parts and 1.8 parts of tridecyloxyhexaoxyethylene phosphate sodium salt as an emulsifier and stirring.
  • the mixture was heated to 80 ° C. and vigorously stirred at a stirring blade rotation speed of 600 rpm (peripheral speed 3.1 m / s) of the stirrer.
  • the emulsified polymer solution obtained above is heated to 80 ° C. and continuously added to coagulate the polymer in 350 parts of a coagulation solution using magnesium sulfate as an agent to coagulate the solidified acrylic rubber crumb.
  • a solidified slurry containing water was obtained. Moisture was discharged from the solidified layer while filtering the crumbs from the obtained slurry to obtain a hydrous crumb.
  • the screw type twin-screw dryer used in the first embodiment has one supply barrel, three dehydration barrels (first to third dehydration barrels), and five drying barrels (first to fifth drying barrels). It consists of a barrel).
  • the first dehydration barrel drains water, and the second and third dehydration barrels drain steam.
  • Table 2-1 shows the water content, maximum torque, specific power, specific power, shear rate and shear viscosity after dehydration (drainage) of the screw type twin-screw extruder.
  • Moisture content Moisture content of the hydrous crumb after drainage in the first dehydration barrel: 20% Moisture content of the hydrous crumb after steam exhaust in the third dehydration barrel: 10% Moisture content of the hydrous crumb after drying in the 5th drying barrel: 0.4% Rubber temperature: -The temperature of the hydrous crumb supplied to the supply barrel: 65 ° C -The temperature of the rubber discharged from the screw type twin-screw extruder: 140 ° C
  • the extruded sheet-shaped dry rubber is cooled to 50 ° C., cut with a cutter, and laminated to 20 parts (20 kg) before the temperature drops below 40 ° C. to obtain a veil-shaped acrylic rubber (A).
  • rice field. Reactive group content, ash content, ash component content, gel amount, pH, specific gravity, glass transition temperature (Tg), water content, molecular weight, molecular weight distribution, and 100 ° C. of the obtained veil-like acrylic rubber (A).
  • the complex viscosity at 60 ° C. was measured and shown in Table 2-2.
  • the storage stability test of the veil-shaped acrylic rubber (A) was performed to determine the water content change rate, and the results are shown in Table 2-2.
  • the residual rubber composition was placed in a mold having a length of 15 cm, a width of 15 cm, and a depth of 0.2 cm, and pressed at 180 ° C. for 10 minutes while pressurizing at a press pressure of 10 MPa to obtain a primary crosslink.
  • the primary crosslinked product was further heated in a gear oven at 180 ° C. for 2 hours for secondary cross-linking to obtain a sheet-shaped rubber crosslinked product.
  • a test piece having a size of 3 cm ⁇ 2 cm ⁇ 0.2 cm was cut out from the obtained sheet-shaped rubber crosslinked product, and water resistance, compression resistance permanent strain resistance and normal physical properties were evaluated. The results are shown in Table 2-2.
  • Example 2 As shown in Table 2-1, the same as in Example 1 except that the monomer component was changed to 48.25 parts of ethyl acrylate, 50 parts of n-butyl acrylate and 1.75 parts of mono-n-butyl fumarate. To obtain veil-shaped acrylic rubber (B), each characteristic (combination agent is "formulation 2" (see Table 1)). Changed to) was evaluated. The results are shown in Table 2-2.
  • Example 3 The post-addition of n-dodecyl mercaptan was carried out in the same manner as in Example 1 except that the post-addition was changed to 0.008 part after 50 minutes, 0.008 part after 100 minutes and 0.008 part after 120 minutes, a total of 3 times, and veiled. Acrylic rubber (C) was obtained and each characteristic was evaluated. The results are shown in Table 2-2.
  • Example 4 The post-addition of n-dodecyl mercaptan was carried out in the same manner as in Example 2 except that the post-addition was changed to 0.008 part after 50 minutes, 0.008 part after 100 minutes and 0.008 part after 120 minutes, a total of 3 times, and veiled. Acrylic rubber (D) was obtained and each characteristic was evaluated. The results are shown in Table 2-2.
  • Example 5 As shown in Table 2-1 the same procedure as in Example 1 was performed except that the maximum torque of the screw type twin-screw extruder was changed to 15 Nm, and veil-shaped acrylic rubber (E) was obtained and each characteristic was evaluated. did. The results are shown in Table 2-2.
  • Example 6 The same procedure as in Example 2 was carried out except that the maximum torque of the screw type twin-screw extruder was changed to 15 Nm, and veil-shaped acrylic rubber (F) was obtained and each characteristic was evaluated. The results are shown in Table 2-2.
  • Example 7 The same procedure as in Example 5 was carried out except that the water content after dehydration in the dehydration barrel portion of the screw type twin-screw extruder was set to 30% by weight, and veil-shaped acrylic rubber (G) was obtained and each characteristic was evaluated. The results are shown in Table 2-2.
  • Example 8 The same procedure as in Example 6 was carried out except that the water content after dehydration in the dehydration barrel portion of the screw type twin-screw extruder was set to 30% by weight, and veil-shaped acrylic rubber (H) was obtained and each characteristic was evaluated. The results are shown in Table 2-2.
  • Example 9 The water-containing crumb after washing is dried to a water content of 0.4% using a hot air dryer at 160 ° C. to obtain a crumb-shaped acrylic rubber (I), which is then filled in a 300 ⁇ 650 ⁇ 300 mm baler and charged at 3 MPa.
  • a bale-shaped acrylic rubber (I) was obtained in the same manner as in Example 2 except that the bale-shaped acrylic rubber was compacted with pressure for 25 seconds.
  • Each property of the veil-shaped acrylic rubber veil was evaluated, and the results are shown in Table 2-2.
  • Example 10 The same procedure as in Example 9 was carried out except that the monomer component was changed to 28 parts of ethyl acrylate, 38 parts of n-butyl acrylate, 27 parts of methoxyethyl acrylate, 5 parts of acrylonitrile and 2 parts of allyl glycidyl ether.
  • Acrylic rubber (J) was obtained and each characteristic (the compounding agent was changed to "formulation 3" (see Table 1)) was evaluated. The results are shown in Table 2-2.
  • Example 11 Example 9 except that the monomer component is changed to 42.2 parts of ethyl acrylate, 35 parts of n-butyl acrylate, 20 parts of methoxyethyl acrylate, 1.5 parts of acrylonitrile and 1.3 parts of vinyl chloroacetate.
  • veil-shaped acrylic rubber (K) was obtained and each characteristic (the compounding agent was changed to "formulation 4" (see Table 1)) was evaluated. The results are shown in Table 2-2.
  • Example 12 The post-addition of n-dodecyl mercaptan was carried out in the same manner as in Example 11 except that the post-addition was changed to 0.008 part after 50 minutes, 0.008 part after 100 minutes and 0.008 part after 120 minutes, a total of 3 times, and veiled. Acrylic rubber (L) was obtained and each characteristic was evaluated. The results are shown in Table 2-2.
  • Example 13 Diisopropylbenzene hydroperoxide was changed to 0.0048 parts, and 0.024 parts of n-dodecyl mercaptan was continuously added to the monomer emulsion and not added afterwards. Acrylic rubber (M) was obtained and each characteristic was evaluated. The results are shown in Table 2-2.
  • Comparative Example 2 The diisopropylbenzene hydroperoxide was changed to 0.005 part, and the same procedure as in Comparative Example 1 was carried out except that the chain transfer agent was not added. A crumb-shaped acrylic rubber (O) was obtained and each characteristic was evaluated. The results are shown in Table 2-2.
  • the ratio (Mw / Mn) to Mn) is in the range of 1.5 to 3, the ash content is 0.3% by weight or less, and the total amount of sodium, sulfur, calcium, magnesium and phosphorus in the ash is 80% by weight.
  • Acrylic rubbers (A) to (M) having an ester weight of% or more are excellent in normal physical properties including injection moldability, water resistance, compression set resistance and strength characteristics, and are also excellent in Banbury processability and storage stability. Can be understood (Examples 1 to 13).
  • the acrylic rubbers (A) to (O) of the Examples and Comparative Examples of the present application have excellent compression-resistant permanent strain characteristics because they have a carboxyl group, an epoxy group, or an ionic reactive group of a chlorine atom.
  • the acrylic rubbers (A) to (O) produced under the conditions of Examples and Comparative Examples of the present application have excellent weight average molecular weight (Mw) of far more than 1 million, and therefore have excellent normal physical properties including strength characteristics. (Examples 1 to 13 and Comparative Examples 1 to 2).
  • Mw weight average molecular weight
  • the acrylic rubbers (N) to (O) are inferior in injection moldability, Banbury processability, water resistance and storage stability (Comparative Examples 1 and 2).
  • the injection moldability is strongly influenced by the molecular weight distribution (Mw / Mn) of the acrylic rubber.
  • Examples 3 to 11 are Mw / Mn 2.39 to 2.45 / Injection moldability : ⁇ )
  • the molecular weight distribution (Mz / Mw) focusing on the high molecular weight region is sufficiently wide, the number average molecular weight (Mn), the weight average molecular weight (Mw) and the z average molecular weight (Mz) are sufficiently large, and the Mw of the present invention is obtained. It can be seen that the injection moldability can be improved in the range of / Mn without impairing the strength characteristics (comparison between Examples 1 to 13 and Comparative Example 2).
  • acrylic rubbers (A) to (M) having a specific range of molecular weight distribution (Mw / Mn) having excellent injection moldability without impairing strength characteristics are organic radical generators in a specific amount. It can be seen that it can be produced by using a chain transfer agent, particularly n-dodecyl mercaptan as a chain transfer agent (Examples 1 to 13). From Tables 2-1 and 2-2, the chain transfer agent (n-dodecyl mercaptan) is added earlier than the chain transfer agent (n-dodecyl mercaptan) is continuously added (Example 13).
  • the injection moldability can be improved without impairing the strength characteristics by adding the dodecyl batch in batches (Examples 1 to 12). This is because one polymerized chain is extended by reducing the amount of the organic radical generator without adding the chain transfer agent at the initial stage, and by adding the chain transfer agent during the polymerization, it becomes clear in the GPC chart. It is presumed that the high molecular weight component and the low molecular weight component can be produced in a well-balanced manner and the molecular weight distribution (Mw / Mn) can be set in a specific range, and the strength characteristics and the injection moldability are highly balanced.
  • Mw / Mn the number of batch post-additions has a great influence, and the number of batch post-additions is 2 times rather than 3 times. Mw / Mn) is wide (comparison between Examples 9 to 11 and Example 12).
  • the reducing agent sodium ascorbate was added 120 minutes after the start of the polymerization, whereby the high molecular weight component of the acrylic rubber was added. The formation is facilitated and the effect of widening the molecular weight distribution (Mw / Mn) of the addition after the chain transfer agent is increased.
  • the polymerization catalyst is inside the emulsion polymerization micelle and the polymerization is continuously carried out inside the micelle, but in the case of an inorganic radical generator, the polymerization catalyst exists outside the micelle and polymerizes outside the micelle. It is considered that these differences in molecular weight distribution occurred due to the above-mentioned factors, which affected the injection moldability.
  • the acrylic rubbers (A) to (M) of the present invention are excellent in terms of water resistance (comparison between Examples 1 to 13 and Comparative Examples 1 and 2), and among them, acrylic.
  • the crumb diameter of the hydrous crumb generated by the coagulation reaction is 710 ⁇ m or more. It is focused in a small particle size range of 4.75 mm, which greatly improves the cleaning efficiency with warm water and the removal efficiency of emulsifiers and coagulants during dehydration, reduces the amount of ash in acrylic rubber, and improves water resistance. It is presumed that it has improved significantly. Further, regarding the water resistance, it can be seen that the acrylic rubbers (I) to (J) are superior to the acrylic rubbers (K) to (M) in Examples 9 to 13 while the ash content is about the same. .. It can be seen that acrylic rubber having a carboxyl group or an epoxy group is superior to chlorine atoms among the ionic reactive groups in terms of water resistance (Examples 9 to 10 and Examples 11 to 13). Comparison).
  • the ash components of the acrylic rubbers (A) to (M) of the present invention and the acrylic rubbers (N) to (O) of the comparative example are phosphorus (P) and magnesium (Mg). ), Sodium (Na), calcium (Ca) and sulfur (S) are 80% by weight or more or 90% by weight or more, and if the ash content can be reduced, it can be seen that the water resistance can be improved. Further, when the ash component is these components, the releasability of acrylic rubber is remarkably excellent.
  • the ash content of the acrylic rubbers (A) to (M) of the present invention solidified, washed and dehydrated by the method of the present invention is 80% or more of phosphorus (P) and magnesium (Mg) or It can be seen that the content is 90% or more (Examples 1 to 13 and Comparative Examples 1 to 2). This is because the ash in the acrylic rubber does not retain the emulsifier and coagulant used in the production as it is, but the phosphate ester Na salt of the emulsifier is salt-exchanged with the coagulant magnesium sulfate (00544) during the coagulation reaction.
  • hydrous crumb It is contained in the hydrous crumb as a water-resistant phosphate ester Mg salt and cannot be sufficiently removed in the cleaning process, but it can be reduced by dehydrating it in a screw-type twin-screw extruder (squeezing out water from the hydrous crumb) (Example). 1-8), it can be seen that the water content of acrylic rubber can be significantly improved by squeezing out more water from the water-containing crumb, which has a water content of 20% than 30% after dehydration (Example). Comparison between 1 to 6 and Examples 7 to 8).
  • the ash content can be reduced to 0.1% by weight or less by performing the coagulation reaction of the present invention, washing with warm water and dehydrating, and the water resistance is remarkably improved. We have confirmed that it can be improved.
  • the Banbury workability is correlated with the amount of gel (comparison between Examples 1 to 13 and Comparative Examples 1 and 2).
  • the gel amount of the methyl ethyl ketone insoluble component of acrylic rubber can be reduced by emulsion polymerization in the presence of a chain transfer agent (comparison between Examples 9 to 13 and Comparative Example 1 and Comparative Example 2), particularly gel. Since the amount increases sharply when the polymerization conversion rate is increased in order to enhance the strength characteristics, gel formation of the insoluble amount of methyl ethyl ketone can be suppressed in Examples 9 to 13 of the post-addition of the chain transfer agent in the latter half of the polymerization reaction. You can see that.
  • the gel amount of acrylic rubber is further significantly reduced by drying the water-containing crumb with a screw-type twin-screw extruder, and the Banbury workability of the produced acrylic rubber is significantly improved (Examples 1 to 1). Comparison between 8 and Examples 9 to 13).
  • the amount of gel of the methyl ethyl ketone insoluble content that rapidly increased by emulsion polymerization without adding a chain transfer agent (Comparative Examples 1 and 2) is in the screw type twin-screw extruder. It has been confirmed that it disappears when it is melt-kneaded in a state where it does not contain substantially water (water content is less than 1% by weight), and the Banbury processability can be significantly improved.
  • the acrylic rubbers (A) to (M) of the present invention have excellent normal physical properties including injection moldability, Banbury workability, water resistance, compression resistance permanent strain property and strength property, and have excellent storage stability. It turns out that it is much better. In particular, the storage stability of the acrylic rubbers (A) to (H) of the present invention is remarkably excellent.
  • the specific densities of the veil-shaped acrylic rubber veils (A) to (M) are much larger than those of the crumb-shaped acrylic rubbers (N) to (O). It can be seen that the storage stability depends on the magnitude of the specific gravity, that is, the amount of air entrained (comparison with Examples 1 to 8, Examples 9 to 13 and Comparative Examples 1 to 2).
  • the veil-shaped acrylic rubber having a large specific gravity is extruded into a sheet by compressing the crumb-shaped acrylic rubber with a baler to form a veil (Examples 9 to 13), and more preferably with a screw-type twin-screw extruder.
  • Example 1 to 8 It can be obtained by laminating and bale (Examples 1 to 8). It can also be seen that the storage stability of the acrylic rubber is more preferable as the amount of ash is smaller (Examples 1 to 13).
  • the acrylic rubber (M) of Example 13 the implementation of Table 2-2 is carried out except that the specific gravity becomes 0.769 when the characteristic value of the crumb-shaped acrylic rubber as it is after direct drying without using a baler is measured. The result was similar to that of Example 13. It was also important that the pH of the acrylic rubber was 6 or less for the storage stability.
  • Example 1 (1) 91% by weight, (2) 91% by weight, (3) 84% by weight
  • Example 2 (1) 96% by weight, (2) 95% by weight, (3) 89% by weight
  • Example 3 (1) 91% by weight, (2) 85% by weight, (3) 79% by weight
  • Example 4 (1) 93% by weight, (2) 90% by weight, (3) 84% by weight
  • Example 5 (1) 95% by weight, (2) 93% by weight, (3) 90% by weight
  • Example 6 (1) 89% by weight, (2) 85% by weight, (3) 79% by weight
  • Example 8 (1) 94% by weight, (2) 93% by weight, (3) 87% by weight
  • Example 9 (1) 95% by weight, (2) 94% by weight, (3) 91% by weight
  • Example 10 (1) 89% by weight, (2) 86% by weight, (3) 83% by weight
  • Example 11 (1) 95% by weight, (2) 94% by weight, (3) 88% by weight
  • Example 12 (1) 93% by weight, (2) 93% by weight, (3) 90% by weight
  • Example 13 (1) 93% by weight, (2) 89% by weight, (3) 78% by weight Comparative Example 1: (1) 1
  • the amount of ash remaining in the acrylic rubber differs depending on the size of the water-containing crumbs generated in the solidification process, and the cleaning efficiency is high even though the specific proportions of (1) to (3) are large. It can be seen that the amount of ash is high, the amount of ash is reduced, and the water resistance is excellent (comparison between Examples 9 to 13 in Table 2-2 and Comparative Examples 1 and 2). Further, the water-containing crumbs having a large specific ratio of (1) to (3) have a high ash removal rate at the time of dehydration, and the water-containing crumbs having a dehydration rate (water content) of 20% by weight (Examples 1 to 6) are dehydrated. It can be seen that the ash content is reduced and the water resistance of the acrylic rubber is improved as compared with the one having a rate (water content of 30% by weight) (Examples 7 to 8).
  • Comparative Example 1 For reference, the same procedure as in Comparative Example 1 was performed except that the emulsion polymerization solution was added to the coagulation solution in the coagulation step (Reference Example 1), and the emulsion polymerization solution was added to the coagulation solution to provide a coagulant for the coagulation solution.
  • the same procedure as in Comparative Example 1 was carried out except that the concentration was changed from 0.7% by weight to 2% by weight (Reference Example 2), and the particle size ratios (1) to (3) of the hydrous crumb to be produced and the ash in the acrylic rubber. The quantity (4) was measured.
  • Reference Example 1 (1) 91% by weight, (2) 57% by weight, (3) 25% by weight, (4) 0.51% by weight
  • Reference example 2 (1) 92% by weight, (2) 75% by weight, (3) 42% by weight, (4) 0.40% by weight
  • the Mooney scorch time t5 (minutes) at a temperature of 125 ° C. by the method for evaluating the processing stability by suppressing the Mooney scorch described above.
  • the Mooney scorch storage stability was evaluated according to the following criteria. As a result, all of them were good results of " ⁇ ".
  • Mooney scorch time t5 exceeds 3.3 minutes ⁇ : Mooney scorch time t5 is 2 to 3.3 minutes ⁇ : Mooney scorch time t5 is less than 2 minutes
  • the cooling rate of the sheet-shaped dry rubber extruded from the screw type twin-screw extruder is actually as fast as about 200 ° C./hr as in Example 1, and both are 40 ° C./hr. That is all.
  • the variation in the amount of methyl ethyl ketone insoluble content was evaluated by the above-mentioned method. That is, the variation evaluation of the amount of insoluble methyl ethyl ketone in the rubber sample was evaluated by measuring the insoluble amount of methyl ethyl ketone at 20 points arbitrarily selected from 20 parts (20 kg) of the rubber sample and evaluating based on the above-mentioned criteria.
  • Acrylic rubber (A) to (H) obtained in Examples 1 to 8 and acrylic rubber (O) obtained in Comparative Example 2 were evaluated for variation in gel amount as rubber samples. )-(H) were all " ⁇ ", and the acrylic rubber (O) result was "x".
  • the crumb-shaped acrylic rubber that has been subjected to emulsion polymerization and solidification washing under the conditions for producing the acrylic rubber (O) of Comparative Example 2 is put into a screw type twin-screw extruder under the same conditions as that of Example 1 and extruded and dried. It was found that the amount of gel and the variation in the amount of gel measured for the obtained acrylic rubber could be reduced to almost the same level as that of the acrylic rubber (A), and the Banbury workability was significantly improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Revetment (AREA)
  • Bag Frames (AREA)

Abstract

射出成型性に優れるアクリルゴムを提供する。本発明に係るアクリルゴムは、(メタ)アクリル酸アルキルエステル及び(メタ)アクリル酸アルコキシアルキルエステルからなる群から選ばれる少なくとも1種の(メタ)アクリル酸エステル由来の結合単位、イオン反応性基含有単量体由来の結合単位、及び必要に応じてその他の単量体由来の結合単位からなり、重量平均分子量(Mw)が100万~500万、重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が1.5~3の範囲であり、灰分量が0.3重量%以下で、且つ灰分中のナトリウム、イオウ、カルシウム、マグネシウム及びリンの合計量が80重量%以上である。

Description

射出成型性に優れるアクリルゴム
 本発明は、アクリルゴム、その製造方法、ゴム組成物及びゴム架橋物に関し、さらに詳しくは、射出成型性、強度特性、耐圧縮永久歪み特性及び耐水性に優れるアクリルゴム、その製造方法、該アクリルゴムを含むゴム組成物及びそれを架橋してなるゴム架橋物に関する。
 アクリルゴムは、アクリル酸エステルを主成分とする重合体であり、一般に耐熱性、耐油性及び耐オゾン性に優れたゴムとして知られ、自動車関連の分野などで広く用いられている。
 例えば、特許文献1(特開平11-12427号公報)には、エチルアクリレート、ブチルアクリレート、メトキシエチルアクリレート、アクリロニトリル、及びアリルメタクリレートやシクロペンテニルオキシエチルアクリレートなどのなどの炭素-炭素二重結合を側鎖に導入する単量体を含んでなる単量体成分100部、ラウリル硫酸ナトリウム4部、有機ラジカル発生剤としてのp-メンタンハイドロパーオキサイド0.25部、硫酸第一鉄0.01部、エチレンジアミン四酢酸ナトリウム0.025部、ナトリウムホルムアルデヒドスルホキシレート0.04部、及び連鎖移動剤としてのt-ドデシルメルカプタン0.01~0.05部をチッソ置換したオートクレープに仕込み、反応温度30度で単量体混合物の転化率が100%に達するまで反応させ、得られたラテックスを0.25%塩化カルシウム水溶液に加えて凝固させ、凝固物を十分に水洗して、約90℃で3時間乾燥させ、1,3-ビス(t-ブチルパーオキシイソプロピル)ベンゼンなどの有機過酸化物で架橋する押し出し加工性やスコーチ特性に優れるアクリルゴム及び架橋組成物が開示されている。しかしながら、本方法で得られるアクリルゴムは、射出成型性やバンバリー加工性が十分でなく、また、保存安定性、耐圧縮永久歪み特性、耐水性及び強度特性に劣る問題があった。
 また、特許文献2(特開平5-86137号公報)には、有機ラジカル発生剤で重合を開始し連鎖移動剤をモノマー乳化液に添加して連続的に投与するアクリルゴムの製造方法が開示されている。具体的には、アクリル酸2-(2-シアノエトキシ)エチル、アクリル酸エチル、アクリル酸n-ブチル、及び、クロロ酢酸ビニル、アリルグリシジルエーテルなどの架橋性単量体を含むモノマー混合物と適量のn-ドデシルメルカプタンの混合物のうち5分の1をポリオキシエチレンラウリルエーテル1重量部、ラウリル硫酸ナトリウム4重量部、リン酸水素二ナトリウム0.7重量部、リン酸二水素ナトリウム0.3重量部のうちの2分の1と混合撹拌して乳化液とし、15℃とした後にエチレンジアミン四酢酸ナトリウム鉄(II)0.005重量部、エチレンジアミン四酢酸四ナトリウム0.02重量部、ロンガリット0.02重量部及びハイドロサルファイトナトリウム0.02重量部を添加し、有機ラジカル発生剤であるtert-ブチルハイドロパーオキシド0.2重量%水溶液を毎時1.5部の速度で滴下して重合を開始し、温度を15℃に保持しつつ、残りのモノマー及びn-ドデシルメルカプタンの混合物と乳化剤水溶液からなる乳化液を3時間で滴下してモノマー転化率96~99%まで重合反応を行っている。また、得られた共重合体ラテックスは、85℃の塩化カルシウム水溶液に投入して共重合体を単離し、十分洗浄した後乾燥を行い目的とする共重合体ゴムを得、イオウ架橋することが記載されている。しかしながら、本方法で得られるアクリルゴムは、射出成型性が十分でなく、また、保存安定性、耐水性及び強度特性に劣る問題があった。
 また、特許文献3(国際公開第2019/188709号パンフレット)には、アクリル酸エチル、アクリル酸ブチル、アクリル酸メトキシエチル及びフマル酸モノブチルからなる単量体成分、水及びラウリル硫酸ナトリウムを仕込み、減圧脱気及び窒素置換を繰り返した後、ナトリウムアルデヒドスルホキシレートと有機ラジカル発生剤であるクメンハイドロパーオキシドを加えて常圧、常温下で乳化重合を開始させ、重合転化率が95重量%になるまで乳化重合を行ってから塩化カルシウム水溶液で凝固させスクリューを有する押出乾燥機で脱水乾燥してアクリルゴムを製造する方法が開示されている。しかしながら、かかる方法で得られるアクリルゴムは、射出成型性、保存安定性、及び耐水性に劣る問題があった。
 更に、特許文献4(国際公開第2018/117037号パンフレット)には、アクリル酸エチル、フマル酸モノn-ブチルからなる単量体成分、水及びドデシル硫酸ナトリウムを仕込み、減圧脱気及びチッソ置換を3度行って酸素を十分に除去した後、有機ラジカル発生剤であるアゾビス(イソブチロニトリル)とエチル-2-メチル-2-フェニルテラニルプロピネートを加えて、常圧下、温度50度で重合反応を開始し、重合転化率89%に達するまで重合を行った後に塩化カルシウム溶液で凝固させ、水洗、乾燥してアクリルゴムを製造する方法が開示されている。しかしながら、かかる方法で得られるアクリルゴムは、射出成型性、バンバリー加工性、保存安定性、及び耐水性に劣る問題があった。
 一方、無機ラジカル発生剤を用いたアクリルゴムの製造方法としては、例えば、特許文献5(特開2019-119772号公報)には、アクリル酸エチル、アクリル酸ブチル、アクリル酸メトキシエチル及びマレイン酸モノブチルからなる単量体成分を純水と乳化剤としてラウリル硫酸ナトリウムとポリオキシエチレンドデシルエーテルを用いて単量体乳化液としたのち、単量体乳化液の一部を重合反応槽に投入し窒素気流下で12℃まで冷却してから、残部の単量体乳化液、硫酸第一鉄、アスコルビン酸ナトリウム及び無機ラジカル発生剤としての過硫酸カリウム水溶液を連続的に3時間かけて連続的に滴下し、その後も23℃に保ち1時間継続して乳化重合を行い重合転化率が97重量%に達してから85℃に昇温させた後に硫酸ナトリウムを連続的に添加することにより凝固濾別し含水クラムを得て、該含水クラムを水洗4回、酸洗浄1回及び純水洗浄1回行った後にスクリューを有する押出乾燥機でシート状にアクリルゴムを連続的に製造し、ヘキサメチレンジアミンカーバメート等の脂肪族多価アミン化合物で架橋する方法が開示されている。しかしながら、本方法で得られるシート状アクリルゴムは、射出成型性や保存安定性に劣り、また、架橋物の耐水性に劣る問題があった。
 特許文献6(特開平1-135811号公報)には、アクリル酸エチル、カプロラクトン付加型アクリル酸エステル、シアノエチルアクリレート及びクロロ酢酸ビニルからなる単量体成分と連鎖移動剤としてのn-ドデシルメルカプタンとからなる単量体混合物の1/4量をラウリル硫酸ナトリウム、ポリエチレングリコールノニルフェニルエーテル及び蒸留水で乳化し、亜硫酸ナトリウムと無機ラジカル発生剤としての過硫酸アンモニウムを添加して重合を開始し、温度を60℃に保ちながら残部の単量体混合物と2%過硫酸アンモニウム水溶液を2時間滴下し、滴下後更に2時間重合を継続した重合転化率96~99%のラテックスを80℃の塩化ナトリウム水溶液に投入し凝固してから十分に水洗後乾燥をしてアクリルゴムを製造しイオウで架橋する方法が開示されている。しかしながら、本方法で得られるアクリルゴムは、射出成型性、保存安定性、耐水性に劣る問題があった。
 特許文献7(特開昭62-64809号公報)には、アクリル酸アルキルエステル及びアクリル酸アルコキシアルキルエステルのうち少なくとも1種の化合物50~99.9重量%、不飽和カルボン酸のジヒドロジシクロペンテニル基含有エステル0.1~20重量%、他のモノビニル系、モノビニリデン系及びモノビニレン系不飽和化合物のうち少なくとも1種0~20重量%よりなる単量体組成の共重合体であって、そのテトラハイドロフランを展開溶媒にしたポリスチレン換算の数平均分子量(Mn)が20~120万であり重量平均分子量(Mw)の数平均分子量(Mn)に対する比(Mw/Mn)が10以下であることを特徴とする硫黄加硫が可能なアクリルゴムが開示されている。その具体的な実施例としては、エチルアクリレートやラジカル架橋性のジヒドロジシクロペンテニルアクリレートなどを含む単量体成分、乳化剤のラウリル硫酸ナトリウム、無機ラジカル発生剤としての過硫酸カリウム及び分子量調節剤としてのチオグリコール酸オクチルやt-ドデシルメルカプタンを変量して添加し、数平均分子量(Mn)が53~115万、重量平均分子量(Mw)が354~626万及び重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が4.7~8のアクリルゴムが開示されている。そして、連鎖移動剤の量が少ないと、数平均分子量(Mw)は500万と大きく重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)は1.4と狭くなり、連鎖移動剤の量が多いと数平均分子量(Mn)は20万と小さく重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)は17と極端に広くなることが実施例比較例に示されている。しかしながら、本方法で得られるアクリルゴムは、射出成型性に劣り、架橋反応では、架橋剤としての硫黄と加硫促進剤を加えロールで混錬後に、100kg/cmの加硫プレスにおいて、170℃で15分間、さらにギヤオーブンにおいて、175℃で4時間と長時間の架橋が必要となる問題があり、また、得られる架橋物は耐水性、耐圧縮永久歪み特性及び強度特性に劣り、且つ、熱劣化後の物性変化にも劣る等の問題があった。
特開平11-12427号公報 特開2019-119772号公報 国際公開第2019/188709号パンフレット 国際公開第2018/117037号パンフレット 特開2019-119772号公報 特開平1-135811号公報 特開昭62-64809号公報
 本発明は、かかる従来技術の実状に鑑みてなされたものであり、射出成型性、耐水性、耐圧縮永久歪み特性及び強度特性に優れるアクリルゴム、その製造方法、該アクリルゴムを含むゴム組成物及びそれを架橋してなるゴム架橋物を提供することを目的とする。
 本発明者らは、上記課題に鑑み鋭意研究した結果、イオン反応性基含有単量体を含む特定な単量体成分で、重量平均分子量(Mw)及び重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が特定で且つ灰分量や灰分成分量が特定なアクリルゴムが、射出成型性、耐水性、耐圧縮永久歪み特性及び強度特性に高度に優れることを見出した。特に、本発明のアクリルゴムの射出成型性は、形状形成性、融合性及び離型性のいずれの特性も格段に優れていることを見出した。
 本発明者らは、また、イオン反応性基含有単量体を含む特定な単量体成分を水と乳化剤とでエマルジョン化した後にジイソプロピルベンゼンハイドロパーオキサイド等の有機ラジカル発生剤と還元剤とからなるレドックス触媒存在下に乳化重合を開始させ、連鎖移動剤を初期には添加せずに重合途中で回分的に添加して乳化重合を行うこと、乳化重合した乳化重合液を特定方法で凝固すること、及び凝固反応で生成した含水クラムを洗浄後乾燥工程に入る前に脱水することで射出成型性、耐水性、耐圧縮永久歪み特性及び強度特性に優れるアクリルゴムを効率的に製造できることを見出した。
 アクリルゴムの強度特性と射出成形性を高度にバランスさせるためには、本発明者らは、アクリルゴムの重量平均分子量(Mw)及び重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)を特定領域に収めることが重要であることを見出した。かかるアクリルゴムを製造するためには、有機のラジカル発生剤を用いて乳化重合するだけでは重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が狭く射出成形性に劣るが、連鎖移動剤を重合途中で回分的に添加することで達成できることを見出した。一方、無機のラジカル発生剤を用いて乳化重合したアクリルゴムは重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が広すぎて射出成型に劣ることがわかった。
 本発明者らは、また、アクリルゴムの乾燥を特定な押出乾燥機を用いて乾燥することで、及び特定押出乾燥を用いて最適となるシェア条件でアクリルゴムを溶融混錬し乾燥することにより、重量平均分子量(Mw)を損ねることなく重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)を広げ、更に、射出成型性、バンバリー加工性、強度特性及び耐圧縮永久歪み特性が高度にバランスされるアクリルゴムが製造できることを見出した。
 本発明者らは、また、カルボキシル基、エポキシ基または塩素原子などの架橋剤とイオン反応するイオン反応性基含有単量体の結合単位を有し且つ重量平均分子量が特定範囲であるアクリルゴムが、耐圧縮永久歪み特性や強度特性含めた常態物性に格段に優れることを見出した。
 本発明者らは、また、かかるイオン反応性基を含有する単量体を共重合したイオン反応性アクリルゴムのGPC測定において、上記従来技術のエチルアクリレートとジヒドロジシクロペンテニルアクリレートなどを共重合したラジカル反応性アクリルゴムのGPC測定に用いられるテトラヒドロフランでは十分に溶解できず、各分子量や分子量分布をきれいに且つ再現良く測定できなかったが、テトラヒドロフランよりもSP値が高い特定溶媒を展開溶媒にすることによりきれいに溶解し且つ再現良く測定でき、しかもそれぞれの特性値を特定範囲内にすることでアクリルゴムの射出成型性、耐水性、耐圧縮永久歪み特性及び強度特性を高度にコントロールできることを見出した。
 耐水性に関しては、本発明者らは、アクリルゴム中の灰分量と灰分成分により大きく影響されることを見出した。特に、多量の乳化剤や凝固剤を使用して製造されるアクリルゴムから灰分を除去するのはなかなか困難であるが、特定方法で凝固することにより、また生成する含水クラムの粒子径を特定領域に集束させることで洗浄効率及び脱水時の灰分除去効率を格段に向上でき、結果としてアクリルゴムの灰分量を格段に低減し耐水性を改善できることを見出した。本発明者らは、また、上記灰分量や灰分成分量だけでなく、乳化剤としてリン酸エステル塩または硫酸エステル塩を使用したとき、及び/または凝固剤としてアルカリ金属塩または周期表第2族金属塩を使用したときにアクリルゴムの耐水性が格段に向上でき且つ金型離型性が格段に優れることを見出した。
 本発明者らは、また、アクリルゴム中のメチルエチルケトン不溶解分のゲル量が少なければ少ないほど、射出成型性、耐圧縮永久歪み特性及び強度特性に優れるとともに、バンバリー加工性に優れることを見出した。アクリルゴム中のメチルエチルケトン不溶解分のゲル量は、重合反応途中で発生し、特に、強度特性を向上させるために重合転化率を高めると急増しコントロールするのが困難であるが、重合反応後半に連鎖移動剤存在下で乳化重合することである程度抑制できること、好ましくは、急増した特定溶媒不溶解分のゲル量がスクリュー型二軸押出乾燥機内で実質的に水分を含まない状態でアクリルゴムを溶融混錬して乾燥することで消失しアクリルゴムのバンバリー加工性を格段に改善できることを見出した。本発明者らは、また、スクリュー型二軸押出乾燥機により殆ど水が除去された状態(含水量1重量%未満)で溶融状態で押出乾燥されたアクリルゴムが強度特性とバンバリー加工性が高度にバランスされていることを見出した。
 本発明者らは、また、アクリルゴムの比重が大きいほど射出成型性、耐水性、強度特性及び耐圧縮永久歪み特性に優れるとともに保存安定性に優れることを見出した。カルボキシル基、エポキシ基及び塩素原子等の特定なイオン反応性基を有する本発明のアクリルゴムは、粘着性で且つ空気との親和性が高いために一旦空気を巻き込んでしまうと抜けづらく、含水クラムを直接乾燥したクラム状アクリルゴムでは多量の空気を巻き込んで(比重が小さくなり)保存安定性を悪化させていた。本発明者らは、クラム状アクリルゴムを高圧力のベーラー等で圧縮してベール化することで多少の空気を除去しアクリルゴムの保存安定性を改善できること、好ましくは、含水クラムをスクリュー型二軸押出乾燥機で乾燥し空気を含まないシート状で押し出して積層することで殆ど空気を含まず(比重の高い)保存安定性が格段に優れるアクリルゴムを製造できることを見出した。本発明者らは、また、かかる空気の含有量を加味した比重は、浮力の差を利用したJIS K6268架橋ゴム-密度測定のA法に準じて測定できることを見出した。本発明者らは、また、スクリュー型二軸押出乾燥機により、減圧下で乾燥、あるいは、減圧下で溶融し押出乾燥されたアクリルゴムが、保存安定性と射出成型性と強度特性の特性に優れ且つ高度にバランスされることを見出した。
 本発明者らは、また、アクリルゴムの単量体組成、イオン反応性基の種類、高分子量領域を重点にした分子量分布(Mz/Mw)、60℃における複素粘性率([η]60℃)、100℃における複素粘性率([η]100℃)と60℃における複素粘性率([η]60℃)との比([η]100℃/[η]60℃)、灰分中の特定元素量及び特定元素量比を特定範囲にすることにより、更に、射出成型性、耐水性、耐圧縮永久歪み特性及び強度特性を高度に高められることを見出した。
 本発明者らは、架橋剤としてイオン架橋性の有機化合物を用いることにより、更に、架橋性に優れ且つ得られるゴム架橋物の各特性が大きく改善されることを見出した。
 本発明者らは、更に、本願発明のアクリルゴム、充填剤及び架橋剤を含むゴム組成物において、充填剤として、カーボンブラックやシリカを配合することによりバンバリー加工性や射出成型性、短時間の架橋性に優れ、且つ、架橋物の耐水性、強度特性及び耐圧縮永久歪み特性が高度に優れることを見出した。本発明者らは、また、架橋剤として、有機化合物、多価化合物またはイオン性架橋化合物であることが好ましく、例えば、アミン基、エポキシ基、カルボキシル基またはチオール基などのアクリルゴムのイオン反応性基と反応するイオン反応性基を複数有する多価イオン有機化合物であることによりバンバリー加工性や射出成型性、短時間の架橋性に優れ、且つ、架橋物の耐水性、強度特性及び耐圧縮永久歪み特性が高度に優れることを見出した。
 本発明者らは、これらの知見に基づき本発明を完成させるに至ったものである。
 かくして、本発明によれば、(メタ)アクリル酸アルキルエステル及び(メタ)アクリル酸アルコキシアルキルエステルからなる群から選ばれる少なくとも1種の(メタ)アクリル酸エステル由来の結合単位、イオン反応性基含有単量体由来の結合単位、及び必要に応じてその他の単量体由来の結合単位からなり、重量平均分子量(Mw)が100万~500万、重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が1.5~3の範囲であり、且つ灰分量が0.3重量%以下で灰分中のナトリウム、イオウ、カルシウム、マグネシウム及びリンの合計量が80重量%以上であるアクリルゴムが提供される。
 本発明のアクリルゴムにおいて、z平均分子量(Mz)と重量平均分子量(Mw)との比(Mz/Mw)が、1.3以上であることが好ましい。
 本発明のアクリルゴムにおいて、z平均分子量(Mz)と重量平均分子量(Mw)との比(Mz/Mw)が、4以下であることが好ましい。
 本発明のアクリルゴムにおいて、数平均分子量(Mn)が、40万~110万の範囲であることが好ましい。
 本発明のアクリルゴムにおいて、重量平均分子量(Mw)、重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn、または、z平均分子量(Mz)と重量平均分子量(Mw)との比(Mz/Mw)が、GPC-MALS法で測定される絶対分子量あるいは絶対分子量分布であることが好ましい。
 本発明のアクリルゴムにおいて、GPC-MALS法の測定溶媒が、ジメチルホルムアミド系溶媒であることが好ましい。
 本発明のアクリルゴムにおいて、アクリルゴムの単量体組成が、(メタ)アクリル酸アルキルエステル及び(メタ)アクリル酸アルコキシアルキルエステルからなる群から選ばれる少なくとも1種の(メタ)アクリル酸エステル由来の結合単位50~99.99重量%、イオン反応性基含有単量体由来の結合単位0.01~10重量%、及びその他の単量体由来の結合単位0~40重量%からなるものであることが好ましい。
 本発明のアクリルゴムにおいて、イオン反応性基が、カルボキシル基またはエポキシ基であることが好ましい。
 本発明のアクリルゴムにおいて、ゲル量が、50重量%以下であることが好ましい。
 本発明のアクリルゴムにおいて、ゲル量が、30重量%以下であることが好ましい。
 本発明のアクリルゴムにおいて、ゲル量を任意に20点測定した全ての値が、(平均値±5)重量%の範囲内であることが好ましい。
 本発明のアクリルゴムにおいて、比重が、0.8以上であることが好ましい。
 本発明のアクリルゴムにおいて、灰分中のマグネシウムとリンの合計量が、50重量%以上であることが好ましい。
 本発明のアクリルゴムにおいて、灰分中のマグネシウムとリンとの比([Mg]/[P])が、重量比で、0.4~2.5の範囲であることが好ましい。
 本発明のアクリルゴムにおいて、60℃における複素粘性率([η]60℃)が、15,000[Pa・s]以下であることが好ましい。
 本発明のアクリルゴムにおいて、100℃における複素粘性率([η]100℃)と60℃における複素粘性率([η]60℃)との比([η]100℃/[η]60℃)が、0.7以上であることが好ましい。
 本発明のアクリルゴムにおいて、シート状またはベール状であることが好ましい。
 本発明のアクリルゴムは、リン酸エステル塩または硫酸エステル塩を乳化剤として使用し乳化重合したものであることが好ましく、乳化重合した重合液をアルカリ金属塩または周期表第2族金属塩を凝固剤として使用することにより凝固させ、乾燥したものであることが好ましい。また、本発明のアクリルゴムは、凝固後に溶融混錬及び乾燥されたものであることが好ましく、前記の溶融混錬及び乾燥が、実質的に水分を含まない状態で行われたものであること、前記の溶融混錬及び乾燥が、減圧下で行われたものであることが好ましい。さらに、本発明のアクリルゴムにおいて、前記の溶融混錬及び乾燥後に、40℃/hr以上の冷却速度で冷却されたものであることが好ましい。
 本発明のアクリルゴムにおいて、粒子径710μm~6.7mmの範囲の割合が50重量%以上の含水クラムを洗浄・脱水・乾燥させたものであることが好ましい。
 本発明によれば、また、(メタ)アクリル酸アルキルエステル及び(メタ)アクリル酸アルコキシアルキルエステルからなる群から選ばれる少なくとも1種の(メタ)アクリル酸エステル、イオン反応性基含有単量体、及び必要に応じてその他の単量体からなる単量体成分を水と乳化剤とでエマルジョン化するエマルジョン化工程と、有機ラジカル発生剤と還元剤とからなるレドックス触媒存在下に重合を開始し、重合途中で連鎖移動剤を回分的に後添加して重合を継続し乳化重合液を得る乳化重合工程と、得られた乳化重合液を撹拌している凝固液に添加して凝固し含水クラムを生成する凝固工程と、生成した含水クラムを洗浄する洗浄工程と、洗浄した含水クラムを脱水する脱水工程と、脱水した含水クラムを1重量%未満まで乾燥する乾燥工程と、を含むアクリルゴムの製造方法が提供される。
 本発明のアクリルゴムの製造方法は、上記アクリルゴムを製造するアクリルゴムの製造方法であることが好ましい。
 本発明のアクリルゴムの製造方法において、乳化重合工程において、リン酸エステル塩または硫酸エステル塩を乳化剤として使用し乳化重合を行うことが好ましく、乳化重合工程で生成した重合液をアルカリ金属塩または周期表第2族金属塩を含む凝固剤と接触させることで凝固させることが好ましい。
 本発明のアクリルゴムの製造方法において、乳化重合工程で生成した重合液を凝固剤と接蝕させて凝固した後、溶融混錬及び乾燥することが好ましく、前記の溶融混錬及び乾燥が、実質的に水分を含まない状態で行われること、前記の溶融混錬及び乾燥が、減圧下で行われることが好ましい。また、本発明のアクリルゴムの製造方法において、前記溶融混錬及び乾燥を含水クラムの乾燥をスクリュー型二軸押出乾燥機で行うことが好ましく、前記溶融混錬及び乾燥時のスクリュー型二軸押出乾燥機の最大トルクが、5~125N・mの範囲であることが好ましい。さらに、本発明のアクリルゴムの製造方法において、溶融混錬及び乾燥後のアクリルゴムを、40℃/hr以上の冷却速度で冷却することが好ましい。
 本発明のアクリルゴムの製造方法において、凝固液の凝固剤濃度が、1重量%以上であることが好ましい。
 本発明のアクリルゴムの製造方法において、撹拌している凝固液の撹拌数が、100rpm以上であることが好ましい。
 本発明のアクリルゴムの製造方法において、撹拌している凝固液の周速が、1m/s以上であることが好ましい。
 本発明のアクリルゴムの製造方法において、乳化重合工程で還元剤を後添加するものであることが好ましい。
 本発明のアクリルゴムの製造方法において、粒子径710μm~6.7mmの範囲の割合が50重量%以上の含水クラムを洗浄・脱水・乾燥することが好ましい。
 本発明によれば、また、上記アクリルゴムを含むゴム成分、充填剤及び架橋剤を含んでなるゴム組成物が提供される。
 本発明のゴム組成物において、前記充填剤が、補強性充填剤であることが好ましい。また、本発明のゴム組成物において、前記充填剤が、カーボンブラック類であることが好ましい。また、本発明のゴム組成物において、前記充填剤が、シリカ類であることが好ましい。
 本発明のゴム組成物において、前記架橋剤が、有機架橋剤であることが好ましい。また、本発明のゴム組成物において、前記架橋剤が、多価化合物であることが好ましい。また、本発明のゴム組成物において、前記架橋剤が、イオン架橋性化合物であることが好ましい。また、本発明のゴム組成物において、前記架橋剤が、イオン架橋性有機化合物であることが好ましい。また、本発明のゴム組成物において、前記架橋剤が、多価イオン有機化合物であることが好ましい。
 本発明のゴム組成物において、前記架橋剤としてのイオン架橋性化合物、イオン架橋性有機化合物または多価イオン有機化合物のイオンが、アミノ基、エポキシ基、カルボキシル基及びチオール基からなる群から選ばれる少なくとも1種のイオン反応性基であることが好ましい。
 本発明のゴム組成物において、前記架橋剤が、多価アミン化合物、多価エポキシ化合物、多価カルボン酸化合物及び多価チオール化合物からなる群から選ばれる少なくとも1種の多価イオン化合物であることが好ましい。
 本発明のゴム組成物において、前記架橋剤の含有量が、ゴム成分100重量部に対して0.001~20重量部の範囲であることが好ましい。
 本発明のゴム組成物は、更に、老化防止剤を含んでなることが好ましい。本発明のゴム組成物において、前記老化防止剤が、アミン系老化防止剤であることが好ましい。
 本発明によれば、また、上記のアクリルゴムを含むゴム成分、充填剤及び必要に応じて老化防止剤を混合した後に、架橋剤を混合するゴム組成物の製造方法が提供される。
 本発明によれば、更に、上記ゴム組成物を架橋してなるゴム架橋物が提供される。本発明のゴム架橋物において、前記ゴム組成物の架橋が、成形後に行われることが好ましい。また、本発明のゴム架橋物において、前記ゴム組成物の架橋が、一次架橋及び二次架橋を行うものであることが好ましい。
 本発明によれば、射出成型性、耐水性、耐圧縮永久歪み特性及び強度特性が高度に優れたアクリルゴム、その効率的な製造方法、該アクリルゴムを含む高品質なゴム組成物並びにそれを架橋したゴム架橋物が提供される。
本発明の一実施形態に係るアクリルゴムの製造に用いられるアクリルゴム製造システムの一例を模式的に示す図である。 図1のスクリュー型押出機の構成を示す図である。 図1の冷却装置として用いられる搬送式冷却装置の構成を示す図である。
 本発明のアクリルゴムは、(メタ)アクリル酸アルキルエステル及び(メタ)アクリル酸アルコキシアルキルエステルからなる群から選ばれる少なくとも1種の(メタ)アクリル酸エステル由来の結合単位、イオン反応性基含有単量体由来の結合単位、及び必要に応じてその他の単量体由来の結合単位からなり、重量平均分子量(Mw)が100万~500万、重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が1.5~3の範囲であり、且つ灰分量が0.3重量%以下で灰分中のナトリウム、イオウ、カルシウム、マグネシウム及びリンの合計量が80重量%以上であることを特徴とする。
<単量体成分>
 本発明のアクリルゴムの単量体成分は、(メタ)アクリル酸アルキルエステル及び(メタ)アクリル酸アルコキシアルキルエステルからなる群から選ばれる少なくとも1種の(メタ)アクリル酸エステル、イオン反応性基含有単量体、及び必要に応じて共重合可能なその他の単量体からなるものである。なお、本発明において「(メタ)アクリル酸エステル」は、アクリル酸及び/又はメタクリル酸のエステル類を総称する用語として使用される。
 (メタ)アクリル酸アルキルエステルとしては、特に限定されないが、通常炭素数が1~12のアルキル基を有する(メタ)アクリル酸アルキルエステル、好ましくは炭素数1~8のアルキルを有する(メタ)アクリル酸アルキルエステル、より好ましくは炭素数2~6のアルキル基を有する(メタ)アクリル酸アルキルエステルが用いられる。
 (メタ)アクリル酸アルキルエステルの具体例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸シクロヘキシルなどが挙げられ、これらの中でも(メタ)アクリル酸エチル、(メタ)アクリル酸n-ブチルが好ましく、アクリル酸エチル、アクリル酸n-ブチルがより好ましい。
 (メタ)アクリル酸アルコキシアルキルエステルとしては、特に限定されないが、通常2~12のアルコキシアルキル基を有する(メタ)アクリル酸アルコキシアルキルエステル、好ましくは2~8のアルコキシアルキル基を有する(メタ)アクリル酸アルコキシアルキルエステル、より好ましくは炭素数2~6のアルコキシアルキル基を有する(メタ)アクリル酸アルコキシエステルが用いられる。
 (メタ)アクリル酸アルコキシアルキルエステルの具体例としては、(メタ)アクリル酸メトキシメチル、(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸メトキシプロピル、(メタ)アクリル酸メトキシブチル、(メタ)アクリル酸エトキシメチル、(メタ)アクリル酸エトキシエチル、(メタ)アクリル酸プロポキシエチル、(メタ)アクリル酸ブトキシエチルなどが挙げられる。これらの中でも、(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸エトキシエチルなどが好ましく、アクリル酸メトキシエチル、アクリル酸エトキシエチルがより好ましい。
 これらの(メタ)アクリル酸アルキルエステル及び(メタ)アクリル酸アルコキシアルキルエステルからなる群から選ばれる少なくとも1種の(メタ)アクリル酸エステルは、それぞれ単独であるいは2種以上が組み合わせて用いられ、単量体全成分中におけるこれらの割合は、通常50~99.99重量%、好ましくは62~99.95重量%、より好ましくは74~99.9重量%、特に好ましくは80~99.5重量%、最も好ましくは87~99重量%の範囲であるときにアクリルゴムの耐候性、耐熱性及び耐油性が高度に優れ好適である。
 イオン反応性基含有単量体としては、イオン反応に携わる官能基であれば格別な限定はなく使用目的に応じて適宜選択されるが、通常、カルボキシル基、エポキシ基及び塩素原子からなる群から選ばれる少なくとも1種の官能基を有する単量体が挙げられ、好ましくはカルボキシル基及びエポキシ基を有する単量体、より好ましくはカルボキシル基を有する単量体であるときに、短時間の架橋性及び架橋物の耐圧縮永久歪み特性や耐水性を高度に改善でき好適である。
 カルボキシル基を有する単量体としては、格別な限定はないが、エチレン性不飽和カルボン酸を好適に用いることができる。エチレン性不飽和カルボン酸としては、例えば、エチレン性不飽和モノカルボン酸、エチレン性不飽和ジカルボン酸、エチレン性不飽和ジカルボン酸モノエステルなどが挙げられ、これらの中でも特にエチレン性不飽和ジカルボン酸モノエステルがアクリルゴムをゴム架橋物とした場合の耐圧縮永久歪み特性をより高めることができるので好ましい。
 エチレン性不飽和モノカルボン酸としては、格別な限定はないが、炭素数3~12のエチレン性不飽和モノカルボン酸が好ましく、例えば、アクリル酸、メタクリル酸、α-エチルアクリル酸、クロトン酸、ケイ皮酸などを挙げることができる。
 エチレン性不飽和ジカルボン酸としては、格別な限定はないが、炭素数4~12のエチレン性不飽和ジカルボン酸が好ましく、例えば、フマル酸、マレイン酸などのブテンジオン酸、イタコン酸、シトラコン酸などが挙げられる。なお、エチレン性不飽和ジカルボン酸は、無水物として存在しているものも含まれる。
 上記エチレン性不飽和ジカルボン酸モノエステルとしては、格別な限定はないが、通常、炭素数4~12のエチレン性不飽和ジカルボン酸と炭素数1~12のアルキルモノエステル、好ましくは炭素数4~6のエチレン性不飽和ジカルボン酸と炭素数2~8のアルキルモノエステル、より好ましくは炭素数4のブテンジオン酸の炭素数2~6のアルキルモノエステルが挙げられる。
 エチレン性不飽和ジカルボン酸モノエステルの具体例としては、フマル酸モノメチル、フマル酸モノエチル、フマル酸モノn-ブチル、マレイン酸モノメチル、マレイン酸モノエチル、マレイン酸モノn-ブチル、フマル酸モノシクロペンチル、フマル酸モノシクロヘキシル、フマル酸モノシクロヘキセニル、マレイン酸モノシクロペンチル、マレイン酸モノシクロヘキシルなどのブテンジオン酸モノアルキルエステル;イタコン酸モノメチル、イタコン酸モノエチル、イタコン酸モノn-ブチル、イタコン酸モノシクロヘキシルなどのイタコン酸モノアルキルエステル;などが挙げられ、これらの中でも、フマル酸モノn-ブチル、マレイン酸モノn-ブチルが好ましく、フマル酸モノn-ブチルが特に好ましい。
 エポキシ基を有する単量体としては、例えば、(メタ)アクリル酸グリシジルなどのエポキシ基含有(メタ)アクリル酸エステル;アリルグリシジルエーテル、ビニルグリシジルエーテルなどのエポキシ基含有ビニルエーテル;などが挙げられる。
 塩素原子を有する単量体としては、格別限定されるものではないが、例えば、塩素原子含有飽和カルボン酸の不飽和アルコールエステル、(メタ)アクリル酸クロロアルキルエステル、(メタ)アクリル酸クロロアシロキシアルキルエステル、(メタ)アクリル酸(クロロアセチルカルバモイルオキシ)アルキルエステル、塩素原子含有不飽和エーテル、塩素原子含有不飽和ケトン、クロロメチル基含有芳香族ビニル化合物、塩素原子含有不飽和アミド、クロロアセチル基含有不飽和単量体などが挙げられる。
 塩素原子含有飽和カルボン酸の不飽和アルコールエステルの具体例としては、クロロ酢酸ビニル、2-クロロプロピオン酸ビニル、クロロ酢酸アリルなどが挙げられる。(メタ)アクリル酸クロロアルキルエステル具体例としては、(メタ)アクリル酸クロロメチル、(メタ)アクリル酸1-クロロエチル、(メタ)アクリル酸2-クロロエチル、(メタ)アクリル酸1,2-ジクロロエチル、(メタ)アクリル酸2-クロロプロピル、(メタ)アクリル酸3-クロロプロピル、(メタ)アクリル酸2,3-ジクロロプロピルなどが挙げられる。(メタ)アクリル酸クロロアシロキシアルキルエステル具体例としては、(メタ)アクリル酸2-(クロロアセトキシ)エチル、(メタ)アクリル酸2-(クロロアセトキシ)プロピル、(メタ)アクリル酸3-(クロロアセトキシ)プロピル、(メタ)アクリル酸3-(ヒドロキシクロロアセトキシ)プロピルなどが挙げられる。(メタ)アクリル酸(クロロアセチルカルバモイルオキシ)アルキルエステルとしては、例えば、(メタ)アクリル酸2-(クロロアセチルカルバモイルオキシ)エチル、(メタ)アクリル酸3-(クロロアセチルカルバモイルオキシ)プロピルなどが挙げられる。塩素原子含有不飽和エーテルの具体例としては、クロロメチルビニルエーテル、2-クロロエチルビニルエーテル、3-クロロプロピルビニルエーテル、2-クロロエチルアリルエーテル、3-クロロプロピルアリルエーテルなどが挙げられる。塩素原子含有不飽和ケトンの具体例としては、2-クロロエチルビニルケトン、3-クロロプロピルビニルケトン、2-クロロエチルアリルケトンなどが挙げられる。クロロメチル基含有芳香族ビニル化合物の具体例としては、p-クロロメチルスチレン、m-クロロメチルスチレン、o-クロロメチルスチレン、p-クロロメチル-α-メチルスチレンなどが挙げられる。塩素原子含有不飽和アミドの具体例としては、N-クロロメチル(メタ)アクリルアミドなどが挙げられる。また、クロロアセチル基含有不飽和単量体の具体例としては、3-(ヒドロキシクロロアセトキシ)プロピルアリルエーテル、p-ビニルベンジルクロロ酢酸エステルなどが挙げられる。
 これらのイオン反応性基含有単量体は、それぞれ単独であるいは2種以上組み合わせて用いられ、単量体全成分中の割合は、通常0.01~10重量%、好ましくは0.05~8重量%、より好ましくは0.1~6重量%、特に好ましくは0.5~5重量%、最も好ましくは1~3重量%の範囲である。
 必要に応じて上記の各単量体と共に使用し得る上記以外の単量体(本発明では「その他の単量体」と略称する)としては、上記単量体と共重合可能なものであれば格別な限定はなく、例えば、スチレン、α-メチルスチレン、ジビニルベンゼンなどの芳香族ビニル;アクリロニトリル、メタクリロニトリルなどのエチレン性不飽和ニトリル;アクリルアミド、メタクリルアミドなどのアクリルアミド系単量体;エチレン、プロピレン、酢酸ビニル、エチルビニルエーテル、ブチルビニルエーテルなどのオレフィン系単量体などが挙げられる。
 これらその他の単量体は、それぞれ単独で、あるいは2種以上組み合わせて用いられ、単量体全成分中の割合は、通常0~40重量%、好ましくは0~30重量%、より好ましくは0~20重量%、特に好ましくは0~15重量%、最も好ましくは0~10重量%の範囲に抑えられる。
<アクリルゴム>
 本発明のアクリルゴムは、上記単量体成分からなり、重量平均分子量(Mw)、重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)、灰分量及び灰分成分量が特定範囲内であることを特徴とする。
 本発明のアクリルゴムの単量体は、(メタ)アクリル酸アルキルエステル及び(メタ)アクリル酸アルコキシアルキルエステルからなる群から選ばれる少なくとも1種の(メタ)アクリル酸エステル、イオン反応性基含有単量体及び必要に応じて含まれるその他の単量体からの結合単位からなり、アクリルゴム中のそれぞれの割合は、(メタ)アクリル酸アルキルエステル及び(メタ)アクリル酸アルコキシアルキルエステルからなる群から選ばれる少なくとも1種の(メタ)アクリル酸エステル由来の結合単位が、通常50~99.99重量%、好ましくは62~99.95重量%、より好ましくは74~99.9重量%、特に好ましくは80~99.5重量%、最も好ましくは87~99重量%の範囲であり、イオン反応性基含有単量体由来の結合単位が、通常0.01~10重量%、好ましくは0.05~8重量%、より好ましくは0.1~6重量%、特に好ましくは0.5~5重量%、最も好ましくは1~3重量%の範囲であり、その他の単量体由来の結合単位が、通常0~40重量%、好ましくは0~30重量%、より好ましくは0~20重量%、特に好ましくは0~15重量%、最も好ましくは0~10重量%の範囲である。アクリルゴムの単量体組成がこの範囲にあるときに短時間の架橋性、耐圧縮永久歪み特性、耐候性、耐熱性、及び耐油性等の特性が高度にバランスされ好適である。
 本発明のアクリルゴムの重量平均分子量(Mw)は、100万~500万、好ましくは110万~400万、より好ましくは120万~300万、特に好ましくは150万~250万、最も好ましくは160万~220万範囲であるときにアクリルゴムの射出成型性、強度特性、及び耐圧縮永久歪み特性が高度にバランスされ好適である。
 本発明のアクリルゴムの数平均分子量(Mn)は、格別限定されるものではないが、通常30万~150万、好ましくは35万~130万、より好ましくは40万~110万、特に好ましくは50万~100万、最も好ましくは55万~75万の範囲であるときにアクリルゴムの射出成型性、強度特性及び耐圧縮永久歪み特性が高度にバランスされ好適である。
 本発明のアクリルゴムのz平均分子量(Mz)は、格別な限定はなく使用目的に応じて適宜選択されればよいが、通常150万以上、好ましくは200万以上、より好ましくは250万以上、特に好ましくは300万以上である。本発明のアクリルゴムのz平均分子量(Mz)は、また、通常150万~600万、好ましくは180万~550万、より好ましくは200万~500万、特に好ましくは220万~450万、最も好ましくは250万~400万の範囲であるときにアクリルゴムの射出成型性、バンバリー加工性、強度特性、及び耐圧縮永久歪み特性が高度にバランスされ好適である。
 本発明のアクリルゴムの重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)は、1.5~3、好ましくは1.8~2.7、より好ましくは2~2.6、特に好ましくは2.2~2.6の範囲であるときにアクリルゴムの射出成型性と架橋した場合の強度特性及び耐圧縮永久歪み特性が高度にバランスされ好適である。特に、本発明のアクリルゴムの重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)がこの範囲であるとき、アクリルゴムの射出成型性の形状形成性、融合性及び離型性のいずれの特性も格段に優れ、且つ、架橋物としての強度特性と耐圧縮永久歪み特性とも高度にバランスされ好適である。
 本発明のアクリルゴムの高分子量領域を重点にした分子量分布は、格別限定されるものではないが、z平均分子量(Mz)と重量平均分子量(Mw)との比(Mz/Mw)で、通常1.3以上、好ましくは1.4以上、より好ましくは1.5以上、特に好ましくは1.6以上、最も好ましくは1.7以上であるときに、上記重量平均分子量(Mw)が過度に小さくなった場合の離型性や形状形成性(バリ発生)の悪化を防ぐことができ好適である。本発明のアクリルゴムの高分子量領域を重点にした分子量分布(Mz/Mw)は、また、通常4以下、好ましくは3以下、より好ましくは2.5以下、特に好ましくは2.2以下、最も好ましくは2以下であるときに、上記重量平均分子量(Mw)が過度に大きくなった場合の形状形成性(形状不十分)や融合性の悪化を防ぐことができ好適である。本発明のアクリルゴムの高分子量領域を重点にした分子量分布(Mz/Mw)が、更に、通常1.3~3、好ましくは1.4~2.5、より好ましくは1.5~2.2、特に好ましくは1.6~2、最も好ましくは1.7~1.9の範囲であるときに、アクリルゴムの強度特性を損ねずに射出成型性やバンバリー加工性が高度に改良でき好適である。
 本発明のアクリルゴムの分子量(Mn、Mw、Mz)及び分子量分布(Mw/Mn、Mz/Mw)の測定は、格別な限定はないが、GPC-MALS法による絶対分子量(Mn、Mw、Mz)、絶対分子量分布(Mw/Mn、Mz/Mw)であるときにより各特性が正確に求められ好適である。
 本発明のアクリルゴムの分子量(Mn、Mw、Mz)及び分子量分布(Mw/Mn、Mz/Mw)を測定するGPC-MALS法の測定溶媒は、本発明のアクリルゴムを溶解し測定できるものであれば格別な限定はないが、ジメチルホルムアミド系溶媒が好適である。使用されるジメチルホルムアミド系溶媒としては、ジメチルホルムアミドを主成分とするものであれば格別限定はないが、ジメチルホルムアミド100%あるいはジメチルホルムアミドに極性物質を添加して用いることができる。ジメチルホルムアミド系溶媒中のジメチルホルムアミドの割合が、90重量%以上、好ましくは95重量%以上、より好ましくは97重量%以上である。ジメチルホルムアミドに添加する化合物としては、格別な限定はないが、本発明においては、特に、ジメチルホルムアミドに塩化リチウムが0.05mol/L、37%濃塩酸が0.01%の濃度でそれぞれ添加された溶液が好適である。
 本発明のアクリルゴムの灰分量は、0.3重量%以下、好ましくは0.2重量%以下、より好ましくは0.18重量%以下、特に好ましくは0.15重量%以下、最も好ましくは0.13重量%以下であり、この範囲にあるときアクリルゴムとしての耐水性、保存安定性、強度特性、加工性及び射出成型性の融合性が高度にバランスされ好適である。
 本発明のアクリルゴムの灰分量の下限値は、格別な限定はなく使用目的に応じて適宜選択されればよいが、通常0.0001重量%以上、好ましくは0.0005重量%以上、より好ましくは0.001重量%以上、特に好ましくは0.005重量%以上、最も好ましくは0.01重量%以上であるときに、ゴムの金属付着性が低減され作業性に優れ、また射出成型性の特に離型性に優れるようになり好適である。
 本発明のアクリルゴムが耐水性、保存安定性、強度特性、加工性、作業性及び射出成型性の融合性と離型性を高度にバランスされる場合の灰分量は、通常0.0001~0.3重量%、好ましくは0.0005~0.2重量%、より好ましくは0.001~0.18重量%、特に好ましくは0.005~0.15重量%、最も好ましくは0.01~0.13重量%の範囲である。
 本発明のアクリルゴムの灰分中のナトリウム、マグネシウム、カルシウム、リン及びイオウの合計量が、80重量%以上、好ましくは90重量%以上、より好ましくは95重量%以上であるときにアクリルゴムの耐水性や射出成型の融合性と離型性が高度に改善され好適である。
 本発明のアクリルゴムの灰分中のマグネシウムとリンとの合計量が、格別な限定はなく使用目的に応じて適宜選択されればよいが、通常30重量%以上、好ましくは50重量%以上、より好ましくは70重量%以上、特に好ましくは80重量%以上、最も好ましくは90重量%以上であるときにアクリルゴムの耐水性、強度特性、射出成型の融合性と離型性及び加工性が高度にバランスされ好適である。
 本発明のアクリルゴムの灰分中のマグネシウム量は、格別な限定はなく使用目的に応じて適宜選択されるが、通常10重量%以上、好ましくは15~60重量%、より好ましくは20~50重量%、特に好ましくは25~45重量%、最も好ましくは30~40重量%の範囲である。
 本発明のアクリルゴムの灰分中のリン量は、格別な限定はなく使用目的に応じて適宜選択されるが、通常10重量%以上、好ましくは20~90重量%、より好ましくは30~80重量%、特に好ましくは40~70重量%、最も好ましくは50~60重量%の範囲である。
 本発明のアクリルゴムの灰分中のマグネシウムとリンとの比([Mg]/[P])は、格別な限定はなく使用目的に応じて適宜選択されればよいが、重量比で、通常0.4~2.5、好ましくは0.45~1.2、より好ましくは0.45~1、特に好ましくは0.5~0.8、最も好ましくは0.55~0.7の範囲であるときに、アクリルゴムの耐水性、強度特性、射出成型の融合性と離型性及び加工性が高度にバランスされ好適である。
 ここで、アクリルゴム中の灰分は、単量体成分をエマルジョン化して乳化重合する際に用いる乳化剤及び乳化重合液を凝固する際に用いる凝固剤に主として由来するものであるが、全灰分量や灰分中のマグネシウムとリンの含有量などは、乳化重合工程や凝固工程の条件だけでなく、その後の各工程の諸条件によっても変化するものである。
 アクリルゴムの耐水性、強度特性、射出成型の融合性と離型性及び加工性が高度にバランスされるためには、特に乳化剤として後述するアニオン性乳化剤、カチオン性乳化剤、またはノニオン性乳化剤、好ましくはアニオン性乳化剤、より好ましくはリン酸エステル塩または硫酸エステル塩を用いるのが好適である。アクリルゴムの耐水性は、アクリルゴム中の灰分量と灰分中のナトリウム、マグネシウム、カルシウム、リン及びイオウの合計量とで一義的に相関するが、上記乳化剤を使用することでアクリルゴムの耐水性、強度特性、射出成型の融合性と離型性及び加工性が更に高度にバランスでき好適である。
 アクリルゴムの耐水性、強度特性、射出成型の融合性と離型性及び加工性が高度にバランスされるためには、特に凝固剤として後述する金属塩、好ましくはアルカリ金属塩または周期表第2族金属塩を用いるのか好適である。アクリルゴムの耐水性は、アクリルゴム中の灰分量と灰分中のナトリウム、マグネシウム、カルシウム、リン及びイオウの合計量とで一義的に相関するが、上記凝固剤を使用することで、アクリルゴムの耐水性、強度特性、射出成型の融合性と離型性及び加工性が更に高度にバランスされ好適である。
 本発明のアクリルゴムのガラス転移温度(Tg)は、アクリルゴムの使用目的に応じて適宜選択されればよいが、通常20℃以下、好ましくは10℃以下、より好ましくは0℃以下であるときに加工性や耐寒性に優れ好適である。アクリルゴムのガラス転移温度(Tg)の下限値は、格別限定されるものではないが、通常-80℃以上、好ましくは-60℃以上、より好ましくは-40℃以上である。ガラス転移温度を前記下限以上とすることにより耐油性と耐熱性により優れたものとすることができ、上記の上限以下とすることにより加工性、架橋性及び耐寒性により優れたものとすることができる。
 本発明のアクリルゴムの100℃における複素粘性率([η]100℃)は、格別な限定はなく使用目的に応じて適宜選択されればよいが、通常15,000[Pa・s]以下、好ましくは1,000~10,000[Pa・s]、より好ましくは2,000~8,000[Pa・s]、特に好ましくは3,000~5,000[Pa・s]、最も好ましくは3,500~4,000[Pa・s]の範囲であるときに加工性、耐油性、射出成型性及び形状保持性に優れ好適である。
 本発明のアクリルゴムの100℃における複素粘性率([η]100℃)と60℃における複素粘性率([η]60℃)との比([η]100℃/[η]60℃)は、格別な限定はなく使用目的に応じて適宜選択されればよいが、通常0.5以上、好ましくは0.6以上、より好ましくは0.7以上である。本発明のアクリルゴムの100℃における複素粘性率([η]100℃)と60℃における複素粘性率([η]60℃)との比([η]100℃/[η]60℃)は、また、通常0.5~0.99、好ましくは0.55~0.95、より好ましくは0.6~0.9、特に好ましくは0.65~0.85、最も好ましくは0.7~0.8の範囲であるときに加工性、耐油性、及び形状保持性が高度にバランスされ好適である。
 本発明のアクリルゴムのゲル量は、格別な限定はなく使用目的に応じて適宜選択されればよいが、メチルエチルケトン不溶解分量で、通常50重量%以下、好ましくは30重量%以下、より好ましくは15重量%以下、特に好ましくは10重量%以下、最も好ましくは5重量%以下であるときに、バンバリー等の混錬時の加工性や射出成型性が高度に改善され好適である。
 本発明のアクリルゴムのゲル量を任意に20点測定したときの値は、格別限定されるものではないが、(平均値±5)重量%の範囲内に20点全てが入る、好ましくは(平均値±3)重量%の範囲内に20点全てが入るときに加工性バラツキが無くゴム混合物やゴム架橋物の諸物性が安定化されて好適である。なお、アクリルゴムベールのゲル量を任意に20点測定したときの値が、平均値±5の範囲内に20点全てが入るとは、(平均値-5)~(平均値+5)重量%の範囲内に測定した20点のゲル量が全て入ることを意味し、例えば、測定したゲル量の平均値が20重量%であった場合には15~25重量%の範囲内に20点全ての測定値が入ることを意味する。
 本発明のアクリルゴムは、凝固工程で生成する含水クラムをスクリュー型二軸押出乾燥機により、殆ど水が除去された状態(含水量1重量%未満)で溶融混錬及び乾燥されたものであるときにバンバリー加工性と強度特性が高度にバランスされ好適である。
 本発明のアクリルゴムの比重は、格別限定されるものではないが、通常0.7以上、好ましくは0.8以上、より好ましくは0.9以上、特に好ましくは0.95以上、最も好ましくは1以上であるときに殆ど空気を内在させず保存安定性に優れ好適である。本発明のアクリルゴム成形体の比重は、また、通常0.7~1.6、好ましくは0.8~1.5、より好ましくは0.9~1.4、特に好ましくは0.95~1.3、最も好ましくは1.0~1.2の範囲であるときに生産性、保存安定性及び架橋物の架橋特性安定性等が高度にバランスされ好適である。アクリルゴムの比重が過度に小さいときは、アクリルゴム中の空気量が多いことを示し酸化劣化など含めて保存安定性に大きく影響し好ましくない。
 なお、本発明のアクリルゴムの比重は、空隙を含む容量で質量を割ったもの、すなわち、空気中で測定される質量を浮力で割ったもので、通常JIS K6268架橋ゴム-密度測定のA法に準じて測定されるものである。
 また、本発明のアクリルゴムは、凝固工程で生成した含水クラムをスクリュー型二軸押出乾燥機により、減圧下で乾燥、あるいは、減圧下で溶融し押出乾燥されたものが、保存安定性と射出成型性と強度特性の特性に特に優れ且つ高度にバランスされるので好適である。
 本発明のアクリルゴムの含水量は、格別な限定はなく使用目的に応じて適宜選択されるが、通常1重量%未満、好ましくは0.8重量%以下、より好ましくは0.6重量%以下であるとき、アクリルゴムの加硫特性が最適化され耐熱性や耐水性などの特性が高度に改善され好適である。
 本発明のアクリルゴムのpHは、格別な限定はなく使用目的に応じて適宜選択されればよいが、通常6以下、好ましくは2~6、より好ましくは2.5~5.5、最も好ましくは3~5の範囲であるときにアクリルゴムの保存安定性が高度に改善され好適である。
 本発明のアクリルゴムのムーニー粘度(ML1+4,100℃)は、格別な限定はなく使用目的に応じて適宜選択されればよいが、通常10~150、好ましくは20~100、より好ましくは25~70の範囲であるときに、アクリルゴムの加工性や強度特性が高度にバランスされ好適である。
 本発明のアクリルゴムの形状は、格別な限定はなく使用目的に応じて適宜選択されればよく、例えば、粉状、クラム状、ストランド状、シート状、ベール状等いずれでもよいが、好ましくはシート状やベール状であるときに作業性や保存安定性に優れ好適である。
 本発明のアクリルゴムがシート状であるときの厚さは、格別な限定はなく使用目的に応じて適宜選択されるが、通常1~40mm、好ましくは2~35mm、より好ましくは3~30mm、最も好ましくは5~25mmの範囲であるときに作業性、保存安定性及び生産性が高度にバランスされ好適である。本発明のシート状アクリルゴムの幅は、使用目的に応じて適宜選択されるが、通常300~1200mm、好ましくは400~1000mm、より好ましくは500~800mmの範囲であるときに特に取り扱い性に優れ好適である。本発明のシート状アクリルゴムシートの長さは、格別限定されるものではないが、通常300~1200mm、好ましくは400~1000mm、より好ましくは500~800mmの範囲であるときに特に取り扱い性に優れ好適である。
 本発明のアクリルゴムがベール状であるときの大きさは、格別な限定はなく使用目的に応じて適宜選択されるが、幅が通常100~800mm、好ましくは200~500mm、より好ましくは250~450mmの範囲であり、長さが通常300~1,200mm、好ましくは400~1,000mm、より好ましくは500~800mmの範囲で、高さ(厚さ)が通常50~500mm、好ましくは100~300mm、より好ましくは150~250mmの範囲にあるのが適当である。また、本発明のベール状アクリルゴムの形状も限定されず、アクリルゴムベールの使用目的に応じて適宜選択されるが、多くの場合、直方体が好適である。
<アクリルゴムの製造方法>
 上記アクリルゴムの製造方法は、格別限定されるものではないが、例えば、(メタ)アクリル酸アルキルエステル及び(メタ)アクリル酸アルコキシアルキルエステルからなる群から選ばれる少なくとも1種の(メタ)アクリル酸エステル、イオン反応性基含有単量体、及び必要に応じてその他の単量体からなる単量体成分を水と乳化剤とでエマルジョン化するエマルジョン化工程と、有機ラジカル発生剤と還元剤とからなるレドックス触媒存在下に重合を開始し、重合途中で連鎖移動剤を回分的に後添加して重合を継続し乳化重合液を得る乳化重合工程と、得られた乳化重合液を撹拌している凝固液に添加して凝固し含水クラムを生成する凝固工程と、生成した含水クラムを洗浄する洗浄工程と、洗浄した含水クラムを脱水する脱水工程と、脱水した含水クラムを1重量%未満まで乾燥する乾燥工程と、を含むアクリルゴムの製造方法などを挙げることができる。
(エマルジョン化工程)
 本発明のアクリルゴムの製造方法におけるエマルジョン化工程は、(メタ)アクリル酸アルキルエステル及び(メタ)アクリル酸アルコキシアルキルエステルからなる群から選ばれる少なくとも1種の(メタ)アクリル酸エステル、イオン反応性基含有単量体、及び必要に応じてその他の単量体からなる単量体成分を水と乳化剤とでエマルジョン化する工程である。
(単量体成分)
 本発明に使用される単量体成分は、(メタ)アクリル酸アルキルエステル及び(メタ)アクリル酸アルコキシアルキルエステルからなる群から選ばれる少なくとも1種の(メタ)アクリル酸エステル、イオン反応性基含有単量体、及び必要に応じて共重合可能なその他の単量体からなるものであり、既に述べた単量体成分の例示及び好ましい範囲と同じである。単量体成分の使用量についても、既に述べたとおりであり、乳化重合においては、各単量体を本発明のアクリルゴムの上記組成になるように適宜選択すればよい。
(乳化剤)
 本発明に使用される乳化剤としては、格別な限定はないが、例えば、アニオン性乳化剤、カチオン性乳化剤、ノニオン性乳化剤などを挙げることができ、好ましくはアニオン性乳化剤である。
 アニオン性乳化剤としては、格別な限定はなく、例えば、ミリスチン酸、パルミチン酸、オレイン酸、リノレン酸などの脂肪酸の塩;ドデシルベンゼンスルホン酸ナトリウムなどのアルキルベンゼンスルホン酸塩;ラウリル硫酸ナトリウムなどの硫酸エステル塩、ポリオキシアルキレンアルキルエーテルリン酸エステル塩などのリン酸エステル塩;アルキルスルホコハク酸塩などを挙げることができる。これらのアニオン性乳化剤の中でも、リン酸エステル塩、硫酸エステル塩が好ましく、リン酸エステル塩が特に好ましく、2価リン酸エステル塩が最も好ましく、得られるアクリルゴムの耐水性、強度特性、射出成型の融合性と離型性及び加工性を高度にバランスさせることができる。また、これらリン酸エステル塩や硫酸エステル塩としては、好ましくはリン酸エステルや硫酸エステルのアルカリ金属塩、より好ましくはリン酸エステルや硫酸エステルのナトリウム塩であるときに、得られるアクリルゴムの耐水性、強度特性、金型離型性及び加工性を高度にバランスさせることができ好適である。
 2価リン酸エステル塩としては、乳化重合反応において乳化剤として使用可能なものであれば、格別限定されるものではないが、アルキルオキシポリオキシアルキレンリン酸エステル塩、アルキルフェニルオキシポリオキシアルキレンリン酸エステル塩などが挙げられ、これらの中でもこれらの金属塩が好ましく、これらのアルカリ金属塩がより好ましく、これらのナトリウム塩が最も好ましい。
 上記アルキルオキシポリオキシアルキレンリン酸エステル塩としては、例えば、アルキルオキシポリオキシエチレンリン酸エステル塩、アルキルオキシポリオキシプロピレンリン酸エステル塩などが挙げられ、これらの中でも、アルキルオキシポリオキシエチレンリン酸エステル塩が好ましい。
 アルキルオキシポリオキシエチレンリン酸エステル塩の具体例としては、オクチルオキシジオキシエチレンリン酸エステル、オクチルオキシトリオキシエチレンリン酸エステル、オクチルオキシテトラオキシエチレンリン酸エステル、デシルオキシテトラオキシエチレンリン酸エステル、ドデシルオキシテトラオキシエチレンリン酸エステル、トリデシルオキシテトラオキシエチレンリン酸エステル、テトラデシルオキシテトラオキシエチレンリン酸エステル、ヘキサデシルオキシテトラオキシエチレンリン酸エステル、オクタデシルオキシテトラオキシエチレンリン酸エステル、オクチルオキシペンタオキシエチレンリン酸エステル、デシルオキシペンタオキシエチレンリン酸エステル、ドデシルオキシペンタオキシエチレンリン酸エステル、トリデシルオキシペンタオキシエチレンリン酸エステル、テトラデシルオキシペンタオキシエチレンリン酸エステル、ヘキサデシルオキシペンタオキシエチレンリン酸エステル、オクタデシルオキシペンタオキシエチレンリン酸エステル、オクチルオキシヘキサオキシエチレンリン酸エステル、デシルオキシヘキサオキシエチレンリン酸エステル、ドデシルオキシヘキサオキシエチレンリン酸エステル、トリデシルオキシヘキサオキシエチレンリン酸エステル、テトラデシルオキシヘキサオキシエチレンリン酸エステル、ヘキサデシルオキシヘキサオキシエチレンリン酸エステル、オクタデシルオキシヘキサオキシエチレンリン酸エステル、オクチルオキシオクタオキシエチレンリン酸エステル、デシルオキシオクタオキシエチレンリン酸エステル、ドデシルオキシオクタオキシエチレンリン酸エステル、トリデシルオキシオクタオキシエチレンリン酸エステル、テトラデシルオキシオクタオキシエチレンリン酸エステル、ヘキサデシルオキシオクタオキシエチレンリン酸エステル、オクタデシルオキシオクタオキシエチレンリン酸エステルなどの金属塩が挙げられ、これらの中でも、それらのアルカリ金属塩、とりわけナトリウム塩が好適である。
 アルキルオキシポリオキシプロピレンリン酸エステル塩の具体例としては、オクチルオキシジオキシプロピレンリン酸エステル、オクチルオキシトリオキシプロピレンリン酸エステル、オクチルオキシテトラオキシプロピレンリン酸エステル、デシルオキシテトラオキシプロピレンリン酸エステル、ドデシルオキシテトラオキシプロピレンリン酸エステル、トリデシルオキシテトラオキシプロピレンリン酸エステル、テトラデシルオキシテトラオキシプロピレンリン酸エステル、ヘキサデシルオキシテトラオキシプロピレンリン酸エステル、オクタデシルオキシテトラオキシプロピレンリン酸エステル、オクチルオキシペンタオキシプロピレンリン酸エステル、デシルオキシペンタオキシプロピレンリン酸エステル、ドデシルオキシペンタオキシプロピレンリン酸エステル、トリデシルオキシペンタオキシプロピレンリン酸エステル、テトラデシルオキシペンタオキシプロピレンリン酸エステル、ヘキサデシルオキシペンタオキシプロピレンリン酸エステル、オクタデシルオキシペンタオキシプロピレンリン酸エステル、オクチルオキシヘキサオキシプロピレンリン酸エステル、デシルオキシヘキサオキシプロピレンリン酸エステル、ドデシルオキシヘキサオキシプロピレンリン酸エステル、トリデシルオキシヘキサオキシプロピレンリン酸エステル、テトラデシルオキシヘキサオキシプロピレンリン酸エステル、ヘキサデシルオキシヘキサオキシプロピレンリン酸エステル、オクタデシルオキシヘキサオキシプロピレンリン酸エステル、オクチルオキシオクタオキシプロピレンリン酸エステル、デシルオキシオクタオキシプロピレンリン酸エステル、ドデシルオキシオクタオキシプロピレンリン酸エステル、トリデシルオキシオクタオキシエチレンリン酸エステル、テトラデシルオキシオクタオキシプロピレンリン酸エステル、ヘキサデシルオキシオクタオキシプロピレンリン酸エステル、オクタデシルオキシオクタオキシプロピレンリン酸エステル及びそれらの金属塩などが挙げられ、これらの中でも、それらのアルカリ金属塩、特にナトリウム塩が好適である。
 アルキルフェニルオキシポリオキシアルキレンリン酸エステル塩の具体例としては、アルキルフェニルオキシポリオキシエチレンリン酸エステル塩、アルキルフェニルオキシポリオキシプロピレンリン酸エステル塩などが挙げられ、これらの中でも、アルキルフェニルオキシポリオキシエチレンリン酸エステル塩が好ましい。
 アルキルフェニルオキシポリオキシエチレンリン酸エステル塩の具体例としては、メチルオキシオキシテトラオキシエチレンリン酸エステル、エチルフェニルオキシテトラオキシエチレンリン酸エステル、ブチルフェニルオキシテトラオキシエチレンリン酸エステル、ヘキシルフェニルオキシテトラオキシエチレンリン酸エステル、ノニルフェニルオキシテトラオキシエチレンリン酸エステル、ドデシルフェニルオキシテトラオキシエチレンリン酸エステル、オクタデシルオキシテトラオキシエチレンリン酸エステル、メチルフェニルオキシペンタオキシエチレンリン酸エステル、エチルフェニルオキシペンタオキシエチレンリン酸エステル、ブチルフェニルオキシペンタオキシエチレンリン酸エステル、ヘキシルフェニルオキシペンタオキシエチレンリン酸エステル、ノニルフェニルオキシペンタオキシエチレンリン酸エステル、ドデシルフェニルオキシペンタオキシエチレンリン酸エステル、メチルフェニルオキシヘキサオキシエチレンリン酸エステル、エチルフェニルオキシヘキサオキシエチレンリン酸エステル、ブチルフェニルオキシヘキサオキシエチレンリン酸エステル、ヘキシルフェニルオキシヘキサオキシエチレンリン酸エステル、ノニルフェニルオキシヘキサオキシエチレンリン酸エステル、ドデシルフェニルオキシヘキサオキシエチレンリン酸エステル、メチルフェニルオキシヘキサオキシエチレンリン酸エステル、エチルフェニルオキシオクタオキシエチレンリン酸エステル、ブチルフェニルオキシオクタオキシエチレンリン酸エステル、ヘキシルフェニルオキシオクタオキシエチレンリン酸エステル、ノニルフェニルオキシオクタオキシエチレンリン酸エステル、ドデシルフェニルオキシオクタオキシエチレンリン酸エステルなどの金属塩が挙げられ、これらの中でも、それらのアルカリ金属塩、特にナトリウム塩が好適である。
 アルキルフェニルオキシポリオキシプロピレンリン酸エステル塩の具体例としては、メチルフェニルオキシテトラオキシプロピレンリン酸エステル、エチルフェニルオキシテトラオキシプロピレンリン酸エステル、ブチルフェニルオキシテトラオキシプロピレンリン酸エステル、ヘキシルフェニルオキシテトラオキシプロピレンリン酸エステル、ノニルフェニルオキシテトラオキシプロピレンリン酸エステル、ドデシルフェニルオキシテトラオキシプロピレンリン酸エステル、メチルフェニルオキシペンタオキシプロピレンリン酸エステル、エチルフェニルオキシペンタオキシプロピレンリン酸エステル、ブチルフェニルオキシペンタオキシプロピレンリン酸エステル、ヘキシルフェニルオキシペンタオキシプロピレンリン酸エステル、ノニルフェニルオキシペンタオキシプロピレンリン酸エステル、ドデシルフェニルオキシペンタオキシプロピレンリン酸エステル、メチルフェニルオキシヘキサオキシプロピレンリン酸エステル、エチルフェニルオキシヘキサオキシプロピレンリン酸エステル、ブチルフェニルオキシヘキサオキシプロピレンリン酸エステル、ヘキシルフェニルオキシヘキサオキシプロピレンリン酸エステル、ノニルフェニルオキシヘキサオキシプロピレンリン酸エステル、ドデシルフェニルオキシヘキサオキシプロピレンリン酸エステル、メチルフェニルオキシオクタオキシプロピレンリン酸エステル、エチルフェニルオキシオクタオキシプロピレンリン酸エステル、ブチルフェニルオキシオクタオキシプロピレンリン酸エステル、ヘキシルフェニルオキシオクタオキシエチレンリン酸エステル、ノニルフェニルオキシオクタオキシプロピレンリン酸エステル、ドデシルフェニルオキシオクタオキシプロピレンリン酸エステルなどの金属塩が挙げられ、これらの中でも、それらのアルカリ金属塩、特にナトリウム塩が好適である。
 リン酸エステル塩としては、ジ(アルキルオキシポリオキシアルキレン)リン酸エステルナトリウム塩などの1価リン酸エステル塩を、単独、または2価リン酸エステル塩と組み合わせて用いることができる。
 硫酸エステル塩としては、例えば、ラウリル硫酸ナトリウム、ラウリル硫酸カリウム、ラウリル硫酸アンモニウム、ミスチル硫酸ナトリウム、ポリオキシエチレンアルキル硫酸ナトリウム、ポリオキシエチレンアルキルアリール硫酸ナトリウムなどが挙げられ、好ましくはラウリル硫酸ナトリウムである。
 カチオン性乳化剤としては、例えば、アルキルトリメチルアンモニウムクロライド、ジアルキルアンモニウムクロライド、ベンジルアンモニウムクロライドなどを挙げることができる。
 ノニオン性乳化剤としては、例えば、ポリオキシエチレンステアリン酸エステルなどのポリオキシアルキレン脂肪酸エステル;ポリオキシエチレンドデシルエーテルなどのポリオキシアルキレンアルキルエーテル;ポリオキシエチレンノニルフェニルエーテルなどのポリオキシアルキレンアルキルフェノールエーテル;ポリオキシエチレンソルビタンアルキルエステルなどを挙げることができ、ポリオキシアルキレンアルキルエーテル、ポリオキシアルキレンアルキルフェノールエーテルが好ましく、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェノールエーテルがより好ましい。
 これらの乳化剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができ、その使用量は、単量体成分100重量部に対して、通常0.01~10重量部、好ましくは0.1~5重量部、より好ましくは1~3重量部の範囲である。
 単量体成分と水と乳化剤との混合方法(混合方式)は、常法に従えばよく、例えば、単量体と乳化剤と水とをホモジナイザーやディスクタービンなどの撹拌機を用いて撹拌する方法などが挙げられる。水の使用量は、単量体成分100重量部に対して、通常1~1000重量部、好ましくは5~500重量部、より好ましくは4~300重量部、特に好ましくは3~150重量部、最も好ましくは20~80重量部の範囲である。
(乳化重合工程)
 本発明のアクリルゴムの製造方法における乳化重合工程は、有機ラジカル発生剤と還元剤とからなるレドックス触媒存在下に重合を開始し、重合途中で連鎖移動剤を回分的に後添加して重合を継続して乳化重合液を得る工程である。
(有機ラジカル発生剤)
 本発明で使用する重合触媒としては、有機ラジカル発生剤と還元剤とからなるレドックス触媒を用いることを特徴とし、得られるアクリルゴムの射出成型性と強度特性を高度に改善でき好適である。特に、有機ラジカル発生剤を用いることにより製造されるアクリルゴムの射出成型性を高度に改善でき好適である。
 有機ラジカル発生剤としては、乳化重合で通常用いられるものであれば格別な限定はなく、例えば、有機系過酸化物、アゾ化合物などが挙げられる。
 有機系過酸化物としては、乳化重合で使用される公知のものであれば格別な限定は無く、例えば、2,2-ジ(4,4-ジ-(t-ブチルパーオキシ)シクロヘキシル)プロパン、1-ジ-(t-ヘキシルパーオキシ)シクロヘキサン、1,1-ジ-(t-ブチルパーオキシ)シクロヘキサン、4,4-ジ-(t-ブチルパーオキシ)吉草酸n-ブチル、2,2-ジ-(t-ブチルパーオキシ)ブタン、t-ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、パラメンタンハイドロパーオキサイド、ベンゾイルパーオキサイド、1,1,3,3-テトラエチルブチルハイドロパーオキサイド、t-ブチルクミルパーオキサイド、ジ-t-ブチルパーオキサイド、ジ-t-ヘキシルパーオキサイド、ジ(2-t-ブチルパーオキシイソプロピル)ベンゼン、ジクミルパーオキサイド、ジイソブチリルパーオキサイド、ジ(3,5,5-トリメチルヘキサノイル)パーオキサイド、ジラウロイルパーオキサイド、ジコハク酸パーオキサイド、ジベンゾイルパーオキサイド、ジ(3-メチルベンゾイル)パーオキサイド、ベンゾイル(3-メチルベンゾイル)パーオキサイド、ジイソブチリルパーオキシジカーボネート、ジ-n-プロピルパーオキシジカーボネート、ジ(2-エチルヘキシル)パーオキシジカーボネート、ジ-sec-ブチルパーオキシジカーボネート、1,1,3,3-テトラメチルブチルパーオキシネオデカネート、t-ヘキシルパーオキシピバレート、t-ブチルパーオキシネオデカネート、t-ヘキシルパーオキシピバレート、t-ブチルパーオキシピバレート、2,5-ジメチル-2,5-ジ(2-エチルヘキサノイルパーオキシ)ヘキサン、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサネート、t-ヘキシルパーオキシ-2-エチルヘキサネート、t-ブチルパーオキシ-3,5,5-トリメチルヘキサネート、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシイソプロピルモノカーボネート、t-ブイチルパーオキシ-2-エチルヘキシルモノカーボネート、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシアセテート、t-ヘキシルパーオキシベンゾエート、t-ブチルパーオキシベンゾエート、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサンなどが挙げられ、これらの中でもジイソプロピルベンゼンハイドロパーオキサイド、クメンハイドロパーオキサイド、パラメンタンハイドロパーオキサイド、ベンゾイルパーオキサイドなどが好ましい。
 アゾ化合物としては、例えば、アゾビスイソプチロニトリル、4,4'-アゾビス(4-シアノ吉草酸)、2,2'-アゾビス[2-(2-イミダゾリン-2-イル)プロパン、2,2'-アゾビス(プロパン-2-カルボアミジン)、2,2'-アゾビス[N-(2-カルボキシエチル)-2-メチルプロパンアミド]、2,2'-アゾビス{2-[1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル]プロパン}、2,2'-アゾビス(1-イミノ-1-ピロリジノ-2-メチルプロパン)及び2,2'-アゾビス{2-メチル-N-[1,1-ビス(ヒドロキシメチル)-2-ヒドロキシエチル]プロパンアミド}などが挙げられる。
 これらの有機ラジカル発生剤は、それぞれ単独で、あるいは2種類以上を組み合わせて用いることができ、その使用量は、単量体成分100重量部に対して、通常0.0001~5重量部、好ましくは0.0005~1重量部、より好ましくは0.001~0.5重量部の範囲である。
(還元剤)
 本発明で使用される還元剤としては、通常乳化重合で用いられるものであれば格別な限定がないが、好ましくは少なくとも2種の還元剤を用いるものであり、還元状態にある金属イオン化合物とそれ以外の還元剤とを組み合わせるのが得られるアクリルゴムの射出成型性と強度特性を更に高度にバランスでき好適である。
 還元状態にある金属イオン化合物としては、特に限定されないが、例えば、硫酸第一鉄、ヘキサメチレンジアミン四酢酸鉄ナトリウム、ナフテン酸第一銅などが挙げられ、これらの中でも硫酸第一鉄が好ましい。これらの還元状態にある金属イオン化合物は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができ、その使用量は、単量体成分100重量部に対して、通常0.000001~0.01重量部、好ましくは0.00001~0.001重量部、より好ましくは0.00005~0.0005重量部の範囲である。
 本発明で使用する還元状態にある金属イオン化合物以外の還元剤としては、特に限定されないが、例えば、アスコルビン酸、アスコルビン酸ナトリウム、アスコルビン酸カリウムなどのアスコルビン酸またはその塩;エリソルビン酸、エリソルビン酸ナトリウム、エリソルビン酸カリウムなどのエリソルビン酸またはその塩;ヒドロキシメタンスルフィン酸ナトリウムなどのスルフィン酸塩;亜硫酸ナトリウム、亜硫酸カリウム、亜硫酸水素ナトリウム、アルデヒド亜硫酸水素ナトリウム、亜硫酸水素カリウムの亜硫酸塩;ピロ亜硫酸ナトリウム、ピロ亜硫酸カリウム、ピロ亜硫酸水素ナトリウム、ピロ亜硫酸水素カリウムなどのピロ亜硫酸塩;チオ硫酸ナトリウム、チオ硫酸カリウムなどのチオ硫酸塩;亜燐酸、亜燐酸ナトリウム、亜燐酸カリウム、亜燐酸水素ナトリウム、亜燐酸水素カリウムの亜燐酸又はその塩;ピロ亜燐酸、ピロ亜燐酸ナトリウム、ピロ亜燐酸カリウム、ピロ亜燐酸水素ナトリウム、ピロ亜燐酸水素カリウムなどのピロ亜燐酸またはその塩;ナトリウムホルムアルデヒドスルホキシレートなどが挙げられる。これらの中でも、アルコルビン酸またはその塩、ナトリウムホルムアルデヒドスルホキシレートなどが好ましく、特にアスコルビン酸またはその塩が好ましい。
 これらの還元状態にある金属イオン化合物以外の還元剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができ、その使用量は、単量体成分100重量部に対し、通常0.001~1重量部、好ましくは0.005~0.5重量部、より好ましくは0.01~0.1重量部の範囲である。
 還元状態にある金属イオン化合物とそれ以外の還元剤との好ましい組み合わせは、硫酸第一鉄とアスコルビン酸若しくはその塩及び/又はナトリウムホルムアルデヒドスルホキシレートの組み合わせであり、より好ましくは硫酸第一鉄とアルコルビン酸若しくはその塩との組み合わせである。このときの硫酸第一鉄の使用量は、単量体成分100重量部に対して、通常0.000001~0.01重量部、好ましくは0.00001~0.001重量部、より好ましくは0.00005~0.0005重量部の範囲であり、アスコルビン酸若しくはその塩及び/又はナトリウムホルムアルデヒドスルホキシレートの使用量は、両成分100重量部に対し、通常0.001~1重量部、好ましくは0.005~0.5重量部、より好ましくは0.01~0.1重量部の範囲である。
 乳化重合反応における水の使用量は、単量体成分エマルジョン化時に使用した量だけもよいが、重合に用いる単量体成分100重量部に対して、通常10~1000重量部、好ましくは50~500重量部、より好ましくは80~400重量部、最も好ましくは100~300重量部の範囲になるように調整される。
 乳化重合反応の方式は、常法に従えばよく、回分式、半回分式、連続式のいずれでもよい。重合温度及び重合時間は、特に限定されず、使用する重合開始剤の種類などから適宜選択できる。重合時間は通常0.5~100時間、好ましくは1~10時間である。
 乳化重合反応は、発熱反応で、制御しないと温度が上がり重合反応を短縮することもできるが、本発明においては、乳化重合反応温度を、通常35℃以下、好ましくは0~35℃、より好ましくは5~30℃、特に好ましくは10~25℃で制御することが、製造されるアクリルゴムの強度特性とバンバリー等の混錬時の加工性が高度にバランスされ好適である。
(連鎖移動剤の後添加)
 本発明においては、連鎖移動剤を初期に添加せずに重合途中で回分的に後添加することを特徴とし、こうすることにより高分子量成分と低分子量成分が分かれたアクリルゴムが製造でき、且つ、製造されるアクリルゴムの強度特性と射出成型性が高度にバランスされ好適である。
 使用される連鎖移動剤としては、乳化重合で通常使用されるものであれば格別限定されるものでなく、例えば、メルカプタン化合物が好適に用いることができる。
 メルカプタン化合物としては、通常炭素数2~20のアルキルメルカプタン化合物、好ましくは炭素数5~15のアルキルメルカプタン化合物、より好ましくは炭素数6~14のアルキルメルカプタン化合物を用いることができる。
 アルキルメルカプタン化合物としては、n-アルキルメルカプタン化合物、sec-アルキルメルカプタン化合物、t-アルキルメルカプタン化合物のいずれでもよいが、好ましくはn-アルキルメルカプタン化合物、t-アルキルメルカプタン化合物で、より好ましくはn-アルキルメルカプタン化合物であるときに連鎖移動剤の効果が安定的に発揮でき、製造されるアクリルゴムの射出成型性を高度に改善でき好適である。
 アルキルメルカプタン化合物の具体例としては、n-ペンチルメルカプタン、n-ヘキシルメルカプタン、n-ヘプチルメルカプタン、n-オクチルメルカプタン、n-デシルメルカプタン、n-ドデシルメルカプタン、n-トリデカンメルカプタン、n-テトラデシルメルカプタン、n-ヘキサデシルメルカプタン、n-オクタデシルメルカプタン、sec-ペンチルメルカプタン、sec-ヘキシルメルカプタン、sec-ヘプチルメルカプタン、sec-オクチルメルカプタン、sec-デシルメルカプタン、sec-ドデシルメルカプタン、sec-トリデカンメルカプタン、sec-テトラデシルメルカプタン、sec-ヘキサデシルメルカプタン、sec-オクタデシルメルカプタン、t-ペンチルメルカプタン、t-ヘキシルメルカプタン、t-ヘプチルメルカプタン、t-オクチルメルカプタン、t-デシルメルカプタン、t-ドデシルメルカプタン、n-トリデカンメルカプタン、t-テトラデシルメルカプタン、t-ヘキサデシルメルカプタン、t-オクタデシルメルカプタンなどを挙げることができ、好ましくはn-オクチルメルカプタン、n-ドデシルメルカプタン、t-ドデシルメルカプタン、より好ましくはn-オクチルメルカプタン、n-ドデシルメルカプタンである。
 これらの連鎖移動剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。連鎖移動剤の使用量は、格別限定されるものではないが、単量体成分100重量部に対して、通常0.0001~1重量部、好ましくは0.0005~0.5重量部、より好ましくは0.001~0.5重量部、特に好ましくは0.005~0.1重量部、最も好ましくは0.01~0.06重量部の範囲であるときに製造されるアクリルゴムの強度特性と射出成型性が高度にバランスされ好適である。
 本発明においては、上記連鎖移動剤を重合初期には添加せずに重合途中で回分的に添加することを特徴とし、製造されるアクリルゴムの高分子量成分と低分子量成分を製造し且つ分子量分布を特定範囲として強度特性と射出成型性を高度にバランスさせることができ好適である。
 連鎖移動剤の回分的な後添加の回数は、格別な限定はなく使用目的に応じて適宜選択されるが、通常1~5回、好ましくは2~4回、より好ましくは2~3回、特に好ましくは2回であるときに製造されるアクリルゴムの強度特性と射出成型性を高度にバランスすることができ好適である。
 連鎖移動剤の回分的な後添加を開始する時期は、格別な限定はなく使用目的に応じて適宜選択されるが、重合開始してから通常20分以降、好ましくは重合開始後30分以降、より好ましくは重合開始後30~200分、特に好ましくは重合開始後35~150分、最も好ましくは40~120分の範囲であるときに製造されるアクリルゴムの強度特性と射出成型性を高度にバランスすることができ好適である。
 連鎖移動剤の回分的な後添加における1回あたりの添加量は、格別な限定はなく使用目的に応じて適宜選択されるが、単量体成分100重量部に対して、通常0.00005~0.5重量部、好ましくは0.0001~0.1重量部、より好ましくは0.0005~0.05重量部、特に好ましくは0.001~0.03重量部、最も好ましくは0.002~0.02重量部の範囲であるときに製造されるアクリルゴムの強度特性と射出成型性を高度にバランスすることができ好適である。
 連鎖移動剤の添加後は、格別な限定はないが、通常30分以上、好ましくは45分以上、より好ましくは1時間以上重合反応を継続させてから終了することができる。
(還元剤の後添加)
 本発明においては、前記レドックス触媒の還元剤を、重合途中で後添加することができ、そうすることにより製造されるアクリルゴムの強度特性と射出成型性が高度にバランスさせることができ好適である。
 重合途中で後添加する還元剤としては、前記した還元剤の例示及び好ましい範囲は同じである。本発明において、後添加する還元剤としては、アスコルビン酸またはその塩が好適である。
 重合途中で後添加する還元剤の使用量は、格別限定されるものでなく使用目的に応じて適宜選択されればよいが、単量体成分100重量部に対して、通常0.0001~1重量部、好ましくは0.0005~0.5重量部、より好ましくは0.001~0.5重量部、特に好ましくは0.005~0.1重量部、最も好ましくは0.01~0.05重量部の範囲であるときにアクリルゴム製造の生産性に優れるとともに製造されるアクリルゴムの強度特性と射出成型性を高度にバランスでき好適である。
 重合途中で後添加する還元剤は、連続的あるいは回分的のいずれでもよいが、好ましくは回分的である。還元剤を重合途中で回分的に後添加する場合の回数は、格別な限定はないが、通常1~5回、好ましくは1~3回、より好ましくは1~2回である。
 重合初期及び重合途中で後添加する還元剤が、アスコルビン酸またはその塩であるときの初期に添加するアスコルビン酸またはその塩の量と後添加するアスコルビン酸またはその塩の量との比は、格別限定されるものではないが、「初期添加アスコルビン酸またはその塩」/「回分的後添加のアスコルビン酸またはその塩」の重量比で、通常1/9~8/2、好ましくは2/8~6/4、より好ましくは3/7~5/5の範囲であるときにアクリルゴム製造の生産性に優れるとともに製造されるアクリルゴムの強度特性と射出成型性を高度にバランスでき好適である。
 還元剤の後添加の時期は、格別な限定はなく使用目的に応じて適宜選択されるが、重合開始してから通常1時間以降、好ましくは重合開始後1~3時間、より好ましくは1.5~2.5時間の範囲であるときにアクリルゴム製造の生産性に優れるとともに製造されるアクリルゴムの強度特性と射出成型性を高度にバランスすることができ好適である。
 還元剤の回分的な後添加における1回あたりの添加量は、格別な限定はなく使用目的に応じて適宜選択されるが、単量体成分100重量部に対して、通常0.00005~0.5重量部、好ましくは0.0001~0.1重量部、より好ましくは0.0005~0.05重量部、特に好ましくは0.001~0.03の範囲であるときに製造されるアクリルゴムの強度特性と射出成型性を高度にバランスすることができ好適である。
 還元剤の添加後の操作は、格別な限定はないが、通常30分以上、好ましくは45分以上、より好ましくは1時間以上重合反応を継続させてから、重合反応を終了することができる。
 乳化重合反応の重合転化率は、90重量%以上、好ましくは95重量%以上であり、このときに製造されるアクリルゴムは強度特性に優れ且つ単量体臭も無く好適である。重合停止に当たっては、重合停止剤を使用してもよい。
(凝固工程)
 本発明のアクリルゴムの製造方法における凝固工程は、上記得られた乳化重合液を撹拌している凝固液に添加して凝固し含水クラムを生成する工程である。
 この凝固反応で使用される乳化重合液の固形分濃度は、格別な限定はないが、通常5~50重量%、好ましくは10~45重量%、より好ましくは20~40重量%の範囲に調整される。
 使用される凝固液の凝固剤としては、特に限定されないが、通常は金属塩が用いられる。金属塩としては、例えば、アルカリ金属、周期表第2族金属塩、その他の金属塩などが挙げられ、好ましくはアルカリ金属塩、周期表第2族金属塩、より好ましくは周期表第2族金属塩、特に好ましくはマグネシウム塩であるときに得られるアクリルゴムの耐水性、強度特性、射出成型の融合性と離型性及び加工性を高度にバランスさせることができ好適である。
 アルカリ金属塩としては、例えば、塩化ナトリウム、硝酸ナトリウム、硫酸ナトリウムなどのナトリウム塩;塩化カリウム、硝酸カリウム、硫酸カリウムなどのカリウム塩;塩化リチウム、硝酸リチウム、硫酸リチウムなどのリチウム塩などが挙げられ、これらの中でもナトリウム塩が好ましく、塩化ナトリウム、硫酸ナトリウムが特に好ましい。
 周期表第2族金属塩としては、例えば、塩化マグネシウム、塩化カルシウム、硝酸マグネシウム、硝酸カルシウム、硫酸マグネシウム、硫酸カルシウムなどが挙げられ、好ましくは塩化カルシウム、硫酸マグネシウムである。
 その他の金属塩としては、例えば、塩化亜鉛、塩化チタン、塩化マンガン、塩化鉄、塩化コバルト、塩化ニッケル、塩化アルミニウム、塩化スズ、硝酸亜鉛、硝酸チタン、硝酸マンガン、硝酸鉄、硝酸コバルト、硝酸ニッケル、硝酸アルミニウム、硝酸スズ、硫酸亜鉛、硫酸チタン、硫酸マンガン、硫酸鉄、硫酸コバルト、硫酸ニッケル、硫酸アルミニウム、硫酸スズなどが挙げられる。
 これらの凝固剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができ、その使用量は、単量体成分100重量部に対し、通常0.01~100重量部、好ましくは0.1~50重量部、より好ましくは1~30重量部の範囲である。凝固剤がこの範囲にあるときに、アクリルゴムの凝固を充分なものとしながら、アクリルゴムを架橋した場合の耐圧縮永久歪み特性や耐水性を高度に向上させることができるので好適である。
 本発明の凝固工程においては、特に、生成する含水クラムの粒径を特定領域に集束することで洗浄効率や脱水時の灰分除去効率が格段に上昇し好適である。生成する含水クラムの710μm~6.7mm(710μmを通過せず6.7mmを通過)の範囲の割合が、格別な限定はないが、全生成含水クラムに対して、通常30重量%以上、好ましくは50重量%以上、より好ましくは60重量%以上、特に好ましくは70重量%以上、最も好ましくは80重量%以上であるときにアクリルゴムの耐水性を格段に改善でき好適である。また、生成する含水クラムの710μm~4.75mm(710μmを通過せず4.75mmを通過)の範囲の割合が、格別な限定はないが、全生成含水クラムに対して、通常30重量%以上、好ましくは50重量%以上、より好ましくは60重量%以上、特に好ましくは70重量%以上、最も好ましくは80重量%以上であるときにアクリルゴムの耐水性を格段に改善でき好適である。更に、生成する含水クラムの710μm~3.35mm(710μmを通過せず3.35mmを通過)の範囲の割合が、格別な限定はないが、全生成含水クラムに対して、通常20重量%以上、好ましくは30重量%以上、より好ましくは40重量%以上、特に好ましくは50重量%以上、最も好ましくは60重量%以上であるときにアクリルゴムの耐水性を格段に改善でき好適である。
 含水クラムの粒子径を上記範囲に生成する手段としては、格別な限定はないが、例えば、乳化重合液と上記凝固剤との接触方法を乳化重合液を撹拌している凝固液(凝固剤水溶液)に添加すること、あるいは、凝固液の凝固剤濃度、撹拌している凝固液の撹拌数や周速を特定範囲内にすることで行うことができる。
 使用する凝固液は、通常水溶液として使用されるが、該水溶液における凝固剤濃度は、通常0.1~20重量%、好ましくは0.5~15重量%、より好ましくは1~10重量%、特に好ましくは1.5~5の範囲であるときに生成する含水クラムの粒径を特定の領域に且つ均一に集束でき好適である。
 凝固液の温度は、格別限定はないが、通常40℃以上、好ましくは40~90℃、より好ましくは50~80℃の範囲であるときに均一な含水クラムが生成され好適である。
 乳化重液と凝固液を接触する方法としては、撹拌されている凝固液に該乳化重合液を添加する方法が選択され、生成する含水クラムの洗浄効率及び脱水効率が格段に優れ得られるアクリルゴムの耐水性と保存安定性を高度に向上させることができ好適である。
 撹拌されている凝固液の撹拌数(回転数)は、すなわち、撹拌装置の撹拌翼の回転数で、格別な限定はないが、通常100rpm以上、好ましくは200rpm以上、より好ましくは200~1000rpm、特に好ましくは300~900rpm、最も好ましくは400~800rpmの範囲である。
 回転数は、ある程度激しく撹拌される回転数である方が、生成する含水クラム粒径を小さく且つ均一にでき好適であり、前記下限以上とすることにより、クラム粒径が過度に大きいものと小さいものとが生成するのを抑制でき、前記上限以下とすることにより、凝固反応の制御をより容易にできる。
 撹拌されている凝固液の周速は、すなわち、撹拌装置の撹拌翼の外周の速度は、格別な限定はないが、一定程度まで激しく撹拌されている方が生成する含水クラム粒径を小さく且つ均一にでき好適で、通常0.5m/s以上、好ましくは1m/s以上、より好ましくは1.5m/s以上、特に好ましくは2m/s以上、最も好ましくは2.5m/s以上である。一方周速の上限値は、格別限定されるものではないが、通常50m/s以下、好ましくは30m/s以下、より好ましくは25m/s以下、最も好ましくは20m/s以下であるときに凝固反応の制御が容易になり好適である。
 凝固反応の上記条件(接触方法、乳化重合液の固形分濃度、凝固液の濃度及び温度、凝固液の撹拌時の回転数及び周速、など)を特定範囲にすることで、生成する含水クラムの形状及びクラム径が均一で且つ集束化され、洗浄及び脱水時の乳化剤や凝固剤の除去が格段に向上し、結果として製造されるアクリルゴムの耐水性と保存安定性を高度に改善できるので好適である。
(洗浄工程)
 本発明のアクリルゴムの製造方法における洗浄工程は、上記生成した含水クラムを洗浄する工程である。
 洗浄方法としては、格別限定されるものでなく、例えば、生成した含水クラムを多量の水と混合して行うことができる。
 洗浄のため加える水の量は、特に限定されないが、単量体成分100重量部に対して、水洗1回当たりの量が、通常50重量部以上、好ましくは50~15,000重量部、より好ましくは100~10,000重量部、さらに好ましくは500~5,000重量部の範囲であるときに、アクリルゴム中の灰分量を効果的に低減することができるので好適である。
 使用する水の温度は、格別限定されないが、温水を使用するのが好ましく、通常40℃以上、好ましくは40~100℃、より好ましくは50~90℃であり、特に60~80℃のときに洗浄効率を格段に上げることができ最適である。使用する水の温度を上記した下限以上とすることにより、乳化剤や凝固剤が含水クラムから遊離して洗浄効率がより向上する。
 洗浄時間は、格別な限定はないが、通常1~120分、好ましくは2~60分、より好ましくは3~30分の範囲である。
 洗浄(水洗)の回数についても、特に限定されず、通常は1~10回、好ましくは1~5回、より好ましくは2~3回である。なお、最終的に得られるアクリルゴム中の凝固剤の残留量を低減させるという観点からは、水洗回数が多い方が望ましいが、上記のように含水クラムの形状及び含水クラム径を特定範囲にすること、及び/又は洗浄温度を上記の範囲にすることで、水洗回数を格段に低減できる。
(脱水工程)
 本発明のアクリルゴムの製造方法における脱水工程は、上記洗浄した含水クラムを脱水する工程である。
 含水クラムの脱水方法としては、含水クラムから水分を絞り出せる方法であれば格別な限定はなく、通常は脱水機などを用いて行うことができる。これにより、洗浄工程では除去できなかった含水クラムに内在する乳化剤や凝固剤の灰分量を減少させ、アクリルゴムの耐水性を格段に向上でき好適である。
 脱水機としては、特に限定されず、例えば、遠心分離機、スクイザー、スクリュー型押出機などを使用することができるが、特に、スクリュー型押出機が含水クラムの含水量を高度に下げることができ好適である。粘着性のアクリルゴムは、遠心分離機などでは、壁面及びスリット間にアクリルゴムが付着して通常45~55重量%程度までしか脱水できない。これに対して、スクリュー型押出機は、強制的に水分を絞り出していく機構を有しており好適である。
 脱水後の含水クラムの含水量は、限定されないが、通常1~50重量%、好ましくは1~40重量%、より好ましくは10~40重量%、より好ましくは15~35重量%の範囲である。脱水後の含水量を上記の下限以上とすることにより、脱水時間を短縮できてアクリルゴムの変質を抑制でき、一方、上記の上限以下とすることにより灰分量を十分に低減することができる。
(乾燥工程)
 本発明のアクリルゴムの製造方法における乾燥工程は、上記脱水した含水クラムを1重量%未満まで乾燥する工程である。
 上記脱水後の含水クラムを乾燥する方法は、格別な限定はないが、例えば、スクリュー型二軸押出乾燥機を用いて行うことができる。使用されるスクリュー型二軸押出乾燥機としては、2つのスクリューを有する押出乾燥機であれば格別限定はないが、本発明においては、特に、2つのスクリューを有するスクリュー型二軸押出乾燥機を用いて高シェアの条件で含水クラムを乾燥することにより得られるアクリルゴムの射出成型性、バンバリー加工性及び強度特性を高度にバランスすることができ好適である。
 本発明においては、アクリルゴムはスクリュー型二軸押出乾燥機内で含水クラムが溶融され押出乾燥されて得ることができる。スクリュー型二軸押出乾燥機の乾燥温度(設定温度)は、適宜選択されればよいが、通常100~250℃、好ましくは110~200℃、より好ましくは120~180℃の範囲であるときに、アクリルゴムのヤケや変質がなく効率よく乾燥ができ好適である。
 本発明においては、また、凝固工程で生成した含水クラムをスクリュー型二軸押出乾燥機内で減圧下で溶融混錬及び乾燥されたときに、アクリルゴムの射出成型性や強度特性を損ねることなく保存安定性を高度に高められ好適である。この段階でアクリルゴム中に内在する空気を除去し保存安定性を高めるために好適なスクリュー型二軸押出乾燥機中の減圧度としては、適宜選択されればよいが、通常1~50kPa,好ましくは2~30kPa、より好ましくは3~20kPaの範囲である。
 本発明においては、また、凝固工程で生成した含水クラムをスクリュー型二軸押出乾燥機により殆ど水が除去された状態で溶融混錬及び乾燥されたときに、アクリルゴムの射出成型性や強度特性を損ねることなくバンバリー加工性を高度に高められ好適である。バンバリー加工性を高度に高められる殆ど水が除去された状態としては、適宜選択されればよいが、アクリルゴムの含水量として、通常1重量%未満、好ましくは0.8重量%以下、より好ましくは0.6重量%以下である。なお、本発明でいう「溶融混錬」あるいは「溶融混錬及び乾燥」とは、スクリュー型二軸押出乾燥機内でアクリルゴムが溶融状態で混錬(混合)あるいは溶融状態で押し出され、その段階で乾燥されること、あるいは、スクリュー型二軸押出乾燥機によりアクリルゴムを溶融(可塑化)状態で混練して押し出し乾燥することを意味する。
 本発明で使用されるスクリュー型二軸押出乾燥機の最大トルクは、格別限定されるものではないが、通常5~125N・m、好ましくは10~100N・m、より好ましくは10~50N・m、特に好ましくは15~45N・mの範囲であるときに、製造されるアクリルゴムの射出成型性、バンバリー加工性及び強度特性を高度にバランスすることができ好適である。
 本発明で使用されるスクリュー型二軸押出乾燥機の比動力は、格別な限定はないが、通常0.01~0.3[kw・h/kg]以上、好ましくは0.05~0.25[kw・h/kg]、より好ましくは0.1~0.2[kw・h/kg]の範囲であるときに得られるアクリルゴムの射出成型性、バンバリー加工性及び強度特性が高度にバランスされ好適である。
 本発明で使用されるスクリュー型二軸押出乾燥機の比電力は、格別な限定はないが、通常0.1~0.6[A・h/kg]以上、好ましくは0.15~0.55[A・h/kg]、より好ましくは0.2~0.5[A・h/kg]の範囲であるときに得られるアクリルゴムの射出成型性、バンバリー加工性及び強度特性が高度にバランスされ好適である。
 本発明で使用されるスクリュー型二軸押出乾燥機の剪断速度は、格別な限定はないが、通常5~150[1/s]以上、好ましくは10~100[1/s]、より好ましくは25~75[1/s]の範囲であるときに得られるアクリルゴムの保存安定性、射出成型性、バンバリー加工性及び強度特性が高度にバランスされ好適である。
 本発明で使用されるスクリュー型二軸押出乾燥機内のアクリルゴムの剪断粘度は、格別な限定はないが、通常4000~8000[Pa・s]以下、好ましくは4500~7500[Pa・s]、より好ましくは5000~7000[Pa・s]の範囲であるときに得られるアクリルゴムの保存安定性、射出成型性、バンバリー加工性及び強度特性が高度にバランスされ好適である。
 本発明においては、溶融混錬及び乾燥された後のアクリルゴムの冷却速度が、通常40℃/hr以上、好ましくは50℃/hr以上、より好ましくは100℃/hr以上、特に好ましくは150℃/hr以上であるときにアクリルゴム組成物のスコーチ安定性が格段に優れ好適である。
 かくして得られる本発明のアクリルゴムは、射出成型性、強度特性及び耐水性に優れ各種用途に使用することができる。本発明のアクリルゴムの形状としては、格別限定はなく使用目的に応じて選択され、例えば、粉状、クラム状、ストランド状、シート状、ベール状などが挙げられるが、シート状やベールが作業性や保存安定性に優れ好適である。
(シート状またはベール状アクリルゴム製造方法)
 本発明のシート状またはベール状アクリルゴムの製造方法は、格別な限定はないが、前記洗浄後の含水クラムを、脱水スリットを有する脱水バレルと減圧下の乾燥バレルと先端部にダイを有するスクリュー型二軸押出乾燥機を用いて脱水バレルで含水量1~40重量%まで脱水した後に乾燥バレルで1重量%未満まで乾燥してシート状乾燥ゴムをダイから押し出すことで容易にシート状アクリルゴムが製造でき、また、押し出されたシート状乾燥ゴムを積層してベール化することで容易にベール状アクリルゴムを製造することができる。
 本発明においては、スクリュー型二軸押出乾燥機に供給される含水クラムは、洗浄後に遊離水を除去(水切り)したものであることが好ましい。
(水切り工程)
 本発明において、洗浄後の含水クラムから水切り機で遊離水を分離する水切り工程を設けることが脱水効率を上げる上で好適である。
 水切り機としては、公知のものを格別な限定なく用いることができ、例えば、金網、スクリーン、電動篩機などが挙げられ、好ましくは金網、スクリーンである。
 水切り機の目開きは、格別限定はないが、通常0.01~5mm、好ましくは0.1~1mm、より好ましくは0.2~0.6mmの範囲であるときに、含水クラム損失が少なく且つ水切りが効率的にでき好適である。
 水切り後の含水クラムの含水量、すなわち脱水・乾燥工程に投入される含水クラムの含水量は、格別限定されるものではないが、通常50~80重量%、好ましくは50~70重量%、より好ましくは50~60重量%の範囲である。
 水切り後の含水クラムの温度、すなわち脱水・乾燥工程に投入される含水クラムの温度は、格別限定されるものではないが、通常40℃以上、好ましくは40~100℃、より好ましくは50~90℃、特に好ましくは55~85℃、最も好ましくは60~80℃の範囲であるときに、本発明のアクリルゴムのように比熱が1.5~2.5KJ/kg・Kと高く温度を上げにくい含水クラムをスクリュー型二軸押出乾燥機を用いて効率よく脱水・乾燥でき好適である。
(脱水バレル部での含水クラムの脱水)
 含水クラムの脱水は、脱水スリットを有するスクリュー型二軸押出乾燥機中の脱水バレルで行われる。脱水スリットの目開きは、使用条件に応じて適宜選択されればよいが、通常0.01~5mm、好ましくは0.1~1mm、より好ましくは0.2~0.6mmの範囲であるときに、含水クラム損失が少なく且つ含水クラムの脱水が効率的にでき好適である。
 スクリュー型二軸押出乾燥機における脱水バレルの数は、格別限定されるものではないが、通常複数個、好ましくは2~10個、より好ましくは3~6個であるときに粘着性のアクリルゴムの脱水を効率よく行う上で好適である。
 脱水バレルにおける含水クラムからの水の除去は、脱水スリットから液状で除去するもの(排水)、蒸気状で除去するもの(排蒸気)の二通りがあるが、本発明においては、排水は脱水、排蒸気は予備乾燥と定義して区別する。
 含水クラムの脱水において脱水スリットから排出される水は、液状(排水)、蒸気状(排蒸気)のいずれの状態でもよいが、脱水バレルを複数個備えるスクリュー型二軸押出乾燥機を用いて行う場合は、排水及び排蒸気を組み合わせることで粘着性アクリルゴムの脱水が効率よくでき好適である。脱水バレルを3個以上備えるスクリュー型二軸押出乾燥機の排水型脱水バレルか排蒸気型脱水バレルかの選択は、使用目的に応じて適宜行えばよいが、通常製造されるアクリルゴム中の灰分量を少なくする場合は排水型バレルを多くし、含水量を低減する場合は排蒸気型バレルを多くする。
 脱水バレルの設定温度は、アクリルゴムの単量体組成、灰分量、含水量、及び操業条件などにより適宜選択されるが、通常60~150℃、好ましくは70~140℃、より好ましくは80~130℃の範囲である。排水状態で脱水する脱水バレルの設定温度は、通常60℃~120℃、好ましくは70~110℃、より好ましくは80~100℃である。排蒸気状態で脱水する脱水バレルの設定温度は、通常100~150℃、好ましくは105~140℃、より好ましくは110~130℃の範囲である。
 含水クラムから水分を絞り出す排水型脱水の脱水後の含水量としては、格別な限定はないが、通常1~40重量%、好ましくは5~35重量%、より好ましくは10~35重量%であるときに、生産性と灰分除去効率とが高度にバランスされ好適である。
 反応性基を有する粘着性のアクリルゴムの脱水は、遠心分離機などを用いて行うと脱水スリット部にアクリルゴムが付着してしまい殆ど脱水できないが(含水量は約45~55重量%程度まで)、本発明において、脱水スリットを有しスクリューで強制的に絞られるスクリュー型二軸押出乾燥機を用いることによりここまで含水量を低減できるようになった。
 排水型脱水バレルと排蒸気型脱水バレルとを備える場合の含水クラムの脱水は、排水型脱水バレル部における排水後の含水量が通常5~40重量%、好ましくは10~40重量%、より好ましくは15~35重量%、排蒸気型脱水バレル部における予備乾燥後の含水量が、通常1~30重量%、好ましくは3~20重量%、より好ましくは5~15重量%である。
 脱水後の含水量を前記下限以上とすることにより、脱水時間を短縮できてアクリルゴムの変質を抑制でき、前記上限以下とすることにより灰分量を十分に低減することができる。
(乾燥バレル部での含水クラムの乾燥)
 上記脱水後の含水クラムの乾燥は、乾燥バレル部を有するスクリュー型二軸押出乾燥機により、減圧下の乾燥バレル部で行うことを特徴とする。アクリルゴムの乾燥を減圧下で行うことにより、乾燥の生産効率が上がり、また、アクリルゴム中に内在する空気が除去され比重が高く保存安定性に優れるアクリルゴムが製造でき好適である。本発明においては、また、アクリルゴムを減圧下で溶融して押出乾燥することでアクリルゴムの保存安定性を高度に高めることができる。アクリルゴムの保存安定性は、大きくはアクリルゴムの比重と相関しコントロールできるが、比重が大きく高度の保存安定性を制御する場合は押出乾燥の減圧度等で制御することができる。
 乾燥バレルの減圧度は、適宜選択されればよいが、通常1~50kPa,好ましくは2~30kPa、より好ましくは3~20kPaであるときに効率よく含水クラムを乾燥でき且つアクリルゴム中の空気を除去しアクリルゴムの保存安定性を格段に改善でき好適である。
 乾燥バレルの設定温度は、適宜選択されればよいが、通常100~250℃、好ましくは110~200℃、より好ましくは120~180℃の範囲であるときに、アクリルゴムのヤケや変質がなく効率よく乾燥ができ且つシート状またはベール状アクリルゴム中のメチルエチルケトン不溶解分のゲル量を低減でき好適である。
 スクリュー型二軸押出乾燥機における乾燥バレルの数は、格別限定されるものではないが、通常複数個、好ましくは2~10個、より好ましくは3~8個である。乾燥バレルが複数個有する場合の減圧度は、全ての乾燥バレルで近似した減圧度にしてもよいし、変えてもよい。乾燥バレルが複数個有する場合の設定温度は、全ての乾燥バレルで近似した温度にしてもよいし変えてもよいが、導入部(脱水バレルに近い方)の温度よりも排出部(ダイに近い方)の温度の方が高くするのが乾燥効率を上げることができ好適である。
 乾燥後の乾燥ゴムの含水量は、通常1重量%未満、好ましくは0.8重量%以下、より好ましくは0.6重量%以下である。本発明においては、特にスクリュー型二軸押出乾燥機内で乾燥ゴムの含水量がこの値(殆ど水が除去された状態)にして溶融押出しされることがシート状またはベール状アクリルゴムのメチルエチルケトン不溶解分のゲル量を低減でき好適である。本発明において、スクリュー型二軸押出乾燥機で溶融混錬あるいは溶融混錬及び乾燥させたアクリルゴム、好ましくはシート状またはベール状アクリルゴムは、強度特性とバンバリー加工性の両特性が高度にバランスされるので好適である。なお、本発明でいう「溶融混錬」あるいは「溶融混錬及び乾燥」とは、スクリュー型二軸押出乾燥機内でアクリルゴムが溶融状態で混錬(混合)あるいは溶融状態で押し出され、その段階で乾燥されること、あるいは、スクリュー型二軸押出乾燥機によりアクリルゴムを溶融(可塑化)状態で混練して押し出し乾燥することを意味する。
 本発明においては、スクリュー型二軸押出乾燥機の乾燥バレルにおいて上記アクリルゴムが実質的に水を含まない状態でかかる剪断速度は、格別な限定はないが、通常が、5[1/s]以上、好ましくは10~400[1/s]、より好ましくは20~250[1/s]の範囲であるときに得られるシート状またはベール状アクリルゴムの保存安定性、射出成型性、バンバリー加工性、強度特性及び耐圧縮永久歪み特性が高度にバランスされ好適である。
 本発明で使用されるスクリュー型二軸押出乾燥機内、特に乾燥バレルにおけるアクリルゴムの剪断粘度は、格別な限定はないが、通常12000[Pa・s]以下、好ましくは1000~12000[Pa・s]、より好ましくは2000~10000[Pa・s]、特に好ましくは3000~7000[Pa・s]、最も好ましくは4000~6000[Pa・s]の範囲であるときに得られるシート状またはベール状アクリルゴムの保存安定性、射出成型性、バンバリー加工性及び強度特性が高度にバランスされ好適である。
(ダイ部からの乾燥ゴムの押出し)
 上記脱水バレル及び乾燥バレルのスクリュー部で脱水・乾燥された乾燥ゴムは、スクリューの無い整流のダイ部に送られ、ダイ部から所望の形状に押し出される。スクリュー部とダイ部の間には、ブレーカープレートや金網を設けてもよいし、設けなくてもよい。
 押出される乾燥ゴムは、ダイ形状を略長方形状にしてシート状に出すことにより空気の巻き込みが少なく比重の大きい保存安定性に優れる乾燥ゴムが得られ好適である。
 ダイ部における樹脂圧は、格別限定されないが、通常0.1~10MPa、好ましくは0.5~5MPa、より好ましくは1~3MPaの範囲としたときに、シート状またはベール状アクリルゴムの空気の巻き込みが少なく(比重が高く)且つ生産性に優れ好適である。
(スクリュー型二軸押出乾燥機及び操業条件)
 使用されるスクリュー型二軸押出乾燥機のスクリュー長(L)は、使用目的に応じて適宜選択されればよいが、通常3000~15000mm、好ましくは4000~10000mm、より好ましくは4500~8000mmの範囲である。
 使用されるスクリュー型二軸押出乾燥機のスクリュー径(D)は、使用目的に応じて適宜選択されればよいが、通常50~250mm、好ましくは100~200mm、より好ましくは120~160mmの範囲である。
 使用されるスクリュー型二軸押出乾燥機のスクリュー長(L)とスクリュー径(D)との比(L/D)は、格別限定されるものではないが、通常10~100、好ましくは20~80、より好ましくは30~60の範囲であるときに乾燥ゴムの分子量低下や焼けを起こさずに含水量を1重量%未満にでき好適である。
 使用されるスクリュー型二軸押出乾燥機の回転数(N)は、諸条件に応じて適宜選択されればよいが、通常10~1000rpm、好ましくは50~750rpm、より好ましくは100~500rpm、最も好ましくは120~300rpmであるときに、シート状またはベール状アクリルゴムの含水量とメチルエチルケトン不溶解分のゲル量を効率よく低減でき好適である。
 使用されるスクリュー型二軸押出乾燥機の押出量(Q)は、格別限定されないが、通常100~1500kg/hr、好ましくは300~1200kg/hr、より好ましくは400~1000kg/hr、最も好ましくは500~800kg/hrの範囲である。
 使用されるスクリュー型二軸押出乾燥機の押出量(Q)と回転数(N)の比(Q/N)は、格別限定されるものではないが、通常2~10、好ましくは3~8、より好ましくは4~6の範囲である。
 使用されるスクリュー型二軸押出乾燥機の最大トルクは、格別限定されるものではないが、通常5~125N・m、好ましくは10~100N・m、より好ましくは10~50N・m、特に好ましくは15~45N・mの範囲であるときに、製造されるシート状またはベール状アクリルゴムの射出成型性、バンバリー加工性及び強度特性を高度にバランスすることができ好適である。
 使用されるスクリュー型二軸押出乾燥機の比動力は、格別な限定はないが、通常0.01~0.3[kw・h/kg]以上、好ましくは0.05~0.2[kw・h/kg]、より好ましくは0.1~0.2[kw・h/kg]の範囲であるときに得られるシート状またはベール状アクリルゴムの射出成型性、バンバリー加工性及び強度特性が高度にバランスされ好適である。
 使用されるスクリュー型二軸押出乾燥機の比電力は、格別な限定はないが、通常0.1~0.6[A・h/kg]以上、好ましくは0.15~0.55[A・h/kg]、より好ましくは0.2~0.5[A・h/kg]の範囲であるときに得られるシート状またはベール状アクリルゴムの射出成型性、バンバリー加工性及び強度特性が高度にバランスされ好適である。
 使用されるスクリュー型二軸押出乾燥機の剪断速度は、格別な限定はないが、通常5~150[1/s]以上、好ましくは10~100[1/s]、より好ましくは25~75[1/s]の範囲であるときに得られるシート状またはベール状アクリルゴムの保存安定性、射出成型性、バンバリー加工性及び強度特性が高度にバランスされ好適である。
 使用されるスクリュー型二軸押出乾燥機内のアクリルゴムの剪断粘度は、格別な限定はないが、通常4000~8000[Pa・s]以下、好ましくは4500~7500[Pa・s]、より好ましくは5000~7000[Pa・s]の範囲であるときに得られるシート状またはベール状アクリルゴムの保存安定性、射出成型性、バンバリー加工性及び強度特性が高度にバランスされ好適である。
 このように、本発明においては、二軸のスクリューを有する押出乾燥機を用いることにより高シェアな条件での脱水・乾燥・成形が可能となり好適である。
(シート状乾燥ゴム)
 スクリュー型二軸押出乾燥機から押し出される乾燥ゴムの形状は、シート状であり、この時に空気を巻き込まず比重を大きくでき保存安定性が高度に改善され好適である。スクリュー型二軸押出乾燥機から押し出されるシート状乾燥ゴムは、通常、冷却され切断されてシート状アクリルゴムとして使用される。
 スクリュー型二軸押出乾燥機から押し出されるシート状乾燥ゴムの厚さは、格別な限定はないが、通常1~40mm、好ましくは2~35mm、より好ましくは3~30mm、最も好ましくは5~25mmの範囲であるときに作業性、生産性に優れ好適である。特にシート状乾燥ゴムの熱伝導度が0.15~0.35W/mKと低いために冷却効率を上げ生産性を格段に向上させる場合のシート状乾燥ゴムの厚さは、通常1~30mm、好ましくは2~25mm、より好ましくは3~15mm、特に好ましくは4~12mmの範囲である。
 スクリュー型二軸押出乾燥機から押し出されるシート状乾燥ゴムの幅は、使用目的に応じて適宜選択されるが、通常300~1200mm、好ましくは400~1000mm、より好ましくは500~800mmの範囲である。
 スクリュー型二軸押出乾燥機から押し出される乾燥ゴムの温度は、格別限定されるものではないが、通常100~200℃、好ましくは110~180℃、より好ましくは120~160℃の範囲である。
 スクリュー型二軸押出乾燥機から押し出される乾燥ゴムの含水量は、格別な限定は無いが、通常1重量%未満、好ましくは0.8重量%以下、より好ましくは0.6重量%以下である。
 スクリュー型二軸押出乾燥機から押し出されるシート状乾燥ゴムの100℃における複素粘性率([η]100℃)は、格別限定されるものではないが、通常1500~6000[Pa・s]、好ましくは2000~5000[Pa・s]、より好ましくは2500~4500[Pa・s]、最も好ましくは3000~4000[Pa・s]の範囲であるときに、シートとしての押出性と形状保持性とが高度にバランスされ好適である。すなわち、下限以上とすることにより押出性により優れるものとでき、上限以下とすることによりシート状乾燥ゴムの形状の崩れや破断を抑制できる。
 スクリュー型二軸押出乾燥機から押し出されたシート状乾燥ゴムは、そのまま折りたたんで使用してもよいが、通常は、切断して用いることができる。
 シート状乾燥ゴムの切断は、格別な限定はないが、本発明のアクリルゴムは粘着性が強いことから、空気を巻き込まずに連続的に切断するために、シート状乾燥ゴムを冷却してから行うのが好ましい。
 シート状乾燥ゴムの切断温度は、格別な限定はないが、通常60℃以下、好ましくは55℃以下、より好ましくは50℃以下であるときに、切断性と生産性とが高度にバランスされ好適である。
 シート状乾燥ゴムの60℃における複素粘性率([η]60℃)は、格別限定されるものではないが、通常15,000[Pa・s]以下、好ましくは2000~10,000[Pa・s]、より好ましくは2,500~7,000[Pa・s]、最も好ましくは2,700~5,500[Pa・s]の範囲にあるときに空気を巻き込まずに且つ連続的に切断ができ好適である。
 シート状乾燥ゴムの100℃における複素粘性率([η]100℃)と60℃における複素粘性率([η]60℃)との比([η]100℃/[η]60℃)は、格別な限定はなく使用目的に応じて適宜選択されればよいが、通常0.5以上、好ましくは0.6以上、より好ましくは0.7以上、シート状乾燥ゴムの100℃における複素粘性率([η]100℃)と60℃における複素粘性率([η]60℃)との比([η]100℃/[η]60℃)は、また、通常0.5~0.99、好ましくは0.55~0.95、より好ましくは0.6~0.9、特に好ましくは0.65~0.85、最も好ましくは0.7~0.8の範囲であるであるときに空気巻き込み性が少なく、且つ切断と生産性が高度にバランスされ好適である。
 シート状乾燥ゴムの冷却方法としては、格別限定はなく室温に放置してもよいが、シート状乾燥ゴムの熱伝導度が0.15~0.35W/mKと非常に小さいために、送風あるいは冷房下での空冷方式、水を吹き付ける水かけ方式、水中に浸漬する浸漬方式などの強制冷却が生産性を上げるために好ましく、特に送風あるいは冷下での空冷方式が好適である。
 シート状乾燥ゴムの空冷方式では、例えば、スクリュー型押出機からベルトコンベアなどの搬送機上にシート状乾燥ゴムを押し出し、冷風を吹き付ける中で搬送し冷却することができる。冷風の温度は、格別限定されるものではないが、通常0~25℃、好ましくは5~25℃、より好ましくは10~20℃の範囲である。冷却される長さは、格別限定はないが、通常40℃/hr以上、好ましくは50℃/hr以上、より好ましくは100℃/hr以上、特に好ましくは150℃/hr以上であるときに切断が容易になり好適である。本発明においては、また、シート状乾燥ゴムの冷却速度が、通常40℃/hr以上、好ましくは50℃/hr以上、より好ましくは100℃/hr以上、特に好ましくは150℃/hr以上であるときにアクリルゴム組成物のスコーチ安定性に優れ好適である。
 シート状乾燥ゴムの切断長さは、格別な限定はなく使用目的に応じて適宜選択されるが、通常100~800mm、好ましくは200~500mm、より好ましくは250~450mmの範囲である。
 かくして得られるシート状アクリルゴムは、クラム状アクリルゴムに比べて操作性に優れ、且つ、射出成型性、架橋性、強度特性及び耐圧縮永久歪み特性に優れるとともに保存安定性、バンバリー加工性及び耐水性にも優れ、そのまま、あるいは積層してベール化されて使用することができる。
(積層工程)
 本発明のベール状アクリルゴムの製造方法は、格別限定されるものではないが、上記シート状アクリルゴムを積層することにより空気の巻き込みの少ない保存安定性に優れるベール状アクリルゴムが得られ好適である。
 シート状アクリルゴムの積層温度は、格別限定はないが、通常30℃以上、好ましくは35℃以上、より好ましくは40℃以上であるときに積層時に巻き込まれる空気を逃がすことができ好適である。積層枚数は、前記ベール状アクリルゴムの大きさまたは重量に応じて適宜選択されればよい。本発明のベール状アクリルゴムは、積層したシート状アクリルゴムの自重により一体化される。
 かくして得られる本発明のベール状アクリルゴムは、クラム状アクリルゴムに比べ操作性に優れ、且つ、射出成型性、架橋性、強度特性及び耐圧縮永久歪み特性に優れるとともに保存安定性、バンバリー加工性及び耐水性にも優れ、ベール状アクリルゴムをそのまま、あるいは必要量を切断してバンバリー、ロールなどの混合機に投入して用いることができる。
<ゴム組成物>
 本発明のゴム組成物は、前記アクリルゴムを含むゴム成分、充填剤及び架橋剤を含むことを特徴とする。
 本発明のゴム組成物の主たる成分となるゴム成分としては、本発明のアクリルゴム単独で用いてもよく、あるいは必要に応じて、本発明のアクリルゴムとその他のゴム成分とを組み合わせて用いてもよい。ゴム成分中における本発明のアクリルゴムの含有量は、使用目的に応じて選択されればよく、例えば、通常30重量%以上、好ましくは50重量%以上、より好ましくは70重量%以上である。
 本発明のアクリルゴムと組み合わせるその他のゴム成分としては、格別な限定はなく、例えば、天然ゴム、ポリブタジエンゴム、ポリイソプレンゴム、スチレン-ブタジエンゴム、アクリロニトリル-ブタジエンゴム、シリコンゴム、フッ素ゴム、オレフィン系エラストマー、スチレン系エラストマー、塩化ビニル系エラストマー、ポリエステル系エラストマー、ポリアミド系エラストマー、ポリウレタン系エラストマー、ポリシロキサン系エラストマーなどを挙げることができる。
 これらのその他のゴム成分は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。これらのその他のゴム成分の形状は、クラム状、ストランド状、ベール状、シート状、粉体状などいずれであっても構わない。ゴム成分全体におけるその他のゴム成分の含有量は、本発明の効果を損ねない範囲で適宜選択され、例えば、通常70重量%以下、好ましくは50重量%以下、より好ましくは30重量%以下である。
 ゴム組成物に含まれる充填剤としては、格別な限定はないが、例えば、補強性充填剤、非補強性充填剤などが挙げられ、好ましくは補強性充填剤であるときにゴム組成物のバンバリー加工性、射出成型性及び短時間の架橋性に優れ、且つ、架橋物の耐水性、強度特性及び耐圧縮永久歪み特性が高度に優れるので好適である。
 補強性充填剤としては、例えば、ファーネスブラック、アセチレンブラック、サーマルブラック、チャンネルブラック及びグラファイトなどのカーボンブラック類;湿式シリカ、乾式シリカ、コロイダルシリカなどのシリカ類;などを挙げることができる。非補強性充填剤としては、石英粉末、ケイソウ土、亜鉛華、塩基性炭酸マグネシウム、活性炭酸カルシウム、ケイ酸マグネシウム、ケイ酸アルミニウム、二酸化チタン、タルク、硫酸アルミニウム、硫酸カルシウム、硫酸バリウムなどを挙げることができる。
 これらの充填剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができ、その配合量は、本発明の効果を損ねない範囲で適宜選択され、ゴム成分100重量部に対して、通常1~200重量部、好ましくは10~150重量部、より好ましくは20~100重量部の範囲である。
 ゴム組成物に使用される架橋剤としては、格別な限定はなく従来公知の架橋剤を使用目的に応じて選択され、例えば、硫黄化合物などの無機架橋剤や有機架橋剤などが挙げられ、好ましくは有機架橋剤である。架橋剤としては、また、多価化合物または単価化合物のいずれでもよいが、好ましくは反応性が2個以上である多価化合物が好適である。架橋剤としては、更に、イオン架橋性化合物またはラジカル架橋性化合物のいずれでもよいが、好適にはイオン架橋性化合物である。
 有機架橋剤としては、格別な限定はないが、イオン架橋性有機化合物が好ましく、多価イオン有機化合物が特に好ましい。架橋剤が、多価イオン有機化合物(多価イオン架橋性化合物)であるときにゴム組成物のバンバリー加工性や射出成型性及び短時間の架橋性に優れ、且つ、架橋物の耐水性、強度特性及び耐圧縮永久歪み特性が高度に優れるので特に好適である。イオン架橋性または多価イオンの「イオン」としては、イオン反応性のイオンであり、例えば、前記アクリルゴムのイオン反応性基含有単量体のイオン反応性基とイオン反応するものであれば格別な限定はないが、好適には、アミン基、エポキシ基、カルボキシル基、チオール基などのイオン反応性基を有するイオン架橋性有機化合物が挙げられる。
 多価イオン有機化合物の具体例としては、多価アミン化合物、多価エポキシ化合物、多価カルボン酸化合物、多価チオール化合物などが挙げられ、好ましくは多価アミン化合物や多価チオール化合物、より好ましくは多価アミン化合物である。
 多価アミン化合物としては、例えば、ヘキサメチレンジアミン、ヘキサメチレンジアミンカーバメート、N,N'-ジシンナミリデン-1,6-ヘキサンジアミンなどの脂肪族多価アミン化合物;4,4'-メチレンジアニリン、p-フェニレンジアミン、m-フェニレンジアミン、4,4'-ジアミノジフェニルエーテル、3,4'-ジアミノジフェニルエーテル、4,4'-(m-フェニレンジイソプロピリデン)ジアニリン、4,4'-(p-フェニレンジイソプロピリデン)ジアニリン、2,2'-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパン、4,4'-ジアミノベンズアニリド、4,4'-ビス(4-アミノフェノキシ)ビフェニル、m-キシリレンジアミン、p-キシリレンジアミン、1,3,5-ベンゼントリアミンなどの芳香族多価アミン化合物;などが挙げられる。これらの中でも、ヘキサメチレンジアミンカーバメート、2,2'-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパンなどが好ましい。多価アミン化合物としては、また、これらの炭酸塩を好適に用いることができる。これらの多価アミン化合物は、特に、カルボキシル基含有のアクリルゴム、あるいはエポキシ基含有のアクリルゴムと組み合わせて好適に用いられる。
 多価チオール化合物としては、好適にはトリアジンチオール化合物が用いられ、例えば、6-トリメルカプト-s-トリアジン、2-アニリノ-4,6-ジチオール-s-トリアジン、1-ジブチルアミノ-3,5-ジメルカプトトリアジン、2-ジブチルアミノ-4,6-ジチオール-s-トリアジン、1-フェニルアミノ-3,5-ジメルカプトトリアジン、2,4,6-トリメルカプト-1,3,5-トリアジン、1-ヘキシルアミノ-3,5-ジメルカプトトリアジンなどが挙げられる。これらのトリアジンチオール化合物は、特に、塩素原子含有のアクリルゴムと組み合わせて好適に用いられる。
 その他の多価有機化合物としては、テトラデカン二酸などの多価カルボン酸化合物、ジメチルジチオカルバミン酸亜鉛などのジチオカルバミン酸金属塩などが挙げられる。これらのその他の多価有機化合物は、特に、エポキシ基含有のアクリルゴムと組み合わせて好適に用いられる。
 これらの架橋剤は、それぞれ単独であるいは2種以上組み合わせて用いることができ、その配合量は、ゴム成分100重量部に対し、通常0.001~20重量部、好ましくは0.1~10重量部、より好ましくは0.1~5重量部である。架橋剤の配合量をこの範囲とすることにより、ゴム弾性を充分なものとしながら、ゴム架橋物としての機械的強度を優れたものとすることができ好適である。
 本発明のゴム組成物は、必要に応じて老化防止剤を配合することができる。老化防止剤の種類は、特に限定されないが、例えば、2,6-ジ-t-ブチル-4-メチルフェノール、2,6-ジ-t-ブチルフェノール、ブチルヒドロキシアニソール、2,6-ジ-t-ブチル-α-ジメチルアミノ-p-クレゾール、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、スチレン化フェノール、2,2'-メチレン-ビス(6-α-メチル-ベンジル-p-クレゾール)、4,4'-メチレンビス(2,6-ジ-t-ブチルフェノール)、2,2'-メチレン-ビス(4-メチル-6-t-ブチルフェノール)、2,4-ビス[(オクチルチオ)メチル]-6-メチルフェノール、2,2'-チオビス-(4-メチル-6-t-ブチルフェノール)、4,4'-チオビス-(6-t-ブチル-o-クレゾール)、2,6-ジ-t-ブチル-4-(4,6-ビス(オクチルチオ)-1,3,5-トリアジン-2-イルアミノ)フェノールなどのその他のフェノール系老化防止剤;トリス(ノニルフェニル)ホスファイト、ジフェニルイソデシルホスファイト、テトラフェニルジプロピレングリコール・ジホスファイトなどの亜燐酸エステル系老化防止剤;チオジプロピオン酸ジラウリルなどの硫黄エステル系老化防止剤;フェニル-α-ナフチルアミン、フェニル-β-ナフチルアミン、p-(p-トルエンスルホニルアミド)-ジフェニルアミン、4,4'-(α,α-ジメチルベンジル)ジフェニルアミン、N,N-ジフェニル-p-フェニレンジアミン、N-イソプロピル-N'-フェニル-p-フェニレンジアミン、ブチルアルデヒド-アニリン縮合物などのアミン系老化防止剤;2-メルカプトベンズイミダゾールなどのイミダゾール系老化防止剤;6-エトキシ-2,2,4-トリメチル-1,2-ジヒドロキノリンなどのキノリン系老化防止剤;2,5-ジ-(t-アミル)ハイドロキノンなどのハイドロキノン系老化防止剤;などが挙げられる。これらの中でも特にアミン系老化防止剤が好ましい。
 これらの老化防止剤は、それぞれ単独で、あるいは2種以上組み合わせて用いることができ、その配合量は、ゴム成分100重量部に対して、0.01~15重量部、好ましくは0.1~10重量部、より好ましくは1~5重量部の範囲である。
 本発明のゴム組成物は、上記本発明のアクリルゴムを含むゴム成分、充填剤及び架橋剤を必須成分として、及び必要に応じて老化防止剤を含み、さらに、必要に応じて当該技術分野で通常使用される他の添加剤、例えば、架橋助剤、架橋促進剤、架橋遅延剤、シランカップリング剤、可塑剤、加工助剤、滑材、顔料、着色剤、帯電防止剤、発泡剤などを任意に配合できる。これらのその他の配合剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができ、その配合量は、本発明の効果を損ねない範囲で適宜選択される。
 本発明のゴム組成物の製造方法としては、本発明のアクリルゴムを含むゴム成分、充填剤、架橋剤及び必要に応じて含有できる老化防止剤やその他の配合剤を混合する方法が挙げられ、混合には、従来のゴム加工分野において利用されている任意の手段、例えば、オープンロール、バンバリーミキサー、各種ニーダー類などを利用することができる。各成分の混合手順は、ゴム加工の分野において行われている通常の手順で行えばよく、例えば、熱で反応や分解しにくい成分を充分に混合した後、熱で反応や分解しやすい成分である架橋剤などを、反応や分解が起こらない温度で短時間に混合することが好ましい。
<ゴム架橋物>
 本発明のゴム架橋物は、上記ゴム組成物を架橋してなるものである。
 本発明のゴム架橋物は、本発明のゴム組成物を用い、所望の形状に対応した成形機、例えば、押出機、射出成形機、圧縮機又はロールなどにより成形を行い、加熱することにより架橋反応を行い、ゴム架橋物として形状を固定化することにより製造することができる。この場合においては、予め成形した後に架橋しても、成形と同時に架橋を行ってもよい。成形温度は、通常10~200℃、好ましくは25~150℃である。架橋温度は、通常100~250℃、好ましくは130~220℃、より好ましくは150~200℃であり、架橋時間は、通常0.1分~10時間、好ましくは1分~5時間である。加熱方法としては、プレス加熱、蒸気加熱、オーブン加熱、及び熱風加熱などのゴムの架橋に用いられる方法を適宜選択すればよい。
 本発明のゴム架橋物は、ゴム架橋物の形状、大きさなどによっては、さらに加熱して二次架橋を行ってもよい。二次架橋は、加熱方法、架橋温度、形状などにより異なるが、好ましくは1~48時間行う。加熱方法、加熱温度は適宜選択すればよい。
 本発明のゴム架橋物は、引張強度、伸び、硬さなどのゴムとしての基本特性を維持しながら、優れた耐圧縮永久歪み特性及び耐水性を有するものである。
 本発明のゴム架橋物は、上記特性を活かして、例えば、O-リング、パッキン、ダイアフラム、オイルシール、シャフトシール、ベアリングシール、メカニカルシール、ウエルヘッドシール、電気・電子機器用シール、空気圧縮機器用シールなどのシール材;シリンダブロックとシリンダヘッドとの連結部に装着されるロッカーカバーガスケット、オイルパンとシリンダヘッドあるいはトランスミッションケースとの連結部に装着されるオイルパンガスケット、正極、電解質板及び負極を備えた単位セルを挟み込む一対のハウジング間に装着された燃料電池セパレーター用ガスケット、ハードディスクドライブのトップカバー用ガスケットなどの各種ガスケット;緩衝材、防振材;電線被覆材;工業用ベルト類;チューブ・ホース類;シート類;などとして好適に用いられる。
 本発明のゴム架橋物は、また、自動車用途に用いられる押し出し成形型品及び型架橋製品として、例えば、燃料ホース、フィラーネックホース、ベントホース、ペーパーホース、オイルホースなどの燃料タンクなどの燃料油系ホース、ターボエアーホース、ミッションコントロールホースなどのエアー系ホース、ラジエターホース、ヒーターホース、ブレーキホース、エアコンホースなどの各種ホース類に好適に用いられる。
<アクリルゴムの製造に用いられる装置構成>
 次に、本発明の一実施形態に係るアクリルゴムの製造に用いられる装置構成について説明する。図1は、本発明の一実施形態に係るアクリルゴムの製造に用いられる装置構成を有するアクリルゴム製造システムの一例を模式的に示す図である。本発明に係るアクリルゴムの製造には、例えば、図1に示すアクリルゴム製造システム1を使用することができる。
 図1に示すアクリルゴム製造システム1は、不図示の乳化重合反応器、凝固装置3、洗浄装置4、水切り機43、スクリュー型二軸押出乾燥機により構成されている。
 乳化重合反応器は、上述した乳化重合工程に係る処理を行うように構成されている。図1には不図示であるが、この乳化重合反応器は、例えば重合反応槽、反応温度を制御する温度制御部、モータ及び撹拌翼を備えた撹拌装置を有する。乳化重合反応器では、アクリルゴムを形成するための単量体成分に水と乳化剤とを混合して撹拌機で適切に撹拌しながらエマルジョン化し、有機ラジカル発生剤と還元剤とからなるレドックス触媒存在下に乳化重合反応を開始し、重合途中で連鎖移動剤を回分的に後添加して乳化重合液を得ることができる。乳化重合反応器は、回分式、半回分式、連続式のいずれであってもよく、槽型反応器、管型反応器のいずれであってもよい。
 図1に示す凝固装置3は、上述した凝固工程に係る処理を行うように構成されている。図1に模式的に図示されているように、凝固装置3は、例えば撹拌槽30、撹拌槽30内を加熱する加熱部31、撹拌槽30内の温度を制御する不図示の温度制御部、モータ32及び撹拌翼33を備えた撹拌装置34、撹拌翼33の回転数及び回転速度を制御する不図示の駆動制御部を有する。凝固装置3では、乳化重合反応器で得られた乳化重合液を、凝固液と接触させて凝固させることにより含水クラムを生成することができる。
 凝固装置3では、例えば、乳化重合液と凝固液との接触は、乳化重合液を撹拌している凝固液中に添加する方法が採用される。すなわち、凝固装置3の撹拌槽30に凝固液を充填しておき、この凝固液に乳化重合液を添加及び接触させて乳化重合液を凝固させることによって含水クラムが生成される。
 凝固装置3の加熱部31は、撹拌槽30に充填された凝固液を加熱するよう構成されている。また、凝固装置3の温度制御部は、温度計で計測された撹拌槽30内の温度を監視しながら加熱部31による加熱動作を制御することで、撹拌槽30内の温度を制御するように構成されている。撹拌槽30内の凝固液の温度は、温度制御部によって、通常40℃以上、好ましくは40~90℃、より好ましくは50~80℃の範囲となるよう制御される。
 凝固装置3の撹拌装置34は、撹拌槽30に充填された凝固液を撹拌するように構成されている。具体的には、撹拌装置34は、回転動力を生み出すモータ32と、モータ32の回転軸に対して垂直方向に広がる撹拌翼33を備えている。撹拌翼33は、撹拌槽30に充填された凝固液内で、モータ32の回転動力により回転軸を中心として回転することで凝固液を流動させることができる。撹拌翼33の形状や大きさ、設置数などは特に限定されない。
 凝固装置3の駆動制御部は、撹拌装置34のモータ32の回転駆動を制御して、撹拌装置34の撹拌翼33の回転数及び回転速度を所定値に設定するように構成されている。凝固液の撹拌数が、例えば、通常100rpm以上、好ましくは200~1000rpm、より好ましくは300~900rpm、特に好ましくは400~800rpmの範囲となるように、駆動制御部によって撹拌翼33の回転が制御される。凝固液の周速が、通常0.5m/s以上、好ましくは1m/s以上、より好ましくは1.5m/s以上、特に好ましくは2m/s以上、最も好ましくは2.5m/s以上となるように、駆動制御部によって撹拌翼33の回転が制御される。さらに、凝固液の周速の上限値が、通常50m/s以下、好ましくは30m/s以下、より好ましくは25m/s以下、最も好ましくは20m/s以下となるように、駆動制御部によって撹拌翼33の回転が制御される。
 図1に示す洗浄装置4は、上述した洗浄工程に係る処理を行うように構成されている。
 図1に模式的に図示されているように、洗浄装置4は、例えば洗浄槽40、洗浄槽40内を加熱する加熱部41、洗浄槽40内の温度を制御する不図示の温度制御部を有する。洗浄装置4では、凝固装置3で生成された含水クラムを多量の水と混合して洗浄することにより、最終的に得られるアクリルゴム中の灰分量を効果的に低減することができる。
 洗浄装置4の加熱部41は、洗浄槽40内を加熱するよう構成されている。また、洗浄装置4の温度制御部は、温度計で計測された洗浄槽40内の温度を監視しながら加熱部41による加熱動作を制御することで、洗浄槽40内の温度を制御するように構成されている。上述したように、洗浄槽40内の洗浄水の温度は、通常40℃以上、好ましくは40~100℃、より好ましくは50~90℃、最も好ましくは60~80℃の範囲となるよう制御される。
 洗浄装置4で洗浄された含水クラムは、脱水工程及び乾燥工程を行うスクリュー型二軸押出乾燥機5に供給される。このとき、洗浄後の含水クラムは、遊離水を分離することが可能な水切り機43を通ってスクリュー型二軸押出乾燥機5に供給されることが好ましい。水切り機43には、例えば金網、スクリーン、電動篩機などを用いることができる。
 また、洗浄後の含水クラムがスクリュー型二軸押出乾燥機5に供給される際、含水クラムの温度は40℃以上、更に60℃以上であることが好ましい。例えば、洗浄装置4における水洗に用いられる水の温度を60℃以上(例えば70℃)とすることで、スクリュー型二軸押出乾燥機5に供給された際の含水クラムの温度を60℃以上に維持することができるようにしてもよく、洗浄装置4からスクリュー型二軸押出乾燥機5に搬送する際に含水クラムの温度が40℃以上、好ましくは60℃以上となるよう加温してもよい。これにより、後工程である脱水工程及び乾燥工程を効果的に行うことが可能となり、最終的に得られる乾燥ゴムの含水率を大幅に低減させることが可能となる。
 図1に示すスクリュー型二軸押出乾燥機5は、上述した脱水工程及び乾燥工程に係る処理を行うように構成されている。なお、図1には好適な例としてスクリュー型二軸押出乾燥機5が図示されているが、脱水工程に係る処理を行う脱水機として遠心分離機やスクイザーなどを用いてもよく、乾燥工程に係る処理を行う乾燥機として熱風乾燥機、減圧乾燥機、エキスパンダー乾燥機、ニーダー型乾燥機などを用いてもよい。
 スクリュー型二軸押出乾燥機5は、脱水工程及び乾燥工程を経て得られる乾燥ゴムを所定の形状に成形して排出するように構成されている。具体的には、スクリュー型二軸押出乾燥機5は、洗浄装置4で洗浄された含水クラムを脱水する脱水機としての機能を有する脱水バレル部53と、含水クラムを乾燥する乾燥機としての機能を有する乾燥バレル部54とを備えており、さらにスクリュー型二軸押出乾燥機5の下流側に含水クラムを成形する成形機能を有するダイ59を備えて構成されている。
 以下、図2を参照しながら、スクリュー型二軸押出乾燥機5の構成について説明する。
 図2は、図1で示したスクリュー型二軸押出乾燥機5として好適な一具体例の構成を示している。このスクリュー型二軸押出乾燥機5により、上述した脱水・乾燥工程を好適に行うことができる。
 図2に示すスクリュー型二軸押出乾燥機5は、バレルユニット51内に不図示の一対のスクリューを備えてなる二軸スクリュー型の押出乾燥機である。スクリュー型二軸押出乾燥機5は、バレルユニット51内の一対のスクリューを回転駆動する駆動ユニット50を有する。この構成によりアクリルゴムに最適なシェアをかけて乾燥ができ好適である。駆動ユニット50は、バレルユニット51の上流端(図2で左端)に取り付けられている。また、スクリュー型二軸押出乾燥機5は、バレルユニット51の下流端(図2で右端)にダイ59を有する。
 バレルユニット51は、上流側から下流側(図2で左側から右側)にわたり、供給バレル部52、脱水バレル部53、乾燥バレル部54を有する。
 供給バレル部52は、2つの供給バレル、すなわち、第1の供給バレル52a及び第2の供給バレル52bにより構成されている。
 また、脱水バレル部53は、3つの脱水バレル、すなわち、第1の脱水バレル53a、第2の脱水バレル53b及び第3の脱水バレル53cにより構成されている。
 また、乾燥バレル部54は、8個の乾燥バレル、すなわち、第1の乾燥バレル54a、第2の乾燥バレル54b、第3の乾燥バレル54c、第4の乾燥バレル54d、第5の乾燥バレル54e、第6の乾燥バレル54f、第7の乾燥バレル54g、第8の乾燥バレル54hにより構成されている。
 このようにバレルユニット51は、分割された13個の各バレル52a~52b,53a~53c,54a~54hが上流側から下流側にわたり連結されて構成されている。
 また、スクリュー型二軸押出乾燥機5は、上記各バレル52a~52b,53a~53c,54a~54hを個別に加熱して、各バレル52a~52b,53a~53c,54a~54h内の含水クラムをそれぞれ所定温度に加熱する不図示の加熱手段を有する。加熱手段は、各バレル52a~52b,53a~53c,54a~54hに対応する数を備える。そのような加熱手段としては、例えば、各バレル52a~52b,53a~53c,54a~54h内に形成されたスチーム流通ジャケットにスチーム供給手段から高温スチームを供給するなどの構成が採用されるが、これに限定はされない。また、スクリュー型二軸押出乾燥機5は、各バレル52a~52b,53a~53c,54a~54hに対応する各加熱手段の設定温度を制御する不図示の温度制御手段を有する。
 なお、バレルユニット51における各バレル部52、53、54をそれぞれ構成する供給バレル、脱水バレル及び乾燥バレルの設置数は、図2に示す態様に限定されるものではなく、乾燥処理するアクリルゴムの含水クラムの含水量などに応じた数に設定することができる。
 例えば、供給バレル部52の供給バレルの設置数は例えば1~3個とされる。また、脱水バレル部53の脱水バレルの設置数は、例えば2~10個が好ましく、3~6個とすると、粘着性のアクリルゴムの含水クラムの脱水を効率よく行うことができるのでより好ましい。また、乾燥バレル部54の乾燥バレルの設置数は、例えば2~10個が好ましく、3~8個であるとより好ましい。
 バレルユニット51内の一対のスクリューは、駆動ユニット50に格納されたモータなどの駆動手段によって回転駆動される。一対のスクリューはバレルユニット51内の上流側から下流側にわたって延在しており、回転駆動されることで、供給バレル部52に供給された含水クラムを混合しながら下流側に搬送することができるようになっている。一対のスクリューとしては、互いに山部と谷部とが噛み合わされる状態とされた二軸噛合型であることが好ましく、これにより、含水クラムの脱水効率及び乾燥効率を高めることができる。
 また、一対のスクリューの回転方向は、同方向でも異方向でもよいが、セルフクリーニングの性能面からは同方向に回転する形式のものが好ましい。一対のスクリューのスクリュー形状としては、特に限定されず、各バレル部52、53、54において必要とされる形状であればよく、特に限定されない。
 供給バレル部52は、含水クラムをバレルユニット51内に供給する領域である。供給バレル部52の第1の供給バレル52aは、バレルユニット51内に含水クラムを供給するフィード口55を有する。
 脱水バレル部53は、含水クラムから、凝固剤などが含まれる液体(セラム水)を分離し排出する領域である。
 脱水バレル部53を構成する第1~第3の脱水バレル53a~53cは、含水クラムの水分を外部に排出する脱水スリット56a、56b、56cをそれぞれ有する。各脱水スリット56a、56b、56cは、各脱水バレル53a~53cにそれぞれ複数形成されている。
 各脱水スリット56a、56b、56cのスリット幅すなわち目開きは、使用条件に応じて適宜選択されればよく、通常で0.01~5mmとされ、含水クラムの損失が少なく、且つ含水クラムの脱水が効率的にできる点から、好ましくは0.1~1mmであり、0.2~0.6mmであればより好ましい。
 脱水バレル部53の各脱水バレル53a~53cにおける含水クラムからの水分の除去は、それぞれの脱水スリット56a、56b、56cから液状で除去する場合と、蒸気状で除去する場合との二通りがある。本実施形態の脱水バレル部53においては、水分を液状で除去する場合を排水と定義し、蒸気状で除去する場合を排蒸気と定義して区別する。
 脱水バレル部53においては、排水及び排蒸気を組み合わせることで、粘着性アクリルゴムの含水率を低下させることが効率よくできるので好適である。脱水バレル部53では、第1~第3の脱水バレル53a~53cのうち、どの脱水バレルで排水又は排蒸気を行うかは、使用目的に応じて適宜に設定すればよいが、通常製造されるアクリルゴム中の灰分量を少なくする場合は、排水を行う脱水バレルを多くするとよい。その場合、例えば図2に示すように、上流側の第1及び第2の脱水バレル53a、53bで排水を行い、下流側の第3の脱水バレル53cで排蒸気を行う。また、例えば脱水バレル部53が4つの脱水バレルを有する場合には、例えば上流側の3つの脱水バレルで排水を行い、下流側の1つの脱水バレルで排蒸気を行うといった態様が考えられる。一方、含水量を低減する場合には、排蒸気を行う脱水バレルを多くするとよい。
 脱水バレル部53の設定温度は、上述の脱水・乾燥工程で述べたように、通常60~150℃、好ましくは70~140℃、より好ましくは80~130℃の範囲であり、排水状態で脱水する脱水バレルの設定温度は、通常60℃~120℃、好ましくは70~110℃、より好ましくは80~100℃であり、排蒸気状態で脱水する脱水バレルの設定温度は、通常100~150℃、好ましくは105~140℃、より好ましくは110~130℃の範囲である。
 乾燥バレル部54は、脱水後の含水クラムを減圧下で乾燥させる領域である。乾燥バレル部54を構成する第1~第8の乾燥バレル54a~54hのうち、第2の乾燥バレル54b、第4の乾燥バレル54d、第6の乾燥バレル54f及び第8の乾燥バレル54hは、脱気のためのベント口58a、58b、58c、58dをそれぞれ有する。各ベント口58a、58b、58c、58dには、不図示のベント配管がそれぞれ接続されている。
 各ベント配管の末端には不図示の真空ポンプがそれぞれ接続されており、それら真空ポンプの作動により、乾燥バレル部54内が所定圧力に減圧されるようになっている。スクリュー型押出機5は、それら真空ポンプの作動を制御して乾燥バレル部54内の減圧度を制御する図示せぬ圧力制御手段を有する。
 乾燥バレル部54での減圧度は適宜選択されればよいが、上述したように、通常1~50kPa、好ましくは2~30kPa、より好ましくは3~20kPaに設定される。
 また、乾燥バレル部54内の設定温度は適宜選択されればよいが、上述したように、通常100~250℃、好ましくは110~200℃、より好ましくは120~180℃に設定される。
 乾燥バレル部54を構成する各乾燥バレル54a~54hにおいては、全ての乾燥バレル54a~54h内の設定温度を近似した値にしてもよいし、異ならせてもよいが、上流側(脱水バレル部53側)の温度よりも下流側(ダイ59側)の温度の方を高温に設定すると、乾燥効率が向上するので好ましい。
 ダイ59は、バレルユニット51の下流端に配置される金型であり、所定のノズル形状の吐出口を有する。乾燥バレル部54で乾燥処理されたアクリルゴムは、ダイ59の吐出口を通過することで、所定のノズル形状に応じた形状に押出成形される。ダイ59を通過するアクリルゴムは、ダイ59のノズル形状に応じて、粒状、柱状、丸棒状、シート状など、種々の形状に成形できるが、本発明においてはシート状に成型される。スクリューとダイ59との間には、ブレーカープレートや金網を設けてもよいし、設けなくてもよい。
 洗浄工程を経て得られたアクリルゴムの含水クラムは、フィード口55から供給バレル部52に供給される。供給バレル部52に供給された含水クラムは、バレルユニット51内の一対のスクリューの回転により、供給バレル部52から脱水バレル部53に送られる。脱水バレル部53では、前述したように第1~第3の脱水バレル53a~53cにそれぞれ設けられた脱水スリット56a、56b、56cから、含水クラムに含まれる水分の排水や排蒸気が行われて、含水クラムが脱水処理される。
 脱水バレル部53で脱水された含水クラムは、バレルユニット51内の一対のスクリューの回転により乾燥バレル部54に送られる。乾燥バレル部54に送られた含水クラムは可塑化混合されて融体となり、発熱して昇温しながら下流側へ運ばれる。そして、このアクリルゴムの融体中に含まれる水分が気化し、その水分(蒸気)が各ベント口58a、58b、58c、58dにそれぞれ接続された不図示のベント配管を通じて外部へ排出される。
 上記のように乾燥バレル部54を通過することで含水クラムは乾燥処理されてアクリルゴムの融体となり、そのアクリルゴムはバレルユニット51内の一対のスクリューの回転によりダイ59に供給されダイ59から押し出される。
 ここで、本実施形態に係るスクリュー型二軸押出乾燥機5の操業条件の一例を挙げる。
 バレルユニット51内の一対のスクリューの回転数(N)は、諸条件に応じて適宜選択されればよく、通常で10~1000rpmとされ、アクリルゴムの含水量とメチルエチルケトン不溶解分量を効率よく低減できる点から、好ましくは50~750rpm、より好ましくは100~500rpmであり、120~300rpmが最も好ましい。
 また、アクリルゴムの押出量(Q)は、格別限定されないが、通常で100~1500kg/hrとされ、好ましくは300~1200kg/hr、より好ましくは400~1000kg/hrであり、500~800kg/hrが最も好ましい。
 アクリルゴムの押出量(Q)とスクリューの回転数(N)との比(Q/N)は、格別限定されないが、通常で1~20とされ、好ましくは2~10、より好ましくは3~8であり、4~6が特に好ましい。
 バレルユニット51内の最大トルクは、格別限定されるものではないが、通常5~125N・m、好ましくは10~100N・m、より好ましくは10~50N・m、特に好ましくは15~45N・mの範囲である。
 バレルユニット51内の比動力は、格別な限定はないが、通常0.01~0.3[kw・h/kg]以上、好ましくは0.05~0.25[kw・h/kg]、より好ましくは0.1~0.2[kw・h/kg]の範囲である。
 バレルユニット51内の比電力は、格別な限定はないが、通常0.1~0.6[A・h/kg]以上、好ましくは0.15~0.55[A・h/kg]、より好ましくは0.2~0.5[A・h/kg]の範囲である。
 バレルユニット51内の剪断速度は、格別な限定はないが、通常5~150[1/s]以上、好ましくは10~100[1/s]、より好ましくは25~75[1/s]の範囲である。
 バレルユニット51内のアクリルゴムの剪断粘度は、格別な限定はないが、通常4000~8000[Pa・s]以下、好ましくは4500~7500[Pa・s]、より好ましくは5000~7000[Pa・s]の範囲である。
 図1に示す冷却装置6は、脱水機による脱水工程及び乾燥機による乾燥工程を経て得られた乾燥ゴムを冷却するように構成されている。冷却装置6による冷却方式としては、送風あるいは冷房下での空冷方式、水を吹き付ける水かけ方式、水中に浸漬する浸漬方式などを含む様々な方式を採用することが可能である。また、室温下に放置することで、乾燥ゴムを冷却するようにしてもよい。
 上述したように、ダイ59のノズル形状に応じて、スクリュー型押出機5から排出された乾燥ゴムは、粒状、柱状、丸棒状、シート状など、種々の形状に押出成形されるが、本発明においてはシート状に成型される。以下、図3を参照しながら、冷却装置6の一例として、シート状に成形されたシート状乾燥ゴム10を冷却する搬送式冷却装置60について説明する。
 図3は、図1で示した冷却装置6として好適な搬送式冷却装置60の構成を示している。図3に示す搬送式冷却装置60は、スクリュー型押出機5のダイ59の吐出口から排出されたシート状乾燥ゴム10を搬送しながら、空冷方式によって冷却するよう構成されている。この搬送式冷却装置60を用いることで、スクリュー型押出機5から排出されたシート状乾燥ゴムを好適に冷却することができる。
 図3に示す搬送式冷却装置60は、例えば、図2に示したスクリュー型押出機5のダイ59に直結するか、又はダイ59の近傍に設置して使用される。
 搬送式冷却装置60は、スクリュー型押出機5のダイ59から排出されるシート状乾燥ゴム10を図3中矢印A方向に搬送するコンベア61と、コンベア61上のシート状乾燥ゴム10に冷風を吹き付ける冷却手段65とを有する。
 コンベア61は、ローラ62、63と、これらローラ62、63に巻架され、シート状乾燥ゴム10がその上に載せられるコンベアベルト64とを有する。コンベア61は、コンベアベルト64上にスクリュー型押出機5のダイ59から排出されたシート状乾燥ゴム10を連続して下流側(図3で右側)に搬送するよう構成されている。
 冷却手段65は、特に限定されないが、例えば、不図示の冷却風発生手段から送られてくる冷却風をコンベアベルト64上のシート状乾燥ゴム10の表面に吹き付けることができるような構成を有するものなどが挙げられる。
 搬送式冷却装置60のコンベア61及び冷却手段65の長さ(冷却風の吹き付けが可能な部分の長さ)L1は、特に限定されないが、例えば10~100mであり、好ましくは20~50mである。また、搬送式冷却装置60におけるシート状乾燥ゴム10の搬送速度は、コンベア61及び冷却手段65の長さL1、スクリュー型押出機5のダイ59から排出されるシート状乾燥ゴム10の排出速度、目標とする冷却速度や冷却時間などに応じて適宜調整すればよいが、例えば10~100m/hrであり、より好ましくは15~70m/hrである。
 図3に示す搬送式冷却装置60によれば、スクリュー型押出機5のダイ59から排出されるシート状乾燥ゴム10をコンベア61にて搬送しつつ、シート状乾燥ゴム10に対し冷却手段65から冷却風を吹き付けることにより、シート状乾燥ゴム10の冷却が行われる。
 なお、搬送式冷却装置60としては、図3に示すような1つのコンベア61及び1つの冷却手段65を備える構成に特に限定されず、2つ以上のコンベア61と、これに対応する2つ以上の冷却手段65とを備えるような構成としてもよい。その場合には、2つ以上のコンベア61及び冷却手段65のそれぞれの総合長さを上記範囲とすればよい。
 図1に示すベール化装置7は、スクリュー型押出機5から押出成形され、さらに冷却装置6で冷却された乾燥ゴムを加工して、一塊のブロックであるベールを製造するよう構成されている。上述したように、スクリュー型押出機5は、乾燥ゴムを粒状、柱状、丸棒状、シート状など、種々の形状に押出成形することが可能であり、ベール化装置7は、このように種々の形状に成形された乾燥ゴムをベール化するように構成されている。ベール化装置7によって製造されるベール状アクリルゴムの重さや形状などは特に限定されないが、例えば約20kgの略直方体形状のベール状アクリルゴムが製造される。
 ベール化装置7は、例えばベーラーを備え、冷却された乾燥ゴムをベーラーにより圧縮することでベール状アクリルゴムを製造してもよい。
 また、スクリュー型押出機5によってシート状乾燥ゴム10を製造した場合には、シート状乾燥ゴム10を積層したベール状アクリルゴムを製造してもよい。例えば、図3に示す搬送式冷却装置60の下流側に配置されるベール化装置7に、シート状乾燥ゴム10を切断するカッティング機構が設けられていてもよい。具体的には、ベール化装置7のカッティング機構は、例えば、冷却されたシート状乾燥ゴム10を連続的に所定の間隔で切断して、所定の大きさのカットシート状乾燥ゴム16に加工するように構成されている。カッティング機構により所定の大きさに切断されたカットシート状乾燥ゴム16を複数枚積層することで、カットシート状乾燥ゴム16を積層したベール状アクリルゴムを製造することができる。
 カットシート状乾燥ゴム16を積層したベール状アクリルゴムを製造する場合には、例えば40℃以上のカットシート状乾燥ゴム16を積層することが好ましい。40℃以上のカットシート状乾燥ゴム16を積層することで、更なる冷却及び自重による圧縮によって良好な空気抜けが実現される。
 以下に、実施例及び比較例を挙げて、本発明についてより具体的に説明する。各例中の「部」、「%」及び「比」は、特に断りのない限り、重量基準である。なお、各種の物性などについては、以下の方法に従って評価した。
[単量体組成]
 アクリルゴムにおける単量体組成に関して、アクリルゴム中の各単量体単位の単量体構成はH-NMRで確認し、アクリルゴム中に反応性基の活性が残存していること及びその各反応性基含有量を下記方法で確認した。また、各単量体単位のアクリルゴム中の含有割合は、各単量体の重合反応に用いた使用量及び重合転化率から算出した。具体的には、重合反応は乳化重合反応でその重合転化率は、未反応の単量体がいずれも確認できない略100%であったことから、ゴム中の各単量体単位の含有割合は各単量体の使用量と同一とした。
[反応性基含有量]
 アクリルゴム中の反応性基の含有量は、下記方法により測定した。
(1)カルボキシル基量は、試料(アクリルゴム)をアセトンに溶解し水酸化カリウム溶液で電位差滴定を行うことにより算出した。
(2)エポキシ基量は、試料をメチルエチルケトンに溶解し、それに規定量の塩酸を加えてエポキシ基と反応させ、残留した塩酸量を水酸化カリウムで滴定することにより算出した。
(3)塩素量は、試料を燃焼フラスコ中で完全燃焼させ、発生する塩素を水に吸収させ硝酸銀で滴定することにより算出した。
[灰分量]
 アクリルゴム中に含まれる灰分量(%)は、JIS K6228 A法に準じて測定した。
[灰分成分量]
  アクリルゴム灰分中の各成分量(%)は、上記の灰分量測定の際に採取した灰分をΦ20mmの滴定濾紙に圧着し、ZSX Primus(Rigaku社製)を用いて成分量(ppm)をXRF測定し、上記灰分中の割合として算出した。
[分子量及び分子量分布]
 アクリルゴムの分子量(Mw、Mn、Mz)及び分子量分布(Mw/Mn及びMz/Mw)は、溶媒としてジメチルホルムアミドに塩化リチウムが0.05mol/L、37%濃塩酸が0.01%の濃度でそれぞれ添加された溶液を用いたGPC-MALS法により測定される絶対分子量及び絶対分子量分布である。ここで、「GPC-MALS法」とは、以下の内容である。GPC(gel permeation chromatography)法は、分子サイズの差に基づいて分離を行う液体クラマトグラフィーの一種であり、具体的には、GPC(Gel Permeation Chromatography)装置に多角度レーザ光散乱光度計(MALS)及び示差屈折率計(RI)を組み入れ、GPC装置でサイズ分別された分子鎖溶液の光散乱強度及び屈折率差を、溶融時間を追って測定することにより、溶質の分子量とその含有率を順次計算し、最終的には高分子物質の絶対分子量分布及び絶対平均分子量値を求める手法である。
 本装置である、ゲル浸透クロマトグラフィー多角度光散乱光度計の構成は、ポンプ(LC-20ADOpt 島津製作所社製)と、検出器である示差屈折率計(Optilab rEX Wyatt Technology社製)及び多角度光散乱検出器(DAWN HELEOS  Wyatt Technology社製)からなる。
 このように、溶質の分子量とその含有率を順次計算し求めた。GPC装置による測定条件及び測定方法は、以下のとおりである。
 カラム:TSKgel α-M 2本(φ7.8mm×30cm、東ソー社製)
 カラム温度:40℃
 流速:0.8ml/mm
 試料調整:ゴム試料10mgに溶媒5mlを加え、室温で緩やかに撹拌した(溶解を視認)。その後0.5μmフィルターを用いてろ過を行った。
[ガラス転移温度(Tg)]
 アクリルゴムのガラス転移温度(Tg)は、示差走査型熱量計(DSC、製品名「X-DSC7000」、日立ハイテクサイエンス社製)を用いて測定した。
[ゲル量]
 アクリルゴムのゲル量(%)は、メチルエチルケトンに対する不溶解分の量であり、以下の方法により求めた。
 アクリルゴム0.2g程度を秤量(Xg)し、100mlメチルエチルケトンに浸漬させて室温で24時間放置後、80メッシュ金網を用いてメチルエチルケトンに対する不溶解分を濾別した濾液、すなわち、メチルエチルケトンに溶解するゴム成分のみが溶解した濾液を蒸発乾燥固化させた乾燥固形分(Yg)を秤量し、下式により算出した。
 ゲル量(%)=100×(X-Y)/X
[比重]
 アクリルゴムの比重は、JIS K6268架橋ゴム-密度測定のA法に準じて測定した。
 下記の測定方法により求まる測定値は密度であるが、水の密度を1Mg/mとして、比重とする。具体的には、JIS K6268架橋ゴム-密度測定のA法に準じて求められるゴム試料の比重は、ゴム試料の空隙を含む容量で質量を割ったものであり、JIS K6268架橋ゴム-密度測定のA法に準じて測定されるゴム試料の密度を水の密度で除して求められるものである(ゴム試料の密度を水の密度で除すると、数値は同じで単位がなくなる)。詳細には、下記手順に基づいてゴム試料の比重が求められる。
(1)標準温度(23℃±2℃)に少なくとも3時間静置させたゴム試料から2.5gの試験片を切り出し、精度1mgの化学天秤上のフックから、質量が0.010g未満の細いナイロン糸を用いて試験片の底辺が化学天秤用振り分け皿から25mm上になるように吊り下げ、大気中で試験片の質量(m1)をmgまで2回測定する。
(2)次に、化学天秤用振り分け皿の上に置いた250cm容量のビーカーに煮沸後標準温度まで冷却した蒸留水を満たし、その中に試験片を浸漬し、試験片表面に付着する気泡を取り除き、天秤の指針の動きを数秒間観察し対流によって指針が徐々に触れないことを確認して水中での試験片の質量(m2)をmg単位で2回測定する。
(3)また、試験片の密度が1Mg/m未満の時(水中で試験片が浮いてしまう時)は、試験片におもりをつけて水中でのおもりの質量(m3)と、試験片及びおもりの質量(m4)をmg単位で2回測定する。
(4)ゴム試料の比重は、上記測定したm1、m2、m3、m4の各々の平均値を用いて次式に基づき密度(Mg/m)を算出し、算出した密度を水の密度(1.00Mg/m)で除して求める。
(おもりを用いないときのゴム試料の密度)
    密度=m1/(m1-m2)
(おもりを用いたときのゴム試料の密度)
    密度=m1/(m1+m3-m4)
[含水量]
 含水量(%)は、JIS K6238-1:オーブンA(揮発分測定)法に準じて測定した。
[pH]
 pHは、6g(±0.05g)のアクリルゴムをテトラヒドロフラン100gで溶解後、蒸留水2.0mlを添加し完全に溶解したことを確認後にpH電極で測定した。
[複素粘性率]
 複素粘性率ηは、動的粘弾性測定装置「ラバープロセスアナライザRPA-2000」(アルファテクノロジー社製)を用いて、歪み473%、1Hzにて温度分散(40~120℃)を測定し、各温度における複素粘性率ηを求めた。ここでは、上述の動的粘弾性のうち60℃における動的粘弾性を複素粘性率η(60℃)とし、100℃における動的粘弾性を複素粘性率η(100℃)として、その比率η(100℃)/η(60℃)の値を算出した。
[ムーニー粘度(ML1+4,100℃)]
 ムーニー粘度(ML1+4,100℃)は、JIS K6300の未架橋ゴム物理試験法に従って測定した。
[射出成型性]
 射出成型性は、小型射出成型機(SLIM15-30:ダイハン社製)を用いて形状形成性、離型性、及び融合性を観察採点し、下記基準に従いそれらの合計点で総合評価した。形状形成性と離型性は、軸長150mm超の直径が異なる3本の円柱形状(A:4mmφ、B:3mmφ、C:2mmφ)をかたどった金型を準備し、この金型にスクリュー温度90℃、射出時間30秒、射出圧力7MPaの条件でゴム組成物を流入させ、金型温度170℃で1分30秒間架橋後に射出成型された円柱形状の成型物を取り出し、円柱形状の成型物及び金型を観察して下記基準に従い採点した。融合性は、長さ方向両端部の各々に5mmφのパイプが繋がった厚さ0.5mm×幅5mm×長さ40mmの融合観察帯をかたどった金型を準備し、この金型に5mmφのパイプの各々から融合観察帯内へスクリュー温度90℃、射出時間30秒、射出圧力7MPaの条件でゴム組成物を流入させ、金型温度170℃で1分30秒間架橋後に融合観察体におけるゴム組成物の融合具合を観察し、下記基準で採点した。
(形状形成性)
 5点:A、B、C全てで円柱形状の成型物が製造できており且つ全てで成型物の先端部の形状が完全に金型に追従形成されバリ形成も認められない
 4点:A、B、C全てで円柱形状の成型物が製造できているが、Cでは成型物の先端部がほんの一部が金型形状を完全に追従できていない
 3点:A、Bで円柱形状の成型物が製造できており、Cでも成型物が半分以上製造できている
 2点:A,Bで円柱形状の成型物が製造できているが、Cでは成型物が半分もできていない
 1点:Aで成型物が製造できているが、Bでは成型物は完全にはできていない
 0点:Aで成型物が製造できていない
(離型性)
 5点:金型から簡単に離型でき型残りもない
 4点:金型から簡単に離型できるが型残りがほんの僅かに認められる
 3点:金型から簡単に離型できるが型残りが僅かにある
 2点:金型から僅かに剥がしにくいが型残りはない
 1点:金型から僅かに剥がしにくく型残りもある
 0点:金型から剥がしにくい
(融合性)
 5点:融合が完全にできている
 0点:融合が不完全(融合不良)
総合評価
 ◎:満点(15点)
 〇:14点
 □:13点
 △:11~12点
 ×:10点以下
[バンバリー加工性]
 ゴム試料のバンバリー加工性は、ゴム試料を50℃に加温されたバンバリーミキサーに投入し1分間素練り後、表1記載のゴム混合物配合の配合剤Aを投入して1段目のゴム混合物が一体化して最大トルク値を示すまでの時間、すなわちBIT(Black Incorporation Time)を測定し、比較例2を100とする指数を算出し下記基準で評価した。
 ◎: 20以下
 〇: 20を超えて40以下
 □: 40を超えて60以下
 △: 60を超えて80以下
 ×: 80を超える
[保存安定性評価]
 ゴム試料の保存安定性は、ゴム試料を45℃×80%RHの恒温恒湿度槽(ESPEC社製SH-222)に投入し、7日間試験前後の含水量の変化率を算出し、比較例2を100とする指数を算出し下記基準で評価した。
 ◎:20以下
 〇:20超えて50以下
 □:50超えて90以下
 △:90超えて100以下
 ×:100超える
[耐水性評価]
 ゴム試料の耐水性は、JIS K6258に準拠してゴム試料の架橋物を温度85℃の蒸留水中に100時間浸漬させて浸漬試験を行い、浸漬前後の体積変化率を測定し、比較例2を100とする指数を算出し以下基準で評価した。
 ◎:1以下
 〇:1超えて5以下
 □:5超えて10以下
 △:10超えて50以下
 ×:50超える
[耐圧縮永久歪み特性]
 ゴム試料の耐圧縮永久歪み特性は、JIS K6262に従いゴム試料のゴム架橋物を25%圧縮させた状態において、175℃で90時間置いた後の圧縮永久歪率を測定して下記基準で評価した。
 ◎:圧縮永久歪率が15%未満である
 ×:圧縮永久歪率が15%以上である
[常態物性評価]
 ゴム試料の常態物性は、JIS K6251に従いゴム試料のゴム架橋物を破断強度、100%引張応力及び破断伸びを測定し以下の基準で評価した。
(1)破断強度は、10MPa以上を◎、10MPa未満を×として評価した。
(2)100%引張応力は、5MPa以上を◎、5MPa未満を×として評価した。
(3)破断伸びは、150%以上を◎、150%未満を×として評価した。
[ゲル量のバラツキ性評価]
 ゴム試料のゲル量のバラツキ評価を、ゴム試料20部(20kg)から任意に選択した20点のゲル量を測定し、下記基準に基づき評価する。
 ◎:測定した20点のゲル量の平均値を算出し、平均値±3の範囲内に測定した20点全てが入っているもの
 〇:測定した20点のゲル量の平均値を算出し、平均値±5の範囲内に測定した20点全てが入っていたもの(平均値±3の範囲では測定した20点のうち1点でも外れてしまうが、平均値±5の範囲内には20点全てが入るもの)
 ×:測定した20点のゲル量の平均値を算出し、平均値±5の範囲から測定した20点のうち1点でも外れたもの
[ムーニースコーチ抑制による加工安定性評価]
 特許第6683189号公報に記載されるスクリュー型二軸押出乾燥機から押し出されたシート状アクリルゴムの冷却速度とアクリルゴム組成物のムーニースコーチ保存安定性を評価した。
[実施例1]
 表2-1に示すように、ホモミキサーを備えた混合容器に、純水46部、単量体成分としてアクリル酸エチル48.5部、アクリル酸n-ブチル50部及びフマル酸モノn-ブチル1.5部、乳化剤としてトリデシルオキシヘキサオキシエチレンリン酸エステルナトリウム塩1.8部を仕込み撹拌して単量体エマルジョンを得た。
 温度計、撹拌装置を備えた重合反応槽に、純水170部及び上記で得られた単量体エマルジョン3部を投入し、窒素気流下で12℃まで冷却した後に、硫酸第一鉄0.00033部、アスコルビン酸ナトリウム0.02部、及び、有機ラジカル発生剤であるジイソプロピルベンゼンハイドロパーオキサイド0.0045部を仕込み重合反応を開始した。重合反応槽内の温度を23℃に保ち単量体エマルジョンの残部を3時間かけて連続的に滴下し、反応開始50分後にn-ドデシルメルカプタン0.012部、100分後にn-ドデシルメルカプタン0.012部、及び120分後にL-アスコルビン酸ナトリウム0.4部を添加し重合反応を継続させ、重合転化率が略100%に達したところで重合停止剤としてのハイドロキノンを添加して重合反応を停止し、乳化重合液を得た。
 次いで、温度計と撹拌装置を備えた凝固槽で、80℃に加温し、撹拌装置の撹拌翼回転数600回転(周速3.1m/s)で激しく撹拌した2%硫酸マグネシウム水溶液(凝固剤として硫酸マグネシウムを用いた凝固液)350部中に、上記得られた乳化重合液を80℃に加温して連続的に添加して重合体を凝固させ、凝固物であるアクリルゴムのクラムと水を含む凝固スラリーを得た。得られたスラリーからクラムを濾別しつつ凝固層から水分を排出して含水クラムを得た。
 濾別された含水クラムの残った凝固槽内に194部の温水(70℃)を添加して15分間撹拌して含水クラムを洗浄した後に水分を排出させ、再び194部の温水(70℃)を添加して15分間撹拌して含水クラムの洗浄を行った(合計洗浄回数は2回)。洗浄した含水クラム(含水クラム温度65℃)をスクリュー型二軸押出乾燥機15に供給し、脱水・乾燥して幅300mmで厚さ10mmのシート状乾燥ゴムを押し出した。次に、スクリュー型二軸押出乾燥機15に直結して設けた搬送式冷却装置を用いて、シート状乾燥ゴムを冷却速度200℃/hrで冷却した。
 なお、本実施例1で用いたスクリュー型二軸押出乾燥機は、1つの供給バレル、3つの脱水バレル(第1~第3の脱水バレル)、5つの乾燥バレル(第1~第5の乾燥バレル)で構成されている。第1の脱水バレルは排水を行い、第2及び第3の脱水バレルは排蒸気を行うようになっている。スクリュー型二軸押出乾燥機の操業条件は、以下のとおりとした。表2-1には、スクリュー型二軸押出乾燥機の脱水(排水)後含水量、最大トルク、比電力、比動力、剪断速度及び剪断粘度を示した。
含水量:
 ・第1の脱水バレルでの排水後の含水クラムの含水量:20%
 ・第3の脱水バレルでの排蒸気後の含水クラムの含水量:10%
 ・第5の乾燥バレルでの乾燥後の含水クラムの含水量:0.4%
ゴム温度:
 ・供給バレルに供給する含水クラムの温度:65℃
 ・スクリュー型二軸押出乾燥機から排出されるゴムの温度:140℃
各バレルの設定温度:
 ・第1の脱水バレル:100℃
 ・第2の脱水バレル:120℃
 ・第3の脱水バレル:120℃
 ・第1の乾燥バレル:120℃
 ・第2の乾燥バレル:130℃
 ・第3の乾燥バレル:140℃
 ・第4の乾燥バレル:160℃
 ・第5の乾燥バレル:180℃
運転条件:
 ・スクリューの直径(D):132mm
 ・スクリューの全長(L):4620mm
 ・L/D:35
 ・スクリューの回転数:135rpm
 ・乾燥バレルの減圧度:10kPa
 ・ダイからのゴムの押出量:700kg/hr
 ・ダイにおける樹脂圧:2MPa
 ・スクリュー型二軸押出乾燥機内での最大トルク:40N・m
 押し出されたシート状乾燥ゴムを、50℃まで冷却してからカッターで切断して、40℃以下にならない内に20部(20kg)になるように積層してベール状アクリルゴム(A)を得た。得られたベール状アクリルゴム(A)の反応性基含有量、灰分量、灰分成分量、ゲル量、pH、比重、ガラス転移温度(Tg)、含水量、分子量、分子量分布、及び100℃と60℃の複素粘性率を測定して表2-2に示した。また、ベール状アクリルゴム(A)の保存安定性試験を行って含水量変化率を求め、その結果を表2-2に示した。
 次いで、バンバリーミキサーを用い、ベール状アクリルゴム(A)100部と表1に記載の「配合1」の配合剤Aとを投入して、50℃で5分間混合した(1段目混合)。この時にBITを測定しバンバリー加工性を評価し、その結果を表2-2に示した。次に、得られた混合物を50℃のロールに移して、表1に示す「配合1」の配合剤Bを配合して混合(2段目混合)しゴム組成物を得た。得られたゴム組成物の射出成型性を評価し、その結果を表2-2に示した。
Figure JPOXMLDOC01-appb-T000001
 次いで、残差のゴム組成物を、縦15cm、横15cm、深さ0.2cmの金型に入れ、プレス圧10MPaで加圧しながら180℃で10分間プレスすることにより一次架橋し、得られた一次架橋物を、ギヤー式オーブンにて、さらに180℃、2時間の条件で加熱して二次架橋させることにより、シート状のゴム架橋物を得た。そして、得られたシート状のゴム架橋物から3cm×2cm×0.2cmの試験片を切り取って耐水性、耐圧縮永久歪み特性及び常態物性を評価した。それらの結果を表2-2に示した。
[実施例2]
 表2-1に示すように、単量体成分をアクリル酸エチル48.25部、アクリル酸n-ブチル50部及びフマル酸モノn-ブチル1.75部に変更した以外は実施例1と同様に行い、ベール状アクリルゴム(B)を得て各特性(配合剤は「配合2」(表1参照)
に変更した)を評価した。それらの結果を表2-2に示した。
[実施例3]
 n-ドデシルメルカプタンの後添加を、50分後に0.008部、100分後に0.008部及び120分後に0.008部の計3回に変更する以外は実施例1と同様に行い、ベール状アクリルゴム(C)を得て各特性を評価した。それらの結果を表2-2に示した。
[実施例4]
 n-ドデシルメルカプタンの後添加を、50分後に0.008部、100分後に0.008部及び120分後に0.008部の計3回に変更する以外は実施例2と同様に行い、ベール状アクリルゴム(D)を得て各特性を評価した。それらの結果を表2-2に示した。
[実施例5]
 表2-1に示すように、スクリュー型二軸押出乾燥機の最大トルクを15N・mに変更する以外は実施例1と同様に行い、ベール状アクリルゴム(E)を得て各特性を評価した。それらの結果を表2-2に示した。
[実施例6]
 スクリュー型二軸押出乾燥機の最大トルクを15N・mに変更する以外は実施例2と同様に行い、ベール状アクリルゴム(F)を得て各特性を評価した。それらの結果を表2-2に示した。
[実施例7]
 スクリュー型二軸押出乾燥機の脱水バレル部での脱水後の含水量を30重量%にする以外は実施例5と同様に行い、ベール状アクリルゴム(G)を得て各特性を評価した。それらの結果を表2-2に示した。
[実施例8]
 スクリュー型二軸押出乾燥機の脱水バレル部での脱水後の含水量を30重量%にする以外は実施例6と同様に行い、ベール状アクリルゴム(H)を得て各特性を評価した。それらの結果を表2-2に示した。
[実施例9]
 洗浄後の含水クラムを160℃の熱風乾燥機を用いて含水量0.4%まで乾燥を行い、クラム状アクリルゴム(I)を得た後に、300×650×300mmのベーラーに充填し3MPaの圧力で25秒間押し固めベール状アクリルゴムとする以外は実施例2と同様に行いベール状アクリルゴム(I)を得た。ベール状アクリルゴムベールの各特性を評価し、それらの結果を表2-2に示した。
[実施例10]
 単量体成分をアクリル酸エチル28部、アクリル酸n-ブチル38部、アクリル酸メトキシエチル27部、アクリロニトリル5部及びアリルグリシジルエーテル2部に変更する以外は実施例9と同様に行い、ベール状アクリルゴム(J)を得て各特性(配合剤は「配合3」(表1参照)に変更した)を評価した。それらの結果を表2-2に示した。
[実施例11]
 単量体成分をアクリル酸エチル42.2部、アクリル酸n-ブチル35部、アクリル酸メトキシエチル20部、アクリロニトリル1.5部及びクロロ酢酸ビニル1.3部に変更する以外は実施例9と同様に行い、ベール状アクリルゴム(K)を得て各特性(配合剤は「配合4」(表1参照)に変更した)を評価した。それらの結果を表2-2に示した。
[実施例12]
 n-ドデシルメルカプタンの後添加を、50分後に0.008部、100分後に0.008部及び120分後に0.008部の計3回に変更する以外は実施例11と同様に行い、ベール状アクリルゴム(L)を得て各特性を評価した。それらの結果を表2-2に示した。
[実施例13]
 ジイソプロピルベンゼンハイドロパーオキサイドを0.0048部に変更し、n-ドデシルメルカプタン0.024部を単量体エマルジョンに連続的に添加し後添加しなかった以外は実施例11と同様に行い、ベール状アクリルゴム(M)を得て各特性を評価した。それらの結果を表2-2に示した。
[比較例1]
 凝固反応を、乳化重合後の撹拌している乳化重合液(撹拌数100rpm、周速0.5m/s)に0.7%硫酸マグネシウム水溶液を添加して行い、且つベーラーによりベール化はせずにクラム状のアクリルゴムを得る以外は実施例13と同様に行い、クラム状アクリルゴム(N)を得て各特性を評価した。それらの結果を表2-2に示した。
[比較例2]
 ジイソプロピルベンゼンハイドロパーオキサイドを0.005部に変更し、連鎖移動剤を添加しなかった以外は比較例1と同様に行い、クラム状アクリルゴム(O)を得て各特性を評価した。それらの結果を表2-2に示した。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表2-2から、本発明の(メタ)アクリル酸アルキルエステル及び(メタ)アクリル酸アルコキシアルキルエステルからなる群から選ばれる少なくとも1種の(メタ)アクリル酸エステル由来の結合単位、イオン反応性基含有単量体由来の結合単位、及び必要に応じてその他の単量体由来の結合単位からなり、重量平均分子量(Mw)が100万~500万、重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が1.5~3の範囲であり、灰分量が0.3重量%以下、且つ灰分中のナトリウム、イオウ、カルシウム、マグネシウム及びリンの合計量が80重量%以上であるアクリルゴム(A)~(M)は、射出成型性、耐水性、耐圧縮永久歪み特性及び強度特性含めた常態物性が優れ、且つ、バンバリー加工性や保存安定性にも優れるのがわかる(実施例1~13)。
 表2-2から、本願実施例及び比較例のアクリルゴム(A)~(O)は、カルボキシル基、エポキシ基、または塩素原子のイオン反応性基を有することで耐圧縮永久歪み特性に優れ、また、本願実施例及び比較例の条件で製造したアクリルゴム(A)~(O)は、いずれも重量平均分子量(Mw)が100万をはるかに超えているため強度特性含めた常態物性も優れていることがわかる(実施例1~13及び比較例1~2)。しかしながら、アクリルゴム(N)~(O)は、射出成型性、バンバリー加工性、耐水性及び保存安定性に劣っている(比較例1~2)。
 表2-2から、射出成型性に関しては、アクリルゴムの分子量分布(Mw/Mn)に強く影響され、比較例2がMw/Mn=1.3/射出成型性:×、実施例13がMw/Mn=1.55/射出成型性:△、実施例12がMw/Mn=1.99/射出成型性:〇、実施例3~11がMw/Mn2.39~2.45/射出成型性:◎)、及び実施例1~2がMw/Mn=2.91~2.94/射出成型性:〇であるようにMw/Mnが2.4付近であるときに最も優れており本発明のアクリルゴムが射出成型性に優れていることがわかる。また、高分子量領域を重点にした分子量分布(Mz/Mw)が十分に広く、数平均分子量(Mn)、重量平均分子量(Mw)及びz平均分子量(Mz)が十分に大きく且つ本発明のMw/Mnの範囲であるときに強度特性を損なわずに射出成型性を改善できることがわかる(実施例1~13と比較例2との比較)。
 表2-1及び2-2から、強度特性を損ねずに射出成型性に優れる分子量分布(Mw/Mn)が特定範囲のアクリルゴム(A)~(M)が、特定量の有機ラジカル発生剤と連鎖移動剤、特に連鎖移動剤としてn-ドデシルメルカプタンを用いることにより製造できることがわかる(実施例1~13)。表2-1及び2-2からは、また、連鎖移動剤(n-ドデシルメルカプタン)を連続的に添加する(実施例13)よりも、連鎖移動剤(n-ドデシルメルカプタン)を初期に添加せずに回分的に後添加することにより強度特性を損ねずに射出成型性を改善できることがわかる(実施例1~12)。これは、初期に連鎖移動剤を添加しないで且つ有機ラジカル発生剤を減量することで1本の重合鎖を伸ばし、重合途中で連鎖移動剤を添加することでGPCチャートでは明確な二山にはなっていないものの高分子量成分と低分子量成分をバランスよく製造し分子量分布(Mw/Mn)を特定範囲にすることができ強度特性と射出成型性を高度にバランスさせているものと推測される。また、分子量分布(Mw/Mn)を効率的に広げるためには、回分的な後添加の回数が大きく影響し、回分的な後添加回数が3回よりも2回の方が、分子量分布(Mw/Mn)が広くなっている(実施例9~11と実施例12との比較)。また、表2-1及び2-2には示していないが、本願実施例では、還元剤のアスコルビン酸ナトリウムを重合開始120分後に添加しており、こうすることにより、アクリルゴムの高分子量成分生成が容易になり連鎖移動剤後添加の分子量分布(Mw/Mn)を広げる効果を増大している。
 表2-1及び2-2から、また、含水クラムの乾燥を直接乾燥からスクリュー型二軸押出乾燥機に変更し通常条件での操業であれば分子量分布(Mw/Mn)は変化しないが(実施例5~8と実施例9~11との比較)、最適なシェアのスクリュー型二軸押出乾燥機の乾燥条件にすることによりアクリルゴムの分子量分布(Mw/Mn)が広がりアクリルゴムの射出成型性を更に改良できるが(実施例3~4と実施例12の比較)、分子量分布(Mw/Mn)が広がりすぎると射出成型性の効果が落ちてくることがわかる(実施例1~2と実施例5~8との比較)。また、本願の実施例および比較例には示していないが、無機ラジカル発生剤のレドックス触媒を用いると得られるアクリルゴムの分子量分布(Mw/Mn)が広がりすぎて射出成型性に劣ることがわかる。これは、有機ラジカル発生剤の場合は重合触媒が乳化重合のミセル内にありミセル内で重合を連続的に行うが、無機ラジカル発生剤の場合は重合触媒がミセル外に存在しミセル外で重合をしているためにこれら分子量分布の差が生じ射出成型性に影響したものと思われる。
 表2-2から、耐水性に関しては、本発明のアクリルゴム(A)~(M)が優れていること(実施例1~13と比較例1~2との比較)、それらの中でも、アクリルゴム(A)~(F)>アクリルゴム(G)~(H)>アクリルゴム(I)~(J)>アクリルゴム(K)~(M)の順で、特にアクリルゴム(A)~(F)が格段に優れていること(実施例1~13のなかでの比較)、及びそれらがアクリルゴム中の灰分量に大きく影響されていることがわかる(実施例1~13及び比較例1~2のなかでの比較)。
 表2-1及び2-2から、アクリルゴム中の灰分量が、凝固反応において、凝固液濃度を高め(2%)、乳化重合液を撹拌している凝固液中に添加して行う方法に変え(Lx↓)、且つ、凝固液の撹拌を激しくする(撹拌数600rpm/周速3.1m/s)ことで大幅に減量できることわかる(実施例9~13と比較例1との比較)。これは、特に非常に激しく撹拌している凝固液の中で乳化重合液を添加して凝固反応を行っており、データを後述するが、かかる凝固反応で生成する含水クラムのクラム径が710μm~4.75mmと小さな粒径の範囲に集束しており、これにより温水による洗浄効率および脱水時の乳化剤や凝固剤の除去効率が格段に向上してアクリルゴム中の灰分量を低減し耐水性を格段に改善していると推測される。また、耐水性に関して、実施例9~13は灰分量が同程度でありながら、アクリルゴム(I)~(J)の方がアクリルゴム(K)~(M)よりも優れていることがわかる。これは、耐水性に関して、イオン反応性基の中でも、塩素原子よりもカルボキシル基やエポキシ基を有するアクリルゴムの方が優れていることがわかる(実施例9~10と実施例11~13との比較)。
 表2-1及び2-2から、また、耐水性に関して、含水クラムを乾燥する前に脱水する(水分を絞り出す)ことで、アクリルゴム内の灰分量を更に大幅に低減し耐水性が格段に改善されること(実施例1~8と実施例9~13との比較)、及び脱水後の含水量が30%よりも20%とより多くの水分を含水クラムから絞り出した方が灰分量を減少させアクリルゴムの耐水性を格段と改善できることがわかる(実施例1~6と実施例7~8との比較)。
 表2-1及び2-2から、更に、本発明のアクリルゴム(A)~(M)及び比較例のアクリルゴム(N)~(O)の灰分成分は、リン(P)、マグネシウム(Mg)、ナトリウム(Na)、カルシウム(Ca)及びイオウ(S)の合計量が80重量%以上または90重量%以上であり灰分量を低減できれば耐水性を改善できていることがわかる。また、灰分成分がこれらの成分であるときにアクリルゴムの離型性が格段に優れている。表2-2から、また、本発明の方法で凝固し洗浄及び脱水した本発明のアクリルゴム(A)~(M)の灰分成分が、リン(P)とマグネシウム(Mg)で80%以上または90%以上になっていることがわかる(実施例1~13及び比較例1~2)。これは、アクリルゴム中の灰分は、製造で使用されている乳化剤や凝固剤がそのまま残留するのでなく、凝固反応時に乳化剤のリン酸エステルNa塩が凝固剤の硫酸マグネシウム(MgSO4)と塩交換され難水性のリン酸エステルMg塩として含水クラム内に内在し、洗浄工程では十分に除去できないが、スクリュー型二軸押出乾燥機内で脱水する(含水クラムから水分を絞り出す)ことで低減でき(実施例1~8)、脱水後の含水量が30%よりも20%とより多くの水分を含水クラムから絞り出した方が灰分量を減少させアクリルゴムの耐水性を格段と改善できることがわかる(実施例1~6と実施例7~8との比較)。
 耐水性に関して、本願実施例ではデータを省略したが、乳化剤としてリン酸エステル塩を使用すると、洗浄工程ではなかなか低減できないこと、特に、常温での洗浄では洗浄回数をどんなに増やしても殆ど低減できず温水洗浄にすることで改善できること、一方、乳化剤としてラウリル硫酸ナトリウムなどの硫酸エステル塩を使用しイオウ(S)やナトリウム(Na)が多い灰分よりも耐水性に優れ、特に、同程度の灰分量であれば5倍以上も耐水性に優れていた。また、乳化剤としてラウリル硫酸ナトリウムなどの硫酸エステル塩を使用した場合も、本願発明の凝固反応を行い温水洗浄及び脱水することで灰分量を0.1重量%以下まで低減でき、耐水性も格段に改善できることを確認している。
 表2-1及び2-2から、バンバリー加工性に関しては、ゲル量に相関していることがわかる(実施例1~13と比較例1~2との比較)。アクリルゴムのメチルエチルケトン不溶解分のゲル量は、連鎖移動剤存在下で乳化重合することで減少させることができ(実施例9~13及び比較例1と比較例2との比較)、特に、ゲル量が、強度特性を高めるために重合転化率を高めると急激に増加してくるので、重合反応後半での連鎖移動剤後添加の実施例9~13においてメチルエチルケトン不溶解分のゲル生成を抑制できていることがわかる。アクリルゴムのゲル量は、さらに、含水クラムの乾燥をスクリュー型二軸押出乾燥機で行うことにより格段に減少し製造されるアクリルゴムのバンバリー加工性を大幅に改善している(実施例1~8と実施例9~13との比較)。本発明においては、本実施例では示していないが、連鎖移動剤を添加せずに乳化重合で急増したメチルエチルケトン不溶解分のゲル量が(比較例1~2)、スクリュー型二軸押出乾燥機内で実質的に水分を含まない状態(含水量1重量%未満)で溶融混錬されることで消失しバンバリー加工性を大幅に改善できることを確認している。
 表2-2から、本発明のアクリルゴム(A)~(M)は、射出成型性、バンバリー加工性、耐水性、耐圧縮永久歪み特性及び強度特性含めた常態物性が優れるとともに保存安定性が格段に優れていることがわかる。特に、本発明のアクリルゴム(A)~(H)の保存安定性が格段に優れている。
 表2-1及び表2-2から、保存安定性に関しては、ベール状アクリルゴムベール(A)~(M)の比重がクラム状アクリルゴム(N)~(O)に比べてはるかに大きく、比重の大小、すなわち空気の巻き込み量によって保存安定性が左右されていることがわかる(実施例1~8、実施例9~13及び比較例1~2との比較)。比重の大きなベール状アクリルゴムは、クラム状のアクリルゴムをベーラーで圧縮させてベール化することにより(実施例9~13)、更に好適にはスクリュー型二軸押出乾燥機でシート状に押し出して積層してベール化することにより(実施例1~8)得ることができる。アクリルゴムの保存安定性は、また、灰分量が少ないほど好ましいこともわかる(実施例1~13)。なお、実施例13のアクリルゴム(M)は、ベーラーを用いず直接乾燥後のクラム状アクリルゴムのままの特性値を測定すると、比重が0.769と小さくなる以外は表2-2の実施例13の結果と同様であった。また、アクリルゴムの保存安定性は、pHが6以下であることも重要であった。
[生成含水クラムの粒径について]
 実施例1~13及び比較例1~2における凝固工程で生成した含水クラムについて、(1)710μm~6.7mm(710μmを通過せず6.7mm通過)、(2)710μm~4.75mm(710μmを通過せず4.75mmを通過)、(3)710μm~3.35mm(710μm通過せず3.35mm通過)の範囲にある全生成含水クラム量に対する割合をJIS篩を用いて測定した。それらの結果を下記に示す。
実施例1:(1)91重量%、(2)91重量%、(3)84重量%
実施例2:(1)96重量%、(2)95重量%、(3)89重量%
実施例3:(1)91重量%、(2)85重量%、(3)79重量%
実施例4:(1)93重量%、(2)90重量%、(3)84重量%
実施例5:(1)95重量%、(2)93重量%、(3)90重量%
実施例6:(1)89重量%、(2)85重量%、(3)79重量%
実施例8:(1)94重量%、(2)93重量%、(3)87重量%
実施例9:(1)95重量%、(2)94重量%、(3)91重量%
実施例10:(1)89重量%、(2)86重量%、(3)83重量%
実施例11:(1)95重量%、(2)94重量%、(3)88重量%
実施例12:(1)93重量%、(2)93重量%、(3)90重量%
実施例13:(1)93重量%、(2)89重量%、(3)78重量%
比較例1:(1)17重量%、(2)3重量%、(3)0重量%
比較例2:(1)10重量%、(2)2重量%、(3)0重量%
 これらの結果より、凝固工程で生成する含水クラムの大きさで同じ洗浄をしてもアクリルゴム中に残存する灰分量が相違し、(1)~(3)の特定割合が多いものの洗浄効率が高く灰分量が低減し耐水性に優れていることがわかる(表2-2の実施例9~13と比較例1~2との比較)。また、(1)~(3)の特定割合の多い含水クラムのものは、脱水時の灰分除去率も高く、脱水率(含水量)20重量%のもの(実施例1~6)が、脱水率(含水量30重量%)のもの(実施例7~8)より灰分量が低減しアクリルゴムの耐水性を改善していることがわかる。
 なお、参考のために、凝固工程において乳化重合液を凝固液に添加する以外は比較例1と同様に行い(参考例1)、また、乳化重合液を凝固液に添加し凝固液の凝固剤濃度を0.7重量%から2重量%に変更する以外は比較例1と同様に行い(参考例2)、生成する含水クラムの粒径割合(1)~(3)とアクリルゴム中の灰分量(4)を測定した。
参考例1:(1)91重量%、(2)57重量%、(3)25重量%、(4)0.51重量%
参考例2:(1)92重量%、(2)75重量%、(3)42重量%、(4)0.40重量%
 実施例1~8のシート状アクリルゴム(A)~(H)を含むアクリルゴム組成物について、前述したムーニースコーチ抑制による加工安定性評価の方法で、温度125℃におけるムーニースコーチ時間t5(分)をJIS K 6300に従って測定し、下記基準でムーニースコーチ保存安定性を評価した。その結果、いずれも「◎」の良好な結果であった。
 ◎:ムーニースコーチ時間t5が3.3分を超えるもの
 〇:ムーニースコーチ時間t5が2~3.3分のもの
 ×:ムーニースコーチ時間t5が2分未満のもの
 なお、これらのシート状アクリルゴム(A)~(H)に関して、スクリュー型二軸押出乾燥機から押し出されるシート状乾燥ゴムの冷却速度は、実際には実施例1と同様に略200℃/hrと早く、いずれも40℃/hr以上である。
 さらに、各ゴム試料について、前述の方法で、メチルエチルケトン不溶解分量のバラツキ性を評価した。すなわち、ゴム試料のメチルエチルケトン不溶解分量のバラツキ評価を、ゴム試料20部(20kg)から任意に選択した20点のメチルエチルケトン不溶解分量を測定し、前述の基準に基づき評価した。
 ゴム試料として実施例1~8で得られたアクリルゴム(A)~(H)及び比較例2で得られたアクリルゴム(O)について、ゲル量のバラツキ性評価を行うと、アクリルゴム(A)~(H)の結果はいずれも「◎」であり、アクリルゴム(O)の結果は「×」であった。
 これは、アクリルゴム(A)~(H)は、スクリュー型二軸押出乾燥機で溶融混錬及び乾燥されることでメチルエチルケトン不溶解分のゲル量が殆ど消失し且つゲル量バラツキも殆ど無くなることでバンバリー加工性を格段に向上できたと推測される。
 一方、比較例2のアクリルゴム(O)を製造する条件で乳化重合及び凝固洗浄まで行ったクラム状アクリルゴムを、実施例1と同じ条件でスクリュー型二軸押出乾燥機に投入し押出乾燥させて得られたアクリルゴムについて測定したゲル量及びゲル量バラツキは、アクリルゴム(A)とほぼ同等なレベルまで低減でき且つバンバリー加工性が格段に改善できていることがわかった。
[金型への離型性]
 実施例1~8で得られたアクリルゴム(A)~(H)のゴム組成物を、10mmφ×200mmmの金型に圧入し、金型温度165℃で2分間架橋後のゴム架橋物を取り出し、以下の基準で金型離型性を評価すると、アクリルゴム(A)~(H)はいずれも「◎」と良好な評価であった。
 ◎:金型から簡単に離型でき型残りもない
 〇:金型から簡単に離型できるが型残りがほんの僅かに認められる
 △:金型から簡単に離型できるが型残りが僅かにある
 ×:金型から剥がしにくい
 1 アクリルゴム製造システム
 3 凝固装置
 4 洗浄装置
 5 スクリュー型押出機
 6 冷却装置
 7 ベール化装置
 

Claims (57)

  1.  (メタ)アクリル酸アルキルエステル及び(メタ)アクリル酸アルコキシアルキルエステルからなる群から選ばれる少なくとも1種の(メタ)アクリル酸エステル由来の結合単位、イオン反応性基含有単量体由来の結合単位、及び必要に応じてその他の単量体由来の結合単位からなり、重量平均分子量(Mw)が100万~500万、重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が1.5~3の範囲であり、灰分量が0.3重量%以下で、且つ灰分中のナトリウム、イオウ、カルシウム、マグネシウム及びリンの合計量が80重量%以上であるアクリルゴム。
  2.  z平均分子量(Mz)と重量平均分子量(Mw)との比(Mz/Mw)が、1.3以上である請求項1に記載のアクリルゴム。
  3.  z平均分子量(Mz)と重量平均分子量(Mw)との比(Mz/Mw)が、4以下である請求項1または2に記載のアクリルゴム。
  4.  数平均分子量(Mn)が、40万~110万の範囲である請求項1~3のいずれか1項に記載のアクリルゴム。
  5.  重量平均分子量(Mw)、重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn、または、z平均分子量(Mz)と重量平均分子量(Mw)との比(Mz/Mw)が、GPC-MALS法で測定される絶対分子量あるいは絶対分子量分布である請求項1~4のいずれか1項に記載のアクリルゴム。
  6.  GPC-MALS法の測定溶媒が、ジメチルホルムアミド系溶媒である請求項5に記載のアクリルゴム。
  7.  アクリルゴムの単量体組成が、(メタ)アクリル酸アルキルエステル及び(メタ)アクリル酸アルコキシアルキルエステルからなる群から選ばれる少なくとも1種の(メタ)アクリル酸エステル由来の結合単位50~99.99重量%、イオン反応性基含有単量体由来の結合単位0.01~10重量%、及びその他の単量体由来の結合単位0~40重量%からなるものである請求項1~6のいずれか1項に記載のアクリルゴム。
  8.  イオン反応性基が、カルボキシル基またはエポキシ基である請求項1~7のいずれか1項に記載のアクリルゴム。
  9.  ゲル量が、50重量%以下である請求項1~8のいずれか1項に記載のアクリルゴム。
  10.  ゲル量が、30重量%以下である請求項1~9のいずれか1項に記載のアクリルゴム。
  11.  ゲル量を任意に20点測定した全ての値が、(平均値±5)重量%の範囲内である請求項1~10のいずれか1項に記載のアクリルゴム。
  12.  比重が、0.8以上である請求項1~11のいずれか1項に記載のアクリルゴム。
  13.  灰分中のマグネシウムとリンの合計量が、50重量%以上である請求項1~12のいずれか1項に記載のアクリルゴム。
  14.  灰分中のマグネシウムとリンとの比([Mg]/[P])が、重量比で、0.4~2.5の範囲である請求項1~13のいずれか1項に記載のアクリルゴム。
  15.  60℃における複素粘性率([η]60℃)が、15,000[Pa・s]以下である請求項1~14のいずれか1項に記載のアクリルゴム。
  16.  100℃における複素粘性率([η]100℃)と60℃における複素粘性率([η]60℃)との比([η]100℃/[η]60℃)が、0.7以上である請求項1~15のいずれか1項に記載のアクリルゴム。
  17.  アクリルゴムが、シート状またはベール状である請求項1~16のいずれか1項に記載のアクリルゴム。
  18.  リン酸エステル塩または硫酸エステル塩を乳化剤として使用し乳化重合したものである請求項1~17のいずれか1項に記載のアクリルゴム。
  19.  乳化重合した重合液をアルカリ金属塩または周期表第2族金属塩を凝固剤として使用することにより凝固させ、乾燥したものである請求項1~18のいずれか1項に記載のアクリルゴム。
  20.  凝固後に溶融混錬及び乾燥されたものである請求項1~19のいずれか1項に記載のアクリルゴム。
  21.  前記の溶融混錬及び乾燥が、実質的に水分を含まない状態で行われたものである請求項20に記載のアクリルゴム。
  22.  前記の溶融混錬及び乾燥が、減圧下で行われたものである請求項20または21に記載のアクリルゴム。
  23.  前記の溶融混錬及び乾燥後に、40℃/hr以上の冷却速度で冷却されたものである請求項20~22のいずれか1項に記載のアクリルゴム。
  24.  粒子径710μm~6.7mmの範囲の割合が50重量%以上の含水クラムを洗浄・脱水・乾燥させたものである請求項1~23のいずれか1項に記載のアクリルゴム。
  25.  (メタ)アクリル酸アルキルエステル及び(メタ)アクリル酸アルコキシアルキルエステルからなる群から選ばれる少なくとも1種の(メタ)アクリル酸エステル、イオン反応性基含有単量体、及び必要に応じてその他の単量体からなる単量体成分を水と乳化剤とでエマルジョン化するエマルジョン化工程と、
     有機ラジカル発生剤と還元剤とからなるレドックス触媒存在下に重合を開始し、重合途中で連鎖移動剤を回分的に後添加して重合を継続し乳化重合液を得る乳化重合工程と、
     得られた乳化重合液を撹拌している凝固液に添加して凝固し含水クラムを生成する凝固工程と、
     生成した含水クラムを洗浄する洗浄工程と、
     洗浄した含水クラムを脱水する脱水工程と、
     脱水した含水クラムを1重量%未満まで乾燥する乾燥工程と
     を含むアクリルゴムの製造方法。
  26.  請求項1~24のいずれか1項に記載のアクリルゴムを製造する請求項25に記載のアクリルゴムの製造方法。
  27.  乳化重合工程において、リン酸エステル塩または硫酸エステル塩を乳化剤として使用し乳化重合を行う請求項25または26に記載のアクリルゴムの製造方法。
  28.  乳化重合工程で生成した重合液をアルカリ金属塩または周期表第2族金属塩を含む凝固剤と接触させることで凝固させる請求項25~27のいずれか1項に記載のアクリルゴムの製造方法。
  29.  乳化重合工程で生成した重合液を凝固剤と接蝕させて凝固した後、溶融混錬及び乾燥する請求項25~28のいずれか1項に記載のアクリルゴムの製造方法。
  30.  前記の溶融混錬及び乾燥が、実質的に水分を含まない状態で行われる請求項29に記載のアクリルゴムの製造方法。
  31.  前記の溶融混錬及び乾燥が、減圧下で行われる請求項29または30に記載のアクリルゴムの製造方法。
  32.  前記の溶融混錬及び乾燥をスクリュー型二軸押出乾燥機で行う請求項29~31のいずれか1項に記載のアクリルゴムの製造方法。
  33.  前記の溶融混錬及び乾燥時のスクリュー型二軸押出乾燥機の最大トルクが、5~125N・mの範囲である請求項32に記載のアクリルゴムの製造方法。
  34.  溶融混錬及び乾燥後のアクリルゴムを、40℃/hr以上の冷却速度で冷却する請求項29~33のいずれか1項に記載のアクリルゴムの製造方法。
  35.  凝固液の凝固剤濃度が、1重量%以上である請求項25~34のいずれか1項に記載のアクリルゴムの製造方法。
  36.  撹拌している凝固液の撹拌数が、100rpm以上である請求項25~35のいずれか1項に記載のアクリルゴムの製造方法。
  37.  撹拌している凝固液の周速が、1m/s以上である請求項25~36のいずれか1項に記載のアクリルゴムの製造方法。
  38.  乳化重合工程で還元剤を後添加するものである請求項25~37のいずれか1項に記載のアクリルゴムの製造方法。
  39.  粒子径710μm~6.7mmの範囲の割合が50重量%以上の含水クラムを洗浄・脱水・乾燥する請求項25~38のいずれか1項に記載のアクリルゴムの製造方法。
  40.  請求項1~24のいずれか1項に記載のアクリルゴムを含むゴム成分、充填剤及び架橋剤を含んでなるゴム組成物。
  41.  前記充填剤が、補強性充填剤である請求項40に記載のゴム組成物。
  42.  前記充填剤が、カーボンブラック類である請求項40に記載のゴム組成物。
  43.  前記充填剤が、シリカ類である請求項40に記載のゴム組成物。
  44.  前記架橋剤が、有機架橋剤である請求項40~43のいずれか1項に記載のゴム組成物。
  45.  前記架橋剤が、多価化合物である請求項40~44のいずれか1項に記載のゴム組成物。
  46.  前記架橋剤が、イオン架橋性化合物である請求項40~45のいずれか1項に記載のゴム組成物。
  47.  前記架橋剤が、イオン架橋性有機化合物である請求項46に記載のゴム組成物。
  48.  前記架橋剤が、多価イオン有機化合物である請求項46または47に記載のゴム組成物。
  49.  前記架橋剤としてのイオン架橋性化合物、イオン架橋性有機化合物または多価イオン有機化合物のイオンが、アミノ基、エポキシ基、カルボキシル基及びチオール基からなる群から選ばれる少なくとも1種のイオン反応性基である請求項46~48のいずれか1項に記載のゴム組成物。
  50.  前記架橋剤が、多価アミン化合物、多価エポキシ化合物、多価カルボン酸化合物及び多価チオール化合物からなる群から選ばれる少なくとも1種の多価イオン化合物である請求項48に記載のゴム組成物。
  51.  前記架橋剤の含有量が、ゴム成分100重量部に対して0.001~20重量部の範囲である請求項40~50のいずれか1項に記載のゴム組成物。
  52.  更に、老化防止剤を含んでなる請求項40~51のいずれか1項に記載のゴム組成物。
  53.  前記老化防止剤が、アミン系老化防止剤である請求項52に記載のゴム組成物。
  54.  請求項1~24のいずれか1項に記載のアクリルゴムを含むゴム成分、充填剤及び必要に応じて老化防止剤を混合した後に、架橋剤を混合するゴム組成物の製造方法。
  55.  請求項40~53のいずれか1項に記載のゴム組成物を架橋してなるゴム架橋物。
  56.  前記ゴム組成物の架橋が、成形後に行われる請求項55に記載のゴム架橋物。
  57.  前記ゴム組成物の架橋が、一次架橋及び二次架橋を行うものである請求項55または56に記載のゴム架橋物。
     
PCT/JP2021/021348 2020-06-23 2021-06-04 射出成型性に優れるアクリルゴム WO2021261212A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227043672A KR20230027021A (ko) 2020-06-23 2021-06-04 사출 성형성이 우수한 아크릴 고무
CN202180056584.2A CN116157424A (zh) 2020-06-23 2021-06-04 注射成型性优异的丙烯酸橡胶
JP2022531666A JPWO2021261212A1 (ja) 2020-06-23 2021-06-04

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020107461 2020-06-23
JP2020-107461 2020-06-23
JP2020-216547 2020-12-25
JP2020216547 2020-12-25

Publications (1)

Publication Number Publication Date
WO2021261212A1 true WO2021261212A1 (ja) 2021-12-30

Family

ID=79281101

Family Applications (4)

Application Number Title Priority Date Filing Date
PCT/JP2021/021354 WO2021261216A1 (ja) 2020-06-23 2021-06-04 バンバリー加工性と射出成型性に優れるアクリルゴムベール
PCT/JP2021/021352 WO2021261214A1 (ja) 2020-06-23 2021-06-04 バンバリー加工性に優れるアクリルゴムベール
PCT/JP2021/021353 WO2021261215A1 (ja) 2020-06-23 2021-06-04 バンバリー加工性や耐水性に優れるアクリルゴムベール
PCT/JP2021/021348 WO2021261212A1 (ja) 2020-06-23 2021-06-04 射出成型性に優れるアクリルゴム

Family Applications Before (3)

Application Number Title Priority Date Filing Date
PCT/JP2021/021354 WO2021261216A1 (ja) 2020-06-23 2021-06-04 バンバリー加工性と射出成型性に優れるアクリルゴムベール
PCT/JP2021/021352 WO2021261214A1 (ja) 2020-06-23 2021-06-04 バンバリー加工性に優れるアクリルゴムベール
PCT/JP2021/021353 WO2021261215A1 (ja) 2020-06-23 2021-06-04 バンバリー加工性や耐水性に優れるアクリルゴムベール

Country Status (4)

Country Link
JP (4) JPWO2021261215A1 (ja)
KR (4) KR20230027044A (ja)
CN (4) CN116157424A (ja)
WO (4) WO2021261216A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118374144A (zh) * 2024-06-21 2024-07-23 江苏弘盛新材料股份有限公司 一种大飞机轮胎用聚酰胺材料的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018139466A1 (ja) * 2017-01-27 2018-08-02 日本ゼオン株式会社 アクリルゴムの製造方法
JP2019031672A (ja) * 2016-10-31 2019-02-28 日本ゼオン株式会社 アクリルゴムの製造方法
WO2019078167A1 (ja) * 2017-10-16 2019-04-25 デンカ株式会社 アクリルゴムの製造方法、アクリルゴム、アクリルゴム組成物、その加硫物及び加硫物の用途
JP2020056013A (ja) * 2018-09-28 2020-04-09 三菱ケミカル株式会社 樹脂組成物、防曇フィルムおよび多層体
WO2020250570A1 (ja) * 2019-06-13 2020-12-17 ユニマテック株式会社 アクリルゴムおよびその架橋性組成物

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS599962B2 (ja) 1975-12-09 1984-03-06 松下電器産業株式会社 オンセイシンゴウノ キロクサイセイソウチ
JPS6264809A (ja) 1985-09-18 1987-03-23 Japan Synthetic Rubber Co Ltd アクリルゴム
JPH07103194B2 (ja) 1987-11-20 1995-11-08 東ソー株式会社 アクリル系共重合体エラストマーの製造方法
JPH0813461B2 (ja) * 1988-03-04 1996-02-14 日本ゼオン株式会社 ゴム状重合体の乾燥方法
JP2555294B2 (ja) * 1989-06-30 1996-11-20 日本合成ゴム株式会社 紙塗被組成物
JP3981845B2 (ja) 1997-06-20 2007-09-26 Jsr株式会社 アクリルゴム組成物および加硫物
JPH11217409A (ja) * 1997-11-21 1999-08-10 Jsr Corp 共重合体ラテックス
JP2004131654A (ja) * 2002-10-11 2004-04-30 Nippon Zeon Co Ltd 重合体の回収方法及び回収装置
JP4782355B2 (ja) * 2002-10-25 2011-09-28 日本ゼオン株式会社 ニトリル基含有共役ジエンゴム及びその製造方法
BRPI0401468A (pt) * 2004-04-20 2005-11-29 Petroflex Ind E Com S A Processo para a preparação de borracha acrìlica, borracha acrìlica, composição de borracha acrìlica e artigos curados a partir desta
JP4929618B2 (ja) 2005-05-26 2012-05-09 日本ゼオン株式会社 ゴム状重合体の製造方法
CN104736578B (zh) * 2012-10-17 2017-03-15 三菱丽阳株式会社 丙烯酸树脂膜、使用该丙烯酸树脂膜的层叠体及太阳能电池模块
EP3124511A4 (en) * 2014-03-27 2017-11-15 Zeon Corporation Nitrile group-containing copolymer rubber, crosslinkable rubber composition and crosslinked rubber product
JP6696583B2 (ja) * 2016-10-31 2020-05-20 日本ゼオン株式会社 アクリルゴムおよびゴム架橋物
WO2018116828A1 (ja) 2016-12-19 2018-06-28 日本ゼオン株式会社 アクリルゴムの製造方法
WO2018117037A1 (ja) * 2016-12-22 2018-06-28 日本ゼオン株式会社 アクリルゴム、アクリルゴム組成物、アクリルゴム架橋物、及びアクリルゴムの製造方法
SG11201906829SA (en) 2017-01-31 2019-08-27 Zeon Corp Acrylic rubber, acrylic rubber composition, and crosslinked acrylic rubber
JP6683189B2 (ja) 2017-12-28 2020-04-15 日本ゼオン株式会社 アクリルゴムの製造方法
JP7214658B2 (ja) 2018-03-30 2023-01-30 日本ゼオン株式会社 アクリルゴムの製造方法、アクリルゴム組成物の製造方法、及びアクリルゴム用二軸押出乾燥機
WO2019203321A1 (ja) * 2018-04-18 2019-10-24 キヤノン株式会社 現像部材、プロセスカートリッジおよび電子写真装置
CN111989347B (zh) * 2018-04-27 2024-03-08 日本瑞翁株式会社 丙烯酸橡胶的制造方法以及通过该制造方法得到的丙烯酸橡胶
WO2021014796A1 (ja) * 2019-07-19 2021-01-28 日本ゼオン株式会社 保存安定性や耐水性に優れるアクリルゴムベール
CN114072431A (zh) * 2019-07-19 2022-02-18 日本瑞翁株式会社 保存稳定性和加工性优异的丙烯酸橡胶胶包
JP7233388B2 (ja) * 2019-07-19 2023-03-06 日本ゼオン株式会社 保存安定性と加工性に優れるアクリルゴムベール
JP7284110B2 (ja) * 2019-07-19 2023-05-30 日本ゼオン株式会社 保存安定性と耐水性に優れるアクリルゴムベール
WO2021014789A1 (ja) * 2019-07-19 2021-01-28 日本ゼオン株式会社 耐水性に優れるアクリルゴムシート
WO2021014792A1 (ja) * 2019-07-19 2021-01-28 日本ゼオン株式会社 保存安定性と加工性に優れるアクリルゴムベール
JP6791411B1 (ja) * 2019-07-19 2020-11-25 日本ゼオン株式会社 保存安定性や耐水性に優れるアクリルゴムベール
JP7468534B2 (ja) * 2019-07-19 2024-04-16 日本ゼオン株式会社 加工性と耐水性に優れるアクリルゴムベール
JP7115514B2 (ja) * 2019-07-19 2022-08-09 日本ゼオン株式会社 保存安定性及び耐水性に優れるアクリルゴムベール
CN114127137B (zh) * 2019-07-19 2024-03-01 日本瑞翁株式会社 强度特性和加工性优异的丙烯酸橡胶胶包
JP6791412B1 (ja) * 2019-07-19 2020-11-25 日本ゼオン株式会社 耐水性に優れるアクリルゴムシート
WO2021014795A1 (ja) * 2019-07-19 2021-01-28 日本ゼオン株式会社 耐水性に優れるアクリルゴム
JP7216291B2 (ja) * 2019-07-19 2023-02-01 日本ゼオン株式会社 強度特性と保存安定性に優れるアクリルゴムベール
WO2021014791A1 (ja) * 2019-07-19 2021-01-28 日本ゼオン株式会社 保存安定性と加工性に優れるアクリルゴムシート
JP7304518B2 (ja) * 2019-07-24 2023-07-07 パナソニックIpマネジメント株式会社 気液分離器および気液分離器を備えた冷媒循環システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019031672A (ja) * 2016-10-31 2019-02-28 日本ゼオン株式会社 アクリルゴムの製造方法
WO2018139466A1 (ja) * 2017-01-27 2018-08-02 日本ゼオン株式会社 アクリルゴムの製造方法
WO2019078167A1 (ja) * 2017-10-16 2019-04-25 デンカ株式会社 アクリルゴムの製造方法、アクリルゴム、アクリルゴム組成物、その加硫物及び加硫物の用途
JP2020056013A (ja) * 2018-09-28 2020-04-09 三菱ケミカル株式会社 樹脂組成物、防曇フィルムおよび多層体
WO2020250570A1 (ja) * 2019-06-13 2020-12-17 ユニマテック株式会社 アクリルゴムおよびその架橋性組成物

Also Published As

Publication number Publication date
WO2021261215A1 (ja) 2021-12-30
KR20230027027A (ko) 2023-02-27
CN116113646A (zh) 2023-05-12
CN116034118A (zh) 2023-04-28
JPWO2021261212A1 (ja) 2021-12-30
JPWO2021261215A1 (ja) 2021-12-30
JPWO2021261216A1 (ja) 2021-12-30
CN116157424A (zh) 2023-05-23
KR20230027044A (ko) 2023-02-27
KR20230026335A (ko) 2023-02-24
WO2021261214A1 (ja) 2021-12-30
KR20230027021A (ko) 2023-02-27
WO2021261216A1 (ja) 2021-12-30
CN116057073A (zh) 2023-05-02
JPWO2021261214A1 (ja) 2021-12-30

Similar Documents

Publication Publication Date Title
WO2021014792A1 (ja) 保存安定性と加工性に優れるアクリルゴムベール
JP2021028403A (ja) 保存安定性と加工性に優れるアクリルゴムベール
WO2021014790A1 (ja) 加工性と耐水性に優れるアクリルゴムベール
WO2021014794A1 (ja) 保存安定性に優れるアクリルゴム
WO2021014795A1 (ja) 耐水性に優れるアクリルゴム
JP6791413B1 (ja) 加工性及び耐水性に優れるアクリルゴムベール
WO2021261212A1 (ja) 射出成型性に優れるアクリルゴム
WO2021261213A1 (ja) 射出成型性とバンバリー加工性に優れるアクリルゴム
JP2021017572A (ja) 保存安定性及び耐水性に優れるアクリルゴムベール
JP2021017554A (ja) 加工性に優れるアクリルゴムシート
WO2021246511A1 (ja) ロール加工性、強度特性及び耐水性に優れるアクリルゴム
JP2022000496A (ja) 加工性に優れるアクリルゴムベール
JP6763493B1 (ja) 保存安定性に優れるアクリルゴムシート
WO2021014797A1 (ja) 保存安定性と加工性に優れるアクリルゴムベール
JP2021017571A (ja) 保存安定性に優れるアクリルゴムシート
JP2021105123A (ja) 耐熱性と加工性に優れるアクリルゴム
WO2021246516A1 (ja) ロール加工性、バンバリー加工性、耐水性、強度特性及び耐圧縮永久歪み特性に優れるアクリルゴム
WO2021246508A1 (ja) ロール加工性、強度特性及び耐圧縮永久歪み特性に優れるアクリルゴム
JP2021105125A (ja) 耐熱性と保存安定性に優れるアクリルゴム成形体
WO2021246509A1 (ja) ロール加工性、強度特性及び耐圧縮永久歪み特性に優れるアクリルゴム
WO2021246513A1 (ja) ロール加工性とバンバリー加工性に優れるアクリルゴムシート
WO2021246517A1 (ja) ロール加工性、バンバリー加工性、耐水性、強度特性及び耐圧縮永久歪み特性に優れるアクリルゴムベール
WO2021246512A1 (ja) ロール加工性とバンバリー加工性に優れるアクリルゴムベール
WO2021246510A1 (ja) ロール加工性、バンバリー加工性、耐水性、強度特性及び耐圧縮永久歪み特性に優れるアクリルゴム
WO2021246514A1 (ja) 保存安定性やバンバリー加工性に優れるアクリルゴムベール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21830050

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022531666

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21830050

Country of ref document: EP

Kind code of ref document: A1