WO2021246517A1 - ロール加工性、バンバリー加工性、耐水性、強度特性及び耐圧縮永久歪み特性に優れるアクリルゴムベール - Google Patents

ロール加工性、バンバリー加工性、耐水性、強度特性及び耐圧縮永久歪み特性に優れるアクリルゴムベール Download PDF

Info

Publication number
WO2021246517A1
WO2021246517A1 PCT/JP2021/021351 JP2021021351W WO2021246517A1 WO 2021246517 A1 WO2021246517 A1 WO 2021246517A1 JP 2021021351 W JP2021021351 W JP 2021021351W WO 2021246517 A1 WO2021246517 A1 WO 2021246517A1
Authority
WO
WIPO (PCT)
Prior art keywords
acrylic rubber
weight
rubber
acrylic
veil
Prior art date
Application number
PCT/JP2021/021351
Other languages
English (en)
French (fr)
Inventor
浩文 増田
孝文 川中
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to CN202180058024.0A priority Critical patent/CN116057076A/zh
Priority to KR1020227041804A priority patent/KR20230020411A/ko
Priority to JP2022528913A priority patent/JPWO2021246517A1/ja
Publication of WO2021246517A1 publication Critical patent/WO2021246517A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • C08F2/24Emulsion polymerisation with the aid of emulsifying agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F22/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides or nitriles thereof
    • C08F22/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/281Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing only one oxygen, e.g. furfuryl (meth)acrylate or 2-methoxyethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/14Treatment of polymer emulsions
    • C08F6/22Coagulation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters

Definitions

  • the present invention relates to an acrylic rubber veil, a method for producing the same, a rubber composition, and a rubber crosslinked product.
  • the present invention relates to an acrylic rubber veil having excellent properties, a method for producing the same, a rubber composition containing the acrylic rubber veil, and a rubber crosslinked product obtained by cross-linking the acrylic rubber veil.
  • Acrylic rubber is a polymer containing acrylic acid ester as a main component, and is generally known as rubber having excellent heat resistance, oil resistance, and ozone resistance, and is widely used in automobile-related fields and the like.
  • Patent Document 1 International Publication No. 2019/188709 pamphlet
  • a monomer component composed of ethyl acrylate, butyl acrylate, methoxyethyl acrylate and monobutyl fumarate, water and sodium lauryl sulfate, and the pressure is reduced.
  • sodium aldehyde sulfoxylate and cumenhydroperoxide which is an organic radical generator, are added to start emulsion polymerization at normal pressure and normal temperature, and the polymerization conversion rate becomes 95% by weight.
  • the acrylic rubber obtained by this method has a problem that the roll processability and the Banbury processability are extremely inferior, and the storage stability and the water resistance are also inferior.
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2019-11977
  • a monomer component composed of ethyl acrylate, butyl acrylate, methoxyethyl acrylate and monobutyl maleate is used as pure water and an emulsifier as sodium lauryl sulfate and polyoxyethylene.
  • an emulsifier as sodium lauryl sulfate and polyoxyethylene.
  • Ferrite, sodium ascorbate, and an aqueous solution of potassium persulfate as an inorganic radical generator were continuously added dropwise over 3 hours, and then the temperature was kept at 23 ° C. and emulsion polymerization was continuously carried out for 1 hour to carry out polymerization conversion. After reaching 97% by weight, the temperature was raised to 85 ° C., and then sodium sulfate was continuously added to obtain a water-containing crumb by coagulation filtration, and the water-containing crumb was washed with water four times, acid-washed once and purely.
  • a method is disclosed in which acrylic rubber is continuously produced in the form of a sheet in an extruder having a screw after washing with water once, and crosslinked with an aliphatic polyvalent amine compound such as hexamethylenediamine carbamate.
  • the sheet-shaped acrylic rubber obtained by this method has a problem that the roll processability is inferior and the water resistance of the crosslinked product is inferior. Further, Patent Document 2 does not describe that the obtained sheet-shaped acrylic rubber is veiled.
  • Patent Document 3 Japanese Unexamined Patent Publication No. 1-135811 describes a monomer component composed of ethyl acrylate, caprolactone-added acrylic acid ester, cyanoethyl acrylate and vinyl chloroacetate, and n-dodecyl mercaptan as a chain transfer agent. 1/4 amount of the monomer mixture is emulsified with sodium lauryl sulfate, polyethylene glycol nonylphenyl ether and distilled water, and sodium sulfite and ammonium persulfate as an inorganic radical generator are added to initiate polymerization, and the temperature is 60.
  • the remaining monomer mixture and the 2% ammonium persulfate aqueous solution were added dropwise at ° C for 2 hours, and the latex having a polymerization conversion rate of 96 to 99%, in which polymerization was continued for another 2 hours after the addition, was added to the sodium chloride aqueous solution at 80 ° C.
  • a method of producing acrylic rubber by solidifying, washing thoroughly with water, and then drying to produce acrylic rubber and cross-linking with sulfur is disclosed.
  • the acrylic rubber obtained by this method has a problem that the roll processability and the storage stability are inferior, and the strength characteristics and the water resistance of the crosslinked product are inferior.
  • Patent Document 4 Japanese Unexamined Patent Publication No. 2018-168343
  • a monomer component composed of ethyl acrylate, butyl acrylate and monobutyl fumarate, pure water, sodium lauryl sulfate, polyethylene glycol monostearate and a chain transfer agent.
  • a monomeric emulsion consisting of n-dodecyl mercaptan was prepared, and then a part of the monomeric emulsion and pure water were added to the polymerization reaction tank and cooled to 12 ° C., and then the rest of the monomeric emulsion was cooled.
  • Patent Document 5 Japanese Unexamined Patent Publication No. 9-143229
  • a monomer mixture composed of ethyl acrylate, special acrylate and monochloroacetate, sodium lauryl sulfate as an emulsifier, n-octyl mercaptan as a chain transfer agent and water are reacted.
  • ammonium hydrogen sulfite and sodium persulfate as an inorganic radical generator were added to initiate the polymerization reaction, and the reaction was copolymerized at 55 ° C. for 3 hours at a reaction conversion rate of 93 to 96% to obtain acrylic rubber.
  • a method of manufacturing and cross-linking with sulfur is disclosed.
  • the Akuri rubber obtained by this method has problems that it is inferior in storage stability and roll processability, and also inferior in strength characteristics and water resistance of the crosslinked product.
  • Patent Document 6 Japanese Unexamined Patent Publication No. 62-64809
  • at least one compound of acrylic acid alkyl ester and acrylic acid alkoxyalkyl ester is 50 to 99.9% by weight, and an unsaturated carboxylic having a radical reactive group.
  • Coweight of a monomer composition consisting of 0.1 to 20% by weight of a dihydrodicyclopentenyl group-containing ester of acid and 0 to 20% by weight of at least one of other monovinyl-based, monovinylidene-based and monovinylene-based unsaturated compounds.
  • the compound has a polystyrene-equivalent number average molecular weight (Mn) of 200,000 to 1.2 million using the tetrahydrofuran as a developing solvent, and the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) (Mw / Mn). ) Is 10 or less, and an acrylic rubber having excellent processability, compression set, tensile strength and capable of sulfur sulfurization is disclosed.
  • the number average molecular weight (Mn) is 200,000 to 1,000,000, preferably 200,000 to 1,000,000. If Mn is less than 200,000, the physical properties and processability of the vulcanized product are inferior, and if it exceeds 1.2 million, it is processed.
  • the properties are inferior and that the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) becomes large when it exceeds 10, which is not preferable.
  • Specific examples thereof include monomer components including ethyl acrylate and radical crosslinkable dihydrodicyclopentenyl acrylate, sodium lauryl sulfate as an emulsifier, potassium persulfate as an inorganic radical generator, and a molecular weight modifier.
  • Octyl thioglycolate and t-dodecyl mercaptan are added in varying amounts, with a number average molecular weight (Mn) of 53-1.15 million, a weight average molecular weight (Mw) of 354 to 6.26 million, and a weight average molecular weight (Mw) and a number average molecular weight.
  • Mn number average molecular weight
  • Mw weight average molecular weight
  • Mw weight average molecular weight
  • Mw weight average molecular weight
  • a production method is disclosed in which an acrylic rubber having a ratio (Mw / Mn) of 4.7 to 8 to (Mn) is polymerized, coagulated in an aqueous calcium chloride solution, washed thoroughly with water, and directly dried.
  • the obtained acrylic rubber has a large number average molecular weight (Mw) of 5 million, and the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) is 1.
  • the number average molecular weight (Mn) is as small as 200,000, and the ratio (Mw / Mn) of the quantity average molecular weight (Mw) to the number average molecular weight (Mn) is 17 and extremely. It is shown in the comparative examples of Examples that it becomes wider.
  • the acrylic rubber obtained by this method is inferior in compression-resistant permanent strain resistance and storage stability, and contains a radical-reactive group, so that an appropriate molecular weight distribution (Mw / Mn) is used in the polymerization reaction using a radical generator. ) Is obtained, but there is also a problem that the molecular weight (Mw, Mn) is too large and complicated, and the roll processability and the Banbury processability are not sufficient.
  • the acrylic rubber obtained by this method is subjected to sulfur as a cross-linking agent and a vulcanization accelerator, kneaded with a roll, and then subjected to a 100 kg / cm 2 vulcanization press at 170 ° C.
  • cross-linking is required for a long time of 4 hours at 175 ° C, and the obtained cross-linked product is also inferior in compression-resistant permanent strain resistance, water resistance and strength characteristics, and also inferior in physical property change after thermal deterioration. was there.
  • Patent Document 7 Japanese Unexamined Patent Publication No. 2006-3282309
  • a crumb slurry containing a crumb-like rubber polymer is obtained by contacting the polymer latex with a coagulating liquid.
  • a method for producing a rubber polymer which comprises a dehydration step of removing water from the material to obtain a crumb-shaped rubber polymer and a step of heating and drying the crumb-shaped rubber polymer from which the water has been removed. , It is described that it is introduced into a baler in the form of flakes, compressed and veiled.
  • an unsaturated nitrile-conjugated diene copolymer latex obtained by emulsification polymerization is specifically shown, and an ethyl acrylate / n-butyl acrylate copolymer and an ethyl acrylate / It has been shown that it can be applied to a copolymer composed only of an acrylate such as an n-butyl acrylate / 2-methoxyethyl acrylate copolymer.
  • acrylic rubber composed only of acrylate has a problem that it is inferior in crosslinked rubber properties such as heat resistance and compression set resistance.
  • Patent Document 8 International Publication No. 2018/116828 describes ethyl acrylate and acrylic acid.
  • a monomer component consisting of n-butyl and mono-butyl fumarate is emulsified with sodium lauryl sulfate as an emulsifier, polyethylene glycol monostearate, and water, and cumenehydroperoxide, which is an organic radical generator, is added.
  • Acrylic rubber latex emulsion-polymerized until the polymerization conversion rate reaches 95% is added to an aqueous solution of magnesium sulfate and a polymer flocculant dimethylamine-ammonia-epichlorohydrin polycondensate, and then stirred at 85 ° C.
  • a method is disclosed in which a crumb slurry is generated, and then the crumb slurry is washed once with water and then passed through a 100-mesh wire net in its entirety to capture only the solid content and recover the crumb-shaped acrylic rubber. According to this method, it is described that the obtained hydrous crumb is dehydrated by centrifugation or the like, dried at 50 to 120 ° C.
  • Patent Document 9 Japanese Patent Laid-Open No. 3599962
  • the radical reactivity is different from that of an alkyl acrylate or an alkoxyalkyl acrylate of 95 to 99.9% by weight.
  • the gel content which is an acetone-insoluble component obtained by copolymerizing 0.1 to 5% by weight of a polymerizable monomer having two or more saturated groups in the presence of a radical polymerization initiator, is 5% by weight or less.
  • an acrylic rubber composition which is composed of a certain acrylic rubber, a reinforcing filler and an organic peroxide-based sulfide, and has excellent extrusion processability such as an extrusion rate, a die well, and a surface surface.
  • the acrylic rubber having a very small gel content used here is an acrylic rubber having a high gel content (60%) obtained in a normal acidic region (prepolymerization pH 4, post-polymerization pH 3.4). On the other hand, it is obtained by adjusting the pH of the polymerization solution to 6 to 8 with sodium hydrogen carbonate or the like.
  • Ethylenediamine disodium tetraacetate and ferrous sulfate were added (pH at this time was 7.1), and then the monomer components of ethyl acrylate and allyl methacrylate were added dropwise to carry out emulsion polymerization, and the obtained emulsion ( pH7) is salted using an aqueous sodium sulfate solution, washed with water and dried to obtain an acrylic rubber.
  • acrylic rubber containing (meth) acrylic acid ester as a main component decomposes in the neutral to alkaline region, and even if the processability is improved, there is a problem that the storage stability and strength characteristics are inferior, and the roll processability is also good. There is also a problem that the Banbury workability, cross-linking property, water resistance and compression set resistance are inferior.
  • Patent Document 10 International Publication No. 2018/143101 pamphlet
  • a (meth) acrylic acid ester and an ion-crosslinkable monomer are emulsion-polymerized and have a complex viscosity at 100 ° C. ([ ⁇ ] 100 ° C.). Is 3,500 Pa ⁇ s or less, and the ratio of the complex viscosity at 60 ° C. ([ ⁇ ] 60 ° C.) to the complex viscosity at 100 ° C.
  • the amount of gel which is a THF (tetrahydrofuran) insoluble component of acrylic rubber used in the same technique, is 80% by weight or less, preferably 5 to 80% by weight, and preferably exists as much as possible in the range of 70% or less. It is stated that when the amount of gel is less than 5%, the extrudability deteriorates.
  • the weight average molecular weight (Mw) of the acrylic rubber used is 200,000 to 1,000,000, and when the weight average molecular weight (Mw) exceeds 1,000,000, the viscoelasticity of the acrylic rubber is high. It is stated that it is too much to be preferable. However, there is no description of a method for improving roll workability, workability such as Banbury, water resistance, and the like.
  • the present invention has been made in view of the actual conditions of the prior art, has excellent roll workability and rubbery workability, and has a highly balanced water resistance, strength property, and compression set resistance property of the crosslinked product. It is an object of the present invention to provide an acrylic rubber veil, a method for producing the same, a rubber composition containing the acrylic rubber veil, and a rubber crosslinked product obtained by cross-linking the acrylic rubber veil.
  • the present inventors have a specific reactive group, and the absolute molecular weight and the weight average molecular weight (Mw) of the absolute molecular weight distribution measured by the GPC-MALS method. , And the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) is made of acrylic rubber in a specific range, and the roll is made by limiting the specific solvent insoluble amount and the specific ash content. It has been found that it is excellent in processability and molecular workability, and is highly excellent in water resistance, strength property and compression set resistance property of the crosslinked product.
  • the present inventors have an ionic reactive group capable of reacting with a cross-linking agent such as a carboxyl group, an epoxy group, and a chlorine atom, and have a high weight average molecular weight (Mw) of the absolute molecular weight measured by the GPC-MALS method. It has been found that an acrylic rubber veil made of acrylic rubber, which is specific on the molecular weight side, is excellent in short-time crosslinkability, strength characteristics and compression set resistance permanent strain characteristics.
  • a cross-linking agent such as a carboxyl group, an epoxy group, and a chlorine atom
  • the present inventors also, in the GPC measurement of acrylic rubber having such a reactive group, the tetrahydrofuran used for the GPC measurement of a radically reactive acrylic rubber copolymerized with the above-mentioned prior art ethyl acrylate, dihydrodicyclopentenyl acrylate and the like.
  • the tetrahydrofuran used for the GPC measurement of a radically reactive acrylic rubber copolymerized with the above-mentioned prior art ethyl acrylate, dihydrodicyclopentenyl acrylate and the like.
  • it was not possible to measure each molecular weight and molecular weight distribution cleanly and with good reproducibility but by using a specific solvent with a higher SP value than tetrahydrofuran as the developing solvent, it could be dissolved cleanly and measured with good reproducibility.
  • the present inventors particularly have a specific range of the weight average molecular weight (Mw) of the absolute molecular weight measured by the GPC-MALS method of the constituent acrylic rubber, and the weight average molecular weight of the absolute molecular weight distribution. It has been found that it is important to widen the ratio (Mw / Mn) between (Mw) and the number average molecular weight (Mn), and that the roll processability of the acrylic rubber veil and the strength characteristics of the crosslinked product can be highly balanced. ..
  • the present inventors set the weight average molecular weight (Mw) of the absolute molecular weight measured by the GPC-MALS method of the constituent acrylic rubber within a specific range, and the weight average molecular weight (Mw) and the number average molecular weight (Mw) of the absolute molecular weight distribution. Although it was not easy to widen the ratio (Mw / Mn) to Mn), the chain transfer agent in the polymerization reaction was added in batches or the hydrous crumb was dried in a screw type twin-screw extruder with a high share. We found that we could achieve it by doing so.
  • the present inventors have found that the smaller the amount of methyl ethyl ketone insoluble in the acrylic rubber veil, the better.
  • the amount of methyl ethyl ketone insoluble in acrylic rubber veil is generated during the polymerization reaction, and it increases rapidly when the polymerization conversion rate is increased to improve the strength characteristics, and it is difficult to control it.
  • Acrylic rubber is melt-kneaded in a state where the presence can be suppressed to some extent and the rapidly increased methyl ethyl ketone insoluble content is substantially free of water (water content less than 1% by weight) in the screw type twin-screw extruder.
  • the present inventors have found that the amount of ash in the acrylic rubber veil is small and the ash content is remarkably excellent when it is a specific component. It is quite difficult to reduce the amount of ash in acrylic rubber, but the water-containing crumbs that have undergone a solidification reaction by a specific method have high cleaning efficiency in warm water and ash removal efficiency during dehydration, and the ash content of specific components. It was found that although it is difficult to remove by washing, it can be easily reduced and the water resistance can be significantly improved by using the same method.
  • the present inventors have increased the ratio of the specific particle size of the hydrous crumb generated in the solidification step to perform washing, dehydration, and drying to obtain roll processability, bumper processability, and strength characteristics of the acrylic rubber veil. It was also found that the water resistance can be significantly improved without impairing the properties such as compression resistance and permanent strain resistance. Further, the present inventors have excellent water resistance of the acrylic rubber veil and a mold when a specific emulsifier is used in the emulsion polymerization of acrylic rubber or when a specific coagulant is used when the emulsion polymerization solution is coagulated. It was found that the releasability to the like is significantly enhanced.
  • the acrylic rubber of the present invention having a specific reactive group is sticky and difficult to release air, and a crumb-shaped acrylic rubber obtained by directly drying a hydrous crumb entrains a large amount of air (reduces specific gravity) and deteriorates storage stability.
  • air can be evacuated to some extent and the storage stability can be improved, and the hydrous crumb is depressurized by a screw type twin-screw extruder.
  • an acrylic rubber veil with almost no air and high specific gravity and significantly improved storage stability can be produced by extruding and drying underneath and extruding and laminating in the form of an air-free sheet.
  • the present inventors have also found that the specific gravity including the content of such air can be measured according to the method A of JIS K6268 crosslinked rubber-density measurement using the difference in buoyancy. It was also found that the storage stability of the acrylic rubber veil can be further improved by specifying the pH.
  • the present inventors also increase the cooling rate after drying to stabilize the Mooney scorch without impairing the roll processability, bumper processability, water resistance, strength characteristics, compression permanent strain resistance, and other characteristics of the acrylic rubber veil. We found that we could significantly improve our sexuality.
  • the present inventors also, after emulsifying a specific monomer component with water and an emulsifier, initiate emulsion polymerization in the presence of a redox catalyst composed of an inorganic radical generator such as potassium persulfate and a reducing agent.
  • a redox catalyst composed of an inorganic radical generator such as potassium persulfate and a reducing agent.
  • Absolute molecular weight and absolute molecular weight distribution by GPC measurement of acrylic rubber that can be produced by emulsion polymerization with a polymerization conversion rate of 90% by weight or more by batch addition during polymerization without adding a chain transfer agent at the initial stage.
  • the present inventors also apply the number of batch post-additions of the chain transfer agent, the post-addition timing, the post-addition amount, the type of the chain transfer agent, the type of the reducing agent, and the post-addition of the reducing agent not only at the initial stage but also in batches.
  • the ratio of the amount of the reducing agent added at the initial stage and the post-addition, and the polymerization temperature it is possible to manufacture an acrylic rubber veil with a better balance of roll processability, strength characteristics, water resistance and compression set resistance. I found.
  • the present inventors further melt and knead acrylic rubber under a high share condition using a specific extrusion dryer to coagulate and dry the emulsion polymer solution to which the chain transfer agent has been added in batches and then dry it.
  • a specific extrusion dryer to coagulate and dry the emulsion polymer solution to which the chain transfer agent has been added in batches and then dry it.
  • the present inventors further, in the rubber composition containing the acrylic rubber veil, the filler and the cross-linking agent of the present invention, by blending carbon black or silica as the filler, the roll processability, the Banbury processability and the short time can be achieved. It was found that the crosslinked product is excellent in crosslinkability, and the crosslinked product is highly excellent in water resistance, strength characteristics and compression set resistance.
  • the present inventors also preferably use an organic compound, a polyvalent compound or an ionic cross-linking compound as the cross-linking agent, for example, an ionic reaction of an acrylic rubber veil such as an amine group, an epoxy group, a carboxyl group or a thiol group.
  • the present inventors have completed the present invention based on these findings.
  • the present invention has at least one reactive group selected from the group consisting of a carboxyl group, an epoxy group and a chlorine atom, and has an absolute molecular weight measured by the GPC-MALS method and a weight average based on the absolute molecular weight distribution.
  • Acrylic rubber having a molecular weight (Mw) of 1,000,000 to 3,500,000 and a ratio (Mw / Mn) of a weight average molecular weight (Mw) to a number average molecular weight (Mn) of 3.7 to 6.5.
  • Acrylic rubber veil consisting of methyl ethyl ketone insoluble content of 50% by weight or less, ash content of 0.2% by weight or less, and total amount of sodium, magnesium, calcium, phosphorus and sulfur in ash content of 50% by weight or more. Provided.
  • the reactive group is preferably an ionic reactive group.
  • the acrylic rubber is a bonding unit derived from at least one (meth) acrylic acid ester selected from the group consisting of (meth) acrylic acid alkyl ester and (meth) acrylic acid alkoxyalkyl ester, carboxyl. It consists of a bonding unit derived from a monomer containing at least one reactive group selected from the group consisting of a group, an epoxy group and a chlorine atom, and, if necessary, a bonding unit derived from another monomer. Is preferable.
  • the amount of methyl ethyl ketone insoluble is preferably 15% by weight or less.
  • the values when the amount of insoluble matter of methyl ethyl ketone is measured at 20 points are all within the range of (average value ⁇ 5)% by weight.
  • the acrylic rubber veil of the present invention preferably has a specific gravity of 0.9 or more.
  • the pH is preferably 6 or less.
  • the acrylic rubber veil of the present invention is preferably emulsion-polymerized using a phosphate ester salt or a sulfate ester salt as an emulsifier, and the emulsion-polymerized polymerization solution is an alkali metal salt or a Group 2 metal salt of the periodic table. Is preferably coagulated by using as a coagulant and dried.
  • the acrylic rubber veil of the present invention is preferably melt-kneaded and dried after solidification, and the melt-kneading and drying are carried out in a state of substantially no moisture. That is, it is preferable that the above-mentioned melt kneading and drying are performed under reduced pressure.
  • the acrylic rubber veil of the present invention is preferably cooled at a cooling rate of 40 ° C./hr or more after the above-mentioned melt kneading and drying.
  • At least one (meth) acrylic acid ester, carboxyl group, epoxy group and chlorine atom selected from the group consisting of (meth) acrylic acid alkyl ester and (meth) acrylic acid alkoxyalkyl ester.
  • Epoxide process and Emulsion polymerization is started in the presence of a redox catalyst consisting of an inorganic radical generator and a reducing agent, and a chain transfer agent and a reducing agent are added in batches during the polymerization, and then emulsion polymerization is carried out until the polymerization conversion rate is 90% by weight or more.
  • a redox catalyst consisting of an inorganic radical generator and a reducing agent
  • a chain transfer agent and a reducing agent are added in batches during the polymerization, and then emulsion polymerization is carried out until the polymerization conversion rate is 90% by weight or more.
  • a coagulation step of adding the obtained emulsion polymerization solution to the stirring coagulation liquid to coagulate and generate a hydrous crumb A cleaning process that cleans the generated hydrous crumb with warm water,
  • the washed water-containing crumb is dehydrated to a water content of 1 to 40% by weight in a dehydration barrel using a dehydration barrel having a dehydration slit, a drying barrel under reduced pressure, and a screw-type twin-screw extruder having a die at the tip.
  • Dehydration / drying Drying to less than 1% by weight in a drying barrel and extruding sheet-shaped dried rubber from the die: Molding process and A veiling process in which the extruded sheet-shaped dry rubber is cut and then laminated.
  • a method for manufacturing an acrylic rubber veil including the above is provided.
  • the method for producing an acrylic rubber veil of the present invention is preferably the method for producing an acrylic rubber veil for producing the above acrylic rubber veil.
  • the method for producing an acrylic rubber veil of the present invention it is preferable to carry out emulsion polymerization using a phosphate ester salt or a sulfate ester salt as an emulsifier in the emulsion polymerization step.
  • the polymerization solution produced in the emulsion polymerization step is coagulated by using an alkali metal salt or a metal salt of Group 2 of the periodic table as a coagulant and dried.
  • the polymerization solution produced in the emulsion polymerization step is added to an aqueous solution containing a coagulant containing an alkali metal salt or a metal salt of Group 2 of the periodic table and coagulated by stirring. Is preferable.
  • the polymerization solution produced in the emulsion polymerization step is brought into contact with a coagulant to coagulate, and then melt-kneaded and dried.
  • the melt kneading and drying are carried out in a state of substantially no moisture.
  • the above-mentioned melt kneading and drying are performed under reduced pressure.
  • an acrylic rubber veil of the present invention it is preferable to wash, dehydrate, and dry a water-containing crumb having a particle size in the range of 710 ⁇ m to 6.7 mm and a proportion of 50% by weight or more.
  • a rubber composition containing a rubber component containing the acrylic rubber veil, a filler and a cross-linking agent.
  • the filler is a reinforcing filler. Further, in the rubber composition of the present invention, it is preferable that the filler is carbon blacks. Further, in the rubber composition of the present invention, it is preferable that the filler is silica.
  • the cross-linking agent is an organic cross-linking agent. Further, in the rubber composition of the present invention, it is preferable that the cross-linking agent is a polyvalent compound. Further, in the rubber composition of the present invention, it is preferable that the cross-linking agent is an ionic cross-linking compound. Further, in the rubber composition of the present invention, it is preferable that the cross-linking agent is an ionic cross-linking organic compound. Further, in the rubber composition of the present invention, it is preferable that the cross-linking agent is a polyvalent ion organic compound.
  • the ion of the ion-crosslinkable compound, the ion-crosslinkable organic compound or the polyvalent ion organic compound as the cross-linking agent is selected from the group consisting of an amino group, an epoxy group, a carboxyl group and a thiol group. It is preferably at least one ionic reactive group.
  • the cross-linking agent is at least one polyvalent ion compound selected from the group consisting of a polyvalent amine compound, a polyvalent epoxy compound, a polyvalent carboxylic acid compound and a polyvalent thiol compound. Is preferable.
  • the content of the cross-linking agent is preferably in the range of 0.001 to 20 parts by weight with respect to 100 parts by weight of the rubber component.
  • the rubber composition of the present invention preferably further contains an anti-aging agent.
  • the anti-aging agent is preferably an amine-based anti-aging agent.
  • a method for producing a rubber composition in which a rubber component containing the above acrylic rubber veil, a filler and, if necessary, an antiaging agent are mixed, and then a cross-linking agent is mixed.
  • a rubber crosslinked product obtained by cross-linking the above rubber composition.
  • the crosslinking of the rubber composition is performed after molding. Further, in the rubber crosslinked product of the present invention, it is preferable that the cross-linking of the rubber composition performs primary cross-linking and secondary cross-linking.
  • an acrylic rubber bale having excellent roll workability and bumper workability and having a highly balanced water resistance, strength property and compression set resistance property of a crosslinked product, an efficient manufacturing method thereof, and the like.
  • a high quality rubber composition containing an acrylic rubber veil and a rubber crosslinked product obtained by cross-linking the same are provided.
  • the acrylic rubber veil of the present invention has at least one reactive group selected from the group consisting of a carboxyl group, an epoxy group and a chlorine atom, and has an absolute molecular weight measured by the GPC-MALS method and a weight average based on an absolute molecular weight distribution.
  • Acrylic rubber having a molecular weight (Mw) of 1,000,000 to 3,500,000 and a ratio (Mw / Mn) of a weight average molecular weight (Mw) to a number average molecular weight (Mn) of 3.7 to 6.5.
  • the GPC-MALS method has the following contents.
  • the GPC (gel permeation chromatography) method is a kind of liquid chromatography in which separation is performed based on the difference in molecular size.
  • a multi-angle laser light scattering photometric meter (MALS) and a differential refractometer (RI) are incorporated into this device, and the light scattering intensity and refractive index difference of the molecular chain solution size-separated by the GPC device are measured with the melting time.
  • MALS multi-angle laser light scattering photometric meter
  • RI differential refractometer
  • the acrylic rubber veil of the present invention is characterized by having at least one reactive group selected from the group consisting of a carboxyl group, an epoxy group and a chlorine atom.
  • the at least one reactive group selected from the group consisting of a carboxyl group, an epoxy group and a chlorine atom is not particularly limited, but is preferably a functional group that undergoes an ionic reaction, and more preferably an epoxy group, a carboxyl group, or the like.
  • the content of at least one reactive group selected from the group consisting of a carboxyl group, an epoxy group and a chlorine atom of the acrylic rubber veil of the present invention is not particularly limited and may be appropriately selected according to the purpose of use.
  • the reactive group itself is usually 0.001 to 5% by weight, preferably 0.01 to 3% by weight, more preferably 0.05 to 1% by weight, and particularly preferably 0.1 to 0% by weight. When it is in the range of 5% by weight, the workability and crosslinkability, and the strength characteristics, compression permanent strain resistance, oil resistance, cold resistance, and water resistance of the crosslinked product are highly balanced. Therefore, it is suitable.
  • the acrylic rubber veil having at least one reactive group selected from the group consisting of a carboxyl group, an epoxy group and a chlorine atom of the present invention is selected from the group consisting of a carboxyl group, an epoxy group and a chlorine atom in a post-reaction to acrylic rubber.
  • at least one reactive group may be introduced, an acrylic rubber obtained by copolymerizing a monomer containing the reactive group is preferable.
  • the monomer component of the acrylic rubber constituting the acrylic rubber veil of the present invention is not particularly limited as long as it contains the above-mentioned reactive group and is a monomer constituting a normal acrylic rubber, but a carboxyl group and an epoxy are preferable.
  • (meth) acrylic acid ester is used as a general term for esters of acrylic acid and / or methacrylic acid.
  • the (meth) acrylic acid alkyl ester is not particularly limited, but usually has a (meth) acrylic acid alkyl ester having an alkyl group having 1 to 12 carbon atoms, preferably a (meth) acrylic having an alkyl having 1 to 8 carbon atoms.
  • An acid alkyl ester, more preferably a (meth) acrylic acid alkyl ester having an alkyl group having 2 to 6 carbon atoms is used.
  • the (meth) acrylic acid alkyl ester examples include methyl (meth) acrylic acid, ethyl (meth) acrylic acid, n-propyl (meth) acrylic acid, isopropyl (meth) acrylic acid, and n- (meth) acrylic acid.
  • examples thereof include butyl, isobutyl (meth) acrylate, n-hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, and among these, ethyl (meth) acrylate, (meth). ) N-butyl acrylate is preferable, and ethyl acrylate and n-butyl acrylate are more preferable.
  • the (meth) acrylic acid alkoxyalkyl ester is not particularly limited, but usually has a (meth) acrylic acid alkoxyalkyl ester having 2 to 12 alkoxyalkyl groups, preferably a (meth) acrylic having 2 to 8 alkoxyalkyl groups.
  • An acid alkoxyalkyl ester, more preferably a (meth) acrylic acid alkoxy ester having an alkoxyalkyl group having 2 to 6 carbon atoms is used.
  • (meth) acrylate alkoxyalkyl ester examples include methoxymethyl (meth) acrylate, methoxyethyl (meth) acrylate, methoxypropyl (meth) acrylate, methoxybutyl (meth) acrylate, and (meth) acrylic.
  • examples thereof include ethoxymethyl acid, ethoxyethyl (meth) acrylate, propoxyethyl (meth) acrylate, butoxyethyl (meth) acrylate and the like.
  • methoxyethyl (meth) acrylate, ethoxyethyl (meth) acrylate and the like are preferable, and methoxyethyl acrylate and ethoxyethyl acrylate are more preferable.
  • At least one (meth) acrylic acid ester selected from the group consisting of these (meth) acrylic acid alkyl esters and (meth) acrylic acid alkoxyalkyl esters may be used alone or in combination of two or more. These proportions in the total components of the weight are usually 50-99.99% by weight, preferably 62-99.95% by weight, more preferably 74-99.9% by weight, particularly preferably 80-99.5% by weight. %, Most preferably in the range of 87 to 99% by weight, the acrylic rubber veil has highly excellent weather resistance, heat resistance and oil resistance.
  • the monomer containing at least one reactive group selected from the group consisting of a carboxyl group, an epoxy group and a chlorine atom is not particularly limited, but has an ionic reactive group involved in an ionic reaction. It is preferable, more preferably a monomer having a carboxyl group and an epoxy group, and further preferably a monomer having a carboxyl group, the crosslinkability in a short time, the compression set resistance property and the water resistance of the crosslinked product. Can be highly improved and is suitable.
  • the monomer having a carboxyl group is not particularly limited, but an ethylenically unsaturated carboxylic acid can be preferably used.
  • the ethylenically unsaturated carboxylic acid include ethylenically unsaturated monocarboxylic acid, ethylenically unsaturated dicarboxylic acid, and ethylenically unsaturated dicarboxylic acid monoester, and among these, ethylenically unsaturated dicarboxylic acid monoester.
  • the ester can further enhance the compression resistance permanent strain property when the acrylic rubber veil is used as a rubber crosslinked product.
  • the ethylenically unsaturated monocarboxylic acid is not particularly limited, but an ethylenically unsaturated monocarboxylic acid having 3 to 12 carbon atoms is preferable, for example, acrylic acid, methacrylic acid, ⁇ -ethylacrylic acid, crotonic acid, and the like. Examples include cinnamic acid.
  • the ethylenically unsaturated dicarboxylic acid is not particularly limited, but is preferably an ethylenically unsaturated dicarboxylic acid having 4 to 12 carbon atoms, and examples thereof include butendionic acids such as fumaric acid and maleic acid, itaconic acid, and citraconic acid. Can be mentioned.
  • the ethylenically unsaturated dicarboxylic acid includes those existing as an anhydride.
  • the ethylenically unsaturated dicarboxylic acid monoester is not particularly limited, but is usually an ethylenically unsaturated dicarboxylic acid having 4 to 12 carbon atoms and an alkyl monoester having 1 to 12 carbon atoms, preferably 4 to 12 carbon atoms.
  • Examples thereof include ethylenically unsaturated dicarboxylic acid of 6 and an alkyl monoester having 2 to 8 carbon atoms, more preferably an alkyl monoester having 2 to 6 carbon atoms of butendionic acid having 4 carbon atoms.
  • ethylenically unsaturated dicarboxylic acid monoester examples include monomethyl fumarate, monoethyl fumarate, monon-butyl fumarate, monomethyl maleate, monoethyl maleate, monon-butyl maleate, monocyclopentyl fumarate, and fumaric acid.
  • Butendionic acid monoalkyl esters such as monocyclohexyl acid, monocyclohexenyl fumarate, monocyclopentyl maleate, monocyclohexyl maleate; monomethyl itaconate, monoethyl itaconate, monon-butyl itaconate, monocyclohexyl itaconate, etc. Examples thereof include monoalkyl esters; among these, mono n-butyl fumarate and mono n-butyl maleate are preferable, and mono n-butyl fumarate is particularly preferable.
  • Examples of the monomer having an epoxy group include an epoxy group-containing (meth) acrylic acid ester such as glycidyl (meth) acrylate; and an epoxy group-containing vinyl ether such as allyl glycidyl ether and vinyl glycidyl ether.
  • the monomer having a chlorine atom is not particularly limited, but for example, an unsaturated alcohol ester of a saturated carboxylic acid containing a chlorine atom, a (meth) acrylic acid chloroalkyl ester, and a (meth) acrylic acid chloroacyloxy.
  • Examples thereof include unsaturated monomers contained.
  • the unsaturated alcohol ester of the chlorine atom-containing saturated carboxylic acid include vinyl chloroacetate, vinyl 2-chloropropionate, and allyl chloroacetic acid.
  • Specific examples of (meth) acrylic acid chloroalkyl ester include (meth) acrylic acid chloromethyl, (meth) acrylic acid 1-chloroethyl, (meth) acrylic acid 2-chloroethyl, and (meth) acrylic acid 1,2-dichloroethyl. , (Meta) acrylic acid 2-chloropropyl, (meth) acrylic acid 3-chloropropyl, (meth) acrylic acid 2,3-dichloropropyl and the like.
  • (meth) acrylic acid chloroacyloxyalkyl ester examples include (meth) acrylic acid 2- (chloroacetoxy) ethyl, (meth) acrylic acid 2- (chloroacetoxy) propyl, and (meth) acrylic acid 3- (chloro). Examples thereof include acetoxy) propyl and 3- (hydroxychloroacetoxy) propyl (meth) acrylate.
  • Examples of the (meth) acrylic acid (chloroacetylcarbamoyloxy) alkyl ester include (meth) acrylic acid 2- (chloroacetylcarbamoyloxy) ethyl and (meth) acrylic acid 3- (chloroacetylcarbamoyloxy) propyl. Be done.
  • Specific examples of the chlorine atom-containing unsaturated ether include chloromethyl vinyl ether, 2-chloroethyl vinyl ether, 3-chloropropyl vinyl ether, 2-chloroethyl allyl ether, 3-chloropropyl allyl ether and the like.
  • chlorine atom-containing unsaturated ketone examples include 2-chloroethyl vinyl ketone, 3-chloropropyl vinyl ketone, 2-chloroethyl allyl ketone and the like.
  • chloromethyl group-containing aromatic vinyl compound examples include p-chloromethylstyrene, m-chloromethylstyrene, o-chloromethylstyrene, p-chloromethyl- ⁇ -methylstyrene and the like.
  • Specific examples of the chlorine atom-containing unsaturated amide include N-chloromethyl (meth) acrylamide.
  • Specific examples of the chloroacetyl group-containing unsaturated monomer include 3- (hydroxychloroacetoxy) propyl allyl ether and p-vinylbenzylchloroacetic acid ester.
  • the monomer containing at least one reactive group selected from the group consisting of a carboxyl group, an epoxy group and a chlorine atom is used alone or in combination of two or more, and is used in all the components of the monomer.
  • the proportion is usually 0.01 to 10% by weight, preferably 0.05 to 8% by weight, more preferably 0.1 to 6% by weight, particularly preferably 0.5 to 5% by weight, and most preferably 1 to 3%. It is in the range of% by weight.
  • any monomer copolymerizable with the above monomer can be used.
  • aromatic vinyl such as styrene, ⁇ -methylstyrene, divinylbenzene; ethylenically unsaturated nitriles such as acrylonitrile and methacrylonitrile; acrylamide-based monomers such as acrylamide and methacrylicamide; ethylene.
  • Olefin monomers such as propylene, vinyl acetate, ethyl vinyl ether, butyl vinyl ether and the like.
  • the ratio in the total components of the monomer is usually 0 to 40% by weight, preferably 0 to 30% by weight, and more preferably 0. It is suppressed to the range of about 20% by weight, particularly preferably 0 to 15% by weight, and most preferably 0 to 10% by weight.
  • the acrylic rubber constituting the acrylic rubber veil of the present invention has a reactive group, and is preferably at least one selected from the group consisting of the above-mentioned (meth) acrylic acid alkyl ester and (meth) acrylic acid alkoxyalkyl ester (). Meta) From a bonding unit from a monomer containing at least one reactive group selected from the group consisting of an acrylic acid ester, a carboxyl group, an epoxy group and a chlorine atom, and other monomers contained as necessary.
  • the respective proportions in the acrylic rubber are usually those derived from at least one (meth) acrylic acid ester selected from the group consisting of (meth) acrylic acid alkyl esters and (meth) acrylic acid alkoxyalkyl esters. 50-99.99% by weight, preferably 62-99.95% by weight, more preferably 74-99.9% by weight, particularly preferably 80-99.5% by weight, most preferably 87-99% by weight.
  • the bond unit derived from the monomer containing at least one reactive group selected from the group consisting of a carboxyl group, an epoxy group and a chlorine atom is usually 0.01 to 10% by weight, preferably 0.05.
  • the binding unit derived from other monomers is in the range of -8% by weight, more preferably 0.1 to 6% by weight, particularly preferably 0.5 to 5% by weight, most preferably 1 to 3% by weight, and the binding unit derived from other monomers is. , Usually in the range of 0 to 40% by weight, preferably 0 to 30% by weight, more preferably 0 to 20% by weight, particularly preferably 0 to 15% by weight, and most preferably 0 to 10% by weight.
  • the properties such as short-time cross-linking property, compression permanent strain resistance, weather resistance, heat resistance, and oil resistance of the acrylic rubber veil are highly balanced and suitable. ..
  • the measuring solvent of the GPC-MALS method for measuring the absolute molecular weight and the absolute molecular weight distribution of the acrylic rubber constituting the acrylic rubber veil of the present invention is not particularly limited as long as the acrylic rubber of the present invention can be dissolved and measured.
  • Dimethylformamide-based solvent is suitable.
  • the dimethylformamide-based solvent used is not particularly limited as long as it contains dimethylformamide as a main component, but 100% of dimethylformamide or the ratio of dimethylformamide in the dimethylformamide-based solvent is 90% by weight, preferably 90% by weight. It is 95% by weight, more preferably 97% by weight or more.
  • the compound to be added to dimethylformamide is not particularly limited, but in the present invention, lithium chloride is added to dimethylformamide at a concentration of 0.05 mol / L and 37% concentrated hydrochloric acid is added at a concentration of 0.01%, respectively.
  • Dimethylformamide is suitable.
  • the weight average molecular weight (Mw) of the acrylic rubber constituting the acrylic rubber veil of the present invention is an absolute molecular weight measured by the GPC-MALS method, which is 1,000,000 to 3,500,000, preferably 1,200. 000 to 3,000,000, more preferably 1,300,000 to 3,000,000, particularly preferably 1,500,000 to 2,500,000, most preferably 1,900,000 to 2,100.
  • Mw weight average molecular weight measured by the GPC-MALS method
  • the number average molecular weight (Mn) of the acrylic rubber constituting the acrylic rubber veil of the present invention is not particularly limited and may be appropriately selected according to the purpose of use, but is an absolute molecular weight measured by the GPC-MALS method. Usually 100,000 to 500,000, preferably 200,000 to 480,000, more preferably 250,000 to 450,000, particularly preferably 300,000 to 400,000, most preferably 350,000 to 400, When the range is in the range of 000, the roll processability, strength characteristics and compression resistance permanent strain characteristics of the acrylic rubber bale are highly balanced and suitable. If the number average molecular weight (Mn) of acrylic rubber is excessively small, it is inferior in strength characteristics and compression resistance permanent strain characteristics. No.
  • the z average molecular weight (Mz) of the acrylic rubber constituting the acrylic rubber veil of the present invention is an absolute molecular weight that emphasizes the high molecular weight region measured by the GPC-MALS method, and is not particularly limited, but is usually 1, 500,000 to 6,000,000, preferably 2,000,000 to 5,000,000, more preferably 2,500,000 to 4,500,000, particularly preferably 3,000,000 to 4, When the range is in the range of ,000,000, the roll processability, strength characteristics, and compression resistance permanent strain characteristics of the acrylic rubber bale are highly balanced and suitable.
  • the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of the acrylic rubber constituting the acrylic rubber veil of the present invention is the absolute molecular weight distribution measured by the GPC-MALS method.
  • the range is 7 to 6.5, preferably 3.8 to 6.2, more preferably 4 to 6, particularly preferably 4, 5 to 5.7, and most preferably 4.7 to 5.5.
  • the roll processability of the acrylic rubber veil, the strength characteristics when crosslinked, and the compression resistance permanent strain characteristics are highly balanced and suitable.
  • the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of acrylic rubber is excessively small, the roll processability is inferior, and the excessively large strength characteristics and compression permanent strain resistance are inferior, and the roll is also inferior.
  • the workability is not sufficient, and neither is preferable.
  • the ratio (Mz / Mw) of the z average molecular weight (Mz) and the weight average molecular weight (Mw) of the acrylic rubber constituting the acrylic rubber veil of the present invention may be appropriately selected according to the purpose of use without any particular limitation.
  • the glass transition temperature (Tg) of the acrylic rubber constituting the acrylic rubber veil of the present invention may be appropriately selected depending on the intended use of the acrylic rubber, but is usually 20 ° C. or lower, preferably 10 ° C. or lower, more preferably. It is suitable because it has excellent workability and cold resistance when the temperature is 0 ° C. or lower.
  • the lower limit of the glass transition temperature (Tg) of acrylic rubber is not particularly limited, but is usually ⁇ 80 ° C. or higher, preferably ⁇ 60 ° C. or higher, and more preferably ⁇ 40 ° C. or higher.
  • the acrylic rubber veil of the present invention has the above-mentioned reactive group and is made of the above-mentioned acrylic rubber, and has a methyl ethyl ketone insoluble content of 50% by weight or less, an ash content of 0.2% by weight or less, and sodium and magnesium in the ash content. It is characterized in that the total amount of calcium, phosphorus and sulfur is 50% by weight or more.
  • the insoluble content of the methyl ethyl ketone of the acrylic rubber veil of the present invention is 50% by weight or less, preferably 30% by weight or less, more preferably 15% by weight or less, particularly preferably 10% by weight or less, and most preferably 5% by weight or less.
  • the processability at the time of kneading such as Banbury is highly improved and is suitable.
  • the value when the amount of methyl ethyl ketone insoluble in the acrylic rubber veil of the present invention is arbitrarily measured at 20 points is not particularly limited, but all 20 points are within the range of (average value ⁇ 5)% by weight. It is preferable that when all 20 points are within the range of (average value ⁇ 3)% by weight, there is no workability variation and various physical properties of the rubber composition and the rubber crosslinked product are stabilized. It should be noted that the value when the amount of methyl ethyl ketone insoluble in the acrylic rubber veil is arbitrarily measured at 20 points is that all 20 points are within the range of the average value ⁇ 5, (average value -5) to (average value +5).
  • the acrylic rubber veil of the present invention is obtained by melt-kneading and drying a water-containing crumb produced by a solidification reaction in a state where almost all water is removed by a screw-type twin-screw extruder (water content less than 1% by weight). Sometimes Banbury workability and strength characteristics are highly balanced and suitable.
  • the ash content of the acrylic rubber veil of the present invention is 0.2% by weight or less, preferably 0.15% by weight or less, more preferably 0.14% by weight or less, still more preferably 0.13% by weight or less. When it is within the range, the water resistance, strength characteristics and workability of the acrylic rubber veil are highly balanced and suitable.
  • the lower limit of the ash content of the acrylic rubber veil of the present invention is not particularly limited and may be appropriately selected depending on the intended use, but is usually 0.0001% by weight or more, preferably 0.0005% by weight or more. When it is preferably 0.001% by weight or more, particularly preferably 0.005% by weight or more, and most preferably 0.01% by weight or more, the metal adhesion of the rubber is reduced and the workability is excellent. be.
  • the ash content is usually 0.0001 to 0.2% by weight, preferably 0.0005 to 0.15. It is in the range of% by weight, more preferably 0.001 to 0.14% by weight, particularly preferably 0.005 to 0.13% by weight, and most preferably 0.01 to 0.13% by weight.
  • the total amount of sodium, magnesium, calcium, phosphorus and sulfur in the ash content of the acrylic rubber veil of the present invention is 50% by weight or more, preferably 60% by weight or more, more preferably 70% by weight or more, and particularly preferably 80% by weight. As described above, the water resistance of the acrylic rubber veil is highly improved and is preferable when the content is 90% by weight or more. Further, when the total amount of sodium, magnesium, calcium, phosphorus and sulfur in the ash content of the acrylic rubber veil of the present invention is in this range, the metal adhesion is reduced and the workability is excellent, which is suitable.
  • the total amount of magnesium and phosphorus in the ash content of the acrylic rubber veil of the present invention is not particularly limited and may be appropriately selected depending on the intended use, but is usually 30% by weight or more, preferably 50% by weight or more. When it is more preferably 70% by weight or more, particularly preferably 80% by weight or more, and most preferably 90% by weight or more, the water resistance, strength characteristics and processability of the acrylic rubber veil are highly balanced and preferable. Further, when the total amount of magnesium and phosphorus in the ash content of the acrylic rubber veil of the present invention is in this range, the metal adhesion is reduced and the workability is excellent, which is preferable.
  • the amount of magnesium in the ash content of the acrylic rubber veil of the present invention is not particularly limited and may be appropriately selected depending on the intended use, but is usually 10% by weight or more, preferably 15 to 60% by weight, and more preferably 20 to 50% by weight. It is in the range of% by weight, particularly preferably 25 to 45% by weight, and most preferably 30 to 40% by weight.
  • the amount of phosphorus in the ash content of the acrylic rubber veil of the present invention is not particularly limited and may be appropriately selected depending on the intended use, but is usually 10% by weight or more, preferably 20 to 90% by weight, and more preferably 30 to 80% by weight. It is in the range of% by weight, particularly preferably 40 to 70% by weight, and most preferably 50 to 60% by weight.
  • the ratio of magnesium to phosphorus ([Mg] / [P]) in the ash content of the acrylic rubber veil of the present invention is not particularly limited and may be appropriately selected according to the purpose of use, but is usually a weight ratio.
  • the range is 0.4 to 2.5, preferably 0.45 to 1.2, more preferably 0.45 to 1, particularly preferably 0.5 to 0.8, and most preferably 0.55 to 0.7.
  • the water resistance, strength characteristics and workability of the acrylic rubber veil are highly balanced and suitable.
  • the ash content in the acrylic rubber veil is mainly derived from the emulsifier used when emulsifying the monomer component and emulsion polymerization and the coagulant used when coagulating the emulsion polymerization solution, but the total ash content.
  • the content of magnesium and phosphorus in the ash and the content of magnesium and phosphorus vary not only with the conditions of the emulsion polymerization step and the solidification step but also with the conditions of each subsequent step.
  • the acrylic rubber veil of the present invention uses an anionic emulsifier, a cationic emulsifier, or a nonionic emulsifier, preferably an anionic emulsifier, more preferably a phosphoric acid ester salt or a sulfate ester salt, as an emulsifier during emulsion polymerization described later.
  • an anionic emulsifier more preferably a phosphoric acid ester salt or a sulfate ester salt
  • mold releasability and workability can be highly improved, which is suitable.
  • the water resistance of the acrylic rubber veil is uniquely correlated with the amount of ash in the acrylic rubber and the total amount of sodium, magnesium, calcium, phosphorus and sulfur in the ash.
  • the water resistance, strength characteristics, mold releasability and processability of the above can be further balanced, which is suitable.
  • the acrylic rubber veil of the present invention has not only water resistance and strength characteristics but also mold releasability and mold releasability when a metal salt, preferably an alkali metal salt or a group 2 metal salt of the periodic table is used as a coagulant described later. It is suitable because it can greatly improve workability.
  • the water resistance of the acrylic rubber veil is uniquely correlated with the amount of ash in the acrylic rubber and the total amount of sodium, magnesium, calcium, phosphorus and sulfur in the ash.
  • the water resistance, strength characteristics, mold releasability and processability of the bale are more highly balanced and suitable.
  • the specific gravity of the acrylic rubber veil of the present invention is not particularly limited, but is usually 0.7 or more, preferably 0.8 or more, more preferably 0.9 or more, particularly preferably 0.95 or more, most preferably. When it is 1 or more, almost no air is contained therein, and it is excellent in storage stability and suitable.
  • the specific gravity of the acrylic rubber veil of the present invention is also usually 0.7 to 1.6, preferably 0.8 to 1.5, more preferably 0.9 to 1.4, and particularly preferably 0.95 to 1. 3.3, most preferably in the range of 1.0 to 1.2, productivity, storage stability, cross-linking property stability of crosslinked products, etc. are highly balanced and suitable.
  • the specific gravity of the acrylic rubber veil of the present invention is obtained by dividing the mass by the capacity including voids, that is, the mass measured in the air divided by the buoyancy, and is usually JIS K6268 crosslinked rubber-A of density measurement. It is measured according to the law.
  • the hydrous crumb produced by the solidification reaction is dried under reduced pressure by a screw type twin-screw extruder, or melt-kneaded and dried under reduced pressure to obtain storage stability. It is suitable because the roll workability and strength characteristics are particularly excellent and highly balanced.
  • the complex viscosity ([ ⁇ ] 60 ° C.) of the acrylic rubber veil of the present invention at 60 ° C. is not particularly limited and may be appropriately selected according to the purpose of use, but is usually 15,000 [Pa ⁇ s] or less. , Preferably 1,000 to 10,000 [Pa ⁇ s], more preferably 2,000 to 5,000 [Pa ⁇ s], particularly preferably 2,500 to 4,000 [Pa ⁇ s], most preferably. Is excellent in workability, oil resistance and shape retention when it is in the range of 2,500 to 3,000 [Pa ⁇ s] and is suitable.
  • the complex viscosity ([ ⁇ ] 100 ° C.) of the acrylic rubber veil of the present invention at 100 ° C. is not particularly limited and may be appropriately selected according to the purpose of use, but is usually 1,500 to 6,000 [Pa. S], preferably 2,000 to 5,000 [Pa ⁇ s], more preferably 2,300 to 4,000 [Pa ⁇ s], and particularly preferably 2,500 to 3,500 [Pa ⁇ s]. Most preferably, it is excellent in processability, oil resistance and shape retention when it is in the range of 2,500 to 3,000 [Pa ⁇ s].
  • the ratio of the complex viscosity ([ ⁇ ] 100 ° C.) of the acrylic rubber veil of the present invention at 100 ° C. to the complex viscosity ([ ⁇ ] 60 ° C.) at 60 ° C. Is not particularly limited and may be appropriately selected according to the purpose of use, but is usually 0.5 or more, preferably 0.6 or more, more preferably 0.7 or more, particularly preferably 0.8 or more, and most. It is preferably 0.83 or more.
  • the water content of the acrylic rubber veil of the present invention is not particularly limited and is appropriately selected depending on the intended use, but is usually less than 1% by weight, preferably 0.8% by weight or less, more preferably 0.6% by weight.
  • the vulcanization characteristics of the acrylic rubber veil are optimized and the characteristics such as heat resistance and water resistance are highly improved, which is suitable.
  • the pH of the acrylic rubber veil of the present invention is not particularly limited and may be appropriately selected depending on the intended use, but is usually 6 or less, preferably 2 to 6, more preferably 2.5 to 5.5, and most.
  • the storage stability of the acrylic rubber veil is highly improved and is preferable when the range is preferably in the range of 3 to 5.
  • the Mooney viscosity (ML1 + 4,100 ° C.) of the acrylic rubber veil of the present invention is not particularly limited and may be appropriately selected depending on the intended use, but is usually 10 to 150, preferably 20 to 100, and more preferably 25. When the range is in the range of ⁇ 70, the processability and strength characteristics of the acrylic rubber veil are highly balanced and suitable.
  • the constituent acrylic rubber content of the acrylic rubber veil of the present invention is substantially acrylic rubber and may be appropriately selected depending on the intended use, but is usually 90% by weight or more, preferably 95% by weight or more, more preferably. When it is 97% by weight or more, the strength characteristics and the workability of rolls and the like are highly balanced, which is suitable.
  • the acrylic rubber content in the acrylic rubber veil is estimated by subtracting the ash content from the weight of the acrylic rubber veil.
  • the size of the acrylic rubber veil of the present invention is not particularly limited and may be appropriately selected depending on the intended use, but the width is usually in the range of 100 to 800 mm, preferably 200 to 500 mm, and more preferably 250 to 450 mm.
  • the length is usually in the range of 300 to 1,200 mm, preferably 400 to 1,000 mm, more preferably 500 to 800 mm, and the height (thickness) is usually 50 to 500 mm, preferably 100 to 300 mm, more preferably. It is suitable to be in the range of 150 to 250 mm.
  • the shape of the acrylic rubber veil of the present invention is not limited and is appropriately selected depending on the intended use of the acrylic rubber veil, but in many cases, a rectangular parallelepiped is suitable.
  • the method for producing the acrylic rubber veil is not particularly limited, but for example, at least one (meth) acrylic selected from the group consisting of (meth) acrylic acid alkyl ester and (meth) acrylic acid alkoxyalkyl ester. It comprises a monomer containing at least one reactive group selected from the group consisting of an acid ester, a carboxyl group, an epoxy group and a chlorine atom, and other monomers copolymerizable as required.
  • Emulsion polymerization is started in the presence of a redox catalyst consisting of an inorganic radical generator and a reducing agent, and a chain transfer agent and a reducing agent are added in batches during the polymerization, and then emulsion polymerization is carried out until the polymerization conversion rate is 90% by weight or more.
  • a redox catalyst consisting of an inorganic radical generator and a reducing agent
  • a chain transfer agent and a reducing agent are added in batches during the polymerization, and then emulsion polymerization is carried out until the polymerization conversion rate is 90% by weight or more.
  • a coagulation step of adding the obtained emulsion polymerization solution to the stirring coagulation liquid to coagulate and generate a hydrous crumb A cleaning process that cleans the generated hydrous crumb with warm water,
  • the washed water-containing crumb is dehydrated to a water content of 1 to 40% by weight in a dehydration barrel using a dehydration barrel having a dehydration slit, a drying barrel under reduced pressure, and a screw-type twin-screw extruder having a die at the tip.
  • Dehydration / drying Drying to less than 1% by weight in a drying barrel and extruding sheet-shaped dried rubber from the die: Molding process and A veiling process in which the extruded sheet-shaped dry rubber is cut and then laminated. It can be easily manufactured by a method for manufacturing an acrylic rubber veil including.
  • the monomer component used in the present invention is the same as the above-mentioned example and preferable range of the monomer component.
  • the amount of the monomer component used is also as described above, and in the emulsion polymerization, each monomer may be appropriately selected so as to have the above composition of the acrylic rubber constituting the acrylic rubber veil of the present invention. ..
  • the emulsifier used in the present invention is not particularly limited, and examples thereof include an anionic emulsifier, a cationic emulsifier, and a nonionic emulsifier, and an anionic emulsifier is preferable.
  • the anionic emulsifier is not particularly limited, for example, salts of fatty acids such as myristic acid, palmitic acid, oleic acid, linolenic acid; alkylbenzene sulfonates such as sodium dodecylbenzenesulfonate; sulfate esters such as sodium laurylsulfate.
  • Phosphate ester salts such as salts and polyoxyalkylene alkyl ether phosphate ester salts; alkyl sulfosuccinates and the like can be mentioned.
  • phosphoric acid ester salts and sulfate ester salts are preferable, phosphoric acid ester salts are particularly preferable, and divalent phosphoric acid ester salts are most preferable, and the water resistance, strength characteristics, and gold of the obtained acrylic rubber veil are preferable. It is suitable because it can highly balance mold releasability and workability.
  • the acrylic rubber veil obtained when these phosphate ester salts and sulfate ester salts are preferably alkali metal salts of phosphate esters and sulfate esters, and more preferably sodium salts of phosphate esters and sulfate esters. It is suitable because it can highly balance water resistance, strength characteristics, mold releasability and workability.
  • the divalent phosphoric acid ester salt is not particularly limited as long as it can be used as an emulsifier in the emulsification polymerization reaction, but is not particularly limited.
  • Examples thereof include ester salts, among which these metal salts are preferable, these alkali metal salts are more preferable, and these sodium salts are most preferable.
  • alkyloxypolyoxyalkylene phosphate ester salt examples include alkyloxypolyoxyethylene phosphoric acid ester salts and alkyloxypolyoxypropylene phosphate ester salts. Among these, alkyloxypolyoxyethylene phosphoric acid is used. Ester salts are preferred.
  • alkyloxypolyoxyethylene phosphoric acid ester examples include octyloxydioxyethylene phosphoric acid ester, octyloxytrioxyethylene phosphoric acid ester, octyloxytetraoxyethylene phosphoric acid ester, and decyloxytetraoxyethylene phosphoric acid ester.
  • alkyloxypolyoxypropylene phosphate ester examples include octyloxydioxypropylene phosphate, octyloxytrioxypropylene phosphate, octyloxytetraoxypropylene phosphate, and decyloxytetraoxypropylene phosphate.
  • alkylphenyloxypolyoxyalkylene phosphate ester examples include alkylphenyloxypolyoxyethylene phosphate and alkylphenyloxypolyoxypropylene phosphate, among which alkylphenyloxypoly is used.
  • Oxyethylene phosphate ester salts are preferred.
  • alkylphenyloxypolyoxyethylene phosphate ester examples include methyloxyoxytetraoxyethylene phosphate, ethylphenyloxytetraoxyethylene phosphate, butylphenyloxytetraoxyethylene phosphate, and hexylphenyloxytetra.
  • alkylphenyloxypolyoxypropylene phosphate ester examples include methylphenyloxytetraoxypropylene phosphate, ethylphenyloxytetraoxypropylene phosphate, butylphenyloxytetraoxypropylene phosphate, and hexylphenyloxytetra.
  • a monovalent phosphoric acid ester salt such as a di (alkyloxypolyoxyalkylene) phosphoric acid ester sodium salt can be used alone or in combination with a divalent phosphoric acid ester salt.
  • the sulfate ester salt include sodium lauryl sulfate, potassium lauryl sulfate, ammonium lauryl sulfate, sodium mystyl sulfate, sodium polyoxyethylene alkyl sulfate, sodium polyoxyethylene alkylaryl sulfate, and the like, and sodium lauryl sulfate is preferable.
  • cationic emulsifier examples include alkyltrimethylammonium chloride, dialkylammonium chloride, benzylammonium chloride and the like.
  • nonionic emulsifier examples include polyoxyalkylene fatty acid esters such as polyoxyethylene stearate ester; polyoxyalkylene alkyl ethers such as polyoxyethylene dodecyl ether; polyoxyalkylene alkyl phenol ethers such as polyoxyethylene nonylphenyl ether; and poly.
  • examples thereof include oxyethylene sorbitan alkyl ester, and polyoxyalkylene alkyl ether and polyoxyalkylene alkyl phenol ether are preferable, and polyoxyethylene alkyl ether and polyoxyethylene alkyl phenol ether are more preferable.
  • Each of these emulsifiers can be used alone or in combination of two or more, and the amount used is usually 0.01 to 10 parts by weight, preferably 0, with respect to 100 parts by weight of the monomer component. It is in the range of 1 to 5 parts by weight, more preferably 1 to 3 parts by weight.
  • the method of mixing the monomer component, water and emulsifier may follow a conventional method.
  • the amount of water used is usually 1 to 1000 parts by weight, preferably 5 to 500 parts by weight, more preferably 4 to 300 parts by weight, and particularly preferably 3 to 150 parts by weight, based on 100 parts by weight of the monomer component. Most preferably, it is in the range of 20 to 80 parts by weight.
  • the polymerization catalyst used in the present invention is characterized by using a redox catalyst composed of an inorganic radical generator and a reducing agent.
  • a redox catalyst composed of an inorganic radical generator and a reducing agent.
  • it is suitable because the processability of a roll or the like of an acrylic rubber veil manufactured by using an inorganic radical generator can be highly improved.
  • the inorganic radical generator is not particularly limited as long as it is usually used in emulsion polymerization, and examples thereof include persulfates such as sodium persulfate, potassium persulfate, and ammonium persulfate, hydrogen peroxide, and the like. Among them, persulfate is preferable, potassium persulfate and ammonium persulfate are more preferable, and potassium persulfate is particularly preferable.
  • inorganic radical generators can be used individually or in combination of two or more, and the amount used is usually 0.0001 to 5 parts by weight, preferably 0, based on 100 parts by weight of the monomer component. It is in the range of 0005 to 1 part by weight, more preferably 0.001 to 0.25 part by weight, particularly preferably 0.01 to 0.21 part by weight, and most preferably 0.1 to 0.2 part by weight.
  • the reducing agent used in the present invention is not particularly limited as long as it is usually used in emulsion polymerization, but preferably at least two kinds of reducing agents are used, and it is a metal ion compound in a reduced state. It is preferable to be able to further balance the vanbury workability, roll workability and strength characteristics of the acrylic rubber veil that can be obtained by combining with other reducing agents.
  • the metal ion compound in the reduced state is not particularly limited, and examples thereof include ferrous sulfate, sodium hexamethylenediamine tetraacetate, and ferrous naphthenate, and among these, ferrous sulfate is preferable.
  • These metal ion compounds in the reduced state can be used alone or in combination of two or more, and the amount used is usually 0.000001 to 0. With respect to 100 parts by weight of the monomer component. It is in the range of 01 parts by weight, preferably 0.00001 to 0.001 parts by weight, and more preferably 0.00005 to 0.0005 parts by weight.
  • the reducing agent other than the metal ion compound in the reduced state used in the present invention is not particularly limited, and is, for example, ascorbic acid such as ascorbic acid, sodium ascorbate, potassium ascorbate or a salt thereof; erythorbic acid, sodium erythorbicate.
  • Elysorbic acid such as potassium erythorbinate or a salt thereof; sulphinate such as sodium hydroxymethane sulfine; sodium sulfite, potassium sulfite, sodium hydrogen sulfite, sodium aldehyde hydrogen sulfite, sulfite of potassium hydrogen sulfite; sodium pyrosulfate, pyro Pyro sulfites such as potassium sulfite, sodium pyrosulfate, potassium pyrosulfate; thiosulfates such as sodium thiosulfate, potassium thiosulfate; Pyroarophosphate or a salt thereof; Pyroarophosphate or a salt thereof such as Pyrophosic acid, Sodium Pyrophosphite, Potassium Pyrophosphite, Sodium Pyrophosphite, Potassium hydrogen Pyrophosphite; Sodium formaldehyde sulfoxylate and the like. Be done. Among these, al
  • reducing agents other than the metal ion compound in the reduced state can be used alone or in combination of two or more, and the amount used is usually 0.001 with respect to 100 parts by weight of the monomer component.
  • the range is from 1 part by weight, preferably 0.005 to 0.5 part by weight, and more preferably 0.01 to 0.1 part by weight.
  • a preferred combination of the metal ion compound in the reduced state and the other reducing agent is a combination of ferrous sulfate and ascorbic acid or a salt thereof and / or sodium formaldehyde sulfoxylate, and more preferably ferrous sulfate. It is a combination with alcorbic acid or a salt thereof.
  • the amount of ferrous sulfate used at this time is usually 0.000001 to 0.01 parts by weight, preferably 0.00001 to 0.001 parts by weight, and more preferably 0, based on 100 parts by weight of the monomer component.
  • the amount of ascorbic acid or a salt thereof and / or sodium formaldehyde sulfoxylate is usually 0.001 to 1 part by weight, preferably 0.001 to 1 part by weight, based on 100 parts by weight of both components. It is in the range of 0.005 to 0.5 parts by weight, more preferably 0.01 to 0.1 parts by weight.
  • the amount of water used in the emulsion polymerization reaction may be only the amount used at the time of emulsification of the monomer component, but is usually 10 to 1000 parts by weight, preferably 50 to 50 parts by weight with respect to 100 parts by weight of the monomer component used for polymerization. It is adjusted to be in the range of 500 parts by weight, more preferably 80 to 400 parts by weight, and most preferably 100 to 300 parts by weight.
  • the method of the emulsion polymerization reaction may be a conventional method, and may be a batch method, a semi-batch method, or a continuous method.
  • the polymerization temperature and the polymerization time are not particularly limited and can be appropriately selected from the type of the polymerization initiator to be used and the like.
  • the polymerization time is usually 0.5 to 100 hours, preferably 1 to 10 hours.
  • the emulsion polymerization reaction is an exothermic reaction, and if not controlled, the temperature may rise and the polymerization reaction can be shortened.
  • the emulsion polymerization reaction temperature is usually 35 ° C. or lower, preferably 0 to 35 ° C., more preferably. It is preferable to control the temperature at 5 to 30 ° C, particularly preferably 10 to 25 ° C, because the strength characteristics of the produced acrylic rubber veil and the processability at the time of kneading such as Banbury are highly balanced.
  • the present invention is characterized in that the chain transfer agent is not added at the initial stage but is added in batches during the polymerization, whereby an acrylic rubber having a high molecular weight component and a low molecular weight component separated can be produced. ,
  • the strength characteristics of the acrylic rubber veil to be manufactured and the processability at the time of kneading such as rolls are highly balanced and suitable.
  • the chain transfer agent used is not particularly limited as long as it is usually used in emulsion polymerization, and for example, a mercaptan compound can be preferably used.
  • an alkyl mercaptan compound having 2 to 20 carbon atoms preferably an alkyl mercaptan compound having 5 to 15 carbon atoms, and more preferably an alkyl mercaptan compound having 6 to 14 carbon atoms
  • the alkyl mercaptan compound may be any of n-alkyl mercaptan compound, sec-alkyl mercaptan compound and t-alkyl mercaptan compound, but is preferably n-alkyl mercaptan compound and t-alkyl mercaptan compound, and more preferably n-alkyl.
  • alkyl mercaptan compound examples include n-pentyl mercaptan, n-hexyl mercaptan, n-heptyl mercaptan, n-octyl mercaptan, n-decyl mercaptan, n-dodecyl mercaptan, n-tridecane mercaptan, and n-tetradecyl mercaptan.
  • chain transfer agents can be used alone or in combination of two or more.
  • the amount of the chain transfer agent used is not particularly limited, but is usually 0.0001 to 1 part by weight, preferably 0.0005 to 0.5 part by weight, based on 100 parts by weight of the monomer component.
  • the acrylic rubber veil produced preferably in the range of 0.001 to 0.5 parts by weight, particularly preferably 0.005 to 0.1 parts by weight, most preferably 0.01 to 0.06 parts by weight. It is suitable because it has a high balance between strength characteristics and roll workability.
  • the present invention is characterized in that the chain transfer agent is not added at the initial stage of polymerization but is added in batches during the polymerization, and high molecular weight components and low molecular weight components of the acrylic rubber to be produced are produced and the molecular weight distribution is distributed. It is suitable because it can highly balance the strength characteristics and the workability of rolls and the like with the above as a specific range.
  • the number of batch post-additions of the chain transfer agent is not particularly limited and is appropriately selected depending on the purpose of use, but is usually 1 to 5 times, preferably 2 to 4 times, more preferably 2 to 3 times. Particularly preferably, the strength characteristics of the acrylic rubber veil produced when the number of times is twice and the processability of the roll or the like can be highly balanced, which is preferable.
  • the time to start the batch post-addition of the chain transfer agent is not particularly limited and is appropriately selected according to the purpose of use, but is usually 20 minutes or later after the start of the polymerization, preferably 30 minutes or later after the start of the polymerization.
  • the strength characteristics of the acrylic rubber veil and the processability of rolls and the like are more preferably 30 to 200 minutes after the start of polymerization, particularly preferably 35 to 150 minutes after the start of polymerization, and most preferably 40 to 120 minutes. Can be highly balanced and is suitable.
  • the amount to be added per batch in the batch post-addition of the chain transfer agent is not particularly limited and is appropriately selected according to the purpose of use, but is usually 0.00005 to 100 parts by weight of the monomer component. 0.5 parts by weight, preferably 0.0001 to 0.1 parts by weight, more preferably 0.0005 to 0.05 parts by weight, particularly preferably 0.001 to 0.03 parts by weight, most preferably 0.002. It is suitable because the strength characteristics and roll workability of the acrylic rubber veil manufactured when the content is in the range of about 0.02 parts by weight can be highly balanced.
  • the polymerization reaction can be continued for usually 30 minutes or longer, preferably 45 minutes or longer, more preferably 1 hour or longer, and then terminated.
  • the reducing agent of the redox catalyst can be post-added during the polymerization, and the strength characteristics of the acrylic rubber veil produced by doing so and the processability of the roll and the like can be highly balanced. Suitable.
  • the reducing agent to be added after the polymerization the above-mentioned examples of the reducing agent and the preferable range are the same.
  • ascorbic acid or a salt thereof is suitable as the reducing agent to be added later.
  • the amount of the reducing agent to be added after the polymerization is not particularly limited and may be appropriately selected according to the purpose of use, but is usually 0.0001 to 1 with respect to 100 parts by weight of the monomer component.
  • weight preferably 0.0005 to 0.5 parts by weight, more preferably 0.001 to 0.5 parts by weight, particularly preferably 0.005 to 0.1 parts by weight, most preferably 0.01 to 0.
  • the productivity of producing an acrylic rubber bale is excellent, and the strength characteristics and processability of the produced acrylic rubber bale can be highly balanced, which is suitable.
  • the reducing agent added after the polymerization may be continuous or batch, but is preferably batch.
  • the number of times the reducing agent is added in batches during the polymerization is not particularly limited, but is usually 1 to 5 times, preferably 1 to 3 times, and more preferably 1 to 2 times.
  • the ratio of the amount of ascorbic acid or a salt thereof added at the initial stage to the amount of ascorbic acid or a salt thereof added afterwards is exceptional.
  • the weight ratio of "initially added ascorbic acid or a salt thereof" / "a batch post-added ascorbic acid or a salt thereof” is usually 1/9 to 8/2, preferably 2/8 to 2.
  • it is in the range of 6/4, more preferably 3/7 to 5/5, the productivity of acrylic rubber bale production is excellent, and the strength characteristics and workability of the produced acrylic rubber bale can be highly balanced, which is suitable. ..
  • the timing of the post-addition of the reducing agent is not particularly limited and is appropriately selected according to the purpose of use. However, it is usually 1 hour or later after the start of polymerization, preferably 1 to 3 hours after the start of polymerization, and more preferably 1. When the time is in the range of 5 to 2.5 hours, the productivity of producing an acrylic rubber bale is excellent, and the strength characteristics of the produced acrylic rubber bale and the processability of a roll or the like can be highly balanced, which is suitable.
  • the amount of the reducing agent added per batch in the batch post-addition is not particularly limited and is appropriately selected according to the purpose of use, but is usually 0.00005 to 0 with respect to 100 parts by weight of the monomer component. Manufactured in the range of 5.5 parts by weight, preferably 0.0001 to 0.1 parts by weight, more preferably 0.0005 to 0.05 parts by weight, and particularly preferably 0.001 to 0.03 parts by weight. It is suitable because it can highly balance the strength characteristics of the acrylic rubber veil and the workability of rolls and the like.
  • the operation after the addition of the reducing agent is not particularly limited, but the polymerization reaction can be terminated after the polymerization reaction is continued for usually 30 minutes or longer, preferably 45 minutes or longer, more preferably 1 hour or longer.
  • the polymerization conversion rate of the emulsion polymerization reaction is 90% by weight or more, preferably 95% by weight or more, and the acrylic rubber veil produced at this time is suitable because it has excellent strength characteristics and no monomeric odor.
  • a polymerization inhibitor may be used to terminate the polymerization.
  • the obtained emulsion polymerization solution (emulsion) can be coagulated and dried to isolate acrylic rubber.
  • the emulsion polymerization solution obtained by the above emulsion polymerization can be added to the stirring coagulation solution and coagulated to form a water-containing crumb of acrylic rubber.
  • the solid content concentration of the emulsion polymer used in this coagulation reaction is not particularly limited, but is usually adjusted to the range of 5 to 50% by weight, preferably 10 to 45% by weight, and more preferably 20 to 40% by weight. Will be done.
  • the coagulant used in the coagulant is not particularly limited, but usually a metal salt is used.
  • the metal salt include alkali metals, Group 2 metal salts of the Periodic Table, and other metal salts, preferably alkali metal salts, Group 2 metal salts of the Periodic Table, and more preferably Group 2 metals of the Periodic Table. It is suitable because it can highly balance the water resistance, strength characteristics, mold releasability and processability of the acrylic rubber obtained when it is a salt, particularly preferably a magnesium salt.
  • alkali metal salt examples include sodium salts such as sodium chloride, sodium nitrate and sodium sulfate; potassium salts such as potassium chloride, potassium nitrate and potassium sulfate; and lithium salts such as lithium chloride, lithium nitrate and lithium sulfate.
  • sodium salts are preferable, and sodium chloride and sodium sulfate are particularly preferable.
  • Examples of the Group 2 metal salt in the periodic table include magnesium chloride, calcium chloride, magnesium nitrate, calcium nitrate, magnesium sulfate, calcium sulfate and the like, and calcium chloride and magnesium sulfate are preferable.
  • metal salts include, for example, zinc chloride, titanium chloride, manganese chloride, iron chloride, cobalt chloride, nickel chloride, aluminum chloride, tin chloride, zinc nitrate, titanium nitrate, manganese nitrate, iron nitrate, cobalt nitrate, nickel nitrate. , Aluminum nitrate, tin nitrate, zinc sulfate, titanium sulfate, manganese sulfate, iron sulfate, cobalt sulfate, nickel sulfate, aluminum sulfate, tin sulfate and the like.
  • Each of these coagulants can be used alone or in combination of two or more, and the amount thereof is usually 0.01 to 100 parts by weight, preferably 0, with respect to 100 parts by weight of the monomer component. It is in the range of 1 to 50 parts by weight, more preferably 1 to 30 parts by weight. When the coagulant is in this range, it is preferable because it can sufficiently improve the coagulation of the acrylic rubber and highly improve the compression-resistant permanent strain resistance and the water resistance when the acrylic rubber is crosslinked.
  • the particle size of the water-containing crumb In the solidification step of the present invention, it is particularly preferable to focus the particle size of the water-containing crumb to be generated in a specific region, because the cleaning efficiency and the ash removal efficiency at the time of dehydration are significantly improved.
  • the proportion of the water-containing crumb to be produced in the range of 710 ⁇ m to 6.7 mm (passing 6.7 mm without passing through 710 ⁇ m) is not particularly limited, but is usually 30% by weight or more, preferably 30% by weight or more, based on the total water-containing crumb. Is suitable because the water resistance of the acrylic rubber veil can be significantly improved when it is 50% by weight or more, more preferably 60% by weight or more, particularly preferably 70% by weight or more, and most preferably 80% by weight or more.
  • the ratio of the water-containing crumb to be produced in the range of 710 ⁇ m to 4.75 mm (passing 4.75 mm without passing through 710 ⁇ m) is not particularly limited, but is usually 30% by weight or more with respect to the total water-containing crumb.
  • the water resistance of the acrylic rubber veil can be significantly improved when the content is preferably 50% by weight or more, more preferably 60% by weight or more, particularly preferably 70% by weight or more, and most preferably 80% by weight or more.
  • the proportion of the water-containing crumbs produced in the range of 710 ⁇ m to 3.35 mm (passing 3.35 mm without passing through 710 ⁇ m) is not particularly limited, but is usually 20% by weight or more with respect to the total water-containing crumbs.
  • the water resistance of the acrylic rubber veil can be significantly improved when the content is preferably 30% by weight or more, more preferably 40% by weight or more, particularly preferably 50% by weight or more, and most preferably 60% by weight or more.
  • the means for producing the particle size of the hydrous crumb to be produced within the above range is not particularly limited, but for example, the method of contacting the emulsion polymerization solution with the coagulant is a coagulation solution in which the emulsion polymerization solution is stirred (coagulation). It can be carried out by adding it to the agent aqueous solution), or by specifying the coagulant concentration of the coagulant, the number of stirrings of the coagulant being stirred, and the peripheral speed.
  • the coagulant used is usually used as an aqueous solution, and the coagulant concentration of the aqueous solution is usually 0.1 to 20% by weight, preferably 0.5 to 15% by weight, more preferably 1 to 10% by weight.
  • the particle size of the hydrous crumb generated when it is in the range of 1.5 to 5% by weight can be uniformly focused in a specific region, which is preferable.
  • the temperature of the coagulant is not particularly limited, but is preferably 40 ° C. or higher, preferably 40 to 90 ° C., more preferably 50 to 80 ° C., to generate a uniform water-containing crumb.
  • the stirring speed (rotation speed) of the coagulated liquid being stirred is, that is, the rotation speed of the stirring blade of the stirring device, and is not particularly limited, but is usually 100 rpm or more, preferably 200 rpm or more, more preferably 200 to 1000 rpm. It is particularly preferably in the range of 300 to 900 rpm, and most preferably in the range of 400 to 800 rpm.
  • the rotation speed is a rotation speed that is agitated violently to some extent because the water-containing crumb particle size to be generated can be made small and uniform. It is possible to suppress the formation of and, and by setting it to the upper limit or less, it is possible to more easily control the coagulation reaction.
  • the peripheral speed of the coagulated liquid being stirred that is, the speed of the outer periphery of the stirring blade of the stirring device is not particularly limited, but the water-containing crumb particle size generated by being vigorously stirred to a certain degree is smaller and It can be made uniform and is preferable, usually 0.5 m / s or more, preferably 1 m / s or more, more preferably 1.5 m / s or more, particularly preferably 2 m / s or more, and most preferably 2.5 m / s or more. ..
  • the upper limit of the peripheral speed is not particularly limited, but is usually solidified when it is 50 m / s or less, preferably 30 m / s or less, more preferably 25 m / s or less, and most preferably 20 m / s or less. It is suitable because the reaction can be easily controlled.
  • a water-containing crumb produced by setting the above conditions of the coagulation reaction (contact method, solid content concentration of emulsion polymerization solution, concentration and temperature of coagulation liquid, rotation speed and peripheral speed of coagulation liquid at the time of stirring, etc.) in a specific range.
  • the shape and crumb diameter of the product are uniform and focused, the removal of emulsifiers and coagulants during cleaning and dehydration is significantly improved, and the water resistance and storage stability of the resulting acrylic rubber veil can be greatly improved. Therefore, it is suitable.
  • the hydrous crumb produced by the coagulation reaction is preferably washed with warm water before drying.
  • the cleaning method is not particularly limited, and for example, the generated hydrous crumb can be mixed with a large amount of warm water.
  • the amount of hot water added for washing is not particularly limited, but the amount per washing with water is usually 50 parts by weight or more, preferably 50 to 15,000 parts by weight, based on 100 parts by weight of the monomer component. It is preferable that the amount of ash in the acrylic rubber veil can be effectively reduced when the amount is preferably in the range of 100 to 10,000 parts by weight, more preferably 500 to 5,000 parts by weight.
  • the temperature of the hot water used is not particularly limited, but is usually 40 ° C. or higher, preferably 40 to 100 ° C., more preferably 50 to 90 ° C., and particularly when the temperature is 60 to 80 ° C., the cleaning efficiency can be significantly improved. It is the best.
  • the temperature of the hot water to be used is equal to or higher than the above lower limit, the emulsifier and coagulant are liberated from the hydrous crumb to further improve the cleaning efficiency.
  • the cleaning time is not particularly limited, but is usually in the range of 1 to 120 minutes, preferably 2 to 60 minutes, and more preferably 3 to 30 minutes.
  • the number of washings is also not particularly limited, and is usually 1 to 10 times, preferably 1 to 5 times, and more preferably 2 to 3 times. From the viewpoint of reducing the residual amount of the coagulant in the finally obtained acrylic rubber veil, it is desirable that the number of washings with water is large, but as described above, the shape of the water-containing crumb and the diameter of the water-containing crumb are set within a specific range. By doing so and / or setting the washing temperature within the above range, the number of washings with water can be significantly reduced.
  • the washed water-containing crumb is dehydrated by a dehydration barrel having a dehydration slit, a drying barrel under reduced pressure, and a screw type biaxial extrusion drying having a die at the tip. It is characterized by dehydrating to a water content of 1 to 40% by weight in a dehydration barrel using a machine, and drying to less than 1% by weight in a drying barrel to extrude sheet-shaped dried rubber (sheet-shaped acrylic rubber) from the die. do.
  • the water-containing crumb supplied to the screw type twin-screw extruder is one in which free water is removed (drained) after washing.
  • draining process it is preferable to provide a draining step for separating free water from the water-containing crumb after washing with a draining machine in order to improve the dehydration efficiency.
  • a known one can be used without any particular limitation, and examples thereof include a wire mesh, a screen, an electric sieve, and the like, preferably a wire mesh and a screen.
  • the opening of the drainer is not particularly limited, but when it is usually in the range of 0.01 to 5 mm, preferably 0.1 to 1 mm, and more preferably 0.2 to 0.6 mm, the water content crumb loss is small. Moreover, draining can be done efficiently, which is suitable.
  • the water content of the water-containing crumb after draining is not particularly limited, but is usually 50 to 80% by weight, preferably 50 to 70% by weight, and more. It is preferably in the range of 50 to 60% by weight.
  • the temperature of the water-containing crumb after draining that is, the temperature of the water-containing crumb put into the dehydration / drying step is not particularly limited, but is usually 40 ° C. or higher, preferably 40 to 100 ° C., more preferably 50 to 90 ° C.
  • the specific heat is as high as 1.5 to 2.5 KJ / kg ⁇ K as in the acrylic rubber of the present invention. It is suitable because difficult water-containing crumbs can be efficiently dehydrated and dried using a screw-type twin-screw extruder.
  • Dehydration of the water-containing crumb is performed in a dehydration barrel in a screw-type twin-screw extruder with a dehydration slit.
  • the opening of the dehydration slit may be appropriately selected according to the usage conditions, but is usually in the range of 0.01 to 5 mm, preferably 0.1 to 1 mm, and more preferably 0.2 to 0.6 mm.
  • the water-containing crumb loss is small and the water-containing crumb can be efficiently dehydrated, which is suitable.
  • the number of dehydration barrels in the screw type twin-screw extruder is not particularly limited, but is usually a plurality, preferably 2 to 10, more preferably 3 to 6, and sticky acrylic rubber. It is suitable for efficient dehydration.
  • Exhaust steam is defined as pre-drying to distinguish it.
  • the water discharged from the dehydration slit in the dehydration of the water-containing crumb may be in a liquid (drainage) state or a steam state (exhaust steam), but it is carried out using a screw type twin-screw extruder equipped with a plurality of dehydration barrels. In this case, it is preferable to combine drainage and exhaust steam because the adhesive acrylic rubber can be efficiently dehydrated.
  • the selection between the drainage type dehydration barrel and the exhaust steam type dehydration barrel of the screw type twin-screw extruder equipped with three or more dehydration barrels may be appropriately performed according to the purpose of use, but in the acrylic rubber veil usually manufactured. If the ash content is to be reduced, the number of drainage barrels is increased, and if the water content is to be reduced, the number of drainage type barrels is increased.
  • the set temperature of the dehydration barrel is appropriately selected depending on the monomer composition of the acrylic rubber, the ash content, the water content, the operating conditions, etc., but is usually 60 to 150 ° C., preferably 70 to 140 ° C., more preferably 80 to 80 to It is in the range of 130 ° C.
  • the set temperature of the dehydration barrel for dehydrating in the drained state is usually 60 to 120 ° C, preferably 70 to 110 ° C, and more preferably 80 to 100 ° C.
  • the set temperature of the dehydration barrel for dehydration in the exhaust steam state is usually in the range of 100 to 150 ° C., preferably 105 to 140 ° C., and more preferably 110 to 130 ° C.
  • the water content after dehydration of the drainage type dehydration that squeezes water from the water-containing crumb is not particularly limited, but is 1 to 40% by weight, preferably 5 to 40% by weight, more preferably 5 to 35% by weight, and particularly preferably. When is 10 to 35% by weight, productivity and ash removal efficiency are highly balanced and suitable.
  • the acrylic rubber adheres to the dehydration slit portion and can hardly be dehydrated (water content is up to about 45 to 55% by weight). ),
  • the water content can be reduced to this extent by using a screw type twin-screw extruder having a dehydration slit and forcibly squeezed with a screw.
  • the water content after drainage in the drainage type dehydration barrel portion is usually 5 to 40% by weight, preferably 10 to 40% by weight, more preferably. Is 15 to 35% by weight, and the water content after pre-drying in the exhaust steam type dehydration barrel portion is usually 1 to 30% by weight, preferably 3 to 20% by weight, and more preferably 5 to 15% by weight.
  • the dehydration time can be shortened and deterioration of acrylic rubber can be suppressed, and by setting it to be lower than the upper limit, the amount of ash can be sufficiently reduced.
  • the water-containing crumb after dehydration is dried in the drying barrel portion under reduced pressure by a screw type twin-screw extrusion dryer having a drying barrel portion.
  • a screw type twin-screw extrusion dryer having a drying barrel portion.
  • the storage stability of the acrylic rubber veil can be largely correlated with the specific gravity of the acrylic rubber veil and can be controlled, but when the specific gravity is large and a high degree of storage stability is controlled, it can be controlled by the degree of decompression of extrusion drying or the like.
  • the degree of decompression of the drying barrel may be appropriately selected, but when it is usually 1 to 50 kPa, preferably 2 to 30 kPa, more preferably 3 to 20 kPa, the water-containing crumb can be efficiently dried and the air in the acrylic rubber can be removed. It is suitable because it can be removed and the storage stability of the acrylic rubber veil can be significantly improved.
  • the set temperature of the drying barrel may be appropriately selected, but when it is usually in the range of 100 to 250 ° C., preferably 110 to 200 ° C., more preferably 120 to 180 ° C., there is no discoloration or deterioration of the acrylic rubber. It is suitable because it can be dried efficiently and the amount of methyl ethyl ketone insoluble in the acrylic rubber veil can be reduced.
  • the number of drying barrels in the screw type twin-screw extruder is not particularly limited, but is usually a plurality, preferably 2 to 10, and more preferably 3 to 8.
  • the degree of decompression may be an approximate degree of decompression for all the dry barrels, or may be changed.
  • the set temperature may be an approximate temperature for all the dry barrels or may be changed, but it is closer to the discharge part (closer to the die) than the temperature of the introduction part (closer to the dehydration barrel). It is preferable that the temperature of (1) is higher because the drying efficiency can be increased.
  • the water content of the sheet-shaped dried rubber after drying is usually less than 1% by weight, preferably 0.8% by weight or less, and more preferably 0.6% by weight or less.
  • the amount of methyl ethyl ketone insoluble in the acrylic rubber veil can be reduced by melt-extruding the dried rubber with the water content set to this value (with almost all water removed), especially in a screw-type twin-screw extruder. Suitable.
  • an acrylic rubber bale that has been melt-kneaded or melt-kneaded and dried with a screw-type twin-screw extruder is suitable because both strength characteristics and Banbury processability characteristics are highly balanced.
  • melt kneading or “melt kneading and drying” as used in the present invention means that acrylic rubber is kneaded (mixed) or extruded in a molten state in a screw type twin-screw extruder, and the stage thereof. It means that acrylic rubber is kneaded in a molten (plasticized) state by a screw-type twin-screw extruder and then extruded and dried.
  • the shear rate applied to the drying barrel of the screw type twin-screw extruder in a state where the acrylic rubber does not contain water is not particularly limited, but is usually 10 [1 / s].
  • the storage stability, roll workability, Banbury workability, and strength characteristics of the acrylic rubber veil obtained preferably in the range of 10 to 400 [1 / s], more preferably 50 to 250 [1 / s].
  • the compression resistance permanent strain characteristics are highly balanced and suitable.
  • the shear viscosity of acrylic rubber in the screw type twin-screw extruder used in the present invention, particularly in a drying barrel, is not particularly limited, but is usually 12000 [Pa ⁇ s] or less, preferably 1000 to 12000 [Pa ⁇ s]. ], More preferably 2000 to 10000 [Pa ⁇ s], particularly preferably 3000 to 7000 [Pa ⁇ s], and most preferably 4000 to 6000 [Pa ⁇ s]. Stability, roll workability, Banbury workability and strength characteristics are highly balanced and suitable.
  • the dried rubber dehydrated and dried by the screw portion of the dehydration barrel and the dry barrel is sent to a rectifying die portion without a screw, and is extruded from the die portion into a desired shape.
  • a breaker plate or wire mesh may or may not be provided between the screw portion and the die portion.
  • the extruded dry rubber is suitable because the die shape is made into a substantially rectangular shape and the die is formed into a sheet, so that air entrainment is small, the specific gravity is large, and the dry rubber is excellent in storage stability.
  • the resin pressure in the die portion is not particularly limited, but when it is usually in the range of 0.1 to 10 MPa, preferably 0.5 to 5 MPa, and more preferably 1 to 3 MPa, the amount of air entrained in the acrylic rubber veil is small ( It has a high specific gravity) and is excellent in productivity and suitable.
  • Screw-type twin-screw dryer and operating conditions The screw length (L) of the screw-type twin-screw dryer to be used may be appropriately selected according to the purpose of use, but is usually 3000 to 15000 mm, preferably 4000 to. It is in the range of 10000 mm, more preferably 4500 to 8000 mm.
  • the screw diameter (D) of the screw type twin-screw extruder to be used may be appropriately selected according to the purpose of use, but is usually in the range of 50 to 250 mm, preferably 100 to 200 mm, and more preferably 120 to 160 mm. Is.
  • the ratio (L / D) of the screw length (L) to the screw diameter (D) of the screw type twin-screw extruder used is not particularly limited, but is usually 10 to 100, preferably 20 to 20. When it is in the range of 80, more preferably 30 to 60, the water content can be less than 1% by weight without causing a decrease in the molecular weight or burning of the dried rubber, which is preferable.
  • the rotation speed (N) of the screw type twin-screw extruder to be used may be appropriately selected according to various conditions, but is usually 10 to 1000 rpm, preferably 50 to 750 rpm, more preferably 100 to 500 rpm, most preferably. It is preferable that the water content of the acrylic rubber veil and the insoluble content of methyl ethyl ketone can be efficiently reduced at 120 to 300 rpm.
  • the extrusion amount (Q) of the screw type twin-screw extruder used is not particularly limited, but is usually 100 to 1,500 kg / hr, preferably 300 to 1200 kg / hr, more preferably 400 to 1000 kg / hr, and most. It is preferably in the range of 500 to 800 kg / hr.
  • the ratio (Q / N) of the extrusion amount (Q) to the rotation speed (N) of the screw type twin-screw extruder used is not particularly limited, but is usually 2 to 10, preferably 3 to 8. , More preferably in the range of 4-6.
  • the maximum torque of the screw type twin-screw extruder used is not particularly limited, but is usually 30 Nm or more, preferably 35 Nm or more, and more preferably 40 Nm or more.
  • the maximum torque of the screw type twin-screw extruder used in the present invention is also usually in the range of 30 to 100 Nm, preferably 35 to 75 Nm, more preferably 40 to 60 Nm. It is suitable because it can highly balance the roll processability, bumper processability and strength characteristics of the manufactured acrylic rubber veil.
  • the specific power of the screw type twin-screw extruder used is not particularly limited, but is usually 0.1 to 0.25 [kW ⁇ h / kg] or more, preferably 0.13 to 0.23 [kW].
  • ⁇ H / kg] more preferably in the range of 0.15 to 0.2 [kW ⁇ h / kg]
  • the roll workability, Banbury workability and strength characteristics of the acrylic rubber bale obtained are highly balanced. Suitable.
  • the specific power of the screw type twin-screw extruder used is not particularly limited, but is usually 0.2 to 0.6 [A ⁇ h / kg] or more, preferably 0.25 to 0.55 [A].
  • ⁇ H / kg] more preferably in the range of 0.35 to 0.5 [A ⁇ h / kg]
  • the roll workability, Banbury workability and strength characteristics of the acrylic rubber veil obtained are highly balanced. Suitable.
  • the shear rate of the screw type twin-screw extruder used is not particularly limited, but is usually 40 to 150 [1 / s] or more, preferably 45 to 125 [1 / s], and more preferably 50 to 100.
  • the storage stability, roll workability, Banbury workability and strength characteristics of the acrylic rubber veil obtained in the range of [1 / s] are highly balanced and suitable.
  • the shear viscosity of the acrylic rubber in the screw type twin-screw extruder used is not particularly limited, but is usually 4000 to 8000 [Pa ⁇ s] or less, preferably 4500 to 7500 [Pa ⁇ s], more preferably.
  • the storage stability, roll workability, Banbury workability and strength characteristics of the acrylic rubber veil obtained in the range of 5000 to 7000 [Pa ⁇ s] are highly balanced and suitable.
  • an extruder having a biaxial screw because dehydration, drying and molding can be performed under high share conditions.
  • the shape of the dried rubber extruded from the screw-type twin-screw extruder is sheet-like, and at this time, the specific gravity can be increased without entraining air, and the storage stability is highly improved, which is suitable.
  • the sheet-shaped dry rubber extruded from the screw-type twin-screw extruder is usually cooled and cut to be used as the sheet-shaped acrylic rubber.
  • the thickness of the sheet-shaped dry rubber extruded from the screw-type twin-screw extruder is not particularly limited, but is usually 1 to 40 mm, preferably 2 to 35 mm, more preferably 3 to 30 mm, and most preferably 5 to 25 mm. It is suitable because it has excellent workability and productivity when it is within the range of. In particular, since the thermal conductivity of the sheet-shaped dry rubber is as low as 0.15 to 0.35 W / mK, the thickness of the sheet-shaped dry rubber is usually 1 to 30 mm when the cooling efficiency is increased and the productivity is significantly improved.
  • the range is preferably 2 to 25 mm, more preferably 3 to 15 mm, and particularly preferably 4 to 12 mm.
  • the width of the sheet-shaped dry rubber extruded from the screw-type twin-screw extruder is appropriately selected according to the purpose of use, but is usually in the range of 300 to 1200 mm, preferably 400 to 1000 mm, and more preferably 500 to 800 mm. ..
  • the temperature of the dried rubber extruded from the screw type twin-screw extruder is not particularly limited, but is usually in the range of 100 to 200 ° C, preferably 110 to 180 ° C, and more preferably 120 to 160 ° C.
  • the water content of the dried rubber extruded from the screw type twin-screw extruder is not particularly limited, but is usually less than 1% by weight, preferably 0.8% by weight or less, and more preferably 0.6% by weight or less. ..
  • the complex viscosity ([ ⁇ ] 100 ° C.) of the sheet-shaped dried rubber extruded from the screw-type twin-screw extruder at 100 ° C. is not particularly limited, but is usually 1500 to 6000 [Pa ⁇ s], preferably 1500 to 6000 [Pa ⁇ s]. Is in the range of 2000 to 5000 [Pa ⁇ s], more preferably 2500 to 4000 [Pa ⁇ s], and most preferably 2500 to 3500 [Pa ⁇ s]. Is highly balanced and suitable. That is, when it is set to the lower limit or more, the extrudability can be improved, and when it is set to the upper limit or less, the shape of the sheet-shaped dried rubber can be suppressed from collapsing or breaking.
  • the sheet-shaped dry rubber extruded from the screw-type twin-screw extruder may be folded and used as it is, but usually it can be cut and used.
  • the cutting of the sheet-shaped dry rubber is not particularly limited, but since the acrylic rubber of the present invention has strong adhesiveness, the sheet-shaped dry rubber must be cooled before continuously cutting without entraining air. It is preferable to do it.
  • the cutting temperature of the sheet-shaped dry rubber is not particularly limited, but is preferably 60 ° C. or lower, preferably 55 ° C. or lower, more preferably 50 ° C. or lower, in which the cutability and productivity are highly balanced. Is.
  • the complex viscosity ([ ⁇ ] 60 ° C.) of the sheet-shaped dried rubber at 60 ° C. is not particularly limited, but is usually 15,000 or less, preferably 2000 to 10.000 [Pa ⁇ s], more preferably. Is suitable because it can cut continuously without entraining air when it is in the range of 2500 to 7000 [Pa ⁇ s], most preferably 2700 to 5500 [Pa ⁇ s].
  • the ratio ([ ⁇ ] 100 ° C./[ ⁇ ] 60 ° C.) of the complex viscosity ([ ⁇ ] 100 ° C.) of the sheet-shaped dried rubber at 100 ° C. to the complex viscosity ([ ⁇ ] 60 ° C.) at 60 ° C. is There is no particular limitation and it may be appropriately selected according to the purpose of use, but it is usually 0.5 or more, preferably 0.6 or more, more preferably 0.7 or more, particularly preferably 0.8 or more, and most preferably. When it is 0.85 or more and the upper limit is usually 0.98 or less, preferably 0.97 or less, more preferably 0.96 or less, particularly preferably 0.95 or less, and most preferably 0.93 or less. It is suitable because it has little air entrainment and has a high balance between cutting and productivity.
  • the cooling method of the sheet-shaped dried rubber is not particularly limited and may be left at room temperature. However, since the heat conductivity of the sheet-shaped dried rubber is very small, 0.15 to 0.35 W / mK, it is blown or blown. Forced cooling such as an air cooling method under cooling, a watering method of spraying water, or a dipping method of immersing in water is preferable for increasing productivity, and an air cooling method of blowing air or cooling is particularly preferable.
  • the sheet-shaped dry rubber can be extruded from a screw-type extruder onto a conveyor such as a belt conveyor, and can be conveyed and cooled while blowing cold air.
  • the temperature of the cold air is not particularly limited, but is usually in the range of 0 to 25 ° C, preferably 5 to 25 ° C, and more preferably 10 to 20 ° C.
  • the length to be cooled is not particularly limited, but is usually in the range of 5 to 500 m, preferably 10 to 200 m, and more preferably 20 to 100 m.
  • the cooling rate of the sheet-shaped dry rubber is not particularly limited, but is usually 40 ° C./hr or more, preferably 50 ° C./hr or more, more preferably 100 ° C./hr or more, and particularly preferably 150 ° C./hr or more. In this case, cutting becomes easy and storage stability can be improved without entraining air in the molded body, which is suitable.
  • the cooling rate of the sheet-shaped dry rubber is usually 40 ° C./hr or more, preferably 50 ° C./hr or more, more preferably 100 ° C./hr or more, and particularly preferably 150 ° C./hr or more. Sometimes the scorch stability when the acrylic rubber veil is made into a rubber composition is remarkably excellent and suitable.
  • the cutting length of the sheet-shaped dried rubber is not particularly limited and is appropriately selected according to the purpose of use, but is usually in the range of 100 to 800 mm, preferably 200 to 500 mm, and more preferably 250 to 450 mm.
  • the sheet-shaped acrylic rubber thus obtained is superior in operability as compared with crumb-shaped acrylic rubber, and is also excellent in roll workability, cross-linking property, strength property and compression set resistance, storage stability, Banbury workability and water resistance. It has excellent properties and can be used as it is or laminated and veiled.
  • the laminating step in the present invention is characterized in that the cut sheet-shaped dry rubber is laminated and veiled.
  • the laminating temperature of the sheet-shaped dry rubber is not particularly limited, but is suitable because air entrained during laminating can be released when it is usually 30 ° C. or higher, preferably 35 ° C. or higher, and more preferably 40 ° C. or higher.
  • the number of laminated layers may be appropriately selected according to the size or weight of the veil-shaped acrylic rubber.
  • the veil-shaped acrylic rubber of the present invention is integrated by the weight of the laminated sheet-shaped dry rubber.
  • the acrylic rubber veil of the present invention thus obtained has excellent operability as compared with crumb-shaped acrylic rubber, and has roll workability, Banbury workability, cross-linking property, water resistance, storage stability, strength property and compression set resistance property.
  • the acrylic rubber veil can be used as it is, or after cutting the required amount, it can be put into a mixer such as a vanbury or roll.
  • the rubber composition of the present invention is characterized by containing a rubber component including the acrylic rubber veil, a filler and a cross-linking agent.
  • the acrylic rubber veil of the present invention may be used alone, or, if necessary, the acrylic rubber veil of the present invention and other rubber components may be combined in combination. You may use it.
  • the content of the acrylic rubber veil of the present invention in the rubber component may be selected according to the purpose of use, for example, usually 30% by weight or more, preferably 50% by weight or more, more preferably 70% by weight or more. ..
  • the other rubber components to be combined with the acrylic rubber veil of the present invention are not particularly limited, and are, for example, natural rubber, polybutadiene rubber, polyisoprene rubber, styrene-butadiene rubber, acrylonitrile-butadiene rubber, silicon rubber, fluororubber, and olefin.
  • examples thereof include based elastomers, styrene-based elastomers, vinyl chloride-based elastomers, polyester-based elastomers, polyamide-based elastomers, polyurethane-based elastomers, and polysiloxane-based elastomers.
  • the shape of these other rubber components may be any of a crumb shape, a strand shape, a veil shape, a sheet shape, a powder shape and the like.
  • the content of other rubber components in the entire rubber component is appropriately selected within a range that does not impair the effects of the present invention, and is, for example, usually 70% by weight or less, preferably 50% by weight or less, and more preferably 30% by weight or less. ..
  • the filler contained in the rubber composition is not particularly limited, and examples thereof include a reinforcing filler and a non-reinforcing filler, and a roll of the rubber composition is preferably used when the filler is a reinforcing filler. It is suitable because it is excellent in workability, rubbery workability and short-time cross-linking property, and is highly excellent in water resistance, strength property and compression set resistance property of the crosslinked product.
  • Examples of the reinforcing filler include carbon blacks such as furnace black, acetylene black, thermal black, channel black and graphite; silicas such as wet silica, dry silica and colloidal silica; and the like.
  • Examples of the non-reinforcing filler include quartz powder, silica soil, zinc flower, basic magnesium carbonate, active calcium carbonate, magnesium silicate, aluminum silicate, titanium dioxide, talc, aluminum sulfate, calcium sulfate, barium sulfate and the like. be able to.
  • fillers can be used alone or in combination of two or more, and the blending amount thereof is appropriately selected within a range not impairing the effect of the present invention, and is usually used with respect to 100 parts by weight of the rubber component. It is in the range of 1 to 200 parts by weight, preferably 10 to 150 parts by weight, and more preferably 20 to 100 parts by weight.
  • the cross-linking agent used in the rubber composition is not particularly limited, and a conventionally known cross-linking agent is selected according to the purpose of use. Examples thereof include inorganic cross-linking agents such as sulfur compounds and organic cross-linking agents, which are preferable. Is an organic cross-linking agent.
  • the cross-linking agent may be either a polyvalent compound or a monovalent compound, but a polyvalent compound having two or more reactivity is preferable.
  • the cross-linking agent may be either an ionic cross-linking compound or a radical cross-linking compound, but is preferably an ionic cross-linking compound.
  • the organic cross-linking agent is not particularly limited, but an ion-crosslinkable organic compound is preferable, and a polyvalent ion-organic compound is particularly preferable.
  • the cross-linking agent is a polyvalent ion organic compound (polyvalent ion cross-linking compound)
  • the rubber composition is excellent in roll processability, Banbury processability and short-time cross-linking property, and the water resistance and strength of the cross-linked product are excellent. It is particularly suitable because of its excellent characteristics and compression resistance permanent strain characteristics.
  • the "ion" of the ionic crosslinkable or polyvalent ion is an ionic reactive ion, and is particularly special as long as it ionically reacts with the ionic reactive group of the ionic reactive group-containing monomer of the acrylic rubber.
  • an ion crosslinkable organic compound having an ionic reactive group such as an amine group, an epoxy group, a carboxyl group and a thiol group can be mentioned.
  • polyvalent ion organic compound examples include a polyvalent amine compound, a polyvalent epoxy compound, a polyvalent carboxylic acid compound, a polyvalent thiol compound, and the like, preferably a polyvalent amine compound and a polyvalent thiol compound, more preferably. Is a polyvalent amine compound.
  • polyvalent amine compound examples include aliphatic polyvalent amine compounds such as hexamethylenediamine, hexamethylenediamine carbamate, N, N'-dicinnamylidene-1,6-hexanediamine; 4,4'-methylenedianiline, p.
  • hexamethylenediamine carbamate, 2,2'-bis [4- (4-aminophenoxy) phenyl] propane and the like are preferable.
  • these carbonates can also be preferably used.
  • These polyvalent amine compounds are particularly preferably used in combination with a carboxyl group-containing acrylic rubber veil or an epoxy group-containing acrylic rubber veil.
  • a triazine thiol compound is preferably used, for example, 6-trimercapto-s-triazine, 2-anilino-4,6-dithiol-s-triazine, 1-dibutylamino-3,5. -Dimercaptotriazine, 2-dibutylamino-4,6-dithiol-s-triazine, 1-phenylamino-3,5-dimercaptotriazine, 2,4,6-trimercapto-1,3,5-triazine, Examples thereof include 1-hexylamino-3,5-dimercaptotriazine.
  • These triazine thiol compounds are particularly preferably used in combination with an acrylic rubber veil containing a chlorine atom.
  • polyvalent organic compounds examples include polyvalent carboxylic acid compounds such as tetradecanedioic acid and dithiocarbamate metal salts such as zinc dimethyldithiocarbamate. These other polyvalent organic compounds are particularly preferably used in combination with an epoxy group-containing acrylic rubber veil.
  • cross-linking agents can be used individually or in combination of two or more, and the blending amount thereof is usually 0.001 to 20 parts by weight, preferably 0.1 to 10 parts by weight, based on 100 parts by weight of the rubber component. Parts, more preferably 0.1 to 5 parts by weight.
  • the blending amount of the cross-linking agent in this range, it is possible to make the mechanical strength of the rubber cross-linked product excellent while making the rubber elasticity sufficient, which is preferable.
  • the rubber composition of the present invention can be blended with an antiaging agent as needed.
  • the type of antiaging agent is not particularly limited, but is, for example, 2,6-di-t-butyl-4-methylphenol, 2,6-di-t-butylphenol, butylhydroxyanisole, 2,6-di-t.
  • anti-aging agents can be used alone or in combination of two or more, and the blending amount thereof is 0.01 to 15 parts by weight, preferably 0.1 to 100 parts by weight, based on 100 parts by weight of the rubber component. It is in the range of 10 parts by weight, more preferably 1 to 5 parts by weight.
  • the rubber composition of the present invention contains the above-mentioned rubber component containing the acrylic rubber veil of the present invention, a filler and a cross-linking agent as essential components, and if necessary, an anti-aging agent, and further, if necessary, the relevant technical field.
  • These other compounding agents can be used alone or in combination of two or more, and the compounding amount thereof is appropriately selected as long as the effect of the present invention is not impaired.
  • Examples of the method for producing the rubber composition of the present invention include a method of mixing the rubber component containing the acrylic rubber veil of the present invention, a filler, a cross-linking agent, and an antiaging agent and other compounding agents which can be contained as needed.
  • any means used in the conventional rubber processing field for example, an open roll, a Banbury mixer, various kneaders and the like can be used.
  • the mixing procedure of each component may be carried out by a normal procedure performed in the field of rubber processing. For example, a component that is difficult to react or decompose by heat is sufficiently mixed, and then a component that easily reacts or decomposes by heat is used. It is preferable to mix a certain cross-linking agent or the like at a temperature at which reaction or decomposition does not occur in a short time.
  • the rubber crosslinked product of the present invention is obtained by cross-linking the above rubber composition.
  • the rubber crosslinked product of the present invention is formed by using the rubber composition of the present invention with a molding machine corresponding to a desired shape, for example, an extruder, an injection molding machine, a compressor or a roll, and is crosslinked by heating. It can be produced by carrying out a reaction and fixing the shape as a rubber crosslinked product. In this case, cross-linking may be performed after molding in advance, or cross-linking may be performed at the same time as molding.
  • the molding temperature is usually 10 to 200 ° C, preferably 25 to 150 ° C.
  • the crosslinking temperature is usually 100 to 250 ° C., preferably 130 to 220 ° C., more preferably 150 to 200 ° C.
  • the crosslinking time is usually 0.1 minutes to 10 hours, preferably 1 minute to 5 hours.
  • a method used for cross-linking rubber such as press heating, steam heating, oven heating, and hot air heating may be appropriately selected.
  • the rubber crosslinked product of the present invention may be further heated for secondary cross-linking depending on the shape, size, etc. of the rubber cross-linked product.
  • the secondary cross-linking varies depending on the heating method, cross-linking temperature, shape and the like, but is preferably carried out for 1 to 48 hours.
  • the heating method and heating temperature may be appropriately selected.
  • the rubber crosslinked product of the present invention has excellent compression-resistant permanent strain resistance and water resistance while maintaining basic rubber properties such as tensile strength, elongation, and hardness.
  • the rubber crosslinked product of the present invention makes use of the above characteristics, for example, O-ring, packing, diaphragm, oil seal, shaft seal, bearing seal, mechanical seal, well head seal, seal for electric / electronic equipment, air compression equipment.
  • Sealing material such as seals; rocker cover gasket attached to the connection between the cylinder block and the cylinder head, oil pan gasket attached to the connection between the oil pan and the cylinder head or the transmission case, positive electrode, electrolyte plate and negative electrode.
  • gaskets such as gaskets for fuel cell separators and gaskets for the top cover of hard disk drives mounted between a pair of housings that sandwich a unit cell equipped with; cushioning material, anti-vibration material; wire coating material; industrial belts; tubes -Suitably used as hoses; sheets; etc.
  • the rubber cross-linked product of the present invention is also used as an extruded mold product and a mold cross-linked product for automobile applications, for example, fuel oil for fuel tanks such as fuel hoses, filler neck hoses, bent hoses, paper hoses, and oil hoses. It is suitably used for various hoses such as air hoses such as system hoses, turbo air hoses and mission control hoses, radiator hoses, heater hoses, brake hoses and air conditioner hoses.
  • FIG. 1 is a diagram schematically showing an example of an acrylic rubber manufacturing system having an apparatus configuration used for manufacturing an acrylic rubber veil according to an embodiment of the present invention.
  • the acrylic rubber production system 1 shown in FIG. 1 can be used.
  • the acrylic rubber manufacturing system 1 shown in FIG. 1 is composed of an emulsion polymerization reactor (not shown), a coagulation device 3, a cleaning device 4, a drainer 43, and a screw type twin-screw extruder.
  • the emulsion polymerization reactor is configured to perform the treatment related to the emulsion polymerization step described above.
  • this emulsion polymerization reactor has, for example, a polymerization reaction tank, a temperature control unit for controlling the reaction temperature, a motor, and a stirring device including a stirring blade.
  • water and an emulsifier are mixed with a monomer component for forming acrylic rubber and emulsified while being appropriately stirred with a stirrer, and a redox catalyst consisting of an inorganic radical generator and a reducing agent is present.
  • the emulsion polymerization reactor may be a batch type, a semi-batch type, or a continuous type, and may be any of a tank type reactor and a tube type reactor.
  • the coagulation device 3 shown in FIG. 1 is configured to perform the processing related to the above-mentioned coagulation step.
  • the coagulation device 3 includes, for example, a stirring tank 30, a heating unit 31 for heating the inside of the stirring tank 30, and a temperature control unit (not shown) for controlling the temperature inside the stirring tank 30. It has a stirring device 34 including a motor 32 and a stirring blade 33, and a drive control unit (not shown) that controls the rotation speed and rotation speed of the stirring blade 33.
  • a hydrous crumb can be generated by bringing the emulsion polymerization solution obtained by the emulsion polymerization reactor into contact with the coagulation solution and coagulating it.
  • a method of adding the emulsion polymerization solution to the stirring coagulation liquid is adopted for the contact between the emulsion polymerization solution and the coagulation liquid. That is, a water-containing crumb is generated by filling the stirring tank 30 of the coagulation device 3 with a coagulation liquid and adding and contacting the emulsion polymerization liquid with the coagulation liquid to coagulate the emulsion polymerization liquid.
  • the heating unit 31 of the coagulation device 3 is configured to heat the coagulation liquid filled in the stirring tank 30. Further, the temperature control unit of the coagulation device 3 controls the temperature inside the stirring tank 30 by controlling the heating operation by the heating unit 31 while monitoring the temperature inside the stirring tank 30 measured by the thermometer. It is configured. The temperature of the coagulating liquid in the stirring tank 30 is controlled by the temperature control unit to be usually in the range of 40 ° C. or higher, preferably 40 to 90 ° C., and more preferably 50 to 80 ° C.
  • the stirring device 34 of the coagulating device 3 is configured to stir the coagulating liquid filled in the stirring tank 30.
  • the stirring device 34 includes a motor 32 that generates rotational power, and a stirring blade 33 that extends in a direction perpendicular to the rotation axis of the motor 32.
  • the stirring blade 33 can flow the coagulating liquid by rotating around the rotation axis by the rotational power of the motor 32 in the coagulating liquid filled in the stirring tank 30.
  • the shape and size of the stirring blade 33, the number of installations, and the like are not particularly limited.
  • the drive control unit of the coagulation device 3 is configured to control the rotational drive of the motor 32 of the stirring device 34 to set the rotation speed and the rotation speed of the stirring blade 33 of the stirring device 34 to predetermined values.
  • the rotation of the stirring blade 33 is controlled by the drive control unit so that the stirring number of the coagulating liquid is usually in the range of 100 rpm or more, preferably 200 to 1000 rpm, more preferably 300 to 900 rpm, and particularly preferably 400 to 800 rpm. Will be done.
  • the peripheral speed of the coagulant is usually 0.5 m / s or more, preferably 1 m / s or more, more preferably 1.5 m / s or more, particularly preferably 2 m / s or more, and most preferably 2.5 m / s or more.
  • the rotation of the stirring blade 33 is controlled by the drive control unit. Further, the drive control unit agitates the coagulant so that the upper limit of the peripheral speed is usually 50 m / s or less, preferably 30 m / s or less, more preferably 25 m / s or less, and most preferably 20 m / s or less.
  • the rotation of the wing 33 is controlled.
  • the cleaning device 4 shown in FIG. 1 is configured to perform the processing related to the above-mentioned cleaning step.
  • the cleaning device 4 includes, for example, a cleaning tank 40, a heating unit 41 for heating the inside of the cleaning tank 40, and a temperature control unit (not shown) for controlling the temperature inside the cleaning tank 40.
  • a temperature control unit not shown for controlling the temperature inside the cleaning tank 40.
  • the water-containing crumb generated by the coagulation device 3 is mixed with a large amount of water for cleaning, so that the amount of ash in the finally obtained acrylic rubber veil can be effectively reduced.
  • the heating unit 41 of the cleaning device 4 is configured to heat the inside of the cleaning tank 40. Further, the temperature control unit of the cleaning device 4 controls the temperature inside the cleaning tank 40 by controlling the heating operation by the heating unit 41 while monitoring the temperature inside the cleaning tank 40 measured by the thermometer. It is configured. As described above, the temperature of the washing water in the washing tank 40 is usually controlled to be in the range of 40 ° C. or higher, preferably 40 to 100 ° C., more preferably 50 to 90 ° C., and most preferably 60 to 80 ° C. Ru.
  • the water-containing crumb washed by the washing device 4 is supplied to the screw type twin-screw extruder 5 that performs the dehydration step and the drying step. At this time, it is preferable that the water-containing crumb after washing is supplied to the screw type twin-screw extruder 5 through a drainer 43 capable of separating free water.
  • a drainer 43 capable of separating free water.
  • a wire mesh, a screen, an electric sieve, or the like can be used.
  • the temperature of the water-containing crumb is preferably 40 ° C. or higher, more preferably 60 ° C. or higher.
  • the temperature of the water-containing crumb when supplied to the screw type twin-screw extruder 5 is set to 60 ° C. or higher. It may be possible to maintain it, and even if it is heated so that the temperature of the water-containing crumb is 40 ° C. or higher, preferably 60 ° C.
  • the screw type twin-screw extruder 5 shown in FIG. 1 is configured to perform the processes related to the above-mentioned dehydration step and drying step.
  • a centrifuge, a squeezer, or the like may be used as the dehydrator for performing the treatment related to the dehydration step, and the drying step may be performed.
  • a hot air dryer, a vacuum dryer, an expander dryer, a kneader type dryer, or the like may be used as the dryer for performing the above treatment.
  • the screw type twin-screw extruder 5 is configured to mold the dried rubber obtained through the dehydration step and the drying step into a predetermined shape and discharge it.
  • the screw type twin-screw extruder 5 has a dehydration barrel portion 53 having a function as a dehydrator for dehydrating the hydrous crumb washed by the cleaning device 4, and a function as a dryer for drying the hydrous crumb.
  • the drying barrel portion 54 is provided, and a die 59 having a molding function for forming a water-containing crumb is provided on the downstream side of the screw type twin-screw extruder 5.
  • FIG. 2 shows the configuration of a specific example suitable for the screw type twin-screw extruder 5 shown in FIG.
  • the screw type twin-screw extruder 5 can suitably perform the above-mentioned dehydration / drying step.
  • the screw-type twin-screw extruder 5 shown in FIG. 2 is a twin-screw-type extruder / dryer provided with a pair of screws (not shown) in the barrel unit 51.
  • the screw type twin-screw extruder 5 has a drive unit 50 that rotationally drives a pair of screws in the barrel unit 51. With this configuration, acrylic rubber can be dried with a high share, which is suitable.
  • the drive unit 50 is attached to the upstream end (left end in FIG. 2) of the barrel unit 51. Further, the screw type twin-screw extruder 5 has a die 59 at the downstream end (right end in FIG. 2) of the barrel unit 51.
  • the barrel unit 51 has a supply barrel portion 52, a dehydration barrel portion 53, and a dry barrel portion 54 from the upstream side to the downstream side (from the left side to the right side in FIG. 2).
  • the supply barrel portion 52 is composed of two supply barrels, that is, a first supply barrel 52a and a second supply barrel 52b.
  • the dehydration barrel portion 53 is composed of three dehydration barrels, that is, a first dehydration barrel 53a, a second dehydration barrel 53b, and a third dehydration barrel 53c.
  • the dry barrel portion 54 has eight dry barrels, that is, a first dry barrel 54a, a second dry barrel 54b, a third dry barrel 54c, a fourth dry barrel 54d, and a fifth dry barrel 54e. , A sixth dry barrel 54f, a seventh dry barrel 54g, and an eighth dry barrel 54h.
  • the barrel unit 51 is configured by connecting the 13 divided barrels 52a to 52b, 53a to 53c, 54a to 54h from the upstream side to the downstream side.
  • the water-containing crumbs in the barrels 52a to 52b, 53a to 53c, 54a to 54h are individually heated by heating the barrels 52a to 52b, 53a to 53c, 54a to 54h individually.
  • Each has a heating means (not shown) for heating to a predetermined temperature.
  • the heating means includes a number corresponding to each barrel 52a to 52b, 53a to 53c, 54a to 54h.
  • a heating means for example, a configuration is adopted in which high temperature steam is supplied from the steam supply means to the steam distribution jacket formed in each barrel 52a to 52b, 53a to 53c, 54a to 54h. It is not limited to this.
  • the screw type twin-screw extruder 5 has a temperature control means (not shown) that controls a set temperature of each heating means corresponding to each barrel 52a to 52b, 53a to 53c, 54a to 54h.
  • the number of supply barrels, dehydration barrels, and dry barrels constituting each barrel portion 52, 53, 54 in the barrel unit 51 is not limited to the mode shown in FIG. 2, and the acrylic rubber to be dried is not limited to the mode shown in FIG.
  • the number can be set according to the water content of the water-containing crumb.
  • the number of supply barrels installed in the supply barrel portion 52 is, for example, 1 to 3.
  • the number of dehydration barrels installed in the dehydration barrel portion 53 is preferably, for example, 2 to 10, and more preferably 3 to 6, because the water-containing crumbs of the adhesive acrylic rubber can be efficiently dehydrated.
  • the number of dry barrels installed in the dry barrel portion 54 is preferably, for example, 2 to 10, and more preferably 3 to 8.
  • the pair of screws in the barrel unit 51 are rotationally driven by a drive means such as a motor housed in the drive unit 50.
  • the pair of screws extend from the upstream side to the downstream side in the barrel unit 51, and by being rotationally driven, the water-containing crumbs supplied to the supply barrel portion 52 can be conveyed to the downstream side while being mixed. It has become like.
  • the pair of screws is preferably a biaxial meshing type in which the peaks and valleys are meshed with each other, whereby the dehydration efficiency and the drying efficiency of the hydrous crumb can be improved.
  • the rotation direction of the pair of screws may be the same direction or different directions, but from the viewpoint of self-cleaning performance, a type that rotates in the same direction is preferable.
  • the screw shape of the pair of screws is not particularly limited, and may be any shape required for the barrel portions 52, 53, 54, and is not particularly limited.
  • the supply barrel portion 52 is a region for supplying the water-containing crumb into the barrel unit 51.
  • the first supply barrel 52a of the supply barrel portion 52 has a feed port 55 for supplying a water-containing crumb in the barrel unit 51.
  • the dehydration barrel portion 53 is a region for separating and discharging a liquid (serum water) containing a coagulant or the like from the water-containing crumb.
  • the first to third dehydration barrels 53a to 53c constituting the dehydration barrel portion 53 each have dehydration slits 56a, 56b, 56c for discharging the water content of the water-containing crumb to the outside.
  • a plurality of each dehydration slit 56a, 56b, 56c is formed in each dehydration barrel 53a to 53c, respectively.
  • the slit widths that is, the openings of the dehydration slits 56a, 56b, 56c may be appropriately selected according to the usage conditions, and are usually 0.01 to 5 mm, the loss of the water-containing crumb is small, and the water-containing crumb is dehydrated. It is preferably 0.1 to 1 mm, and more preferably 0.2 to 0.6 mm from the viewpoint that the above can be efficiently performed.
  • the dehydration barrel portion 53 is suitable because the water content of the adhesive acrylic rubber can be efficiently reduced by combining drainage and exhaust steam.
  • which of the first to third dehydration barrels 53a to 53c is used for drainage or exhaust steam may be appropriately set according to the purpose of use, but is usually manufactured.
  • the dehydration barrel portion 53 has four dehydration barrels
  • drainage may be performed by three dehydration barrels on the upstream side, and steam may be exhausted by one dehydration barrel on the downstream side.
  • steam may be exhausted by one dehydration barrel on the downstream side.
  • the set temperature of the dehydration barrel portion 53 is usually in the range of 60 to 150 ° C, preferably 70 to 140 ° C, more preferably 80 to 130 ° C, and is dehydrated in the drained state.
  • the set temperature of the dehydration barrel to be dehydrated is usually 60 ° C. to 120 ° C., preferably 70 to 110 ° C., more preferably 80 to 100 ° C.
  • the set temperature of the dehydration barrel to be dehydrated in the exhausted steam state is usually 100 to 150 ° C. It is preferably in the range of 105 to 140 ° C, more preferably 110 to 130 ° C.
  • the drying barrel portion 54 is a region for drying the hydrous crumb after dehydration under reduced pressure.
  • the second dry barrel 54b, the fourth dry barrel 54d, the sixth dry barrel 54f, and the eighth dry barrel 54h are It has vent ports 58a, 58b, 58c, 58d for degassing, respectively. Vent pipes (not shown) are connected to the vent openings 58a, 58b, 58c, and 58d, respectively.
  • Vacuum pumps (not shown) are connected to the ends of each vent pipe, and the operation of these vacuum pumps reduces the pressure inside the drying barrel portion 54 to a predetermined pressure.
  • the screw type extruder 5 has a pressure control means (not shown) that controls the operation of these vacuum pumps to control the degree of decompression in the drying barrel portion 54.
  • the degree of decompression in the dry barrel portion 54 may be appropriately selected, but as described above, it is usually set to 1 to 50 kPa, preferably 2 to 30 kPa, and more preferably 3 to 20 kPa.
  • the set temperature in the drying barrel portion 54 may be appropriately selected, but as described above, it is usually set to 100 to 250 ° C, preferably 110 to 200 ° C, and more preferably 120 to 180 ° C.
  • the set temperature in all the dry barrels 54a to 54h may be an approximate value or may be different, but the upstream side (dehydration barrel portion). It is preferable to set the temperature on the downstream side (die 59 side) to a higher temperature than the temperature on the 53 side) because the drying efficiency is improved.
  • the die 59 is a mold arranged at the downstream end of the barrel unit 51 and has a discharge port having a predetermined nozzle shape.
  • the acrylic rubber dried by the drying barrel portion 54 is extruded into a shape corresponding to a predetermined nozzle shape by passing through the discharge port of the die 59.
  • the acrylic rubber passing through the die 59 can be molded into various shapes such as granular, columnar, round bar, and sheet depending on the nozzle shape of the die 59, but in the present invention, it is molded into a sheet.
  • a breaker plate or wire mesh may or may not be provided between the screw and the die 59.
  • the water-containing crumb of acrylic rubber obtained through the cleaning step is supplied to the supply barrel portion 52 from the feed port 55.
  • the water-containing crumb supplied to the supply barrel portion 52 is sent from the supply barrel portion 52 to the dehydration barrel portion 53 by the rotation of the pair of screws in the barrel unit 51.
  • the dehydration barrel portion 53 as described above, the water contained in the water-containing crumb is drained and exhausted from the dehydration slits 56a, 56b, 56c provided in the first to third dehydration barrels 53a to 53c, respectively. ,
  • the hydrous crumb is dehydrated.
  • the water-containing crumb dehydrated by the dehydration barrel portion 53 is sent to the dry barrel portion 54 by the rotation of a pair of screws in the barrel unit 51.
  • the hydrous crumb sent to the dry barrel portion 54 is plastically mixed to form a melt, which generates heat and is carried to the downstream side while raising the temperature. Then, the water contained in the melt of the acrylic rubber is vaporized, and the water (steam) is discharged to the outside through the vent pipes (not shown) connected to the vent ports 58a, 58b, 58c, 58d, respectively.
  • the hydrous crumb is dried and becomes a melt of acrylic rubber, and the acrylic rubber is supplied to the die 59 by the rotation of a pair of screws in the barrel unit 51 and is supplied from the die 59. Extruded.
  • the rotation speed (N) of the pair of screws in the barrel unit 51 may be appropriately selected according to various conditions, and is usually 10 to 1000 rpm, and the water content of acrylic rubber and the insoluble content of methyl ethyl ketone are efficiently reduced. From the point of view, it is preferably 50 to 750 rpm, more preferably 100 to 500 rpm, and most preferably 120 to 300 rpm.
  • the extrusion amount (Q) of acrylic rubber is not particularly limited, but is usually 100 to 1500 kg / hr, preferably 300 to 1200 kg / hr, more preferably 400 to 1000 kg / hr, and 500 to 800 kg / hr. hr is the most preferable.
  • the ratio (Q / N) of the extrusion amount (Q) of the acrylic rubber to the rotation speed (N) of the screw is not particularly limited, but is usually 1 to 20, preferably 2 to 10, and more preferably 3 to. It is 8, and 4 to 6 are particularly preferable.
  • the maximum torque in the barrel unit 51 is not particularly limited, but is usually in the range of 30 to 100 Nm, preferably 35 to 75 Nm, and more preferably 40 to 60 Nm.
  • the specific power in the barrel unit 51 is not particularly limited, but is usually 0.1 to 0.25 [kW ⁇ h / kg] or more, preferably 0.13 to 0.23 [kW ⁇ h / kg]. More preferably, it is in the range of 0.15 to 0.2 [kW ⁇ h / kg].
  • the specific power in the barrel unit 51 is not particularly limited, but is usually 0.2 to 0.6 [A ⁇ h / kg] or more, preferably 0.25 to 0.55 [A ⁇ h / kg]. More preferably, it is in the range of 0.35 to 0.5 [A.h / kg].
  • the shear rate in the barrel unit 51 is not particularly limited, but is usually 40 to 150 [1 / s] or more, preferably 45 to 125 [1 / s], and more preferably 50 to 100 [1 / s]. The range.
  • the shear viscosity of the acrylic rubber in the barrel unit 51 is not particularly limited, but is usually 4000 to 8000 [Pa ⁇ s] or less, preferably 4500 to 7500 [Pa ⁇ s], and more preferably 5000 to 7000 [Pa ⁇ s]. s].
  • the cooling device 6 shown in FIG. 1 is configured to cool the dried rubber obtained through the dehydration step by the dehydrator and the drying step by the dryer.
  • the cooling method by the cooling device 6 various methods including an air cooling method by blowing air or cooling, a water spraying method of spraying water, a dipping method of immersing in water, and the like can be adopted. Further, the dried rubber may be cooled by leaving it at room temperature.
  • the dried rubber discharged from the screw type extruder 5 is extruded into various shapes such as granular, columnar, round bar, and sheet depending on the nozzle shape of the die 59. Is molded into a sheet shape.
  • the transport type cooling device 60 for cooling the sheet-shaped dry rubber 10 formed into a sheet shape will be described with reference to FIG.
  • FIG. 3 shows the configuration of a transport type cooling device 60 suitable as the cooling device 6 shown in FIG.
  • the transport type cooling device 60 shown in FIG. 3 is configured to cool by an air cooling method while transporting the sheet-shaped dry rubber 10 discharged from the discharge port of the die 59 of the screw type extruder 5.
  • this transport type cooling device 60 the sheet-shaped dry rubber discharged from the screw type extruder 5 can be suitably cooled.
  • the transport type cooling device 60 shown in FIG. 3 is used, for example, directly connected to the die 59 of the screw type extruder 5 shown in FIG. 2 or installed in the vicinity of the die 59.
  • the transport type cooling device 60 blows cold air to the conveyor 61 that conveys the sheet-shaped dry rubber 10 discharged from the die 59 of the screw type extruder 5 in the direction of arrow A in FIG. 3 and the sheet-shaped dry rubber 10 on the conveyor 61. It has a cooling means 65 for spraying.
  • the conveyor 61 has rollers 62 and 63, and a conveyor belt 64 that is wound around the rollers 62 and 63 and on which the sheet-shaped dry rubber 10 is placed.
  • the conveyor 61 is configured to continuously convey the sheet-shaped dry rubber 10 discharged from the die 59 of the screw type extruder 5 to the downstream side (right side in FIG. 3) on the conveyor belt 64.
  • the cooling means 65 is not particularly limited, but has, for example, a structure capable of blowing cooling air sent from a cooling air generating means (not shown) onto the surface of the sheet-shaped dry rubber 10 on the conveyor belt 64. And so on.
  • the length (length of the portion where the cooling air can be blown) L1 of the conveyor 61 and the cooling means 65 of the transport type cooling device 60 is not particularly limited, but is, for example, 10 to 100 m, preferably 20 to 50 m. ..
  • the transport speed of the sheet-shaped dry rubber 10 in the transport-type cooling device 60 is the length L1 of the conveyor 61 and the cooling means 65, the discharge speed of the sheet-shaped dry rubber 10 discharged from the die 59 of the screw type extruder 5. It may be appropriately adjusted according to the target cooling rate, cooling time, etc., but is, for example, 10 to 100 m / hr, more preferably 15 to 70 m / hr.
  • the sheet-shaped dry rubber 10 discharged from the die 59 of the screw type extruder 5 is conveyed by the conveyor 61, and the sheet-shaped dry rubber 10 is transported from the cooling means 65 to the sheet-shaped dry rubber 10.
  • the sheet-shaped dry rubber 10 is cooled by blowing cooling air.
  • the transport type cooling device 60 is not particularly limited to a configuration including one conveyor 61 and one cooling means 65 as shown in FIG. 3, and two or more conveyors 61 and two or more corresponding conveyors 61. It may be configured to include the cooling means 65 of the above. In that case, the total length of each of the two or more conveyors 61 and the cooling means 65 may be within the above range.
  • the bale device 7 shown in FIG. 1 is configured to extrude from a screw type extruder 5 and further process a dry rubber cooled by the cooling device 6 to produce a bale which is a block.
  • the screw type extruder 5 can extrude the dried rubber into various shapes such as granular, columnar, round bar, and sheet, and the bale device 7 has various shapes as described above. It is configured to veil dry rubber molded into a shape.
  • the weight and shape of the acrylic rubber bale produced by the bale device 7 are not particularly limited, but for example, an acrylic rubber bale having a substantially rectangular parallelepiped shape of about 20 kg is produced.
  • the bale device 7 may include, for example, a baler, and may manufacture an acrylic rubber veil by compressing the cooled dry rubber with the baler.
  • the bale-forming device 7 arranged on the downstream side of the transport-type cooling device 60 shown in FIG. 3 may be provided with a cutting mechanism for cutting the sheet-shaped dry rubber 10.
  • the cutting mechanism of the bale device 7 continuously cuts the cooled sheet-shaped dry rubber 10 at predetermined intervals and processes the cooled sheet-shaped dry rubber 16 into a cut sheet-shaped dry rubber 16 having a predetermined size. It is configured as follows. By laminating a plurality of cut sheet-shaped dry rubbers 16 cut to a predetermined size by a cutting mechanism, an acrylic rubber veil on which the cut sheet-shaped dry rubbers 16 are laminated can be manufactured.
  • a cut sheet-shaped dry rubber 16 When producing an acrylic rubber veil on which a cut sheet-shaped dry rubber 16 is laminated, it is preferable to laminate a cut sheet-shaped dry rubber 16 at, for example, 40 ° C. or higher. By laminating the cut sheet-shaped dry rubber 16 at 40 ° C. or higher, good air release is realized by further cooling and compression by its own weight.
  • [Monomer composition] Regarding the monomer composition in acrylic rubber, the monomer composition of each monomer unit in acrylic rubber was confirmed by 1 H-NMR, and the activity of the reactive group remained in acrylic rubber and each of them.
  • the reactive group content was confirmed by the following method.
  • the content ratio of each monomer unit in the acrylic rubber was calculated from the amount used in the polymerization reaction of each monomer and the polymerization conversion rate. Specifically, since the polymerization reaction was an emulsion polymerization reaction and the polymerization conversion rate was approximately 100% in which none of the unreacted monomers could be confirmed, the content ratio of each monomer unit in the rubber was The amount used for each monomer was the same.
  • the content of the reactive group in the acrylic rubber veil was measured by the following method. (1) The amount of carboxyl group was calculated by dissolving a sample (acrylic rubber veil) in acetone and performing potentiometric titration with a potassium hydroxide solution. (2) The amount of epoxy group was calculated by dissolving the sample in methyl ethyl ketone, adding a specified amount of hydrochloric acid to react with the epoxy group, and titrating the remaining amount of hydrochloric acid with potassium hydroxide. (3) The amount of chlorine was calculated by completely burning the sample in a combustion flask, absorbing the generated chlorine in water, and titrating with silver nitrate.
  • the amount (ppm) of each component in the acrylic rubber veil ash content was measured by XRF using ZSX Primus (manufactured by Rigaku) by pressing the ash content collected at the time of the above ash content measurement onto a ⁇ 20 mm titration filter paper.
  • the molecular weight (Mw, Mn, Mz) and molecular weight distribution (Mw / Mn and Mz / Mw) of the acrylic rubber are such that lithium chloride is 0.05 mol / L and 37% concentrated hydrochloric acid is 0.01% in dimethylformamide as a solvent. It is an absolute molecular weight and an absolute molecular weight distribution measured by the GPC-MALS method using the solutions added in 1.
  • the configuration of the gel permeation chromatography multi-angle light scattering photometer which is this device, consists of a pump (LC-20ADOpt manufactured by Shimadzu Corporation), a differential refractometer (Optilab rEX Wyatt Technology) as a detector, and a multi-angle It consists of a light scattering detector (DAWN HELEOS, manufactured by Waitt Technology).
  • a multi-angle laser light scattering photometric meter (MALS) and a differential refractometer (RI) are incorporated into a GPC (Gel Permeation Chromatography) device, and the light scattering intensity and refraction of the molecular chain solution sorted by size by the GPC device are incorporated.
  • the molecular weight of the solute and its content were sequentially calculated and obtained by measuring the rate difference by measuring the dissolution time.
  • the measurement conditions and measurement methods by the GPC device are as follows.
  • Glass transition temperature (Tg) The glass transition temperature (Tg) of acrylic rubber was measured using a differential scanning calorimeter (DSC, product name "X-DSC7000", manufactured by Hitachi High-Tech Science Co., Ltd.).
  • the amount (%) of the methyl ethyl ketone insoluble content of the acrylic rubber veil was the amount of the insoluble content in the methyl ethyl ketone, and was determined by the following method. About 0.2 g of acrylic rubber veil is weighed (Xg), immersed in 100 ml methyl ethyl ketone, left at room temperature for 24 hours, and then dissolved in a filtrate obtained by filtering out the insoluble matter in methyl ethyl ketone using an 80 mesh wire mesh, that is, methyl ethyl ketone.
  • the specific gravity of the acrylic rubber veil was measured according to the method A of JIS K6268 crosslinked rubber-density measurement.
  • the measured value obtained by the following measuring method is the density, but the density of water is 1 Mg / m 3 and the specific gravity is used.
  • the specific gravity of the rubber sample obtained according to the method A of JIS K6268 cross-linked rubber-density measurement is the mass divided by the capacity including the voids of the rubber sample, and is the JIS K6268 cross-linked rubber-density measurement. It is obtained by dividing the density of the rubber sample measured according to the method A by the density of water (when the density of the rubber sample is divided by the density of water, the numerical values are the same and the unit is lost).
  • the specific gravity of the rubber sample is determined based on the following procedure.
  • a 2.5 g test piece is cut out from a rubber sample that has been allowed to stand at a standard temperature (23 ° C ⁇ 2 ° C) for at least 3 hours, and a thin piece having a mass of less than 0.010 g is cut out from a hook on a chemical balance having an accuracy of 1 mg.
  • Using nylon thread suspend the test piece so that the bottom of the test piece is 25 mm above the distribution tray for the chemical balance, and measure the mass (m1) of the test piece twice up to mg in the air.
  • the water content was measured according to JIS K6230-1: Oven A (volatile content measurement) method.
  • the complex viscosity ⁇ is measured by measuring the temperature dispersion (40 to 120 ° C.) at a strain of 473% and 1 Hz using a dynamic viscous elasticity measuring device “Rubber Process Analyzer RPA-2000” (manufactured by Alpha Technology). The complex viscosity ⁇ at temperature was determined.
  • the dynamic viscoelasticity at 60 ° C. is defined as the complex viscoelasticity ⁇ (60 ° C.)
  • the dynamic viscoelasticity at 100 ° C. is defined as the complex viscoelasticity ⁇ (100 ° C.).
  • the value of (100 ° C.) / ⁇ (60 ° C.) was calculated.
  • Mooney viscosity (ML1 + 4,100 ° C) Mooney viscosity (ML1 + 4,100 ° C.) was measured according to the uncrosslinked rubber physical test method of JIS K6300.
  • the crosslinkability of the rubber sample is the rate of change between the breaking strength of the rubber crosslinked product subjected to secondary cross-linking for 2 hours and the breaking strength of the rubber cross-linked product subjected to 4 hours ((4 hour cross-linked rubber cross-linked product breaking strength / 2 hour cross-linking).
  • the breaking strength of the crosslinked rubber product) ⁇ 100) was calculated and judged according to the following criteria. ⁇ : Breaking strength change rate is less than 10% ⁇ : Breaking strength change rate is 10% or more
  • the compression set resistance characteristic of the rubber sample was evaluated according to the following criteria by measuring the compression set rate after leaving the rubber crosslinked product of the rubber sample at 175 ° C. for 90 hours in a state of being compressed by 25% according to JIS K6262. .. ⁇ : The compression set is less than 15% ⁇ : The compression set is 15% or more.
  • the normal physical properties of the rubber sample were evaluated according to the following criteria by measuring the breaking strength, 100% tensile stress and breaking elongation of the crosslinked rubber sample of the rubber sample according to JIS K6251. (1) The breaking strength was evaluated as ⁇ when it was 10 MPa or more and ⁇ when it was less than 10 MPa. (2) The 100% tensile stress was evaluated as ⁇ for 5 MPa or more and ⁇ for less than 5 MPa. (3) The elongation at break was evaluated as ⁇ for 150% or more and ⁇ for less than 150%.
  • Example 1 As shown in Table 2-1 in a mixing container equipped with a homomixer, 46 parts of pure water, 4.5 parts of ethyl acrylate as a monomer component, 64.5 parts of n-butyl acrylate, and methoxyethyl acrylate as a monomer component. 29.5 parts, mono n-butyl fumarate, 1.5 parts, and 1.8 parts of octyloxydioxyethylene phosphate sodium salt as an emulsifier were charged and stirred to obtain a monomeric emulsion.
  • the mixture was heated to 80 ° C. and vigorously stirred at a stirring blade rotation speed of 600 rpm (peripheral speed 3.1 m / s) of the stirrer.
  • the emulsion polymer solution obtained above is heated to 80 ° C. and continuously added to coagulate the polymer in 350 parts of a coagulation solution using magnesium sulfate as an agent to coagulate the polymer, and the crumb of acrylic rubber which is a coagulated product.
  • a solidified slurry containing water was obtained. Moisture was discharged from the solidified layer while filtering the crumbs from the obtained slurry to obtain a hydrous crumb.
  • the screw type twin-screw dryer used in the first embodiment has one supply barrel, three dehydration barrels (first to third dehydration barrels), and five drying barrels (first to fifth drying barrels). It consists of a barrel).
  • the first dehydration barrel drains water, and the second and third dehydration barrels drain steam.
  • the operating conditions of the screw type twin-screw extruder were as follows.
  • Moisture content Moisture content of the hydrous crumb after drainage in the first dehydration barrel: 20% Moisture content of the hydrous crumb after steam exhaust in the third dehydration barrel: 10% Moisture content of the hydrous crumb after drying in the 5th drying barrel: 0.4% Rubber temperature: -The temperature of the hydrous crumb supplied to the supply barrel: 65 ° C -The temperature of the rubber discharged from the screw type twin-screw extruder: 140 ° C Set temperature of each barrel: -First dehydration barrel: 100 ° C -Second dehydration barrel: 120 ° C -Third dehydration barrel: 120 ° C -First drying barrel: 120 ° C -Second drying barrel: 130 ° C -Third dry barrel: 140 ° C -Fourth drying barrel: 160 ° C -Fifth drying barrel: 180 ° C Operating conditions: -Screw diameter (D): 132 mm -Overall length (L) of the screw: 4620
  • the extruded sheet-shaped dry rubber was cooled to 50 ° C., cut with a cutter, and laminated to 20 parts (20 kg) before the temperature fell below 40 ° C. to obtain an acrylic rubber veil (A).
  • A acrylic rubber veil
  • Tg glass transition temperature
  • Table 2-2 the complex viscosity at 60 ° C was measured and shown in Table 2-2.
  • the storage stability test of the acrylic rubber veil (A) was performed to determine the water content change rate, and the results are shown in Table 2-2.
  • the obtained rubber composition was placed in a mold having a length of 15 cm, a width of 15 cm, and a depth of 0.2 cm, and pressed at 180 ° C. for 10 minutes while pressurizing at a press pressure of 10 MPa to perform primary cross-linking.
  • the material was further heated in a gear oven at 180 ° C. for 2 hours for secondary cross-linking to obtain a sheet-shaped rubber cross-linked product.
  • a test piece having a size of 3 cm ⁇ 2 cm ⁇ 0.2 cm was cut out from the obtained sheet-shaped rubber crosslinked product, and water resistance, compression resistance permanent strain resistance and normal physical properties were evaluated.
  • the normal physical properties of the sheet-shaped rubber crosslinked product obtained by performing the secondary cross-linking for another 2 hours were measured to evaluate the cross-linking property.
  • Table 2-2 The results are shown in Table 2-2.
  • Example 2 Add the emulsifier to 1.8 parts of nonylphenyloxyhexaoxyethylene phosphate sodium salt, the amount of potassium persulfate of the inorganic radical generator to 0.21 parts, and add the chain transfer agent n-dodecyl mercaptan for 50 minutes. The same procedure as in Example 1 was carried out except that the changes were made to 0.017 parts after 100 minutes, 0.017 parts after 100 minutes and 0.017 parts after 120 minutes, and acrylic rubber veil (B) was obtained and each characteristic was evaluated. The results are shown in Table 2-2.
  • the monomer component is 48.25 parts of ethyl acrylate, 50 parts of n-butyl acrylate and 1.75 parts of mono-n-butyl fumarate, and the emulsifier is 1.8 parts of tridecyloxyhexaoxyethylene phosphate sodium salt.
  • the water-containing crumb after washing was dried to a water content of 0.4% using a hot air dryer at 160 ° C. to obtain a crumb-shaped acrylic rubber, and then filled in a 300 ⁇ 650 ⁇ 300 mm baler and charged at 3 MPa.
  • Acrylic rubber bale (C) was obtained in the same manner as in Example 1 except that the acrylic rubber was compacted with pressure for 25 seconds to form a veil-shaped acrylic rubber. Each property of the acrylic rubber veil (C) was evaluated (the compounding agent was changed to "formulation 2”), and the results are shown in Table 2-2.
  • the monomer component is 48.25 parts of ethyl acrylate, 50 parts of n-butyl acrylate and 1.75 parts of mono-n-butyl fumarate, and the emulsifier is 1.8 parts of tridecyloxyhexaoxyethylene phosphate sodium salt.
  • the water-containing crumb after washing was dried to a water content of 0.4% using a hot air dryer at 160 ° C. to obtain a crumb-shaped acrylic rubber, and then filled in a 300 ⁇ 650 ⁇ 300 mm baler and charged at 3 MPa.
  • Acrylic rubber bale (F) was obtained in the same manner as in Example 2 except that the acrylic rubber was compacted with pressure for 25 seconds to form a veil-shaped acrylic rubber. Each property of the acrylic rubber veil (F) was evaluated (the compounding agent was changed to "formulation 2”), and the results are shown in Table 2-2.
  • Reference Example 7 The same procedure as in Reference Example 6 was carried out except that the amount of potassium persulfate of the inorganic radical generator was changed to 0.22 part, a chain transfer agent was not added, and a crumb-shaped acrylic rubber was obtained without bale by a baler. , Crumb-shaped acrylic rubber (I) was obtained and each characteristic was evaluated. The results are shown in Table 2-2.
  • the absolute molecular weight and the absolute molecular weight measured by the GPC-MALS method which have at least one reactive group selected from the group consisting of the carboxyl group, the epoxy group and the chlorine atom of the present invention.
  • the weight average molecular weight (Mw) is 1,000,000 to 3,500,000
  • the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) is 3.7 to 6.
  • acrylic rubber of .5 It is made of acrylic rubber of .5, and has a methyl ethyl ketone insoluble content of 50% by weight or less, an ash content of 0.2% by weight or less, and a total amount of sodium, magnesium, calcium, phosphorus and sulfur in the ash content of 50% by weight or more.
  • Certain acrylic rubber veils (A) to (B) are remarkably excellent in normal physical properties including roll workability, molecular workability, water resistance, compression permanent strain resistance and strength characteristics, as well as cross-linking property and storage stability. It can be seen that it is excellent (Examples 1 and 2).
  • the acrylic rubber veils (A) to (L) produced under the conditions of Examples, Reference Examples and Comparative Examples of the present application contain ionic reactive groups such as a carboxyl group, an epoxy group and a chlorine atom. Since the weight average molecular weight (Mw) of the absolute molecular weight measured by the GPC-MALS method is larger than 1 million, it has any of short-term cross-linking property, compression resistance permanent strain property and normal physical property including strength property. It is also found to be excellent (Examples 1 and 2, Reference Examples 1 to 7 and Comparative Examples 1 to 3).
  • the crumb-shaped acrylic rubbers (J) to (L) of Comparative Examples 1 to 3 are excellent in crosslinkability, compression set resistance and strength characteristics, but have roll workability, Banbury workability, water resistance and storage stability. (Comparative Examples 1 and 2), and also inferior in roll processability, water resistance and storage stability (Comparative Example 3).
  • the weight average molecular weight (Mw) is between 1 million and 3.5 million, and the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) (Mw / Mn).
  • Mw / Mn the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn)
  • acrylic rubber having a large Mw and a wide Mw / Mn and excellent strength characteristics and roll processability extends one polymerized chain with an inorganic radical generator and is a chain transfer agent. It can be seen that this can be achieved by adding (n-dodecyl mercaptan) in batches (Examples 1 and 2 and Reference Examples 1 to 6). Further, in order to efficiently spread Mw / Mn, the number of batch post-additions of the chain transfer agent has a great influence, and the number of batch post-additions is 2 times rather than 3 times.
  • the reducing agent sodium ascorbate is added 120 minutes after the start of polymerization, whereby the high molecular weight component of acrylic rubber can be easily generated.
  • the effect of spreading Mw / Mn added after the chain transfer agent is increased.
  • Mw / Mn becomes small and the roll processability is significantly lowered, which is not preferable.
  • the banbury processability of the acrylic rubber veil correlates with the amount of methyl ethyl ketone insoluble content, and that the smaller the methyl ethyl ketone insoluble content, the better the banbury processability.
  • the Banbury processability of acrylic rubber is particularly excellent when the insoluble content of methyl ethyl ketone is 50% by weight or less, preferably 30% by weight or less (Reference Examples 1 to 6 and Comparative Example 3 and Reference Example 7 and Comparative Examples 1 and 2). (Comparison), and it can be seen that when the insoluble content of methyl ethyl ketone is 10% by weight or less, preferably 5% by weight or less, it is remarkably excellent (Examples 1 and 2).
  • the amount of methyl ethyl ketone insoluble in acrylic rubber veil can be reduced by emulsion polymerization in the presence of chain transfer agents (Reference Examples 1 to 6 and Comparative Example 3), and in particular, the amount of methyl ethyl ketone insoluble enhances strength characteristics. Therefore, when the polymerization conversion rate is increased, the rate increases rapidly. Therefore, it can be seen that the formation of the insoluble matter of methyl ethyl ketone can be suppressed in Reference Examples 1 to 6 of the post-addition of the chain transfer agent in the latter half of the polymerization.
  • the amount of methyl ethyl ketone insoluble in the acrylic rubber veil can be significantly reduced by drying the hydrous crumb with a screw type twin-screw extruder, and the Banbury processability of the manufactured acrylic rubber veil can be significantly improved ( Comparison between Examples 1 and 2 and Reference Examples 1 to 6).
  • the amount of methyl ethyl ketone insoluble content rapidly increased by emulsion polymerization without adding a chain transfer agent (Comparative Examples 1 and 2) is substantially in the screw type twin-screw extruder. It has been confirmed that the Banbury processability can be significantly improved without impairing the strength characteristics by melting and kneading in a state containing no water (water content less than 1% by weight).
  • the acrylic rubber veil (A) to (B) of the examples according to the present invention the acrylic rubber veil (C) to (I) of the reference example, and the crumb-shaped acrylic rubber (J) to (L) of the comparative example.
  • the total element content of phosphorus, magnesium, sodium, calcium and sulfur exceeds 90% by weight and is excellent in properties such as water resistance and mold releasability of acrylic rubber. It can be seen that the higher the ratio of phosphorus and magnesium, the better the water resistance (comparison between Reference Example 7 and Comparative Example 2).
  • the amount of ash in the acrylic rubber can be surely reduced up to the third time by washing with water at room temperature, but there is almost no difference between the third time and the fourth time. Almost no effect of reducing the amount of ash was observed after the 4th time. On the other hand, in the washing with warm water, the amount of ash in the acrylic rubber was reduced up to the second time, and the washing effect after the third time was hardly observed.
  • the acrylic rubber veils (A) to (B) of the present invention are excellent in crosslinkability, roll processability, Banbury processability, water resistance, compression set resistance and strength characteristics, and are preserved. It can be seen that the stability is also significantly excellent (Examples 1 and 2). It can be seen that the storage stability of the acrylic rubber veil is greatly related to the specific gravity of the acrylic rubber veil, and that when the specific gravity is large, air is not entrained in the acrylic rubber and the storage stability is excellent (Examples 1 and 2). , Reference Examples 1 to 6 and Comparative Examples 1 to 3).
  • Acrylic rubber veils with a large specific density are made by compressing crumb-shaped acrylic rubber with a baler to form a veil (Reference Examples 1 to 6), and more preferably with a screw-type twin-screw extruder without entraining air. It can be obtained by extruding into a sheet, cutting and laminating at a specific temperature to form a veil (Examples 1 and 2).
  • an acrylic rubber veil obtained by laminating acrylic rubber sheets that have been melt-kneaded and dried under reduced pressure is in a normal state including short-time crosslinking property, roll processability, compression resistance permanent strain property, and strength property.
  • the present invention has at least one reactive group selected from the group consisting of the carboxyl group, the epoxy group and the chlorine atom of the present invention, and has an absolute molecular weight and an absolute molecular weight distribution measured by the GPC-MALS method, and has a weight average molecular weight (Mw).
  • Mw weight average molecular weight
  • Acrylic rubber veil (A) to (B) having a dissolved content of 50% by weight or less, an ash content of 0.2% by weight or less, and a total amount of sodium, magnesium, calcium, phosphorus and sulfur in the ash content of 50% by weight or more. ) was found to have a high balance of normal physical properties including roll workability, molecular workability, water resistance, compression resistance permanent strain property and strength property, and also excellent in cross-linking property and storage stability.
  • Example 1 (1) 90% by weight, (2) 90% by weight, (3) 87% by weight
  • Example 2 (1) 92% by weight, (2) 91% by weight, (3) 89% by weight
  • Reference example 1 (1) 89% by weight, (2) 87% by weight, (3) 83% by weight
  • Reference example 2 (1) 91% by weight, (2) 90% by weight, (3) 83% by weight
  • Reference example 3 (1) 93% by weight, (2) 91% by weight, (3) 89% by weight
  • Reference example 4 (1) 95% by weight, (2) 89% by weight, (3) 80% by weight Reference Example 5: (1) 92% by weight, (2) 92% by weight, (3) 88% by weight Reference example 6: (1) 94% by weight, (2) 93% by weight, (3) 87% by weight Reference example 7: (1) 90% by weight, (2) 89% by weight, (3) 88% by weight Comparative Example 1: (1) 15% by weight, (2) 1% by weight, (3) 0% by weight
  • the amount of ash remaining in the acrylic rubber veil differs depending on the size of the water-containing crumb generated in the solidification process, and the cleaning efficiency is high even though the specific proportions of (1) to (3) are large. It can be seen that the amount of ash is high, the amount of ash is reduced, and the water resistance is excellent (comparison between Reference Examples 1 to 7 in Table 2-2 and Comparative Example 1). Further, the water-containing crumbs having a large specific ratio of (1) to (3) have a high ash removal rate at the time of 20% by weight dehydration, further reduce the ash content and significantly improve the water resistance of the acrylic rubber veil. (Comparison between Examples 1 and 2 and Reference Examples 1 to 7). As can be seen from the comparison with Reference Example 6 and Reference Example 7, the particle size of the hydrous crumb produced in the solidification step is not related to the presence or absence of the chain transfer agent.
  • Comparative Example 1 For reference, the same procedure as in Comparative Example 1 was performed except that the emulsion polymerization solution was added to the coagulation solution in the coagulation step (Reference Example 8), and the emulsion polymerization solution was added to the coagulation solution to provide a coagulant for the coagulation solution.
  • the same procedure as in Comparative Example 1 was carried out except that the concentration was changed from 0.7% by weight to 2% by weight (Reference Example 9), and the particle size ratio of the produced hydrous crumb and the amount of ash in the acrylic rubber were measured. The results are shown below.
  • Reference example 8 (1) 90% by weight, (2) 55% by weight, (3) 22% by weight, ash content 0.55% by weight
  • Reference example 9 (1) 91% by weight, (2) 70% by weight, (3) 40% by weight, ash content 0.41% by weight
  • the amount of ash in the acrylic rubber veil was changed to a method in which the concentration of the coagulating liquid was increased (2%) in the coagulation reaction and the emulsion polymerization solution was added to the agitated coagulating liquid (Lx ⁇ ). ), And the crumb diameter of the hydrous crumb generated by vigorous stirring of the coagulating liquid (stirring number 600 rpm / peripheral speed 3.1 m / s) can be focused in a specific range of 710 ⁇ m to 4.75 mm, and the cleaning efficiency with warm water can be achieved.
  • the efficiency of removing emulsifiers and coagulants during dehydration is significantly improved to reduce the amount of ash in the acrylic rubber veil, and the acrylic rubber veil is in a normal state including crosslinkability, roll processability, compression resistance permanent strain characteristics and strength characteristics. It can be seen that the water resistance can be significantly improved without impairing the characteristics such as physical properties (Examples 1 and 2).
  • Example 3 As shown in Table 3-1 the monomer component was 74.5 parts of ethyl acrylate, 17 parts of n-butyl acrylate, 7 parts of methoxyethyl acrylate, 1.5 parts of mono n-butyl fumarate and an emulsifier. The procedure was the same as in Example 2 except that the amount was changed to 1.8 parts of tridecyloxyhexaoxyethylene phosphate sodium salt, acrylic rubber veil (M) was obtained, each characteristic was evaluated, and the results are shown in Table 3. Shown in -2. Table 3-1 shows the water content, maximum torque, specific power, specific power, shear rate and shear viscosity of the screw type twin-screw extruder after dehydration (drainage).
  • Example 4 The monomer component is 74.5 parts of ethyl acrylate, 17 parts of n-butyl acrylate, 7 parts of methoxyethyl acrylate, and 1.5 parts of mono-n-butyl fumarate, and the emulsifier is tridecyloxyhexaoxyethylene phosphate.
  • the procedure was the same as in Example 1 except that the ester sodium salt was changed to 1.8 parts, acrylic rubber veil (N) was obtained, each characteristic was evaluated, and the results are shown in Table 3-2.
  • Table 3-1 shows the water content, maximum torque, specific power, specific power, shear rate and shear viscosity of the screw type twin-screw extruder after dehydration (drainage).
  • the monomer component is 28 parts of ethyl acrylate, 38 parts of n-butyl acrylate, 27 parts of methoxyethyl acrylate, 5 parts of acrylonitrile and 2 parts of allylglycidyl ether, and the operating conditions of the screw type twin-screw extruder are high.
  • the procedure was the same as in Example 3 except that the share (maximum torque was changed to 45 Nm), acrylic rubber veil (O) was obtained, each characteristic (the compounding agent was changed to "formulation 3”) was evaluated, and they were evaluated.
  • Table 3-2 Table 3-1 shows the water content, maximum torque, specific power, specific power, shear rate and shear viscosity of the screw type twin-screw extruder after dehydration (drainage).
  • Example 6 Acrylic rubber veil (P) was carried out in the same manner as in Example 5 except that the monomer component was changed to 48.5 parts of ethyl acrylate, 50 parts of n-butyl acrylate and 1.5 parts of mono-n-butyl fumarate. ) was obtained, and each characteristic (the compounding agent was changed to "formulation 1") was evaluated, and the results are shown in Table 3-2.
  • Table 3-1 shows the water content, maximum torque, specific power, specific power, shear rate and shear viscosity of the screw type twin-screw extruder after dehydration (drainage).
  • Example 7 Acrylic rubber veil (Q) was carried out in the same manner as in Example 5 except that the monomer component was changed to 48.25 parts of ethyl acrylate, 50 parts of n-butyl acrylate and 1.75 parts of mono-n-butyl fumarate. ) was obtained, and each characteristic (the compounding agent was changed to "formulation 2") was evaluated, and the results are shown in Table 3-2.
  • Table 3-1 shows the water content, maximum torque, specific power, specific power, shear rate and shear viscosity of the screw type twin-screw extruder after dehydration (drainage).
  • the monomer component is 28 parts of ethyl acrylate, 38 parts of n-butyl acrylate, 27 parts of methoxyethyl acrylate, 5 parts of acrylonitrile and 2 parts of allylglycidyl ether, and the operating conditions of the screw type twin-screw extruder are high.
  • the procedure was the same as in Example 4 except that the share (maximum torque was changed to 45 Nm), acrylic rubber veil (R) was obtained, each characteristic (the compounding agent was changed to "formulation 3”) was evaluated, and they were evaluated.
  • Table 3-2 Table 3-1 shows the water content, maximum torque, specific power, specific power, shear rate and shear viscosity of the screw type twin-screw extruder after dehydration (drainage).
  • Example 9 Acrylic rubber veil (S) was carried out in the same manner as in Example 8 except that the monomer component was changed to 48.5 parts of ethyl acrylate, 50 parts of n-butyl acrylate and 1.5 parts of mono-n-butyl fumarate. ) was obtained, and each characteristic (the compounding agent was changed to "formulation 1") was evaluated, and the results are shown in Table 3-2.
  • Table 3-1 shows the water content, maximum torque, specific power, specific power, shear rate and shear viscosity of the screw type twin-screw extruder after dehydration (drainage).
  • Example 10 Acrylic rubber veil (T) was carried out in the same manner as in Example 8 except that the monomer component was changed to 48.25 parts of ethyl acrylate, 50 parts of n-butyl acrylate and 1.75 parts of mono-n-butyl fumarate. ) was obtained, and each characteristic (the compounding agent was changed to "formulation 2") was evaluated, and the results are shown in Table 3-2.
  • Table 3-1 shows the water content, maximum torque, specific power, specific power, shear rate and shear viscosity of the screw type twin-screw extruder after dehydration (drainage).
  • the acrylic rubber veil of the present invention is obtained by dehydrating and drying the water-containing crumb by increasing the maximum torque of the screw type twin-screw extruder to a specific region (with a high share).
  • Crosslinkability and Banbury processability It can be seen that the roll workability can be significantly improved without impairing the characteristics of water resistance, compression resistance permanent strain characteristics, and strength characteristics (comparison between Examples 3 to 4 and Examples 5 to 10).
  • This is more moderate by drying acrylic rubber, which consists of a high molecular weight component and a low molecular weight component that has been emulsion-polymerized by adding a chain transfer agent, using a screw-type twin-screw extruder with a high share.
  • the molecular weight distribution can be broadened and the roll processability can be further improved.
  • the chain transfer agent is excessively added to excessively expand the molecular weight distribution (Mw / Mn), for example, to 10 or more, the low molecular weight component of acrylic rubber becomes available. It was found that the amount was too large and the strength characteristics and the compression resistance permanent strain characteristics were inferior, which was not preferable.
  • the variation in the amount of methyl ethyl ketone insoluble content was evaluated by the above-mentioned method. That is, the variation evaluation of the amount of insoluble methyl ethyl ketone in the rubber sample was evaluated by measuring the insoluble amount of methyl ethyl ketone at 20 points arbitrarily selected from 20 parts (20 kg) of the rubber sample and evaluating based on the above-mentioned criteria.
  • the acrylic rubber veils (A) to (B) and (M) to (T) obtained in Examples 1 to 10 and the crumb-shaped acrylic rubber (J) obtained in Comparative Example 1 were insoluble in methyl ethyl ketone.
  • the results of the acrylic rubber veils (A) to (B) and (M) to (T) of Examples 1 to 10 according to the present invention were all " ⁇ ", and comparative examples.
  • the result of the crumb-shaped acrylic rubber (J) of No. 1 was "x".
  • the acrylic rubber compositions containing the acrylic rubber veils (A) to (B) and (M) to (T) of Examples 1 to 10 were evaluated for processing stability by suppressing the Mooney scorch described above at a temperature of 125 ° C.
  • the Mooney scorch time t5 (minutes) was measured according to JIS K 6300, and the Mooney scorch storage stability was evaluated according to the following criteria. As a result, all of them were good results of " ⁇ ".
  • Mooney scorch time t5 exceeds 2.0 minutes ⁇ : Mooney scorch time t5 is 1.5 to 2.0 minutes ⁇ : Mooney scorch time t5 is less than 1.5 minutes
  • the cooling rate of the sheet-shaped dry rubber extruded from the screw type twin-screw extruder is approximately 200 ° C./hr as in Example 1. Both are quickly above 40 ° C./hr.

Abstract

ロール加工性、バンバリー加工性、耐水性、強度特性及び耐圧縮永久歪み特性に優れるアクリルゴムベールを提供する。本発明に係るアクリルゴムベールは、カルボキシル基、エポキシ基及び塩素原子からなる群から選ばれる少なくとも1種の反応性基を有し、GPC-MALS法により測定される絶対分子量及び絶対分子量分布による重量平均分子量(Mw)が1,000,000~3,500,000、重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が3.7~6.5であるアクリルゴムからなり、メチルエチルケトン不溶解分量が50重量%以下、灰分量が0.2重量%以下で且つ灰分中のナトリウム、マグネシウム、カルシウム、リン及びイオウの合計量が50重量%以上である。

Description

ロール加工性、バンバリー加工性、耐水性、強度特性及び耐圧縮永久歪み特性に優れるアクリルゴムベール
 本発明は、アクリルゴムベール、その製造方法、ゴム組成物及びゴム架橋物に関し、さらに詳しくは、ロール加工性やバンバリー加工性に優れ、且つ、架橋物の耐水性、強度特性及び耐圧縮永久歪み特性に優れるアクリルゴムベール、その製造方法、該アクリルゴムベールを含むゴム組成物及びそれを架橋してなるゴム架橋物に関する。
 アクリルゴムは、アクリル酸エステルを主成分とする重合体であり、一般に耐熱性、耐油性及び耐オゾン性に優れたゴムとして知られ、自動車関連の分野などで広く用いられている。
 例えば、特許文献1(国際公開第2019/188709号パンフレット)には、アクリル酸エチル、アクリル酸ブチル、アクリル酸メトキシエチル及びフマル酸モノブチルからなる単量体成分、水及びラウリル硫酸ナトリウムを仕込み、減圧脱気及び窒素置換を繰り返した後、ナトリウムアルデヒドスルホキシレートと有機ラジカル発生剤であるクメンハイドロパーオキシドを加えて常圧、常温下で乳化重合を開始させ、重合転化率が95重量%になるまで乳化重合を行ってから塩化カルシウム水溶液で凝固させ金網でろ過後にスクリューを有する押出乾燥機で脱水乾燥してアクリルゴムを製造する方法が開示されている。しかしながら、本方法で得られるアクリルゴムは、ロール加工性やバンバリー加工性が極端に劣り、且つ保存安定性や耐水性にも劣る問題があった。
 特許文献2(特開2019-119772号公報)には、アクリル酸エチル、アクリル酸ブチル、アクリル酸メトキシエチル及びマレイン酸モノブチルからなる単量体成分を純水と乳化剤としてラウリル硫酸ナトリウムとポリオキシエチレンドデシルエーテルを用いて単量体乳化液としたのち、単量体乳化液の一部を重合反応槽に投入し窒素気流下で12℃まで冷却してから、残部の単量体乳化液、硫酸第一鉄、アスコルビン酸ナトリウム及び無機ラジカル発生剤としての過硫酸カリウム水溶液を連続的に3時間かけて連続的に滴下し、その後も23℃に保ち1時間継続して乳化重合を行い重合転化率が97重量%に達してから85℃に昇温させた後に硫酸ナトリウムを連続的に添加することにより凝固濾別し含水クラムを得て、該含水クラムを水洗4回、酸洗浄1回及び純水洗浄1回行った後にスクリューを有する押出乾燥機でシート状にアクリルゴムを連続的に製造し、ヘキサメチレンジアミンカーバメート等の脂肪族多価アミン化合物で架橋する方法が開示されている。しかしながら、本方法で得られるシート状アクリルゴムは、ロール加工性に劣り、また、架橋物の耐水性に劣る問題があった。また、本特許文献2には、得られたシート状アクリルゴムをベール化することは記載されていない。
 特許文献3(特開平1-135811号公報)には、アクリル酸エチル、カプロラクトン付加型アクリル酸エステル、シアノエチルアクリレート及びクロロ酢酸ビニルからなる単量体成分と連鎖移動剤としてのn-ドデシルメルカプタンとからなる単量体混合物の1/4量をラウリル硫酸ナトリウム、ポリエチレングリコールノニルフェニルエーテル及び蒸留水で乳化し、亜硫酸ナトリウムと無機ラジカル発生剤としての過硫酸アンモニウムを添加して重合を開始し、温度を60℃に保ちながら残部の単量体混合物と2%過硫酸アンモニウム水溶液を2時間滴下し、滴下後更に2時間重合を継続した重合転化率96~99%のラテックスを80℃の塩化ナトリウム水溶液に投入し凝固してから十分に水洗後乾燥をしてアクリルゴムを製造しイオウで架橋する方法が開示されている。しかしながら、本方法で得られるアクリルゴムは、ロール加工性や保存安定性に劣り、且つ架橋物の強度特性及び耐水性に劣る問題があった。
 特許文献4(特開2018-168343号公報)には、アクリル酸エチル、アクリル酸ブチル及びフマル酸モノブチルからなる単量体成分、純水、ラウリル硫酸ナトリウム、モノステアリン酸ポリエチレングリコール及び連鎖移動剤としてのn-ドデシルメルカプタンからなる単量体乳化液を調整し、次いで、重合反応槽に、単量体乳化液の1部と純水を投入し12℃まで冷却後、残部の単量体乳化液、硫酸第一鉄、アスコルビン酸ナトリウム及び無機ラジカル発生剤としての過硫酸カリウムを2.5時間かけ連続的に滴下し、その後23℃に保ち1時間反応を継続した後に、工業用水を加え85℃に昇温後に85℃で硫酸ナトリウムを連続的に添加することにより、凝固して含水クラムを得、純水洗浄3回行った後に熱風乾燥器にて乾燥させてアクリルゴムを製造し2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパンで架橋する方法が開示されている。しかしながら、本方法で得られるアクリルゴムは、応力緩和性や押出加工性に優れるが、ロール加工性や保存安定性が十分でなく且つ架橋物の強度特性や耐水性に劣る問題があった。
 特許文献5(特開平9-143229号公報)には、エチルアクリレート、特殊アクリレート及びモノクロロ酢酸ビニルからなる単量体混合物、乳化剤のラウリル硫酸ナトリウム、連鎖移動剤としてのn-オクチルメルカプタン及び水を反応容器に加え、窒素置換した後に、亜硫酸水素アンモニウムと無機ラジカル発生剤としての過硫酸ナトリウムを加えて重合反応を開始させ、55℃で3時間反応転化率93~96%で共重合させアクリルゴムを製造しイオウで架橋する方法が開示されている。しかしながら、本方法で得られるアクルリゴムは、保存安定性やロール加工性に劣り、また、架橋物の強度特性や耐水性に劣る問題があった。
 特許文献6(特開昭62-64809号公報)には、アクリル酸アルキルエステル及びアクリル酸アルコキシアルキルエステルのうち少なくとも1種の化合物50~99.9重量%、ラジカル反応性基を有する不飽和カルボン酸のジヒドロジシクロペンテニル基含有エステル0.1~20重量%、他のモノビニル系、モノビニリデン系及びモノビニレン系不飽和化合物のうち少なくとも1種0~20重量%よりなる単量体組成の共重合体であって、そのテトラハイドロフランを展開溶媒にしたポリスチレン換算の数平均分子量(Mn)が20万~120万であり重量平均分子量(Mw)の数平均分子量(Mn)に対する比(Mw/Mn)が10以下であることを特徴とする加工性、圧縮永久歪、引張強度に優れ且つ硫黄加硫が可能なアクリルゴムが開示されている。また、数平均分子量(Mn)については、20万~100万、好ましくは20万~100万で、Mnが20万未満であれば加硫物の物性及び加工性が劣り120万を超えると加工性が劣り、及び、重量平均分子量(Mw)の数平均分子量(Mn)に対する比(Mw/Mn)に関しては、10を超えると圧縮永久歪が大きくなり好ましくないことが記載されている。その具体的な実施例としては、エチルアクリレートやラジカル架橋性のジヒドロジシクロペンテニルアクリレートなどを含む単量体成分、乳化剤のラウリル硫酸ナトリウム、無機ラジカル発生剤としての過硫酸カリウム及び分子量調節剤としてのチオグリコール酸オクチルやt-ドデシルメルカプタンを変量して添加し、数平均分子量(Mn)が53~115万、重量平均分子量(Mw)が354~626万及び重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が4.7~8のアクリルゴムを重合し、塩化カルシウム水溶液中で凝固後十分に水洗し直接乾燥する製造方法が開示されている。そして、連鎖移動剤の量が少ないと、得られるアクリルゴムの数平均分子量(Mw)は500万と大きく重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)は1.4と狭くなり、連鎖移動剤の量が多いと数平均分子量(Mn)は20万と小さく量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)は17と極端に広くなることが実施例比較例に示されている。しかしながら、本方法で得られるアクリルゴムは、耐圧縮永久歪み特性や保存安定性に劣り、ラジカル反応性基を含有しているのでラジカル発生剤を用いた重合反応では適切な分子量分布(Mw/Mn)が得られても分子量(Mw、Mn)が大きく且つ複雑になりすぎてロール加工性やバンバリー加工性が十分でない問題もあった。また、本方法で得られるアクリルゴムは、架橋反応では、架橋剤としての硫黄と加硫促進剤を加えロールで混錬後に、100kg/cmの加硫プレスで170℃15分間、さらにギヤオーブンで175℃で4時間と長時間の架橋が必要となる問題や得られる架橋物も耐圧縮永久歪み特性、耐水性及び強度特性に劣り、且つ、熱劣化後の物性変化にも劣る等の問題があった。
 一方、ベール化されたアクリルゴムに関しては、例えば、特許文献7(特開2006-328239号公報)には、重合体ラテックスを凝固液と接触させることによりクラム状ゴム重合体を含むクラムスラリーを得る工程と、撹拌動力が1kW/m以上である撹拌・破砕機能付きミキサーでクラムスラリーに含まれているクラム状ゴム重合体の破砕を行う工程と、クラム状ゴム重合体が破砕されたクラムスラリーから水分を取り除きクラム状ゴム重合体を得る脱水工程と、水分の取り除かれたクラム状ゴム重合体を加熱乾燥する工程とを備えてなるゴム重合体の製造方法が開示され、乾燥されたクラムは、フレーク状でベーラーに導入されて圧縮されベール化されることが記載されている。ここで使用されるゴム重合体としては、乳化重合により得られた不飽和ニトリル-共役ジエン共重合体ラテックスが具体的に示され、また、エチルアクリレート/n-ブチルアクリレート共重合体、エチルアクリレート/n-ブチルアクリレート/2-メトキシエチルアクリレート共重合体などのアクリレートのみで構成される共重合体などに適用できることが示されている。しかしながら、アクリレートのみで構成されたアクリルゴムでは耐熱性や耐圧縮永久歪み特性などの架橋ゴム特性に劣る問題があった。
 耐熱性や耐圧縮永久歪み特性に優れるイオン反応性基を有しベール化されるアクリルゴムとしては、例えば、特許文献8(国際公開第2018/116828号パンフレット)には、アクリル酸エチル、アクリル酸n-ブチル及びフマル酸モノn-ブチルからなる単量体成分を、乳化剤としてのラウリル硫酸ナトリウムとモノステアリン酸ポリエチレングリコールと水とでエマルジョン化し有機ラジカル発生剤であるクメンハイドロパーオキシドを添加して重合転化率95%に達するまで乳化重合したアクリルゴムラテックスを、硫酸マグネシウムと高分子凝集剤であるジメチルアミン-アンモニア-エピクロロヒドリン重縮合物との水溶液中に添加した後に85℃で撹拌してクラムスラリーを生成させ、次いで該クラムスラリーを1回水洗後に100メッシュの金網に全量通させ固形分のみを捕捉しクラム状のアクリルゴムを回収する方法が開示されている。この方法によれば、得られた含水状態のクラムは、遠心分離などで脱水し、バンドドライヤーなどにより50~120℃で乾燥し、ベーラーに導入されて圧縮されベール化されることが記載されている。しかしながら、かかる方法では、凝固反応で半凝固状態の含水クラムが多数発生し、凝固槽に多量に付着する問題や、洗浄による凝固剤や乳化剤の除去が十分にできないなどの問題や、アクリルゴム自体のロール加工性やバンバリー加工性及び耐水性に劣り、ベールを作製しても、十分に空気を除くことができず保存安定性にも劣る問題があった。
 また、アクリルゴムの特定溶媒不溶解分量に関しては、例えば、特許文献9(特許第3599962号公報)には、アルキルアクリレート又はアルコキシアルキルアクリレート95~99.9重量%と反応性の異なるラジカル反応性不飽和基を2個以上有する重合性単量体0.1~5重量%をラジカル重合開始剤の存在下に共重合して得られたアセトン不溶解分であるゲル分率が5重量%以下であるアクリルゴム、補強性充填剤及び有機過酸化物系加硫剤からなる押出速度、ダイスウエル、表面肌などの押出加工性に優れたアクリルゴム組成物が開示されている。ここで使用されるゲル分率が非常に小さいアクリルゴムは、重合液が通常の酸性領域(重合前pH4、重合後pH3.4)で得られるゲル分率が高い(60%)のアクリルゴムに対し、重合液を炭酸水素ナトリウムなどでpH6~8に調整することにより得られている。具体的には、水、乳化剤としてラウリル硫酸ナトリウムとポリオキシエチレンノニルフェニルエーテル、炭酸ナトリウム及びホウ酸を仕込んで75℃に調整した後、有機ラジカル発生剤であるt-ブチルハイドロパーオキサイド、ロンガリット、エチレンジアミン四酢酸二ナトリウム、硫酸第一鉄を添加して(この時のpHは7.1)、次にエチルアクリレートとアリルメタクリレートの単量体成分を滴下して乳化重合行い、得られたエマルジョン(pH7)を硫酸ナトリウム水溶液を用いて塩析し、水洗・乾燥してアクリルゴムを得ている。しかしながら、(メタ)アクリル酸エステルを主成分とするアクリルゴムは、中性からアルカリ領域で分解し、加工性が改善されても保存安定性や強度特性に劣る問題があり、また、ロール加工性、バンバリー加工性、架橋性、耐水性及び耐圧縮永久歪み特性に劣る問題もあった。
 また、特許文献10(国際公開第2018/143101号パンフレット)には、(メタ)アクリル酸エステルとイオン架橋性単量体とを乳化重合し、100℃における複素粘性率([η]100℃)が3,500Pa・s以下で、60℃における複素粘性率([η]60℃)と100℃における複素粘性率([η]100℃)との比([η]100℃/[η]60℃)が0.8以下であるアクリルゴムを用いて、補強剤と架橋剤を含むゴム組成物の押出成形性、特に吐出量、吐出長さ及び表面肌性を高める技術が開示されている。同技術で使用されるアクリルゴムのTHF(テトラヒドロフラン)不溶解分であるゲル量が、80重量%以下、好ましくは5~80重量%であり、70%以下の範囲でできるだけ多く存在するのが好ましく、ゲル量が5%未満になると押出性が悪化すると記載されている。また、使用されるアクリルゴムの重量平均分子量(Mw)は、200,000~1,000,000であり、重量平均分子量(Mw)が1,000,000を超えるとアクリルゴムの粘弾性が高くなりすぎて好ましくないこと記載されている。しかしながら、ロール加工性やバンバリーなどの加工性や耐水性などを改良する手法については記載されていない。
国際公開第2019/188709号パンフレット 特開2019-119772号公報 特開平1-135811号公報 特開2018-168343号公報 特開平9-143229号公報 特開昭62-64809号公報 特開2006-328239号公報 国際公開第2018/116828号パンフレット 特許第3599962号公報 国際公開第2018/143101号パンフレット
 本発明は、かかる従来技術の実状に鑑みてなされたものであり、ロール加工性やバンバリー加工性に優れ、且つ、架橋物の耐水性、強度特性及び耐圧縮永久歪み特性が高度にバランスされたアクリルゴムベール、その製造方法、該アクリルゴムベールを含むゴム組成物及びそれを架橋してなるゴム架橋物を提供することを目的とする。
 本発明者らは、上記課題に鑑み鋭意研究した結果、アクリルゴムベールが、特定な反応性基を有し、GPC-MALS法で測定される絶対分子量及び絶対分子量分布の重量平均分子量(Mw)、及び重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)を特定な範囲なアクリルゴムからなり、且つ特定溶媒不溶解分量と特定な灰分量を制限することによりロール加工性やバンバリー加工性に優れ、且つ、架橋物の耐水性、強度特性及び耐圧縮永久歪み特性が高度に優れることを見出した。
 本発明者らは、カルボキシル基、エポキシ基、塩素原子などの架橋剤と反応できるイオン反応性基を有し、且つ、GPC-MALS法で測定される絶対分子量の重量平均分子量(Mw)が高分子量側で特定であるアクリルゴムからなるアクリルゴムベールが、短時間架橋性、強度特性及び耐圧縮永久歪み特性に優れることを見出した。
 本発明者らは、また、かかる反応性基を有するアクリルゴムのGPC測定において、上記従来技術のエチルアクリレートやジヒドロジシクロペンテニルアクリレートなどを共重合したラジカル反応性アクリルゴムのGPC測定に用いられるテトラヒドロフランでは十分に溶解できず、各分子量や分子量分布をきれいに且つ再現良く測定できなかったが、テトラヒドロフランよりもSP値が高い特定溶媒を展開溶媒にすることによりきれいに溶解し且つ再現良く測定でき、しかもそれぞれの特性値を特定にすることでアクリルゴムベールのロール加工性やバンバリー加工性且つ架橋物の耐水性、強度特性及び耐圧縮永久歪み特性が高度にバランスさせることができることを見出した。
 ロール加工性に関しては、本発明者らは、特に、構成するアクリルゴムのGPC-MALS法で測定される絶対分子量の重量平均分子量(Mw)が特定範囲であり、且つ絶対分子量分布の重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)を広くすることが重要で、アクリルゴムベールのロール加工性と架橋物の強度特性を高度にバランスさせることができることを見出した。本発明者らは、構成するアクリルゴムのGPC-MALS法で測定される絶対分子量の重量平均分子量(Mw)が特定範囲にし、且つ、絶対分子量分布の重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)を広くすることは容易でなかったが、重合反応における連鎖移動剤を回分的に後添加するあるいはスクリュー型二軸押出乾燥機内で含水クラムを高シェアで乾燥することにより達成できることを見出した。なお、重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)を広げ過ぎると低分子量成分が多くなりすぎ強度特性が落ちることが分かった。
 バンバリー加工性に関しては、本発明者らは、アクリルゴムベールのメチルエチルケトン不溶解分量が少なければ少ないほど優れることを見出した。アクリルゴムベールのメチルエチルケトン不溶解分量は、重合反応途中で発生し、特に、強度特性を向上させるために重合転化率を高めると急増しコントロールするのが困難であるが、重合工程後半に連鎖移動剤存在することである程度抑制できること、及び、急増したメチルエチルケトン不溶解分がスクリュー型二軸押出乾燥機内で実質的に水分を含まない状態(含水量1重量%未満)でアクリルゴムを溶融混錬して乾燥することで急増したメチルエチルケトン不溶解分が消失し且つバラツキも無くアクリルゴムベールのロール加工性を損ねることなくバンバリー加工性を格段に改善できることを見出した。本発明者らは、また、スクリュー型二軸押出乾燥機で殆ど水が除去された状態で溶融押出されて製造されたアクリルゴムベールがバンバリー加工性と強度特性が高度にバランスされていることを見出した。
 耐水性に関しては、本発明者らは、アクリルゴムベール中の灰分量が少なく且つ灰分が特定成分であるときに格段に優れることを見出した。アクリルゴム中の灰分量を低下させるのはなかなか困難であるが、特定方法で凝固反応を行った含水クラムが温水での洗浄効率及び脱水時での灰分除去効率が高いこと、及び特定成分の灰分は洗浄では除去しにくいが同方法で行うことで容易に減少し且つ耐水性を格段に高められることを見出した。本発明者らは、特に、凝固工程で生成する含水クラムの特定粒子径の割合を多くし洗浄・脱水・乾燥を行うことにより、得られるアクリルゴムベールのロール加工性、バンバリー加工性、強度特性及び耐圧縮永久歪み特性等の特性を損なわずに耐水性を格段に改良できることを見出した。また、本発明者らは、アクリルゴムの乳化重合において特定な乳化剤を使用すると、または、乳化重合液を凝固する場合に特定な凝固剤を使用すると、アクリルゴムベールの耐水性に優れるとともに金型等への離型性が格段に高められることを見出した。
 本発明者らは、アクリルゴムベールの比重を高めることで、ロール加工性、バンバリー加工性、耐水性、強度特性及び耐圧縮永久歪み特性に優れるともに、更に、保存安定性が大きく改善されることを見出した。特定な反応性基を有する本発明のアクリルゴムは、粘着性で且つ空気が抜けづらく、含水クラムを直接乾燥したクラム状アクリルゴムでは多量の空気を巻き込み(比重が小さくなり)保存安定性を悪化しているが、クラム状アクリルゴムをベーラー等で圧縮してベール化することで多少空気を抜くことができ且つ保存安定性が改善できること、及び、含水クラムをスクリュー型二軸押出乾燥機により減圧下で押出乾燥し空気を含まないシート状で押し出して積層することで、殆ど空気を含まず比重の高い保存安定性が格段に改善されたアクリルゴムベールを製造できることを見出した。本発明者らは、また、かかる空気の含有量を加味した比重は、浮力の差を利用したJIS K6268架橋ゴム-密度測定のA法に準じて測定できることを見出した。また、アクリルゴムベールの保存安定性は、pHを特定することにより更に向上できることを見出した。
 本発明者らは、また、乾燥後の冷却速度を高めることでアクリルゴムベールのロール加工性、バンバリー加工性、耐水性、強度特性及び耐圧縮永久歪み特性等の特性を損なわずにムーニースコーチ安定性を格段に改良できることを見出した。
 本発明者らは、また、特定な単量体成分を水と乳化剤とでエマルジョン化した後に過硫酸カリウム等の無機ラジカル発生剤と還元剤とからなるレドックス触媒存在下に乳化重合を開始させ、連鎖移動剤を初期には添加せずに重合途中で回分的に添加して重合転化率を90重量%以上まで乳化重合を行うことにより、製造できるアクリルゴムのGPC測定による絶対分子量及び絶対分子量分布で高分子量成分と低分子量成分を作り高めな分子量を維持しながら広めな分子量分布とすることができ、アクリルゴムベールのロール加工性、架橋性、強度特性及び耐圧縮永久歪み特性が高度にバランスされることを見出した。
 本発明者らは、また、連鎖移動剤の回分的な後添加回数、後添加時期、後添加量、連鎖移動剤の種類、還元剤の種類、還元剤を初期だけでなく後添加を回分的に行い、初期と後添加の還元剤の量比、及び重合温度を特定にすることで、よりロール加工性、強度特性、耐水性及び耐圧縮永久歪み特性がバランスされるアクリルゴムベールを製造できることを見出した。
 本発明者らは、更に、上記連鎖移動剤を回分的に後添加した乳化重合液を凝固し乾燥するに当たり、特定の押出乾燥機を用いて高シェアの条件でアクリルゴムを溶融混錬し乾燥することにより、ロール加工性、短時間架橋性、強度特性及び耐圧縮永久歪み特性が更に改善されたアクリルゴムベールが製造できることを見出した。
 本発明者らは、更に、本願発明のアクリルゴムベール、充填剤及び架橋剤を含むゴム組成物において、充填剤として、カーボンブラックやシリカを配合することによりロール加工性、バンバリー加工性及び短時間の架橋性に優れ、且つ、架橋物の耐水性、強度特性及び耐圧縮永久歪み特性が高度に優れることを見出した。本発明者らは、また、架橋剤として、有機化合物、多価化合物またはイオン性架橋化合物であることが好ましく、例えば、アミン基、エポキシ基、カルボキシル基またはチオール基などのアクリルゴムベールのイオン反応性基と反応するイオン反応性基を複数有する多価イオン有機化合物であることによりロール加工性、バンバリー加工性及び短時間の架橋性に優れ、且つ、架橋物の耐水性、強度特性及び耐圧縮永久歪み特性が高度に優れることを見出した。
 本発明者らは、これらの知見に基づき本発明を完成させるに至ったものである。
 かくして、本発明によれば、カルボキシル基、エポキシ基及び塩素原子からなる群から選ばれる少なくとも1種の反応性基を有し、GPC-MALS法により測定される絶対分子量及び絶対分子量分布による重量平均分子量(Mw)が1,000,000~3,500,000、重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が3.7~6.5であるアクリルゴムからなり、メチルエチルケトン不溶解分量が50重量%以下、灰分量が0.2重量%以下で且つ灰分中のナトリウム、マグネシウム、カルシウム、リン及びイオウの合計量が50重量%以上であるアクリルゴムベールが提供される。
 本発明のアクリルゴムベールにおいて、反応性基が、イオン反応性基であることが好ましい。
 本発明のアクリルゴムベールにおいて、アクリルゴムが、(メタ)アクリル酸アルキルエステル及び(メタ)アクリル酸アルコキシアルキルエステルからなる群から選ばれる少なくとも1種の(メタ)アクリル酸エステル由来の結合単位、カルボキシル基、エポキシ基及び塩素原子からなる群から選ばれる少なくとも1種の反応性基を含有する単量体由来の結合単位、及び必要に応じてその他の単量体由来の結合単位からなるものであることが好ましい。
 本発明のアクリルゴムベールにおいて、メチルエチルケトン不溶解分量が、15重量%以下であることが好ましい。
 本発明のアクリルゴムベールにおいて、メチルエチルケトン不溶解分量を20点測定したときの値が、(平均値±5)重量%の範囲内に全て入るものであることが好ましい。
 本発明のアクリルゴムベールにおいて、比重が、0.9以上であることが好ましい。
 本発明のアクリルゴムベールにおいて、pHが、6以下であることが好ましい。
 また、本発明のアクリルゴムベールは、リン酸エステル塩または硫酸エステル塩を乳化剤として使用し乳化重合したものであることが好ましく、乳化重合した重合液をアルカリ金属塩または周期表第2族金属塩を凝固剤として使用することにより凝固させ、乾燥したものであることが好ましい。また、本発明のアクリルゴムベールは、凝固後に溶融混錬及び乾燥されたものであることが好ましく、前記の溶融混錬及び乾燥が、実質的に水分を含まない状態で行われたものであること、前記の溶融混錬及び乾燥が、減圧下で行われたものであることが好ましい。さらに、本発明のアクリルゴムベールは、前記の溶融混錬及び乾燥後に、40℃/hr以上の冷却速度で冷却されたものであることが好ましい。
 本発明によれば、また、(メタ)アクリル酸アルキルエステル及び(メタ)アクリル酸アルコキシアルキルエステルからなる群から選ばれる少なくとも1種の(メタ)アクリル酸エステル、カルボキシル基、エポキシ基及び塩素原子からなる群から選ばれる少なくとも1種の反応性基を含有する単量体、及び、必要に応じて共重合可能なその他の単量体を含んでなる単量体成分を、水と乳化剤とでエマルジョン化するエマルジョン工程と、
 無機ラジカル発生剤と還元剤とからなるレドックス触媒存在下に乳化重合を開始し、重合途中で連鎖移動剤と還元剤を回分的に添加した後に、重合転化率が90重量%以上まで乳化重合を継続し乳化重合液を得る乳化重合工程と、
 得られた乳化重合液を撹拌している凝固液に添加して凝固し含水クラムを生成する凝固工程と、
 生成した含水クラムを温水で洗浄する洗浄工程と、
 洗浄した含水クラムを、脱水スリットを有する脱水バレルと減圧下の乾燥バレルと先端部にダイを有するスクリュー型二軸押出乾燥機を用いて脱水バレルで含水量1~40重量%まで脱水し、且つ、乾燥バレルで1重量%未満まで乾燥してシート状の乾燥ゴムをダイから押し出す脱水・乾燥:成形工程と、
 押し出されたシート状乾燥ゴムを切断後に積層するベール化工程と、
 を含むアクリルゴムベールの製造方法が提供される。
 本発明のアクリルゴムベールの製造方法は、上記アクリルゴムベールを製造するアクリルゴムベールの製造方法であることが好ましい。
 本発明のアクリルゴムベールの製造方法において、乳化重合工程において、リン酸エステル塩または硫酸エステル塩を乳化剤として使用し乳化重合を行うことが好ましい。
 本発明のアクリルゴムベールの製造方法において、乳化重合工程で生成した重合液を、アルカリ金属塩または周期表第2族金属塩を凝固剤として使用することで凝固させ、乾燥することが好ましい。
 本発明のアクリルゴムベールの製造方法において、乳化重合工程で生成した重合液を、アルカリ金属塩または周期表第2族金属塩を含む凝固剤を含む水溶液中に添加し撹拌することで凝固させることが好ましい。
 本発明のアクリルゴムベールの製造方法において、乳化重合工程で生成した重合液を凝固剤と接触させて凝固した後、溶融混錬及び乾燥することが好ましい。
 本発明のアクリルゴムの製造方法において、前記の溶融混錬及び乾燥が、実質的に水分を含まない状態で行われることが好ましい。
 本発明のアクリルゴムベールの製造方法において、前記の溶融混錬及び乾燥が、減圧下で行われることが好ましい。
 本発明のアクリルゴムベールの製造方法において、溶融混錬及び乾燥後のアクリルゴムを、40℃/hr以上の冷却速度で冷却することが好ましい。
 本発明のアクリルゴムベールの製造方法において、粒子径710μm~6.7mmの範囲の割合が50重量%以上の含水クラムを洗浄・脱水・乾燥することが好ましい。
 本発明によれば、また、上記アクリルゴムベールを含むゴム成分、充填剤及び架橋剤を含んでなるゴム組成物が提供される。
 本発明のゴム組成物において、前記充填剤が、補強性充填剤であることが好ましい。また、本発明のゴム組成物において、前記充填剤が、カーボンブラック類であることが好ましい。また、本発明のゴム組成物において、前記充填剤が、シリカ類であることが好ましい。
 本発明のゴム組成物において、前記架橋剤が、有機架橋剤であることが好ましい。また、本発明のゴム組成物において、前記架橋剤が、多価化合物であることが好ましい。また、本発明のゴム組成物において、前記架橋剤が、イオン架橋性化合物であることが好ましい。また、本発明のゴム組成物において、前記架橋剤が、イオン架橋性有機化合物であることが好ましい。また、本発明のゴム組成物において、前記架橋剤が、多価イオン有機化合物であることが好ましい。
 本発明のゴム組成物において、前記架橋剤としてのイオン架橋性化合物、イオン架橋性有機化合物または多価イオン有機化合物のイオンが、アミノ基、エポキシ基、カルボキシル基及びチオール基からなる群から選ばれる少なくとも1種のイオン反応性基であることが好ましい。
 本発明のゴム組成物において、前記架橋剤が、多価アミン化合物、多価エポキシ化合物、多価カルボン酸化合物及び多価チオール化合物からなる群から選ばれる少なくとも1種の多価イオン化合物であることが好ましい。
 本発明のゴム組成物において、前記架橋剤の含有量が、ゴム成分100重量部に対して0.001~20重量部の範囲であることが好ましい。
 本発明のゴム組成物は、更に、老化防止剤を含んでなることが好ましい。本発明のゴム組成物において、前記老化防止剤が、アミン系老化防止剤であることが好ましい。
 本発明によれば、また、上記のアクリルゴムベールを含むゴム成分、充填剤及び必要に応じて老化防止剤を混合した後に架橋剤を混合するゴム組成物の製造方法が提供される。
 本発明によれば、また、上記ゴム組成物を架橋してなるゴム架橋物が提供される。本発明のゴム架橋物において、前記ゴム組成物の架橋が、成形後に行われることが好ましい。また、本発明のゴム架橋物において、前記ゴム組成物の架橋が、一次架橋及び二次架橋を行うものであることが好ましい。
 本発明によれば、ロール加工性やバンバリー加工性に優れ、且つ、架橋物の耐水性、強度特性及び耐圧縮永久歪み特性が高度にバランスされたアクリルゴムベール、その効率的な製造方法、該アクリルゴムベールを含む高品質なゴム組成物並びにそれを架橋したゴム架橋物が提供される。
本発明の一実施形態に係るアクリルゴムベールの製造に用いられるアクリルゴム製造システムの一例を模式的に示す図である。 図1のスクリュー型押出機の構成を示す図である。 図1の冷却装置として用いられる搬送式冷却装置の構成を示す図である。
 本発明のアクリルゴムベールは、カルボキシル基、エポキシ基及び塩素原子からなる群から選ばれる少なくとも1種の反応性基を有し、GPC-MALS法により測定される絶対分子量及び絶対分子量分布による重量平均分子量(Mw)が1,000,000~3,500,000、重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が3.7~6.5であるアクリルゴムからなり、メチルエチルケトン不溶解分量が50重量%以下、灰分量が0.2重量%以下で且つ灰分中のナトリウム、マグネシウム、カルシウム、リン及びイオウの合計量が50重量%以上であることを特徴とする。ここで、「GPC-MALS法」とは、以下の内容である。GPC(gel permeation chromatography)法は、分子サイズの差に基づいて分離を行う液体クラマトグラフィーの一種である。この装置に多角度レーザ光散乱光度計(MALS)及び示差屈折率計(RI)を組み入れ、GPC装置でサイズ分別された分子鎖溶液の光散乱強度及び屈折率差を、溶融時間を追って測定することにより、溶質の分子量とその含有率を順次計算し、最終的には高分子物質の絶対分子量分布及び絶対平均分子量値を求める手法である。
<反応性基>
 本発明のアクリルゴムベールは、カルボキシル基、エポキシ基及び塩素原子からなる群から選ばれる少なくとも1種の反応性基を有することを特徴とする。
 カルボキシル基、エポキシ基及び塩素原子からなる群から選ばれる少なくとも1種の反応性基としては、格別限定はないが、イオン反応する官能基であることが好ましく、より好ましくはエポキシ基、カルボキシル基、特に好ましくはカルボキシル基であるときに、短時間の架橋性及び架橋物の耐圧縮永久歪み特性や耐水性を高度に改善でき好適である。
 本発明のアクリルゴムベールのカルボキシル基、エポキシ基及び塩素原子からなる群から選ばれる少なくとも1種の反応性基の含有量は、格別な限定はなく使用目的に応じて適宜選択されればよいが、該反応性基自体の重量割合で、通常0.001~5重量%、好ましくは0.01~3重量%、より好ましくは0.05~1重量%、特に好ましくは0.1~0.5重量%の範囲にあるときに加工性や架橋性、及び、架橋物としたときの強度特性、耐圧縮永久歪み特性、耐油性、耐寒性、及び耐水性などの特性が高度にバランスされるので好適である。
 本発明のカルボキシル基、エポキシ基及び塩素原子からなる群から選ばれる少なくとも1種の反応性基を有するアクリルゴムベールは、アクリルゴムに後反応でカルボキシル基、エポキシ基及び塩素原子からなる群から選ばれる少なくとも1種の反応性基を導入したものでもよいが、好ましくは該反応性基を含有する単量体を共重合したアクリルゴムが好適である。
<単量体成分>
 本発明のアクリルゴムベールを構成するアクリルゴムの単量体成分は、上記反応性基を含み通常のアクリルゴムを構成する単量体であれば格別な限定はないが、好ましくはカルボキシル基、エポキシ基及び塩素原子からなる群から選ばれる少なくとも1種の反応性基を含有する単量体を含むアクリルゴム単量体成分、より好ましくは(メタ)アクリル酸アルキルエステル及び(メタ)アクリル酸アルコキシアルキルエステルからなる群から選ばれる少なくとも1種の(メタ)アクリル酸エステル、カルボキシル基、エポキシ基及び塩素原子からなる群から選ばれる少なくとも1種の反応性基を含有する単量体、及び必要に応じて共重合可能なその他の単量体からなるものである。なお、本発明において「(メタ)アクリル酸エステル」は、アクリル酸及び/又はメタクリル酸のエステル類を総称する用語として使用される。
 (メタ)アクリル酸アルキルエステルとしては、特に限定されないが、通常炭素数が1~12のアルキル基を有する(メタ)アクリル酸アルキルエステル、好ましくは炭素数1~8のアルキルを有する(メタ)アクリル酸アルキルエステル、より好ましくは炭素数2~6のアルキル基を有する(メタ)アクリル酸アルキルエステルが用いられる。
 (メタ)アクリル酸アルキルエステルの具体例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸シクロヘキシルなどが挙げられ、これらの中でも(メタ)アクリル酸エチル、(メタ)アクリル酸n-ブチルが好ましく、アクリル酸エチル、アクリル酸n-ブチルがより好ましい。
 (メタ)アクリル酸アルコキシアルキルエステルとしては、特に限定されないが、通常2~12のアルコキシアルキル基を有する(メタ)アクリル酸アルコキシアルキルエステル、好ましくは2~8のアルコキシアルキル基を有する(メタ)アクリル酸アルコキシアルキルエステル、より好ましくは炭素数2~6のアルコキシアルキル基を有する(メタ)アクリル酸アルコキシエステルが用いられる。
 (メタ)アクリル酸アルコキシアルキルエステルの具体例としては、(メタ)アクリル酸メトキシメチル、(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸メトキシプロピル、(メタ)アクリル酸メトキシブチル、(メタ)アクリル酸エトキシメチル、(メタ)アクリル酸エトキシエチル、(メタ)アクリル酸プロポキシエチル、(メタ)アクリル酸ブトキシエチルなどが挙げられる。これらの中でも、(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸エトキシエチルなどが好ましく、アクリル酸メトキシエチル、アクリル酸エトキシエチルがより好ましい。
 これらの(メタ)アクリル酸アルキルエステル及び(メタ)アクリル酸アルコキシアルキルエステルからなる群から選ばれる少なくとも1種の(メタ)アクリル酸エステルは、それぞれ単独であるいは2種以上が組み合わせて用いられ、単量体全成分中におけるこれらの割合は、通常50~99.99重量%、好ましくは62~99.95重量%、より好ましくは74~99.9重量%、特に好ましくは80~99.5重量%、最も好ましくは87~99重量%の範囲であるときにアクリルゴムベールの耐候性、耐熱性及び耐油性が高度に優れ好適である。
 カルボキシル基、エポキシ基及び塩素原子からなる群から選ばれる少なくとも1種の反応性基を含有する単量体としては、格別な限定はないが、イオン反応に携わるイオン反応性基を有するものであることが好ましく、より好ましくはカルボキシル基及びエポキシ基を有する単量体、更に好ましくはカルボキシル基を有する単量体であるときに、短時間の架橋性及び架橋物の耐圧縮永久歪み特性や耐水性を高度に改善でき好適である。
 カルボキシル基を有する単量体としては、格別な限定はないが、エチレン性不飽和カルボン酸を好適に用いることができる。エチレン性不飽和カルボン酸としては、例えば、エチレン性不飽和モノカルボン酸、エチレン性不飽和ジカルボン酸、エチレン性不飽和ジカルボン酸モノエステルなどが挙げられ、これらの中でも特にエチレン性不飽和ジカルボン酸モノエステルがアクリルゴムベールをゴム架橋物とした場合の耐圧縮永久歪み特性をより高めることができるので好ましい。
 エチレン性不飽和モノカルボン酸としては、格別な限定はないが、炭素数3~12のエチレン性不飽和モノカルボン酸が好ましく、例えば、アクリル酸、メタクリル酸、α-エチルアクリル酸、クロトン酸、ケイ皮酸などを挙げることができる。
 エチレン性不飽和ジカルボン酸としては、格別な限定はないが、炭素数4~12のエチレン性不飽和ジカルボン酸が好ましく、例えば、フマル酸、マレイン酸などのブテンジオン酸、イタコン酸、シトラコン酸などが挙げられる。なお、エチレン性不飽和ジカルボン酸は、無水物として存在しているものも含まれる。
 上記エチレン性不飽和ジカルボン酸モノエステルとしては、格別な限定はないが、通常、炭素数4~12のエチレン性不飽和ジカルボン酸と炭素数1~12のアルキルモノエステル、好ましくは炭素数4~6のエチレン性不飽和ジカルボン酸と炭素数2~8のアルキルモノエステル、より好ましくは炭素数4のブテンジオン酸の炭素数2~6のアルキルモノエステルが挙げられる。
 エチレン性不飽和ジカルボン酸モノエステルの具体例としては、フマル酸モノメチル、フマル酸モノエチル、フマル酸モノn-ブチル、マレイン酸モノメチル、マレイン酸モノエチル、マレイン酸モノn-ブチル、フマル酸モノシクロペンチル、フマル酸モノシクロヘキシル、フマル酸モノシクロヘキセニル、マレイン酸モノシクロペンチル、マレイン酸モノシクロヘキシルなどのブテンジオン酸モノアルキルエステル;イタコン酸モノメチル、イタコン酸モノエチル、イタコン酸モノn-ブチル、イタコン酸モノシクロヘキシルなどのイタコン酸モノアルキルエステル;などが挙げられ、これらの中でも、フマル酸モノn-ブチル、マレイン酸モノn-ブチルが好ましく、フマル酸モノn-ブチルが特に好ましい。
 エポキシ基を有する単量体としては、例えば、(メタ)アクリル酸グリシジルなどのエポキシ基含有(メタ)アクリル酸エステル;アリルグリシジルエーテル、ビニルグリシジルエーテルなどのエポキシ基含有ビニルエーテル;などが挙げられる。
 塩素原子を有する単量体としては、格別限定されるものではないが、例えば、塩素原子含有飽和カルボン酸の不飽和アルコールエステル、(メタ)アクリル酸クロロアルキルエステル、(メタ)アクリル酸クロロアシロキシアルキルエステル、(メタ)アクリル酸(クロロアセチルカルバモイルオキシ)アルキルエステル、塩素原子含有不飽和エーテル、塩素原子含有不飽和ケトン、クロロメチル基含有芳香族ビニル化合物、塩素原子含有不飽和アミド、クロロアセチル基含有不飽和単量体などが挙げられる。
 塩素原子含有飽和カルボン酸の不飽和アルコールエステルの具体例としては、クロロ酢酸ビニル、2-クロロプロピオン酸ビニル、クロロ酢酸アリルなどが挙げられる。(メタ)アクリル酸クロロアルキルエステル具体例としては、(メタ)アクリル酸クロロメチル、(メタ)アクリル酸1-クロロエチル、(メタ)アクリル酸2-クロロエチル、(メタ)アクリル酸1,2-ジクロロエチル、(メタ)アクリル酸2-クロロプロピル、(メタ)アクリル酸3-クロロプロピル、(メタ)アクリル酸2,3-ジクロロプロピルなどが挙げられる。(メタ)アクリル酸クロロアシロキシアルキルエステル具体例としては、(メタ)アクリル酸2-(クロロアセトキシ)エチル、(メタ)アクリル酸2-(クロロアセトキシ)プロピル、(メタ)アクリル酸3-(クロロアセトキシ)プロピル、(メタ)アクリル酸3-(ヒドロキシクロロアセトキシ)プロピルなどが挙げられる。(メタ)アクリル酸(クロロアセチルカルバモイルオキシ)アルキルエステルとしては、例えば、(メタ)アクリル酸2-(クロロアセチルカルバモイルオキシ)エチル、(メタ)アクリル酸3-(クロロアセチルカルバモイルオキシ)プロピルなどが挙げられる。塩素原子含有不飽和エーテルの具体例としては、クロロメチルビニルエーテル、2-クロロエチルビニルエーテル、3-クロロプロピルビニルエーテル、2-クロロエチルアリルエーテル、3-クロロプロピルアリルエーテルなどが挙げられる。塩素原子含有不飽和ケトンの具体例としては、2-クロロエチルビニルケトン、3-クロロプロピルビニルケトン、2-クロロエチルアリルケトンなどが挙げられる。クロロメチル基含有芳香族ビニル化合物の具体例としては、p-クロロメチルスチレン、m-クロロメチルスチレン、o-クロロメチルスチレン、p-クロロメチル-α-メチルスチレンなどが挙げられる。塩素原子含有不飽和アミドの具体例としては、N-クロロメチル(メタ)アクリルアミドなどが挙げられる。また、クロロアセチル基含有不飽和単量体の具体例としては、3-(ヒドロキシクロロアセトキシ)プロピルアリルエーテル、p-ビニルベンジルクロロ酢酸エステルなどが挙げられる。
 これらのカルボキシル基、エポキシ基及び塩素原子からなる群から選ばれる少なくとも1種の反応性基を含有する単量体は、それぞれ単独であるいは2種以上組み合わせて用いられ、単量体全成分中の割合は、通常0.01~10重量%、好ましくは0.05~8重量%、より好ましくは0.1~6重量%、特に好ましくは0.5~5重量%、最も好ましくは1~3重量%の範囲である。
 必要に応じて上記の各単量体と共に使用し得る上記以外の単量体(本発明では「その他の単量体」と略称する)としては、上記単量体と共重合可能なものであれば格別な限定はなく、例えば、スチレン、α-メチルスチレン、ジビニルベンゼンなどの芳香族ビニル;アクリロニトリル、メタクリロニトリルなどのエチレン性不飽和ニトリル;アクリルアミド、メタクリルアミドなどのアクリルアミド系単量体;エチレン、プロピレン、酢酸ビニル、エチルビニルエーテル、ブチルビニルエーテルなどのオレフィン系単量体などが挙げられる。
 これらその他の単量体は、それぞれ単独で、あるいは2種以上組み合わせて用いられ、単量体全成分中の割合は、通常0~40重量%、好ましくは0~30重量%、より好ましくは0~20重量%、特に好ましくは0~15重量%、最も好ましくは0~10重量%の範囲に抑えられる。
<アクリルゴム>
 本発明のアクリルゴムベールを構成するアクリルゴムは、反応性基を有し、好ましくは上記(メタ)アクリル酸アルキルエステル及び(メタ)アクリル酸アルコキシアルキルエステルからなる群から選ばれる少なくとも1種の(メタ)アクリル酸エステル、カルボキシル基、エポキシ基及び塩素原子からなる群から選ばれる少なくとも1種の反応性基を含有する単量体及び必要に応じて含まれるその他の単量体からの結合単位からなり、アクリルゴム中のそれぞれの割合は、(メタ)アクリル酸アルキルエステル及び(メタ)アクリル酸アルコキシアルキルエステルからなる群から選ばれる少なくとも1種の(メタ)アクリル酸エステル由来の結合単位が、通常50~99.99重量%、好ましくは62~99.95重量%、より好ましくは74~99.9重量%、特に好ましくは80~99.5重量%、最も好ましくは87~99重量%の範囲であり、カルボキシル基、エポキシ基及び塩素原子からなる群から選ばれる少なくとも1種の反応性基を含有する単量体由来の結合単位が、通常0.01~10重量%、好ましくは0.05~8重量%、より好ましくは0.1~6重量%、特に好ましくは0.5~5重量%、最も好ましくは1~3重量%の範囲であり、その他の単量体由来の結合単位が、通常0~40重量%、好ましくは0~30重量%、より好ましくは0~20重量%、特に好ましくは0~15重量%、最も好ましくは0~10重量%の範囲である。アクリルゴムの単量体組成がこの範囲にあるときにアクリルゴムベールの短時間の架橋性、耐圧縮永久歪み特性、耐候性、耐熱性、及び耐油性等の特性が高度にバランスされ好適である。
 本発明のアクリルゴムベールを構成するアクリルゴムの絶対分子量及び絶対分子量分布を測定するGPC-MALS法の測定溶媒は、本発明のアクリルゴムが溶解し測定できるものであれば格別な限定はないが、ジメチルホルムアミド系溶媒が好適である。使用されるジメチルホルムアミド系溶媒としては、ジメチルホルムアミドを主成分とするものであれば格別限定はないが、ジメチルホルムアミド100%あるいはジメチルホルムアミド系溶媒中のジメチルホルムアミドの割合が、90重量%、好ましくは95重量%、より好ましくは97重量%以上である。ジメチルホルムアミドに添加する化合物としては、格別な限定はないが、本発明においては、特に、ジメチルホルムアミドに塩化リチウムが0.05mol/L、37%濃塩酸が0.01%の濃度でそれぞれ添加された溶液が好適である。
 本発明のアクリルゴムベールを構成するアクリルゴムの重量平均分子量(Mw)は、GPC-MALS法で測定される絶対分子量で、1,000,000~3,500,000、好ましくは1,200,000~3,000,000、より好ましくは1,300,000~3,000,000、特に好ましくは1,500,000~2,500,000、最も好ましくは1,900,000~2,100,000の範囲であるときにアクリルゴムベールのロール加工性、強度特性、及び耐圧縮永久歪み特性が高度にバランスされ好適である。アクリルゴムの重量平均分子量(Mw)が過度に小さいと強度特性や耐圧縮永久歪み特性に劣り、逆に、過度に大きいとロール加工性、バンバリー加工性、射出成型性等に劣り、いずれも好ましくない。
 本発明のアクリルゴムベールを構成するアクリルゴムの数平均分子量(Mn)は、格別な限定はなく使用目的に応じて適宜選択されればよいが、GPC-MALS法で測定される絶対分子量で、通常100,000~500,000、好ましくは200,000~480,000、より好ましくは250,000~450,000、特に好ましくは300,000~400,000、最も好ましくは350,000~400,000の範囲であるときにアクリルゴムベールのロール加工性、強度特性及び耐圧縮永久歪み特性が高度にバランスされ好適である。アクリルゴムの数平均分子量(Mn)が過度に小さいと強度特性や耐圧縮永久歪み特性に劣り、逆に、過度に大きいとロール加工性、バンバリー加工性、射出成型性等に劣り、いずれも好ましくない。
 本発明のアクリルゴムベールを構成するアクリルゴムのz平均分子量(Mz)は、GPC-MALS法で測定される高分子量領域を重視した絶対分子量で、格別限定されるものではないが、通常1,500,000~6,000,000、好ましくは2,000,000~5,000,000、より好ましくは2,500,000~4,500,000、特に好ましくは3,000,000~4,000,000の範囲であるときにアクリルゴムベールのロール加工性、強度特性、及び耐圧縮永久歪み特性が高度にバランスされ好適である。
 本発明のアクリルゴムベールを構成するアクリルゴムの重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)は、GPC-MALS法で測定される絶対分子量分布で、3.7~6.5、好ましくは3.8~6.2、より好ましくは4~6、特に好ましくは4、5~5.7、最も好ましくは4.7~5.5の範囲であるときにアクリルゴムベールのロール加工性と架橋した場合の強度特性及び耐圧縮永久歪み特性が高度にバランスされ好適である。アクリルゴムの重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が過度に小さいとロール加工性に劣り、過度に大きい強度特性や耐圧縮永久歪み特性に劣りまたロール加工性も十分でなくなり、いずれも好ましくない。
 本発明のアクリルゴムベールを構成するアクリルゴムのz平均分子量(Mz)と重量平均分子量(Mw)との比(Mz/Mw)は、格別な限定なく使用目的に応じて適宜選択されればよいが、GPC-MALS法で測定される高分子領域を重視した絶対分子量分布で、通常1.3~3、好ましくは1.4~2.7、より好ましくは1.5~2.5、特に好ましくは1.8~2、最も好ましくは1.8~1.95の範囲であるときにアクリルゴムベールの加工性と強度特性が高度にバランスされ且つ保存時の物性変化を緩和でき好適である。
 本発明のアクリルゴムベールを構成するアクリルゴムのガラス転移温度(Tg)は、アクリルゴムの使用目的に応じて適宜選択されればよいが、通常20℃以下、好ましくは10℃以下、より好ましくは0℃以下であるときに加工性や耐寒性に優れ好適である。アクリルゴムのガラス転移温度(Tg)の下限値は、格別限定されるものではないが、通常-80℃以上、好ましくは-60℃以上、より好ましくは-40℃以上である。ガラス転移温度を前記下限以上とすることにより耐油性と耐熱性により優れたものとすることができ、上記の上限以下とすることにより加工性、架橋性及び耐寒性により優れたものとすることができる。
<アクリルゴムベール>
 本発明のアクリルゴムベールは、前記反応性基を有し且つ上記アクリルゴムからなり、メチルエチルケトン不溶解分量が50重量%以下、灰分量が0.2重量%以下で且つ灰分中のナトリウム、マグネシウム、カルシウム、リン及びイオウの合計量が50重量%以上であることを特徴とする。
 本発明のアクリルゴムベールのメチルエチルケトンの不溶解分量は、50重量%以下、好ましくは30重量%以下、より好ましくは15重量%以下、特に好ましくは10重量%以下、最も好ましくは5重量%以下であるときに、バンバリー等の混錬時の加工性が高度に改善され好適である。
 本発明のアクリルゴムベールのメチルエチルケトン不溶解分量を任意に20点測定したときの値は、格別限定されるものではないが、(平均値±5)重量%の範囲内に20点全てが入る、好ましくは(平均値±3)重量%の範囲内に20点全てが入るときに加工性バラツキが無くゴム組成物やゴム架橋物の諸物性が安定化されて好適である。なお、アクリルゴムベールのメチルエチルケトン不溶解分量を任意に20点測定したときの値が、平均値±5の範囲内に20点全てが入るとは、(平均値-5)~(平均値+5)重量%の範囲内に測定した20点のメチルエチルケトン不溶解分量が全て入ることを意味し、例えば、測定したメチルエチルケトン不溶解分量の平均値が20重量%であった場合には15~25重量%の範囲内に20点全ての測定値が入ることを意味する。
 本発明のアクリルゴムベールは、凝固反応で生成した含水クラムをスクリュー型二軸押出乾燥機により殆ど水が除去された状態(含水量1重量%未満)で溶融混錬及び乾燥されたものであるときにバンバリー加工性と強度特性が高度にバランスされ好適である。
 本発明のアクリルゴムベールの灰分量は、0.2重量%以下、好ましくは0.15重量%以下、より好ましくは0.14重量%以下、更に好ましくは0.13重量%以下であり、この範囲にあるときにアクリルゴムベールの耐水性、強度特性及び加工性が高度にバランスされ好適である。
 本発明のアクリルゴムベールの灰分量の下限値は、格別な限定はなく使用目的に応じて適宜選択されればよいが、通常0.0001重量%以上、好ましくは0.0005重量%以上、より好ましくは0.001重量%以上、特に好ましくは0.005重量%以上、最も好ましくは0.01重量%以上であるときに、ゴムの金属付着性が低減され作業性に優れるようになり好適である。
 本発明のアクリルゴムベールが耐水性、強度特性、加工性及び作業性を高度にバランスされる場合の灰分量は、通常0.0001~0.2重量%、好ましくは0.0005~0.15重量%、より好ましくは0.001~0.14重量%、特に好ましくは0.005~0.13重量%、最も好ましくは0.01~0.13重量%の範囲である。
 本発明のアクリルゴムベールの灰分中のナトリウム、マグネシウム、カルシウム、リン及びイオウの合計量が、50重量%以上、好ましくは60重量%以上、より好ましくは70重量%以上、特に好ましくは80重量%以上、最も好ましくは90重量%以上であるときにアクリルゴムベールの耐水性が高度に改善され好適である。また、本発明のアクリルゴムベールの灰分中のナトリウム、マグネシウム、カルシウム、リン及びイオウの合計量がこの範囲にあるときに、金属付着性が低減され作業性に優れるようになり好適である。
 本発明のアクリルゴムベールの灰分中のマグネシウムとリンとの合計量が、格別な限定はなく使用目的に応じて適宜選択されればよいが、通常30重量%以上、好ましくは50重量%以上、より好ましくは70重量%以上、特に好ましくは80重量%以上、最も好ましくは90重量%以上であるときにアクリルゴムベールの耐水性、強度特性及び加工性が高度にバランスされ好適である。また、本発明のアクリルゴムベールの灰分中のマグネシウムとリンとの合計量がこの範囲にあるときに、金属付着性が低減され作業性に優れるようになり好適である。
 本発明のアクリルゴムベールの灰分中のマグネシウム量は、格別な限定はなく使用目的に応じて適宜選択されるが、通常10重量%以上、好ましくは15~60重量%、より好ましくは20~50重量%、特に好ましくは25~45重量%、最も好ましくは30~40重量%の範囲である。
 本発明のアクリルゴムベールの灰分中のリン量は、格別な限定はなく使用目的に応じて適宜選択されるが、通常10重量%以上、好ましくは20~90重量%、より好ましくは30~80重量%、特に好ましくは40~70重量%、最も好ましくは50~60重量%の範囲である。
 本発明のアクリルゴムベールの灰分中のマグネシウムとリンとの比([Mg]/[P])は、格別な限定はなく使用目的に応じて適宜選択されればよいが、重量比で、通常0.4~2.5、好ましくは0.45~1.2、より好ましくは0.45~1、特に好ましくは0.5~0.8、最も好ましくは0.55~0.7の範囲であるときに、アクリルゴムベールの耐水性、強度特性及び加工性が高度にバランスされ好適である。
 ここで、アクリルゴムベール中の灰分は、単量体成分をエマルジョン化して乳化重合する際に用いる乳化剤及び乳化重合液を凝固する際に用いる凝固剤に主として由来するものであるが、全灰分量や灰分中のマグネシウムとリンの含有量などは、乳化重合工程や凝固工程の条件だけでなく、その後の各工程の諸条件によっても変化するものである。
 本発明のアクリルゴムベールは、後述する乳化重合時の乳化剤としてアニオン性乳化剤、カチオン性乳化剤、またはノニオン性乳化剤、好ましくはアニオン性乳化剤、より好ましくはリン酸エステル塩または硫酸エステル塩を用いたときに、耐水性や強度特性のほかにも金型離型性や加工性を高度に改善でき好適である。アクリルゴムベールの耐水性は、アクリルゴム中の灰分量と灰分中のナトリウム、マグネシウム、カルシウム、リン及びイオウの合計量とで一義的に相関するが、上記乳化剤を使用するものは、アクリルゴムベールの耐水性、強度特性、金型離型性及び加工性を更に高度にバランスでき好適である。
 本発明のアクリルゴムベールは、後述する凝固剤として金属塩、好ましくはアルカリ金属塩または周期表第2族金属塩を用いたときに、耐水性や強度特性のほかにも金型離型性や加工性を高度に改善でき好適である。アクリルゴムベールの耐水性は、アクリルゴム中の灰分量と灰分中のナトリウム、マグネシウム、カルシウム、リン及びイオウの合計量とで一義的に相関するが、上記凝固剤を使用するものは、アクリルゴムベールの耐水性、強度特性、金型離型性及び加工性が更に高度にバランスされ好適である。
 本発明のアクリルゴムベールの比重は、格別限定されるものではないが、通常0.7以上、好ましくは0.8以上、より好ましくは0.9以上、特に好ましくは0.95以上、最も好ましくは1以上であるときに殆ど空気を内在させず保存安定性に優れ好適である。本発明のアクリルゴムベールの比重は、また、通常0.7~1.6、好ましくは0.8~1.5、より好ましくは0.9~1.4、特に好ましくは0.95~1.3、最も好ましくは1.0~1.2の範囲であるときに生産性、保存安定性及び架橋物の架橋特性安定性等が高度にバランスされ好適である。アクリルゴムベールの比重が過度に小さいときは、アクリルゴムベール中の空気量が多いことを示し酸化劣化など含めて保存安定性に大きく影響し好ましくない。
 なお、本発明のアクリルゴムベールの比重は、空隙を含む容量で質量を割ったもの、すなわち、空気中で測定される質量を浮力で割ったもので、通常JIS K6268架橋ゴム-密度測定のA法に準じて測定されるものである。
 本発明のアクリルゴムベールは、また、凝固反応で生成する含水クラムをスクリュー型二軸押出乾燥機により、減圧下で乾燥、あるいは、減圧下で溶融混錬及び乾燥したものが、保存安定性とロール加工性と強度特性の特性が特に優れ且つ高度にバランスされるので好適である。
 本発明のアクリルゴムベールの60℃における複素粘性率([η]60℃)は、格別な限定はなく使用目的に応じて適宜選択されればよいが、通常15,000[Pa・s]以下、好ましくは1,000~10,000[Pa・s]、より好ましくは2,000~5,000[Pa・s]、特に好ましくは2,500~4,000[Pa・s]、最も好ましくは2,500~3,000[Pa・s]の範囲にあるときに加工性、耐油性及び形状保持性に優れ好適である。
 本発明のアクリルゴムベールの100℃における複素粘性率([η]100℃)は、格別な限定はなく使用目的に応じて適宜選択されればよいが、通常1,500~6,000[Pa・s]、好ましくは2,000~5,000[Pa・s]、より好ましくは2,300~4,000[Pa・s]、特に好ましくは2,500~3,500[Pa・s]、最も好ましくは2,500~3,000[Pa・s]の範囲であるときに加工性、耐油性及び形状保持性に優れ好適である。
 本発明のアクリルゴムベールの100℃における複素粘性率([η]100℃)と60℃における複素粘性率([η]60℃)との比([η]100℃/[η]60℃)は、格別な限定はなく使用目的に応じて適宜選択されればよいが、通常0.5以上、好ましくは0.6以上、より好ましくは0.7以上、特に好ましくは0.8以上、最も好ましくは0.83以上である。本発明のアクリルゴムベールの100℃における複素粘性率([η]100℃)と60℃における複素粘性率([η]60℃)との比([η]100℃/[η]60℃)は、また、通常0.5~0.99、好ましくは0.6~0.98、より好ましくは0.7~0.97、特に好ましくは0.8~0.96、最も好ましくは0.85~0.95の範囲であるときに加工性、耐油性、及び形状保持性が高度にバランスされ好適である。
 本発明のアクリルゴムベールの含水量は、格別な限定はなく使用目的に応じて適宜選択されるが、通常1重量%未満、好ましくは0.8重量%以下、より好ましくは0.6重量%以下であるとき、アクリルゴムベールの加硫特性が最適化され耐熱性や耐水性などの特性が高度に改善され好適である。
 本発明のアクリルゴムベールのpHは、格別な限定はなく使用目的に応じて適宜選択されればよいが、通常6以下、好ましくは2~6、より好ましくは2.5~5.5、最も好ましくは3~5の範囲であるときにアクリルゴムベールの保存安定性が高度に改善され好適である。
 本発明のアクリルゴムベールのムーニー粘度(ML1+4,100℃)は、格別な限定はなく使用目的に応じて適宜選択されればよいが、通常10~150、好ましくは20~100、より好ましくは25~70の範囲であるときに、アクリルゴムベールの加工性や強度特性が高度にバランスされ好適である。
 本発明のアクリルゴムベールの前記構成するアクリルゴム含有量は、ほぼアクリルゴムであり使用目的に応じて適宜選択されればよいが、通常90重量%以上、好ましくは95重量%以上、より好ましくは97重量%以上であるときに強度特性とロール等の加工性が高度にバランスされ好適である。なお、アクリルゴムベール中のアクリルゴム含有量は、アクリルゴムベールの重量から灰分量を減じたもので概算される。
 本発明のアクリルゴムベールの大きさは、格別な限定はなく使用目的に応じて適宜選択されるが、幅が通常100~800mm、好ましくは200~500mm、より好ましくは250~450mmの範囲であり、長さが通常300~1,200mm、好ましくは400~1,000mm、より好ましくは500~800mmの範囲で、高さ(厚さ)が通常50~500mm、好ましくは100~300mm、より好ましくは150~250mmの範囲にあるのが適当である。また、本発明のアクリルゴムベールの形状も限定されず、アクリルゴムベールの使用目的に応じて適宜選択されるが、多くの場合、直方体が好適である。
<アクリルゴムベールの製造方法>
 上記アクリルゴムベールの製造方法は、格別限定されるものではないが、例えば、(メタ)アクリル酸アルキルエステル及び(メタ)アクリル酸アルコキシアルキルエステルからなる群から選ばれる少なくとも1種の(メタ)アクリル酸エステル、カルボキシル基、エポキシ基及び塩素原子からなる群から選ばれる少なくとも1種の反応性基を含有する単量体、及び、必要に応じて共重合可能なその他の単量体を含んでなる単量体成分を、水と乳化剤とでエマルジョン化するエマルジョン工程と、
 無機ラジカル発生剤と還元剤とからなるレドックス触媒存在下に乳化重合を開始し、重合途中で連鎖移動剤と還元剤を回分的に添加した後に、重合転化率が90重量%以上まで乳化重合を継続し乳化重合液を得る乳化重合工程と、
 得られた乳化重合液を撹拌している凝固液に添加して凝固し含水クラムを生成する凝固工程と、
 生成した含水クラムを温水で洗浄する洗浄工程と、
 洗浄した含水クラムを、脱水スリットを有する脱水バレルと減圧下の乾燥バレルと先端部にダイを有するスクリュー型二軸押出乾燥機を用いて脱水バレルで含水量1~40重量%まで脱水し、且つ、乾燥バレルで1重量%未満まで乾燥してシート状の乾燥ゴムをダイから押し出す脱水・乾燥:成形工程と、
 押し出されたシート状乾燥ゴムを切断後に積層するベール化工程と、
を含むアクリルゴムベールの製造方法によって容易に製造することができる。
(単量体成分)
 本発明に使用される単量体成分は、既に述べた単量体成分の例示及び好ましい範囲と同じである。単量体成分の使用量についても、既に述べたとおりであり、乳化重合においては、各単量体を本発明のアクリルゴムベールを構成するアクリルゴムの上記組成になるように適宜選択すればよい。
(乳化剤)
 本発明に使用される乳化剤としては、格別な限定はないが、例えば、アニオン性乳化剤、カチオン性乳化剤、ノニオン性乳化剤などを挙げることができ、好ましくはアニオン性乳化剤である。
 アニオン性乳化剤としては、格別な限定はなく、例えば、ミリスチン酸、パルミチン酸、オレイン酸、リノレン酸などの脂肪酸の塩;ドデシルベンゼンスルホン酸ナトリウムなどのアルキルベンゼンスルホン酸塩;ラウリル硫酸ナトリウムなどの硫酸エステル塩、ポリオキシアルキレンアルキルエーテルリン酸エステル塩などのリン酸エステル塩;アルキルスルホコハク酸塩などを挙げることができる。これらのアニオン性乳化剤の中でも、リン酸エステル塩、硫酸エステル塩が好ましく、リン酸エステル塩が特に好ましく、2価リン酸エステル塩が最も好ましく、得られるアクリルゴムベールの耐水性、強度特性、金型離型性及び加工性を高度にバランスさせることができ好適である。また、これらリン酸エステル塩や硫酸エステル塩としては、好ましくはリン酸エステルや硫酸エステルのアルカリ金属塩、より好ましくはリン酸エステルや硫酸エステルのナトリウム塩であるときに、得られるアクリルゴムベールの耐水性、強度特性、金型離型性及び加工性を高度にバランスさせることができ好適である。
 2価リン酸エステル塩としては、乳化重合反応において乳化剤として使用可能なものであれば、格別限定されるものではないが、アルキルオキシポリオキシアルキレンリン酸エステル塩、アルキルフェニルオキシポリオキシアルキレンリン酸エステル塩などが挙げられ、これらの中でもこれらの金属塩が好ましく、これらのアルカリ金属塩がより好ましく、これらのナトリウム塩が最も好ましい。
 上記アルキルオキシポリオキシアルキレンリン酸エステル塩としては、例えば、アルキルオキシポリオキシエチレンリン酸エステル塩、アルキルオキシポリオキシプロピレンリン酸エステル塩などが挙げられ、これらの中でも、アルキルオキシポリオキシエチレンリン酸エステル塩が好ましい。
 アルキルオキシポリオキシエチレンリン酸エステル塩の具体例としては、オクチルオキシジオキシエチレンリン酸エステル、オクチルオキシトリオキシエチレンリン酸エステル、オクチルオキシテトラオキシエチレンリン酸エステル、デシルオキシテトラオキシエチレンリン酸エステル、ドデシルオキシテトラオキシエチレンリン酸エステル、トリデシルオキシテトラオキシエチレンリン酸エステル、テトラデシルオキシテトラオキシエチレンリン酸エステル、ヘキサデシルオキシテトラオキシエチレンリン酸エステル、オクタデシルオキシテトラオキシエチレンリン酸エステル、オクチルオキシペンタオキシエチレンリン酸エステル、デシルオキシペンタオキシエチレンリン酸エステル、ドデシルオキシペンタオキシエチレンリン酸エステル、トリデシルオキシペンタオキシエチレンリン酸エステル、テトラデシルオキシペンタオキシエチレンリン酸エステル、ヘキサデシルオキシペンタオキシエチレンリン酸エステル、オクタデシルオキシペンタオキシエチレンリン酸エステル、オクチルオキシヘキサオキシエチレンリン酸エステル、デシルオキシヘキサオキシエチレンリン酸エステル、ドデシルオキシヘキサオキシエチレンリン酸エステル、トリデシルオキシヘキサオキシエチレンリン酸エステル、テトラデシルオキシヘキサオキシエチレンリン酸エステル、ヘキサデシルオキシヘキサオキシエチレンリン酸エステル、オクタデシルオキシヘキサオキシエチレンリン酸エステル、オクチルオキシオクタオキシエチレンリン酸エステル、デシルオキシオクタオキシエチレンリン酸エステル、ドデシルオキシオクタオキシエチレンリン酸エステル、トリデシルオキシオクタオキシエチレンリン酸エステル、テトラデシルオキシオクタオキシエチレンリン酸エステル、ヘキサデシルオキシオクタオキシエチレンリン酸エステル、オクタデシルオキシオクタオキシエチレンリン酸エステルなどの金属塩が挙げられ、これらの中でも、それらのアルカリ金属塩、とりわけナトリウム塩が好適である。
 アルキルオキシポリオキシプロピレンリン酸エステル塩の具体例としては、オクチルオキシジオキシプロピレンリン酸エステル、オクチルオキシトリオキシプロピレンリン酸エステル、オクチルオキシテトラオキシプロピレンリン酸エステル、デシルオキシテトラオキシプロピレンリン酸エステル、ドデシルオキシテトラオキシプロピレンリン酸エステル、トリデシルオキシテトラオキシプロピレンリン酸エステル、テトラデシルオキシテトラオキシプロピレンリン酸エステル、ヘキサデシルオキシテトラオキシプロピレンリン酸エステル、オクタデシルオキシテトラオキシプロピレンリン酸エステル、オクチルオキシペンタオキシプロピレンリン酸エステル、デシルオキシペンタオキシプロピレンリン酸エステル、ドデシルオキシペンタオキシプロピレンリン酸エステル、トリデシルオキシペンタオキシプロピレンリン酸エステル、テトラデシルオキシペンタオキシプロピレンリン酸エステル、ヘキサデシルオキシペンタオキシプロピレンリン酸エステル、オクタデシルオキシペンタオキシプロピレンリン酸エステル、オクチルオキシヘキサオキシプロピレンリン酸エステル、デシルオキシヘキサオキシプロピレンリン酸エステル、ドデシルオキシヘキサオキシプロピレンリン酸エステル、トリデシルオキシヘキサオキシプロピレンリン酸エステル、テトラデシルオキシヘキサオキシプロピレンリン酸エステル、ヘキサデシルオキシヘキサオキシプロピレンリン酸エステル、オクタデシルオキシヘキサオキシプロピレンリン酸エステル、オクチルオキシオクタオキシプロピレンリン酸エステル、デシルオキシオクタオキシプロピレンリン酸エステル、ドデシルオキシオクタオキシプロピレンリン酸エステル、トリデシルオキシオクタオキシエチレンリン酸エステル、テトラデシルオキシオクタオキシプロピレンリン酸エステル、ヘキサデシルオキシオクタオキシプロピレンリン酸エステル、オクタデシルオキシオクタオキシプロピレンリン酸エステル及びそれらの金属塩などが挙げられ、これらの中でも、それらのアルカリ金属塩、特にナトリウム塩が好適である。
 アルキルフェニルオキシポリオキシアルキレンリン酸エステル塩の具体例としては、アルキルフェニルオキシポリオキシエチレンリン酸エステル塩、アルキルフェニルオキシポリオキシプロピレンリン酸エステル塩などが挙げられ、これらの中でも、アルキルフェニルオキシポリオキシエチレンリン酸エステル塩が好ましい。
 アルキルフェニルオキシポリオキシエチレンリン酸エステル塩の具体例としては、メチルオキシオキシテトラオキシエチレンリン酸エステル、エチルフェニルオキシテトラオキシエチレンリン酸エステル、ブチルフェニルオキシテトラオキシエチレンリン酸エステル、ヘキシルフェニルオキシテトラオキシエチレンリン酸エステル、ノニルフェニルオキシテトラオキシエチレンリン酸エステル、ドデシルフェニルオキシテトラオキシエチレンリン酸エステル、オクタデシルオキシテトラオキシエチレンリン酸エステル、メチルフェニルオキシペンタオキシエチレンリン酸エステル、エチルフェニルオキシペンタオキシエチレンリン酸エステル、ブチルフェニルオキシペンタオキシエチレンリン酸エステル、ヘキシルフェニルオキシペンタオキシエチレンリン酸エステル、ノニルフェニルオキシペンタオキシエチレンリン酸エステル、ドデシルフェニルオキシペンタオキシエチレンリン酸エステル、メチルフェニルオキシヘキサオキシエチレンリン酸エステル、エチルフェニルオキシヘキサオキシエチレンリン酸エステル、ブチルフェニルオキシヘキサオキシエチレンリン酸エステル、ヘキシルフェニルオキシヘキサオキシエチレンリン酸エステル、ノニルフェニルオキシヘキサオキシエチレンリン酸エステル、ドデシルフェニルオキシヘキサオキシエチレンリン酸エステル、メチルフェニルオキシヘキサオキシエチレンリン酸エステル、エチルフェニルオキシオクタオキシエチレンリン酸エステル、ブチルフェニルオキシオクタオキシエチレンリン酸エステル、ヘキシルフェニルオキシオクタオキシエチレンリン酸エステル、ノニルフェニルオキシオクタオキシエチレンリン酸エステル、ドデシルフェニルオキシオクタオキシエチレンリン酸エステルなどの金属塩が挙げられ、これらの中でも、それらのアルカリ金属塩、特にナトリウム塩が好適である。
 アルキルフェニルオキシポリオキシプロピレンリン酸エステル塩の具体例としては、メチルフェニルオキシテトラオキシプロピレンリン酸エステル、エチルフェニルオキシテトラオキシプロピレンリン酸エステル、ブチルフェニルオキシテトラオキシプロピレンリン酸エステル、ヘキシルフェニルオキシテトラオキシプロピレンリン酸エステル、ノニルフェニルオキシテトラオキシプロピレンリン酸エステル、ドデシルフェニルオキシテトラオキシプロピレンリン酸エステル、メチルフェニルオキシペンタオキシプロピレンリン酸エステル、エチルフェニルオキシペンタオキシプロピレンリン酸エステル、ブチルフェニルオキシペンタオキシプロピレンリン酸エステル、ヘキシルフェニルオキシペンタオキシプロピレンリン酸エステル、ノニルフェニルオキシペンタオキシプロピレンリン酸エステル、ドデシルフェニルオキシペンタオキシプロピレンリン酸エステル、メチルフェニルオキシヘキサオキシプロピレンリン酸エステル、エチルフェニルオキシヘキサオキシプロピレンリン酸エステル、ブチルフェニルオキシヘキサオキシプロピレンリン酸エステル、ヘキシルフェニルオキシヘキサオキシプロピレンリン酸エステル、ノニルフェニルオキシヘキサオキシプロピレンリン酸エステル、ドデシルフェニルオキシヘキサオキシプロピレンリン酸エステル、メチルフェニルオキシオクタオキシプロピレンリン酸エステル、エチルフェニルオキシオクタオキシプロピレンリン酸エステル、ブチルフェニルオキシオクタオキシプロピレンリン酸エステル、ヘキシルフェニルオキシオクタオキシエチレンリン酸エステル、ノニルフェニルオキシオクタオキシプロピレンリン酸エステル、ドデシルフェニルオキシオクタオキシプロピレンリン酸エステルなどの金属塩が挙げられ、これらの中でも、それらのアルカリ金属塩、特にナトリウム塩が好適である。
 リン酸エステル塩としては、ジ(アルキルオキシポリオキシアルキレン)リン酸エステルナトリウム塩などの1価リン酸エステル塩を、単独、または2価リン酸エステル塩と組み合わせて用いることができる。
 硫酸エステル塩としては、例えば、ラウリル硫酸ナトリウム、ラウリル硫酸カリウム、ラウリル硫酸アンモニウム、ミスチル硫酸ナトリウム、ポリオキシエチレンアルキル硫酸ナトリウム、ポリオキシエチレンアルキルアリール硫酸ナトリウムなどが挙げられ、好ましくはラウリル硫酸ナトリウムである。
 カチオン性乳化剤としては、例えば、アルキルトリメチルアンモニウムクロライド、ジアルキルアンモニウムクロライド、ベンジルアンモニウムクロライドなどを挙げることができる。
 ノニオン性乳化剤としては、例えば、ポリオキシエチレンステアリン酸エステルなどのポリオキシアルキレン脂肪酸エステル;ポリオキシエチレンドデシルエーテルなどのポリオキシアルキレンアルキルエーテル;ポリオキシエチレンノニルフェニルエーテルなどのポリオキシアルキレンアルキルフェノールエーテル;ポリオキシエチレンソルビタンアルキルエステルなどを挙げることができ、ポリオキシアルキレンアルキルエーテル、ポリオキシアルキレンアルキルフェノールエーテルが好ましく、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェノールエーテルがより好ましい。
 これらの乳化剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができ、その使用量は、単量体成分100重量部に対して、通常0.01~10重量部、好ましくは0.1~5重量部、より好ましくは1~3重量部の範囲である。
 単量体成分と水と乳化剤との混合方法(混合方式)は、常法に従えばよく、例えば、単量体と乳化剤と水とをホモジナイザーやディスクタービンなどの撹拌機を用いて撹拌する方法などが挙げられる。水の使用量は、単量体成分100重量部に対して、通常1~1000重量部、好ましくは5~500重量部、より好ましくは4~300重量部、特に好ましくは3~150重量部、最も好ましくは20~80重量部の範囲である。
(無機ラジカル発生剤)
 本発明で使用する重合触媒としては、無機ラジカル発生剤と還元剤とからなるレドックス触媒を用いることを特徴とする。特に、無機ラジカル発生剤を用いることにより製造されるアクリルゴムベールのロール等における加工性を高度に改善でき好適である。
 無機ラジカル発生剤としては、乳化重合で通常用いられるものであれば格別な限定はなく、例えば、過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウムなどの過硫酸塩、過酸化水素などが挙げられ、これらの中でも、過硫酸塩が好ましく、過硫酸カリウム、過硫酸アンモニウムがより好ましく、過硫酸カリウムが特に好ましい。
 これらの無機ラジカル発生剤は、それぞれ単独であるいは2種類以上組み合わせて用いることができ、その使用量は、単量体成分100重量部に対して、通常0.0001~5重量部、好ましくは0.0005~1重量部、より好ましくは0.001~0.25重量部、特に好ましくは0.01~0.21重量部、最も好ましくは0.1~0.2重量部の範囲である。
(還元剤)
 本発明で使用される還元剤としては、通常乳化重合で用いられるものであれば格別な限定がないが、好ましくは少なくとも2種の還元剤を用いるものであり、還元状態にある金属イオン化合物とそれ以外の還元剤とを組み合わせるのが得られるアクリルゴムベールのバンバリー加工性とロール加工性と強度特性を更に高度にバランスできが好適である。
 還元状態にある金属イオン化合物としては、特に限定されないが、例えば、硫酸第一鉄、ヘキサメチレンジアミン四酢酸鉄ナトリウム、ナフテン酸第一銅などが挙げられ、これらの中でも硫酸第一鉄が好ましい。これらの還元状態にある金属イオン化合物は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができ、その使用量は、単量体成分100重量部に対して、通常0.000001~0.01重量部、好ましくは0.00001~0.001重量部、より好ましくは0.00005~0.0005重量部の範囲である。
 本発明で使用する還元状態にある金属イオン化合物以外の還元剤としては、特に限定されないが、例えば、アスコルビン酸、アスコルビン酸ナトリウム、アスコルビン酸カリウムなどのアスコルビン酸またはその塩;エリソルビン酸、エリソルビン酸ナトリウム、エリソルビン酸カリウムなどのエリソルビン酸またはその塩;ヒドロキシメタンスルフィン酸ナトリウムなどのスルフィン酸塩;亜硫酸ナトリウム、亜硫酸カリウム、亜硫酸水素ナトリウム、アルデヒド亜硫酸水素ナトリウム、亜硫酸水素カリウムの亜硫酸塩;ピロ亜硫酸ナトリウム、ピロ亜硫酸カリウム、ピロ亜硫酸水素ナトリウム、ピロ亜硫酸水素カリウムなどのピロ亜硫酸塩;チオ硫酸ナトリウム、チオ硫酸カリウムなどのチオ硫酸塩;亜燐酸、亜燐酸ナトリウム、亜燐酸カリウム、亜燐酸水素ナトリウム、亜燐酸水素カリウムの亜燐酸又はその塩;ピロ亜燐酸、ピロ亜燐酸ナトリウム、ピロ亜燐酸カリウム、ピロ亜燐酸水素ナトリウム、ピロ亜燐酸水素カリウムなどのピロ亜燐酸またはその塩;ナトリウムホルムアルデヒドスルホキシレートなどが挙げられる。これらの中でも、アルコルビン酸またはその塩、ナトリウムホルムアルデヒドスルホキシレートなどが好ましく、特にアスコルビン酸またはその塩が好ましい。
 これらの還元状態にある金属イオン化合物以外の還元剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができ、その使用量は、単量体成分100重量部に対し、通常0.001~1重量部、好ましくは0.005~0.5重量部、より好ましくは0.01~0.1重量部の範囲である。
 還元状態にある金属イオン化合物とそれ以外の還元剤との好ましい組み合わせは、硫酸第一鉄とアスコルビン酸若しくはその塩及び/又はナトリウムホルムアルデヒドスルホキシレートの組み合わせであり、より好ましくは硫酸第一鉄とアルコルビン酸若しくはその塩との組み合わせである。このときの硫酸第一鉄の使用量は、単量体成分100重量部に対して、通常0.000001~0.01重量部、好ましくは0.00001~0.001重量部、より好ましくは0.00005~0.0005重量部の範囲であり、アスコルビン酸若しくはその塩及び/又はナトリウムホルムアルデヒドスルホキシレートの使用量は、両成分100重量部に対し、通常0.001~1重量部、好ましくは0.005~0.5重量部、より好ましくは0.01~0.1重量部の範囲である。
 乳化重合反応における水の使用量は、単量体成分エマルジョン化時に使用した量だけでもよいが、重合に用いる単量体成分100重量部に対して、通常10~1000重量部、好ましくは50~500重量部、より好ましくは80~400重量部、最も好ましくは100~300重量部の範囲になるように調整される。
 乳化重合反応の方式は、常法に従えばよく、回分式、半回分式、連続式のいずれでもよい。重合温度及び重合時間は、特に限定されず、使用する重合開始剤の種類などから適宜選択できる。重合時間は通常0.5~100時間、好ましくは1~10時間である。
 乳化重合反応は、発熱反応で、制御しないと温度が上がり重合反応を短縮することもできるが、本発明においては、乳化重合反応温度を、通常35℃以下、好ましくは0~35℃、より好ましくは5~30℃、特に好ましくは10~25℃で制御することが、製造されるアクリルゴムベールの強度特性とバンバリー等の混錬時の加工性が高度にバランスされ好適である。
(連鎖移動剤の後添加)
 本発明においては、連鎖移動剤を初期に添加せずに重合途中で回分的に後添加することを特徴とし、こうすることにより高分子量成分と低分子量成分が分かれたアクリルゴムが製造でき、且つ、製造されるアクリルゴムベールの強度特性とロール等混錬時の加工性が高度にバランスされ好適である。
 使用される連鎖移動剤としては、乳化重合で通常使用されるものであれば格別限定されるものでなく、例えば、メルカプタン化合物が好適に用いることができる。
 メルカプタン化合物としては、通常炭素数2~20のアルキルメルカプタン化合物、好ましくは炭素数5~15のアルキルメルカプタン化合物、より好ましくは炭素数6~14のアルキルメルカプタン化合物を用いることができる。
 アルキルメルカプタン化合物としては、n-アルキルメルカプタン化合物、sec-アルキルメルカプタン化合物、t-アルキルメルカプタン化合物のいずれでもよいが、好ましくはn-アルキルメルカプタン化合物、t-アルキルメルカプタン化合物で、より好ましくはn-アルキルメルカプタン化合物であるときに連鎖移動剤の効果が安定的に発揮でき、製造されるアクリルゴムベールのロール等の加工性を高度に改善でき好適である。
 アルキルメルカプタン化合物の具体例としては、n-ペンチルメルカプタン、n-ヘキシルメルカプタン、n-ヘプチルメルカプタン、n-オクチルメルカプタン、n-デシルメルカプタン、n-ドデシルメルカプタン、n-トリデカンメルカプタン、n-テトラデシルメルカプタン、n-ヘキサデシルメルカプタン、n-オクタデシルメルカプタン、sec-ペンチルメルカプタン、sec-ヘキシルメルカプタン、sec-ヘプチルメルカプタン、sec-オクチルメルカプタン、sec-デシルメルカプタン、sec-ドデシルメルカプタン、sec-トリデカンメルカプタン、sec-テトラデシルメルカプタン、sec-ヘキサデシルメルカプタン、sec-オクタデシルメルカプタン、t-ペンチルメルカプタン、t-ヘキシルメルカプタン、t-ヘプチルメルカプタン、t-オクチルメルカプタン、t-デシルメルカプタン、t-ドデシルメルカプタン、n-トリデカンメルカプタン、t-テトラデシルメルカプタン、t-ヘキサデシルメルカプタン、t-オクタデシルメルカプタンなどを挙げることができ、好ましくはn-オクチルメルカプタン、n-ドデシルメルカプタン、t-ドデシルメルカプタン、より好ましくはn-オクチルメルカプタン、n-ドデシルメルカプタンである。
 これらの連鎖移動剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。連鎖移動剤の使用量は、格別限定されるものではないが、単量体成分100重量部に対して、通常0.0001~1重量部、好ましくは0.0005~0.5重量部、より好ましくは0.001~0.5重量部、特に好ましくは0.005~0.1重量部、最も好ましくは0.01~0.06重量部の範囲であるときに製造されるアクリルゴムベールの強度特性とロール加工性が高度にバランスされ好適である。
 本発明においては、上記連鎖移動剤を重合初期には添加せずに重合途中で回分的に添加することを特徴とし、製造されるアクリルゴムの高分子量成分と低分子量成分を製造し且つ分子量分布を特定範囲として強度特性とロール等の加工性を高度にバランスさせることができ好適である。
 連鎖移動剤の回分的な後添加の回数は、格別な限定はなく使用目的に応じて適宜選択されるが、通常1~5回、好ましくは2~4回、より好ましくは2~3回、特に好ましくは2回であるときに製造されるアクリルゴムベールの強度特性とロール等の加工性を高度にバランスすることができ好適である。
 連鎖移動剤の回分的な後添加を開始する時期は、格別な限定はなく使用目的に応じて適宜選択されるが、重合開始してから通常20分以降、好ましくは重合開始後30分以降、より好ましくは重合開始後30~200分、特に好ましくは重合開始後35~150分、最も好ましくは40~120分の範囲であるときに製造されるアクリルゴムベールの強度特性とロール等の加工性を高度にバランスすることができ好適である。
 連鎖移動剤の回分的な後添加における1回あたりの添加量は、格別な限定はなく使用目的に応じて適宜選択されるが、単量体成分100重量部に対して、通常0.00005~0.5重量部、好ましくは0.0001~0.1重量部、より好ましくは0.0005~0.05重量部、特に好ましくは0.001~0.03重量部、最も好ましくは0.002~0.02重量部の範囲であるときに製造されるアクリルゴムベールの強度特性とロール加工性を高度にバランスすることができ好適である。
 連鎖移動剤の添加後は、格別な限定はないが、通常30分以上、好ましくは45分以上、より好ましくは1時間以上重合反応を継続させてから終了することができる。
(還元剤の後添加)
 本発明においては、前記レドックス触媒の還元剤を、重合途中で後添加することができ、そうすることにより製造されるアクリルゴムベールの強度特性とロール等の加工性が高度にバランスさせることができ好適である。
 重合途中で後添加する還元剤としては、前記した還元剤の例示及び好ましい範囲は同じである。本発明において、後添加する還元剤としては、アスコルビン酸またはその塩が好適ある。
 重合途中で後添加する還元剤の使用量は、格別限定されるものでなく使用目的に応じて適宜選択されればよいが、単量体成分100重量部に対して、通常0.0001~1重量部、好ましくは0.0005~0.5重量部、より好ましくは0.001~0.5重量部、特に好ましくは0.005~0.1重量部、最も好ましくは0.01~0.05重量部の範囲であるときにアクリルゴムベール製造の生産性に優れるとともに製造されるアクリルゴムベールの強度特性と加工性を高度にバランスでき好適である。
 重合途中で後添加する還元剤は、連続的あるいは回分的のいずれでもよいが、好ましくは回分的である。還元剤を重合途中で回分的に後添加する場合の回数は、格別な限定はないが、通常1~5回、好ましくは1~3回、より好ましくは1~2回である。
 重合初期及び重合途中で後添加する還元剤が、アスコルビン酸またはその塩であるときの初期に添加するアスコルビン酸またはその塩の量と後添加するアスコルビン酸またはその塩の量との比は、格別限定されるものではないが、「初期添加アスコルビン酸またはその塩」/「回分的後添加のアスコルビン酸またはその塩」の重量比で、通常1/9~8/2、好ましくは2/8~6/4、より好ましくは3/7~5/5の範囲であるときにアクリルゴムベール製造の生産性に優れるとともに製造されるアクリルゴムベールの強度特性と加工性を高度にバランスでき好適である。
 還元剤の後添加の時期は、格別な限定はなく使用目的に応じて適宜選択されるが、重合開始してから通常1時間以降、好ましくは重合開始後1~3時間、より好ましくは1.5~2.5時間の範囲であるときにアクリルゴムベール製造の生産性に優れるとともに製造されるアクリルゴムベールの強度特性とロール等の加工性を高度にバランスすることができ好適である。
 還元剤の回分的な後添加における1回あたりの添加量は、格別な限定はなく使用目的に応じて適宜選択されるが、単量体成分100重量部に対して、通常0.00005~0.5重量部、好ましくは0.0001~0.1重量部、より好ましくは0.0005~0.05重量部、特に好ましくは0.001~0.03重量部の範囲であるときに製造されるアクリルゴムベールの強度特性とロール等の加工性を高度にバランスすることができ好適である。
 還元剤の添加後の操作は、格別な限定はないが、通常30分以上、好ましくは45分以上、より好ましくは1時間以上重合反応を継続させてから、重合反応を終了することができる。
 乳化重合反応の重合転化率は、90重量%以上、好ましくは95重量%以上であり、このときに製造されるアクリルゴムベールは強度特性に優れ且つ単量体臭も無く好適である。重合停止に当たっては、重合停止剤を使用してもよい。
 乳化重合後は、得られた乳化重合液(エマルジョン)を凝固させ、乾燥してアクリルゴムを単離することができる。
(凝固工程)
 乳化重合後の凝固工程では、上記の乳化重合で得られた乳化重合液を、撹拌している凝固液に添加して凝固させて、アクリルゴムの含水クラムを生成することができる。
 この凝固反応で使用される乳化重合液の固形分濃度は、格別な限定はないが、通常5~50重量%、好ましくは10~45重量%、より好ましくは20~40重量%の範囲に調整される。
 使用される凝固液の凝固剤としては、特に限定されないが、通常は金属塩が用いられる。金属塩としては、例えば、アルカリ金属、周期表第2族金属塩、その他の金属塩などが挙げられ、好ましくはアルカリ金属塩、周期表第2族金属塩、より好ましくは周期表第2族金属塩、特に好ましくはマグネシウム塩であるときに得られるアクリルゴムの耐水性、強度特性、金型離型性及び加工性を高度にバランスさせることができ好適である。
 アルカリ金属塩としては、例えば、塩化ナトリウム、硝酸ナトリウム、硫酸ナトリウムなどのナトリウム塩;塩化カリウム、硝酸カリウム、硫酸カリウムなどのカリウム塩;塩化リチウム、硝酸リチウム、硫酸リチウムなどのリチウム塩などが挙げられ、これらの中でもナトリウム塩が好ましく、塩化ナトリウム、硫酸ナトリウムが特に好ましい。
 周期表第2族金属塩としては、例えば、塩化マグネシウム、塩化カルシウム、硝酸マグネシウム、硝酸カルシウム、硫酸マグネシウム、硫酸カルシウムなどが挙げられ、好ましくは塩化カルシウム、硫酸マグネシウムである。
 その他の金属塩としては、例えば、塩化亜鉛、塩化チタン、塩化マンガン、塩化鉄、塩化コバルト、塩化ニッケル、塩化アルミニウム、塩化スズ、硝酸亜鉛、硝酸チタン、硝酸マンガン、硝酸鉄、硝酸コバルト、硝酸ニッケル、硝酸アルミニウム、硝酸スズ、硫酸亜鉛、硫酸チタン、硫酸マンガン、硫酸鉄、硫酸コバルト、硫酸ニッケル、硫酸アルミニウム、硫酸スズなどが挙げられる。
 これらの凝固剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができ、その使用量は、単量体成分100重量部に対し、通常0.01~100重量部、好ましくは0.1~50重量部、より好ましくは1~30重量部の範囲である。凝固剤がこの範囲にあるときに、アクリルゴムの凝固を充分なものとしながら、アクリルゴムを架橋した場合の耐圧縮永久歪み特性や耐水性を高度に向上させることができるので好適である。
 本発明の凝固工程においては、特に、生成する含水クラムの粒径を特定領域に集束することで洗浄効率や脱水時の灰分除去効率が格段に上昇し好適である。生成する含水クラムの710μm~6.7mm(710μmを通過せず6.7mmを通過)の範囲の割合が、格別な限定はないが、全生成含水クラムに対して、通常30重量%以上、好ましくは50重量%以上、より好ましくは60重量%以上、特に好ましくは70重量%以上、最も好ましくは80重量%以上であるときにアクリルゴムベールの耐水性を格段に改善でき好適である。また、生成する含水クラムの710μm~4.75mm(710μmを通過せず4.75mmを通過)の範囲の割合が、格別な限定はないが、全生成含水クラムに対して、通常30重量%以上、好ましくは50重量%以上、より好ましくは60重量%以上、特に好ましくは70重量%以上、最も好ましくは80重量%以上であるときにアクリルゴムベールの耐水性を格段に改善でき好適である。さらに、生成する含水クラムの710μm~3.35mm(710μmを通過せず3.35mmを通過)の範囲の割合が、格別な限定はないが、全生成含水クラムに対して、通常20重量%以上、好ましくは30重量%以上、より好ましくは40重量%以上、特に好ましくは50重量%以上、最も好ましくは60重量%以上であるときにアクリルゴムベールの耐水性を格段に改善でき好適である。
 生成する含水クラムの粒子径を上記範囲に生成する手段としては、格別な限定はないが、例えば、乳化重合液と上記凝固剤との接触方法を乳化重合液を撹拌している凝固液(凝固剤水溶液)に添加すること、あるいは、凝固液の凝固剤濃度、撹拌している凝固液の撹拌数や周速を特定にすることで行うことができる。
 使用する凝固液は、通常水溶液として使用されるが、該水溶液の凝固剤濃度は、通常0.1~20重量%、好ましくは0.5~15重量%、より好ましくは1~10重量%、特に好ましくは1.5~5重量%の範囲であるときに生成する含水クラムの粒径を特定の領域に且つ均一に集束でき好適である。
 凝固液の温度は、格別限定はないが、通常40℃以上、好ましくは40~90℃、より好ましくは50~80℃の範囲であるときに均一な含水クラムが生成され好適である。
 撹拌されている凝固液の撹拌数(回転数)は、すなわち、撹拌装置の撹拌翼の回転数で、格別な限定はないが、通常100rpm以上、好ましくは200rpm以上、より好ましくは200~1000rpm、特に好ましくは300~900rpm、最も好ましくは400~800rpmの範囲である。
 回転数はある程度激しく撹拌される回転数である方が、生成する含水クラム粒径を小さく且つ均一にでき好適であり、前記下限以上とすることにより、クラム粒径が過度に大きいものと小さいものとが生成するのを抑制でき、前記上限以下とすることにより、凝固反応の制御をより容易にできる。
 撹拌されている凝固液の周速は、すなわち、撹拌装置の撹拌翼の外周の速度は、格別な限定はないが、一定程度まで激しく撹拌されている方が生成する含水クラム粒径を小さく且つ均一にでき好適で、通常0.5m/s以上、好ましくは1m/s以上、より好ましくは1.5m/s以上、特に好ましくは2m/s以上、最も好ましくは2.5m/s以上である。一方周速の上限値は、格別限定されるものではないが、通常50m/s以下、好ましくは30m/s以下、より好ましくは25m/s以下、最も好ましくは20m/s以下であるときに凝固反応の制御が容易になり好適である。
 凝固反応の上記条件(接触方法、乳化重合液の固形分濃度、凝固液の濃度及び温度、凝固液の撹拌時の回転数及び周速、など)を特定範囲にすることで、生成する含水クラムの形状及びクラム径が均一で且つ集束化され、洗浄及び脱水時の乳化剤や凝固剤の除去が格段に向上し、結果として製造されるアクリルゴムベールの耐水性と保存安定性を高度に改善できるので好適である。
(洗浄工程)
 上記凝固反応で生成した含水クラムは、乾燥する前に、温水で洗浄するのが好適である。
 洗浄方法としては、格別限定されるものでなく、例えば、生成した含水クラムを多量の温水と混合して行うことができる。
 洗浄のため加える温水の量は、特に限定されないが、単量体成分100重量部に対して、水洗1回当たりの量が、通常50重量部以上、好ましくは50~15,000重量部、より好ましくは100~10,000重量部、さらに好ましくは500~5,000重量部の範囲であるときに、アクリルゴムベール中の灰分量を効果的に低減することができるので好適である。
 使用する温水の温度は、格別限定されないが、通常40℃以上、好ましくは40~100℃、より好ましくは50~90℃であり、特に60~80℃のときに洗浄効率を格段に上げることができ最適である。使用する温水の温度を上記した下限以上とすることにより、乳化剤や凝固剤が含水クラムから遊離して洗浄効率がより向上する。
 洗浄時間は、格別な限定はないが、通常1~120分、好ましくは2~60分、より好ましくは3~30分の範囲である。
 洗浄(水洗)の回数についても、特に限定されず、通常は1~10回、好ましくは1~5回、より好ましくは2~3回である。なお、最終的に得られるアクリルゴムベール中の凝固剤の残留量を低減させるという観点からは、水洗回数が多い方が望ましいが、上記のように含水クラムの形状及び含水クラム径を特定範囲にすること、及び/又は洗浄温度を上記の範囲にすることで、水洗回数を格段に低減できる。
(脱水・乾燥・成形工程)
 本発明のアクリルゴムベールの製造方法における脱水・乾燥・成形工程は、上記洗浄した含水クラムを、脱水スリットを有する脱水バレルと減圧下の乾燥バレルと先端部にダイを有するスクリュー型二軸押出乾燥機を用いて脱水バレルで含水量1~40重量%まで脱水し、且つ、乾燥バレルで1重量%未満まで乾燥してシート状の乾燥ゴム(シート状アクリルゴム)をダイから押し出すことを特徴とする。
 本発明においては、スクリュー型二軸押出乾燥機に供給される含水クラムは、洗浄後に遊離水を除去(水切り)したものであることが好ましい。
(水切り工程)
 本発明において、洗浄後の含水クラムから水切り機で遊離水を分離する水切り工程を設けることが脱水効率を上げる上で好適である。
 水切り機としては、公知のものを格別な限定なく用いることができ、例えば、金網、スクリーン、電動篩機などが挙げられ、好ましくは金網、スクリーンである。
 水切り機の目開きは、格別限定はないが、通常0.01~5mm、好ましくは0.1~1mm、より好ましくは0.2~0.6mmの範囲であるときに、含水クラム損失が少なく且つ水切りが効率的にでき好適である。
 水切り後の含水クラムの含水量、すなわち脱水・乾燥工程に投入される含水クラムの含水量は、格別限定されるものではないが、通常50~80重量%、好ましくは50~70重量%、より好ましくは50~60重量%の範囲である。
 水切り後の含水クラムの温度、すなわち脱水・乾燥工程に投入される含水クラムの温度は、格別限定されるものではないが、通常40℃以上、好ましくは40~100℃、より好ましくは50~90℃、特に好ましくは55~85℃、最も好ましくは60~80℃の範囲であるときに、本発明のアクリルゴムのように比熱が1.5~2.5KJ/kg・Kと高く温度を上げにくい含水クラムをスクリュー型二軸押出乾燥機を用いて効率よく脱水・乾燥でき好適である。
(脱水バレル部での含水クラムの脱水)
 含水クラムの脱水は、脱水スリットを有するスクリュー型二軸押出乾燥機中の脱水バレルで行われる。脱水スリットの目開きは、使用条件に応じて適宜選択されればよいが、通常0.01~5mm、好ましくは0.1~1mm、より好ましくは0.2~0.6mmの範囲であるときに、含水クラム損失が少なく且つ含水クラムの脱水が効率的にでき好適である。
 スクリュー型二軸押出乾燥機における脱水バレルの数は、格別限定されるものではないが、通常複数個、好ましくは2~10個、より好ましくは3~6個であるときに粘着性のアクリルゴムの脱水を効率よく行う上で好適である。
 脱水バレルにおける含水クラムからの水の除去は、脱水スリットから液状で除去するもの(排水)、蒸気状で除去するもの(排蒸気)の二通りがあるが、本発明においては、排水は脱水、排蒸気は予備乾燥と定義して区別する。
 含水クラムの脱水において脱水スリットから排出される水は、液状(排水)、蒸気状(排蒸気)のいずれの状態でもよいが、脱水バレルを複数個備えるスクリュー型二軸押出乾燥機を用いて行う場合は、排水及び排蒸気を組み合わせることで粘着性アクリルゴムの脱水が効率よくでき好適である。脱水バレルを3個以上備えるスクリュー型二軸押出乾燥機の排水型脱水バレルか排蒸気型脱水バレルかの選択は、使用目的に応じて適宜行えばよいが、通常製造されるアクリルゴムベール中の灰分量を少なくする場合は排水型バレルを多くし、含水量を低減する場合は排蒸気型バレルを多くする。
 脱水バレルの設定温度は、アクリルゴムの単量体組成、灰分量、含水量、及び操業条件などにより適宜選択されるが、通常60~150℃、好ましくは70~140℃、より好ましくは80~130℃の範囲である。排水状態で脱水する脱水バレルの設定温度は、通常60~120℃、好ましくは70~110℃、より好ましくは80~100℃である。排蒸気状態で脱水する脱水バレルの設定温度は、通常100~150℃、好ましくは105~140℃、より好ましくは110~130℃の範囲である。
 含水クラムから水分を絞り出す排水型脱水の脱水後の含水量としては、格別な限定はないが、1~40重量%、好ましくは5~40重量%、より好ましくは5~35重量%、特に好ましくは10~35重量%であるときに、生産性と灰分除去効率とが高度にバランスされ好適である。
 反応性基を有する粘着性のアクリルゴムの脱水は、遠心分離機などを用いて行うと脱水スリット部にアクリルゴムが付着してしまい殆ど脱水できないが(含水量は約45~55重量%程度まで)、本発明において、脱水スリットを有しスクリューで強制的に絞られるスクリュー型二軸押出乾燥機を用いることによりここまで含水量を低減できるようになった。
 排水型脱水バレルと排蒸気型脱水バレルとを備える場合の含水クラムの脱水は、排水型脱水バレル部における排水後の含水量が通常5~40重量%、好ましくは10~40重量%、より好ましくは15~35重量%、排蒸気型脱水バレル部における予備乾燥後の含水量が、通常1~30重量%、好ましくは3~20重量%、より好ましくは5~15重量%である。
 脱水後の含水量を前記下限以上とすることにより、脱水時間を短縮できてアクリルゴムの変質を抑制でき、前記上限以下とすることにより灰分量を十分に低減することができる。
(乾燥バレル部での含水クラムの乾燥)
 上記脱水後の含水クラムの乾燥は、乾燥バレル部を有するスクリュー型二軸押出乾燥機により、減圧下の乾燥バレル部で行うことが好ましい。アクリルゴムの乾燥を減圧下で行うことにより、乾燥の生産効率が上がり、また、アクリルゴム中に内在する空気が除去され比重が高く保存安定性に優れるアクリルゴムベールが製造でき好適である。本発明においては、また、アクリルゴムを減圧下で溶融して押出乾燥することで保存安定性を高度に高めることができる。アクリルゴムベールの保存安定性は、大きくはアクリルゴムベールの比重と相関しコントロールできるが、比重が大きく高度の保存安定性を制御する場合は押出乾燥の減圧度等で制御することができる。
 乾燥バレルの減圧度は、適宜選択されればよいが、通常1~50kPa,好ましくは2~30kPa、より好ましくは3~20kPaであるときに効率よく含水クラムを乾燥でき且つアクリルゴム中の空気を除去しアクリルゴムベールの保存安定性を格段に改善でき好適である。
 乾燥バレルの設定温度は、適宜選択されればよいが、通常100~250℃、好ましくは110~200℃、より好ましくは120~180℃の範囲であるときに、アクリルゴムのヤケや変質がなく効率よく乾燥ができ且つアクリルゴムベール中のメチルエチルケトン不溶解分量を低減でき好適である。
 スクリュー型二軸押出乾燥機における乾燥バレルの数は、格別限定されるものではないが、通常複数個、好ましくは2~10個、より好ましくは3~8個である。乾燥バレルが複数個有する場合の減圧度は、全ての乾燥バレルで近似した減圧度にしてもよいし、変えてもよい。乾燥バレルが複数個有する場合の設定温度は、全ての乾燥バレルで近似した温度にしてもよいし変えてもよいが、導入部(脱水バレルに近い方)の温度よりも排出部(ダイに近い方)の温度の方が高くするのが乾燥効率を上げることができる好適である。
 乾燥後のシート状乾燥ゴムの含水量は、通常1重量%未満、好ましくは0.8重量%以下、より好ましくは0.6重量%以下である。本発明においては、特にスクリュー型二軸押出乾燥機内で乾燥ゴムの含水量がこの値(殆ど水が除去された状態)にして溶融押出しされることがアクリルゴムベールのメチルエチルケトン不溶解分量を低減でき好適である。本発明において、スクリュー型二軸押出乾燥機で溶融混錬あるいは溶融混錬及び乾燥させたアクリルゴムベールは、強度特性とバンバリー加工性の両特性が高度にバランスされるので好適である。なお、本発明でいう「溶融混錬」あるいは「溶融混錬及び乾燥」とは、スクリュー型二軸押出乾燥機内でアクリルゴムが溶融状態で混錬(混合)あるいは溶融状態で押し出され、その段階で乾燥されること、あるいは、スクリュー型二軸押出乾燥機によりアクリルゴムを溶融(可塑化)状態で混練して押し出し乾燥することを意味する。
 本発明においては、スクリュー型二軸押出乾燥機の乾燥バレルにおいて上記アクリルゴムが実質的に水を含まない状態でかかる剪断速度は、格別な限定はないが、通常が、10[1/s]以上、好ましくは10~400[1/s]、より好ましくは50~250[1/s]の範囲であるときに得られるアクリルゴムベールの保存安定性、ロール加工性、バンバリー加工性、強度特性及び耐圧縮永久歪み特性が高度にバランスされ好適である。
 本発明で使用されるスクリュー型二軸押出乾燥機内、特に乾燥バレルにおけるアクリルゴムの剪断粘度は、格別な限定はないが、通常12000[Pa・s]以下、好ましくは1000~12000[Pa・s]、より好ましくは2000~10000[Pa・s]、特に好ましくは3000~7000[Pa・s]、最も好ましくは4000~6000[Pa・s]の範囲であるときに得られるアクリルゴムベールの保存安定性、ロール加工性、バンバリー加工性及び強度特性が高度にバランスされ好適である。
(ダイ部からの乾燥ゴムの押出し)
 上記脱水バレル及び乾燥バレルのスクリュー部で脱水・乾燥された乾燥ゴムは、スクリューの無い整流のダイ部に送られ、ダイ部から所望の形状に押し出される。スクリュー部とダイ部の間には、ブレーカープレートや金網を設けてもよいし、設けなくてもよい。
 押出される乾燥ゴムは、ダイ形状を略長方形状にしてシート状に出すことにより空気の巻き込みが少なく比重の大きい保存安定性に優れる乾燥ゴムが得られ好適である。
 ダイ部における樹脂圧は、格別限定されないが、通常0.1~10MPa、好ましくは0.5~5MPa、より好ましくは1~3MPaの範囲としたときに、アクリルゴムベールの空気の巻き込みが少なく(比重が高く)且つ生産性に優れ好適である。
スクリュー型二軸押出乾燥機及び操業条件
 使用されるスクリュー型二軸押出乾燥機のスクリュー長(L)は、使用目的に応じて適宜選択されればよいが、通常3000~15000mm、好ましくは4000~10000mm、より好ましくは4500~8000mmの範囲である。
 使用されるスクリュー型二軸押出乾燥機のスクリュー径(D)は、使用目的に応じて適宜選択されればよいが、通常50~250mm、好ましくは100~200mm、より好ましくは120~160mmの範囲である。
 使用されるスクリュー型二軸押出乾燥機のスクリュー長(L)とスクリュー径(D)との比(L/D)は、格別限定されるものではないが、通常10~100、好ましくは20~80、より好ましくは30~60の範囲であるときに乾燥ゴムの分子量低下や焼けを起こさずに含水量を1重量%未満にでき好適である。
 使用されるスクリュー型二軸押出乾燥機の回転数(N)は、諸条件に応じて適宜選択されればよいが、通常10~1000rpm、好ましくは50~750rpm、より好ましくは100~500rpm、最も好ましくは120~300rpmであるときに、アクリルゴムベールの含水量とメチルエチルケトン不溶解分量を効率よく低減でき好適である。
 使用されるスクリュー型二軸押出乾燥機の押出量(Q)は、格別限定されないが、通常100~1,500kg/hr、好ましくは300~1200kg/hr、より好ましくは400~1000kg/hr、最も好ましくは500~800kg/hrの範囲である。
 使用されるスクリュー型二軸押出乾燥機の押出量(Q)と回転数(N)の比(Q/N)は、格別限定されるものではないが、通常2~10、好ましくは3~8、より好ましくは4~6の範囲である。
 使用されるスクリュー型二軸押出乾燥機の最大トルクは、格別限定されるものではないが、通常30N・m以上、好ましくは35N・m以上、より好ましくは40N・m以上である。本発明で使用されるスクリュー型二軸押出乾燥機の最大トルクは、また、通常30~100N・m、好ましくは35~75N・m、より好ましくは40~60N・mの範囲であるときに、製造されるアクリルゴムベールのロール加工性、バンバリー加工性及び強度特性を高度にバランスすることができ好適である。
 使用されるスクリュー型二軸押出乾燥機の比動力は、格別な限定はないが、通常0.1~0.25[kw・h/kg]以上、好ましくは0.13~0.23[kw・h/kg]、より好ましくは0.15~0.2[kw・h/kg]の範囲であるときに得られるアクリルゴムベールのロール加工性、バンバリー加工性及び強度特性が高度にバランスされ好適である。
 使用されるスクリュー型二軸押出乾燥機の比電力は、格別な限定はないが、通常0.2~0.6[A・h/kg]以上、好ましくは0.25~0.55[A・h/kg]、より好ましくは0.35~0.5[A・h/kg]の範囲であるときに得られるアクリルゴムベールのロール加工性、バンバリー加工性及び強度特性が高度にバランスされ好適である。
 使用されるスクリュー型二軸押出乾燥機の剪断速度は、格別な限定はないが、通常40~150[1/s]以上、好ましくは45~125[1/s]、より好ましくは50~100[1/s]の範囲であるときに得られるアクリルゴムベールの保存安定性、ロール加工性、バンバリー加工性及び強度特性が高度にバランスされ好適である。
 使用されるスクリュー型二軸押出乾燥機内のアクリルゴムの剪断粘度は、格別な限定はないが、通常4000~8000[Pa・s]以下、好ましくは4500~7500[Pa・s]、より好ましくは5000~7000[Pa・s]の範囲であるときに得られるアクリルゴムベールの保存安定性、ロール加工性、バンバリー加工性及び強度特性が高度にバランスされ好適である。
 このように、本発明においては、二軸のスクリューを有する押出乾燥機を用いることにより高シェアな条件での脱水・乾燥・成形が可能となり好適である。
(シート状乾燥ゴム)
 スクリュー型二軸押出乾燥機から押し出される乾燥ゴムの形状は、シート状であり、この時に空気を巻き込まず比重を大きくでき保存安定性が高度に改善され好適である。スクリュー型二軸押出乾燥機から押し出されるシート状乾燥ゴムは、通常、冷却され切断されてシート状アクリルゴムとして使用される。
 スクリュー型二軸押出乾燥機から押し出されるシート状乾燥ゴムの厚さは、格別な限定はないが、通常1~40mm、好ましくは2~35mm、より好ましくは3~30mm、最も好ましくは5~25mmの範囲であるときに作業性、生産性に優れ好適である。特にシート状乾燥ゴムの熱伝導度が0.15~0.35W/mKと低いために冷却効率を上げ生産性を格段に向上させる場合のシート状乾燥ゴムの厚さは、通常1~30mm、好ましくは2~25mm、より好ましくは3~15mm、特に好ましくは4~12mmの範囲である。
 スクリュー型二軸押出乾燥機から押し出されるシート状乾燥ゴムの幅は、使用目的に応じて適宜選択されるが、通常300~1200mm、好ましくは400~1000mm、より好ましくは500~800mmの範囲である。
 スクリュー型二軸押出乾燥機から押し出される乾燥ゴムの温度は、格別限定されるものではないが、通常100~200℃、好ましくは110~180℃、より好ましくは120~160℃の範囲である。
 スクリュー型二軸押出乾燥機から押し出される乾燥ゴムの含水量は、格別な限定は無いが、通常1重量%未満、好ましくは0.8重量%以下、より好ましくは0.6重量%以下である。
 スクリュー型二軸押出乾燥機から押し出されるシート状乾燥ゴムの100℃における複素粘性率([η]100℃)は、格別限定されるものではないが、通常1500~6000[Pa・s]、好ましくは2000~5000[Pa・s]、より好ましくは2500~4000[Pa・s]、最も好ましくは2500~3500[Pa・s]の範囲であるときに、シートとしての押出性と形状保持性とが高度にバランスされ好適である。すなわち、下限以上とすることにより押出性により優れるものとでき、上限以下とすることによりシート状乾燥ゴムの形状の崩れや破断を抑制できる。
 スクリュー型二軸押出乾燥機から押し出されたシート状乾燥ゴムは、そのまま折りたたんで使用してもよいが、通常は、切断して用いることができる。
 シート状乾燥ゴムの切断は、格別な限定はないが、本発明のアクリルゴムは粘着性が強いことから、空気を巻き込まずに連続的に切断するために、シート状乾燥ゴムを冷却してから行うのが好ましい。
 シート状乾燥ゴムの切断温度は、格別な限定はないが、通常60℃以下、好ましくは55℃以下、より好ましくは50℃以下であるときに、切断性と生産性とが高度にバランスされ好適である。
 シート状乾燥ゴムの60℃における複素粘性率([η]60℃)は、格別限定されるものではないが、通常15,000以下、好ましくは2000~10.000[Pa・s]、より好ましくは2500~7000[Pa・s]、最も好ましくは2700~5500[Pa・s]の範囲にあるときに空気を巻き込まずに且つ連続的に切断ができ好適である。
 シート状乾燥ゴムの100℃における複素粘性率([η]100℃)と60℃における複素粘性率([η]60℃)との比([η]100℃/[η]60℃)は、格別な限定はなく使用目的に応じて適宜選択されればよいが、通常0.5以上、好ましくは0.6以上、より好ましくは0.7以上、特に好ましくは0.8以上、最も好ましくは0.85以上であり、上限値が、通常0.98以下、好ましくは0.97以下、より好ましくは0.96以下、特に好ましくは0.95以下、最も好ましくは0.93以下であるときに空気巻き込み性が少なく、且つ切断と生産性が高度にバランスされ好適である。
 シート状乾燥ゴムの冷却方法としては、格別限定はなく室温に放置してもよいが、シート状乾燥ゴムの熱伝導度が0.15~0.35W/mKと非常に小さいために、送風あるいは冷房下での空冷方式、水を吹き付ける水かけ方式、水中に浸漬する浸漬方式などの強制冷却が生産性を上げるために好ましく、特に送風あるいは冷下での空冷方式が好適である。
 シート状乾燥ゴムの空冷方式では、例えば、スクリュー型押出機からベルトコンベアなどの搬送機上にシート状乾燥ゴムを押し出し、冷風を吹き付ける中で搬送し冷却することができる。冷風の温度は、格別限定されるものではないが、通常0~25℃、好ましくは5~25℃、より好ましくは10~20℃の範囲である。冷却される長さは、格別限定はないが、通常5~500m、好ましくは10~200m、より好ましくは20~100mの範囲である。シート状乾燥ゴムの冷却速度は、格別限定されるものではないが、通常40℃/hr以上、好ましくは50℃/hr以上、より好ましくは100℃/hr以上、特に好ましくは150℃/hr以上であるときに切断が容易になり成形体中に空気を巻き込まずに保存安定性を良好にでき好適である。本発明においては、また、シート状乾燥ゴムの冷却速度が、通常40℃/hr以上、好ましくは50℃/hr以上、より好ましくは100℃/hr以上、特に好ましくは150℃/hr以上であるときにアクリルゴムベールをゴム組成物にした時のスコーチ安定性が格段に優れ好適である。
 シート状乾燥ゴムの切断長さは、格別な限定はなく使用目的に応じて適宜選択されるが、通常100~800mm、好ましくは200~500mm、より好ましくは250~450mmの範囲である。
 かくして得られるシート状アクリルゴムは、クラム状アクリルゴムに比べて操作性に優れ、且つ、ロール加工性、架橋性、強度特性及び耐圧縮永久歪み特性に優れるとともに保存安定性、バンバリー加工性及び耐水性にも優れ、そのまま、あるいは積層してベール化されて使用することができる。
(積層工程)
 本発明における積層工程は、上記切断したシート状乾燥ゴムを積層しベール化することを特徴とする。
 シート状乾燥ゴムの積層温度は、格別限定はないが、通常30℃以上、好ましくは35℃以上、より好ましくは40℃以上であるときに積層時に巻き込まれる空気を逃がすことができ好適である。積層枚数は、前記ベール状アクリルゴムの大きさまたは重量に応じて適宜選択されればよい。本発明のベール状アクリルゴムは、積層したシート状乾燥ゴムの自重により一体化される。
 かくして得られる本発明のアクリルゴムベールは、クラム状アクリルゴムに比べ操作性に優れ、且つ、ロール加工性、バンバリー加工性、架橋性、耐水性、保存安定性、強度特性及び耐圧縮永久歪み特性に優れ、アクリルゴムベールをそのまま、あるいは必要量を切断してバンバリー、ロールなどの混合機に投入して用いることができる。
<ゴム組成物>
 本発明のゴム組成物は、前記アクリルゴムベールを含むゴム成分、充填剤及び架橋剤を含むことを特徴とする。
 本発明のゴム組成物の主たる成分となるゴム成分としては、本発明のアクリルゴムベール単独で用いてもよく、あるいは必要に応じて、本発明のアクリルゴムベールとその他のゴム成分とを組み合わせて用いてもよい。ゴム成分中における本発明のアクリルゴムベールの含有量は、使用目的に応じて選択されればよく、例えば、通常30重量%以上、好ましくは50重量%以上、より好ましくは70重量%以上である。
 本発明のアクリルゴムベールと組み合わせるその他のゴム成分としては、格別な限定はなく、例えば、天然ゴム、ポリブタジエンゴム、ポリイソプレンゴム、スチレン-ブタジエンゴム、アクリロニトリル-ブタジエンゴム、シリコンゴム、フッ素ゴム、オレフィン系エラストマー、スチレン系エラストマー、塩化ビニル系エラストマー、ポリエステル系エラストマー、ポリアミド系エラストマー、ポリウレタン系エラストマー、ポリシロキサン系エラストマーなどを挙げることができる。
 これらのその他のゴム成分は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。これらのその他のゴム成分の形状は、クラム状、ストランド状、ベール状、シート状、粉体状などいずれであっても構わない。ゴム成分全体におけるその他のゴム成分の含有量は、本発明の効果を損ねない範囲で適宜選択され、例えば、通常70重量%以下、好ましくは50重量%以下、より好ましくは30重量%以下である。
 ゴム組成物に含まれる充填剤としては、格別な限定はないが、例えば、補強性充填剤、非補強性充填剤などが挙げられ、好ましくは補強性充填剤であるときにゴム組成物のロール加工性、バンバリー加工性及び短時間の架橋性に優れ、且つ、架橋物の耐水性、強度特性及び耐圧縮永久歪み特性が高度に優れるので好適である。
 補強性充填剤としては、例えば、ファーネスブラック、アセチレンブラック、サーマルブラック、チャンネルブラック及びグラファイトなどのカーボンブラック類;湿式シリカ、乾式シリカ、コロイダルシリカなどのシリカ類;などを挙げることができる。非補強性充填剤としては、石英粉末、ケイソウ土、亜鉛華、塩基性炭酸マグネシウム、活性炭酸カルシウム、ケイ酸マグネシウム、ケイ酸アルミニウム、二酸化チタン、タルク、硫酸アルミニウム、硫酸カルシウム、硫酸バリウムなどを挙げることができる。
 これらの充填剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができ、その配合量は、本発明の効果を損ねない範囲で適宜選択され、ゴム成分100重量部に対して、通常1~200重量部、好ましくは10~150重量部、より好ましくは20~100重量部の範囲である。
 ゴム組成物に使用される架橋剤としては、格別な限定はなく従来公知の架橋剤を使用目的に応じて選択され、例えば、硫黄化合物などの無機架橋剤や有機架橋剤などが挙げられ、好ましくは有機架橋剤である。架橋剤としては、また、多価化合物または単価化合物のいずれでもよいが、好ましくは反応性が2個以上である多価化合物が好適である。架橋剤としては、更に、イオン架橋性化合物またはラジカル架橋性化合物のいずれでもよいが、好適にはイオン架橋性化合物である。
 有機架橋剤としては、格別な限定はないが、イオン架橋性有機化合物が好ましく、多価イオン有機化合物が特に好ましい。架橋剤が、多価イオン有機化合物(多価イオン架橋性化合物)であるときにゴム組成物のロール加工性、バンバリー加工性及び短時間の架橋性に優れ、且つ、架橋物の耐水性、強度特性及び耐圧縮永久歪み特性が高度に優れ特に好適である。イオン架橋性または多価イオンの「イオン」としては、イオン反応性のイオンであり、例えば、前記アクリルゴムのイオン反応性基含有単量体のイオン反応性基とイオン反応するものであれば格別な限定はないが、好適には、アミン基、エポキシ基、カルボキシル基、チオール基などのイオン反応性基を有するイオン架橋性有機化合物が挙げられる。
 多価イオン有機化合物の具体例としては、多価アミン化合物、多価エポキシ化合物、多価カルボン酸化合物、多価チオール化合物などが挙げられ、好ましくは多価アミン化合物や多価チオール化合物、より好ましくは多価アミン化合物である。
 多価アミン化合物としては、例えば、ヘキサメチレンジアミン、ヘキサメチレンジアミンカーバメート、N,N'-ジシンナミリデン-1,6-ヘキサンジアミンなどの脂肪族多価アミン化合物;4,4'-メチレンジアニリン、p-フェニレンジアミン、m-フェニレンジアミン、4,4'-ジアミノジフェニルエーテル、3,4'-ジアミノジフェニルエーテル、4,4'-(m-フェニレンジイソプロピリデン)ジアニリン、4,4'-(p-フェニレンジイソプロピリデン)ジアニリン、2,2'-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパン、4,4'-ジアミノベンズアニリド、4,4'-ビス(4-アミノフェノキシ)ビフェニル、m-キシリレンジアミン、p-キシリレンジアミン、1,3,5-ベンゼントリアミンなどの芳香族多価アミン化合物;などが挙げられる。これらの中でも、ヘキサメチレンジアミンカーバメート、2,2'-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパンなどが好ましい。多価アミン化合物としては、また、これらの炭酸塩を好適に用いることができる。これらの多価アミン化合物は、特に、カルボキシル基含有のアクリルゴムベール、あるいはエポキシ基含有のアクリルゴムベールと組み合わせて好適に用いられる。
 多価チオール化合物としては、好適にはトリアジンチオール化合物が用いられ、例えば、6-トリメルカプト-s-トリアジン、2-アニリノ-4,6-ジチオール-s-トリアジン、1-ジブチルアミノ-3,5-ジメルカプトトリアジン、2-ジブチルアミノ-4,6-ジチオール-s-トリアジン、1-フェニルアミノ-3,5-ジメルカプトトリアジン、2,4,6-トリメルカプト-1,3,5-トリアジン、1-ヘキシルアミノ-3,5-ジメルカプトトリアジンなどが挙げられる。これらのトリアジンチオール化合物は、特に、塩素原子含有のアクリルゴムベールと組み合わせて好適に用いられる。
 その他の多価有機化合物としては、テトラデカン二酸などの多価カルボン酸化合物、ジメチルジチオカルバミン酸亜鉛などのジチオカルバミン酸金属塩などが挙げられる。これらのその他の多価有機化合物は、特に、エポキシ基含有のアクリルゴムベールと組み合わせて好適に用いられる。
 これらの架橋剤は、それぞれ単独であるいは2種以上組み合わせて用いることができ、その配合量は、ゴム成分100重量部に対し、通常0.001~20重量部、好ましくは0.1~10重量部、より好ましくは0.1~5重量部である。架橋剤の配合量をこの範囲とすることにより、ゴム弾性を充分なものとしながら、ゴム架橋物としての機械的強度を優れたものとすることができ好適である。
 本発明のゴム組成物は、必要に応じて老化防止剤を配合することができる。老化防止剤の種類は、特に限定されないが、例えば、2,6-ジ-t-ブチル-4-メチルフェノール、2,6-ジ-t-ブチルフェノール、ブチルヒドロキシアニソール、2,6-ジ-t-ブチル-α-ジメチルアミノ-p-クレゾール、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、スチレン化フェノール、2,2'-メチレン-ビス(6-α-メチル-ベンジル-p-クレゾール)、4,4'-メチレンビス(2,6-ジ-t-ブチルフェノール)、2,2'-メチレン-ビス(4-メチル-6-t-ブチルフェノール)、2,4-ビス[(オクチルチオ)メチル]-6-メチルフェノール、2,2'-チオビス-(4-メチル-6-t-ブチルフェノール)、4,4'-チオビス-(6-t-ブチル-o-クレゾール)、2,6-ジ-t-ブチル-4-(4,6-ビス(オクチルチオ)-1,3,5-トリアジン-2-イルアミノ)フェノールなどのその他のフェノール系老化防止剤;トリス(ノニルフェニル)ホスファイト、ジフェニルイソデシルホスファイト、テトラフェニルジプロピレングリコール・ジホスファイトなどの亜燐酸エステル系老化防止剤;チオジプロピオン酸ジラウリルなどの硫黄エステル系老化防止剤;フェニル-α-ナフチルアミン、フェニル-β-ナフチルアミン、p-(p-トルエンスルホニルアミド)-ジフェニルアミン、4,4'-(α,α-ジメチルベンジル)ジフェニルアミン、N,N-ジフェニル-p-フェニレンジアミン、N-イソプロピル-N'-フェニル-p-フェニレンジアミン、ブチルアルデヒド-アニリン縮合物などのアミン系老化防止剤;2-メルカプトベンズイミダゾールなどのイミダゾール系老化防止剤;6-エトキシ-2,2,4-トリメチル-1,2-ジヒドロキノリンなどのキノリン系老化防止剤;2,5-ジ-(t-アミル)ハイドロキノンなどのハイドロキノン系老化防止剤;などが挙げられる。これらの中でも特にアミン系老化防止剤が好ましい。
 これらの老化防止剤は、それぞれ単独で、あるいは2種以上組み合わせて用いることができ、その配合量は、ゴム成分100重量部に対して、0.01~15重量部、好ましくは0.1~10重量部、より好ましくは1~5重量部の範囲である。
 本発明のゴム組成物は、上記本発明のアクリルゴムベールを含むゴム成分、充填剤及び架橋剤を必須成分として、及び必要に応じて老化防止剤を含み、さらに、必要に応じて当該技術分野で通常使用される他の添加剤、例えば、架橋助剤、架橋促進剤、架橋遅延剤、シランカップリング剤、可塑剤、加工助剤、滑材、顔料、着色剤、帯電防止剤、発泡剤などを任意に配合できる。これらのその他の配合剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができ、その配合量は、本発明の効果を損ねない範囲で適宜選択される。
 本発明のゴム組成物の製造方法としては、本発明のアクリルゴムベールを含むゴム成分、充填剤、架橋剤及び必要に応じて含有できる老化防止剤やその他の配合剤を混合する方法が挙げられ、混合には、従来のゴム加工分野において利用されている任意の手段、例えば、オープンロール、バンバリーミキサー、各種ニーダー類などを利用することができる。各成分の混合手順は、ゴム加工の分野において行われている通常の手順で行えばよく、例えば、熱で反応や分解しにくい成分を充分に混合した後、熱で反応や分解しやすい成分である架橋剤などを、反応や分解が起こらない温度で短時間に混合することが好ましい。
<ゴム架橋物>
 本発明のゴム架橋物は、上記ゴム組成物を架橋してなるものである。
 本発明のゴム架橋物は、本発明のゴム組成物を用い、所望の形状に対応した成形機、例えば、押出機、射出成形機、圧縮機又はロールなどにより成形を行い、加熱することにより架橋反応を行い、ゴム架橋物として形状を固定化することにより製造することができる。この場合においては、予め成形した後に架橋しても、成形と同時に架橋を行ってもよい。成形温度は、通常10~200℃、好ましくは25~150℃である。架橋温度は、通常100~250℃、好ましくは130~220℃、より好ましくは150~200℃であり、架橋時間は、通常0.1分~10時間、好ましくは1分~5時間である。加熱方法としては、プレス加熱、蒸気加熱、オーブン加熱、及び熱風加熱などのゴムの架橋に用いられる方法を適宜選択すればよい。
 本発明のゴム架橋物は、ゴム架橋物の形状、大きさなどによっては、さらに加熱して二次架橋を行ってもよい。二次架橋は、加熱方法、架橋温度、形状などにより異なるが、好ましくは1~48時間行う。加熱方法、加熱温度は適宜選択すればよい。
 本発明のゴム架橋物は、引張強度、伸び、硬さなどのゴムとしての基本特性を維持しながら、優れた耐圧縮永久歪み特性及び耐水性を有するものである。
 本発明のゴム架橋物は、上記特性を活かして、例えば、O-リング、パッキン、ダイアフラム、オイルシール、シャフトシール、ベアリングシール、メカニカルシール、ウエルヘッドシール、電気・電子機器用シール、空気圧縮機器用シールなどのシール材;シリンダブロックとシリンダヘッドとの連結部に装着されるロッカーカバーガスケット、オイルパンとシリンダヘッドあるいはトランスミッションケースとの連結部に装着されるオイルパンガスケット、正極、電解質板及び負極を備えた単位セルを挟み込む一対のハウジング間に装着された燃料電池セパレーター用ガスケット、ハードディスクドライブのトップカバー用ガスケットなどの各種ガスケット;緩衝材、防振材;電線被覆材;工業用ベルト類;チューブ・ホース類;シート類;などとして好適に用いられる。
 本発明のゴム架橋物は、また、自動車用途に用いられる押し出し成形型品及び型架橋製品として、例えば、燃料ホース、フィラーネックホース、ベントホース、ペーパーホース、オイルホースなどの燃料タンクなどの燃料油系ホース、ターボエアーホース、ミッションコントロールホースなどのエアー系ホース、ラジエターホース、ヒーターホース、ブレーキホース、エアコンホースなどの各種ホース類に好適に用いられる。
<アクリルゴムベールの製造に用いられる装置構成>
 次に、本発明の一実施形態に係るアクリルゴムベールの製造に用いられる装置構成について説明する。図1は、本発明の一実施形態に係るアクリルゴムベールの製造に用いられる装置構成を有するアクリルゴム製造システムの一例を模式的に示す図である。本発明に係るアクリルゴムベールの製造には、例えば、図1に示すアクリルゴム製造システム1を使用することができる。
 図1に示すアクリルゴム製造システム1は、不図示の乳化重合反応器、凝固装置3、洗浄装置4、水切り機43、スクリュー型二軸押出乾燥機により構成されている。
 乳化重合反応器は、上述した乳化重合工程に係る処理を行うように構成されている。図1には不図示であるが、この乳化重合反応器は、例えば重合反応槽、反応温度を制御する温度制御部、モータ及び撹拌翼を備えた撹拌装置を有する。乳化重合反応器では、アクリルゴムを形成するための単量体成分に水と乳化剤とを混合して撹拌機で適切に撹拌しながらエマルジョン化し、無機ラジカル発生剤と還元剤とからなるレドックス触媒存在下に乳化重合反応を開始し、重合途中で連鎖移動剤を回分的に後添加して乳化重合液を得ることができる。乳化重合反応器は、回分式、半回分式、連続式のいずれであってもよく、槽型反応器、管型反応器のいずれであってもよい。
 図1に示す凝固装置3は、上述した凝固工程に係る処理を行うように構成されている。図1に模式的に図示されているように、凝固装置3は、例えば撹拌槽30、撹拌槽30内を加熱する加熱部31、撹拌槽30内の温度を制御する不図示の温度制御部、モータ32及び撹拌翼33を備えた撹拌装置34、撹拌翼33の回転数及び回転速度を制御する不図示の駆動制御部を有する。凝固装置3では、乳化重合反応器で得られた乳化重合液を、凝固液と接触させて凝固させることにより含水クラムを生成することができる。
 凝固装置3では、例えば、乳化重合液と凝固液との接触は、乳化重合液を撹拌している凝固液中に添加する方法が採用される。すなわち、凝固装置3の撹拌槽30に凝固液を充填しておき、この凝固液に乳化重合液を添加及び接触させて乳化重合液を凝固させることによって含水クラムが生成される。
 凝固装置3の加熱部31は、撹拌槽30に充填された凝固液を加熱するよう構成されている。また、凝固装置3の温度制御部は、温度計で計測された撹拌槽30内の温度を監視しながら加熱部31による加熱動作を制御することで、撹拌槽30内の温度を制御するように構成されている。撹拌槽30内の凝固液の温度は、温度制御部によって、通常40℃以上、好ましくは40~90℃、より好ましくは50~80℃の範囲となるよう制御される。
 凝固装置3の撹拌装置34は、撹拌槽30に充填された凝固液を撹拌するように構成されている。具体的には、撹拌装置34は、回転動力を生み出すモータ32と、モータ32の回転軸に対して垂直方向に広がる撹拌翼33を備えている。撹拌翼33は、撹拌槽30に充填された凝固液内で、モータ32の回転動力により回転軸を中心として回転することで凝固液を流動させることができる。撹拌翼33の形状や大きさ、設置数などは特に限定されない。
 凝固装置3の駆動制御部は、撹拌装置34のモータ32の回転駆動を制御して、撹拌装置34の撹拌翼33の回転数及び回転速度を所定値に設定するように構成されている。凝固液の撹拌数が、例えば、通常100rpm以上、好ましくは200~1000rpm、より好ましくは300~900rpm、特に好ましくは400~800rpmの範囲となるように、駆動制御部によって撹拌翼33の回転が制御される。凝固液の周速が、通常0.5m/s以上、好ましくは1m/s以上、より好ましくは1.5m/s以上、特に好ましくは2m/s以上、最も好ましくは2.5m/s以上となるように、駆動制御部によって撹拌翼33の回転が制御される。さらに、凝固液の周速の上限値が、通常50m/s以下、好ましくは30m/s以下、より好ましくは25m/s以下、最も好ましくは20m/s以下となるように、駆動制御部によって撹拌翼33の回転が制御される。
 図1に示す洗浄装置4は、上述した洗浄工程に係る処理を行うように構成されている。図1に模式的に図示されているように、洗浄装置4は、例えば洗浄槽40、洗浄槽40内を加熱する加熱部41、洗浄槽40内の温度を制御する不図示の温度制御部を有する。洗浄装置4では、凝固装置3で生成された含水クラムを多量の水と混合して洗浄することにより、最終的に得られるアクリルゴムベール中の灰分量を効果的に低減することができる。
 洗浄装置4の加熱部41は、洗浄槽40内を加熱するよう構成されている。また、洗浄装置4の温度制御部は、温度計で計測された洗浄槽40内の温度を監視しながら加熱部41による加熱動作を制御することで、洗浄槽40内の温度を制御するように構成されている。上述したように、洗浄槽40内の洗浄水の温度は、通常40℃以上、好ましくは40~100℃、より好ましくは50~90℃、最も好ましくは60~80℃の範囲となるよう制御される。
 洗浄装置4で洗浄された含水クラムは、脱水工程及び乾燥工程を行うスクリュー型二軸押出乾燥機5に供給される。このとき、洗浄後の含水クラムは、遊離水を分離することが可能な水切り機43を通ってスクリュー型二軸押出乾燥機5に供給されることが好ましい。水切り機43には、例えば金網、スクリーン、電動篩機などを用いることができる。
 また、洗浄後の含水クラムがスクリュー型二軸押出乾燥機5に供給される際、含水クラムの温度は40℃以上、更に60℃以上であることが好ましい。例えば、洗浄装置4における水洗に用いられる水の温度を60℃以上(例えば70℃)とすることで、スクリュー型二軸押出乾燥機5に供給された際の含水クラムの温度を60℃以上に維持することができるようにしてもよく、洗浄装置4からスクリュー型二軸押出乾燥機5に搬送する際に含水クラムの温度が40℃以上、好ましくは60℃以上となるよう加温してもよい。これにより、後工程である脱水工程及び乾燥工程を効果的に行うことが可能となり、最終的に得られる乾燥ゴムの含水率を大幅に低減させることが可能となる。
 図1に示すスクリュー型二軸押出乾燥機5は、上述した脱水工程及び乾燥工程に係る処理を行うように構成されている。なお、図1には好適な例としてスクリュー型二軸押出乾燥機5が図示されているが、脱水工程に係る処理を行う脱水機として遠心分離機やスクイザーなどを用いてもよく、乾燥工程に係る処理を行う乾燥機として熱風乾燥機、減圧乾燥機、エキスパンダー乾燥機、ニーダー型乾燥機などを用いてもよい。
 スクリュー型二軸押出乾燥機5は、脱水工程及び乾燥工程を経て得られる乾燥ゴムを所定の形状に成形して排出するように構成されている。具体的には、スクリュー型二軸押出乾燥機5は、洗浄装置4で洗浄された含水クラムを脱水する脱水機としての機能を有する脱水バレル部53と、含水クラムを乾燥する乾燥機としての機能を有する乾燥バレル部54とを備えており、さらにスクリュー型二軸押出乾燥機5の下流側に含水クラムを成形する成形機能を有するダイ59を備えて構成されている。
 以下、図2を参照しながら、スクリュー型二軸押出乾燥機5の構成について説明する。図2は、図1で示したスクリュー型二軸押出乾燥機5として好適な一具体例の構成を示している。このスクリュー型二軸押出乾燥機5により、上述した脱水・乾燥工程を好適に行うことができる。
 図2に示すスクリュー型二軸押出乾燥機5は、バレルユニット51内に不図示の一対のスクリューを備えてなる二軸スクリュー型の押出乾燥機である。スクリュー型二軸押出乾燥機5は、バレルユニット51内の一対のスクリューを回転駆動する駆動ユニット50を有する。この構成によりアクリルゴムに高シェアをかけて乾燥ができ好適である。駆動ユニット50は、バレルユニット51の上流端(図2で左端)に取り付けられている。また、スクリュー型二軸押出乾燥機5は、バレルユニット51の下流端(図2で右端)にダイ59を有する。
 バレルユニット51は、上流側から下流側(図2で左側から右側)にわたり、供給バレル部52、脱水バレル部53、乾燥バレル部54を有する。
 供給バレル部52は、2つの供給バレル、すなわち、第1の供給バレル52a及び第2の供給バレル52bにより構成されている。
 また、脱水バレル部53は、3つの脱水バレル、すなわち、第1の脱水バレル53a、第2の脱水バレル53b及び第3の脱水バレル53cにより構成されている。
 また、乾燥バレル部54は、8個の乾燥バレル、すなわち、第1の乾燥バレル54a、第2の乾燥バレル54b、第3の乾燥バレル54c、第4の乾燥バレル54d、第5の乾燥バレル54e、第6の乾燥バレル54f、第7の乾燥バレル54g、第8の乾燥バレル54hにより構成されている。
 このようにバレルユニット51は、分割された13個の各バレル52a~52b,53a~53c,54a~54hが上流側から下流側にわたり連結されて構成されている。
 また、スクリュー型二軸押出乾燥機5は、上記各バレル52a~52b,53a~53c,54a~54hを個別に加熱して、各バレル52a~52b,53a~53c,54a~54h内の含水クラムをそれぞれ所定温度に加熱する不図示の加熱手段を有する。加熱手段は、各バレル52a~52b,53a~53c,54a~54hに対応する数を備える。そのような加熱手段としては、例えば、各バレル52a~52b,53a~53c,54a~54h内に形成されたスチーム流通ジャケットにスチーム供給手段から高温スチームを供給するなどの構成が採用されるが、これに限定はされない。また、スクリュー型二軸押出乾燥機5は、各バレル52a~52b,53a~53c,54a~54hに対応する各加熱手段の設定温度を制御する不図示の温度制御手段を有する。
 なお、バレルユニット51における各バレル部52、53、54をそれぞれ構成する供給バレル、脱水バレル及び乾燥バレルの設置数は、図2に示す態様に限定されるものではなく、乾燥処理するアクリルゴムの含水クラムの含水量などに応じた数に設定することができる。
 例えば、供給バレル部52の供給バレルの設置数は例えば1~3個とされる。また、脱水バレル部53の脱水バレルの設置数は、例えば2~10個が好ましく、3~6個とすると、粘着性のアクリルゴムの含水クラムの脱水を効率よく行うことができるのでより好ましい。また、乾燥バレル部54の乾燥バレルの設置数は、例えば2~10個が好ましく、3~8個であるとより好ましい。
 バレルユニット51内の一対のスクリューは、駆動ユニット50に格納されたモータなどの駆動手段によって回転駆動される。一対のスクリューはバレルユニット51内の上流側から下流側にわたって延在しており、回転駆動されることで、供給バレル部52に供給された含水クラムを混合しながら下流側に搬送することができるようになっている。一対のスクリューとしては、互いに山部と谷部とが噛み合わされる状態とされた二軸噛合型であることが好ましく、これにより、含水クラムの脱水効率及び乾燥効率を高めることができる。
 また、一対のスクリューの回転方向は、同方向でも異方向でもよいが、セルフクリーニングの性能面からは同方向に回転する形式のものが好ましい。一対のスクリューのスクリュー形状としては、特に限定されず、各バレル部52、53、54において必要とされる形状であればよく、特に限定されない。
 供給バレル部52は、含水クラムをバレルユニット51内に供給する領域である。供給バレル部52の第1の供給バレル52aは、バレルユニット51内に含水クラムを供給するフィード口55を有する。
 脱水バレル部53は、含水クラムから、凝固剤などが含まれる液体(セラム水)を分離し排出する領域である。
 脱水バレル部53を構成する第1~第3の脱水バレル53a~53cは、含水クラムの水分を外部に排出する脱水スリット56a、56b、56cをそれぞれ有する。各脱水スリット56a、56b、56cは、各脱水バレル53a~53cにそれぞれ複数形成されている。
 各脱水スリット56a、56b、56cのスリット幅すなわち目開きは、使用条件に応じて適宜選択されればよく、通常で0.01~5mmとされ、含水クラムの損失が少なく、且つ含水クラムの脱水が効率的にできる点から、好ましくは0.1~1mmであり、0.2~0.6mmであればより好ましい。
 脱水バレル部53の各脱水バレル53a~53cにおける含水クラムからの水分の除去は、それぞれの脱水スリット56a、56b、56cから液状で除去する場合と、蒸気状で除去する場合との二通りがある。本実施形態の脱水バレル部53においては、水分を液状で除去する場合を排水と定義し、蒸気状で除去する場合を排蒸気と定義して区別する。
 脱水バレル部53においては、排水及び排蒸気を組み合わせることで、粘着性アクリルゴムの含水率を低下させることが効率よくできるので好適である。脱水バレル部53では、第1~第3の脱水バレル53a~53cのうち、どの脱水バレルで排水又は排蒸気を行うかは、使用目的に応じて適宜に設定すればよいが、通常製造されるアクリルゴム中の灰分量を少なくする場合は、排水を行う脱水バレルを多くするとよい。その場合、例えば図2に示すように、上流側の第1及び第2の脱水バレル53a、53bで排水を行い、下流側の第3の脱水バレル53cで排蒸気を行う。また、例えば脱水バレル部53が4つの脱水バレルを有する場合には、例えば上流側の3つの脱水バレルで排水を行い、下流側の1つの脱水バレルで排蒸気を行うといった態様が考えられる。一方、含水量を低減する場合には、排蒸気を行う脱水バレルを多くするとよい。
 脱水バレル部53の設定温度は、上述の脱水・乾燥工程で述べたように、通常60~150℃、好ましくは70~140℃、より好ましくは80~130℃の範囲であり、排水状態で脱水する脱水バレルの設定温度は、通常60℃~120℃、好ましくは70~110℃、より好ましくは80~100℃であり、排蒸気状態で脱水する脱水バレルの設定温度は、通常100~150℃、好ましくは105~140℃、より好ましくは110~130℃の範囲である。
 乾燥バレル部54は、脱水後の含水クラムを減圧下で乾燥させる領域である。乾燥バレル部54を構成する第1~第8の乾燥バレル54a~54hのうち、第2の乾燥バレル54b、第4の乾燥バレル54d、第6の乾燥バレル54f及び第8の乾燥バレル54hは、脱気のためのベント口58a、58b、58c、58dをそれぞれ有する。各ベント口58a、58b、58c、58dには、不図示のベント配管がそれぞれ接続されている。
 各ベント配管の末端には不図示の真空ポンプがそれぞれ接続されており、それら真空ポンプの作動により、乾燥バレル部54内が所定圧力に減圧されるようになっている。スクリュー型押出機5は、それら真空ポンプの作動を制御して乾燥バレル部54内の減圧度を制御する図示せぬ圧力制御手段を有する。
 乾燥バレル部54での減圧度は適宜選択されればよいが、上述したように、通常1~50kPa、好ましくは2~30kPa、より好ましくは3~20kPaに設定される。
 また、乾燥バレル部54内の設定温度は適宜選択されればよいが、上述したように、通常100~250℃、好ましくは110~200℃、より好ましくは120~180℃に設定される。
 乾燥バレル部54を構成する各乾燥バレル54a~54hにおいては、全ての乾燥バレル54a~54h内の設定温度を近似した値にしてもよいし、異ならせてもよいが、上流側(脱水バレル部53側)の温度よりも下流側(ダイ59側)の温度の方を高温に設定すると、乾燥効率が向上するので好ましい。
 ダイ59は、バレルユニット51の下流端に配置される金型であり、所定のノズル形状の吐出口を有する。乾燥バレル部54で乾燥処理されたアクリルゴムは、ダイ59の吐出口を通過することで、所定のノズル形状に応じた形状に押出成形される。ダイ59を通過するアクリルゴムは、ダイ59のノズル形状に応じて、粒状、柱状、丸棒状、シート状など、種々の形状に成形できるが、本発明においてはシート状に成型される。スクリューとダイ59との間には、ブレーカープレートや金網を設けてもよいし、設けなくてもよい。
 洗浄工程を経て得られたアクリルゴムの含水クラムは、フィード口55から供給バレル部52に供給される。供給バレル部52に供給された含水クラムは、バレルユニット51内の一対のスクリューの回転により、供給バレル部52から脱水バレル部53に送られる。脱水バレル部53では、前述したように第1~第3の脱水バレル53a~53cにそれぞれ設けられた脱水スリット56a、56b、56cから、含水クラムに含まれる水分の排水や排蒸気が行われて、含水クラムが脱水処理される。
 脱水バレル部53で脱水された含水クラムは、バレルユニット51内の一対のスクリューの回転により乾燥バレル部54に送られる。乾燥バレル部54に送られた含水クラムは可塑化混合されて融体となり、発熱して昇温しながら下流側へ運ばれる。そして、このアクリルゴムの融体中に含まれる水分が気化し、その水分(蒸気)が各ベント口58a、58b、58c、58dにそれぞれ接続された不図示のベント配管を通じて外部へ排出される。
 上記のように乾燥バレル部54を通過することで含水クラムは乾燥処理されてアクリルゴムの融体となり、そのアクリルゴムはバレルユニット51内の一対のスクリューの回転によりダイ59に供給されダイ59から押し出される。
 ここで、本実施形態に係るスクリュー型二軸押出乾燥機5の操業条件の一例を挙げる。
 バレルユニット51内の一対のスクリューの回転数(N)は、諸条件に応じて適宜選択されればよく、通常で10~1000rpmとされ、アクリルゴムの含水量とメチルエチルケトン不溶解分量を効率よく低減できる点から、好ましくは50~750rpm、より好ましくは100~500rpmであり、120~300rpmが最も好ましい。
 また、アクリルゴムの押出量(Q)は、格別限定されないが、通常で100~1500kg/hrとされ、好ましくは300~1200kg/hr、より好ましくは400~1000kg/hrであり、500~800kg/hrが最も好ましい。
 アクリルゴムの押出量(Q)とスクリューの回転数(N)との比(Q/N)は、格別限定されないが、通常で1~20とされ、好ましくは2~10、より好ましくは3~8であり、4~6が特に好ましい。
 バレルユニット51内の最大トルクは、格別限定されるものではないが、通常30~100N・m、好ましくは35~75N・m、より好ましくは40~60N・mの範囲である。
 バレルユニット51内の比動力は、格別な限定はないが、通常0.1~0.25[kw・h/kg]以上、好ましくは0.13~0.23[kw・h/kg]、より好ましくは0.15~0.2[kw・h/kg]の範囲である。
 バレルユニット51内の比電力は、格別な限定はないが、通常0.2~0.6[A・h/kg]以上、好ましくは0.25~0.55[A・h/kg]、より好ましくは0.35~0.5[A・h/kg]の範囲である。
 バレルユニット51内の剪断速度は、格別な限定はないが、通常40~150[1/s]以上、好ましくは45~125[1/s]、より好ましくは50~100[1/s]の範囲である。
 バレルユニット51内のアクリルゴムの剪断粘度は、格別な限定はないが、通常4000~8000[Pa・s]以下、好ましくは4500~7500[Pa・s]、より好ましくは5000~7000[Pa・s]の範囲である。
 図1に示す冷却装置6は、脱水機による脱水工程及び乾燥機による乾燥工程を経て得られた乾燥ゴムを冷却するように構成されている。冷却装置6による冷却方式としては、送風あるいは冷房下での空冷方式、水を吹き付ける水かけ方式、水中に浸漬する浸漬方式などを含む様々な方式を採用することが可能である。また、室温下に放置することで、乾燥ゴムを冷却するようにしてもよい。
 上述したように、ダイ59のノズル形状に応じて、スクリュー型押出機5から排出された乾燥ゴムは、粒状、柱状、丸棒状、シート状など、種々の形状に押出成形されるが、本発明においてはシート状に成型される。以下、図3を参照しながら、冷却装置6の一例として、シート状に成形されたシート状乾燥ゴム10を冷却する搬送式冷却装置60について説明する。
 図3は、図1で示した冷却装置6として好適な搬送式冷却装置60の構成を示している。図3に示す搬送式冷却装置60は、スクリュー型押出機5のダイ59の吐出口から排出されたシート状乾燥ゴム10を搬送しながら、空冷方式によって冷却するよう構成されている。この搬送式冷却装置60を用いることで、スクリュー型押出機5から排出されたシート状乾燥ゴムを好適に冷却することができる。
 図3に示す搬送式冷却装置60は、例えば、図2に示したスクリュー型押出機5のダイ59に直結するか、又はダイ59の近傍に設置して使用される。
 搬送式冷却装置60は、スクリュー型押出機5のダイ59から排出されるシート状乾燥ゴム10を図3中矢印A方向に搬送するコンベア61と、コンベア61上のシート状乾燥ゴム10に冷風を吹き付ける冷却手段65とを有する。
 コンベア61は、ローラ62、63と、これらローラ62、63に巻架され、シート状乾燥ゴム10がその上に載せられるコンベアベルト64とを有する。コンベア61は、コンベアベルト64上にスクリュー型押出機5のダイ59から排出されたシート状乾燥ゴム10を連続して下流側(図3で右側)に搬送するよう構成されている。
 冷却手段65は、特に限定されないが、例えば、不図示の冷却風発生手段から送られてくる冷却風をコンベアベルト64上のシート状乾燥ゴム10の表面に吹き付けることができるような構成を有するものなどが挙げられる。
 搬送式冷却装置60のコンベア61及び冷却手段65の長さ(冷却風の吹き付けが可能な部分の長さ)L1は、特に限定されないが、例えば10~100mであり、好ましくは20~50mである。また、搬送式冷却装置60におけるシート状乾燥ゴム10の搬送速度は、コンベア61及び冷却手段65の長さL1、スクリュー型押出機5のダイ59から排出されるシート状乾燥ゴム10の排出速度、目標とする冷却速度や冷却時間などに応じて適宜調整すればよいが、例えば10~100m/hrであり、より好ましくは15~70m/hrである。
 図3に示す搬送式冷却装置60によれば、スクリュー型押出機5のダイ59から排出されるシート状乾燥ゴム10をコンベア61にて搬送しつつ、シート状乾燥ゴム10に対し冷却手段65から冷却風を吹き付けることにより、シート状乾燥ゴム10の冷却が行われる。
 なお、搬送式冷却装置60としては、図3に示すような1つのコンベア61及び1つの冷却手段65を備える構成に特に限定されず、2つ以上のコンベア61と、これに対応する2つ以上の冷却手段65とを備えるような構成としてもよい。その場合には、2つ以上のコンベア61及び冷却手段65のそれぞれの総合長さを上記範囲とすればよい。
 図1に示すベール化装置7は、スクリュー型押出機5から押出成形され、さらに冷却装置6で冷却された乾燥ゴムを加工して、一塊のブロックであるベールを製造するよう構成されている。上述したように、スクリュー型押出機5は、乾燥ゴムを粒状、柱状、丸棒状、シート状など、種々の形状に押出成形することが可能であり、ベール化装置7は、このように種々の形状に成形された乾燥ゴムをベール化するように構成されている。ベール化装置7によって製造されるアクリルゴムベールの重さや形状などは特に限定されないが、例えば約20kgの略直方体形状のアクリルゴムベールが製造される。
 ベール化装置7は、例えばベーラーを備え、冷却された乾燥ゴムをベーラーにより圧縮することでアクリルゴムベールを製造してもよい。
 また、スクリュー型押出機5によってシート状乾燥ゴム10を製造した場合には、シート状乾燥ゴム10を積層したアクリルゴムベールを製造してもよい。例えば、図3に示す搬送式冷却装置60の下流側に配置されるベール化装置7に、シート状乾燥ゴム10を切断するカッティング機構が設けられていてもよい。具体的には、ベール化装置7のカッティング機構は、例えば、冷却されたシート状乾燥ゴム10を連続的に所定の間隔で切断して、所定の大きさのカットシート状乾燥ゴム16に加工するように構成されている。カッティング機構により所定の大きさに切断されたカットシート状乾燥ゴム16を複数枚積層することで、カットシート状乾燥ゴム16を積層したアクリルゴムベールを製造することができる。
 カットシート状乾燥ゴム16を積層したアクリルゴムベールを製造する場合には、例えば40℃以上のカットシート状乾燥ゴム16を積層することが好ましい。40℃以上のカットシート状乾燥ゴム16を積層することで、更なる冷却及び自重による圧縮によって良好な空気抜けが実現される。
 以下に、実施例及び比較例を挙げて、本発明についてより具体的に説明する。各例中の「部」、「%」及び「比」は、特に断りのない限り、重量基準である。なお、各種の物性などについては、以下の方法に従って評価した。
[単量体組成]
 アクリルゴムにおける単量体組成に関して、アクリルゴム中の各単量体単位の単量体構成はH-NMRで確認し、アクリルゴム中に反応性基の活性が残存していること及びその各反応性基含有量を下記方法で確認した。また、各単量体単位のアクリルゴム中の含有割合は、各単量体の重合反応に用いた使用量及び重合転化率から算出した。具体的には、重合反応は乳化重合反応でその重合転化率は、未反応の単量体がいずれも確認できない略100%であったことから、ゴム中の各単量体単位の含有割合は各単量体の使用量と同一とした。
[反応性基含有量]
 アクリルゴムベール中の反応性基の含有量は、下記方法により測定した。
(1)カルボキシル基量は、試料(アクリルゴムベール)をアセトンに溶解し水酸化カリウム溶液で電位差滴定を行うことにより算出した。
(2)エポキシ基量は、試料をメチルエチルケトンに溶解し、それに規定量の塩酸を加えてエポキシ基と反応させ、残留した塩酸量を水酸化カリウムで滴定することにより算出した。
(3)塩素量は、試料を燃焼フラスコ中で完全燃焼させ、発生する塩素を水に吸収させ硝酸銀で滴定することにより算出した。
[灰分量]
 アクリルゴムベール中に含まれる灰分量(%)は、JIS K6228 A法に準じて測定した。
[灰分成分量]
 アクリルゴムベール灰分中の各成分量(ppm)は、上記の灰分量測定の際に採取した灰分をΦ20mmの滴定濾紙に圧着し、ZSX Primus(Rigaku社製)を用いてXRF測定した。
[分子量及び分子量分布]
 アクリルゴムの分子量(Mw、Mn、Mz)及び分子量分布(Mw/Mn及びMz/Mw)は、溶媒としてジメチルホルムアミドに塩化リチウムが0.05mol/L、37%濃塩酸が0.01%の濃度でそれぞれ添加された溶液を用いたGPC-MALS法により測定される絶対分子量及び絶対分子量分布である。
 本装置である、ゲル浸透クロマトグラフィー多角度光散乱光度計の構成は、ポンプ(LC-20ADOpt 島津製作所社製)と、検出器である示差屈折率計(Optilab rEX Wyatt Technology社製)及び多角度光散乱検出器(DAWN HELEOS  Wyatt Technology社製)からなる。
 具体的には、GPC(Gel Permeation Chromatography)装置に多角度レーザ光散乱光度計(MALS)及び示差屈折率計(RI)を組み入れ、GPC装置でサイズ分別された分子鎖溶液の光散乱強度及び屈折率差を、溶出時間を追って測定することにより、溶質の分子量とその含有率を順次計算し求めた。GPC装置による測定条件及び測定方法は、以下のとおりである。
 カラム:TSKgel α-M 2本(φ7.8mm×30cm、東ソー社製)
 カラム温度:40℃
 流速:0.8ml/mm
 試料調整:試料(アクリルゴムベール)10mgに溶媒5mlを加え、室温で緩やかに撹拌した(溶解を視認)。その後0.5μmフィルターを用いてろ過を行った。
[ガラス転移温度(Tg)]
 アクリルゴムのガラス転移温度(Tg)は、示差走査型熱量計(DSC、製品名「X-DSC7000」、日立ハイテクサイエンス社製)を用いて測定した。
[メチルエチルケトン不溶解分量]
 アクリルゴムベールのメチルエチルケトン不溶解分量(%)は、メチルエチルケトンに対する不溶解分の量であり、以下の方法により求めた。
 アクリルゴムベール0.2g程度を秤量(Xg)し、100mlメチルエチルケトンに浸漬させて室温で24時間放置後、80メッシュ金網を用いてメチルエチルケトンに対する不溶解分を濾別した濾液、すなわち、メチルエチルケトンに溶解するゴム成分のみが溶解した濾液を蒸発乾燥固化させた乾燥固形分(Yg)を秤量し、下式により算出した。
 メチルエチルケトン不溶解分量(%)=100×(X-Y)/X
[比重]
 アクリルゴムベールの比重は、JIS K6268架橋ゴム-密度測定のA法に準じて測定した。
 下記の測定方法により求まる測定値は密度であるが、水の密度を1Mg/mとして、比重とする。具体的には、JIS K6268架橋ゴム-密度測定のA法に準じて求められるゴム試料の比重は、ゴム試料の空隙を含む容量で質量を割ったものであり、JIS K6268架橋ゴム-密度測定のA法に準じて測定されるゴム試料の密度を水の密度で除して求められるものである(ゴム試料の密度を水の密度で除すると、数値は同じで単位がなくなる)。詳細には、下記手順に基づいてゴム試料の比重が求められる。
(1)標準温度(23℃±2℃)に少なくとも3時間静置させたゴム試料から2.5gの試験片を切り出し、精度1mgの化学天秤上のフックから、質量が0.010g未満の細いナイロン糸を用いて試験片の底辺が化学天秤用振り分け皿から25mm上になるように吊り下げ、大気中で試験片の質量(m1)をmgまで2回測定する。
(2)次に、化学天秤用振り分け皿の上に置いた250cm容量のビーカーに煮沸後標準温度まで冷却した蒸留水を満たし、その中に試験片を浸漬し、試験片表面に付着する気泡を取り除き、天秤の指針の動きを数秒間観察し対流によって指針が徐々に触れないことを確認して水中での試験片の質量(m2)をmg単位で2回測定する。
(3)また、試験片の密度が1Mg/m未満の時(水中で試験片が浮いてしまう時)は、試験片におもりをつけて水中でのおもりの質量(m3)と、試験片及びおもりの質量(m4)をmg単位で2回測定する。
(4)ゴム試料の比重は、上記測定したm1、m2、m3、m4の各々の平均値を用いて次式に基づき密度(Mg/m)を算出し、算出した密度を水の密度(1.00Mg/m)で除して求める。
(おもりを用いないときのゴム試料の密度)
    密度=m1/(m1-m2)
(おもりを用いたときのゴム試料の密度)
    密度=m1/(m1+m3-m4)
[含水量]
 含水量(%)は、JIS K6238-1:オーブンA(揮発分測定)法に準じて測定した。
[pH]
 pHは、6g(±0.05g)のアクリルゴムベールをテトラヒドロフラン100gで溶解後、蒸留水2.0mlを添加し完全に溶解したことを確認後にpH電極で測定した。
[複素粘性率]
 複素粘性率ηは、動的粘弾性測定装置「ラバープロセスアナライザRPA-2000」(アルファテクノロジー社製)を用いて、歪み473%、1Hzにて温度分散(40~120℃)を測定し、各温度における複素粘性率ηを求めた。ここでは、上述の動的粘弾性のうち60℃における動的粘弾性を複素粘性率η(60℃)とし、100℃における動的粘弾性を複素粘性率η(100℃)として、その比率η(100℃)/η(60℃)の値を算出した。
[ムーニー粘度(ML1+4,100℃)]
 ムーニー粘度(ML1+4,100℃)は、JIS K6300の未架橋ゴム物理試験法に従って測定した。
[架橋性]
 ゴム試料の架橋性は、二次架橋を2時間行ったゴム架橋物の破断強度と4時間行ったゴム架橋物の破断強度との変化率((4時間架橋ゴム架橋物破断強度/2時間架橋ゴム架橋物破断強度)×100)を算出し、下記基準で判断した。
 ◎:破断強度変化率が10%未満のもの
 ×:破断強度変化率が10%以上のもの
[ロール加工性]
 ゴム試料のロール加工性は、ゴム試料をロール練りした時のロール巻き付け性とゴムの状態を観察し、以下の基準で評価した。
 ◎:混錬が容易で、ロールに巻き付き易くロールからの離れがみられず、混錬後のゴム組成物の表面が平滑であるもの
 〇:混錬が容易で、ロールに巻き付き易くロールからの離れが見られず、且つ混錬後のゴム組成物の表面の一部にわずかに凸凹が見られる
 □:混錬が容易で、ロール巻き付き性に優れ、且つ混錬後のゴム組成物の表面が多少凸凹しているもの
 △:混錬が容易で、多少ロール巻き付き性に劣り、混錬後のゴム組成物の表面があれているもの
 ×:混錬に負荷がかかりロール巻き付き性もわるいもの
[バンバリー加工性]
 ゴム試料のバンバリー加工性は、ゴム試料を50℃に加温されたバンバリーミキサーに投入し1分間素練り後、表1記載のゴム混合物配合の配合剤Aを投入して1段目のゴム混合物が一体化して最大トルク値を示すまでの時間、すなわちBIT(Black Incorporation Time)を測定し、比較例2を100とする指数で評価した(指数が小さいほど加工性に優れる)。
[保存安定性評価]
 ゴム試料の保存安定性は、ゴム試料を45℃×80%RHの恒温恒湿度槽(ESPEC社製SH-222)に投入し、7日間試験前後の含水量の変化率を算出し、比較例2を100とする指数で評価した(指数が小さいほど保存安定性に優れる)。
[耐水性評価]
 ゴム試料の耐水性は、JIS K6258に準拠してゴム試料の架橋物を温度85℃の蒸留水中に100時間浸漬させて浸漬試験を行い、浸漬前後の体積変化率を下記の式に従って算出し、比較例2を100とする指数で評価した(指数が小さいほど耐水性に優れる)。
 浸漬前後の体積変化率(%)=((浸漬後の試験片体積-浸漬前の試験片体積)/浸漬前の試験片体積)×100
[耐圧縮永久歪み特性]
 ゴム試料の耐圧縮永久歪み特性は、JIS K6262に従いゴム試料のゴム架橋物を25%圧縮させた状態において、175℃で90時間置いた後の圧縮永久歪率を測定して下記基準で評価した。
 ◎:圧縮永久歪率が15%未満である
 ×:圧縮永久歪率が15%以上である
[常態物性評価]
 ゴム試料の常態物性は、JIS K6251に従いゴム試料のゴム架橋物を破断強度、100%引張応力及び破断伸びを測定し以下の基準で評価した。
(1)破断強度は、10MPa以上を◎、10MPa未満を×として評価した。
(2)100%引張応力は、5MPa以上を◎、5MPa未満を×として評価した。
(3)破断伸びは、150%以上を◎、150%未満を×として評価した。
[メチルエチルケトン不溶解分量のバラツキ性評価]
ゴム試料のメチルエチルケトン不溶解分量のバラツキ評価を、ゴム試料20部(20kg)から任意に選択した20点のメチルエチルケトン不溶解分量を測定し、下記基準に基づき評価した。
 ◎:測定した20点のメチルエチルケトン不溶解分量の平均値を算出し、平均値±3の範囲内に測定した20点全てが入っているもの
 〇:測定した20点のメチルエチルケトン不溶解分量の平均値を算出し、平均値±5の範囲内に測定した20点全てが入っていたもの(平均値±3の範囲では測定した20点のうち1点でも外れてしまうが、平均値±5の範囲内には20点全てが入るもの)
 ×:測定した20点のメチルエチルケトン不溶解分量の平均値を算出し、平均値±5の範囲から測定した20点のうち1点でも外れたもの
[ムーニースコーチ抑制による加工安定性評価]
 特許第6683189号公報に記載されるスクリュー型二軸押出乾燥機から押し出されたシート状アクリルゴムの冷却速度とアクリルゴム組成物のムーニースコーチ安定性を評価した。
[実施例1]
 ホモミキサーを備えた混合容器に、表2-1に示すように、純水46部、単量体成分としてアクリル酸エチル4.5部、アクリル酸n-ブチル64.5部、アクリル酸メトキシエチル29.5部及びフマル酸モノn-ブチル1.5部、乳化剤としてオクチルオキシジオキシエチレンリン酸エステルナトリウム塩1.8部を仕込み撹拌して単量体エマルジョンを得た。
 温度計、撹拌装置を備えた重合反応槽に、純水170部及び上記で得られた単量体エマルジョン3部を投入し、窒素気流下で12℃まで冷却した後に、硫酸第一鉄0.00033部、アスコルビン酸ナトリウム0.02部、及び無機ラジカル発生剤の過硫酸カリウム0.2部を仕込み重合反応を開始した。重合反応槽内の温度を23℃に保ち単量体エマルジョンの残部を3時間かけて連続的に滴下し、反応開始50分後にn-ドデシルメルカプタン0.0072部、100分後にn-ドデシルメルカプタン0.0036部、及び120分後にL-アスコルビン酸ナトリウム0.4部を添加し重合反応を継続させ、重合転化率が略100%に達したところで重合停止剤としてのハイドロキノンを添加して重合反応を停止し、乳化重合液を得た。
 次いで、温度計と撹拌装置を備えた凝固槽で、80℃に加温し、撹拌装置の撹拌翼回転数600回転(周速3.1m/s)で激しく撹拌した2%硫酸マグネシウム水溶液(凝固剤として硫酸マグネシウムを用いた凝固液)350部中に、上記得られた乳化重合液を80℃に加温して連続的に添加して重合体を凝固させ、凝固物であるアクリルゴムのクラムと水を含む凝固スラリーを得た。得られたスラリーからクラムを濾別しつつ凝固層から水分を排出して含水クラムを得た。
 濾別された含水クラムの残った凝固槽内に194部の温水(70℃)を添加して15分間撹拌して含水クラムを洗浄した後に水分を排出させ、再び194部の温水(70℃)を添加して15分間撹拌して含水クラムの洗浄を行った(合計洗浄回数は2回)。洗浄した含水クラム(含水クラム温度65℃)をスクリュー型二軸押出乾燥機15に供給し、脱水・乾燥して幅300mmで厚さ10mmのシート状乾燥ゴムを押し出した。次に、スクリュー型二軸押出乾燥機15に直結して設けた搬送式例局装置を用いて、シート状乾燥ゴムを冷却速度200℃/hrで冷却した。
 なお、本実施例1で用いたスクリュー型二軸押出乾燥機は、1つの供給バレル、3つの脱水バレル(第1~第3の脱水バレル)、5つの乾燥バレル(第1~第5の乾燥バレル)で構成されている。第1の脱水バレルは排水を行い、第2及び第3の脱水バレルは排蒸気を行うようになっている。スクリュー型二軸押出乾燥機の操業条件は、以下のとおりとした。
含水量:
 ・第1の脱水バレルでの排水後の含水クラムの含水量:20%
 ・第3の脱水バレルでの排蒸気後の含水クラムの含水量:10%
 ・第5の乾燥バレルでの乾燥後の含水クラムの含水量:0.4%
ゴム温度:
 ・供給バレルに供給する含水クラムの温度:65℃
 ・スクリュー型二軸押出乾燥機から排出されるゴムの温度:140℃
各バレルの設定温度:
 ・第1の脱水バレル:100℃
 ・第2の脱水バレル:120℃
 ・第3の脱水バレル:120℃
 ・第1の乾燥バレル:120℃
 ・第2の乾燥バレル:130℃
 ・第3の乾燥バレル:140℃
 ・第4の乾燥バレル:160℃
 ・第5の乾燥バレル:180℃
運転条件:
 ・スクリューの直径(D):132mm
 ・スクリューの全長(L):4620mm
 ・L/D:35
 ・スクリューの回転数:135rpm
 ・乾燥バレルの減圧度:10kPa
 ・ダイからのゴムの押出量:700kg/hr
 ・ダイにおける樹脂圧:2MPa
 ・スクリュー型二軸押出乾燥機内での最大トルク:15N・m
 押し出されたシート状乾燥ゴムを、50℃まで冷却してからカッターで切断して、40℃以下にならない内に20部(20kg)になるように積層してアクリルゴムベール(A)を得た。得られたアクリルゴムベール(A)の反応性基含有量、灰分量、灰分成分量、メチルエチルケトン不溶解分量、pH、比重、ガラス転移温度(Tg)、含水量、分子量、分子量分布、及び100℃と60℃の複素粘性率を測定して表2-2に示した。また、アクリルゴムベール(A)の保存安定性試験を行って含水量変化率を求め、その結果を表2-2に示した。
 次いで、バンバリーミキサーを用い、アクリルゴムベール(A)100部と表1に記載の「配合1」の配合剤Aとを投入して、50℃で5分間混合した(1段目混合)。このときのBITを測定してアクリルゴムベール(A)のバンバリー加工性を評価しその結果を表2-2に示した。
 次に、得られた混合物を50℃のロールに移して、「配合1」の配合剤Bを配合して混合(2段目混合)しゴム組成物を得た。このときのロール加工性を評価しその結果を表2-2に示した。
Figure JPOXMLDOC01-appb-T000001
 得られたゴム組成物を、縦15cm、横15cm、深さ0.2cmの金型に入れ、プレス圧10MPaで加圧しながら180℃で10分間プレスすることにより一次架橋し、得られた一次架橋物を、ギヤー式オーブンにて、さらに180℃、2時間の条件で加熱して二次架橋させることにより、シート状のゴム架橋物を得た。そして、得られたシート状のゴム架橋物から3cm×2cm×0.2cmの試験片を切り取って耐水性、耐圧縮永久歪み特性及び常態物性を評価した。また、二次架橋を更に2時間行ったシート状ゴム架橋物の常態物性を測定し架橋性を評価した。それらの結果を表2-2に示した。
[実施例2]
 乳化剤をノニルフェニルオキシヘキサオキシエチレンリン酸エステルナトリウム塩1.8部に、無機ラジカル発生剤の過硫酸カリウム量を0.21部に、更に、連鎖移動剤n-ドデシルメルカプタンの後添加を50分後0.017部、100分後0.017部及び120分後0.017部に変更する以外は実施例1と同様に行い、アクリルゴムベール(B)を得て各特性を評価した。それらの結果を表2-2に示した。
[参考例1]
 単量体成分をアクリル酸エチル48.25部、アクリル酸n-ブチル50部及びフマル酸モノn-ブチル1.75部、乳化剤をトリデシルオキシヘキサオキシエチレンリン酸エステルナトリウム塩1.8部に変更し、更に、洗浄後の含水クラムを160℃の熱風乾燥機を用いて含水量0.4%まで乾燥を行いクラム状アクリルゴムを得た後に300×650×300mmのベーラーに充填し3MPaの圧力で25秒間押し固めベール状アクリルゴムとする以外は実施例1と同様に行いアクリルゴムベール(C)を得た。アクリルゴムベール(C)の各特性を評価し(配合剤は「配合2」に変更した)、それらの結果を表2-2に示した。
[参考例2]
 単量体成分をアクリル酸エチル28部、アクリル酸n-ブチル38部、アクリル酸メトキシエチル27部、アクリロニトリル5部及びアリルグリシジルエーテル2部に変更する以外は参考例1と同様に行い、アクリルゴムベール(D)を得て各特性(配合剤は「配合3」に変更した)を評価した。それらの結果を表2-2に示した。
[参考例3]
 単量体成分をアクリル酸エチル42.2部、アクリル酸n-ブチル35部、アクリル酸メトキシエチル20部、アクリロニトリル1.5部及びクロロ酢酸ビニル1.3部に変更する以外は参考例1と同様に行い、アクリルゴムベール(E)を得て各特性(配合剤は「配合4」に変更した)を評価した。それらの結果を表2-2に示した。
[参考例4]
 単量体成分をアクリル酸エチル48.25部、アクリル酸n-ブチル50部及びフマル酸モノn-ブチル1.75部、乳化剤をトリデシルオキシヘキサオキシエチレンリン酸エステルナトリウム塩1.8部に変更し、更に、洗浄後の含水クラムを160℃の熱風乾燥機を用いて含水量0.4%まで乾燥を行いクラム状アクリルゴムを得た後に300×650×300mmのベーラーに充填し3MPaの圧力で25秒間押し固めベール状アクリルゴムとする以外は実施例2と同様に行いアクリルゴムベール(F)を得た。アクリルゴムベール(F)の各特性を評価し(配合剤は「配合2」に変更した)、それらの結果を表2-2に示した。
[参考例5]
 単量体成分をアクリル酸エチル28部、アクリル酸n-ブチル38部、アクリル酸メトキシエチル27部、アクリロニトリル5部及びアリルグリシジルエーテル2部に変更する以外は参考例4と同様に行い、アクリルゴムベール(G)を得て各特性(配合剤は「配合3」に変更した)を評価した。それらの結果を表2-2に示した。
[参考例6]
 単量体成分をアクリル酸エチル42.2部、アクリル酸n-ブチル35部、アクリル酸メトキシエチル20部、アクリロニトリル1.5部及びクロロ酢酸ビニル1.3部に変更する以外は参考例4と同様に行い、アクリルゴムベール(H)を得て各特性(配合剤は「配合4」に変更した)を評価した。それらの結果を表2-2に示した。
[参考例7]
 無機ラジカル発生剤の過硫酸カリウム量を0.22部に変更し、連鎖移動剤を添加せず且つベーラーによりベール化はせずにクラム状のアクリルゴムを得る以外は参考例6と同様に行い、クラム状アクリルゴム(I)を得て各特性を評価した。それらの結果を表2-2に示した。
[比較例1]
 凝固反応を、乳化重合後の撹拌している乳化重合液(撹拌数100rpm、周速0.5m/s)に0.7%硫酸マグネシウム水溶液を添加して行う以外は参考例7と同様に行い、クラム状アクリルゴム(J)を得て各特性を評価した。それらの結果を表2-2に示した。
[比較例2]
 乳化剤をラウリル硫酸ナトリウム塩0.709部及びポリオキシエチレンドデシルエーテル1.82部に変更し、凝固液を0.7%硫酸ナトリウム水溶液に変更し、且つ、洗浄方法を、凝固反応後の含水クラム100部に対し、工業用水194部を添加し、凝固槽内で25℃、5分間撹拌した後、凝固槽から水分を排出する含水クラムの洗浄を4回行い、次いで、pH3の硫酸水溶液194部を添加して25℃で5分間撹拌した後、凝固槽から水分を排出させて酸洗浄を1回行った後、純水194部添加して純水洗浄を1回行うように変更する以外は比較例1と同様に行い、クラム状アクリルゴム(K)を得て各特性を評価した。それらの結果を表2-2に示した。
[比較例3]
 連鎖移動剤のn-ドデシルメルカプタン0.025部を単量体エマルジョンに連続的に添加し且つ含水クラムの洗浄を工業用水194部を添加し、凝固槽内で25℃、5分間撹拌した後、凝固槽から水分を排出する操作を2回だけ行う以外は比較例2と同様に行い、クラム状アクリルゴム(L)を得て各特性を評価した。それらの結果を表2-2に示した。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表2-1と表2-2から、本発明のカルボキシル基、エポキシ基及び塩素原子からなる群から選ばれる少なくとも1種の反応性基を有し、GPC-MALS法により測定される絶対分子量及び絶対分子量分布で重量平均分子量(Mw)が1,000,000~3,500,000、重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が3.7~6.5のアクリルゴムからなり、メチルエチルケトン不溶解分量が50重量%以下、灰分量が0.2重量%以下で且つ灰分中のナトリウム、マグネシウム、カルシウム、リン及びイオウの合計量が50重量%以上であるアクリルゴムベール(A)~(B)は、ロール加工性、バンバリー加工性、耐水性、耐圧縮永久歪み特性及び強度特性含めた常態物性が格段に優れるとともに、架橋性や保存安定性にも優れていることがわかる(実施例1~2)。
 表2-2からは、また、本願実施例、参考例及び比較例の条件で製造したアクリルゴムベール(A)~(L)は、カルボキシル基、エポキシ基及び塩素原子等のイオン反応性基を有し、且つGPC-MALS法で測定される絶対分子量の重量平均分子量(Mw)が100万を超えて大きいため、短時間の架橋性、耐圧縮永久歪み特性及び強度特性含めた常態物性のいずれにも優れていることがわかる(実施例1~2、参考例1~7及び比較例1~3)。しかしながら、比較例1~3のクラム状アクリルゴム(J)~(L)は、架橋性、耐圧縮永久歪み特性及び強度特性に優れてもロール加工性、バンバリー加工性、耐水性及び保存安定性に劣っており(比較例1~2)、また、ロール加工性、耐水性及び保存安定性に劣っている(比較例3)。
 表2-2から、ロール加工性に関しては、重量平均分子量(Mw)が100万~350万の間にあり且つ重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が大きい時、好ましくは3.5以上、より好ましくは3.7以上、更に好ましくは4以上であるときにアクリルゴムベールの強度特性を損なわずにロール加工性を格段に改善できることがわかる(実施例1~2と比較例1~3との比較)。
 表2-1及び表2-2からは、かかるMwが大きく且つMw/Mnが広い強度特性とロール加工性に優れるアクリルゴムが、無機ラジカル発生剤で1本の重合鎖を伸ばし且つ連鎖移動剤(n-ドデシルメルカプタン)を回分的に後添加することにより達成できることがわかる(実施例1~2及び参考例1~6)。また、Mw/Mnを効率的に広げるためには、連鎖移動剤の回分的な後添加の回数が大きく影響し、回分的な後添加回数が3回よりも2回の方がMw/Mnが広くなるが(参考例1~3と参考例4~6との比較)、連鎖移動剤を連続的に添加してしまうとMw/Mnの広がりが僅かで且つロール加工性の改善が限定的なことがわかる(比較例3)。これは、GPC-MALS法のチャート上では完全な二山にはならないが、連鎖移動剤を回分的に後添加することにより高分子量成分と低分子量成分とができてMw/Mnを広くして且つロール加工性を大幅に改善していると推測している。また、表2-1には示していないが、本願実施例においては、還元剤のアスコルビン酸ナトリウムを重合開始120分後に添加しており、こうすることにより、アクリルゴムの高分子量成分生成が容易になり連鎖移動剤後添加のMw/Mnを広げる効果を増大している。また、表2-1には示していないが、無機ラジカル発生剤の代わりに有機ラジカル発生剤を用いるとMw/Mnが小さくなりロール加工性が格段に落ちて好ましくなかった。
 表2-2から、アクリルゴムベールのバンバリー加工性に関しては、メチルエチルケトン不溶解分量に相関し、メチルエチルケトン不溶解分が少ない方がバンバリー加工性に優れていることがわかる。アクリルゴムのバンバリー加工性は、特に、メチルエチルケトン不溶解分量が50重量%以下、好ましくは30重量%以下で優れ(参考例1~6及び比較例3と参考例7及び比較例1~2との比較)、そしてメチルエチルケトン不溶解分量が10重量%以下、好ましくは5重量%以下になると格段に優れることがわかる(実施例1~2)。アクリルゴムベールのメチルエチルケトン不溶解分量は、連鎖移動剤存在下で乳化重合することで減少させることができ(参考例1~6及び比較例3)、特に、メチルエチルケトン不溶解分量が、強度特性を高めるために重合転化率を高めると急激に増加してくるので、重合後半での連鎖移動剤後添加の参考例1~6においてメチルエチルケトン不溶解分生成を抑制できていることがわかる。アクリルゴムベールのメチルエチルケトン不溶解分量は、さらに、含水クラムの乾燥をスクリュー型二軸押出乾燥機で行うことにより格段に減少させ製造されるアクリルゴムベールのバンバリー加工性を大幅に改善できることがわかる(実施例1~2と参考例1~6との比較)。本発明においては、本実施例では示していないが、連鎖移動剤を添加せずに乳化重合で急増したメチルエチルケトン不溶解分量が(比較例1~2)、スクリュー型二軸押出乾燥機内で実質的に水分を含まない状態(含水量1重量%未満)で溶融混錬されることで消失し強度特性を損ねずにバンバリー加工性を大幅に改善できることを確認している。
 表2-2から、耐水性に関しては、比較例1~3のクラム状アクリルゴム(J)~(L)に対して、本発明の実施例1~2のアクリルゴムベール(A)~(B)が格段に優れ、次いで参考例1~7のアクリルゴムベール(C)~(I)が優れていることがわかる。イオン反応性基の違いによる耐水性への影響を灰分量が同等の参考例1~7の中でみると、塩素原子を有する参考例3、6、7のアクリルゴムベール(E、H、I)よりもカルボキシル基を有する参考例1、4のアクリルゴムベール(C、F)及びエポキシ基を有する参考例2、5のアクリルゴムベール(D、G)の方が2倍優れていることがわかる。本発明に係る実施例のアクリルゴムベール(A)~(B)、参考例のアクリルゴムベール(C)~(I)及び比較例のクラム状アクリルゴム(J)~(L)の灰分中のリン、マグネシウム、ナトリウム、カルシウム及びイオウの合計の元素量はいずれも90重量%を超えてアクリルゴムの耐水性や金型離型性等の特性に優れるが、特に、灰分量が同じでも灰分中のリンとマグネシウムの割合が多い方が耐水性に優れていることがわかる(参考例7と比較例2との比較)。
 表2-2から、アクリルゴムベールの耐水性に関しては、また、灰分量に大きく影響されていることがわかる。アクリルゴムの灰分量は、ナトリウムやイオウ成分の多いものよりもリンやマグネシウム成分の多いものの方が洗浄での除去が困難で、通常の凝固工程を行った含水クラムの洗浄では多量に残留してしまっている(比較例1と比較例2との比較)。しかしながら、リンやマグネシウム成分の多い灰分でも、凝固剤を濃い目の水溶液(凝固液)にし且つ激しく撹拌して凝固液中に乳化重合した乳化重合液を添加して凝固反応を行い生成した含水クラムを、洗浄を温水で行うこと(参考例1~7)、及び洗浄後の含水クラムを脱水すること(実施例1~2)で大幅に低減できることがわかった。また、灰分量が同程度でも、灰分中のリンとマグネシウムの含有量を多くすること及びリンとマグネシウムの比率を特定にすることによりアクリルゴムベールの耐水性を大幅に改善できることがわかる(参考例1~7と比較例2との比較)。また、アクリルゴムベールの耐水性は、反応性基の種類により異なり、塩素原子よりもカルボキシル基やエポキシ基の方が優れていることがわかる(参考例1~2と参考例3との比較、参考例4~5と参考例6との比較)。また、表2-1及び表2-2には示していないが、比較例2と同様なアクリルゴムの製造において(灰分はナトリウムとイオウの成分が多い)、参考例3と同様な方法で凝固反応を行い洗浄することで大幅に耐水性が改善でき、更に実施例1と同様に洗浄後の含水クラムをスクリュー型二軸押出乾燥機で脱水・乾燥することで灰分量は0.15重量%以下、好ましくは0.13重量%以下にでき、耐水性の指数も10~15程度まで改善されていた。なお、洗浄回数によるアクリルゴム中の灰分量への影響は、室温での水洗浄では、3回目までは灰分量を確実に減少させることができるが、3回目と4回目では殆ど差が無く、4回目以降での灰分量低減効果は殆ど見られなかった。一方、温水での洗浄では、2回目まででアクリルゴム中の灰分量は低減し、3回目以降の洗浄効果は殆ど認められなかった。
 表2-2から、また、本発明のアクリルゴムベール(A)~(B)は、架橋性、ロール加工性、バンバリー加工性、耐水性、耐圧縮永久歪み特性及び強度特性に優れるとともに、保存安定性にも格段に優れることがわかる(実施例1~2)。アクリルゴムベールの保存安定性は、アクリルゴムベールの比重が大きく関係しており、比重が大きいとアクリルゴムに空気を巻き込んでおらず保存安定性に優れていることがわかる(実施例1~2、参考例1~6及び比較例1~3との比較)。比重の大きなアクリルゴムベールは、クラム状のアクリルゴムをベーラーで圧縮させてベール化することにより(参考例1~6)、更に好適にはスクリュー型二軸押出乾燥機で空気を巻き込まない状態でシート状に押し出して特定温度で切断・積層してベール化することにより(実施例1~2)得ることができる。本発明においては、特に、減圧下で溶融混錬及び乾燥したアクリルゴムシートを積層したアクリルゴムベールとしたものが、短時間架橋性、ロール加工性、耐圧縮永久歪み特性、強度特性含めた常態物性及び耐水性を損ねることなく格段に保存安定性を改善されていることがわかる(実施例1~2)。アクリルゴムベールの保存安定性は、また、灰分量が少ないほど好ましいことがわかる(実施例1~2)。
 かくして本発明のカルボキシル基、エポキシ基及び塩素原子からなる群から選ばれる少なくとも1種の反応性基を有し、GPC-MALS法により測定される絶対分子量及び絶対分子量分布で重量平均分子量(Mw)が1,000,000~3,500,000、重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が3.7~6.5のアクリルゴムからなり、メチルエチルケトン不溶解分量が50重量%以下、灰分量が0.2重量%以下で且つ灰分中のナトリウム、マグネシウム、カルシウム、リン及びイオウの合計量が50重量%以上であるアクリルゴムベール(A)~(B)は、ロール加工性、バンバリー加工性、耐水性、耐圧縮永久歪み特性及び強度特性含めた常態物性が高度にバランスされ、しかも、架橋性や保存安定性にも優れていることがわかった。
[生成含水クラムの粒径について]
 実施例1~2、参考例1~7及び比較例1の凝固工程において生成した含水クラムについて、(1)710μm~6.7mm(710μmを通過せず6.7mm通過)、(2)710μm~4.75mm(710μmを通過せず4.75mmを通過)、(3)710μm~3.35mm(710μm通過せず3.35mm通過)の全含水クラム量に対する割合をJIS篩を用いて測定した。それらの結果を下記に示す。
実施例1:(1)90重量%、(2)90重量%、(3)87重量%
実施例2:(1)92重量%、(2)91重量%、(3)89重量%
参考例1:(1)89重量%、(2)87重量%、(3)83重量%
参考例2:(1)91重量%、(2)90重量%、(3)83重量%
参考例3:(1)93重量%、(2)91重量%、(3)89重量%
参考例4:(1)95重量%、(2)89重量%、(3)80重量%
参考例5:(1)92重量%、(2)92重量%、(3)88重量%
参考例6:(1)94重量%、(2)93重量%、(3)87重量%
参考例7:(1)90重量%、(2)89重量%、(3)88重量%
比較例1:(1)15重量%、(2)1重量%、(3)0重量%
 これらの結果より、凝固工程で生成する含水クラムの大きさで同じ洗浄をしてもアクリルゴムベール中に残存する灰分量が相違し、(1)~(3)の特定割合が多いものの洗浄効率が高く灰分量が低減し耐水性に優れていることがわかる(表2-2の参考例1~7と比較例1との比較)。また、さらに、(1)~(3)の特定割合の多い含水クラムのものは、20重量%脱水時の灰分除去率も高く、灰分量をより低減しアクリルゴムベールの耐水性を格段に改善していることがわかる(実施例1~2と参考例1~7との比較)。なお、参考例6と参考例7と比べてわかるように、凝固工程で生成する含水クラムの粒子径は連鎖移動剤の有無には関係していない。
 また、参考のために、凝固工程において乳化重合液を凝固液に添加する以外は比較例1と同様に行い(参考例8)、また、乳化重合液を凝固液に添加し凝固液の凝固剤濃度を0.7重量%から2重量%に変更する以外は比較例1と同様に行い(参考例9)、生成する含水クラムの粒径割合とアクリルゴム中の灰分量を測定した。それらの結果を下記に示す。なお、参考例9の凝固液の撹拌数100rpmを600rpmに変更し、周速を0.5m/sから3.1m/sに増大し、激しく回転する条件に変えて実施すると参考例7と同じ条件となる。
参考例8:(1)90重量%、(2)55重量%、(3)22重量%、灰分量0.55重量%
参考例9:(1)91重量%、(2)70重量%、(3)40重量%、灰分量0.41重量%
 これらの結果より、アクリルゴムベール中の灰分量が、凝固反応において、凝固液濃度を高め(2%)、乳化重合液を撹拌している凝固液中に添加して行う方法に変え(Lx↓)、且つ、凝固液の撹拌を激しくする(撹拌数600rpm/周速3.1m/s)ことで生成する含水クラムのクラム径を710μm~4.75mmの特定範囲に集束でき、温水による洗浄効率および脱水時の乳化剤や凝固剤の除去効率が格段に向上してアクリルゴムベール中の灰分量を低減し、アクリルゴムベールの架橋性、ロール加工性、耐圧縮永久歪み特性及び強度特性含めた常態物性等の特性を損ねずに耐水性を大幅に改善できていることがわかる(実施例1~2)。
[実施例3]
 表3-1に示すように、単量体成分をアクリル酸エチル74.5部、アクリル酸n-ブチル17部、アクリル酸メトキシエチル7部、フマル酸モノn-ブチル1.5部及び乳化剤をトリデシルオキシヘキサオキシエチレンリン酸エステルナトリウム塩1.8部に変更する以外は実施例2と同様にして行い、アクリルゴムベール(M)を得て各特性を評価し、それらの結果を表3-2に示した。また、表3-1には、スクリュー型二軸押出乾燥機の脱水(排水)後含水量、最大トルク、比電力、比動力、剪断速度及び剪断粘度を示した。
[実施例4]
 単量体成分をアクリル酸エチル74.5部、アクリル酸n-ブチル17部、アクリル酸メトキシエチル7部、及びフマル酸モノn-ブチル1.5部及び乳化剤をトリデシルオキシヘキサオキシエチレンリン酸エステルナトリウム塩1.8部に変更する以外は実施例1と同様にして行い、アクリルゴムベール(N)を得て各特性を評価し、それらの結果を表3-2に示した。また、表3-1には、スクリュー型二軸押出乾燥機の脱水(排水)後含水量、最大トルク、比電力、比動力、剪断速度及び剪断粘度を示した。
[実施例5]
 単量体成分をアクリル酸エチル28部、アクリル酸n-ブチル38部、アクリル酸メトキシエチル27部、アクリロニトリル5部及びアリルグリシジルエーテル2部に、及びスクリュー型二軸押出乾燥機の運転条件を高シェア(最大トルク45N・m)に変更する以外は実施例3と同様にして行い、アクリルゴムベール(O)を得て各特性(配合剤は「配合3」に変更した)を評価し、それらの結果を表3-2に示した。また、表3-1には、スクリュー型二軸押出乾燥機の脱水(排水)後含水量、最大トルク、比電力、比動力、剪断速度及び剪断粘度を示した。
[実施例6]
 単量体成分をアクリル酸エチル48.5部、アクリル酸n-ブチル50部及びフマル酸モノn-ブチル1.5部に変更する以外は実施例5と同様にして行い、アクリルゴムベール(P)を得て各特性(配合剤は「配合1」に変更した)を評価し、それらの結果を表3-2に示した。また、表3-1には、スクリュー型二軸押出乾燥機の脱水(排水)後含水量、最大トルク、比電力、比動力、剪断速度及び剪断粘度を示した。
[実施例7]
 単量体成分をアクリル酸エチル48.25部、アクリル酸n-ブチル50部及びフマル酸モノn-ブチル1.75部に変更する以外は実施例5と同様にして行い、アクリルゴムベール(Q)を得て各特性(配合剤は「配合2」に変更した)を評価し、それらの結果を表3-2に示した。また、表3-1には、スクリュー型二軸押出乾燥機の脱水(排水)後含水量、最大トルク、比電力、比動力、剪断速度及び剪断粘度を示した。
[実施例8]
 単量体成分をアクリル酸エチル28部、アクリル酸n-ブチル38部、アクリル酸メトキシエチル27部、アクリロニトリル5部及びアリルグリシジルエーテル2部に、及びスクリュー型二軸押出乾燥機の運転条件を高シェア(最大トルク45N・m)に変更する以外は実施例4と同様にして行い、アクリルゴムベール(R)を得て各特性(配合剤は「配合3」に変更した)を評価し、それらの結果を表3-2に示した。また、表3-1には、スクリュー型二軸押出乾燥機の脱水(排水)後含水量、最大トルク、比電力、比動力、剪断速度及び剪断粘度を示した。
[実施例9]
 単量体成分をアクリル酸エチル48.5部、アクリル酸n-ブチル50部及びフマル酸モノn-ブチル1.5部に変更する以外は実施例8と同様にして行い、アクリルゴムベール(S)を得て各特性(配合剤は「配合1」に変更した)を評価し、それらの結果を表3-2に示した。また、表3-1には、スクリュー型二軸押出乾燥機の脱水(排水)後含水量、最大トルク、比電力、比動力、剪断速度及び剪断粘度を示した。
[実施例10]
 単量体成分をアクリル酸エチル48.25部、アクリル酸n-ブチル50部及びフマル酸モノn-ブチル1.75部に変更する以外は実施例8と同様にして行い、アクリルゴムベール(T)を得て各特性(配合剤は「配合2」に変更した)を評価し、それらの結果を表3-2に示した。また、表3-1には、スクリュー型二軸押出乾燥機の脱水(排水)後含水量、最大トルク、比電力、比動力、剪断速度及び剪断粘度を示した。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表3-1と表3-2からは、スクリュー型二軸押出乾燥機の最大トルクを特定領域まで高めて(高シェアにして)含水クラムを脱水・乾燥することで、本発明のアクリルゴムベールの架橋性、バンバリー加工性。耐水性、耐圧縮永久歪み特性及び強度特性の特性を損ねることなくロール加工性を格段に高められることがわかる(実施例3~4と実施例5~10との比較)。これは、連鎖移動剤を後添加して乳化重合した高分子量成分と低分子量成分とからなるアクリルゴムをスクリュー型二軸押出乾燥機を用いて高シェアでシェアをかけて乾燥することにより更に適度に分子量分布を広げることができロール加工性を更に改善できることがわかる。一方、表3-1及び表3-2には示していないが、連鎖移動剤を過度に添加して分子量分布(Mw/Mn)を過度、例えば10以上に広げるとアクリルゴムの低分子量成分が多くなり過ぎて強度特性や耐圧縮永久歪み特性に劣り好ましくないことがわかった。
 さらに、各ゴム試料について、前述の方法で、メチルエチルケトン不溶解分量のバラツキ性を評価した。すなわち、ゴム試料のメチルエチルケトン不溶解分量のバラツキ評価を、ゴム試料20部(20kg)から任意に選択した20点のメチルエチルケトン不溶解分量を測定し、前述の基準に基づき評価した。
 ゴム試料として実施例1~10で得られたアクリルゴムベール(A)~(B)及び(M)~(T)及び比較例1で得られたクラム状アクリルゴム(J)について、メチルエチルケトン不溶解分量のバラツキ性評価を行うと、本発明に係る実施例1~10のアクリルゴムベール(A)~(B)及び(M)~(T)の結果はいずれも「◎」であり、比較例1のクラム状アクリルゴム(J)の結果は「×」であった。
 これは、アクリルゴムベール(A)~(B)及び(M)~(T)は、スクリュー型二軸押出乾燥機で溶融混錬し実質的に水分がない状態(含水量1重量%未満)で溶融混錬及び乾燥されることでメチルエチルケトン不溶解分量が殆ど消失し且つメチルエチルケトン不溶解分量バラツキも殆ど無くなることで、架橋性、ロール加工性、耐圧縮永久歪み特性及び強度特性含めた常態物性を損なうことなく、バンバリー加工性を格段に向上できたと推測される。
 一方、比較例1のアクリルゴム(J)を製造する条件で乳化重合及び凝固洗浄まで行った後に生成した含水クラムを、実施例1と同じ条件でスクリュー型二軸押出乾燥機に投入し押出乾燥させて得られたアクリルゴムについて測定したメチルエチルケトン不溶解分量及びメチルエチルケトン不溶解分量バラツキは、アクリルゴムベール(A)とほぼ同等でバンバリー加工性も改善できていることがわかったが、ロール加工性は「×」評価のままであった。
 実施例1~10のアクリルゴムベール(A)~(B)及び(M)~(T)を含むアクリルゴム組成物について、前述したムーニースコーチ抑制による加工安定性評価の方法で、温度125℃におけるムーニースコーチ時間t5(分)をJIS K 6300に従って測定し、下記基準でムーニースコーチ保存安定性を評価した。その結果、いずれも「◎」の良好な結果であった。
 ◎:ムーニースコーチ時間t5が2.0分を超えるもの
 〇:ムーニースコーチ時間t5が1.5~2.0分のもの
 ×:ムーニースコーチ時間t5が1.5分未満のもの
 なお、これらのアクリルゴムベール(A)~(B)及び(M)~(T)に関して、スクリュー型二軸押出乾燥機から押し出されるシート状乾燥ゴムの冷却速度は、実施例1と同様に略200℃/hrと早くいずれも40℃/hr以上である。
[金型への離型性]
 実施例1~10で得られたアクリルゴムベール(A)~(B)及び(M)~(T)のゴム組成物を、10mmφ×200mmmの金型に圧入し、金型温度165℃で2分間架橋後のゴム架橋物を取り出し、以下の基準で金型離型性を評価すると、アクリルゴムベール(A)~(B)及び(M)~(T)はいずれも「◎」と良好な評価であった。
 ◎:金型から簡単に離型でき型残りもない
 〇:金型から簡単に離型できるが型残りがほんの僅かに認められる
 △:金型から簡単に離型できるが型残りが僅かにある
 ×:金型から剥がしにくい
 1 アクリルゴム製造システム
 3 凝固装置
 4 洗浄装置
 5 スクリュー型押出機
 6 冷却装置
 7 ベール化装置
 

Claims (42)

  1.  カルボキシル基、エポキシ基及び塩素原子からなる群から選ばれる少なくとも1種の反応性基を有し、GPC-MALS法により測定される絶対分子量及び絶対分子量分布による重量平均分子量(Mw)が1,000,000~3,500,000、重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が3.7~6.5であるアクリルゴムからなり、メチルエチルケトン不溶解分量が50重量%以下、灰分量が0.2重量%以下で且つ灰分中のナトリウム、マグネシウム、カルシウム、リン及びイオウの合計量が50重量%以上であるアクリルゴムベール。
  2.  反応性基が、イオン反応性基である請求項1に記載のアクリルゴムベール。
  3.  アクリルゴムが、(メタ)アクリル酸アルキルエステル及び(メタ)アクリル酸アルコキシアルキルエステルからなる群から選ばれる少なくとも1種の(メタ)アクリル酸エステル由来の結合単位、カルボキシル基、エポキシ基及び塩素原子からなる群から選ばれる少なくとも1種の反応性基を含有する単量体由来の結合単位、及び必要に応じてその他の単量体由来の結合単位からなるものである請求項1または2に記載のアクリルゴムベール。
  4.  メチルエチルケトン不溶解分量が、15重量%以下である請求項1~3のいずれか1項に記載のアクリルゴムベール。
  5.  メチルエチルケトン不溶解分量を20点測定したときの値が、(平均値±5)重量%の範囲内に全て入るものである請求項1~4のいずれか1項に記載のアクリルゴムベール。
  6.  比重が、0.9以上である請求項1~5のいずれか1項に記載のアクリルゴムベール。
  7.  pHが、6以下である請求項1~6のいずれか1項に記載のアクリルゴムベール。
  8.  リン酸エステル塩または硫酸エステル塩を乳化剤として使用し乳化重合したものである請求項1~7のいずれか1項に記載のアクリルゴムベール。
  9.  乳化重合した重合液をアルカリ金属塩または周期表第2族金属塩を凝固剤として使用することにより凝固させ、乾燥したものである請求項1~8のいずれか1項に記載のアクリルゴムベール。
  10.  凝固後に溶融混錬及び乾燥されたものである請求項1~9のいずれか1項に記載のアクリルゴムベール。
  11.  前記の溶融混錬及び乾燥が、実質的に水分を含まない状態で行われたものである請求項10に記載のアクリルゴムベール。
  12.  前記の溶融混錬及び乾燥が、減圧下で行われたものである請求項10または11に記載のアクリルゴムベール。
  13.  前記の溶融混錬及び乾燥に、40℃/hr以上の冷却速度で冷却されたものである請求項10~12のいずれか1項に記載のアクリルゴムベール。
  14.  粒子径710μm~6.7mmの範囲の割合が50重量%以上の含水クラムを洗浄・脱水・乾燥させたものである請求項1~13のいずれか1項に記載のアクリルゴムベール。
  15.  (メタ)アクリル酸アルキルエステル及び(メタ)アクリル酸アルコキシアルキルエステルからなる群から選ばれる少なくとも1種の(メタ)アクリル酸エステル、カルボキシル基、エポキシ基及び塩素原子からなる群から選ばれる少なくとも1種の反応性基を含有する単量体、及び、必要に応じて共重合可能なその他の単量体を含んでなる単量体成分を、水と乳化剤とでエマルジョン化するエマルジョン工程と、
     無機ラジカル発生剤と還元剤とからなるレドックス触媒存在下に乳化重合を開始し、重合途中で連鎖移動剤と還元剤を回分的に添加した後に、重合転化率が90重量%以上まで乳化重合を継続し乳化重合液を得る乳化重合工程と、
     得られた乳化重合液を撹拌している凝固液に添加して凝固し含水クラムを生成する凝固工程と、
     生成した含水クラムを温水で洗浄する洗浄工程と、
     洗浄した含水クラムを、脱水スリットを有する脱水バレルと減圧下の乾燥バレルと先端部にダイを有するスクリュー型二軸押出乾燥機を用いて脱水バレルで含水量1~40重量%まで脱水し、且つ、乾燥バレルで1重量%未満まで乾燥してシート状の乾燥ゴムをダイから押し出す脱水・乾燥:成形工程と、
     押し出されたシート状乾燥ゴムを切断後に積層するベール化工程と、
     を含むアクリルゴムベールの製造方法。
  16.  請求項1~14のいずれか1項に記載のアクリルゴムベールを製造する請求項15に記載のアクリルゴムベールの製造方法。
  17.  乳化重合工程において、リン酸エステル塩または硫酸エステル塩を乳化剤として使用し乳化重合を行う請求項15または16に記載のアクリルゴムベールの製造方法。
  18.  乳化重合工程で生成した重合液を、アルカリ金属塩または周期表第2族金属塩を凝固剤として使用することで凝固させ、乾燥する請求項15~17のいずれか1項に記載のアクリルゴムベールの製造方法。
  19.  乳化重合工程で生成した重合液を、アルカリ金属塩または周期表第2族金属塩を含む凝固剤を含む水溶液中に添加し撹拌することで凝固させる請求項18に記載のアクリルゴムベールの製造方法。
  20.  乳化重合工程で生成した重合液を凝固剤と接触させて凝固した後、溶融混錬及び乾燥する請求項15~19のいずれか1項に記載のアクリルゴムベールの製造方法。
  21.  前記の溶融混錬及び乾燥が、実質的に水分を含まない状態で行われる請求項20に記載のアクリルゴムベールの製造方法。
  22.  前記の溶融混錬及び乾燥が、減圧下で行われる請求項20または21に記載のアクリルゴムベールの製造方法。
  23.  溶融混錬及び乾燥後のアクリルゴムを、40℃/hr以上の冷却速度で冷却する請求項20~22のいずれか1項に記載のアクリルゴムベールの製造方法。
  24.  粒子径710μm~6.7mmの範囲の割合が50重量%以上の含水クラムを洗浄・脱水・乾燥する請求項15~23のいずれか1項に記載のアクリルゴムベールの製造方法。
  25.  請求項1~14のいずれか1項に記載のアクリルゴムベールを含むゴム成分、充填剤及び架橋剤を含んでなるゴム組成物。
  26.  前記充填剤が、補強性充填剤である請求項25に記載のゴム組成物。
  27.  前記充填剤が、カーボンブラック類である請求項25に記載のゴム組成物。
  28.  前記充填剤が、シリカ類である請求項25に記載のゴム組成物。
  29.  前記架橋剤が、有機架橋剤である請求項25~28のいずれか1項に記載のゴム組成物。
  30.  前記架橋剤が、多価化合物である請求項25~29のいずれか1項に記載のゴム組成物。
  31.  前記架橋剤が、イオン架橋性化合物である請求項25~30のいずれか1項に記載のゴム組成物。
  32.  前記架橋剤が、イオン架橋性有機化合物である請求項31に記載のゴム組成物。
  33.  前記架橋剤が、多価イオン有機化合物である請求項31または32に記載のゴム組成物。
  34.  前記架橋剤としてのイオン架橋性化合物、イオン架橋性有機化合物または多価イオン有機化合物のイオンが、アミノ基、エポキシ基、カルボキシル基及びチオール基からなる群から選ばれる少なくとも1種のイオン反応性基である請求項31~33のいずれか1項に記載のゴム組成物。
  35.  架橋剤が、多価アミン化合物、多価エポキシ化合物、多価カルボン酸化合物及び多価チオール化合物からなる群から選ばれる少なくとも1種の多価イオン化合物である請求項33に記載のゴム組成物。
  36.  前記架橋剤の含有量が、ゴム成分100重量部に対して0.001~20重量部の範囲である請求項25~35のいずれか1項に記載のゴム組成物。
  37.  更に、老化防止剤を含んでなる請求項25~36のいずれか1項に記載のゴム組成物。
  38.  前記老化防止剤が、アミン系老化防止剤である請求項37に記載のゴム組成物。
  39.  請求項1~14のいずれか1項に記載のアクリルゴムベールを含むゴム成分、充填剤及び必要に応じて老化防止剤を混合した後に架橋剤を混合するゴム組成物の製造方法。
  40.  請求項25~38のいずれか1項に記載のゴム組成物を架橋してなるゴム架橋物。
  41.  前記ゴム組成物の架橋が、成形後に行われる請求項40に記載のゴム架橋物。。
  42.  前記ゴム組成物の架橋が、一次架橋及び二次架橋を行うものである請求項40または41に記載のゴム架橋物。
     
PCT/JP2021/021351 2020-06-05 2021-06-04 ロール加工性、バンバリー加工性、耐水性、強度特性及び耐圧縮永久歪み特性に優れるアクリルゴムベール WO2021246517A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180058024.0A CN116057076A (zh) 2020-06-05 2021-06-04 辊加工性、班伯里加工性、耐水性、强度特性以及耐压缩永久变形性优异的丙烯酸橡胶胶包
KR1020227041804A KR20230020411A (ko) 2020-06-05 2021-06-04 롤 가공성, 밴버리 가공성, 내수성, 강도 특성 및 내압축영구변형 특성이 우수한 아크릴 고무 베일
JP2022528913A JPWO2021246517A1 (ja) 2020-06-05 2021-06-04

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-098311 2020-06-05
JP2020098311 2020-06-05
JP2020-216550 2020-12-25
JP2020216550 2020-12-25

Publications (1)

Publication Number Publication Date
WO2021246517A1 true WO2021246517A1 (ja) 2021-12-09

Family

ID=78830269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/021351 WO2021246517A1 (ja) 2020-06-05 2021-06-04 ロール加工性、バンバリー加工性、耐水性、強度特性及び耐圧縮永久歪み特性に優れるアクリルゴムベール

Country Status (4)

Country Link
JP (1) JPWO2021246517A1 (ja)
KR (1) KR20230020411A (ja)
CN (1) CN116057076A (ja)
WO (1) WO2021246517A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004131654A (ja) * 2002-10-11 2004-04-30 Nippon Zeon Co Ltd 重合体の回収方法及び回収装置
JP2004143323A (ja) * 2002-10-25 2004-05-20 Nippon Zeon Co Ltd ニトリル基含有共役ジエンゴム及びその製造方法
US20050234207A1 (en) * 2004-04-20 2005-10-20 Moutinho Marcus Tadeu M Preparation process of acrylic rubber, acrylic rubber, composition of the acrylic rubber and articles cured thereof
WO2015147052A1 (ja) * 2014-03-27 2015-10-01 日本ゼオン株式会社 ニトリル基含有共重合体ゴム、架橋性ゴム組成物およびゴム架橋物
WO2018079733A1 (ja) * 2016-10-27 2018-05-03 三井化学株式会社 正浸透膜およびその用途
WO2018139466A1 (ja) * 2017-01-27 2018-08-02 日本ゼオン株式会社 アクリルゴムの製造方法
WO2018143101A1 (ja) * 2017-01-31 2018-08-09 日本ゼオン株式会社 アクリルゴム、アクリルゴム組成物、及びアクリルゴム架橋物
WO2019078167A1 (ja) * 2017-10-16 2019-04-25 デンカ株式会社 アクリルゴムの製造方法、アクリルゴム、アクリルゴム組成物、その加硫物及び加硫物の用途
JP2021017553A (ja) * 2019-07-19 2021-02-15 日本ゼオン株式会社 保存安定性と加工性に優れるアクリルゴムベール

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS599962B2 (ja) 1975-12-09 1984-03-06 松下電器産業株式会社 オンセイシンゴウノ キロクサイセイソウチ
JPS6264809A (ja) 1985-09-18 1987-03-23 Japan Synthetic Rubber Co Ltd アクリルゴム
JPH07103194B2 (ja) 1987-11-20 1995-11-08 東ソー株式会社 アクリル系共重合体エラストマーの製造方法
JP3605914B2 (ja) 1995-11-22 2004-12-22 ユニマテック株式会社 アクリル系共重合体エラストマーの製造法
JP4929618B2 (ja) 2005-05-26 2012-05-09 日本ゼオン株式会社 ゴム状重合体の製造方法
JP6981430B2 (ja) 2016-12-19 2021-12-15 日本ゼオン株式会社 アクリルゴムの製造方法
JP2018168343A (ja) 2017-03-30 2018-11-01 日本ゼオン株式会社 アクリルゴム、アクリルゴム組成物、ゴム架橋物、およびアクリルゴムの製造方法
JP6683189B2 (ja) 2017-12-28 2020-04-15 日本ゼオン株式会社 アクリルゴムの製造方法
JP7214658B2 (ja) 2018-03-30 2023-01-30 日本ゼオン株式会社 アクリルゴムの製造方法、アクリルゴム組成物の製造方法、及びアクリルゴム用二軸押出乾燥機

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004131654A (ja) * 2002-10-11 2004-04-30 Nippon Zeon Co Ltd 重合体の回収方法及び回収装置
JP2004143323A (ja) * 2002-10-25 2004-05-20 Nippon Zeon Co Ltd ニトリル基含有共役ジエンゴム及びその製造方法
US20050234207A1 (en) * 2004-04-20 2005-10-20 Moutinho Marcus Tadeu M Preparation process of acrylic rubber, acrylic rubber, composition of the acrylic rubber and articles cured thereof
WO2015147052A1 (ja) * 2014-03-27 2015-10-01 日本ゼオン株式会社 ニトリル基含有共重合体ゴム、架橋性ゴム組成物およびゴム架橋物
WO2018079733A1 (ja) * 2016-10-27 2018-05-03 三井化学株式会社 正浸透膜およびその用途
WO2018139466A1 (ja) * 2017-01-27 2018-08-02 日本ゼオン株式会社 アクリルゴムの製造方法
WO2018143101A1 (ja) * 2017-01-31 2018-08-09 日本ゼオン株式会社 アクリルゴム、アクリルゴム組成物、及びアクリルゴム架橋物
WO2019078167A1 (ja) * 2017-10-16 2019-04-25 デンカ株式会社 アクリルゴムの製造方法、アクリルゴム、アクリルゴム組成物、その加硫物及び加硫物の用途
JP2021017553A (ja) * 2019-07-19 2021-02-15 日本ゼオン株式会社 保存安定性と加工性に優れるアクリルゴムベール

Also Published As

Publication number Publication date
JPWO2021246517A1 (ja) 2021-12-09
CN116057076A (zh) 2023-05-02
KR20230020411A (ko) 2023-02-10

Similar Documents

Publication Publication Date Title
JP7265507B2 (ja) 保存安定性と加工性に優れるアクリルゴムベール
WO2021014792A1 (ja) 保存安定性と加工性に優れるアクリルゴムベール
WO2021014790A1 (ja) 加工性と耐水性に優れるアクリルゴムベール
WO2021246511A1 (ja) ロール加工性、強度特性及び耐水性に優れるアクリルゴム
JP7115514B2 (ja) 保存安定性及び耐水性に優れるアクリルゴムベール
JP7284110B2 (ja) 保存安定性と耐水性に優れるアクリルゴムベール
WO2021014797A1 (ja) 保存安定性と加工性に優れるアクリルゴムベール
WO2021246517A1 (ja) ロール加工性、バンバリー加工性、耐水性、強度特性及び耐圧縮永久歪み特性に優れるアクリルゴムベール
WO2021246509A1 (ja) ロール加工性、強度特性及び耐圧縮永久歪み特性に優れるアクリルゴム
WO2021246512A1 (ja) ロール加工性とバンバリー加工性に優れるアクリルゴムベール
WO2021246508A1 (ja) ロール加工性、強度特性及び耐圧縮永久歪み特性に優れるアクリルゴム
WO2021246516A1 (ja) ロール加工性、バンバリー加工性、耐水性、強度特性及び耐圧縮永久歪み特性に優れるアクリルゴム
WO2021246510A1 (ja) ロール加工性、バンバリー加工性、耐水性、強度特性及び耐圧縮永久歪み特性に優れるアクリルゴム
WO2021246515A1 (ja) ロール加工性とバンバリー加工性に優れるアクリルゴムベール
WO2021246514A1 (ja) 保存安定性やバンバリー加工性に優れるアクリルゴムベール
WO2021246513A1 (ja) ロール加工性とバンバリー加工性に優れるアクリルゴムシート
WO2021261214A1 (ja) バンバリー加工性に優れるアクリルゴムベール
WO2021261213A1 (ja) 射出成型性とバンバリー加工性に優れるアクリルゴム
JP2021191809A (ja) ロール加工性に優れるアクリルゴムベール
JP7459668B2 (ja) 保存安定性と加工性に優れるアクリルゴムシート
JP2022000496A (ja) 加工性に優れるアクリルゴムベール
JP2022003105A (ja) 射出成型性とバンバリー加工性に優れるアクリルゴムベール
JP2021191833A (ja) バンバリー加工性と保存安定性と耐水性に優れるアクリルゴム
JP2022097580A (ja) 保存安定性と加工性に優れるアクリルゴムベールの製造方法
JP2021017574A (ja) 保存安定性及び耐水性に優れるアクリルゴムベール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21816984

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022528913

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21816984

Country of ref document: EP

Kind code of ref document: A1