WO2021101000A1 - 아세토하이드록시산 신타제 신규 변이체 및 이를 포함하는 미생물 - Google Patents

아세토하이드록시산 신타제 신규 변이체 및 이를 포함하는 미생물 Download PDF

Info

Publication number
WO2021101000A1
WO2021101000A1 PCT/KR2020/007529 KR2020007529W WO2021101000A1 WO 2021101000 A1 WO2021101000 A1 WO 2021101000A1 KR 2020007529 W KR2020007529 W KR 2020007529W WO 2021101000 A1 WO2021101000 A1 WO 2021101000A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
amino acid
protein
isoleucine
sequence
Prior art date
Application number
PCT/KR2020/007529
Other languages
English (en)
French (fr)
Inventor
김경림
김태연
이임상
이광우
김희영
신광수
Original Assignee
씨제이제일제당 (주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 씨제이제일제당 (주) filed Critical 씨제이제일제당 (주)
Priority to MX2022004303A priority Critical patent/MX2022004303A/es
Priority to EP20890887.1A priority patent/EP4023751A4/en
Priority to BR112022007880A priority patent/BR112022007880A2/pt
Priority to CN202080079542.6A priority patent/CN115052976B/zh
Priority to US17/778,810 priority patent/US20230203106A1/en
Priority to AU2020388499A priority patent/AU2020388499A1/en
Priority to JP2022520587A priority patent/JP7470187B2/ja
Publication of WO2021101000A1 publication Critical patent/WO2021101000A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/34Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Corynebacterium (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/06Alanine; Leucine; Isoleucine; Serine; Homoserine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/24Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
    • C07K14/245Escherichia (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1022Transferases (2.) transferring aldehyde or ketonic groups (2.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y202/00Transferases transferring aldehyde or ketonic groups (2.2)
    • C12Y202/01Transketolases and transaldolases (2.2.1)
    • C12Y202/01006Acetolactate synthase (2.2.1.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/15Corynebacterium

Definitions

  • the present application relates to a novel variant of acetohydroxy acid synthase protein, a polynucleotide encoding the same, a microorganism including the variant, and a method for producing L-isoleucine using the microorganism.
  • Branched-chain amino acids that is, L-valine, L-leucine, and L-isoleucine, act to increase protein in individuals, and are known to play an important role as an energy source during exercise, and are used in medicines and foods.
  • L-isoleucine shares a major biosynthetic pathway with other branched chain amino acids L-valine and L-leucine. Looking at the biosynthetic pathway of L-isoleucine, 2-ketobutyrate produced from L-threonine, an amino acid derived from pyruvate and aspartic acid, produced in the glycolysis process (Glycolysis). Used as a precursor.
  • acetohydroxy acid synthase After the synthesis of 2-aceto-2-hydroxyacetate from the two precursors through the action of an enzyme called acetohydroxy acid synthase (AHAS), acetohydroxy acid 2,3-dihydroxy-3-methylvalerate is produced through acetohydroxy acid isomeroreductase. Then, through the reaction of aminotransferase through 2-keto-3-methylvalerate through dihydroxy acid dehydratase (dihydroxy acid dehydratase), finally L-isoleucine is produced. In addition, the acetohydroxy acid synthase catalyzes decarboyxlation of pyruvate and a condensation reaction with other pyruvate molecules to produce acetolactic acid, a precursor of valine and leucine.
  • AHAS acetohydroxy acid synthase
  • L-isoleucine and L-valine have very similar chemical structures and properties, and by-products such as norvaline and alpha amino butyric acid (AABA) are also L -Since it shares a biosynthetic pathway with isoleucine, when the production of L-isoleucine increases, a large amount of by-products are produced. For this reason, in order to produce L-isoleucine in high yield and high purity, a large purification cost is required, so it is essential to develop a strain having an increased ability to produce a target product while reducing the production of by-products as much as possible.
  • AABA alpha amino butyric acid
  • Acetohydroxy acid synthase is an enzyme that plays an important role in the biosynthetic pathway of branched chain amino acids. It is encoded by ilvBN, ilvGM, and ilvIH genes depending on the type of microorganism. Case is encoded by the ilvBN gene. ilvBN is a strain producing high-yield L-isoleucine that optimizes the expression of this gene and regulates the activity of the enzyme because ilvBN is subjected to feedback suppression by inhibiting gene expression and enzyme activity by L-isoleucine among the branched chain amino acids that are the final products.
  • ilvBN is a strain producing high-yield L-isoleucine that optimizes the expression of this gene and regulates the activity of the enzyme because ilvBN is subjected to feedback suppression by inhibiting gene expression and enzyme activity by L-isoleucine among the branched chain amino acids that are the final products.
  • the present inventors have made diligent efforts to develop a microorganism having an increased L-isoleucine production ability, and as a result, developed a variant of acetohydroxy acid synthase, specifically a large subunit (ilvB) variant. Accordingly, the increase in L-isoleucine production was confirmed from the microorganism containing the mutant, and the present application was completed.
  • One object of the present application is to provide a protein variant having acetohydroxy acid synthase activity in which glutamine, which is the 136th amino acid in the amino acid sequence position of SEQ ID NO: 1, is substituted with an amino acid other than glutamine.
  • Another object of the present application is to provide a polynucleotide encoding the protein variant and a vector including the same.
  • Another object of the present application is to provide a microorganism that produces L-isoleucine including the protein variant.
  • Another object of the present application is to provide a method for producing L-isoleucine comprising the step of culturing a microorganism that produces the L-isoleucine in a medium.
  • One aspect of the present application provides a protein variant having acetohydroxy acid synthase activity in which an amino acid at amino acid sequence position 136 in the amino acid sequence of SEQ ID NO: 1 is substituted with an amino acid other than glutamine.
  • the protein variant having acetohydroxy acid synthase activity may be used interchangeably with a variant protein, a variant protein, an acetohydroxy acid synthase variant, a variant acetohydroxy acid synthase or a variant acetohydroxy acid synthase, etc. have.
  • the polypeptide is asparagine, arginine, phenylalanine, serine, tyrosine, methionine, cysteine, proline, histidine, leucine, isoleucine, threonine, lysine, the 136th amino acid in the amino acid sequence of SEQ ID NO: 1.
  • Valine, alanine, aspartic acid, glutamic acid, glycine or tryptophan substituted may be a protein variant having acetohydroxy acid synthase (AHAS) activity, but is not limited thereto.
  • acetohydroxy acid synthase is an enzyme involved in the biosynthesis of branched chain amino acids, and is involved in the first step of branched chain amino acid biosynthesis. You can get involved. Specifically, acetohydroxy acid synthase catalyzes decarboyxlation of pyruvate and condensation reaction with other pyruvate molecules to produce acetolactic acid, a precursor of valine, or decarboxylation of pyruvate and 2-keto. Acetohydroxybutyrate, a precursor of isoleucine, can be produced by catalyzing the condensation reaction with 2-ketobutyrate.
  • acetohydroxy acid isomeroreductase dihydroxy acid dehydratase
  • transaminase B L-Isoleucine can be biosynthesized by sequentially passing through.
  • Acetohydroxy acid synthase is an important enzyme in the biosynthetic pathway of branched chain amino acids.
  • Acetohydroxy acid synthase is encoded by two genes, ilvB and ilvN, ilvB gene is a large subunit of acetohydroxy acid synthase (IlvB), and ilvN gene is a small acetohydroxy acid synthase. Each small subunit (IlvN) is coded.
  • branched chain amino acid refers to an amino acid having a branched alkyl group in the side chain, and includes valine, leucine, and isoleucine.
  • the branched-chain amino acid may be L-isoleucine, L-valine, or L-leucine, but is not limited thereto.
  • the acetohydroxy acid synthase may be derived from a microorganism of the genus Corynebacterium, and specifically, may be derived from Corynebacterium glutamicum.
  • the large subunit ilvB protein of acetohydroxy acid synthase derived from Corynebacterium glutamicum may be, for example, a protein comprising the amino acid sequence of SEQ ID NO: 1.
  • the protein comprising the amino acid sequence of SEQ ID NO: 1 may be used interchangeably with a protein having the amino acid sequence of SEQ ID NO: 1 and a protein consisting of the amino acid sequence of SEQ ID NO: 1.
  • the large subunit ilvB protein of acetohydroxy acid synthase in the present application is defined as a protein containing the amino acid of SEQ ID NO: 1, insignificant sequence additions before and after the amino acid sequence of SEQ ID NO: 1 or can occur naturally
  • a large subunit of acetohydroxy acid synthase of the present invention is not excluded from mutations or silent mutations, and has the same or corresponding activity as a protein containing the amino acid sequence of SEQ ID NO: 1 It is obvious to those skilled in the art that it corresponds to the ilvB protein.
  • the large subunit ilvB protein of acetohydroxy acid synthase of the present application is the amino acid sequence of SEQ ID NO: 1 or an amino acid having 80%, 90%, 95%, 97%, or 99% homology or identity thereto. It may be a protein composed of a sequence.
  • a protein having an amino acid sequence in which some sequence is deleted, modified, substituted or added is also included within the range of the protein subject to mutation of the present application. Is self-explanatory.
  • the amino acid at a specific position in the protein having acetohydroxy acid synthase activity described above is substituted, so that the acetohydroxy acid synthase activity is mutated. It may refer to a variant in which feedback inhibition by L-isoleucine or an analogue thereof is released, which is more than 100% of the total protein.
  • variant is different from the recited sequence in which one or more amino acids are conservative substitution and/or modification, but the function of the protein ( functions) or properties are maintained. Variants differ from the identified sequence by several amino acid substitutions, deletions or additions. Such variants can generally be identified by modifying one or more amino acids of the amino acid sequence of the protein and evaluating the properties of the modified protein.
  • variants may include variants in which a portion of the mature protein has been removed from the N- and/or C-terminus.
  • variants may include terms such as variant, modified, mutated protein, variant polypeptide, mutant, etc. (modification, modified protein, modified polypeptide, mutant, mutein, divergent, variant, etc. in English) may be used. , If it is a term used in a mutated meaning, it is not limited thereto.
  • the mutant may be a protein whose activity is increased or feedback inhibition is released as compared to a natural wild-type or unmodified protein, but is not limited thereto.
  • conservative substitution means replacing one amino acid with another amino acid having similar structural and/or chemical properties. Such amino acid substitutions can generally occur based on similarity in the polarity, charge (basic, acidic), solubility, hydrophobicity, hydrophilicity, and/or amphipathic nature of the residues.
  • variants may include deletions or additions of amino acids that have minimal effect on the properties and secondary structure of the polypeptide.
  • the polypeptide can be conjugated with a signal (or leader) sequence at the N-terminus of the protein involved in the transfer of the protein co-translationally or post-translationally.
  • the polypeptide may be conjugated with other sequences or linkers to identify, purify, or synthesize the polypeptide.
  • substitution with another amino acid' is not limited as long as it is an amino acid different from the amino acid before substitution. That is, if glutamine, which is the 136th amino acid from the N-terminus of the amino acid sequence of SEQ ID NO: 1, is substituted with an amino acid residue other than glutamine, it is not limited.
  • glutamine which is the 136th amino acid from the N-terminus of the amino acid sequence of SEQ ID NO: 1
  • amino acid residue other than glutamine it is not limited.
  • the protein variant has asparagine, arginine, phenylalanine, serine, tyrosine, methionine, and the 136th amino acid from the N-terminus in the amino acid sequence of SEQ ID NO: 1 ), Cysteine, Proline, Histidine, Leucine, Isoleucine, Threonine, Lysine, Valine, Alanine, Asth Paric acid (Aspartic acid), glutamic acid (Glutamic acid), glycine (Glycine) may be a variant substituted with tryptophan (Tryptophan), but is not limited thereto.
  • the protein variant of the present application as described above has an acetohydroxy acid synthase activity that is enhanced in activity compared to the pre-mutation protein.
  • the protein variant in which the amino acid at the position 136 from the N-terminus is substituted with another amino acid includes a protein variant in which the amino acid at the position corresponding to position 136 is substituted with another amino acid.
  • the protein variant in which the 136th amino acid from the N-terminus is substituted with another amino acid is SEQ ID NO: 12, SEQ ID NO: 47, SEQ ID NO: 48, SEQ ID NO: 49, SEQ ID NO: 50, SEQ ID NO: 51, SEQ ID NO: 52 , SEQ ID NO: 53, SEQ ID NO: 54, SEQ ID NO: 55, SEQ ID NO: 56, SEQ ID NO: 57, SEQ ID NO: 58, SEQ ID NO: 59, SEQ ID NO: 60, SEQ ID NO: 61, SEQ ID NO: 62 or comprising the amino acid sequence of SEQ ID NO: 63 May be, and specifically, SEQ ID NO: 12, SEQ ID NO: 47, SEQ ID NO: 48, SEQ ID NO: 49, SEQ ID NO: 50, SEQ ID NO: 51, SEQ ID NO: 52, SEQ ID NO: 53, SEQ ID NO: 54, SEQ ID NO: 55, SEQ ID NO: 56
  • the protein variant is SEQ ID NO: 12, SEQ ID NO: 47, SEQ ID NO: 48, SEQ ID NO: 49, SEQ ID NO: 50, SEQ ID NO: 51, SEQ ID NO: 52, SEQ ID NO: 53, SEQ ID NO: 54, SEQ ID NO: 55, SEQ ID NO: 56,
  • the amino acid sequence of any one of SEQ ID NO: 57, SEQ ID NO: 58, SEQ ID NO: 59, SEQ ID NO: 60, SEQ ID NO: 61, SEQ ID NO: 62 and SEQ ID NO: 63 or the amino acid sequence of SEQ ID NO: 1 the 136th amino acid from the N-terminus is It may include an amino acid sequence that is fixed and has 80% or more homology or identity thereto, but is not limited thereto.
  • the variant polypeptide of the present application is SEQ ID NO: 12, SEQ ID NO: 47, SEQ ID NO: 48, SEQ ID NO: 49, SEQ ID NO: 50, SEQ ID NO: 51, SEQ ID NO: 52, SEQ ID NO: 53, SEQ ID NO: 54, SEQ ID NO: 55, SEQ ID NO: 56, SEQ ID NO: 57, SEQ ID NO: 58, SEQ ID NO: 59, SEQ ID NO: 60, SEQ ID NO: 61, SEQ ID NO: 62 and any one of SEQ ID NO: 63, and SEQ ID NO: 12, SEQ ID NO: 47, SEQ ID NO: 48, sequence SEQ ID NO: 49, SEQ ID NO: 50, SEQ ID NO: 51, SEQ ID NO: 52, SEQ ID NO: 53, SEQ ID NO: 54, SEQ ID NO: 55, SEQ ID NO: 56, SEQ ID NO: 57, SEQ ID NO: 58, SEQ ID NO: 59, SEQ ID NO: 60
  • proteins having an amino acid sequence in which some sequences are deleted, modified, substituted or added are also included within the scope of the present application. It's self-evident.
  • the term'homology' or'identity' means the degree to which two given amino acid sequences or base sequences are related, and may be expressed as a percentage.
  • the terms homology and identity can often be used interchangeably.
  • the sequence homology or identity of a conserved polynucleotide or polypeptide is determined by standard alignment algorithms, and the default gap penalty established by the program used can be used together.
  • Substantially, homologous or identical (identical) sequences are generally in moderate or high stringent conditions along at least about 50%, 60%, 70%, 80% or 90% of the sequence or full-length. (stringent conditions) can be hybridized. Hybridization is also contemplated for polynucleotides containing degenerate codons instead of codons in the polynucleotide.
  • the homology, similarity, or identity of a polynucleotide or polypeptide can be found in, for example, Smith and Waterman, Adv. Appl. As known in Math (1981) 2:482, for example, Needleman et al. (1970), J Mol Biol. 48: It can be determined by comparing sequence information using a GAP computer program such as 443.
  • the GAP program is defined as the total number of symbols in the shorter of the two sequences, divided by the number of similarly aligned symbols (ie, nucleotides or amino acids).
  • the default parameters for the GAP program are (1) a monolithic comparison matrix (contains a value of 1 for identity and 0 for non-identity) and Schwartz and Dayhoff, eds., Atlas Of Protein Sequence And Structure, National Biomedical Research Foundation, pp. As disclosed by 353-358 (1979), Gribskov et al (1986) Nucl. Acids Res. 14: weighted comparison matrix of 6745 (or EDNAFULL (EMBOSS version of NCBI NUC4.4) substitution matrix); (2) a penalty of 3.0 for each gap and an additional 0.10 penalty for each symbol in each gap (or a gap opening penalty of 10, a gap extension penalty of 0.5); And (3) no penalty for end gaps.
  • Another aspect of the present application provides a polynucleotide encoding the protein variant.
  • polynucleotide refers to a polymer of nucleotides in which nucleotide units are connected in a long chain by covalent bonds, and is a DNA or RNA strand having a certain length or more, and more specifically, coding for the protein variant. It means a polynucleotide fragment.
  • polynucleotide encoding the protein variant of the present application may be included without limitation as long as it is a polynucleotide sequence encoding a protein variant having acetohydroxy acid synthase activity.
  • the gene encoding the amino acid sequence of the protein having acetohydroxy acid synthase activity may be the ilvB gene, may be derived from Corynebacterium glutamicum, specifically SEQ ID NO: 1 It may be a nucleotide sequence encoding the amino acid sequence of, but is not limited thereto.
  • the polynucleotide encoding the protein variant of the present application may specifically include, without limitation, a polynucleotide sequence encoding a protein variant in which amino acid 136 in the amino acid sequence of SEQ ID NO: 1 is substituted with another amino acid.
  • the polynucleotide of the present application is a protein variant of the present application, specifically, SEQ ID NO: 12, SEQ ID NO: 47, SEQ ID NO: 48, SEQ ID NO: 49, SEQ ID NO: 50, SEQ ID NO: 51, SEQ ID NO: 52, SEQ ID NO: 53, SEQ ID NO: 54, SEQ ID NO: 55, SEQ ID NO: 56, SEQ ID NO: 57, SEQ ID NO: 58, SEQ ID NO: 59, SEQ ID NO: 60, SEQ ID NO: 61, comprising the amino acid sequence of any one of SEQ ID NO: 62 and SEQ ID NO: 63
  • It may be a polynucleotide sequence encoding a protein or a polypeptide having homology or identity thereto, but is not limited thereto. The homology or identity is as described above.
  • polynucleotide encoding the protein variant is a coding region within a range that does not change the amino acid sequence of the polypeptide due to the degeneracy of the codon or in consideration of the preferred codon in the organism to express the polypeptide. A variety of variations can be made.
  • the polynucleotide encoding the protein variant is a probe that can be prepared from a known gene sequence, for example, an amino acid of SEQ ID NO: 1 that can hybridize under stringent conditions with a complementary sequence to all or part of the polynucleotide sequence.
  • a probe including a sequence corresponding to a sequence encoding a protein variant in which amino acid 136 in the sequence is substituted with another amino acid may be included without limitation.
  • stringent conditions refers to conditions that allow specific hybridization between polynucleotides. These conditions are specifically described in the literature (eg, J. Sambrook et al., homologous). For example, among genes with high homology, genes with homology of 40% or more, specifically 90% or more, more specifically 95% or more, more specifically 97% or more, particularly 99% or more Under conditions that hybridize to each other and do not hybridize to genes with lower homology, or to wash conditions for general Southern hybridization, 60°C 1X SSC, 0.1% SDS, specifically 60°C 0.1X SSC, 0.1% SDS, More specifically, conditions for washing once, specifically, two to three times at a salt concentration and temperature corresponding to 68° C. 0.1X SSC and 0.1% SDS, can be enumerated. However, it is not limited thereto, and may be appropriately adjusted by a person skilled in the art according to the purpose.
  • Hybridization requires that two polynucleotides have complementary sequences, although mismatches between bases are possible depending on the stringency of hybridization.
  • complementary is used to describe the relationship between nucleotide bases capable of hybridizing to each other. For example, with respect to DNA, adenosine is complementary to thymine and cytosine is complementary to guanine.
  • the present application may also include substantially similar polynucleotide sequences as well as isolated polynucleotide fragments that are complementary to the entire sequence.
  • polynucleotides having homology can be detected using hybridization conditions including a hybridization step at a Tm value of 55° C. and using the above-described conditions.
  • the Tm value may be 60°C, 63°C or 65°C, but is not limited thereto and may be appropriately adjusted by a person skilled in the art according to the purpose.
  • the appropriate stringency to hybridize a polynucleotide depends on the length and degree of complementarity of the polynucleotide, and the parameters are well known in the art (see Sambrook et al., supra, 9.50-9.51, 11.7-11.8).
  • Another aspect of the present application provides a vector comprising a polynucleotide encoding the protein variant.
  • vector means a DNA preparation containing the nucleotide sequence of a polynucleotide encoding the protein of interest operably linked to a suitable control sequence so that the protein of interest can be expressed in a suitable host.
  • the regulatory sequence may include a promoter capable of initiating transcription, any operator sequence for regulating such transcription, a sequence encoding a suitable mRNA ribosome binding site, and a sequence regulating the termination of transcription and translation.
  • Vectors can be transformed into suitable host cells and then replicated or function independently of the host genome, and can be integrated into the genome itself.
  • operably linked in the above means that a promoter sequence for initiating and mediating transcription of a polynucleotide encoding a protein of interest of the present application and the polynucleotide sequence are functionally linked.
  • the operable linkage may be prepared using a gene recombination technique known in the art, and site-specific DNA cleavage and linkage may be prepared using a cleavage and linkage enzyme in the art, but is not limited thereto.
  • the vector used in the present application is not particularly limited as long as it is capable of replicating in a host cell, and any vector known in the art may be used.
  • Examples of commonly used vectors include natural or recombinant plasmids, cosmids, viruses, and bacteriophages.
  • pWE15, M13, MBL3, MBL4, IXII, ASHII, APII, t10, t11, Charon4A, and Charon21A can be used as a phage vector or a cosmid vector, and as a plasmid vector, pBR system, pUC system, pBluescriptII system ,pGEM system, pTZ system, pCL system, pET system, etc. can be used.
  • pDZ, pACYC177, pACYC184, pCL, pECCG117, pUC19, pBR322, pMW118, pCC1BAC vectors, and the like can be used.
  • a polynucleotide encoding a target protein in a chromosome may be replaced with a mutated polynucleotide through a vector for intracellular chromosome insertion. Insertion of the polynucleotide into the chromosome may be performed by any method known in the art, for example, homologous recombination, but is not limited thereto. It may further include a selection marker for confirming whether the chromosome is inserted. Selectable markers are used to select cells transformed with a vector, that is, to confirm the insertion of a target nucleic acid molecule, and give a selectable phenotype such as drug resistance, nutrient demand, resistance to cytotoxic agents, or expression of surface proteins. Markers can be used. In an environment treated with a selective agent, only cells expressing the selection marker survive or exhibit other phenotypic traits, and thus transformed cells can be selected.
  • transformation means introducing a vector containing a polynucleotide encoding a target protein into a host cell so that the protein encoded by the polynucleotide can be expressed in the host cell.
  • Transformed polynucleotides may include all of them, whether inserted into the chromosome of the host cell or located outside the chromosome, as long as it can be expressed in the host cell.
  • the polynucleotide includes DNA and RNA encoding the target protein. The polynucleotide may be introduced in any form as long as it can be introduced into a host cell and expressed.
  • the polynucleotide may be introduced into a host cell in the form of an expression cassette, which is a gene construct containing all elements necessary for self-expression.
  • the expression cassette may generally include a promoter operably linked to the polynucleotide, a transcription termination signal, a ribosome binding site, and a translation termination signal.
  • the expression cassette may be in the form of an expression vector capable of self-replicating.
  • the polynucleotide may be introduced into a host cell in its own form and operably linked to a sequence required for expression in the host cell, but is not limited thereto.
  • the transformation method includes any method of introducing a nucleic acid into a cell, and may be performed by selecting an appropriate standard technique as known in the art according to the host cell. For example, electroporation, calcium phosphate (Ca(H 2 PO 4 ) 2 , CaHPO 4 , or Ca 3 (PO 4 ) 2 ) precipitation, calcium chloride (CaCl 2 ) precipitation, microinjection, There are polyethylene glycol (PEG) method, DEAE-dextran method, cationic liposome method, and lithium acetate-DMSO method, but are not limited thereto.
  • PEG polyethylene glycol
  • microorganism including the protein variant having the acetohydroxy acid synthase activity.
  • the microorganism may be a microorganism that produces L-isoleucine, which expresses a protein variant having acetohydroxy acid synthase activity of the present application.
  • the term "to be expressed / to" a protein refers to a state in which the target protein has been introduced into a microorganism or has been modified to be expressed in a microorganism.
  • the target protein is a protein present in a microorganism, it means a state in which its activity is enhanced compared to intrinsic or before modification.
  • the "target protein” may be a variant of the protein having the acetohydroxy acid synthase activity described above.
  • introduction of a protein means that the microorganism exhibits an activity of a specific protein that it did not originally have, or exhibits an improved activity compared to the intrinsic activity of the protein or the activity before modification.
  • a polynucleotide encoding a specific protein may be introduced into a chromosome in a microorganism, or a vector including a polynucleotide encoding a specific protein may be introduced into a microorganism to exhibit its activity.
  • “enhancement of activity” means that the activity of a specific protein possessed by a microorganism is improved compared to its intrinsic activity or pre-modification activity, or the feedback inhibitory effect on a specific protein is released, so that the activity is not inhibited compared to its intrinsic or pre-modification activity It means not to be.
  • “Intrinsic activity” refers to the activity of a specific protein originally possessed by the parent strain before the transformation when the trait of a microorganism is changed due to genetic variation caused by natural or artificial factors.
  • the enhancement of the activity of the present application is to increase the intracellular copy number of the polynucleotide encoding the protein of interest, a method of introducing a mutation into the expression control sequence of the polynucleotide encoding the protein of interest, and the polynucleotide encoding the protein of interest.
  • the polynucleotide encoding the protein of interest may mean a gene of interest.
  • the increase in the copy number of the polynucleotide may be performed in a form operably linked to a vector, or may be performed by being inserted into a chromosome in a host cell.
  • a vector capable of replicating and functioning irrespective of the host, in which the polynucleotide encoding the protein of the present application is operably linked may be introduced into a host cell.
  • a vector capable of inserting the polynucleotide into a chromosome in a host cell to which the polynucleotide is operably linked may be introduced into a chromosome of a host cell. Insertion of the polynucleotide into the chromosome can be accomplished by any method known in the art, for example, by homologous recombination.
  • modifying the expression control sequence to increase the expression of the polynucleotide is not particularly limited thereto, but deletion, insertion, non-conservative or conservative substitution of the nucleic acid sequence to further enhance the activity of the expression control sequence, or It can be carried out by inducing a mutation in the sequence in combination, or by replacing it with a nucleic acid sequence having a stronger activity.
  • the expression control sequence is not particularly limited thereto, but may include a promoter, an operator sequence, a sequence encoding a ribosome binding site, a sequence controlling termination of transcription and translation, and the like.
  • the replacement of a nucleic acid sequence having a stronger activity may be that a stronger promoter is connected instead of the original promoter, but is not limited thereto.
  • strong promoters include cj1 to cj7 promoters (Korean Patent Registration No. 10-0620092), lac promoter, trp promoter, trc promoter, tac promoter, lambda phage PR promoter, PL promoter, tet promoter, gapA promoter, SPL7 promoter. , SPL13 (sm3) promoter (Korea Patent Registration No. 10-1783170), O2 promoter (Korea Patent Registration No. 10-1632642), tkt promoter and yccA promoter, but are not limited thereto.
  • modification of the polynucleotide sequence on the chromosome is not particularly limited thereto, but mutations in the expression control sequence by deletion, insertion, non-conservative or conservative substitution of the nucleic acid sequence, or a combination thereof to further enhance the activity of the polynucleotide sequence It may be performed by inducing or by replacing with a polynucleotide sequence modified to have stronger activity.
  • the introduction and enhancement of such protein activity is generally at least 1%, 10%, 25%, 50%, based on the activity or concentration of the protein in the wild-type or unmodified microbial strain. It may be increased to 75%, 100%, 150%, 200%, 300%, 400% or 500%, up to 1000% or 2000%, but is not limited thereto.
  • a microorganism producing L-isoleucine refers to a microorganism capable of producing L-isoleucine from a carbon source in a medium in excess compared to a wild-type or unmodified microorganism.
  • the microorganism producing the L-isoleucine may be a recombinant microorganism.
  • L-isoleucine can be produced, its type is not particularly limited, but Enterbacter, Escherichia, Erwinia, Serratia, and Providencia It may be a microorganism belonging to the genus (Providencia), the genus Corynebacterium, and the genus Brevibacterium. More specifically, it may be a microorganism belonging to the genus Corynebacterium or the genus Escherichia.
  • the microorganism of the genus Escherichia may be Escherichia coli
  • the microorganism of the genus Corynebacterium may be Corynebacterium glutamicum, but acetohyde Microorganisms belonging to the genus Escherichia or genus Corynebacterium, in which a protein having a hydroxy acid synthase activity is introduced or fortified, to increase the production of L-isoleucine may be included without limitation.
  • the parent strain of a microorganism producing L-isoleucine modified to express a protein variant having acetohydroxy acid synthase activity is not particularly limited as long as it is a microorganism producing L-isoleucine.
  • the microorganism producing L-isoleucine may be a microorganism having an improved L-isoleucine production ability by inserting a gene related to the natural type microorganism itself or an external L-isoleucine production mechanism, or enhancing or inactivating the activity of an endogenous gene.
  • Another aspect of the present application relates to a method for producing L-isoleucine, comprising culturing a microorganism producing L-isoleucine in a medium that expresses the protein variant having the acetohydroxy acid synthase activity. .
  • the L-isoleucine, a protein having an acetohydroxy acid synthase activity including the amino acid sequence of SEQ ID NO: 1, expression of the protein, and microorganisms are as described above.
  • L-isoleucine of the present application may include not only the form of L-isoleucine itself, but also its salt form.
  • the term "culture” refers to growing the microorganism under appropriately controlled environmental conditions.
  • the cultivation process of the present application may be performed according to a suitable medium and culture conditions known in the art. This culture process can be easily adjusted and used by a person skilled in the art according to the selected strain.
  • the culture may be a batch type, continuous type, and fed-batch type, but is not limited thereto.
  • the term "medium” refers to a substance obtained by mixing nutritional substances required for culturing the microorganism as a main component, and supplies nutrients and growth factors, including water, which is essential for survival and development.
  • any medium and other culture conditions used for cultivation of microorganisms of the present application may be used without particular limitation as long as it is a medium used for cultivation of ordinary microorganisms, but the microorganisms of the present application may be used as appropriate carbon sources, nitrogen sources, personnel, and inorganic.
  • a conventional medium containing compounds, amino acids, and/or vitamins it can be cultured while controlling temperature, pH, and the like under aerobic conditions.
  • the carbon source includes carbohydrates such as glucose, fructose, sucrose, maltose, and the like; Sugar alcohols such as mannitol and sorbitol, organic acids such as pyruvic acid, lactic acid, and citric acid; Amino acids such as glutamic acid, methionine, and lysine may be included.
  • natural organic nutrients such as starch hydrolyzate, molasses, black strap molasses, rice winter, cassava, sugarcane residue and corn steep liquor can be used, specifically glucose and sterilized pretreated molasses (i.e., converted to reducing sugar)
  • Carbohydrates such as molasses
  • carbon sources may be used alone or in combination of two or more, but are not limited thereto.
  • nitrogen source examples include inorganic nitrogen sources such as ammonia, ammonium sulfate, ammonium chloride, ammonium acetate, ammonium phosphate, ammonium carbonate, and ammonium nitrate; Amino acids such as glutamic acid, methionine, glutamine, etc., organic nitrogen sources such as peptone, NZ-amine, meat extract, yeast extract, malt extract, corn steep liquor, casein hydrolyzate, fish or its degradation products, skim soybean cake or its degradation products, etc. Can be used. These nitrogen sources may be used alone or in combination of two or more, but are not limited thereto.
  • inorganic nitrogen sources such as ammonia, ammonium sulfate, ammonium chloride, ammonium acetate, ammonium phosphate, ammonium carbonate, and ammonium nitrate
  • Amino acids such as glutamic acid, methionine, glutamine, etc.
  • organic nitrogen sources such as peptone, NZ-amine,
  • the personnel may include first potassium phosphate, second potassium phosphate, or a sodium-containing salt corresponding thereto.
  • the inorganic compound sodium chloride, calcium chloride, iron chloride, magnesium sulfate, iron sulfate, manganese sulfate, calcium carbonate, and the like may be used, and amino acids, vitamins, and/or suitable precursors may be included. These constituents or precursors may be added to the medium batchwise or continuously. However, it is not limited thereto.
  • the temperature of the medium may be 20 °C to 50 °C, specifically 30 °C to 37 °C, but is not limited thereto.
  • the cultivation period may be continued until a desired amount of the useful substance is obtained, and specifically, may be 10 to 100 hours, but is not limited thereto.
  • the production method may further include recovering L-isoleucine from the culture medium or the microorganism.
  • Recovering the L-isoleucine is to recover the desired L-isoleucine from the medium using a suitable method known in the art according to the cultivation method of the microorganism of the present application, for example, a batch, continuous, or fed-batch culture method. can do.
  • a suitable method known in the art for example, a batch, continuous, or fed-batch culture method.
  • can do for example, centrifugation, filtration, treatment with a crystallized protein precipitant (salt-in method), extraction, ultrasonic disruption, ultrafiltration, dialysis, molecular sieve chromatography (gel filtration), adsorption chromatography, ion exchange chromatography, affinity chromatography
  • chromatography such as, HPLC, and methods thereof may be used in combination, but are not limited to these examples.
  • the production method may include a purification process.
  • the purification process may purify the recovered L-isoleucine using a suitable method known in the art.
  • L-isoleucine comprising modifying a microorganism to express a protein variant having acetohydroxy acid synthase activity in which amino acid 136 is substituted with another amino acid in the amino acid sequence of SEQ ID NO: 1 Provides a way to increase productivity.
  • Another aspect of the present application provides the use of the protein variant to increase L-isoleucine production capacity.
  • the protein variants and other amino acids are as described above.
  • PCR was performed using the genomic DNA of Corynebacterium glutamicum ATCC 13032 as a template, using primers of SEQ ID NOs: 72 and 73 and SEQ ID NOs: 74 and 75. PCR was performed using PfuUltraTM high-reliability DNA polymerase (Stratagene), and PCR conditions were denaturing 95° C. for 30 seconds; Annealing 55° C. for 30 seconds; And polymerization reaction at 72° C. for 1 minute was repeated 25 times.
  • the gene fragments of the 1000bp upper part of the ilvA gene and the lower part of the 1000bp ilvA gene were obtained, respectively, and each amplification product was purified using QIAGEN's PCR Purification kit and used as an insert DNA fragment for vector construction.
  • QIAGEN's PCR Purification kit Use TaKaRa's Infusion Cloning Kit with pDZ (Korean Patent No. 0924065) vector and DNA fragments treated with restriction enzyme smaI and heat-treated at 65°C for 20 minutes to have a molar concentration (M) of 1:2.
  • M molar concentration
  • the prepared vector was transformed into Corynebacterium glutamicum ATCC 13032 by electroporation, and a second crossover process was performed to obtain strains each substituted with a variant base on the chromosome. Whether or not appropriate substitution is determined by using the following primer combinations, using the MASA (Mutant Allele Specific Amplification) PCR technique (Takeda et al., Hum. Mutation, 2, 112-117 (1993)), a primer combination that matches the variant sequence. In (SEQ ID NO: 68 and SEQ ID NO: 76), the first determination was made by selecting the strain to be amplified, and the ilvA sequence analysis of the selected strain was confirmed by a variant sequence analysis using a primer combination of SEQ ID NO: 77 and SEQ ID NO: 78. I did.
  • PCR was performed using the genomic DNA extracted from Corynebacterium glutamicum ATCC 13032 as a template using primers of SEQ ID NO: 64, SEQ ID NO: 65, and SEQ ID NO: 66 and SEQ ID NO: 67.
  • PCR was performed using PfuUltraTM high-reliability DNA polymerase (Stratagene), and PCR conditions were denaturing 95° C. for 30 seconds; Annealing 55° C. for 30 seconds; And polymerization reaction at 72° C. for 1 minute was repeated 25 times. As a result, gene fragments at the upper portion of the 1000bp hom gene and the lower portion of the 1000bp hom gene were obtained, respectively.
  • the amplified product was purified using QIAGEN's PCR Purification kit and used as an insert DNA fragment for vector construction.
  • the molar concentration (M) ratio of the pDZ (Korean Registered Patent No. 0924065) vector and the inserted DNA fragment amplified through the PCR amplified through the PCR after treatment with the restriction enzyme smaI and then heat-treated at 65° C. for 20 minutes is 1:2.
  • the vector pDZ-R407H for introducing the R407H mutation onto the chromosome was prepared by cloning according to the provided manual using the Infusion Cloning Kit of TaKaRa.
  • the prepared vector was transformed into Corynebacterium glutamicum ATCC 13032 ilvA (F383A) by electroporation, and a strain in which each variant base was substituted on the chromosome was obtained through a second crossover process. Whether or not appropriate substitution is determined by using the following primer combinations, using the MASA (Mutant Allele Specific Amplification) PCR technique (Takeda et al., Hum. Mutation, 2, 112-117 (1993)), a primer combination that matches the variant sequence.
  • MASA Modutant Allele Specific Amplification
  • the parent strain Corynebacterium glutamicum ATCC 13032 hom (R407H) ilvA (F383A) was cultured in an activation medium for 16 hours, and the activated strain was inoculated into a sterilized seed medium at 121°C for 15 minutes, and 14 hours. After incubation for a while, 5 ml of the culture solution was recovered. After washing the recovered culture solution with 100 mM citric buffer, NTG (N-Methyl-N'-nitro-N-nitrosoguanidine) was added to a final concentration of 200 mg/L, and then treated for 20 minutes. And washed with 100 mM phosphate buffer.
  • NTG N-Methyl-N'-nitro-N-nitrosoguanidine
  • composition of the medium used in Example 1 is as follows.
  • Glucose 5% Bactopeptone 1%, Sodium Chloride 0.25%, Yeast Extract 1%, Urea 0.4%, pH 7.2
  • the mutant strain obtained in Example 1 was cultured in the following manner. After inoculation of the parent strain and the mutant strain in a 250 ml corner-baffle flask containing 25 ml of production medium, L-isoleucine was prepared by shaking culture at 32° C. for 60 hours at 200 rpm.
  • composition of the production medium used in Example 2 is as follows.
  • the parent strain Corynebacterium glutamicum ATCC 13032 hom (R407H) ilvA (F383A) produced L-isoleucine at a concentration of 0.2 g/L, but according to the present application
  • the mutant strain Corynebacterium glutamicum CJILE-42 produced L-isoleucine at a concentration of 1.8 g/L, and it was confirmed that L-isoleucine productivity increased by about 9 times or more compared to the parent strain.
  • Example 3 Preparation of ilvBNC-deficient strain to compare the activity of acetohydroxy acid synthase (AHAS)
  • ilvBNC-deficient strains that cannot be converted to 2-aceto-2-hydroxyacetate were prepared. Although it measures the activity of ilvB, in Corynebacterium glutamicum, since the ilvB, ilvC, and ilvN genes are adjacent to each other as operons, the expression of the three genes is uniformly regulated.
  • a pair of primers for amplifying the 5'upper part of the ilvBNC gene (SEQ ID NOs: 3 and 4) and a primer for amplifying the 3'lower part based on the nucleotide sequence information of the WT-derived ilvBNC gene.
  • a pair (SEQ ID NOs: 5 and 6) was devised.
  • an XbaI restriction enzyme site (indicated by an underline) was inserted at each end. Each sequence is shown in Table 2 below.
  • PCR was performed using the primers of SEQ ID NO: 3 and SEQ ID NO: 4, SEQ ID NO: 5, and SEQ ID NO: 6.
  • Solg TM Pfu-X DNA polymerase SolGent co., Ltd.
  • PCR conditions were denatured at 95°C for 10 minutes, then denatured at 95°C, annealing at 56°C, and polymerization at 72°C for 45 seconds. After repeating 30 times, polymerization was performed at 72° C. for 5 minutes. As a result, a 500 bp DNA fragment at the 5′ upper portion of the ilvBNC gene and a 500 bp DNA fragment at the 3′ lower portion were obtained.
  • PCR was performed with the primers of SEQ ID NO: 3 and SEQ ID NO: 6.
  • Solg TM Pfu-X DNA polymerase SolGent co., Ltd.
  • PCR conditions were denatured at 95°C for 10 minutes, then denatured at 95°C, annealing at 56°C, and polymerization at 72°C for 1 minute. After repeating 30 times, polymerization was performed at 72° C. for 5 minutes.
  • ilvBNC Since the gene was deleted, a 1006 bp DNA fragment including only the top and bottom was amplified.
  • the pDZ vector and the DNA fragment of 1006 bp were treated with restriction enzyme Xba°, ligated using a DNA conjugation enzyme, and then cloned to obtain a plasmid, which was named pDZ- ⁇ ilvBNC.
  • the pDZ- ⁇ ilvBNC vector was introduced into Corynebacterium glutamicum ATCC 13032 hom (R407H) ilvA (F383A) strain by electric pulse method, and then transformed strains were obtained in a selection medium containing 25 mg/L of kanamycin. I did. WT ⁇ ilvBNC, a strain in which the ilvBNC gene was deleted by a DNA fragment inserted on a chromosome by a second recombination process (cross-over), was obtained.
  • Example 4 Preparation of wild-type ilvBNC plasmid having acetohydroxy acid synthase (AHAS) activity
  • AHAS acetohydroxy acid synthase
  • ilvBNC a sequence derived from Corynebacterium glutamicum ATCC 13032 hom (R407H) ilvA (F383A) (SEQ ID NO: 7) Designed by inserting a BamHI (underlined) restriction enzyme site at both ends of the primer (SEQ ID NOs: 8 and 9) to amplify from the promoter site (approximately 300 bp at the top of the start codon) to the terminator site (approximately 100 bp at the bottom of the stop codon). I did. The sequence is shown in Table 3 below.
  • Solg TM Pfu-X DNA polymerase SolGent co., Ltd.
  • PCR amplification conditions were denatured at 95°C for 10 minutes, then denatured at 95°C for 30 seconds, annealing at 56°C for 30 seconds, and annealing at 72°C 4
  • the polymerization reaction was performed at 72°C for 7 minutes.
  • a DNA fragment of 4010 bp of the coding region of the ilvBNC gene was obtained.
  • the pECCG117 Karl Patent Registration No.
  • Example 5 Preparation of variant ilvBNC plasmid having acetohydroxy acid synthase (AHAS) activity
  • acetohydroxy acid synthase derived from Corynebacterium glutamicum ATCC 13032 hom (R407H) ilvA (F383A) (sequence A pair of primers (SEQ ID NOs: 8 and 10) to amplify the 5'upper region around the mutation site in order to construct a mutation introduction vector for the ilvB gene encoding number 7) and a primer to amplify the 3'lower region A pair (SEQ ID NOs: 11 and 9) was devised.
  • AHAS acetohydroxy acid synthase
  • the primers of SEQ ID NOs: 8 and 9 inserted a BamHI restriction enzyme site (indicated by an underline) at each end, and the primers of SEQ ID NOs: 10 and 11 were designed to cross each other so that a nucleotide substitution mutation (indicated by an underline) was located. I did.
  • PCR was performed using primers of SEQ ID NO: 8 and SEQ ID NO: 10, SEQ ID NO: 11, and SEQ ID NO: 9.
  • Solg TM Pfu-X DNA polymerase SolGent co., Ltd.
  • PCR conditions were denatured at 95°C for 10 minutes, then denatured at 95°C for 30 seconds, annealing at 56°C for 30 seconds, and annealing at 72°C for 3 minutes. After the polymerization was repeated 30 times, the polymerization reaction was performed at 72° C. for 5 minutes.
  • a DNA fragment of 712 bp at the 5'upper part and a 3310 bp DNA fragment at the 3'lower part were obtained, centering on the mutation of the ilvB gene.
  • PCR was performed with the primers of SEQ ID NO: 8 and SEQ ID NO: 9. PCR conditions were: after denaturation at 95°C for 10 minutes, denaturation at 95°C for 30 seconds, annealing at 56°C for 30 seconds, and polymerization at 72°C for 4 minutes were repeated 30 times, and then polymerization was performed at 72°C for 7 minutes.
  • ilvB encoding an acetohydroxy acid synthase (AHAS) variant (SEQ ID NO: 12) in which glutamine at position 136 is substituted with asparagine A 4010 bp DNA fragment containing the gene mutation (SEQ ID NO: 2) was amplified.
  • AHAS acetohydroxy acid synthase
  • pECCG117 (Korea Patent Registration No. 10-0057684) vector and ilvBN DNA fragment were treated with restriction enzyme BamHI, ligated using a DNA conjugation enzyme, and then cloned to obtain a plasmid, which was named pECCG117-ilvB(Q136N)NC. I did.
  • Example 6 Acetohydroxy acid synthase (acetohydroxy acid synthase, AHAS) activity comparison experiment of wild-type and mutant ilvB
  • the pECCG117-ilvBNC WT and pECCG117-ilvB(Q136N)NC vectors prepared in Examples 4 and 5 were introduced into the WT ⁇ ilvBNC strain prepared in Example 3 by an electric pulse method, and then 25 mg/L of kanamycin was added. Each transformant was obtained by spreading on the containing selection medium.
  • the culture was cultured in the following manner, and the L-Isoleucine concentration in the culture medium was analyzed.
  • the strain was inoculated with 1 platinum in a 250 ml corner-baffle flask containing 25 ml of the following medium, and cultured with shaking at 200 rpm for 50 hours at 32°C.
  • L-isoleucine concentration was analyzed using HPLC, and the analyzed concentration is shown in Table 5.
  • the strain into which the ilvB (Q136N) mutant plasmid was introduced produced at least 13 times L-isoleucine compared to the strain into which the control ilvBNC WT plasmid was introduced. That is, the strain into which the mutation was introduced, as a result, improved the activity of acetohydroxy acid synthase (AHAS), and it was confirmed that L-isoleucine can be produced with high efficiency and high yield.
  • the strain into which the mutant Q136N was introduced was named CA10-3106.
  • the CA10-3106 was deposited with the Korea Microbial Conservation Center, an international depository under the Budapest Treaty, on December 3, 2018, and was given the accession number KCCM12415P.
  • KCCM11248P strain is the L-threonine derivative ⁇ -amino- ⁇ -hydroxynorvaline ( ⁇ -amino) in Corynebacterium glutamicum KFCC 11040 (Corynebacterium glutamicum KFCC 11040, Korean Patent Publication No. 2000-0002407).
  • - ⁇ -hydroxynorvaline) and L-isoleucine derivatives 4-thiaisoleucine and isoleucine-hydroxamate mutants showing common resistance (Corynebacterium glutamicum KCJI-38, KCCM11248P, Korean patent) Registration No. 10-1335789) has been confirmed to produce L-isoleucine in a higher yield than Corynebacterium glutamicum ATCC 13032 hom (R407H) ilvA (F383A).
  • the KCCM11248P ⁇ ilvBNC strain was produced in the same manner as in Example 3 above.
  • the pECCG117-ilvBNC WT and pECCG117-ilvB(Q136N)NC vectors produced in Examples 4 and 5 were applied to Corynebacterium glutamicum KCJI-38 (KCCM11248P), a strain with increased isoleucine production capacity, by an electric pulse method. After introduction, each transformant was obtained by spreading on a selection medium containing 25 mg/L of kanamycin.
  • the culture was cultured in the same manner as in Example 6 to analyze the L-isoleucine concentration in the culture medium, and the analyzed concentrations are shown in Table 6.
  • the strain in which the ilvB (Q136N) mutant plasmid was introduced produced about 6 times higher L-isoleucine compared to the strain into which the control ilvBNC WT plasmid was introduced. That is, the strain into which the mutation was introduced, as a result, improved the activity of acetohydroxy acid synthase (AHAS), and it was confirmed that L-isoleucine can be produced with high efficiency and high yield.
  • AHAS acetohydroxy acid synthase
  • Example 7 Preparation of variant ilvBNC plasmid having acetohydroxy acid synthase (AHAS) activity
  • Example 6 in order to confirm that the position 136, which is the ilvB mutant position having high L-isoleucine production capacity, is an important position for increasing the production capacity, a variant in which other amino acids were substituted was prepared and its effect was confirmed. 17 species in which other amino acids were substituted at the 136th amino acid position of ilvB were additionally prepared, and the plasmid prepared in Example 4 was used as a template. Each variant, substituted amino acid, and primer sequence numbers used for each variant are shown in Table 7 below.
  • PCR was performed using the primers shown in Table 7.
  • Solg TM Pfu-X DNA polymerase SolGent co., Ltd.
  • PCR conditions were denatured at 95°C for 10 minutes, then denatured at 95°C for 30 seconds, annealing at 56°C for 30 seconds, and annealing at 72°C for 3 minutes.
  • the polymerization reaction was performed at 72° C. for 5 minutes.
  • a 712bp DNA fragment at the 5'upper part and a 3310bp DNA fragment at the 3'lower part were obtained around the mutation of the ilvB gene.
  • PCR was performed with the primers of SEQ ID NO: 8 and SEQ ID NO: 9.
  • PCR conditions were: after denaturation at 95°C for 10 minutes, denaturation at 95°C for 30 seconds, annealing at 56°C for 30 seconds, and polymerization at 72°C for 4 minutes were repeated 30 times, and then polymerization was performed at 72°C for 7 minutes.
  • AHAS acetohydroxy acid synthase
  • Example 8 Evaluation of L-isoleucine production ability of variant ilvB having acetohydroxy acid synthase (AHAS) activity
  • the 17 mutant plasmids prepared in Example 7 were introduced into the WT ⁇ ilvBNC strain prepared in Example 3 by an electric pulse method, and then spread on a selection medium containing 25 mg/L of kanamycin to obtain each transformant. Obtained. After that, flask evaluation was performed in the same manner as in Example 6. The results are shown in Table 9 below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

본 출원은 아세토하이드록시산 신타제 변이체, 이를 코딩하는 폴리뉴클레오티드, 상기 변이체를 포함하는 미생물 및 상기 미생물을 이용한 L-이소류신 생산방법에 관한 것이다.

Description

아세토하이드록시산 신타제 신규 변이체 및 이를 포함하는 미생물
본 출원은 아세토하이드록시산 신타제 단백질의 신규 변이체, 이를 코딩하는 폴리뉴클레오티드, 상기 변이체를 포함하는 미생물 및 상기 미생물을 이용한 L-이소류신의 생산방법에 관한 것이다.
분지쇄 아미노산, 즉 L-발린, L-류신, L-이소류신은 개체에서 단백질을 증가시키는 작용을 하며, 운동시 에너지원으로 중요한 역할을 하는 것이 알려져, 의약품, 식품 등에 사용되고 있다.
분지쇄 아미노산 생산 미생물로 코리네박테리움 글루타미쿰 (Corynebacterium glutamicum)과 대장균 (Escherichia coli)이 대표적인 미생물로 이용되고 있다. 이 미생물들에서 분지쇄 아미노산 중 L-이소류신은 다른 분지쇄 아미노산인 L-발린, L-류신과 주된 생합성 경로를 공유하고 있다. L-이소류신의 생합성 경로를 살펴보면 해당 과정 (Glycolysis)에서 생성되는 피루브산 (pyruvate)과 아스파르트산 (Aspartate; Aspartic acid) 유래 아미노산인 L-쓰레오닌으로부터 생성된 2-케토부티르산(2-ketobutyrate)이 전구체로 사용된다. 두 개의 전구체로부터 아세토하이드록시산 신타제 (acetohydroxy acid synthase, AHAS)라는 효소의 작용을 통해 2-아세토-2-하이드록시아세트산 (2-aceto-2-hydroxyacetate)이 합성된 후, 아세토하이드록시산 아이소머리덕타제 (acetohydroxy acid isomeroreductase)를 통해 2,3-디하이드록시-3-메틸발레르산(2,3-dihydroxy-3-methylvalerate)이 생성된다. 그 후, 디하이드록시산 디하이드라타제 (dihydroxy acid dehydratase)를 통해 2-케토-3-메틸발레르산(2-keto-3-methylvalerate)을 거쳐 아미노트랜스퍼라제 (aminotransferase)의 반응을 통해 최종적으로 L-이소류신이 생산된다. 또한, 상기 아세토하이드록시산 신타아제는 피루브산(pyruvate)의 디카르복실화(decarboyxlation)와 다른 피루브산 분자와의 축합 반응을 촉매하여 발린 및 류신의 전구체인 아세토젖산을 생산한다.
생합성 경로를 공유하는 분지쇄 아미노산 중 특히, L-이소류신과 L-발린은 화학적 구조와 특성이 매우 유사하며, 노르발린 (Norvaline)과 아미노부티릭산 (Alpha amino butyric acid, AABA)과 같은 부산물 또한 L-이소류신과 생합성 경로를 공유하고 있기 때문에, L-이소류신의 생산이 증가되면 부산물도 다량 생성되게 된다. 이러한 이유로 L-이소류신을 고수율, 고순도로 생산하기 위해서는 많은 정제 비용이 요구되기 때문에 부산물의 생성은 최대한 저감되면서 목적 산물의 생성은 증가된 능력을 갖는 균주 개발이 필수적이다.
아세토하이드록시산 신타제 (acetohydroxy acid synthase, AHAS)는 분지쇄 아미노산의 생합성 경로에서 중요한 역할을 하는 효소로서 미생물 종류에 따라 ilvBN, ilvGM, ilvIH 유전자에 의해 암호화되며, 코리네박테리움 글루타미쿰의 경우 ilvBN 유전자에 의해 암호화된다. ilvBN은 최종 산물인 분지쇄 아미노산 중 L-이소류신에 의해서 유전자 발현과 효소 활성이 저해되는 피드백 억제 작용을 받기 때문에 이 유전자의 발현을 최적화하고 효소의 활성을 조절하는 것이 L-이소류신의 고수율 생산 균주를 만드는데 매우 중요하나, 이에 관한 선행연구는 주로 작은 소단위체(acetohydroxy acid synthase small subunit; IlvN 단백질)의 변이로 인한 피드백 해제에 관련된 연구가 대부분으로(Protein Expr Purif. 2015 May;109:106-12., US2014-0335574, US2009-496475, US2006-303888, US2008-245610) 관련 연구가 부족한 실정이다.
이러한 배경 하에, 본 발명자들은 L-이소류신 생산능이 증가된 미생물을 개발하기 위해 예의 노력한 결과, 아세토하이드록시산 신타아제의 변이체, 구체적으로 큰 소단위체(ilvB) 변이체를 개발하였다. 이에, 상기 변이체를 포함하는 미생물로부터 L-이소류신 생산 증가를 확인하고 본 출원을 완성하였다.
본 출원의 하나의 목적은 서열번호 1의 아미노산 서열위치 136번째 아미노산인 글루타민이 글루타민 이외의 다른 아미노산으로 치환된, 아세토하이드록시산 신타제 활성을 가지는 단백질 변이체를 제공하는 것이다.
본 출원의 다른 목적은 상기 단백질 변이체를 코딩하는 폴리뉴클레오티드 및 이를 포함하는 벡터를 제공하는 것이다.
본 출원의 또 다른 목적은 상기 단백질 변이체를 포함하는 L-이소류신을 생산하는 미생물을 제공하는 것이다.
본 출원의 또 다른 목적은 상기 L-이소류신을 생산하는 미생물을 배지에서 배양하는 단계를 포함하는 L-이소류신 생산방법을 제공하는 것이다.
본 출원의 아세토하이드록시산 신타제 변이체를 포함하는 미생물을 배양하는 경우, 고수율의 L-이소류신 생산이 가능하다. 이에, 산업적인 면에서 생산의 편의성 및 제조원가 절감의 효과를 기대할 수 있다.
이하에서는, 본 출원을 더욱 상세히 설명한다.
한편, 본 출원에서 개시되는 각각의 설명 및 실시형태는 각각의 다른 설명 및 실시 형태에도 적용될 수 있다. 즉, 본 출원에서 개시된 다양한 요소들의 모든 조합이 본 출원의 범주에 속한다. 또한, 하기 기술되는 구체적인 서술에 의하여 본 출원의 범주가 제한된다고 할 수 없다.
또한, 당해 기술분야의 통상의 지식을 가진 자는 통상의 실험만을 사용하여 본 출원에 기재된 본 출원의 특정 양태에 대한 다수의 등가물을 인지하거나 확인할 수 있다. 또한, 이러한 등가물은 본 출원에 포함되는 것으로 의도된다.
본 출원의 하나의 양태는, 서열번호 1의 아미노산 서열에서 아미노산 서열위치 136번째의 아미노산이 글루타민 이외의 다른 아미노산으로 치환된 아세토하이드록시산 신타제 활성을 가지는 단백질 변이체를 제공한다. 상기 아세토하이드록시산 신타제 활성을 가지는 단백질 변이체는 변이체 단백질, 변이형 단백질, 아세토하이드록시산 신타제 변이체, 변이체 아세토하이드록시산 신타제 또는 변이형 아세토하이드록시산 신타제 등으로 혼용되어 사용될 수 있다.
구체적으로, 상기 폴리펩티드는 서열번호 1의 아미노산 서열에서 상기 136번째 아미노산인 글루타민이 아스파라진, 알지닌, 페닐알라닌, 세린, 타이로신, 메치오닌, 시스테인, 프롤린, 히스티딘, 류신, 이소류신, 쓰레오닌, 라이신, 발린, 알라닌, 아스파르산, 글루탐산, 글라이신 또는 트립토판으로 치환된, 아세토하이드록시산 신타제 (acetohydroxy acid synthase, AHAS) 활성을 가지는 단백질 변이체일 수 있으나, 이에 제한되는 것은 아니다.
본 출원에서 용어, "아세토하이드록시산 신타제(acetohydroxy acid synthase, AHAS)" 또는 "아세토하이드록시산 신타아제"는 분지쇄 아미노산의 생합성에 관여하는 효소로, 분지쇄 아미노산 생합성의 첫 번째 단계에 관여할 수 있다. 구체적으로, 아세토하이드록시산 신타제는 피루브산(pyruvate)의 디카르복실화(decarboyxlation)와 다른 피루브산 분자와의 축합 반응을 촉매하여 발린의 전구체인 아세토젖산을 생산하거나 피루브산의 디카르복실화와 2-케토부티레이트(2-ketobutyrate)와의 축합 반응을 촉매하여 이소류신의 전구체인 아세토히드록시부티레이트를 생산할 수 있다. 생산된 아세토히드록시부티레이트으로부터 출발하여 아세토하이드록시산 이소메로리덕타아제 (acetohydroxy acid isomeroreductase), 디하이드록시산 디하이드라타제(dihydroxy acid dehydratase), 트랜스 아미나제 B(transaminase B)에 의하여 촉매된 반응을 순차적으로 거치면 L- 이소류신이 생합성 될 수 있다.
따라서, 상기 아세토하이드록시산 신타제는 분지쇄 아미노산의 생합성 경로에 있어서 중요한 효소이다. 아세토하이드록시산 신타아제는 ilvB 및 ilvN, 두 유전자에 의하여 코딩되며, ilvB 유전자는 아세토하이드록시산 신타아제의 큰 소단위체(large subunit; IlvB)를, ilvN 유전자는 아세토하이드록시산 신타아제의 작은 소단위체(small subunit; IlvN)를 각각 코딩한다.
본 출원의 용어, "분지쇄 아미노산"이란 곁사슬에 분지알킬기가 있는 아미노산을 말하며, 발린, 류신 및 이소류신을 포함한다. 구체적으로, 본 출원에서 상기 분지쇄 아미노산은 L-이소류신, L-발린 또는 L-류신일 수 있으나, 이에 제한되는 것은 아니다.
본 출원에서 아세토하이드록시산 신타아제는 코리네박테리움 속 미생물 유래일 수 있고, 구체적으로 코리네박테리움 글루타미쿰(Corynebacterium glutamicum) 유래일 수 있다. 코리네박테리움 글루타미쿰(Corynebacterium glutamicum) 유래의 아세토하이드록시산 신타아제의 큰 소단위체 ilvB 단백질은 예를 들면 서열번호 1의 아미노산 서열을 포함하는 단백질일 수 있다. 상기 서열번호 1의 아미노산 서열을 포함하는 단백질은 서열번호 1의 아미노산 서열을 가지는 단백질, 서열번호 1의 아미노산 서열로 구성되는 단백질과 혼용되어 사용될 수 있다.
또한, 본 출원에서의 아세토하이드록시산 신타아제의 큰 소단위체 ilvB 단백질은 비록 서열번호 1의 아미노산을 포함하는 단백질이라고 정의하였지만, 서열번호 1의 아미노산 서열 앞뒤로의 무의미한 서열 추가 또는 자연적으로 발생할 수 있는 돌연변이, 혹은 이의 잠재성 돌연변이 (silent mutation)를 제외하는 것이 아니며, 서열번호 1의 아미노산 서열을 포함하는 단백질과 서로 동일 또는 상응하는 활성을 가지는 경우라면 본원의 아세토하이드록시산 신타아제의 큰 소단위체 ilvB 단백질에 해당됨은 당업자에게 자명하다. 구체적인 예를 들어, 본원의 아세토하이드록시산 신타아제의 큰 소단위체 ilvB 단백질은 서열번호 1의 아미노산 서열 또는 이와 80%, 90%, 95%, 97% 또는 99%이상의 상동성 또는 동일성을 갖는 아미노산 서열로 구성되는 단백질일 수 있다. 또한, 이러한 상동성 또는 동일성을 가지며 상기 단백질에 상응하는 효능을 나타내는 아미노산 서열이라면, 일부 서열이 결실, 변형, 치환 또는 부가된 아미노산 서열을 갖는 단백질도 본 출원의 변이 대상이 되는 단백질의 범위 내에 포함됨은 자명하다.
즉, 본 출원에서 '특정 서열번호로 기재된 아미노산 서열을 갖는 단백질 또는 폴리펩티드', '특정 서열번호로 기재된 아미노산 서열로 이루어진 단백질 또는 폴리펩티드'라고 기재되어 있다 하더라도, 해당 서열번호의 아미노산 서열로 이루어진 폴리펩티드와 동일 혹은 상응하는 활성을 가지는 경우라면, 일부 서열이 결실, 변형, 치환 또는 부가된 아미노산 서열을 갖는 단백질도 본 출원에서 사용될 수 있음은 자명하다. 예를 들어, '서열번호 1의 아미노산 서열로 이루어진 폴리펩티드'는, 이와 동일 혹은 상응하는 활성을 가지는 경우라면 '서열번호 1의 아미노산 서열로 이루어진 폴리펩티드'에 속할 수 있음은 자명하다.
본 출원에서 제공하는 아세토하이드록시산 신타제 활성을 가지는 단백질 변이체는, 상기에서 설명한 아세토하이드록시산 신타제 활성을 갖는 단백질 중 특이적 위치의 아미노산이 치환되어, 아세토하이드록시산 신타제 활성이 변이 전 단백질 대비 100% 초과되거나 L-이소류신 또는 이의 아날로그 유사체에 의한 피드백저해가 해제된 변이체를 의미할 수 있다.
본 출원에서 용어, "변이체(variant)"는 하나 이상의 아미노산이 보존적 치환(conservative substitution) 및/또는 변형(modification)에 있어서 상기 열거된 서열 (the recited sequence)과 상이하나, 상기 단백질의 기능(functions) 또는 특성(properties)이 유지되는 단백질을 지칭한다. 변이체는 수 개의 아미노산 치환, 결실 또는 부가에 의해 식별되는 서열(identified sequence)과 상이하다. 이러한 변이체는 일반적으로 상기 단백질의 아미노산 서열 중 하나 이상의 아미노산을 변형하고, 상기 변형된 단백질의 특성을 평가하여 식별될 수 있다.
즉, 변이체의 능력은 본래 단백질(native protein)에 비하여 증가되거나, 변하지 않거나, 또는 감소될 수 있다. 다른 변이체는 성숙 단백질 (mature protein) 의 N- 및/또는 C-말단으로부터 일부분이 제거된 변이체를 포함할 수 있다. 상기 용어 "변이체"는 변이형, 변형, 변이된 단백질, 변이형 폴리펩티드, 변이, 등의 용어(영문 표현으로는 modification, modified protein, modified polypeptide, mutant, mutein, divergent, variant 등)가 사용될 수 있으며, 변이된 의미로 사용되는 용어라면 이에 제한되지 않는다. 본 출원의 목적상, 상기 변이체는 천연의 야생형 또는 비변형 단백질과 대비하여 단백질의 활성이 증가되거나 피드백저해가 해제된 것일 수 있으나, 이에 제한되지 않는다.
본 출원에서 용어 "보존적 치환(conservative substitution)"은 한 아미노산을 유사한 구조적 및/또는 화학적 성질을 갖는 또 다른 아미노산으로 치환시키는 것을 의미한다. 이러한 아미노산 치환은 일반적으로 잔기의 극성, 전하(염기성, 산성), 용해도, 소수성, 친수성 및/또는 양친매성(amphipathic nature)에서의 유사성에 근거하여 발생할 수 있다.
또한, 변이체는 폴리펩티드의 특성과 2차 구조에 최소한의 영향을 갖는 아미노산들의 결실 또는 부가를 포함할 수 있다. 예를 들면 폴리펩티드는 번역-동시에(co-translationally) 또는 번역-후에(post-translationally) 단백질의 이전(transfer)에 관여하는 단백질 N-말단의 시그널 (또는 리더)서열과 컨쥬게이트 할 수 있다. 또한 상기 폴리펩티드는 폴리펩티드를 확인, 정제, 또는 합성할 수 있도록 다른 서열 또는 링커와 컨쥬게이트 될 수 있다.
상기 '다른 아미노산으로 치환'은 치환 전의 아미노산과 다른 아미노산이면 제한되지 않는다. 즉, 서열번호 1의 아미노산 서열의 N-말단으로부터 136번째 아미노산인 글루타민이 글루타민 이외의 다른 아미노산 잔기로 치환된 것이라면 제한되지 않는다. 한편, 본 출원에서 '특정 아미노산이 치환되었다'고 표현하는 경우, 다른 아미노산으로 치환되었다고 별도로 표기하지 않더라도 치환 전의 아미노산과 다른 아미노산으로 치환되는 것임은 자명하다.
또는 상기 단백질 변이체는 서열번호 1의 아미노산 서열에서 N-말단으로부터 136번째 아미노산이 아스파라진(Asparagine), 알지닌(Arginine), 페닐알라닌(Phenylalanine), 세린(Serine), 타이로신(Tyrosine), 메치오닌(Methionine), 시스테인(Cysteine), 프롤린(Proline), 히스티딘(Histidine), 류신(Leucine), 이소류신(Isoleucine), 쓰레오닌(Threonine), 라이신(Lysine), 발린(Valine), 알라닌(Alanine), 아스파르산(Aspartic acid), 글루탐산(Glutamic acid), 글라이신(Glycine) 또는 트립토판(Tryptophan)으로 치환된 변이체일 수 있으나, 이에 제한되지 않는다.
이와 같은 본 출원의 단백질 변이체는 변이 전 단백질에 비해 활성이 강화된 아세토하이드록시산 신타제 활성을 갖는다.
본 출원의 서열번호 1의 서열에서 N-말단으로부터 136번째 아미노산이 다른 아미노산으로 치환된 단백질 변이체는, 상기 136번에 상응하는 위치의 아미노산이 다른 아미노산으로 치환된 단백질 변이체를 포함하는 것은 자명하다.
상기 서열번호 1의 서열에서 N-말단으로부터 136번째 아미노산이 다른 아미노산으로 치환된 단백질 변이체는 서열번호 12, 서열번호 47, 서열번호 48, 서열번호 49, 서열번호 50, 서열번호 51, 서열번호 52, 서열번호 53, 서열번호 54, 서열번호 55, 서열번호 56, 서열번호 57, 서열번호 58, 서열번호 59, 서열번호 60, 서열번호 61, 서열번호 62 또는 서열번호 63의 아미노산 서열을 포함하는 것일 수 있고, 구체적으로는 서열번호 12, 서열번호 47, 서열번호 48, 서열번호 49, 서열번호 50, 서열번호 51, 서열번호 52, 서열번호 53, 서열번호 54, 서열번호 55, 서열번호 56, 서열번호 57, 서열번호 58, 서열번호 59, 서열번호 60, 서열번호 61, 서열번호 62 및 서열번호 63 중 어느 하나의 아미노산 서열로 필수적으로 구성되는(consisting essentially of) 것일 수 있고, 보다 구체적으로는 서열번호 12, 서열번호 47, 서열번호 48, 서열번호 49, 서열번호 50, 서열번호 51, 서열번호 52, 서열번호 53, 서열번호 54, 서열번호 55, 서열번호 56, 서열번호 57, 서열번호 58, 서열번호 59, 서열번호 60, 서열번호 61, 서열번호 62 및 서열번호 63 중 어느 하나의 아미노산 서열로 이루어진 것일 수 있으나 이에 제한되지 않는다.
또한, 상기 단백질 변이체는 서열번호 12, 서열번호 47, 서열번호 48, 서열번호 49, 서열번호 50, 서열번호 51, 서열번호 52, 서열번호 53, 서열번호 54, 서열번호 55, 서열번호 56, 서열번호 57, 서열번호 58, 서열번호 59, 서열번호 60, 서열번호 61, 서열번호 62 및 서열번호 63 중 어느 하나의 아미노산 서열 또는 서열번호 1의 아미노산 서열에서, N-말단으로부터 136번째 아미노산은 고정되고, 이와 80% 이상의 상동성 또는 동일성을 갖는 아미노산 서열을 포함할 수 있으나, 이에 제한되는 것은 아니다. 구체적으로 본 출원의 상기 변이형 폴리펩티드는 서열번호 12, 서열번호 47, 서열번호 48, 서열번호 49, 서열번호 50, 서열번호 51, 서열번호 52, 서열번호 53, 서열번호 54, 서열번호 55, 서열번호 56, 서열번호 57, 서열번호 58, 서열번호 59, 서열번호 60, 서열번호 61, 서열번호 62 및 서열번호 63 중 어느 하나 및, 상기 서열번호 12, 서열번호 47, 서열번호 48, 서열번호 49, 서열번호 50, 서열번호 51, 서열번호 52, 서열번호 53, 서열번호 54, 서열번호 55, 서열번호 56, 서열번호 57, 서열번호 58, 서열번호 59, 서열번호 60, 서열번호 61, 서열번호 62 및 서열번호 63 중 어느 하나의 아미노산 서열과 적어도 80%, 90%, 95%, 96%, 97%, 98%, 또는 99% 상동성 또는 동일성을 가지는 폴리펩티드를 포함할 수 있다. 또한, 이러한 상동성 또는 동일성을 가지며 상기 단백질에 상응하는 효능을 나타내는 아미노산 서열이라면 136번 아미노산 위치 이외에, 일부 서열이 결실, 변형, 치환 또는 부가된 아미노산 서열을 갖는 단백질도 본 출원의 범위 내에 포함됨은 자명하다.
본 출원에서 용어 '상동성(homology)' 또는 '동일성(identity)'은 두 개의 주어진 아미노산 서열 또는 염기 서열과 관련된 정도를 의미하며 백분율로 표시될 수 있다. 용어 상동성 및 동일성은 종종 상호교환적으로 이용될 수 있다. 보존된 (conserved) 폴리뉴클레오티드 또는 폴리펩티드의 서열 상동성 또는 동일성은 표준 배열 알고리즘에 의해 결정되며, 사용되는 프로그램에 의해 확립된 디폴트 갭 페널티가 함께 이용될 수 있다. 실질적으로, 상동성을 갖거나 (homologous) 또는 동일한 (identical) 서열은 일반적으로 서열 전체 또는 전체-길이의 적어도 약 50%, 60%, 70%, 80% 또는 90%를 따라 중간 또는 높은 엄격한 조건(stringent conditions)에서 하이브리드할 수 있다. 하이브리드화는 폴리뉴클레오티드에서 코돈 대신 축퇴 코돈을 함유하는 폴리뉴클레오티드 또한 고려된다.
임의의 두 폴리뉴클레오티드 또는 폴리펩티드 서열이 상동성, 유사성 또는 동일성을 갖는지 여부는 예를 들어, Pearson et al (1988)[Proc. Natl. Acad. Sci. USA 85]: 2444에서와 같은 디폴트 파라미터를 이용하여 "FASTA" 프로그램과 같은 공지의 컴퓨터 알고리즘을 이용하여 결정될 수 있다. 또는, EMBOSS 패키지의 니들만 프로그램(EMBOSS: The European Molecular Biology Open Software Suite, Rice et al., 2000, Trends Genet. 16: 276-277)(버전 5.0.0 또는 이후 버전)에서 수행되는 바와 같은, 니들만-운치(Needleman-Wunsch) 알고리즘(Needleman and Wunsch, 1970, J. Mol. Biol. 48: 443-453)이 사용되어 결정될 수 있다. (GCG 프로그램 패키지 (Devereux, J., et al, Nucleic Acids Research 12: 387 (1984)), BLASTP,BLASTN, FASTA (Atschul, [S.] [F.,] [ET AL, J MOLEC BIOL 215]: 403 (1990); Guide to Huge Computers, Martin J. Bishop, [ED.,] Academic Press, San Diego,1994, 및 [CARILLO ETA/.](1988) SIAM J Applied Math 48: 1073을 포함한다). 예를 들어, 국립 생물공학 정보 데이터베이스 센터의 BLAST, 또는 ClustalW를 이용하여 상동성, 유사성 또는 동일성을 결정할 수 있다.
폴리뉴클레오티드 또는 폴리펩티드의 상동성, 유사성 또는 동일성은 예를 들어, Smith and Waterman, Adv. Appl. Math (1981) 2:482 에 공지된 대로, 예를 들면, Needleman et al. (1970), J Mol Biol.48 : 443과 같은 GAP 컴퓨터 프로그램을 이용하여 서열 정보를 비교함으로써 결정될 수 있다. 요약하면, GAP 프로그램은 두 서열 중 더 짧은 것에서의 기호의 전체 수로, 유사한 배열된 기호(즉, 뉴클레오티드 또는 아미노산)의 수를 나눈 값으로 정의한다. GAP 프로그램을 위한 디폴트파라미터는 (1) 일진법 비교 매트릭스(동일성을 위해 1 그리고 비-동일성을 위해 0의 값을 함유함) 및 Schwartz and Dayhoff, eds., Atlas Of Protein Sequence And Structure, National Biomedical Research Foundation, pp. 353-358 (1979)에 의해 개시된 대로, Gribskov et al(1986) Nucl. Acids Res. 14: 6745의 가중된 비교 매트릭스 (또는 EDNAFULL(NCBI NUC4.4의 EMBOSS 버전) 치환 매트릭스); (2) 각 갭을 위한 3.0의 페널티 및 각 갭에서 각 기호를 위한 추가의 0.10 페널티 (또는 갭 개방 패널티 10, 갭 연장 패널티 0.5); 및 (3) 말단 갭을 위한 무 페널티를 포함할 수 있다.
또한, 임의의 두 폴리뉴클레오티드 또는 폴리펩티드 서열이 상동성, 유사성 또는 동일성을 갖는지 여부는 정의된 엄격한 조건하에서 써던 혼성화 실험에 의해 서열을 비교함으로써 확인할 수 있으며, 정의되는 적절한 혼성화 조건은 해당 기술 범위 내이고, 당업자에게 잘 알려진 방법(예컨대, J. Sambrook et al., Molecular Cloning, A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory press, Cold Spring Harbor, New York, 1989; F.M. Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, Inc., New York)으로 결정될 수 있다.
본 출원의 다른 하나의 양태는 상기 단백질 변이체를 코딩하는 폴리뉴클레오티드를 제공한다.
본 출원에서 용어, "폴리뉴클레오티드"는 뉴클레오티드 단위체(monomer)가 공유결합에 의해 길게 사슬모양으로 이어진 뉴클레오티드의 중합체(polymer)로 일정한 길이 이상의 DNA 또는 RNA 가닥으로서, 보다 구체적으로는 상기 단백질 변이체를 코딩하는 폴리뉴클레오티드 단편을 의미한다.
본 출원의 단백질 변이체를 코딩하는 폴리뉴클레오티드에는 아세토하이드록시산 신타제 활성을 갖는 단백질 변이체를 코딩하는 폴리뉴클레오티드 서열이라면 제한 없이 포함될 수 있다.
본 출원에서 상기 아세토하이드록시산 신타제 활성을 갖는 단백질의 아미노산 서열을 코딩하는 유전자는 ilvB 유전자일 수 있으며, 코리네박테리움 글루타미쿰(Corynebacterium glutamicum) 유래일 수 있고, 구체적으로는 서열번호 1의 아미노산 서열을 코딩하는 염기서열일 수 있으나, 이에 제한되지 않는다.
본 출원의 단백질 변이체를 코딩하는 폴리뉴클레오티드는 구체적으로, 서열번호 1의 아미노산 서열에서 136번 아미노산이 다른 아미노산으로 치환된 단백질 변이체를 코딩하는 폴리뉴클레오티드 서열이라면 제한없이 포함할 수 있다. 예를 들어, 본 출원의 폴리뉴클레오티드는 본 출원의 단백질 변이체, 구체적으로는 상기 서열번호 12, 서열번호 47, 서열번호 48, 서열번호 49, 서열번호 50, 서열번호 51, 서열번호 52, 서열번호 53, 서열번호 54, 서열번호 55, 서열번호 56, 서열번호 57, 서열번호 58, 서열번호 59, 서열번호 60, 서열번호 61, 서열번호 62 및 서열번호 63중의 어느 하나의 아미노산 서열을 포함하는 단백질 또는 이와 상동성 또는 동일성을 갖는 폴리펩티드를 코딩하는 폴리뉴클레오티드 서열일 수 있으나, 이에 제한되지 않는다. 상기 상동성 또는 동일성에 대해서는 전술한 바와 같다.
또한, 상기 단백질 변이체를 코딩하는 폴리뉴클레오티드는 코돈의 축퇴성(degeneracy)으로 인하여 또는 상기 폴리펩티드를 발현시키고자 하는 생물에서 선호되는 코돈을 고려하여, 폴리펩티드의 아미노산 서열을 변화시키지 않는 범위내에서 코딩 영역에 다양한 변형이 이루어질 수 있다.
또한, 상기 단백질 변이체를 코딩하는 폴리뉴클레오티드는 공지의 유전자 서열로부터 조제될 수 있는 프로브, 예를 들면, 상기 폴리뉴클레오티드 서열 전체 또는 일부에 대한 상보 서열과 엄격한 조건 하에 하이브리드화할 수 있는 서열번호 1의 아미노산 서열의 136번 아미노산이 다른 아미노산으로 치환된 단백질 변이체를 코딩하는 서열에 상응하는 서열을 포함하는 프로브라면 제한 없이 포함할 수 있다.
상기 "엄격한 조건"이란 폴리뉴클레오티드 간의 특이적 혼성화를 가능하게 하는 조건을 의미한다. 이러한 조건은 문헌 (예컨대, J. Sambrook et al., 상동)에 구체적으로 기재되어 있다. 예를 들어, 상동성이 높은 유전자끼리, 40% 이상, 구체적으로는 90% 이상, 보다 구체적으로는 95% 이상, 더욱 구체적으로는 97% 이상, 특히 구체적으로는 99% 이상의 상동성을 갖는 유전자끼리 하이브리드화하고, 그보다 상동성이 낮은 유전자끼리 하이브리드화하지 않는 조건, 또는 통상의 써던 하이브리드화의 세척 조건인 60℃ 1X SSC, 0.1% SDS, 구체적으로는 60℃ 0.1X SSC, 0.1% SDS, 보다 구체적으로는 68℃ 0.1X SSC, 0.1% SDS에 상당하는 염 농도 및 온도에서, 1회, 구체적으로는 2회 내지 3회 세정하는 조건을 열거할 수 있다. 그러나 이에 제한되는 것은 아니며, 그 목적에 따라 당업자에 의해 적절히 조절될 수 있다.
혼성화는 비록 혼성화의 엄격도에 따라 염기 간의 미스매치 (mismatch)가 가능할지라도, 두 개의 폴리뉴클레오티드가 상보적 서열을 가질 것을 요구한다. 용어, "상보적"은 서로 혼성화가 가능한 뉴클레오티드 염기 간의 관계를 기술하는데 사용된다. 예를 들면, DNA에 관하여, 아데노신은 티민에 상보적이며 시토신은 구아닌에 상보적이다. 따라서, 본 출원은 또한 실질적으로 유사한 폴리뉴클레오티드 서열뿐만 아니라 전체 서열에 상보적인 단리된 폴리뉴클레오티드 단편을 포함할 수 있다.
구체적으로, 상동성을 가지는 폴리뉴클레오티드는 55℃의 Tm 값에서 혼성화 단계를 포함하는 혼성화 조건을 사용하고 상술한 조건을 사용하여 탐지할 수 있다. 또한, 상기 Tm 값은 60℃, 63℃ 또는 65℃일 수 있으나, 이에 제한되는 것은 아니고 그 목적에 따라 당업자에 의해 적절히 조절될 수 있다.
폴리뉴클레오티드를 혼성화하는 적절한 엄격도는 폴리뉴클레오티드의 길이 및 상보성 정도에 의존하고 변수는 해당기술분야에 잘 알려져 있다 (Sambrook et al., supra, 9.50-9.51, 11.7-11.8 참조).
본 출원의 다른 하나의 양태는 상기 단백질 변이체를 코딩하는 폴리뉴클레오티드를 포함하는 벡터를 제공한다.
본 출원에서 사용된 용어 "벡터"는 적합한 숙주 내에서 목적 단백질을 발현시킬 수 있도록 적합한 조절 서열에 작동 가능하게 연결된 상기 목적 단백질을 코딩하는 폴리뉴클레오티드의 염기서열을 함유하는 DNA 제조물을 의미한다. 상기 조절 서열은 전사를 개시할 수 있는 프로모터, 그러한 전사를 조절하기 위한 임의의 오퍼레이터 서열, 적합한 mRNA 리보좀 결합부위를 코딩하는 서열, 및 전사 및 해독의 종결을 조절하는 서열을 포함할 수 있다. 벡터는 적당한 숙주세포 내로 형질전환된 후, 숙주 게놈과 무관하게 복제되거나 기능할 수 있으며, 게놈 그 자체에 통합될 수 있다.
또한, 상기에서 용어 "작동 가능하게 연결"된 것이란 본 출원의 목적 단백질을 코딩하는 폴리뉴클레오티드의 전사를 개시 및 매개하도록 하는 프로모터 서열과 상기 폴리뉴클레오티드 서열이 기능적으로 연결되어 있는 것을 의미한다. 작동 가능한 연결은 당업계의 공지된 유전자 재조합 기술을 이용하여 제조할 수 있으며, 부위-특이적 DNA 절단 및 연결은 당업계의 절단 및 연결 효소 등을 사용하여 제작할 수 있으나, 이에 제한되지 않는다.
본 출원에서 사용되는 벡터는 숙주세포 내에서 복제 가능한 것이면 특별히 한정되지 않으며, 당업계에 알려진 임의의 벡터를 이용할 수 있다. 통상 사용되는 벡터의 예로는 천연 상태이거나 재조합된 상태의 플라스미드, 코스미드, 바이러스 및 박테리오파지를 들 수 있다. 예를 들어, 파지 벡터 또는 코스미드 벡터로서 pWE15, M13, MBL3, MBL4, IXII, ASHII, APII, t10, t11, Charon4A, 및 Charon21A등을 사용할 수 있으며, 플라스미드 벡터로서 pBR계, pUC계, pBluescriptII계,pGEM계, pTZ계, pCL계 및 pET계 등을 사용할 수 있다. 구체적으로는 pDZ,pACYC177, pACYC184, pCL, pECCG117, pUC19, pBR322, pMW118, pCC1BAC 벡터 등을 사용할 수 있다.
일례로 세포 내 염색체 삽입용 벡터를 통해 염색체 내에 목적 단백질을 코딩하는 폴리뉴클레오티드를 변이된 폴리뉴클레오티드로 교체시킬 수 있다. 상기 폴리뉴클레오티드의 염색체 내로의 삽입은 당업계에 알려진 임의의 방법, 예를 들면, 상동재조합에 의하여 이루어질 수 있으나, 이에 한정되지는 않는다. 상기 염색체 삽입 여부를 확인하기 위한 선별 마커(selection marker)를 추가로 포함할 수 있다. 선별 마커는 벡터로 형질전환된 세포를 선별, 즉 목적 핵산 분자의 삽입 여부를 확인하기 위한 것으로, 약물 내성, 영양 요구성, 세포 독성제에 대한 내성 또는 표면 단백질의 발현과 같은 선택가능 표현형을 부여하는 마커들이 사용될 수 있다. 선택제(selective agent)가 처리된 환경에서는 선별 마커를 발현하는 세포만 생존하거나 다른 표현 형질을 나타내므로, 형질전환된 세포를 선별할 수 있다.
상기에서 용어 "형질전환"은 표적 단백질을 코딩하는 폴리뉴클레오티드를 포함하는 벡터를 숙주세포 내에 도입하여 숙주세포 내에서 상기 폴리뉴클레오티드가 코딩하는 단백질이 발현할 수 있도록 하는 것을 의미한다. 형질전환된 폴리뉴클레오티드는 숙주세포 내에서 발현될 수 있기만 한다면, 숙주세포의 염색체 내에 삽입되어 위치하거나 염색체 외에 위치하거나 상관없이 이들 모두를 포함할 수 있다. 또한, 상기 폴리뉴클레오티드는 표적 단백질을 코딩하는 DNA 및 RNA를 포함한다. 상기 폴리뉴클레오티드는 숙주세포 내로 도입되어 발현될 수 있는 것이면, 어떠한 형태로 도입되는 것이든 상관없다. 예를 들면, 상기 폴리뉴클레오티드는 자체적으로 발현되는데 필요한 모든 요소를 포함하는 유전자 구조체인 발현 카세트 (expression cassette) 의 형태로 숙주세포에 도입될 수 있다. 상기 발현 카세트는 통상 상기 폴리뉴클레오티드에 작동 가능하게 연결되어 있는 프로모터 (promoter), 전사 종결신호, 리보좀 결합부위 및 번역 종결신호를 포함할 수 있다. 상기 발현 카세트는 자체 복제가 가능한 발현 벡터 형태일 수 있다. 또한, 상기 폴리뉴클레오티드는 그 자체의 형태로 숙주세포에 도입되어 숙주세포에서 발현에 필요한 서열과 작동 가능하게 연결되어 있는 것일 수도 있으며, 이에 한정되지 않는다. 상기 형질전환 하는 방법은 핵산을 세포 내로 도입하는 어떤 방법도 포함되며, 숙주세포에 따라 당 분야에서 공지된 바와 같이 적합한 표준 기술을 선택하여 수행할 수 있다. 예를 들어, 전기천공법 (electroporation), 인산칼슘 (Ca(H2PO4)2, CaHPO4, 또는 Ca3(PO4)2) 침전, 염화칼슘 (CaCl2) 침전, 미세주입법 (microinjection), 폴리에틸렌글리콜 (PEG)법, DEAE-덱스트란법, 양이온 리포좀법, 및 초산 리튬-DMSO법 등이 있으나, 이에 제한되지 않는다.
본 출원의 다른 하나의 양태는, 상기 아세토하이드록시산 신타제 활성을 갖는 단백질 변이체를 포함하는, 미생물을 제공한다. 구체적으로 상기 미생물은 본 출원의 아세토하이드록시산 신타제 활성을 갖는 단백질 변이체를 발현하는, L-이소류신을 생산하는 미생물일 수 있다.
본 출원에서 용어, 단백질이 "발현되도록/되는/하는"은 목적 단백질이 미생물 내에 도입되거나, 미생물내에서 발현되도록 변형된 상태를 의미한다. 상기 목적 단백질이 미생물내 존재하는 단백질인 경우 내재적 또는 변형전에 비하여 그 활성이 강화된 상태를 의미한다. 본 출원의 목적상 "목적 단백질"은 전술한 아세토하이드록시산 신타제 활성을 가지는 단백질의 변이체일 수 있다.
구체적으로, "단백질의 도입"은, 미생물이 본래 가지고 있지 않았던 특정 단백질의 활성을 나타나게 되는 것 또는 해당 단백질의 내재적 활성 또는 변형 전 활성에 비하여 향상된 활성을 나타나게 되는 것을 의미한다. 예를 들어, 특정 단백질을 코딩하는 폴리뉴클레오티드가 미생물 내 염색체로 도입되거나, 특정 단백질을 코딩하는 폴리뉴클레오티드를 포함하는 벡터가 미생물 내로 도입되어 이의 활성이 나타나는 것일 수 있다. 또한, "활성의 강화"는 미생물이 가진 특정 단백질 활성이 그 내재적 활성 또는 변형 전 활성에 비하여 향상되거나, 특정 단백질에 대한 피드백 저해 효과가 해제되어 이의 내재적 활성 또는 변형전 활성에 비하여 활성이 저해되지 않게 되는 것을 의미한다. "내재적 활성"은 자연적, 또는 인위적 요인에 의한 유전적 변이로 미생물의 형질이 변화하는 경우, 형질 변화 전 모균주가 본래 가지고 있던 특정 단백질의 활성을 말한다.
구체적으로, 본 출원의 활성 강화는 목적하는 단백질을 코딩하는 폴리뉴클레오티드의 세포 내 카피수 증가, 목적하는 단백질을 암호화하는 폴리뉴클레오티드의 발현 조절 서열에 변이를 도입하는 방법, 목적하는 단백질을 암호화하는 폴리뉴클레오티드 발현 조절 서열을 활성이 강력한 서열로 교체하는 방법, 염색체상의 목적하는 단백질을 코딩하는 폴리뉴클레오티드를 활성이 강화된 단백질 변이체를 암호화하는 폴리뉴클레오티드로 대체하거나 변이를 추가적으로 도입시키는 것과 같은 폴리뉴클레오티드 서열을 변형시키는 방법 및 미생물에 단백질 변이체를 도입하는 방법으로 이루어진 군으로부터 선택되는 어느 하나 이상의 방법으로 이루어질 수 있으나 이에 제한되지 않는다. 상기 목적하는 단백질을 코딩하는 폴리뉴클레오티드는 목적 유전자를 의미할 수 있다.
상기에서 폴리뉴클레오티드의 카피수 증가는, 특별히 이에 제한되지 않으나, 벡터에 작동 가능하게 연결된 형태로 수행되거나, 숙주세포 내의 염색체 내로 삽입됨으로써 수행될 수 있다. 구체적으로, 본 출원의 단백질을 코딩하는 폴리뉴클레오티드가 작동 가능하게 연결된, 숙주와 무관하게 복제되고 기능할 수 있는 벡터가 숙주세포내에 도입되는 것일 수 있다. 또는, 상기 폴리뉴클레오티드가 작동 가능하게 연결된, 숙주세포 내의 염색체 내로 상기 폴리뉴클레오티드를 삽입시킬 수 있는 벡터가 숙주세포의 염색체 내에 도입되는 것일 수 있다. 상기 폴리뉴클레오티드의 염색체내로의 삽입은 당업계에 알려진 임의의 방법, 예를 들면, 상동재조합에 의하여 이루어질 수 있다.
다음으로, 폴리뉴클레오티드의 발현이 증가하도록 발현 조절서열을 변형하는 것은, 특별히 이에 제한되지 않으나, 상기 발현 조절서열의 활성을 더욱 강화하도록 핵산 서열을 결실, 삽입, 비보전적 또는 보전적 치환 또는 이들의 조합으로 서열상의 변이를 유도하여 수행하거나, 더욱 강한 활성을 갖는 핵산 서열로 교체함에 의하여 수행될 수 있다. 상기 발현 조절서열은, 특별히 이에 제한되지 않으나, 프로모터, 오퍼레이터 서열, 리보좀 결합부위를 코딩하는 서열, 전사 및 해독의 종결을 조절하는 서열 등을 포함할 수 있다.
상기 발현 조절서열의 활성을 더욱 강화하기 위하여 더욱 강한 활성을 갖는 핵산 서열로 교체하는 것은 본래의 프로모터 대신 보다 강력한 프로모터가 연결되는 것일 수 있으며 이에 한정되는 것은 아니다. 공지된 강력한 프로모터의 예에는 cj1 내지 cj7 프로모터(대한민국 등록특허 제10-0620092호), lac 프로모터, trp 프로모터, trc 프로모터, tac 프로모터, 람다 파아지 PR 프로모터, PL 프로모터, tet 프로모터, gapA 프로모터, SPL7 프로모터, SPL13(sm3) 프로모터 (대한민국 등록특허 제 10-1783170호), O2 프로모터(대한민국 등록특허 제10-1632642), tkt 프로모터 및 yccA 프로모터 등이 있으나 이에 한정되는 것은 아니다.
아울러, 염색체상의 폴리뉴클레오티드 서열의 변형은, 특별히 이에 제한되지 않으나, 상기 폴리뉴클레오티드 서열의 활성을 더욱 강화하도록 핵산 서열을 결실, 삽입, 비보전적 또는 보전적 치환 또는 이들의 조합으로 발현 조절서열상의 변이를 유도하여 수행하거나, 더욱 강한 활성을 갖도록 개량된 폴리뉴클레오티드 서열로 교체함에 의하여 수행될 수 있다.
이와 같은 단백질 활성의 도입 및 강화는, 상응하는 단백질의 활성 또는 농도가 야생형이나 비변형 미생물 균주에서의 단백질의 활성 또는 농도를 기준으로 하여 일반적으로 최소 1%, 10%, 25%, 50%, 75%, 100%, 150%, 200%, 300%, 400% 또는 500%, 최대 1000% 또는 2000%까지 증가되는 것일 수 있으나, 이에 제한되는 것은 아니다.
본 출원에서 용어, "L-이소류신을 생산하는 미생물"은 배지 중의 탄소원으로부터 L-이소류신을 야생형이나 비변형 미생물과 비교하여 과량으로 생산할 수 있는 미생물을 말한다. 또한, 상기 L-이소류신을 생산하는 미생물은 재조합 미생물일 수 있다. 구체적으로 L-이소류신을 생산할 수 있다면 그 종류가 특별히 제한되지 않으나, 엔테로박터(Enterbacter) 속, 에스케리키아(Escherichia) 속, 어위니 아(Erwinia) 속, 세라티아(Serratia) 속, 프로비덴시아(Providencia) 속, 코리네박테리움(Corynebacterium) 속 및 브레비박테리움(Brevibacterium) 속에 속하는 미생물 일 수 있다. 보다 구체적으로는 코리네박테리움(Corynebacterium) 속 또는 에스케리키아(Escherichia) 속에 속하는 미생물일 수 있다.
보다 더욱 구체적으로는 에스케리키아속(Escherichia) 미생물은 대장균(Escherichia coli)일 수 있으며, 코리네박테리움(Corynebacterium) 속 미생물은 코리네박테리움 글루타미쿰 (Corynebacterium glutamicum)일 수 있으나, 아세토하이드록시산 신타제 활성을 갖는 단백질이 도입 또는 강화되어 L-이소류신 생산량이 증가될 수 있는 에스케리키아 속 또는 코리네박테리움 속에 속하는 미생물은 제한 없이 포함될 수 있다.
본 출원에서 아세토하이드록시산 신타제 활성을 갖는 단백질 변이체가 발현되도록 변형된 L-이소류신을 생산하는 미생물의 모균주는 L-이소류신을 생산하는 미생물이라면 특별히 제한되지 않는다. L-이소류신을 생산하는 미생물은 천연형 미생물 자체 또는 외부 L-이소류신 생산 기작과 관련된 유전자가 삽입되거나 내재적 유전자의 활성을 강화시키거나 불활성시켜 향상된 L-이소류신 생산능을 가지게 된 미생물일 수 있다.
본 출원의 다른 하나의 양태는, 상기 아세토하이드록시산 신타제 활성을 갖는 단백질 변이체를 발현하는, L-이소류신을 생산하는 미생물을 배지에서 배양하는 것을 포함하는, L-이소류신의 생산 방법에 대한 것이다.
상기 L-이소류신, 서열번호 1의 아미노산 서열을 포함하는 아세토하이드록시산 신타제 활성을 갖는 단백질, 단백질의 발현, 및 미생물에 대해서는 상기에서 설명한 바와 같다.
본 출원의 "L-이소류신"은 L-이소류신 그 자체 형태뿐 아니라, 이의 염 형태도 모두 포함될 수 있다.
본 출원에서 용어, "배양"은 상기 미생물을 적당히 조절된 환경 조건에서 생육시키는 것을 의미한다. 본 출원의 배양과정은 당업계에 알려진 적당한 배지와 배양조건에 따라 이루어질 수 있다. 이러한 배양 과정은 선택되는 균주에 따라 당업자가 용이하게 조정하여 사용할 수 있다. 구체적으로 상기 배양은 회분식, 연속식및 유가식일 수 있으나, 이에 제한되는 것은 아니다.
본 출원에서 용어, "배지"는 상기 미생물을 배양하기 위해 필요로 하는 영양 물질을 주성분으로 혼합한 물질을 의미하며, 생존 및 발육에 불가결한 물을 비롯하여 영양물질 및 발육인자 등을 공급한다. 구체적으로, 본 출원의 미생물의 배양에 사용되는 배지 및 기타 배양 조건은 통상의 미생물의 배양에 사용되는 배지라면 특별한 제한 없이 어느 것이나 사용할 수 있으나, 본 출원의 미생물을 적당한 탄소원, 질소원, 인원, 무기화합물, 아미노산 및/또는 비타민 등을 함유한 통상의 배지내에서 호기성 조건 하에서 온도, pH 등을 조절하면서 배양할 수 있다.
본 출원에서 상기 탄소원으로는 글루코오스, 프룩토오스, 수크로오스, 말토오스 등과 같은 탄수화물; 만니톨, 소르비톨 등과 같은 당 알코올, 피루브산, 락트산, 시트르산 등과 같은 유기산; 글루탐산, 메티오닌, 리신 등과 같은 아미노산 등이 포함될 수 있다. 또한, 전분 가수분해물, 당밀, 블랙스트랩 당밀, 쌀겨울, 카사버, 사탕수수 찌꺼기 및 옥수수 침지액 같은 천연의 유기 영양원을 사용할 수 있으며, 구체적으로는 글루코오스 및 살균된 전처리 당밀(즉, 환원당으로 전환된 당밀)등과 같은 탄수화물이 사용될 수 있으며, 그 외의 적정량의 탄소원을 제한 없이 다양하게 이용할 수 있다. 이들 탄소원은 단독으로 사용되거나 2 종 이상이 조합되어 사용될 수 있으며, 이에 한정되는 것은 아니다.
상기 질소원으로는 암모니아, 황산암모늄, 염화암모늄, 초산암모늄, 인산암모늄, 탄산안모늄, 질산암모늄 등과 같은 무기질소원; 글루탐산, 메티오닌, 글루타민 등과 같은 아미노산, 펩톤, NZ-아민, 육류 추출물, 효모 추출물, 맥아 추출물, 옥수수 침지액, 카세인 가수분해물, 어류 또는 그의 분해생성물, 탈지 대두 케이크 또는 그의 분해 생성물 등과 같은 유기 질소원이 사용될 수 있다. 이들 질소원은 단독으로 사용되거나 2 종 이상이 조합되어 사용될 수 있으며, 이에 한정되는 것은 아니다.
상기 인원으로는 인산 제1칼륨, 인산 제2칼륨, 또는 이에 대응되는 소디움함유 염 등이 포함될 수 있다. 무기화합물로는 염화나트륨, 염화칼슘, 염화철, 황산마그네슘, 황산철, 황산망간, 탄산칼슘 등이 사용될 수 있으며, 그 외에 아미노산, 비타민 및/또는 적절한 전구체 등이 포함될 수 있다. 이들 구성성분 또는 전구체는 배지에 회분식 또는 연속식으로 첨가될 수 있다. 그러나, 이에 한정되는 것은 아니다.
본 출원에서, 미생물의 배양 중에 수산화암모늄, 수산화칼륨, 암모니아, 인산, 황산 등과 같은 화합물을 배지에 적절한 방식으로 첨가하여, 배지의 pH를 조정할 수 있다. 또한, 배양 중에는 지방산 폴리글리콜 에스테르와 같은 소포제를 사용하여 기포 생성을 억제할 수 있다. 또한, 배지의 호기 상태를 유지하기 위하여, 배지 내로 산소 또는 산소 함유 기체를 주입하거나 혐기 및 미호기 상태를 유지하기 위해 기체의 주입 없이 혹은 질소, 수소 또는 이산화탄소 가스를 주입할 수 있으며, 이에 한정되는 것은 아니다.
배지의 온도는 20℃ 내지 50℃ 구체적으로는 30℃내지 37℃일 수 있으나 이에 제한되지 않는다. 배양 기간은 유용 물질의 원하는 생성량이 수득될 때까지 계속될 수 있으며, 구체적으로는 10 시간 내지 100 시간일 수 있으나 이에 제한되지 않는다.
상기 생산방법은, 상기 배양에 따른 배지 또는 상기 미생물로부터 L-이소류신을 회수하는 것을 더 포함할 수 있다.
상기 L-이소류신을 회수하는 것은 본 출원의 미생물의 배양 방법, 예를 들어 회분식, 연속식 또는 유가식 배양 방법 등에 따라 당해 기술 분야에 공지된 적합한 방법을 이용하여 배지로부터 목적하는 L-이소류신을 회수할 수 있다. 예컨대 원심 분리, 여과, 결정화 단백질 침전제에 의한 처리(염석법), 추출, 초음파 파쇄, 한외 여과, 투석법, 분자체 크로마토그래피(겔여과), 흡착크로마토그래피, 이온교환 크로마토그래피, 친화도 크로마토그래피 등의 각종 크로마토그래피, HPLC 및 이들의 방법을 조합하여 사용될 수 있으나, 이들 예에 한정되는 것은 아니다.
상기 생산방법은, 정제 공정을 포함할 수 있다. 상기 정제공정은 당해 기술 분야에 공지된 적합한 방법을 이용하여, 회수된 L-이소류신을 정제할 수 있다.
본 출원의 다른 하나의 양태는 서열번호 1의 아미노산 서열에서 136번 아미노산이 다른 아미노산으로 치환된, 아세토하이드록시산 신타제 활성을 갖는 단백질 변이체가 발현되도록 미생물을 변형하는 것을 포함하는, L-이소류신 생산능을 증가시키는 방법을 제공한다.
본 출원의 다른 하나의 양태는 상기 단백질 변이체의 L-이소류신 생산능 증가 용도를 제공한다.
상기 단백질 변이체, 다른 아미노산에 관해서는 전술한 바와 같다.
이하 본 출원을 실시예에 의해 보다 상세하게 설명한다. 그러나 이들 실시예는 본 출원을 예시적으로 설명하기 위한 것으로, 본 출원의 범위가 이들 실시예에 의해 제한되는 것은 아니다.
실시예 1. 인공변이법을 통한 무작위 돌연변이주 선별
본 실시예에서는 L-이소류신의 생산능이 향상된 미생물 변이주를 얻기 위해 하기와 같은 방법을 사용하여 미생물의 변이를 유도하였다.
먼저 야생형 코리네박테리움 글루타미쿰 ATCC 13032 균주에 이소류신 생합성에서 중요한 효소로 작용하는 L-threonine dehydratase(ilvA)의 피드백 저해(feedback inhibition) 해소를 위한 ilvA(F383A) 변이를 도입하기 위해 서열번호 72, 서열번호 73 서열번호 74, 및 서열번호 75의 프라이머를 제작하였다.
코리네박테리움 글루타미쿰(Corynebacterium glutamicum) ATCC 13032의 게놈 DNA를 주형으로 서열번호 72와 73 및 서열번호 74와 서열번호 75의 프라이머를 이용하여 PCR을 수행하였다. PfuUltraTM 고-신뢰 DNA 폴리머라제(Stratagene)를 사용하여 PCR 하였으며, PCR 조건은 변성 95℃ 30초; 어닐링 55℃ 30초; 및 중합반응 72℃ 1분을 25회 반복하였다. 그 결과, 1000bp의 ilvA 유전자 상단부위와 1000bp ilvA 유전자 하단부위의 유전자 단편을 각각 획득하였고, QIAGEN사의 PCR Purification kit를 사용하여 각 증폭산물을 정제하여 벡터 제작을 위한 삽입 DNA 단편으로 사용하였다. 제한효소 smaI으로 처리한 후 65℃에서 20분간 열처리한 pDZ(대한민국 등록 특허 번호 제0924065호) 벡터와 DNA 단편들을 몰농도 (M) 1:2가 되도록 하여 다카라(TaKaRa)의 Infusion Cloning Kit를 사용하여 제공된 매뉴얼에 따라 클로닝함으로써 F383A 변이를 염색체상에 도입하기 위한 벡터 pDZ-F383A를 제작하였다.
제작된 벡터를 전기천공법에 의해 코리네박테리움 글루타미쿰 ATCC 13032 에 형질전환하고, 2차 교차 과정을 거쳐 염색체 상에서 각각 변이형 염기로 치환되어 있는 균주를 얻었다. 적절한 치환 여부는 하기의 프라이머 조합을 사용하여 MASA(Mutant Allele Specific Amplification) PCR 기법(Takeda et al., Hum. Mutation, 2, 112-117 (1993))을 사용하여 변이형 서열에 부합하는 프라이머 조합(서열번호 68 및 서열번호 76)에서는 증폭되는 균주를 선별함으로써 1차 결정하였으며, 선별된 균주의 ilvA 서열분석은 서열번호 77 및 서열번호 78의 프라이머 조합을 이용하여 변이형 서열 분석함으로써 2차 확인하였다.
다음으로 상기 ilvA(F383A) 변이가 도입된 균주에 hom(R407H)(한국등록특허 10-1996769호) 변이가 추가적으로 도입된 균주를 제작하기 위하여 서열번호 64, 서열번호 서열번호 65, 서열번호 66 및 서열번호 67의 프라이머를 제작하였다.
코리네박테리움 글루타미쿰(Corynebacterium glutamicum) ATCC 13032로부터 추출한 게놈 DNA를 주형으로 서열번호 64 와 서열번호 65 및 서열번호 66 및 서열번호 67의 프라이머를 사용하여 PCR을 수행하였다. PfuUltraTM 고-신뢰 DNA 폴리머라제(Stratagene)를 사용하여 PCR 하였으며, PCR 조건은 변성 95℃ 30초; 어닐링 55℃ 30초; 및 중합반응 72℃ 1분을 25회 반복하였다. 그 결과, 1000bp의 hom 유전자 상단부위와 1000bp hom 유전자 하단부위의 유전자 단편을 각각 획득하였다. 증폭산물을 QIAGEN사의 PCR Purification kit를 사용하여 정제하여 벡터 제작을 위한 삽입 DNA 단편으로 사용하였다. 한편 제한효소 smaI으로 처리한 후, 65℃에서 20분간 열처리한 pDZ(대한민국 등록 특허 번호 제0924065호) 벡터와 상기 PCR을 통하여 증폭한 삽입 DNA 단편의 몰농도(M) 비율이 1:2가 되도록 하여 다카라(TaKaRa)의 Infusion Cloning Kit를 사용하여 제공된 매뉴얼에 따라 클로닝함으로써 R407H 변이를 염색체상에 도입하기 위한 벡터 pDZ-R407H를 제작하였다.
제작된 벡터를 전기천공법에 의해 코리네박테리움 글루타미쿰 ATCC 13032 ilvA(F383A)에 형질전환하고, 2차 교차 과정을 거쳐 염색체 상에서 각각 변이형 염기로 치환되어 있는 균주를 얻었다. 적절한 치환 여부는 하기의 프라이머 조합을 사용하여 MASA(Mutant Allele Specific Amplification) PCR 기법(Takeda et al., Hum. Mutation, 2, 112-117 (1993))을 사용하여 변이형 서열에 부합하는 프라이머 조합(서열번호 68 및 서열번호 69)에서는 증폭되는 균주를 선별함으로써 1차 결정하였으며, 선별된 균주의 hom 서열분석은 서열번호 70 및 서열번호 71의 프라이머 조합을 이용하여 변이형 서열 분석함으로써 2차 확인하였다.
구체적으로, 모균주인 코리네박테리움 글루타미쿰 ATCC 13032 hom(R407H) ilvA(F383A)를 활성화 배지에서 16시간 동안 배양하여 활성화된 균주를 121℃에서 15분간 멸균한 종배지에 접종하여 14시간 동안 배양한 후, 배양액 5 ㎖을 회수하였다. 회수한 배양액을 100 mM 시트르산 완충용액 (citric buffer)으로 세척한 후, NTG (N-Methyl-N'-nitro-N-nitrosoguanidine)를 최종농도 200 mg/ℓ가 되게 첨가한 후, 20분 동안 처리하고, 100 mM 인산 완충용액 (phosphate buffer)으로 세척하였다. NTG가 처리된 균주를 최소배지에 도말하여 사멸율을 구해본 결과 사멸율은 85%였으며 생존한 세포들을 종배지에 접종 배양, 최종적으로 우수한 이소류신 생산능을 나타내는 변이주를 선별하여 코리네박테리움 글루타미쿰 CJILE-42 (Corynebacterium glutamicum, CJILE-42)로 명명하였다.
실시예 1에서 사용한 배지의 조성은 하기와 같다.
<활성화배지>
소고기 추출물 1%, 폴리펩톤 1%, 소듐클로라이드 0.5%, 효모추출물 1%, 한천 2%, pH 7.2
<종배지>
포도당 5%, 박토펩톤 1%, 소듐클로라이드 0.25%, 효모추출물 1%, 요소 0.4%, pH 7.2
<최소배지>
포도당 1.0%, 황산암모늄 0.4%, 황산마그네슘 0.04%, 인산제1칼륨 0.1%, 요소 0.1%, 티아민 0.001%, 비오틴 200 ㎍/L, 한천 2%, pH 7.2
실시예 2: L-이소류신 생산용 무작위 돌연변이주의 L-이소류신 생산성 조사
상기 실시예 1에서 얻어진 변이주인 코리네박테리움 글루타미쿰 CJILE-42의 L-이소류신 생산성을 확인하기 위해 하기와 같은 방법으로 배양하였다. 생산배지 25㎖을 함유하는 250㎖ 코너-바풀 플라스크에 모균주 및 상기 변이주를 접종한 후, 32℃에서 60시간동안 200rpm으로 진탕 배양하여 L-이소류신을 제조하였다.
본 실시예 2에서 사용한 생산배지의 조성은 하기와 같다.
<생산배지>
포도당 10%, 효모추출물 0.2%, 황산암모늄 1.6%, 제1인산칼륨 0.1%, 황산마그네슘7수염 0.1%, 황산철7수염 10mg/ℓ, 황산망간1수염 10 mg/ℓ, 비오틴 200 ㎍/ℓ, pH 7.2
배양종료 후, 액체고속크로마토그래피(HPLC)를 이용하여 L-이소류신의 생산량을 측정하였고, 실험한 각 균주에 대한 배양액 중의 L-이소류신 농도는 하기 표 1에 나타내었다.
Figure PCTKR2020007529-appb-T000001
그 결과, 상기 표 1에 나타난 바와 같이, 모균주인 코리네박테리움 글루타미쿰 ATCC 13032 hom(R407H) ilvA(F383A)은 0.2g/ℓ의 농도로 L-이소류신을 생산하였으나, 본 출원에 따른 변이주 코리네박테리움 글루타미쿰 CJILE-42은 1.8g/ℓ의 농도로 L-이소류신을 생산하여, 모균주에 비해 약 9배 이상 L-이소류신 생산성이 증가한 것을 확인하였다.
상기의 결과를 바탕으로 L-쓰레오닌으로부터 L-이소류신이 합성되는 경로에 있는 유전자를 게놈 시퀀싱 한 결과, 아세토하이드록시산 신타제 (acetohydroxy acid synthase, AHAS) 활성을 나타내는 ilvBN의 ilvB 유전자에서 무작위 변위가 확인되었으며, 변이형 ilvB 유전자를 서열번호 2로 나타내었다.
상기의 결과로 무작위 돌연변이법을 통해 얻어진 변이주가 결과적으로 피드백 저해를 받지 않으며, L-이소류신을 고효율 및 고수율로 생산 할 수 있음을 확인하였다.
실시예 3: 아세토하이드록시산 신타제 (acetohydroxy acid synthase, AHAS) 활성을 비교하기 위한 ilvBNC 결손주 제작
아세토하이드록시산 신타제 (acetohydroxy acid synthase, AHAS) 활성을 갖는 변이형 ilvB의 활성을 평가하기 위해 아세토하이드록시산 신타제 (acetohydroxy acid synthase, AHAS) 활성이 없어 피루브산 (pyruvate)과 2-케토부티르산(2-ketobutyrate)을 기질로 하여 2-아세토-2-하이드록시아세트산 (2-aceto-2-hydroxyacetate)으로 전환이 불가능한 ilvBNC가 결손된 균주를 제작하였다. ilvB의 활성을 측정하는 것이지만 코리네박테리움 글루타미쿰은 ilvB, ilvC, ilvN 유전자가 오페론으로 서로 이웃해 있기 때문에 세 유전자의 발현이 통일적으로 조절된다. 따라서 ilvBNC 유전자를 결손하기 위하여 WT 유래의 ilvBNC 유전자의 염기서열 정보를 기반으로 ilvBNC 유전자의 5'상단 부위를 증폭하기 위한 프라이머 한 쌍 (서열번호 3 및 4)과 3'하단 부위를 증폭하기 위한 프라이머 한 쌍 (서열번호 5 및 6)을 고안하였다. 서열번호 3 및 6의 프라이머는 각 말단에 XbaⅠ 제한 효소 부위(밑줄로 표시)를 삽입하였다. 각 서열은 하기 표 2에 나타내었다.
Figure PCTKR2020007529-appb-T000002
코리네박테리움 글루타미쿰 ATCC 13032 hom(R407H) ilvA(F383A)의 염색체를 주형으로 하여 서열번호 3 및 서열번호 4, 서열번호 5 및 서열번호 6의 프라이머를 이용하여 PCR을 수행하였다. 중합효소는 SolgTM Pfu-X DNA 폴리머라제 (SolGent co.,Ltd.)를 사용하였으며, PCR 조건은 95℃에서 10분간 변성 후, 95℃초 변성, 56℃초 어닐링, 72℃ 45초 중합을 30회 반복한 후, 72℃에서 5분간 중합반응을 수행하였다. 그 결과 ilvBNC 유전자의 5` 상단 부위의 500 bp DNA 단편과 3' 하단 부위의 500 bp의 DNA 단편을 수득하였다.
증폭된 두 가지의 DNA 절편을 주형으로 하여, 서열번호 3 및 서열번호 6의 프라이머로 PCR을 수행하였다. 중합효소는 SolgTM Pfu-X DNA 폴리머라제 (SolGent co.,Ltd.)를 사용하였으며, PCR 조건은 95℃에서 10분간 변성 후, 95℃초 변성, 56℃초 어닐링, 72℃ 1분 중합을 30회 반복한 후, 72℃에서 5분간 중합반응을 수행하였다. 그 결과, ilvBNC 유전자가 결손되어 상단과 하단만 포함하는 1006 bp의 DNA 단편이 증폭되었다.
pDZ 벡터와 1006 bp의 DNA 단편을 제한효소 Xba°으로 처리한 뒤, DNA 접합 효소를 이용하여 연결한 후, 클로닝함으로써 플라스미드를 획득하였고 이를 pDZ-△ilvBNC라 명명하였다.
pDZ-△ilvBNC 벡터를 코리네박테리움 글루타미쿰 ATCC 13032 hom(R407H) ilvA(F383A) 균주에 전기펄스법으로 도입한 후 카나마이신(kanamycin) 25mg/L를 함유한 선별배지에서 형질전환 균주를 획득하였다. 2차 재조합과정(cross-over)으로 염색체상에 삽입된 DNA 단편에 의하여 ilvBNC 유전자가 결손된 균주인 WT△ilvBNC를 획득하였다.
실시예 4: 아세토하이드록시산 신타제 (acetohydroxy acid synthase, AHAS) 활성을 갖는 야생형 ilvBNC 플라스미드 제작
아세토하이드록시산 신타제 (acetohydroxy acid synthase, AHAS) (ilvBNC)를 코딩하는 유전자를 증폭하기 위하여 코리네박테리움 글루타미쿰 ATCC 13032 hom(R407H) ilvA(F383A) 유래의 서열 (서열번호 7)에 근거하여 프로모터 부위 (개시코돈 상단 약 300bp)로부터 터미네이터 부위 (종결코돈 하단 약 100bp)까지 증폭하기 위한 프라이머(서열번호 8 및 9)의 양 말단에 BamHI (밑줄로 표시) 제한 효소 부위를 삽입하여 고안하였다. 해당 서열은 하기 표 3에 나타내었다.
Figure PCTKR2020007529-appb-T000003
중합효소는 SolgTM Pfu-X DNA 폴리머라제 (SolGent co.,Ltd.)를 사용하였으며, PCR 증폭 조건은 95℃에서 10분간 변성 후, 95℃ 30초 변성, 56℃ 30초 어닐링, 72℃ 4분 중합을 30회 반복한 후, 72℃에서 7분간 중합반응을 수행하였다. 그 결과 ilvBNC 유전자의 코딩 부위 4010bp의 DNA 단편을 수득하였다. pECCG117 (대한민국 등록특허 제10-0057684호) 벡터와 ilvBN DNA 단편을 제한 효소 BamHⅠ으로 처리하고, DNA 접합 효소를 이용하여 연결한 후, 클로닝함으로써 플라스미드를 획득하였고 이를 pECCG117-ilvBNC WT라 명명하였다.
실시예 5: 아세토하이드록시산 신타제 (acetohydroxy acid synthase, AHAS) 활성을 갖는 변이형 ilvBNC 플라스미드 제작
L-이소류신을 과량 생산하는 변이형 ilvB의 활성을 비교하기 위해 코리네박테리움 글루타미쿰 ATCC 13032 hom(R407H) ilvA(F383A) 유래의 아세토하이드록시산 신타제 (acetohydroxy acid synthase, AHAS) (서열번호 7)를 코딩하는 ilvB 유전자를 대상으로 변이 도입 벡터를 제작하기 위하여 변이 위치를 중심으로 5'상단 부위를 증폭하기 위한 프라이머 한쌍 (서열번호 8 및 10)과 3' 하단 부위를 증폭하기 위한 프라이머 한쌍 (서열번호 11 및 9)을 고안하였다. 서열번호 8 및 9의 프라이머는 각 말단에 BamHⅠ 제한 효소 부위(밑줄로 표시)를 삽입하였고, 서열번호 10 및 11의 프라이머는 서로 교차되도록 고안한 부위에 뉴클레오티드 치환 변이(밑줄로 표시)가 위치하도록 하였다.
Figure PCTKR2020007529-appb-T000004
코리네박테리움 글루타미쿰 ATCC 13032 hom(R407H) ilvA(F383A)의 염색체를 주형으로 하여 서열번호 8 및 서열번호 10, 서열번호 11 및 서열번호 9의 프라이머를 이용하여 PCR을 수행하였다. 중합효소는 SolgTM Pfu-X DNA 폴리머라제 (SolGent co.,Ltd.)를 사용하였으며, PCR 조건은 95℃에서 10분간 변성 후, 95℃ 30초 변성, 56℃ 30초 어닐링, 72℃ 3분 중합을 30회 반복한 후, 72℃에서 5분간 중합반응을 수행하였다. 그 결과 ilvB 유전자의 변이를 중심으로 5'상단 부위의 712bp DNA 단편과 3'하단 부위의 3310bp의 DNA 단편을 수득하였다.
증폭된 두 가지의 DNA 절편을 주형으로 하여, 서열번호 8 및 서열번호 9의 프라이머로 PCR을 수행하였다. PCR 조건은 95℃에서 10분간 변성 후, 95℃ 30초 변성, 56℃ 30초 어닐링, 72℃ 4분 중합을 30회 반복한 후, 72℃에서 7분간 중합반응을 수행하였다.
그 결과, 136번째 글루타민이 아스파라긴으로 치환된 아세토하이드록시산 신타제 (acetohydroxy acid synthase, AHAS) 변이체 (서열번호 12)를 코딩하는 ilvB 유전자의 변이(서열번호 2)를 포함하는 4010bp의 DNA 단편이 증폭되었다.
pECCG117 (대한민국 등록특허 제10-0057684호) 벡터와 ilvBN DNA 단편을 제한 효소 BamHⅠ으로 처리하고, DNA 접합 효소를 이용하여 연결한 후, 클로닝함으로서 플라스미드를 획득하였고 이를 pECCG117-ilvB(Q136N)NC라 명명하였다.
실시예 6: 아세토하이드록시산 신타제 (acetohydroxy acid synthase, AHAS) 활성을 갖는 야생형 및 변이형 ilvB의 활성 비교 실험
상기의 실시예 4 및 5에서 제작된 pECCG117-ilvBNC WT, pECCG117-ilvB(Q136N)NC 벡터를 실시예 3에서 제작된 WT△ilvBNC 균주에 전기펄스법으로 도입한 후 카나마이신(kanamycin) 25mg/L를 함유한 선별배지에 도말하여 각각의 형질전환주를 획득하였다.
상기에 제작된 균주의 L-이소류신 생산능을 비교하고자 아래와 같은 방법으로 배양하여 배양액 중 L-이소류신 농도를 분석하였다.
하기의 배지 25㎖을 함유하는 250㎖ 코너-바플 플라스크에 균주를 1백금이 접종하고, 32℃에서 50시간 동안, 200rpm으로 진탕 배양하였다. HPLC를 이용하여 L-이소류신 농도를 분석하였으며, 분석된 농도는 표 5와 같다.
<배지 조성(pH 7.0)>
포도당 100 g, (NH4)2SO4 40 g, 대두 단백질 2.5 g, 옥수수 침지 고형분(Corn Steep Solids) 5 g, 요소 3 g, KH2PO4 1 g, MgSO4·7H2O 0.5 g, 바이오틴 100 ㎍, 티아민 염산염 1000 ㎍, 칼슘-판토텐산 2000 ㎍, 니코틴아미드 3000 ㎍, CaCO3 30 g (증류수 1리터 기준).
Figure PCTKR2020007529-appb-T000005
상기의 표 5를 참고하면, 대조군 ilvBNC WT 플라스미드가 도입된 균주 대비, ilvB(Q136N)변이 플라스미드가 도입된 균주의 경우 L-이소류신을 13배 이상 생산하는 것을 확인하였다. 즉, 상기 변이가 도입된 균주는 결과적으로 아세토하이드록시산 신타제 (acetohydroxy acid synthase, AHAS)의 활성이 좋아져, L-이소류신을 고효율 및 고수율로 생산할 수 있음을 확인할 수 있었다. 상기 변이 Q136N이 도입된 균주를 CA10-3106이라 명명하였다. 상기 CA10-3106은 부다페스트조약 하의 국제기탁기관인 한국미생물보존센터에 2018년 12월 3일자로 기탁하여 수탁번호 KCCM12415P를 부여받았다.
KCCM11248P 균주는 코리네박테리움 글루타미쿰 KFCC 11040 (Corynebacterium glutamicum KFCC 11040, 대한민국특허 공개번호 제2000-0002407호)에 L-쓰레오닌 유도체인 α-아미노-β-하이드록시노르발린 (α-amino-β-hydroxynorvaline)과 L-이소류신 유도체인 4-티아이소루신 (4-thiaisoleucine) 및 이소루신-하이드록사메이트 (isoleucine-hydroxamate)의 공통내성을 나타내는 변이주(Corynebacterium glutamicum KCJI-38, KCCM11248P, 대한민국특허 등록번호 10-1335789호)로 코리네박테리움 글루타미쿰 ATCC 13032 hom(R407H) ilvA(F383A)보다 높은 수율로 L-이소루신을 생산하는 것이 확인된 바 있다.
보다 많은 양의 L-이소류신을 생산하는 균주에서의 ilvB 변이체의 효과를 확인하기 위하여, 상기의 실시예 3과 동일한 방법으로 제작하여 KCCM11248P ΔilvBNC균주를 제작하였다. 또한 상기의 실시예 4와 5에서 제작된 pECCG117-ilvBNC WT, pECCG117-ilvB(Q136N)NC 벡터를 이소류신 생산능이 증대된 균주인 코리네박테리움 글루타미컴 KCJI-38 (KCCM11248P)에 전기펄스법으로 도입한 후 카나마이신(kanamycin) 25mg/L를 함유한 선별배지에 도말하여 각각의 형질전환주를 획득하였다.
상기에 제작된 균주의 L-이소류신 생산능을 비교하고자 실시예 6과 동일한 방법으로 배양하여 배양액 중 L-이소류신 농도를 분석하였으며, 분석된 농도는 표 6과 같다.
Figure PCTKR2020007529-appb-T000006
상기의 표 6을 참고하면, 대조군 ilvBNC WT 플라스미드가 도입된 균주 대비, ilvB(Q136N)변이 플라스미드가 도입된 균주의 경우 L-이소류신을 약 6배 높게 생산하는 것을 확인하였다. 즉, 상기 변이가 도입된 균주는 결과적으로 아세토하이드록시산 신타제 (acetohydroxy acid synthase, AHAS)의 활성이 좋아져, L-이소류신을 고효율 및 고수율로 생산할 수 있음을 확인할 수 있었다.
실시예 7: 아세토하이드록시산 신타제 (acetohydroxy acid synthase, AHAS) 활성을 갖는 변이형 ilvBNC 플라스미드 제작
상기 실시예 6을 통해 L-이소류신 생산능이 높은 ilvB 변이 위치인 136번째 위치가 생산능 증가에 중요한 위치임을 확인하기 위하여 다른 아미노산이 치환된 변이형을 제작하여 그 효과를 확인하였다. ilvB의 136번째 아미노산 위치에 다른 아미노산이 치환된 17종을 추가로 제작하였으며, 실시예 4에서 제작된 플라스미드를 주형으로 사용하였다. 각각의 변이형, 치환된 아미노산 및 각 변이형에 사용된 프라이머 서열번호는 다음 표 7에 나타내었다.
Figure PCTKR2020007529-appb-T000007
구체적으로, 상기 표 7에서 제시한 프라이머를 이용하여 PCR을 수행하였다. 중합효소는 SolgTM Pfu-X DNA 폴리머라제 (SolGent co.,Ltd.)를 사용하였으며, PCR 조건은 95℃에서 10분간 변성 후, 95℃ 30초 변성, 56℃ 30초 어닐링, 72℃ 3분 중합을 30회 반복한 후, 72℃에서 5분간 중합반응을 수행하였다. 그 결과 ilvB 유전자의 변이를 중심으로 5' 상단 부위의 712bp DNA 단편과 3' 하단 부위의 3310bp의 DNA 단편을 수득하였다.
증폭된 두 가지의 DNA 절편을 주형으로 하여, 서열번호 8 및 서열번호 9의 프라이머로 PCR을 수행하였다. PCR 조건은 95℃에서 10분간 변성 후, 95℃ 30초 변성, 56℃ 30초 어닐링, 72℃ 4분 중합을 30회 반복한 후, 72℃에서 7분간 중합반응을 수행하였다. 그 결과, 136번째 글루타민이 표 7의 각 아미노산으로 치환된 아세토하이드록시산 신타제 (acetohydroxy acid synthase, AHAS) 변이체를 코딩하는 ilvB 유전자의 변이를 포함하는 4010bp의 DNA 단편이 증폭되었다. pECCG117 (대한민국 등록특허 제10-0057684호) 벡터와 PCR을 통해 수득한 4010bp의 ilvBNC DNA 단편을 제한 효소 BamHⅠ으로 처리하고, DNA 접합 효소를 이용하여 연결한 후, 클로닝함으로써 플라스미드를 획득하였다. 이로써 136번째 글루타민이 표 7에 나타난 아미노산으로 치환된 17종의 ilvB 변이 벡터가 제작되었고, 표 8과 같이 명명하였다.
Figure PCTKR2020007529-appb-T000008
실시예 8: 아세토하이드록시산 신타제 (acetohydroxy acid synthase, AHAS) 활성을 갖는 변이형 ilvB의 L-이소류신 생산능 평가
실시예 7에서 제작된 변이 플라스미드 17종을 실시예 3에서 제작된 WT△ilvBNC 균주에 전기펄스법으로 도입한 후 카나마이신(kanamycin) 25mg/L를 함유한 선별배지에 도말하여 각각의 형질전환주를 획득하였다. 그 후, 실시예 6과 동일한 방법으로 플라스크 평가를 진행하였다. 그 결과는 다음 표 9과 같다.
Figure PCTKR2020007529-appb-T000009
Figure PCTKR2020007529-appb-I000001
상기의 표 9에서 볼 수 있듯이, ilvB의 136번째 아미노산이 변이된 변이체를 포함하는 모든 변이주에서 각각 야생형 보다 높은 수준으로 L-이소류신을 생성하는 것을 확인하였다. 이와 같은 결과로 ilvB의 136번째 위치가 다른 아미노산으로 치환할 경우 L-이소류신의 생산능을 증가시키는 중요 위치임을 확인할 수 있었다.
상기의 결과를 볼 때, 본 출원의 변이체가 L-이소류신의 생산을 증가시킴을 확인할 수 있었다.
이상의 설명으로부터, 본 출원이 속하는 기술분야의 당업자는 본 출원이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로 이해해야만 한다. 본 출원의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 출원의 범위에 포함되는 것으로 해석되어야 한다.
기탁기관명 : 한국미생물보존센터
수탁번호 : KCCM12415P
수탁일자 : 20181203
Figure PCTKR2020007529-appb-I000002

Claims (10)

  1. 서열번호 1의 아미노산 서열에서 아미노산 서열위치136번째 아미노산인 글루타민(Glutamine)이 글루타민 이외의 다른 아미노산으로 치환된, 아세토하이드록시산 신타제 (acetohydroxy acid synthase, AHAS) 활성을 가지는 단백질 변이체.
  2. 제1항에 있어서, 상기 136번째 아미노산은 아스파라진(Asparagine), 알지닌(Arginine), 페닐알라닌(Phenylalanine), 세린(Serine), 타이로신(Tyrosine), 시스테인(Cysteine), 프롤린(Proline), 히스티딘(Histidine), 류신(Leucine), 이소류신(Isoleucine), 쓰레오닌(Threonine), 라이신(Lysine), 발린(Valine), 알라닌(Alanine), 아스파르산(Aspartic acid), 글루탐산(Glutamic acid), 글라이신(Glycine) 또는 트립토판(Tryptophan)으로 치환된 아세토하이드록시산 신타제 (acetohydroxy acid synthase, AHAS) 활성을 가지는 단백질 변이체.
  3. 제1항에 있어서, 상기 단백질 변이체는 서열번호 12, 서열번호 47, 서열번호 48, 서열번호 49, 서열번호 50, 서열번호 51, 서열번호 52, 서열번호 53, 서열번호 54, 서열번호 55, 서열번호 56, 서열번호 57, 서열번호 58, 서열번호 59, 서열번호 60, 서열번호 61, 서열번호 62 또는 서열번호 63의 아미노산 서열을 포함하는 단백질 변이체.
  4. 제1항 내지 3항 중 어느 한 항의 단백질 변이체를 코딩하는 폴리뉴클레오티드.
  5. 제4항의 폴리뉴클레오티드를 포함하는 벡터.
  6. 제1항 내지 3항 중 어느 한 항의 단백질 변이체를 포함하는 미생물.
  7. 제6항에 있어서, 상기 미생물은 L-이소류신을 생산하는 미생물.
  8. 제6항에 있어서, 상기 미생물은 코리네박테리움(corynebacterium sp.)속 또는 에스케리키아 속(Escherichia sp.)인, 미생물.
  9. 제6항의 미생물을 배지에서 배양하는 단계를 포함하는, L-이소류신 생산방법.
  10. 제9항에 있어서, 상기 배양된 미생물 또는 배지로부터 L-이소류신을 회수하는 단계를 더 포함하는, L-이소류신 생산방법.
PCT/KR2020/007529 2019-11-22 2020-06-10 아세토하이드록시산 신타제 신규 변이체 및 이를 포함하는 미생물 WO2021101000A1 (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
MX2022004303A MX2022004303A (es) 2019-11-22 2020-06-10 Novedosa variante de acetohidroxiacido sintasa y microorganismo que incluye la misma.
EP20890887.1A EP4023751A4 (en) 2019-11-22 2020-06-10 NOVEL ACETOHYDROXYACID SYNTHASE VARIANT AND MICROGRANISMS THEREOF
BR112022007880A BR112022007880A2 (pt) 2019-11-22 2020-06-10 Nova variante de sintase de ácido acetohidroxi e micro-organismo incluindo a mesma
CN202080079542.6A CN115052976B (zh) 2019-11-22 2020-06-10 新型乙酰羟酸合酶变体和包括其的微生物
US17/778,810 US20230203106A1 (en) 2019-11-22 2020-06-10 Novel acetohydroxy acid synthase variant and microorganism including the same
AU2020388499A AU2020388499A1 (en) 2019-11-22 2020-06-10 Novel Acetohydroxy Acid Synthase Variant And Microorganism Including The Same
JP2022520587A JP7470187B2 (ja) 2019-11-22 2020-06-10 アセトヒドロキシ酸シンターゼ新規変異体及びこれを含む微生物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0151672 2019-11-22
KR1020190151672A KR102147381B1 (ko) 2019-11-22 2019-11-22 아세토하이드록시산 신타제 신규 변이체 및 이를 포함하는 미생물

Publications (1)

Publication Number Publication Date
WO2021101000A1 true WO2021101000A1 (ko) 2021-05-27

Family

ID=72235100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/007529 WO2021101000A1 (ko) 2019-11-22 2020-06-10 아세토하이드록시산 신타제 신규 변이체 및 이를 포함하는 미생물

Country Status (10)

Country Link
US (1) US20230203106A1 (ko)
EP (1) EP4023751A4 (ko)
JP (1) JP7470187B2 (ko)
KR (1) KR102147381B1 (ko)
CN (1) CN115052976B (ko)
AR (1) AR120417A1 (ko)
AU (1) AU2020388499A1 (ko)
BR (1) BR112022007880A2 (ko)
MX (1) MX2022004303A (ko)
WO (1) WO2021101000A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240105550A (ko) * 2022-12-28 2024-07-08 씨제이제일제당 (주) 신규한 아세토락테이트 합성효소 활성을 갖는 변이체 폴리펩티드 및 이를 이용한 l-글루탐산 생산 방법

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000002407A (ko) 1998-06-19 2000-01-15 손경식 글루탐산을 생산하는 미생물 및 이를 이용한 글루탐산의 제조방법
KR20060024437A (ko) * 2003-06-26 2006-03-16 데구사 아게 피드백 내성 아세토하이드록시산 합성효소 돌연변이체
US20060156427A1 (en) * 1995-04-20 2006-07-13 Genichi Kakefuda Structure-based designed herbicide resistant products
KR100620092B1 (ko) 2004-12-16 2006-09-08 씨제이 주식회사 코리네박테리움 속 세포로부터 유래된 신규한 프로모터서열, 그를 포함하는 발현 카세트 및 벡터, 상기 벡터를포함하는 숙주 세포 및 그를 이용하여 유전자를 발현하는방법
US20080245610A1 (en) 2005-09-12 2008-10-09 Sang-Ik Lee Personal Emergency Rescue Belt
KR100924065B1 (ko) 2006-09-15 2009-10-27 씨제이제일제당 (주) L-라이신 생산능이 향상된 코리네박테리아 및 그를 이용한 l-라이신 생산 방법
KR20130083690A (ko) * 2012-01-13 2013-07-23 씨제이제일제당 (주) L-이소루신을 생산하는 미생물 및 이를 이용한 l-이소루신 제조방법
US20140335574A1 (en) 2006-09-13 2014-11-13 Ajinomoto Co., Inc. Mutant Acetolactate Synthase and a Method for Producing Branched-Chain L-Amino Acids
KR20160015298A (ko) * 2013-06-03 2016-02-12 에보닉 데구사 게엠베하 프로피오네이트에 의해 유도될 수 있는 ilvbn 오페론을 함유하는 재조합 코리네박테리움을 사용하는 l-류신, l-발린, l-이소류신, 알파-케토이소발레레이트, 알파-케토-베타-메틸발레레이트, 또는 알파-케토이소카프로에이트의 생산 방법
KR101632642B1 (ko) 2015-01-29 2016-06-22 씨제이제일제당 주식회사 신규한 프로모터 및 그의 용도
KR20170047725A (ko) * 2015-10-23 2017-05-08 씨제이제일제당 (주) L-이소루신 생산능을 가지는 코리네박테리움 속 미생물 및 이를 이용하여 l-이소루신을 생산하는 방법
KR101783170B1 (ko) 2016-08-31 2017-09-29 씨제이제일제당 (주) 신규 프로모터 및 이의 용도
KR101996769B1 (ko) 2018-12-21 2019-10-01 씨제이제일제당 (주) 변이형 호모세린 디하이드로게나제 및 이를 이용한 호모세린 또는 호모세린 유래 l-아미노산의 생산 방법

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MXPA02001174A (es) 1999-08-02 2002-07-30 Archer Daniels Midland Co Ingenieria metabolica de la produccion de aminoacidos.
HUE029181T2 (en) * 2005-07-01 2017-02-28 Basf Se Polynucleotides encoding herbicide-resistant sunflower plants, herbicide-resistant acetohydroxyacetic acid synthase high-subunit protein, and their application methods
KR100832740B1 (ko) * 2007-01-17 2008-05-27 한국과학기술원 분지쇄 아미노산 생성능이 개선된 변이 미생물 및 이를이용한 분지쇄 아미노산의 제조방법
AP2009004993A0 (en) * 2007-04-04 2009-10-31 Basf Plant Science Gmbh Ahas mutants
CA2737939C (en) * 2008-09-26 2021-04-27 Basf Agrochemical Products B.V. Herbicide-resistant ahas-mutants and methods of use
KR101720836B1 (ko) 2014-08-05 2017-04-03 씨제이제일제당 (주) 피드백 저항성 아세토하이드록시산 신타아제 변이체 및 이를 이용한 l-발린의 생산방법
KR101996129B1 (ko) * 2017-07-11 2019-07-04 씨제이제일제당 (주) 아세토하이드록시산 신타아제 변이체, 이를 포함하는 미생물 또는 이를 이용하는 l-분지쇄 아미노산 생산 방법
CN109554324A (zh) * 2018-12-14 2019-04-02 江南大学 一株产l-异亮氨酸的黄色短杆菌重组菌及其构建方法
CN109576253A (zh) * 2019-01-28 2019-04-05 江南大学 一种提高l-缬氨酸合成效率的乙酰羟酸合酶突变体
KR102063909B1 (ko) * 2019-03-29 2020-01-08 씨제이제일제당 주식회사 아세토하이드록시산 신타아제 변이체, 이를 포함하는 미생물 또는 이를 이용하는 l-분지쇄 아미노산 생산 방법
CN110229797B (zh) * 2019-06-05 2020-08-28 天津科技大学 一种乙酰羟酸合成酶及其应用
CN110305829B (zh) * 2019-06-25 2020-08-28 天津科技大学 一种生产l-异亮氨酸的基因工程菌及其应用

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060156427A1 (en) * 1995-04-20 2006-07-13 Genichi Kakefuda Structure-based designed herbicide resistant products
KR20000002407A (ko) 1998-06-19 2000-01-15 손경식 글루탐산을 생산하는 미생물 및 이를 이용한 글루탐산의 제조방법
KR20060024437A (ko) * 2003-06-26 2006-03-16 데구사 아게 피드백 내성 아세토하이드록시산 합성효소 돌연변이체
KR100620092B1 (ko) 2004-12-16 2006-09-08 씨제이 주식회사 코리네박테리움 속 세포로부터 유래된 신규한 프로모터서열, 그를 포함하는 발현 카세트 및 벡터, 상기 벡터를포함하는 숙주 세포 및 그를 이용하여 유전자를 발현하는방법
US20080245610A1 (en) 2005-09-12 2008-10-09 Sang-Ik Lee Personal Emergency Rescue Belt
US20140335574A1 (en) 2006-09-13 2014-11-13 Ajinomoto Co., Inc. Mutant Acetolactate Synthase and a Method for Producing Branched-Chain L-Amino Acids
KR100924065B1 (ko) 2006-09-15 2009-10-27 씨제이제일제당 (주) L-라이신 생산능이 향상된 코리네박테리아 및 그를 이용한 l-라이신 생산 방법
KR20130083690A (ko) * 2012-01-13 2013-07-23 씨제이제일제당 (주) L-이소루신을 생산하는 미생물 및 이를 이용한 l-이소루신 제조방법
KR101335789B1 (ko) 2012-01-13 2013-12-02 씨제이제일제당 (주) L-이소루신을 생산하는 미생물 및 이를 이용한 l-이소루신 제조방법
KR20160015298A (ko) * 2013-06-03 2016-02-12 에보닉 데구사 게엠베하 프로피오네이트에 의해 유도될 수 있는 ilvbn 오페론을 함유하는 재조합 코리네박테리움을 사용하는 l-류신, l-발린, l-이소류신, 알파-케토이소발레레이트, 알파-케토-베타-메틸발레레이트, 또는 알파-케토이소카프로에이트의 생산 방법
KR101632642B1 (ko) 2015-01-29 2016-06-22 씨제이제일제당 주식회사 신규한 프로모터 및 그의 용도
KR20170047725A (ko) * 2015-10-23 2017-05-08 씨제이제일제당 (주) L-이소루신 생산능을 가지는 코리네박테리움 속 미생물 및 이를 이용하여 l-이소루신을 생산하는 방법
KR101783170B1 (ko) 2016-08-31 2017-09-29 씨제이제일제당 (주) 신규 프로모터 및 이의 용도
KR101996769B1 (ko) 2018-12-21 2019-10-01 씨제이제일제당 (주) 변이형 호모세린 디하이드로게나제 및 이를 이용한 호모세린 또는 호모세린 유래 l-아미노산의 생산 방법

Non-Patent Citations (14)

* Cited by examiner, † Cited by third party
Title
"Atlas Of Protein Sequence And Structure", 1979, NATIONAL BIOMEDICAL RESEARCH FOUNDATION, pages: 353 - 358
"Guide to Huge Computers", 1994, ACADEMIC PRESS
ATSCHUL, [S.] [F., J MOLEC BIOL, vol. 215, 1990, pages 403
CARILLO, SIAM J APPLIED MATH, vol. 48, 1988, pages 1073
DEVEREUX, J ET AL., NUCLEIC ACIDS RESEARCH, vol. 12, 1984, pages 387
GRIBSKOV ET AL., NUCL. ACIDS RES., vol. 14, 1986, pages 6745
J. SAMBROOK ET AL.: "Molecular Cloning, A Laboratory Manual", 1989, COLD SPRING HARBOR LABORATORY PRESS
NEEDLEMAN ET AL., J MOL BIOL., vol. 48, 1970, pages 443
NEEDLEMANWUNSCH, J. MOL. BIOL., vol. 48, 1970, pages 443 - 453
PEARSON, PROC. NATL. ACAD. SCI. USA, vol. 85, 1988, pages 2444
PROTEIN EXPR PURIF, vol. 109, May 2015 (2015-05-01), pages 106 - 12
RICE ET AL.: "EMBOSS: The European Molecular Biology Open Software Suite", TRENDS GENET, vol. 16, 2000, pages 276 - 277, XP004200114, DOI: 10.1016/S0168-9525(00)02024-2
SMITHWATERMAN, ADV. APPL. MATH, vol. 2, 1981, pages 482
TAKEDA ET AL., HUM. MUTATION, vol. 2, 1993, pages 112 - 117

Also Published As

Publication number Publication date
MX2022004303A (es) 2022-05-10
US20230203106A1 (en) 2023-06-29
JP2023503218A (ja) 2023-01-27
JP7470187B2 (ja) 2024-04-17
CN115052976B (zh) 2023-12-19
KR102147381B1 (ko) 2020-08-24
CN115052976A (zh) 2022-09-13
EP4023751A1 (en) 2022-07-06
AR120417A1 (es) 2022-02-09
AU2020388499A1 (en) 2022-04-28
BR112022007880A2 (pt) 2022-07-12
EP4023751A4 (en) 2022-11-09

Similar Documents

Publication Publication Date Title
WO2019160301A1 (ko) 시트레이트 신타아제의 활성이 약화된 변이형 폴리펩타이드 및 이를 이용한 l-아미노산 생산방법
WO2020130236A1 (ko) 변이형 호모세린 디하이드로게나제 및 이를 이용한 호모세린 또는 호모세린 유래 l-아미노산의 생산 방법
WO2020218736A1 (ko) L-히스티딘 생산능이 강화된 미생물 및 이를 이용한 히스티딘 생산방법
WO2021060696A1 (ko) 디하이드로디피콜린산 리덕타제 변이형 폴리펩티드 및 이를 이용한 l-쓰레오닌 생산방법
WO2021261733A1 (ko) L-쓰레오닌 디하이드라타아제의 신규 변이체 및 이를 이용한 l-이소류신 생산 방법
WO2022055094A1 (ko) L-글루탐산 생산 재조합 미생물 및 이를 이용한 l-글루탐산의 제조방법
WO2022050671A1 (ko) L-발린 생산 미생물 및 이를 이용한 l-발린 생산 방법
WO2021177731A1 (ko) 글루타민 신테타아제 변이형 폴리펩티드 및 이를 이용한 l-글루타민 생산 방법
WO2019004779A2 (ko) 신규한 o-숙시닐 호모세린 트랜스퍼라제 변이체 및 이를 이용한 o-숙시닐 호모세린의 제조방법
WO2020218737A1 (ko) L-쓰레오닌 생산능이 강화된 미생물 및 이를 이용한 쓰레오닌 생산방법
WO2021101000A1 (ko) 아세토하이드록시산 신타제 신규 변이체 및 이를 포함하는 미생물
WO2022191630A1 (ko) 신규한 시트레이트 신타아제 변이체 및 이를 이용한 l-발린 생산 방법
WO2019004780A2 (ko) 신규한 o-숙시닐 호모세린 트랜스퍼라제 변이체 및 이를 이용한 o-숙시닐 호모세린의 제조방법
WO2022216088A1 (ko) L-아르기닌을 생산하는 코리네박테리움 속 미생물 및 이를 이용한 l-아르기닌 생산방법
WO2022239953A1 (ko) 3-메틸-2-옥소뷰타노에이트 하이드록시 메틸트랜스퍼라아제의 활성이 강화된 미생물, 및 이의 용도
WO2022149865A2 (ko) GlxR 단백질 변이체 또는 이를 이용한 쓰레오닌 생산방법
WO2022124708A1 (ko) 신규한 분지 연쇄 아미노산 아미노트렌스퍼라아제 변이체 및 이를 이용한 이소류신 생산 방법
WO2022005022A1 (ko) L-이소류신 생산능이 강화된 미생물 및 이를 이용한 l-이소류신 생산방법
WO2021060701A1 (ko) 메조 디아미노피멜레이트 디하이드로게네이즈 변이형 폴리펩타이드 및 이를 이용한 l-쓰레오닌 생산방법
WO2022154188A1 (ko) 신규한 폴리케타이드 신타제 변이체 및 이를 이용한 xmp 또는 gmp 생산 방법
WO2023121055A1 (ko) L-이소루신 생산 미생물 및 이를 이용한 l-이소루신 생산 방법
WO2022154189A1 (ko) 신규한 피토엔 신타제 변이체 및 이를 이용한 xmp 또는 gmp 생산 방법
WO2023177253A1 (ko) 거짓쌀도둑거저리 유래 아스파테이트 1-디카복실레이스의 변이체 및 이를 포함하는 미생물
WO2023027284A1 (ko) 신규한 아세토하이드록시산 신타아제 소단위체 변이체 및 이를 이용한 l-발린 생산 방법
WO2022191633A1 (ko) 신규한 시트레이트 신타아제 변이체 및 이를 이용한 o-아세틸-l-호모세린 또는 l-메티오닌 생산 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20890887

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022520587

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020890887

Country of ref document: EP

Effective date: 20220331

ENP Entry into the national phase

Ref document number: 2020388499

Country of ref document: AU

Date of ref document: 20200610

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022007880

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112022007880

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220426