WO2022050671A1 - L-발린 생산 미생물 및 이를 이용한 l-발린 생산 방법 - Google Patents

L-발린 생산 미생물 및 이를 이용한 l-발린 생산 방법 Download PDF

Info

Publication number
WO2022050671A1
WO2022050671A1 PCT/KR2021/011717 KR2021011717W WO2022050671A1 WO 2022050671 A1 WO2022050671 A1 WO 2022050671A1 KR 2021011717 W KR2021011717 W KR 2021011717W WO 2022050671 A1 WO2022050671 A1 WO 2022050671A1
Authority
WO
WIPO (PCT)
Prior art keywords
activity
microorganism
valine
seq
ilvd
Prior art date
Application number
PCT/KR2021/011717
Other languages
English (en)
French (fr)
Inventor
장진숙
김선혜
윤병훈
김주연
김형준
최선형
Original Assignee
씨제이제일제당 (주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 씨제이제일제당 (주) filed Critical 씨제이제일제당 (주)
Priority to CN202180071367.0A priority Critical patent/CN116670272A/zh
Priority to CA3191427A priority patent/CA3191427A1/en
Priority to JP2023514054A priority patent/JP2023540717A/ja
Priority to MX2023002502A priority patent/MX2023002502A/es
Priority to US18/024,089 priority patent/US20240026397A1/en
Priority to EP21864631.3A priority patent/EP4190904A4/en
Priority to BR112023003780A priority patent/BR112023003780A2/pt
Publication of WO2022050671A1 publication Critical patent/WO2022050671A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0008Oxidoreductases (1.) acting on the aldehyde or oxo group of donors (1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/77Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Corynebacterium; for Brevibacterium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1022Transferases (2.) transferring aldehyde or ketonic groups (2.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1096Transferases (2.) transferring nitrogenous groups (2.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/08Lysine; Diaminopimelic acid; Threonine; Valine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y102/00Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
    • C12Y102/04Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with a disulfide as acceptor (1.2.4)
    • C12Y102/04001Pyruvate dehydrogenase (acetyl-transferring) (1.2.4.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y202/00Transferases transferring aldehyde or ketonic groups (2.2)
    • C12Y202/01Transketolases and transaldolases (2.2.1)
    • C12Y202/01006Acetolactate synthase (2.2.1.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/03Acyl groups converted into alkyl on transfer (2.3.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y206/00Transferases transferring nitrogenous groups (2.6)
    • C12Y206/01Transaminases (2.6.1)
    • C12Y206/01066Valine--pyruvate transaminase (2.6.1.66)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/01Hydro-lyases (4.2.1)
    • C12Y402/01009Dihydroxy-acid dehydratase (4.2.1.9), i.e. acetohydroxyacid dehydratase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/15Corynebacterium

Definitions

  • the present application relates to a microorganism producing L-valine and a method for producing L-valine using the microorganism.
  • L-valine one of the branched chain amino acids, is biosynthesized from pyruvic acid in microorganisms via acetolactic acid, dihydroxy isovaleric acid, and ketoisovaleric acid. .
  • These intermediate metabolites are acetohydroxy acid synthase, acetohydroxy acid isomeroreductase, dihydroxy acid dehydratase, and transaminase B. It is produced by a reaction catalyzed by (transaminase B).
  • the present inventors have conducted continuous research on an effective method for producing L-valine, and as a result, enhancement of the activity of dihydroxy-acid dehydratase; and a decrease in the activity of transaminase C, a decrease in the activity of pyruvate dehydrogenase, a decrease in the activity of citrate synthase, or a combination thereof. It was confirmed that the L-valine production ability was superior to that of the wild type, and the present invention was completed.
  • One object of the present application is to enhance the activity of dihydroxy acid dihydratase; And having any one or more combinations selected from the following (1) to (3), it is to provide an L- valine-producing microorganism.
  • Another object of the present application is to provide a method for producing L-valine, including the step of culturing the microorganism.
  • One aspect of the present application is the enhanced activity of dihydroxy acid dehydratase; And to provide an L-valine-producing microorganism, characterized in that it has any one or more combinations selected from the following (1) to (3).
  • the valine-producing microorganism may be a microorganism having an enhanced activity of dihydroxy acid dihydratase and a reduced activity of transaminase C.
  • the valine-producing microorganism may be a microorganism having an enhanced activity of dihydroxy acid dehydratase and a weakened activity of pyruvate dehydrogenase.
  • the valine-producing microorganism may be a microorganism having enhanced activity of dihydroxy acid dihydratase and reduced activity of citrate synthase.
  • reduced activity of transaminase C or attenuated activity of pyruvate dehydrogenase It may be a microorganism having, but is not limited thereto.
  • dihydroxy-acid dehydratase refers to pyruvate to acetolactate through dihydroxy-isovalaerate to ketoiso - It refers to an enzyme involved in the synthesis of ketoiso-valerate, a precursor of L-valine in the biosynthetic pathway to produce L-valine through ketoiso-valerate.
  • dihydroxy acid dihydratase by enhancing the activity of dihydroxy acid dihydratase to increase the synthesis of ketoiso-valerate, it is possible to increase the production of L-valine.
  • transaminase C refers to an enzyme involved in a pathway for synthesizing L-alanine from pyruvate.
  • pyruvate dehydrogenase refers to an enzyme involved in the synthesis of acetyl-coA from pyruvate.
  • citrate synthase refers to an enzyme synthesizing citrate from acetyl coenzyme A.
  • the term “enhancement” means that the activity of a protein is increased compared to the intrinsic activity.
  • the reinforcement may be used interchangeably with terms such as activation, up-regulation, overexpression, and increase.
  • activation, enhancement, upregulation, overexpression, and increase may include all of those exhibiting an activity that was not originally possessed, or exhibiting an improved activity compared to intrinsic activity or activity before modification.
  • intrinsic activity refers to the activity of a specific polypeptide originally possessed by the parent strain or unmodified microorganism before transformation when the trait is changed due to genetic mutation caused by natural or artificial factors.
  • the enhancement can be achieved by introducing an exogenous polypeptide, or by enhancing the activity and/or increasing the concentration (expression) of the endogenous polypeptide. Whether or not the activity of the dihydroxy acid dihydratase is enhanced can be confirmed from the increase in the activity level, expression level, or amount of a product excreted from the corresponding polypeptide.
  • the enhancement of the activity of the dihydroxy acid dihydratase can be applied by various methods well known in the art, and is not limited as long as it can enhance the activity of the target polypeptide compared to the microorganism before modification. Specifically, it may be one using genetic engineering and/or protein engineering well known to those skilled in the art, which is a routine method of molecular biology, but is not limited thereto (eg, Sitnicka et al. Functional Analysis of Genes. Advances in Cell). Biology 2010, Vol. 2. 1-16, Sambrook et al. Molecular Cloning 2012, etc.).
  • modification of the polynucleotide sequence encoding the polypeptide to enhance the activity of the polypeptide eg, modification of the polynucleotide sequence of the polypeptide gene to encode a polypeptide that has been modified to enhance the activity of the polypeptide;
  • the increase in the intracellular copy number of the polynucleotide encoding the polypeptide is achieved by introduction of a vector, to which the polynucleotide encoding the polypeptide is operably linked, which can replicate and function independently of the host, into a host cell.
  • the polynucleotide encoding the polypeptide may be achieved by introducing one copy or two or more copies into a chromosome in a host cell.
  • the introduction into the chromosome may be performed by introducing a vector capable of inserting the polynucleotide into the chromosome in the host cell into the host cell, but is not limited thereto.
  • the vector is the same as described above.
  • Replacing the gene expression control region (or expression control sequence) on the chromosome encoding the polypeptide with a sequence with strong activity is, for example, deletion, insertion, non-conservative or Conservative substitution or a combination thereof may result in a mutation in the sequence, or replacement with a sequence having a stronger activity.
  • the expression control region is not particularly limited thereto, but may include a promoter, an operator sequence, a sequence encoding a ribosome binding site, and a sequence for regulating the termination of transcription and translation. As an example, it may be to replace the original promoter with a strong promoter, but is not limited thereto.
  • Examples of known strong promoters include CJ1 to CJ7 promoter (US 7662943 B2), lac promoter, trp promoter, trc promoter, tac promoter, lambda phage PR promoter, PL promoter, tet promoter, gapA promoter, SPL7 promoter, SPL13 (sm3) promoter (US Patent US 10584338 B2), O2 promoter (US Patent US 10273491 B2), tkt promoter, yccA promoter, etc., but is not limited thereto.
  • the modification of the nucleotide sequence encoding the start codon or 5'-UTR region of the gene transcript encoding the polypeptide is, for example, a nucleotide sequence encoding another start codon having a higher expression rate of the polypeptide compared to the intrinsic start codon. It may be a substitution, but is not limited thereto.
  • the modification of the amino acid sequence or polynucleotide sequence of 4) and 5) above may include deletion, insertion, non-conservative or conservative substitution of the amino acid sequence of the polypeptide or the polynucleotide sequence encoding the polypeptide to enhance activity of the polypeptide; A combination thereof may result in sequence mutation, or replacement with an amino acid sequence or polynucleotide sequence improved to have stronger activity or an amino acid sequence or polynucleotide sequence improved to increase activity, but is not limited thereto.
  • the replacement may be specifically performed by inserting a polynucleotide into a chromosome by homologous recombination, but is not limited thereto.
  • the vector used may further include a selection marker for confirming whether or not the chromosome is inserted. The selection marker is as described in detail below.
  • the introduction of the foreign polynucleotide exhibiting the activity of the polypeptide may be introduction of the foreign polynucleotide encoding the polypeptide exhibiting the same/similar activity as the polypeptide into a host cell.
  • the foreign polynucleotide is not limited in origin or sequence as long as it exhibits the same/similar activity as the polypeptide.
  • the method used for the introduction can be performed by appropriately selecting a known transformation method by those skilled in the art, and the introduced polynucleotide is expressed in a host cell to generate a polypeptide and increase its activity.
  • Codon optimization of the polynucleotide encoding the polypeptide is codon-optimized so that the transcription or translation of the endogenous polynucleotide is increased in the host cell, or the transcription and translation of the foreign polynucleotide is optimized in the host cell. It may be that its codons are optimized so that the
  • Selecting an exposed site by analyzing the tertiary structure of the polypeptide and modifying or chemically modifying it for example, compares the sequence information of the polypeptide to be analyzed with a database in which sequence information of known proteins is stored to determine the degree of sequence similarity. Accordingly, it may be to determine a template protein candidate, check the structure based on this, and select an exposed site to be modified or chemically modified and modified or modified.
  • the vector of the present application is a DNA molecule used as a medium for artificially transporting foreign genetic material into other cells, and specifically, it can operate on a suitable expression control region (or expression control sequence) to express a target polypeptide in a suitable host. It may include a DNA preparation comprising a nucleotide sequence of a polynucleotide encoding the target polypeptide linked to each other.
  • the expression control region may include a promoter capable of initiating transcription, an optional operator sequence for regulating such transcription, a sequence encoding a suitable mRNA ribosome binding site, and a sequence regulating the termination of transcription and translation. After transformation into an appropriate host cell, the vector can replicate or function independently of the host genome, and can be integrated into the genome itself.
  • the vector used in the present application is not particularly limited, and any vector known in the art may be used.
  • Examples of commonly used vectors include natural or recombinant plasmids, cosmids, viruses and bacteriophages.
  • pWE15, M13, MBL3, MBL4, IXII, ASHII, APII, t10, t11, Charon4A, and Charon21A may be used as phage vectors or cosmid vectors, and pDZ-based, pBR-based, and pUC-based plasmid vectors may be used.
  • pBluescript II-based, pGEM-based, pTZ-based, pCL-based, pET-based and the like can be used.
  • pDZ, pDC, pDCM2, pACYC177, pACYC184, pCL, pECCG117, pUC19, pBR322, pMW118, pCC1BAC vectors and the like can be used.
  • a polynucleotide encoding a target polypeptide may be inserted into a chromosome through a vector for intracellular chromosome insertion.
  • the insertion of the polynucleotide into the chromosome may be performed by any method known in the art, for example, homologous recombination, but is not limited thereto.
  • It may further include a selection marker (selection marker) for confirming whether the chromosome is inserted.
  • the selection marker is used to select cells transformed with the vector, that is, to determine whether a target nucleic acid molecule is inserted, and selectable phenotypes such as drug resistance, auxotrophy, resistance to cytotoxic agents, or surface polypeptide expression. Markers to be given can be used. In an environment treated with a selective agent, only the cells expressing the selectable marker survive or exhibit other expression traits, so that the transformed cells can be selected.
  • the term “transformation” refers to introducing a vector including a polynucleotide encoding a target polypeptide into a host cell or microorganism so that the polypeptide encoded by the polynucleotide can be expressed in the host cell.
  • the transformed polynucleotide may include all of them regardless of whether they are inserted into the chromosome of the host cell or located extrachromosomally, as long as they can be expressed in the host cell.
  • the polynucleotide may include DNA and/or RNA encoding a target polypeptide.
  • the polynucleotide may be introduced in any form as long as it can be introduced and expressed into a host cell.
  • the polynucleotide may be introduced into a host cell in the form of an expression cassette, which is a gene construct including all elements necessary for self-expression.
  • the expression cassette may include a promoter operably linked to the polynucleotide, a transcription termination signal, a ribosome binding site, and a translation termination signal.
  • the expression cassette may be in the form of an expression vector capable of self-replication.
  • the polynucleotide may be introduced into a host cell in its own form and operably linked to a sequence required for expression in the host cell, but is not limited thereto.
  • operably linked means that a promoter sequence that initiates and mediates transcription of a polynucleotide encoding a target protein of the present application and the gene sequence are functionally linked.
  • Such enhancement of protein activity indicates that there is no activity of the corresponding protein, or its activity or concentration is generally 1%, 10%, 25 based on the activity or concentration of the wild-type protein or the initial microbial strain.
  • %, 50 %, 75 %, 100 %, 150 %, 200 %, 300 %, 400 % or 500 % may be increased up to 1000 % or 2000 % or more, but is not limited thereto.
  • intensification of dihydroxy acid dehydratase activity is that the activity of dihydroxy acid dehydratase in microorganisms is enhanced compared to wild-type, pre-mutated microorganisms or microorganisms in which the corresponding protein is unmodified, so that dihydroxy-
  • the L-valine production ability may be increased by increasing the synthesis of ketoiso-valerate, a precursor of L-valine, from dihydroxy-isovalaerate.
  • the term “reduction” refers to the activity of the protein exhibited in the original microorganism's natural state or state before mutation, that is, the intrinsic activity or when compared with one copy of the protein-encoding gene in the cell, the activity is It is a concept that includes all of the weakened or no activity (deletion), meaning that the activity is 0% or more to less than 100%.
  • reduction in activity is not particularly limited thereto, but it means that when the activity of the protein itself is removed or an effect less than its original function is derived. That is, the reduction in activity is specifically meant to include both “depletion of activity” and “weakening of activity”.
  • the “deletion of activity” means that the expression of the enzyme or protein is not expressed at all compared to the natural wild-type strain, the parent strain, or the unmodified strain of the protein, or even if it is expressed, it means that there is no activity.
  • the deficiency of the activity can be achieved by applying various methods well known in the art.
  • the method include: 1) a method of deleting all or part of the gene encoding the protein; 2) modification of the gene sequence encoding the protein such that the activity of the protein is removed, 3) introduction of an antisense oligonucleotide (eg, antisense RNA) that complementarily binds to the transcript of the gene encoding the protein; 4) By adding a sequence complementary to the Shine-Dalgarno sequence in front of the Shine-Dalgarno sequence of the gene encoding the protein, a secondary structure is formed to make attachment of the ribosome impossible method; 5) There is a method of adding a promoter transcribed in the opposite direction to the 3' end of the open reading frame (ORF) of the polynucleotide sequence of the gene encoding the protein (Reverse transcription engineering, RTE), etc., and a combination thereof can also be achieved, but is not particularly limited
  • the "weakening of activity” is not particularly limited thereto, but means to derive an effect less than the original function, and a method of deleting a part of a gene on a chromosome encoding the protein; a method of replacing a gene encoding the protein on a chromosome with a gene mutated to reduce the activity of the protein; a method of introducing a mutation into an expression control sequence of a gene on a chromosome encoding the protein; It may consist of a method of replacing the expression control sequence of the gene encoding the protein with a sequence with weak activity (eg, a method of replacing the promoter of the gene with a promoter weaker than the endogenous promoter), but is not limited thereto, and the activity A known method for attenuation can be used without limitation.
  • Such a decrease in protein activity is generally 0%, 1%, 5%, based on the activity or concentration of the wild-type protein or the initial microbial strain when the activity of the corresponding protein is removed, or its activity or concentration is 0%, 1%, 5%, It may be reduced to 10%, 15%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 98%, 99%, but is not limited thereto. .
  • the activity of transaminase C in the microorganism may be reduced compared to a natural wild-type strain, a parent strain before mutation, or a strain in which the corresponding protein is unmodified.
  • the transaminase C gene in the microorganism, is deleted to have no activity of the transaminase C protein, or the initiation codon coding sequence of the transaminase C gene is modified to GTG to reduce the expression of the transaminase C protein.
  • the activity may be weakened.
  • the activity of pyruvate dehydrogenase in the microorganism may be reduced compared to a natural wild-type strain, a parent strain before mutation, or a strain in which the corresponding protein is unmodified.
  • the microorganism has no activity of the pyruvate dehydrogenase protein due to the deletion of the pyruvate dehydrogenase gene, or the initiation codon coding sequence of the pyruvate dehydrogenase gene is modified to GTG to produce pyruvate dehydrogenase. It may be that the activity is weakened due to decreased expression of the genase protein.
  • the sequence of the pyruvate dehydrogenase gene is mutated in the microorganism, so that the amino acid corresponding to the 432th or 435th position from the N-terminus of the amino acid sequence of SEQ ID NO: 3 is substituted with another amino acid
  • it may be expressed by a pyruvate dehydrogenase variant having a weaker activity than that of the wild-type protein.
  • the pyruvate dehydrogenase variant having a weaker activity than the wild-type protein may include the sequence of SEQ ID NO: 5 or SEQ ID NO: 6, respectively, but is not limited thereto.
  • the activity of citrate synthase in the microorganism may be reduced compared to a natural wild-type strain, a parent strain before mutation, or a strain in which the corresponding protein is unmodified.
  • the microorganism does not exhibit citrate synthase protein activity due to the deletion of the citrate synthase gene, or the initiation codon coding sequence of the citrate synthase gene is mutated to GTG, thereby reducing the expression of the citrate synthase protein. Its activity may be weakened.
  • the sequence of the citrate synthase gene is mutated in the microorganism so that the amino acid corresponding to the 241th or 312th position from the N-terminus of the amino acid sequence of SEQ ID NO: 4 is substituted with another amino acid, It may be to express a citrate synthase variant having a reduced activity than the wild-type protein.
  • the citrate synthase variant having a reduced activity than the wild-type protein may include the sequence of SEQ ID NO: 7 or SEQ ID NO: 8, respectively, but is not limited thereto.
  • substitution with another amino acid' is not limited as long as it is substituted with an amino acid different from the amino acid before the substitution.
  • pyruvate dehydrogenase having a weakened activity may be one in which the amino acid corresponding to the 432th or 435th position from the N-terminus of the amino acid sequence of SEQ ID NO: 3 is substituted with a non-polar amino acid.
  • the citrate synthase having reduced activity may be one in which the amino acid corresponding to the 241th or 312th position from the N-terminus of the amino acid sequence of SEQ ID NO: 4 is substituted with a polar or non-polar amino acid.
  • corresponding to refers to an amino acid residue at a position listed in a protein or peptide, or an amino acid residue similar to, identical to, or homologous to a residue listed in a protein or peptide.
  • corresponding region generally refers to a similar position in a related protein or reference protein.
  • specific numbering may be used for amino acid residue positions in proteins used in this application. For example, by aligning the target protein to be compared with the protein sequence of the present application, it is possible to renumber the position corresponding to the amino acid residue position of the protein of the present application.
  • the term 'homology' or 'identity' refers to the degree of similarity between two given amino acid sequences or nucleotide sequences and may be expressed as a percentage.
  • the terms homology and identity can often be used interchangeably.
  • Sequence homology or identity of a conserved polynucleotide or polypeptide is determined by standard alignment algorithms, with default gap penalties established by the program used may be used. Substantially homologous or identical sequences are generally capable of hybridizing with all or part of a sequence under moderate or high stringent conditions. It is apparent that hybridization also includes hybridization with a polynucleotide containing a common codon in a polynucleotide or a codon in consideration of codon degeneracy.
  • a GAP program can be defined as the total number of symbols in the shorter of two sequences divided by the number of similarly aligned symbols (ie, nucleotides or amino acids).
  • Default parameters for the GAP program are: (1) a binary comparison matrix (containing values of 1 for identity and 0 for non-identity) and Schwartz and Dayhoff, eds., Atlas Of Protein Sequence And Structure, National Biomedical Research Foundation , pp. 353-358 (1979), Gribskov et al (1986) Nucl. Acids Res. 14: weighted comparison matrix of 6745 (or EDNAFULL (EMBOSS version of NCBI NUC4.4) substitution matrix); (2) a penalty of 3.0 for each gap and an additional 0.10 penalty for each symbol in each gap (or a gap opening penalty of 10, a gap extension penalty of 0.5); and (3) no penalty for end gaps.
  • variant means that one or more amino acids differ from the recited sequence in conservative substitution and/or modification, but the function of the protein ( Functions) or properties (properties) are maintained.
  • a variant differs from the identified sequence by several amino acid substitutions, deletions or additions.
  • Such variants can generally be identified by modifying one or more amino acids in the amino acid sequence of the protein and evaluating the properties of the modified protein. That is, the ability of the mutant, that is, the ability of the mutant may be increased, unchanged, or decreased compared to the native protein.
  • Other variants may include variants in which a portion is removed from the N- and/or C-terminus of the mature protein.
  • variant refers to terms such as variant, modified, mutated protein, variant polypeptide, mutation, etc. (in English, modified, modified protein, modified polypeptide, mutant, mutein, divergent, variant, etc.) may be used. , as long as it is a term used in a mutated meaning, it is not limited thereto.
  • the mutant may have reduced or weakened protein activity compared to the native wild-type or unmodified protein, but is not limited thereto.
  • conservative substitution refers to substituting one amino acid with another amino acid having similar structural and/or chemical properties. Such amino acid substitutions may generally occur based on similarity in polarity, charge (basic, acidic), solubility, hydrophobicity, hydrophilicity and/or amphipathic nature of the residues.
  • variants may contain deletions or additions of amino acid sequences having minimal effect on the properties and secondary structure of the polypeptide.
  • the polypeptide can be conjugated with a signal (or leader) sequence at the N-terminus of the protein that is involved in the transfer of the protein either co-translationally or post-translationally.
  • the polypeptide may also be conjugated with other sequences or linkers to enable identification, purification, or synthesis of the polypeptide.
  • L-valine-producing microorganism refers to a microorganism capable of producing L-valine from a carbon source in a medium in excess compared to that of a wild-type or unmodified microorganism.
  • the microorganism producing the L-valine may be a recombinant microorganism.
  • L-valine if L-valine can be produced, the type is not particularly limited, but Enterobacter genus, Escherichia genus, Erwinia genus, Serratia genus, Providencia genus (Providencia) genus, Corynebacterium (Corynebacterium) genus, and may be a microorganism belonging to the genus Brevibacterium (Brevibacterium). More specifically, it may be a microorganism belonging to the genus Corynebacterium or the genus Escherichia.
  • Escherichia microorganisms may be Escherichia coli, and Corynebacterium genus microorganisms may be Corynebacterium glutamicum, but enhanced dihydroxy acid dihydratase having activity; and transaminase C having reduced activity, pyruvate dehydrogenase having reduced activity, or citrate synthase having reduced activity, L-valine production can be increased Any microorganism belonging to the genus Escherichia or Corynebacterium may be included without limitation.
  • the parent strain of a microorganism producing a modified L-valine having any one or more combinations selected from the following (1) to (3) is not particularly limited as long as it is a microorganism producing L-valine.
  • a microorganism producing L-valine is a microorganism having improved L-valine production ability by inserting a native microorganism itself or a gene related to an external L-valine production mechanism, or enhancing or reducing (weakening or suppressing) the activity of an intrinsic gene.
  • the microorganism is an L-valine-producing microorganism in which the activity of dihydroxy acid dihydratase is enhanced than that of the wild-type or pre-mutation parent strain and the activity of transaminase C is reduced than that of the wild-type or pre-mutation parent strain.
  • the dihydroxy acid dehydratase may be encoded by the ilvD gene
  • the transaminase C may be encoded by the avtA gene.
  • the genes may be derived from Corynebacterium glutamicum, but is not limited thereto.
  • the microorganism produces L-valine in which the activity of dihydroxy acid dehydratase is enhanced than that of the wild-type or pre-mutation parent strain and the activity of pyruvate dehydrogenase is weakened than that of the wild-type or pre-mutation parent strain.
  • the dihydroxy acid dehydratase may be encoded by the ilvD gene
  • the pyruvate dehydrogenase may be encoded by the aceE gene.
  • the genes may be derived from Corynebacterium glutamicum, but is not limited thereto.
  • the microorganism is an L-valine-producing microorganism with enhanced activity of dihydroxy acid dihydratase than the wild-type or pre-mutation parent strain and reduced citrate synthase activity than the wild-type or pre-mutation parent strain.
  • the dihydroxy acid dihydratase may be encoded by the ilvD gene
  • the citrate synthase may be encoded by the gltA gene.
  • the genes may be derived from Corynebacterium glutamicum, but is not limited thereto.
  • the activity of transaminase C is reduced or the activity of pyruvate dehydrogenase is reduced than that of the wild-type or pre-mutation parent strain in addition to the microorganism, or L-valine-producing microorganisms, or transamina than the wild-type or pre-mutation parent strain It may be an L-valine-producing microorganism in which the activity of the C agent is decreased and the activity of pyruvate dehydrogenase is decreased.
  • the enhanced activity of dihydroxy acid dihydratase relates to a method for producing L-valine, comprising culturing in a medium an L-valine-producing microorganism, characterized in that it has any one or more combinations selected from the following (1) to (3).
  • L-valine of the present application may include not only the form of L-valine itself, but also the salt form thereof.
  • the term “cultivation” means growing the microorganism in an appropriately controlled environmental condition.
  • the culture process of the present application may be made according to an appropriate medium and culture conditions known in the art. Such a culture process can be easily adjusted and used by those skilled in the art according to the selected strain. Specifically, the culture may be batch, continuous, and fed-batch, but is not limited thereto.
  • the term "medium” refers to a material in which a nutritional substance required for culturing the microorganism is mixed as a main component, and supplies nutrients and growth factors, including water, which are essential for survival and growth.
  • any medium and other culture conditions used for culturing the microorganisms of the present application may be used without any particular limitation as long as they are conventional media used for culturing microorganisms. It can be cultured under aerobic conditions in a conventional medium containing compounds, amino acids and/or vitamins, etc. while controlling temperature, pH, and the like.
  • carbon source in the present application, carbohydrates such as glucose, fructose, sucrose, maltose; sugar alcohols such as mannitol and sorbitol; organic acids such as pyruvic acid, lactic acid, citric acid and the like; Amino acids such as glutamic acid, methionine, lysine, and the like may be included.
  • natural organic nutrient sources such as starch hydrolyzate, molasses, blackstrap molasses, rice winter, cassava, sugar cane offal and corn steep liquor can be used, specifically glucose and sterilized pre-treated molasses (i.e., converted to reducing sugar). molasses) may be used, and other appropriate amounts of carbon sources may be used in various ways without limitation. These carbon sources may be used alone or in combination of two or more, but is not limited thereto.
  • nitrogen source examples include inorganic nitrogen sources such as ammonia, ammonium sulfate, ammonium chloride, ammonium acetate, ammonium phosphate, anmonium carbonate, and ammonium nitrate; Amino acids such as glutamic acid, methionine, glutamine, and organic nitrogen sources such as peptone, NZ-amine, meat extract, yeast extract, malt extract, corn steep liquor, casein hydrolyzate, fish or degradation products thereof, defatted soybean cake or degradation products thereof, etc. can be used These nitrogen sources may be used alone or in combination of two or more, but is not limited thereto.
  • inorganic nitrogen sources such as ammonia, ammonium sulfate, ammonium chloride, ammonium acetate, ammonium phosphate, anmonium carbonate, and ammonium nitrate
  • Amino acids such as glutamic acid, methionine, glutamine
  • organic nitrogen sources such as peptone, NZ-amine, meat extract, yeast extract
  • the phosphorus may include potassium first potassium phosphate, second potassium phosphate, or a sodium-containing salt corresponding thereto.
  • potassium first potassium phosphate potassium phosphate
  • second potassium phosphate or a sodium-containing salt corresponding thereto.
  • sodium chloride, calcium chloride, iron chloride, magnesium sulfate, iron sulfate, manganese sulfate, calcium carbonate, etc. may be used, and in addition, amino acids, vitamins and/or suitable precursors may be included. These components or precursors may be added to the medium either batchwise or continuously. However, the present invention is not limited thereto.
  • a compound such as ammonium hydroxide, potassium hydroxide, ammonia, phosphoric acid, sulfuric acid, etc. may be added to the medium in an appropriate manner during culturing of the microorganism to adjust the pH of the medium.
  • an antifoaming agent such as fatty acid polyglycol ester may be used to suppress bubble formation.
  • oxygen or oxygen-containing gas may be injected into the medium, or nitrogen, hydrogen or carbon dioxide gas may be injected without injection of gas or without gas to maintain anaerobic and microaerobic conditions. it is not
  • the temperature of the medium may be 20°C to 50°C, specifically, 30°C to 37°C, but is not limited thereto.
  • the incubation period may be continued until a desired yield of useful substances is obtained, and specifically, it may be 10 hours to 100 hours, but is not limited thereto.
  • L-valine produced by the culturing of the present application may be secreted into the medium or may remain in cells.
  • the L-valine production method of the present application includes the steps of preparing the microorganism of the present application, preparing a medium for culturing the strain, or a combination thereof (regardless of order, in any order), for example, Prior to the culturing step, it may be further included.
  • the method for producing L-valine of the present application may further include recovering L-valine from the culture medium (cultured medium) or the microorganism of the present application.
  • the recovering step may be further included after the culturing step.
  • the recovery may be to collect the desired L-valine using a suitable method known in the art according to the culture method of the microorganism of the present application, for example, a batch, continuous or fed-batch culture method, etc. .
  • a suitable method known in the art for example, centrifugation, filtration, treatment with a crystallized protein precipitant (salting out method), extraction, ultrasonic disruption, ultrafiltration, dialysis, molecular sieve chromatography (gel filtration), adsorption chromatography, ion exchange chromatography, affinity
  • a desired L-valine may be recovered from a medium or a microorganism using a suitable method known in the art.
  • the L-valine production method of the present application may additionally include a purification step.
  • the purification may be performed using a suitable method known in the art.
  • the recovery step and the purification step are performed continuously or discontinuously, regardless of the order, or integrated into one step. may be performed, but is not limited thereto.
  • polynucleotides, vectors, microorganisms, L-valine, and the like are as described in the other aspects above.
  • Another aspect of the present application is enhanced activity of dihydroxy acid dehydratase; And it provides a method of increasing L-valine production capacity, including transformation into a microorganism characterized in that it has any one or more combinations selected from the following (1) to (3).
  • Another aspect of the present application is enhanced activity of dihydroxy acid dehydratase; And it provides a use for the production of L-valine of microorganisms having any one or more combinations selected from the following (1) to (3).
  • Example 1 Production and evaluation of strains based on valine production
  • the genomic DNA of the ATCC14067 strain which is a Corynebacterium glutamicum wild type, was extracted using a G-spin Total DNA extraction mini kit (Intron, Cat. No 17045) according to the protocol provided in the kit.
  • PCR was performed using the primer pair of SEQ ID NO: 9 and SEQ ID NO: 10 and the primer pair of SEQ ID NO: 11 and SEQ ID NO: 12 to obtain gene fragments of 537 bp, respectively.
  • PCR was performed after denaturation at 94°C for 5 minutes; After 25 repetitions of denaturation at 94°C for 30 seconds, annealing at 55°C for 30 seconds, and polymerization at 72°C; Polymerization was carried out at 72° C. for 7 minutes.
  • pDZ vector treated with the same restriction enzyme and T4 ligase (New England Biolabs, Beverly, MA) were used for ligation
  • a vector including mutation introduction fragment 2 was prepared.
  • the vector for the purpose of introducing the A42V mutation of the ilvN gene was named pDZ-ilvN (A42V).
  • primer base sequence SEQ ID NO: Primer 1 AATTTCTAGAGGCAGACCCTATTCTATGAAGG 9 Primer 2 AGTGTTTCGGTCTTTACAGACACGAGGGAC 10 Primer 3 GTCCCTCGTGTCTGTAAAGACCGAAACACT 11 Primer 4 AATTTCTAGACGTGGGAGTGTCACTCGCTTGG 12
  • the pDZ-ilvN (A42V) was transformed into wild-type Corynebacterium glutamicum ATCC14067 and ATCC13869 strains, respectively, to induce homologous recombination on the chromosome (van der Rest et al., Appl Microbiol Biotechnol 52:541). -545, 1999).
  • the strain into which the vector was inserted into the chromosome by recombination of the homologous sequence was selected in a medium containing 25 mg/L of kanamycin.
  • Fermentation potency experiments were performed on wild strains Corynebacterium glutamicum ATCC14067 and ATCC13869 strains, and the CJ7V and CJ8V strains. Each strain subcultured in the nutrient medium was inoculated into a 250 ml corner-baffle flask containing 25 ml of the production medium, and cultured with shaking at 30° C. for 72 hours at 200 rpm. Thereafter, the concentration of L-valine was analyzed using HPLC and shown in Table 2 below.
  • Glucose 10g broth 5g, polypeptone 10g, sodium chloride 2.5g, yeast extract 5g, agar 20g, urea 2g (based on 1 liter of distilled water)
  • Example 2-1 Production and evaluation of valine biosynthesis gene ilvD-enhanced strain
  • the primer pair of SEQ ID NO: 13 and SEQ ID NO: 14, SEQ ID NO: 15 and SEQ ID NO: 16 using the genomic DNA of the ATCC14067 strain, which is a wild-type Corynebacterium glutamicum, as a template PCR was performed using the primer pair of SEQ ID NO: 17 and the primer pair of SEQ ID NO: 18 to obtain each fragment.
  • PCR was performed after denaturation at 94°C for 5 minutes; After 25 repetitions of denaturation at 94°C for 30 seconds, annealing at 55°C for 30 seconds, and polymerization at 72°C; Polymerization was performed at 72° C. for 7 minutes.
  • Restriction enzyme XbaI (New England Biolabs, Beverly, MA) was treated with the mutation-introducing fragment 3 obtained by performing overlapping PCR using the primer pair of SEQ ID NO: 13 and SEQ ID NO: 18 using the fragments as templates, and the same restriction enzyme
  • the pDZ vector treated with T4 ligase (New England Biolabs, Beverly, MA) was ligated to construct a pDZ-Pcj7-ilvD vector.
  • CJ7V, CJ8V and KCCM11201P which are strains based on valine production, respectively to induce homologous recombination on the chromosome (van der Rest et al., Appl Microbiol Biotechnol 52:541-545). , 1999).
  • the strain into which the vector was inserted into the chromosome by recombination of the homologous sequence was selected in a medium containing 25 mg/L of kanamycin.
  • the selected Corynebacterium glutamicum transformant SEQ ID NO: 13 and After amplifying the gene fragment through PCR using the primer pair of SEQ ID NO: 18, and confirming that the mutation was properly introduced through gene sequence analysis, the selected recombinant strains were respectively Corynebacterium glutamicum CJ7V:ilvD, CJ8V: It was named ilvD, KCCM11201P:ilvD. Fermentation titers of the selected ilvD gene-enhanced strains were performed in the same manner as in Example 1, and the results are as follows.
  • Example 2-2 Construction and evaluation of avtA deficient and attenuated (a1g) strains
  • a vector for making an avtA weakened strain was prepared using the primer pair of SEQ ID NOs: 25 and 26, and named as pDZ-avtA(A1g) and pDZ-avtA(del), respectively.
  • avtA attenuated vector (pDZ-avtA(A1g))
  • the genomic DNA of the Corynebacterium glutamicum wild-type ATCC14067 strain was used as a template and the primer pair of SEQ ID NO: 19 and SEQ ID NO: 20 and SEQ ID NO: 21 and After denaturation at 94°C for 5 minutes using the primer set of No. 22; After 25 repetitions of denaturation at 94°C for 30 seconds, annealing at 55°C for 30 seconds, and polymerization at 72°C; PCR was performed under polymerization conditions at 72° C. for 7 minutes.
  • Overlapping PCR was performed using the primer pair of SEQ ID NO: 19 and SEQ ID NO: 22 using each of the obtained fragments as a template, and the obtained mutation introduction fragment 4 was treated with restriction enzyme XbaI (New England Biolabs, Beverly, MA). Then, pDZ-avtA (A1g) DNA was prepared by ligation with T4 ligase (New England Biolabs, Beverly, MA) to the pDZ vector treated with the same restriction enzyme.
  • avtA-defective vector pDZ-avtA(del)
  • the genomic DNA of the Corynebacterium glutamicum wild-type ATCC14067 strain was used as a template, the primer pair of SEQ ID NOs: 23 and 24, and the primers of SEQ ID NOs: 25 and 26 After denaturation at 94°C for 5 minutes using the pair; After 25 repetitions of denaturation at 94°C for 30 seconds, annealing at 55°C for 30 seconds, and polymerization at 72°C; PCR was performed under polymerization conditions at 72° C. for 7 minutes.
  • Overlapping PCR was performed using the primer pair of SEQ ID NO: 23 and SEQ ID NO: 26 using each of the obtained fragments as a template, and the obtained mutation-introduced fragment 5 was treated with restriction enzyme XbaI (New England Biolabs, Beverly, MA). Then, pDZ-avtA(del) vector DNA was prepared by ligation with T4 ligase (New England Biolabs, Beverly, MA) to the pDZ vector treated with the same restriction enzyme.
  • avtA weakened and deficient strain vector construction primer sequence primer base sequence SEQ ID NO: Primer 11 GCTCGGTACCCGGGGATCCTCTAGACCGCTTCCTTGGCTGCCTGAAGATG 19 Primer 12 TGCTTGGCTTCACAAGAGACAAGCCT 20 Primer 13 AGGCTTGTCTCTTGTGAAGCCAAGCA 21 Primer 14 GCCTGCAGGTCGACCTAGATCTAGACCTCATCAGAGATAAGAACAGCATC 22 Primer 15 GCTCGGTACCCGGGGATCCTCTAGATACTCCGGTCTGCTTTATGCAGGTA 23 Primer 16 AACTAACCTAGTCGCTTAAGAGACAAGCCTATCTGC 24 Primer 17 GCAGATAGGCTTGTCTCTTAAGCGACTAGGTTAGTT 25 Primer 18 GCCTGCAGGTCGACCTAGATCTAGAAAGTGCCACGAGCATTTCATCAGCT 26
  • pDZ-avtA(del) and pDZ-avtA(A1g) were transformed into valine-producing strains CJ7V:ilvD, CJ8V:ilvD and KCCM11201P:ilvD, respectively, to induce homologous recombination on the chromosome (van der Rest et al. ., Appl Microbiol Biotechnol 52:541-545, 1999).
  • the strain into which the vector was inserted into the chromosome by recombination of the homologous sequence was selected in a medium containing 25 mg/L of kanamycin.
  • the recombinant strain is Corynebacterium glutamicum CJ7V:ilvD-avtA(del), CJ7V:ilvD-avtA (a1g), CJ8V:ilvD-avtA(del), CJ8V:ilvD-avtA (a1g), KCCM11201P:ilvD -avtA(del), KCCM11201P:ilvD-avtA (a1g) was named as follows, and titer evaluation was performed in the same manner as in Example 1.
  • Example 2-3 aceE deletion and attenuation (a1g, Q432A, K435A) strain production and evaluation
  • the vector for constructing a strain in which the start codon of the aceE gene is modified to GTG The following SEQ ID NOs: 27 and 32, SEQ ID NO: A vector for constructing an aceE (Q432A) strain using the primer pair of 33 and 36, and a vector for constructing an aceE (K435A) strain using the primer pair of SEQ ID NOs: 27 and 34, SEQ ID NOs: 35 and 36, and also SEQ ID NO: 37 and 38 and SEQ ID NOs: 39 and 40 using the primer pair to prepare a vector for constructing an ace-deficient (aceE(del)) strain.
  • the constructed vectors were named pDZ-aceE (A1g), pDZ-aceE (Q432A) strain using the primer pair of 33 and 36, and a vector for constructing an aceE (K435A) strain using the primer pair of SEQ ID NOs: 27 and 34, SEQ ID NOs: 35 and 36, and also SEQ ID NO: 37 and 38
  • the primer pair of SEQ ID NO: 27 and SEQ ID NO: 28 and SEQ ID NO: 29 and SEQ ID NO: 30 using the genomic DNA of the Corynebacterium glutamicum wild-type ATCC14067 strain as a template After denaturing at 94°C for 5 minutes using; After 25 repetitions of denaturation at 94°C for 30 seconds, annealing at 55°C for 30 seconds, and polymerization at 72°C; PCR was performed under polymerization conditions at 72° C. for 7 minutes.
  • Overlapping PCR was performed using the primer pair of SEQ ID NO: 27 and SEQ ID NO: 30 for each obtained fragment as a template, and the obtained mutation-introduced fragment 6 was treated with restriction enzyme XbaI (New England Biolabs, Beverly, MA) , The pDZ vector treated with the same restriction enzyme was ligated with T4 ligase (New England Biolabs, Beverly, Mass.) to prepare pDZ-aceE (A1g) vector DNA.
  • restriction enzyme XbaI New England Biolabs, Beverly, MA
  • T4 ligase New England Biolabs, Beverly, Mass.
  • genomic DNA of Corynebacterium glutamicum wild-type ATCC14067 strain as a template is used as a primer pair of SEQ ID NO: 27, SEQ ID NO: 28, and SEQ ID NO: 33 and SEQ ID NO: 36 and then denatured at 94°C for 5 minutes; After 25 repetitions of denaturation at 94°C for 30 seconds, annealing at 55°C for 30 seconds, and polymerization at 72°C; PCR was performed under polymerization conditions at 72° C. for 7 minutes.
  • Overlapping PCR was performed using the primer pair of SEQ ID NO: 27 and SEQ ID NO: 36 using each of the obtained fragments as a template, and the obtained mutation-introduced fragment 7 was treated with restriction enzyme XbaI (New England Biolabs, Beverly, MA). Then, pDZ-aceE (Q432A) vector DNA was prepared by ligation using T4 ligase (New England Biolabs, Beverly, MA) to pDZ vector treated with the same restriction enzyme.
  • Overlapping PCR was performed using the primer pair of SEQ ID NO: 27 and SEQ ID NO: 36 using each of the obtained fragments as templates, and the obtained mutation-introduced fragment 8 was treated with restriction enzyme XbaI (New England Biolabs, Beverly, MA). Then, the pDZ vector treated with the same restriction enzyme was ligated using T4 ligase (New England Biolabs, Beverly, MA) to prepare pDZ-aceE (K435A) vector DNA.
  • genomic DNA of Corynebacterium glutamicum wild-type ATCC14067 strain was used as a template, and the primer pairs of SEQ ID NO: 37, SEQ ID NO: 38 and SEQ ID NO: 39 and SEQ ID NO: 40 were used. and then denatured at 94°C for 5 minutes; After 25 repetitions of denaturation at 94°C for 30 seconds, annealing at 55°C for 30 seconds, and polymerization at 72°C; PCR was performed under polymerization conditions at 72° C. for 7 minutes.
  • Overlapping PCR was performed using the primer pair of SEQ ID NO: 37 and SEQ ID NO: 40 using each of the obtained fragments as a template, and the obtained mutation-introduced fragment 9 was treated with restriction enzyme XbaI (New England Biolabs, Beverly, MA). Then, pDZ-aceE(del) vector DNA was prepared by ligation using the same restriction enzyme-treated pDZ vector and T4 ligase (New England Biolabs, Beverly, MA).
  • CJ7V:ilvD CJ8V:ilvD
  • KCCM11201P valine-producing strains, respectively.
  • Homologous recombination was induced on the chromosome (van der Rest et al., Appl Microbiol Biotechnol 52:541-545, 1999).
  • the strain into which the vector was inserted into the chromosome by recombination of the homologous sequence was selected in a medium containing 25 mg/L of kanamycin.
  • the recombinant strain is Corynebacterium glutamicum CJ7V: ilvD-aceE (del), CJ7V: ilvD-aceE (a1g), CJ7V: ilvD-aceE (Q432A), CJ7V: ilvD-aceE (K435A), CJ8V: ilvD -aceE(del), CJ8V:ilvD-aceE(a1g), CJ8V:ilvD-aceE(Q432A), CJ8V:ilvD-aceE(K435A), KCCM11201P:ilvD-aceE(del), KCCM11201P:ilvD-aceE(a1g) , KCCM11201P:ilvD-aceE(a1g) , KCCM11201P:ilvD-aceE(a1g) , KCCM11201P:ilvD-aceE(a1g) , KCCM11
  • Example 2-4 Construction and evaluation of gltA attenuated (a1g, N241T, M312I) strains
  • the vector for preparing a gltA weakened strain in which the start codon of the gltA gene is modified to GTG using the primer pairs of SEQ ID NOs: 45 and 46, SEQ ID NOs: 47 and 50, Using a vector for gltA (N241T) strain construction and a vector for gltA (M312I) strain construction using the primer pairs of SEQ ID NOs: 45 and 48, SEQ ID NOs: 49 and 50, respectively, pDZ-gltA (A1g), They were named pDZ-gltA (N241T) and pDZ-gltA (M312I).
  • the genomic DNA of the Corynebacterium glutamicum wild-type ATCC14067 strain was used as a template, and the primer pairs of SEQ ID NO: 41 and SEQ ID NO: 42 and SEQ ID NO: 43 and SEQ ID NO: 44 were used. and then denatured at 94°C for 5 minutes; After 25 repetitions of denaturation at 94°C for 30 seconds, annealing at 55°C for 30 seconds, and polymerization at 72°C; PCR was performed under polymerization conditions at 72° C. for 7 minutes.
  • genomic DNA of Corynebacterium glutamicum wild-type ATCC14067 strain as a template SEQ ID NO: 45, SEQ ID NO: 46, SEQ ID NO: 47, and SEQ ID NO: 50 using the primer pair and then denatured at 94°C for 5 minutes; After 25 repetitions of denaturation at 94°C for 30 seconds, annealing at 55°C for 30 seconds, and polymerization at 72°C; PCR was performed under polymerization conditions at 72° C. for 7 minutes.
  • overlapping PCR was performed using a pair of primers of SEQ ID NO: 45 and SEQ ID NO: 50, and the obtained mutation-introduced fragment 11 was subjected to restriction enzyme XbaI (New England Biolabs, Beverly, MA), and then ligated with T4 ligase (New England Biolabs, Beverly, MA) to the pDZ vector treated with the same restriction enzyme to construct pDZ-gltA(N241T) vector DNA.
  • restriction enzyme XbaI New England Biolabs, Beverly, MA
  • T4 ligase New England Biolabs, Beverly, MA
  • genomic DNA of Corynebacterium glutamicum wild-type ATCC14067 strain was used as a template, SEQ ID NO: 45, SEQ ID NO: 48, SEQ ID NO: 49, and SEQ ID NO: 50 using primer pairs and then denatured at 94°C for 5 minutes; After 25 repetitions of denaturation at 94°C for 30 seconds, annealing at 55°C for 30 seconds, and polymerization at 72°C; PCR was performed under polymerization conditions at 72° C. for 7 minutes.
  • overlapping PCR was performed using the primer pair of SEQ ID NO: 45 and SEQ ID NO: 50, and the obtained mutation introduction fragment 12 was subjected to restriction enzyme XbaI (New England Biolabs, Beverly, MA), and then ligated with T4 ligase (New England Biolabs, Beverly, MA) to the pDZ vector treated with the same restriction enzyme to construct pDZ-gltA (M312I) vector DNA.
  • restriction enzyme XbaI New England Biolabs, Beverly, MA
  • T4 ligase New England Biolabs, Beverly, MA
  • gltA weakened strain vector construction primer sequence primer base sequence SEQ ID NO: Primer 37 GCTCGGTACCCGGGGATCCTCTAGAACCCTGAAGCTGTCAGTTCCTAGCA 41 Primer 38 CCCTTTCAAACACATTTGTTC 42 Primer 39 CGAACAAATGTGTTTGAAAGGG 43 Primer 40 GCCTGCAGGTCGACCTAGATCTAGATGCGCGGTGCGTACGCAGCCAGC 44 Primer 41 GCTCGGTACCCGGGGATCCTCTAGATATGTGAGCACTGGCTCTACCGAGT 45 Primer 42 AGGTGGAGCAGGTCTGCTCGTG 46 Primer 43 CACGAGCAGACCTGCTCCACCT 47 Primer 44 TGTCCGAAGCCGATGAGGCGGAC 48 Primer 45 CGTCCGCCTCATCGGCTTCGGACA 49 Primer 46 GCCTGCAGGTCGACCTAGATCTAGAGTCAGATTACGAGATCTTCCGGT 50
  • pDZ-gltA (A1g), pDZ-gltA (N241T), and pDZ-gltA (M312I) were transformed into CJ7V:ilvD, CJ8V:ilvD and KCCM11201P:ilvD, which are valine-producing strains, respectively, to induce homologous recombination on the chromosome.
  • van der Rest et al., Appl Microbiol Biotechnol 52:541-545, 1999 The strain into which the vector was inserted into the chromosome by recombination of the homologous sequence was selected in a medium containing 25 mg/L of kanamycin.
  • the recombinant strain is Corynebacterium glutamicum CJ7V: ilvD-gltA (a1g), CJ7V: ilvD-gltA (N241T), CJ7V: ilvD-gltA (M312I), CJ8V: ilvD-gltA (a1g), CJ8V: ilvD -gltA(N241T), CJ8V:ilvD-gltA(M312I), KCCM11201P:ilvD-gltA(a1g), KCCM11201P:ilvD-gltA(N241T), KCCM11201P:ilvD-gltA(N241T), KCCM11201P:ilvD-gltA(M312I), KCCM11201P:ilvD-gltA(a1g), KCCM11201P:ilvD-gltA(
  • the gene fragment is amplified through PCR using the primer pair of SEQ ID NO: 23 and SEQ ID NO: 26 and the primer pair of SEQ ID NO: 27 and SEQ ID NO: 36 to the Corynebacterium glutamicum transformant on which the secondary recombination has been completed
  • the mutant insertion strain was identified through gene sequence analysis.
  • the recombinant strain was named as follows, Corynebacterium glutamicum, and titer evaluation was performed in the same manner as in Example 1.
  • the pDZ-aceE (K435A) vector was transformed into the KCCM11201P: ilvD-gltA weakened (N241T) strain, and the strain into which the ace (K435A) mutation was introduced on the chromosome by recombination of the homologous sequence was named CA08-1592, As of July 3, 2020, it was made an international deposit to the Korea Center for Microorganisms Conservation (KCCM), an international depository under the Budapest Treaty, and was given a deposit number as KCCM12761P.
  • KCCM Korea Center for Microorganisms Conservation

Abstract

본 출원은 L-발린 생산 미생물 및 상기 미생물을 이용한 L-발린의 생산방법에 관한 것으로, 본 출원의 활성 강화 또는 활성 감소된 효소들의 조합을 포함하는 미생물을 배양하는 경우, 고수율의 L-발린 생산이 가능하다.

Description

L-발린 생산 미생물 및 이를 이용한 L-발린 생산 방법
본 출원은 L-발린 생산 미생물 및 상기 미생물을 이용한 L-발린의 생산방법에 관한 것이다.
분지쇄 아미노산 중 하나인 L-발린은 미생물에 있어서 피루브산으로부터 출발하여 아세토젖산(acetolactic acid), 디하이드록시 이소발레르산(dihydroxy isovaleric acid), 케토이소발레르산(ketoisovaleric acid)을 경유하여 생합성된다. 이러한 중간 대사산물들은 아세토하이드록시산 신타제(acetohydroxy acid synthase), 아세토하이드록시산 이소메로 리덕타아제(acetohydroxy acid isomeroreductase), 디하이드록시산 디하이드레타제(dihydroxy acid dehydratase), 트랜스아미나제 B(transaminase B)에 의하여 촉매된 반응에 의하여 생성된다. 그러나, 상기 효소들은 케토부티르산(ketobutyric acid)과 피루브산으로부터 시작되는 L-이소류신 생합성에도 관여하며, 중간대사물인 케토이소발레르산으로부터 2-이소프로필말산(2-isopropylmalic acid), 3-이소프로필말산(3-isopropylmalic acid), 케토이소카프로산(ketoisocaproic acid)을 경유하여 L-류신이 생합성되기도 한다. 따라서, 상기와 같이 분지쇄 아미노산, 즉 L-발린, L-이소류신, L-류신은 그 생합성 과정에 동일한 효소를 사용하기 때문에 한가지의 분지쇄 아미노산을 발효를 통해 공업적으로 제조하는 데는 어려움이 있는 것으로 알려져 있으며, 추가적으로 최종 산물인 L-발린 또는 이의 유도체에 의한 피드백 저해가 발생하여 이를 공업적으로 대량 제조하기에는 제약이 따른다는 문제점을 갖고 있다.
다만, 지금까지 피드백 저해를 통한 발린의 생산방법에 관한 연구는 있었으나(미국 등록특허 제10457919호), 본 출원의 활성 강화 또는 활성 감소된 효소들의 조합을 통한 발린의 생산능 증대에 관한 연구는 없었다.
이에 본 발명자들은 효과적인 L-발린 생산방법에 대해 지속적인 연구를 한 결과, 다이하이드록시산 디하이드라타제(dihydroxy-acid dehydratase)의 활성 강화; 및 트랜스아미나제 C(transaminase C)의 활성 감소, 피루베이트 디하이드로게나아제(pyruvate dehydrogenase)의 활성 약화, 시트레이트 신타아제(citrate synthase)의 활성 감소 또는 이들의 조합을 포함하는 미생물이 상기 효소들의 야생형에 비하여 L-발린 생산능이 우수함을 확인하고, 본 발명을 완성하였다.
본 출원의 하나의 목적은 강화된 다이하이드록시산 디하이드라타제의 활성; 및 하기 (1) 내지 (3)에서 선택되는 어느 하나 이상의 조합을 갖는, L-발린 생산 미생물을 제공하는 것이다.
(1) 감소된 트랜스아미나제 C의 활성
(2) 약화된 피루베이트 디하이드로게나아제의 활성
(3) 감소된 시트레이트 신타아제의 활성
본 출원의 다른 목적은 상기 미생물을 배양하는 단계를 포함하는, L-발린의 생산방법을 제공하는 것이다.
본 출원의 L-발린 생산 미생물을 배양하는 경우, 고수율의 L-발린 생산이 가능하다. 이에, 산업적인 면에서 생산의 편의성 및 제조원가 절감의 효과를 기대할 수 있다.
이하에서는, 본 출원을 더욱 상세히 설명한다.
한편, 본 출원에서 개시되는 각각의 설명 및 실시형태는 각각의 다른 설명 및 실시 형태에도 적용될 수 있다. 즉, 본 출원에서 개시된 다양한 요소들의 모든 조합이 본 출원의 범주에 속한다. 또한, 하기 기술되는 구체적인 서술에 의하여 본 출원의 범주가 제한된다고 할 수 없다.
또한, 당해 기술분야의 통상의 지식을 가진 자는 통상의 실험만을 사용하여 본 출원에 기재된 본 출원의 특정 양태에 대한 다수의 등가물을 인지하거나 확인할 수 있다. 또한, 이러한 등가물은 본 출원에 포함되는 것으로 의도된다.
본 출원의 하나의 양태는, 강화된 다이하이드록시산 디하이드라타제의 활성; 및 하기 (1) 내지 (3)에서 선택되는 어느 하나 이상의 조합을 갖는 것을 특징으로 하는 L-발린 생산 미생물을 제공하는 것이다.
(1) 감소된 트랜스아미나제 C의 활성
(2) 약화된 피루베이트 디하이드로게나아제의 활성
(3) 감소된 시트레이트 신타아제의 활성
하나의 구체예로, 상기 발린 생산 미생물은 상기 미생물은 강화된 다이하이드록시산 디하이드라타제의 활성 및 감소된 트랜스아미나제 C의 활성을 갖는 미생물일 수 있다.
다른 구체예로, 상기 발린 생산 미생물은 강화된 다이하이드록시산 디하이드라타제의 활성 및 약화된 피루베이트 디하이드로게나아제의 활성을 갖는 미생물일 수 있다.
또 다른 구체예로, 상기 발린 생산 미생물은 강화된 다이하이드록시산 디하이드라타제의 활성 및 감소된 시트레이트 신타아제의 활성을 갖는 미생물일 수 있다.
또 다른 구체예로, 강화된 다이하이드록시산 디하이드라타제의 활성 및 감소된 시트레이트 신타아제의 활성에 추가적으로, 감소된 트랜스아미나제 C의 활성 또는 약화된 피루베이트 디하이드로게나아제의 활성을 갖는 미생물일 수 있으나, 이에 제한 되는 것은 아니다.
본 출원에서 용어, "다이하이드록시산 디하이드라타제(dihydroxy-acid dehydratase)"는 피루브산(pyruvate)에서 아세토락테이트(acetolactate)를 거쳐 다이하이드록시-이소발러레이트(dihydroxy-isovalaerate)에서 케토아이소-발러레이트(ketoiso-valerate)를 거쳐 L-발린을 생산하는 생합성 경로에서 L-발린의 전구체인 케토아이소-발러레이트(ketoiso-valerate)의 합성에 관여하는 효소를 의미한다. 본 출원에서는 다이하이드록시산 디하이드라타제의 활성을 강화시켜 케토아이소-발러레이트의 합성을 증가시킴으로 인하여 L-발린의 생산량 증가를 도모할 수 있다.
본 출원에서 용어, "트랜스아미나제 C(transaminase C)"는 피루브산(pyruvate)으로부터 L-알라닌을 합성하는 경로에 관여하는 효소를 의미한다.
본 출원에서 용어, "피루베이트 디하이드로게나아제(pyruvate dehydrogenase)"는 피루브산으로부터 아세틸 조효소A(acetyl-coA) 합성에 관여하는 효소를 의미한다.
본 출원에서 용어, "시트레이트 신타아제(citrate synthase)"는 아세틸 조효소 A로부터 시트레이트(citrate)를 합성하는 효소를 의미한다.
본 출원에서 용어, "강화"는, 단백질의 활성이 내재적 활성에 비하여 증가되는 것을 의미한다. 상기 강화는 활성화(activation), 상향조절(up-regulation), 과발현(overexpression), 증가(increase) 등의 용어와 혼용될 수 있다. 여기서 활성화, 강화, 상향조절, 과발현, 증가는 본래 가지고 있지 않았던 활성을 나타내게 되는 것, 또는 내재적 활성 또는 변형 전 활성에 비하여 향상된 활성을 나타내게 되는 것을 모두 포함할 수 있다. 상기 “내재적 활성"은 자연적 또는 인위적 요인에 의한 유전적 변이로 형질이 변화하는 경우, 형질 변화 전 모균주 또는 비변형 미생물이 본래 가지고 있던 특정 폴리펩티드의 활성을 의미한다. 이는 "변형 전 활성"과 혼용되어 사용될 수 있다. 폴리펩티드의 활성이 내재적 활성에 비하여 "강화", "상향조절", "과발현" 또는 "증가"한다는 것은, 형질 변화 전 모균주 또는 비변형 미생물이 본래 가지고 있던 특정 폴리펩티드의 활성 및/또는 농도(발현량)에 비하여 향상된 것을 의미한다.
상기 강화는 외래의 폴리펩티드를 도입하거나, 내재적인 폴리펩티드의 활성 강화 및/또는 농도(발현량) 증가를 통해 달성할 수 있다. 상기 다이하이드록시산 디하이드라타제의 활성의 강화 여부는 해당 폴리펩티드의 활성 정도, 발현량 또는 해당 폴리펩티드로부터 배출되는 산물의 양의 증가로부터 확인할 수 있다.
상기 다이하이드록시산 디하이드라타제의 활성의 강화는 당해 분야에 잘 알려진 다양한 방법의 적용이 가능하며, 목적 폴리펩티드의 활성을 변형전 미생물보다 강화시킬 수 있는 한, 제한되지 않는다. 구체적으로, 분자생물학의 일상적 방법인 당업계의 통상의 기술자에게 잘 알려진 유전자 공학 및/또는 단백질 공학을 이용한 것일 수 있으나, 이로 제한되지 않는다(예컨대, Sitnicka et al. Functional Analysis of Genes. Advances in Cell Biology. 2010, Vol. 2. 1-16, Sambrook et al. Molecular Cloning 2012 등).
구체적으로, 본 출원의 다이하이드록시산 디하이드라타제 활성의 강화는
1) 폴리펩티드를 코딩하는 폴리뉴클레오티드의 세포 내 카피수 증가;
2) 폴리펩티드를 코딩하는 염색체상의 유전자 발현조절영역을 활성이 강력한 서열로 교체;
3) 폴리펩티드를 코딩하는 유전자 전사체의 개시코돈 또는 5'-UTR 지역을 코딩하는 염기서열의 변형;
4) 폴리펩티드 활성이 강화되도록 상기 폴리펩티드의 아미노산 서열의 변형;
5) 폴리펩티드 활성이 강화도록 상기 폴리펩티드를 코딩하는 폴리뉴클레오티드 서열의 변형 (예를 들어, 폴리펩티드의 활성이 강화되도록 변형된 폴리펩티드를 코딩하도록 상기 폴리펩티드 유전자의 폴리뉴클레오티드 서열의 변형);
6) 폴리펩티드의 활성을 나타내는 외래 폴리펩티드 또는 이를 코딩하는 외래 폴리뉴클레오티드의 도입;
7) 폴리펩티드를 암호화하는 폴리뉴클레오티드의 코돈 최적화;
8) 폴리펩티드의 삼차구조를 분석하여 노출 부위를 선택하여 변형하거나 화학적으로 수식; 또는
9) 상기 1) 내지 8) 중 선택된 2 이상의 조합일 수 있으나, 이에, 특별히 제한되는 것은 아니다.
보다 구체적으로,
상기 1) 폴리펩티드를 코딩하는 폴리뉴클레오티드의 세포 내 카피수 증가는, 해당 폴리펩티드를 코딩하는 폴리뉴클레오티드가 작동가능하게 연결된, 숙주와 무관하게 복제되고 기능할 수 있는 벡터의 숙주세포 내로의 도입에 의해 달성되는 것일 수 있다. 또는, 해당 폴리펩티드를 코딩하는 폴리뉴클레오티드가 숙주세포 내의 염색체 내에 1 카피 또는 2 카피 이상 도입에 의해 달성되는 것일 수 있다. 상기 염색체 내에 도입은 숙주세포 내의 염색체 내로 상기 폴리뉴클레오티드를 삽입시킬 수 있는 벡터가 숙주세포 내에 도입됨으로써 수행될 수 있으나, 이에 제한되지 않는다. 상기 벡터는 전술한 바와 같다.
상기 2) 폴리펩티드를 코딩하는 염색체상의 유전자 발현조절영역(또는 발현조절서열)을 활성이 강력한 서열로 교체는, 예를 들면, 상기 발현조절영역의 활성을 더욱 강화하도록 결실, 삽입, 비보존적 또는 보존적 치환 또는 이들의 조합으로 서열상의 변이 발생, 또는 더욱 강한 활성을 가지는 서열로의 교체일 수 있다. 상기 발현조절영역은, 특별히 이에 제한되지 않으나 프로모터, 오퍼레이터 서열, 리보좀 결합 부위를 코딩하는 서열, 그리고 전사 및 해독의 종결을 조절하는 서열 등을 포함할 수 있다. 일 예로, 본래의 프로모터를 강력한 프로모터로 교체시키는 것일 수 있으나, 이에 제한되지 않는다.
공지된 강력한 프로모터의 예에는 CJ1 내지 CJ7 프로모터(미국등록특허 US 7662943 B2), lac 프로모터, trp 프로모터, trc 프로모터, tac 프로모터, 람다 파아지 PR 프로모터, PL 프로모터, tet 프로모터, gapA 프로모터, SPL7 프로모터, SPL13(sm3) 프로모터(미국등록특허 US 10584338 B2), O2 프로모터(미국등록특허 US 10273491 B2), tkt 프로모터, yccA 프로모터 등이 있으나, 이에 제한되지 않는다.
상기 3) 폴리펩티드를 코딩하는 유전자 전사체의 개시코돈 또는 5'-UTR 지역을 코딩하는 염기서열 변형은, 예를 들면, 내재적 개시코돈에 비해 폴리펩티드 발현율이 더 높은 다른 개시코돈을 코딩하는 염기 서열로 치환하는 것일 수 있으나, 이에 제한되지 않는다.
상기 4) 및 5)의 아미노산 서열 또는 폴리뉴클레오티드 서열의 변형은, 폴리펩티드의 활성을 강화하도록 상기 폴리펩티드의 아미노산 서열 또는 상기 폴리펩티드를 코딩하는 폴리뉴클레오티드 서열을 결실, 삽입, 비보존적 또는 보존적 치환 또는 이들의 조합으로 서열상의 변이 발생, 또는 더욱 강한 활성을 갖도록 개량된 아미노산 서열 또는 폴리뉴클레오티드 서열 또는 활성이 증가하도록 개량된 아미노산 서열 또는 폴리뉴클레오티드 서열로의 교체일 수 있으나, 이에 한정되는 것은 아니다. 상기 교체는 구체적으로 상동재조합에 의하여 폴리뉴클레오티드를 염색체내로 삽입함으로써 수행될 수 있으나, 이에 제한되지 않는다. 이때 사용되는 벡터는 염색체 삽입 여부를 확인하기 위한 선별 마커 (selection marker)를 추가로 포함할 수 있다. 상기 선별 마커는 하기에 자세하게 기술하는 내용과 같다.
상기 6) 폴리펩티드의 활성을 나타내는 외래 폴리뉴클레오티드의 도입은, 상기 폴리펩티드와 동일/유사한 활성을 나타내는 폴리펩티드를 코딩하는 외래 폴리뉴클레오티드의 숙주세포 내 도입일 수 있다. 상기 외래 폴리뉴클레오티드는 상기 폴리펩티드와 동일/유사한 활성을 나타내는 한 그 유래나 서열에 제한이 없다. 상기 도입에 이용되는 방법은 공지된 형질전환 방법을 당업자가 적절히 선택하여 수행될 수 있으며, 숙주 세포 내에서 상기 도입된 폴리뉴클레오티드가 발현됨으로써 폴리펩티드가 생성되어 그 활성이 증가될 수 있다.
상기 7) 폴리펩티드를 암호화하는 폴리뉴클레오티드의 코돈 최적화는, 내재 폴리뉴클레오티드가 숙주세포 내에서 전사 또는 번역이 증가하도록 코돈 최적화한 것이거나, 또는 외래 폴리뉴클레오티드가 숙주세포 내에서 최적화된 전사, 번역이 이루어지도록 이의 코돈을 최적화한 것일 수 있다.
상기 8) 폴리펩티드의 삼차구조를 분석하여 노출 부위를 선택하여 변형하거나 화학적으로 수식하는 것은, 예를 들어 분석하고자 하는 폴리펩티드의 서열정보를 기지 단백질들의 서열정보가 저장된 데이터베이스와 비교함으로써 서열의 유사성 정도에 따라 주형 단백질 후보를 결정하고 이를 토대로 구조를 확인하여, 변형하거나 화학적으로 수식할 노출 부위를 선택하여 변형 또는 수식하는 것일 수 있다.
본 출원의 벡터는 외래 유전 물질을 다른 세포로 인공적으로 운반하는 매개체로 사용되는 DNA 분자로서, 구체적으로 적합한 숙주 내에서 목적 폴리펩티드를 발현시킬 수 있도록 적합한 발현조절영역(또는 발현조절서열)에 작동 가능하게 연결된 상기 목적 폴리펩티드를 코딩하는 폴리뉴클레오티드의 염기서열을 포함하는 DNA 제조물을 포함할 수 있다. 상기 발현조절영역은 전사를 개시할 수 있는 프로모터, 그러한 전사를 조절하기 위한 임의의 오퍼레이터 서열, 적합한 mRNA 리보좀 결합부위를 코딩하는 서열, 및 전사 및 해독의 종결을 조절하는 서열을 포함할 수 있다. 벡터는 적당한 숙주세포 내로 형질전환된 후, 숙주 게놈과 무관하게 복제되거나 기능할 수 있으며, 게놈 그 자체에 통합될 수 있다.
본 출원에서 사용되는 벡터는 특별히 한정되지 않으며, 당업계에 알려진 임의의 벡터를 이용할 수 있다. 통상 사용되는 벡터의 예로는 천연 상태이거나 재조합된 상태의 플라스미드, 코스미드, 바이러스 및 박테리오파지를 들 수 있다. 예를 들어, 파지 벡터 또는 코스미드 벡터로서 pWE15, M13, MBL3, MBL4, IXII, ASHII, APII, t10, t11, Charon4A, 및 Charon21A 등을 사용할 수 있으며, 플라스미드 벡터로서 pDZ계, pBR계, pUC계, pBluescriptII계, pGEM계, pTZ계, pCL계 및 pET계 등을 사용할 수 있다. 구체적으로는 pDZ, pDC, pDCM2, pACYC177, pACYC184, pCL, pECCG117, pUC19, pBR322, pMW118, pCC1BAC 벡터 등을 사용할 수 있다.
일례로 세포 내 염색체 삽입용 벡터를 통해 목적 폴리펩티드를 코딩하는 폴리뉴클레오티드를 염색체 내로 삽입할 수 있다. 상기 폴리뉴클레오티드의 염색체 내로의 삽입은 당업계에 알려진 임의의 방법, 예를 들면, 상동재조합(homologous recombination)에 의하여 이루어질 수 있으나, 이에 한정되지는 않는다. 상기 염색체 삽입 여부를 확인하기 위한 선별 마커(selection marker)를 추가로 포함할 수 있다. 상기 선별 마커는 벡터로 형질전환된 세포를 선별, 즉 목적 핵산 분자의 삽입 여부를 확인하기 위한 것으로, 약물 내성, 영양 요구성, 세포 독성제에 대한 내성 또는 표면 폴리펩티드의 발현과 같은 선택가능 표현형을 부여하는 마커들이 사용될 수 있다. 선택제(selective agent)가 처리된 환경에서는 선별 마커를 발현하는 세포만 생존하거나 다른 표현 형질을 나타내므로, 형질전환된 세포를 선별할 수 있다.
본 출원에서 용어 "형질전환"은 표적 폴리펩티드를 코딩하는 폴리뉴클레오티드를 포함하는 벡터를 숙주세포 혹은 미생물 내에 도입하여 숙주세포 내에서 상기 폴리뉴클레오티드가 코딩하는 폴리펩티드가 발현할 수 있도록 하는 것을 의미한다. 형질전환된 폴리뉴클레오티드는 숙주세포 내에서 발현될 수 있기만 한다면, 숙주세포의 염색체 내에 삽입되어 위치하거나 염색체 외에 위치하거나 상관없이 이들 모두를 포함할 수 있다. 또한, 상기 폴리뉴클레오티드는 목적 폴리펩티드를 코딩하는 DNA 및/또는 RNA를 포함할 수 있다. 상기 폴리뉴클레오티드는 숙주세포 내로 도입되어 발현될 수 있는 것이면, 어떠한 형태로도 도입될 수 있다. 예를 들면, 상기 폴리뉴클레오티드는 자체적으로 발현되는데 필요한 모든 요소를 포함하는 유전자 구조체인 발현 카세트(expression cassette)의 형태로 숙주세포에 도입될 수 있다. 상기 발현 카세트는 통상 상기 폴리뉴클레오티드에 작동 가능하게 연결되어 있는 프로모터(promoter), 전사 종결신호, 리보좀 결합부위 및 번역 종결신호를 포함할 수 있다. 상기 발현 카세트는 자체 복제가 가능한 발현 벡터 형태일 수 있다. 또한, 상기 폴리뉴클레오티드는 그 자체의 형태로 숙주세포에 도입되어 숙주세포에서 발현에 필요한 서열과 작동 가능하게 연결되어 있는 것일 수도 있으며, 이에 한정되지 않는다.
또한, 상기에서 용어 "작동 가능하게 연결"된 것이란 본원의 목적 단백질을 코딩하는 폴리뉴클레오티드의 전사를 개시 및 매개하도록 하는 프로모터 서열과 상기 유전자 서열이 기능적으로 연결되어 있는 것을 의미한다.
이와 같은 단백질 활성의 강화는, 상응하는 단백질의 활성이 없던 것이 나타나거나, 또는 이의 활성 또는 농도가 야생형 단백질이나 초기의 미생물 균주에서의 활성 또는 농도를 기준으로 하여 일반적으로 1 %, 10 %, 25 %, 50 %, 75 %, 100 %, 150 %, 200 %, 300 %, 400 % 또는 500 %, 최대 1000 % 또는 2000 % 이상까지 증가되는 것일 수 있으나, 이에 제한되는 것은 아니다.
구체적으로, 다이하이드록시산 디하이드라타제 활성의 강화는 미생물 내에서 다이하이드록시산 디하이드라타제의 활성이 야생형, 변이 전 미생물 또는 해당 단백질이 비변형된 미생물에 비해 강화되어 다이하이드록시-이소발러레이트(dihydroxy-isovalaerate)로부터 L-발린의 전구체인 케토아이소-발러레이트(ketoiso-valerate) 합성이 증가됨으로써 L-발린 생산능이 증가된 것일 수 있다.
본 출원에서 용어, "감소"란 본래 미생물이 천연의 상태, 또는 변이 전 상태에서 나타내는 단백질의 활성, 즉 내재적 활성 또는 단백질을 코딩하는 유전자의 세포 내 1 카피일 때와 비교하였을 때, 그 활성이 약화되거나 또는 활성이 없는 것(결손)을 모두 포함하는 개념으로, 활성이 0% 이상 내지 100%미만인 것을 의미한다.
이러한 단백질 "활성의 감소" 는, 특별히 이에 제한되지 않으나, 상기 단백질 자체의 활성이 제거된 경우 또는 본래 기능 이하의 효과를 도출하는 것을 의미하는 것이다. 즉 활성의 감소는 구체적으로 "활성의 결손"과 "활성의 약화"를 모두 포함하는 의미이다.
상기 "활성의 결손"은 효소 또는 단백질의 발현이 천연의 야생형 균주, 모균주 또는 해당 단백질이 비변형된 균주에 비하여 전혀 발현이 되지 않거나 또는 발현이 되더라도 그 활성이 없는 것을 의미한다.
본 출원에 있어서 상기 활성의 결손은 당해 분야에 잘 알려진 다양한 방법의 적용으로 달성될 수 있다. 상기 방법의 예로, 1) 상기 단백질을 암호화하는 상기 유전자의 전체 또는 일부를 결손시키는 방법; 2) 상기 단백질의 활성이 제거되도록 단백질을 암호화하는 상기 유전자 서열의 변형, 3) 상기 단백질을 암호화하는 상기 유전자의 전사체에 상보적으로 결합하는 안티센스 올리고뉴클레오티드(예컨대, 안티센스 RNA)의 도입; 4) 상기 단백질을 암호화하는 상기 유전자의 사인-달가르노(Shine-Dalgarno) 서열 앞단에 사인-달가르노 서열과 상보적인 서열을 부가하여 2차 구조물을 형성시켜 리보솜(ribosome)의 부착을 불가능하게 만드는 방법; 5) 상기 단백질을 암호화하는 상기 유전자의 폴리뉴클레오티드 서열의 ORF(open reading frame)의 3' 말단에 반대 방향으로 전사되는 프로모터를 부가하는 방법(Reverse transcription engineering, RTE) 등이 있으며, 이들의 조합으로도 달성할 수 있으나, 이에, 특별히 제한되는 것은 아니다.
또한, 상기 "활성의 약화"는, 특별히 이에 특별히 이에 제한되지 않으나, 본래 기능 이하의 효과를 도출하는 것을 의미하는 것으로, 상기 단백질을 코딩하는 염색체상의 유전자의 일부를 결실시키는 방법; 해당 단백질의 활성이 감소되도록 돌연변이된 유전자로, 염색체상의 상기 단백질을 코딩하는 유전자를 대체하는 방법; 상기 단백질을 코딩하는 염색체상의 유전자의 발현 조절 서열에 변이를 도입하는 방법; 상기 단백질을 코딩하는 유전자의 발현 조절 서열을 활성이 약한 서열로 교체하는 방법(예컨대, 상기 유전자의 프로모터를 내재적 프로모터보다 약한 프로모터로 교체하는 방법)등으로 이루어질 수 있으나, 이에 제한되는 것은 아니며, 활성 약화를 위하여 공지된 방법이 제한 없이 사용될 수 있다.
이와 같은 단백질 활성의 감소는, 상응하는 단백질의 활성이 제거 되거나, 또는 이의 활성 또는 농도가 야생형 단백질이나 초기의 미생물 균주에서의 활성 또는 농도를 기준으로 하여 일반적으로 0%, 1%, 5%, 10 %, 15%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 98%, 99%로 감소 되는 것일 수 있으나, 이에 제한되는 것은 아니다.
구체적으로, 상기 미생물에서 트랜스아미나제 C의 활성은 자연의 야생형 균주, 변이 전 모균주 또는 해당 단백질이 비변형된 균주에 비해 감소된 것일 수 있다. 하나의 구체예로 상기 미생물은 트랜스아미나제 C 유전자가 결손되어 트랜스아미나제 C 단백질의 활성이 없거나 트랜스아미나제 C 유전자의 개시코돈 암호화 서열이 GTG로 변형되어 트랜스아미나제 C 단백질의 발현이 감소하여 활성이 약화된 것일 수 있다.
또한, 구체적으로, 상기 미생물에서 피루베이트 디하이드로게나아제의 활성은 자연의 야생형 균주, 변이 전 모균주 또는 해당 단백질이 비변형된 균주에 비해 감소된 것일 수 있다. 하나의 구체예로 상기 미생물은 피루베이트 디하이드로게나아제 유전자가 결손되어 피루베이트 디하이드로게나아제 단백질의 활성이 없거나 피루베이트 디하이드로게나아제 유전자의 개시코돈 암호화 서열이 GTG로 변형되어 피루베이트 디하이드로게나아제 단백질의 발현이 감소하여 활성이 약화된 것일 수 있다. 다른 하나의 구체예로 상기 미생물에서 피루베이트 디하이드로게나아제 유전자의 서열이 변이되어 상기 미생물은 서열번호 3의 아미노산 서열의 N-말단으로부터 432번째 또는 435번째 위치에 상응하는 아미노산이 다른 아미노산으로 치환된, 야생형 단백질보다 약화된 활성을 가지는 피루베이트 디하이드로게나아제 변이체가 발현하는 것일 수 있다. 이때, 상기 야생형 단백질보다 약화된 활성을 가지는 피루베이트 디하이드로게나아제 변이체는 각각 서열번호 5 또는 서열번호 6의 서열을 포함할 수 있으나, 이에 제한되는 것은 아니다.
또한, 구체적으로, 상기 미생물에서 시트레이트 신타아제의 활성은 자연의 야생형 균주, 변이 전 모균주 또는 해당 단백질이 비변형된 균주에 비해 감소된 것일 수 있다. 하나의 구체예로 상기 미생물은 시트레이트 신타아제 유전자의 결손으로 시트레이트 신타아제 단백질 활성을 나타내지 않거나 시트레이트 신타아제 유전자의 개시코돈 암호화 서열이 GTG로 변이됨으로써 시트레이트 신타아제 단백질의 발현이 감소하여 이의 활성이 약화된 것일 수 있다. 다른 하나의 구체예로 상기 미생물에서 시트레이트 신타아제 유전자의 서열이 변이되어 상기 미생물은 서열번호 4의 아미노산 서열의 N-말단으로부터 241번째 또는 312번째 위치에 상응하는 아미노산이 다른 아미노산으로 치환된, 야생형 단백질보다 감소된 활성을 가지는 시트레이트 신타아제 변이체를 발현하는 것일 수 있다. 이때, 상기 야생형 단백질보다 감소된 활성을 가지는 시트레이트 신타아제 변이체는 각각 서열번호 7 또는 서열번호 8의 서열을 포함할 수 있으나, 이에 제한되는 것은 아니다.
'다른 아미노산으로 치환'은 치환 전의 아미노산과 다른 아미노산으로 치환되는 것이면 제한되지 않는다. 구체적으로 리신, 히스티딘, 글루탐산, 아르파르트산, 글리신, 알라닌, 발린, 류신, 이소류신, 메티오닌, 페닐알라닌, 트립토판, 프롤린, 세린, 쓰레오닌, 시스테인, 티로신, 아스파라긴, 아르기닌 및 글루타민 중 어느 하나의 아미노산으로 치환된 것일 수 있다.
보다 구체적으로, 약화된 활성을 가지는 피루베이트 디하이드로게나아제는 서열번호 3의 아미노산 서열의 N-말단으로부터 432번째 또는 435번째 위치에 상응하는 아미노산이 비극성 아미노산으로 치환된 것일 수 있다.
또한, 보다 구체적으로, 감소된 활성을 가지는 시트레이트 신타아제는 서열번호 4의 아미노산 서열의 N-말단으로부터 241번째 또는 312번째 위치에 상응하는 아미노산이 극성 또는 비극성 아미노산으로 치환된 것일 수 있다.
본 출원에서 용어 "상응하는(corresponding to)"은, 단백질 또는 펩타이드에서 열거되는 위치의 아미노산 잔기이거나, 또는 단백질 또는 펩타이드에서 열거되는 잔기와 유사하거나 동일하거나 상동한 아미노산 잔기를 지칭한다. 본 출원에 사용된 "상응 영역"은 일반적으로 관련 단백질 또는 레퍼런스 단백질에서의 유사한 위치를 지칭한다.
본 출원에서, 본 출원에 사용되는 단백질 내의 아미노산 잔기 위치에 특정 넘버링이 사용될 수 있다. 예를 들면, 비교하고자 하는 대상 단백질과 본 출원의 단백질 서열을 정렬함으로써, 본 출원의 단백질의 아미노산 잔기 위치에 상응하는 위치에 대해 재넘버링 하는 것이 가능하다.
본 출원에서 용어, '상동성 (homology)' 또는 '동일성 (identity)'은 두 개의 주어진 아미노산 서열 또는 염기 서열 상호간 유사한 정도를 의미하며 백분율로 표시될 수 있다. 용어 상동성 및 동일성은 종종 상호교환적으로 이용될 수 있다.
보존된(conserved) 폴리뉴클레오티드 또는 폴리펩티드의 서열 상동성 또는 동일성은 표준 배열 알고리즘에 의해 결정되며, 사용되는 프로그램에 의해 확립된 디폴트 갭 페널티가 함께 이용될 수 있다. 실질적으로, 상동성을 갖거나(homologous) 또는 동일한(identical) 서열은 일반적으로 서열 전체 또는 일부분과 중간 또는 높은 엄격한 조건(stringent conditions)에서 하이브리드할 수 있다. 하이브리드화는 폴리뉴클레오티드에서 일반 코돈 또는 코돈 축퇴성을 고려한 코돈을 함유하는 폴리뉴클레오티드와의 하이브리드화 역시 포함됨이 자명하다.
임의의 두 폴리뉴클레오티드 또는 폴리펩티드 서열이 상동성, 유사성 또는 동일성을 갖는지 여부는, 예를 들어, Pearson et al (1988) [Proc. Natl. Acad. Sci. USA 85]: 2444에서와 같은 디폴트 파라미터를 이용하여 "FASTA" 프로그램과 같은 공지의 컴퓨터 알고리즘을 이용하여 결정될 수 있다. 또는, EMBOSS 패키지의 니들만 프로그램(EMBOSS: The European Molecular Biology Open Software Suite, Rice et al., 2000, Trends Genet. 16: 276-277)(버전 5.0.0 또는 이후 버전)에서 수행되는 바와 같은, 니들만-운치(Needleman-Wunsch) 알고리즘(Needleman and Wunsch, 1970, J. Mol. Biol. 48: 443-453)이 사용되어 결정될 수 있다(GCG 프로그램 패키지 (Devereux, J., et al, Nucleic Acids Research 12: 387 (1984)), BLASTP, BLASTN, FASTA (Atschul, [S.] [F.,] [ET AL, J MOLEC BIOL 215]: 403 (1990); Guide to Huge Computers, Martin J. Bishop, [ED.,] Academic Press, San Diego,1994, 및 [CARILLO ETA/.](1988) SIAM J Applied Math 48: 1073을 포함한다). 예를 들어, 국립 생물공학 정보 데이터베이스 센터의 BLAST, 또는 ClustalW를 이용하여 상동성, 유사성 또는 동일성을 결정할 수 있다.
폴리뉴클레오티드 또는 폴리펩티드의 상동성, 유사성 또는 동일성은, 예를 들어, Smith and Waterman, Adv. Appl. Math (1981) 2:482 에 공지된 대로, 예를 들면, Needleman et al. (1970), J Mol Biol. 48:443과 같은 GAP 컴퓨터 프로그램을 이용하여 서열 정보를 비교함으로써 결정될 수 있다. 요약하면, GAP 프로그램은 두 서열 중 더 짧은 것에서의 기호의 전체 수로, 유사한 배열된 기호(즉, 뉴클레오티드 또는 아미노산)의 수를 나눈 값으로 정의할 수 있다. GAP 프로그램을 위한 디폴트 파라미터는 (1) 이진법 비교 매트릭스(동일성을 위해 1 그리고 비-동일성을 위해 0의 값을 함유함) 및 Schwartz and Dayhoff, eds., Atlas Of Protein Sequence And Structure, National Biomedical Research Foundation, pp. 353-358 (1979)에 의해 개시된 대로, Gribskov et al(1986) Nucl. Acids Res. 14: 6745의 가중된 비교 매트릭스 (또는 EDNAFULL (NCBI NUC4.4의 EMBOSS 버전) 치환 매트릭스); (2) 각 갭을 위한 3.0의 페널티 및 각 갭에서 각 기호를 위한 추가의 0.10 페널티 (또는 갭 개방 패널티 10, 갭 연장 패널티 0.5); 및 (3) 말단 갭을 위한 무 페널티를 포함할 수 있다.
본 출원에서 용어, "변이체(variant)"는 하나 이상의 아미노산이 보존적 치환(conservative substitution) 및/또는 변형(modification)에 있어서 상기 열거된 서열 (the recited sequence)과 상이하나, 상기 단백질의 기능(functions) 또는 특성(properties)이 유지되는 단백질을 지칭한다. 변이체는 수 개의 아미노산 치환, 결실 또는 부가에 의해 식별되는 서열(identified sequence)과 상이하다. 이러한 변이체는 일반적으로 상기 단백질의 아미노산 서열 중 하나 이상의 아미노산을 변형하고, 상기 변형된 단백질의 특성을 평가하여 식별될 수 있다. 즉, 변이체의 능 즉, 변이체의 능력은 본래 단백질(native protein)에 비하여 증가되거나, 변하지 않거나, 또는 감소될 수 있다. 다른 변이체는 성숙 단백질 (mature protein) 의 N- 및/또는 C-말단으로부 터 일부분이 제거된 변이체를 포함할 수 있다. 상기 용어 "변이체"는 변이형, 변형, 변이된 단백질, 변이형 폴리펩티드, 변이, 등의 용어(영문 표현으로는 modification, modified protein, modified polypeptide, mutant, mutein,divergent, variant 등)가 사용될 수 있으며, 변이된 의미로 사용되는 용어라면 이에 제한되지 않는다. 본 출원의 목적상, 상기 변이체는 천연의 야생형 또는 비변형 단백질과 대비하여 단백질의 활성이 감소 또는 약화된 것일 수 있으나, 이에 제한되지 않는다.
본 출원에서 용어 "보존적 치환(conservative substitution)"은 한 아미노산을 유사한 구조적 및/또는 화학적 성질을 갖는 또 다른 아미노산으로 치환시키는 것을 의미한다. 이러한 아미노산 치환은 일반적으로 잔기의 극성, 전하(염기성, 산성), 용해도, 소수성, 친수성 및/또는 양친매성(amphipathic nature)에서의 유사성에 근거하여 발생할 수 있다.
또한, 변이체는 폴리펩티드의 특성과 2차 구조에 최소한의 영향을 갖는 아미노산 서열들의 결손 또는 부가를 포함할 수 있다. 예를 들면 폴리펩티드는 번역-동시에(co-translationally) 또는 번역-후에(post-translationally) 단백질의 이전(transfer)에 관여하는 단백질 N-말단의 시그널 (또는 리더)서열과 컨쥬게이트 할 수 있다. 또한 상기 폴리펩티드는 폴리펩티드를 확인, 정제, 또는 합성할 수 있도록 다른 서열 또는 링커와 컨쥬게이트 될 수 있다.
본 출원의 용어, "L-발린 생산 미생물"은 배지 중의 탄소원으로부터 L-발린을 야생형이나 비변형 미생물과 비교하여 과량으로 생산할 수 있는 미생물을 의미한다. 또한, 상기 L-발린을 생산하는 미생물은 재조합 미생물일 수 있다. 구체적으로 L-발린을 생산할 수 있다면 그 종류가 특별히 제한되지 않으나, 엔테로박터(Enterbacter) 속, 에스케리키아(Escherichia) 속, 어위니 아(Erwinia) 속, 세라티아(Serratia) 속, 프로비덴시아(Providencia) 속, 코리네박테리움(Corynebacterium) 속 및 브레비박테리움(Brevibacterium) 속에 속하는 미생물 일 수 있다. 보다 구체적으로는 코리네박테리움(Corynebacterium) 속 또는 에스케리키아(Escherichia) 속에 속하는 미생물일 수 있다.
보다 더욱 구체적으로는 에스케리키아속(Escherichia) 미생물은 대장균(Escherichia coli)일 수 있으며, 코리네박테리움(Corynebacterium) 속 미생물은 코리네박테리움 글루타미쿰 (Corynebacterium glutamicum)일 수 있으나, 강화된 활성을 갖는 다이하이드록시산 디하이드라타제; 및 감소된 활성을 갖는 트랜스아미나제 C, 감소된 활성을 갖는 피루베이트 디하이드로게나아제 또는 감소된 활성을 갖는 시트레이트 신타아제 중 선택되는 어느 하나 이상의 조합이 도입된 L-발린 생산량이 증가될 수 있는 에스케리키아 속 또는 코리네박테리움 속에 속하는 미생물이라면 제한 없이 포함될 수 있다.
본 출원에서 강화된 다이하이드록시산 디하이드라타제의 활성; 및 하기 (1) 내지 (3)에서 선택되는 어느 하나 이상의 조합을 가지는 변형된 L-발린을 생산하는 미생물의 모균주는 L-발린을 생산하는 미생물이라면 특별히 제한되지 않는다.
(1) 감소된 트랜스아미나제 C의 활성
(2) 약화된 피루베이트 디하이드로게나아제의 활성
(3) 감소된 시트레이트 신타아제의 활성
L-발린을 생산하는 미생물은 천연형 미생물 자체 또는 외부 L-발린 생산 기작과 관련된 유전자가 삽입되거나 내재적 유전자의 활성을 강화시키거나 감소(약화 또는 억제)시켜 향상된 L-발린 생산능을 가지게 된 미생물일 수 있다.
하나의 구체예로, 상기 미생물은 야생형 또는 변이전 모균주보다 다이하이드록시산 디하이드라타제의 활성이 강화되고 야생형 또는 변이전 모균주보다 트랜스아미나제 C의 활성이 감소된 L-발린 생산 미생물 일 수 있다. 이때, 상기 다이하이드록시산 디하이드라타제는 ilvD 유전자에 의해 코딩되며, 상기 트랜스아미나제 C는 avtA 유전자에 의해 코딩될 수 있다. 상기 유전자들은 코리네박테리움 글루타미쿰 유래일 수 있으나, 이에 제한되는 것은 아니다.
다른 구체예로, 상기 미생물은 야생형 또는 변이전 모균주보다 다이하이드록시산 디하이드라타제의 활성이 강화되고 야생형 또는 변이전 모균주보다 피루베이트 디하이드로게나아제의 활성이 약화된 L-발린 생산 미생물 일 수 있다. 이때, 상기 다이하이드록시산 디하이드라타제는 ilvD 유전자에 의해 코딩되며, 상기 피루베이트 디하이드로게나아제는 aceE 유전자에 의해 코딩될 수 있다. 상기 유전자들은 코리네박테리움 글루타미쿰 유래일 수 있으나, 이에 제한되는 것은 아니다.
또 다른 구체예로, 상기 미생물은 야생형 또는 변이전 모균주보다 다이하이드록시산 디하이드라타제의 활성이 강화되고 야생형 또는 변이전 모균주보다 시트레이트 신타아제의 활성이 감소된 L-발린 생산 미생물 일 수 있다. 이때, 상기 다이하이드록시산 디하이드라타제는 ilvD 유전자에 의해 코딩되며, 상기 시트레이트 신타아제는 gltA 유전자에 의해 코딩될 수 있다. 상기 유전자들은 코리네박테리움 글루타미쿰 유래일 수 있으나, 이에 제한되는 것은 아니다.
또한, 상기 미생물에 추가적으로 야생형 또는 변이전 모균주보다 트랜스아미나제 C의 활성이 감소되거나 피루베이트 디하이드로게나아제의 활성이 감소된 L-발린 생산 미생물이거나, 또는 야생형 또는 변이전 모균주보다 트랜스아미나제 C의 활성이 감소되고 피루베이트 디하이드로게나아제의 활성이 감소된 L-발린 생산 미생물일 수 있다.
본 출원의 다른 하나의 양태는, 상기 강화된 다이하이드록시산 디하이드라타제의 활성; 및 하기 (1) 내지 (3)에서 선택되는 어느 하나 이상의 조합을 갖는 것을 특징으로 하는 L-발린 생산 미생물을 배지에서 배양하는 것을 포함하는, L-발린의 생산 방법에 대한 것이다.
(1) 감소된 트랜스아미나제 C의 활성
(2) 약화된 피루베이트 디하이드로게나아제의 활성
(3) 감소된 시트레이트 신타아제의 활성
본 출원의 "L-발린"은 L-발린 그 자체 형태뿐 아니라, 이의 염 형태도 모두 포함될 수 있다.
본 출원에서 용어, "배양"은 상기 미생물을 적당히 조절된 환경 조건에서 생육시키는 것을 의미한다. 본 출원의 배양과정은 당업계에 알려진 적당한 배지와 배양조건에 따라 이루어질 수 있다. 이러한 배양 과정은 선택되는 균주에 따라 당업자가 용이하게 조정하여 사용할 수 있다. 구체적으로 상기 배양은 회분식, 연속식및 유가식일 수 있으나, 이에 제한되는 것은 아니다.
본 출원에서 용어, "배지"는 상기 미생물을 배양하기 위해 필요로 하는 영양 물질을 주성분으로 혼합한 물질을 의미하며, 생존 및 발육에 불가결한 물을 비롯하여 영양물질 및 발육인자 등을 공급한다. 구체적으로, 본 출원의 미생물의 배양에 사용되는 배지 및 기타 배양 조건은 통상의 미생물의 배양에 사용되는 배지라면 특별한 제한 없이 어느 것이나 사용할 수 있으나, 본 출원의 미생물을 적당한 탄소원, 질소원, 인원, 무기화합물, 아미노산 및/또는 비타민 등을 함유한 통상의 배지내에서 호기성 조건 하에서 온도, pH 등을 조절하면서 배양할 수 있다.
본 출원에서 상기 탄소원으로는 글루코오스, 프룩토오스, 수크로오스, 말토오스 등과 같은 탄수화물; 만니톨, 소르비톨 등과 같은 당 알코올, 피루브산, 락트산, 시트르산 등과 같은 유기산; 글루탐산, 메티오닌, 리신 등과 같은 아미노산 등이 포함될 수 있다. 또한, 전분 가수분해물, 당밀, 블랙스트랩 당밀, 쌀겨울, 카사버, 사탕수수 찌꺼기 및 옥수수 침지액 같은 천연의 유기 영양원을 사용할 수 있으며, 구체적으로는 글루코오스 및 살균된 전처리 당밀(즉, 환원당으로 전환된 당밀)등과 같은 탄수화물이 사용될 수 있으며, 그 외의 적정량의 탄소원을 제한 없이 다양하게 이용할 수 있다. 이들 탄소원은 단독으로 사용되거나 2 종 이상이 조합되어 사용될 수 있으며, 이에 한정되는 것은 아니다.
상기 질소원으로는 암모니아, 황산암모늄, 염화암모늄, 초산암모늄, 인산암모늄, 탄산안모늄, 질산암모늄 등과 같은 무기질소원; 글루탐산, 메티오닌, 글루타민 등과 같은 아미노산, 펩톤, NZ-아민, 육류 추출물, 효모 추출물, 맥아 추출물, 옥수수 침지액, 카세인 가수분해물, 어류 또는 그의 분해생성물, 탈지 대두 케이크 또는 그의 분해 생성물 등과 같은 유기 질소원이 사용될 수 있다. 이들 질소원은 단독으로 사용되거나 2 종 이상이 조합되어 사용될 수 있으며, 이에 한정되는 것은 아니다.
상기 인원으로는 인산 제1칼륨, 인산 제2칼륨, 또는 이에 대응되는 소디움함유 염 등이 포함될 수 있다. 무기화합물로는 염화나트륨, 염화칼슘, 염화철, 황산마그네슘, 황산철, 황산망간, 탄산칼슘 등이 사용될 수 있으며, 그 외에 아미노산, 비타민 및/또는 적절한 전구체 등이 포함될 수 있다. 이들 구성성분 또는 전구체는 배지에 회분식 또는 연속식으로 첨가될 수 있다. 그러나, 이에 한정되는 것은 아니다.
본 출원에서, 미생물의 배양 중에 수산화암모늄, 수산화칼륨, 암모니아, 인산, 황산 등과 같은 화합물을 배지에 적절한 방식으로 첨가하여, 배지의 pH를 조정할 수 있다. 또한, 배양 중에는 지방산 폴리글리콜 에스테르와 같은 소포제를 사용하여 기포 생성을 억제할 수 있다. 또한, 배지의 호기 상태를 유지하기 위하여, 배지 내로 산소 또는 산소 함유 기체를 주입하거나 혐기 및 미호기 상태를 유지하기 위해 기체의 주입 없이 혹은 질소, 수소 또는 이산화탄소 가스를 주입할 수 있으며, 이에 한정되는 것은 아니다.
배지의 온도는 20℃ 내지 50℃ 구체적으로는 30℃ 내지 37℃ 일 수 있으나 이에 제한되지 않는다. 배양 기간은 유용 물질의 원하는 생산량이 수득될 때까지 계속될 수 있으며, 구체적으로는 10 시간 내지 100 시간일 수 있으나 이에 제한되지 않는다.
본 출원의 배양에 의하여 생산된 L-발린은 배지 중으로 분비되거나 세포 내에 잔류할 수 있다.
본 출원의 L-발린 생산방법은, 본 출원의 미생물을 준비하는 단계, 상기 균주를 배양하기 위한 배지를 준비하는 단계, 또는 이들의 조합(순서에 무관, in any order)을, 예를 들어, 상기 배양하는 단계 이전에, 추가로 포함할 수 있다.
본 출원의 L-발린 생산방법은, 상기 배양에 따른 배지(배양이 수행된 배지) 또는 본 출원의 미생물로부터 L-발린을 회수하는 단계를 추가로 포함할 수 있다. 상기 회수하는 단계는 상기 배양하는 단계 이후에 추가로 포함될 수 있다.
상기 회수는 본 출원의 미생물의 배양 방법, 예를 들어 회분식, 연속식 또는 유가식 배양 방법 등에 따라 당해 기술 분야에 공지된 적합한 방법을 이용하여 목적하는 L-발린을 수집(collect)하는 것일 수 있다. 예를 들어, 원심분리, 여과, 결정화 단백질 침전제에 의한 처리(염석법), 추출, 초음파 파쇄, 한외여과, 투석법, 분자체 크로마토그래피(겔여과), 흡착크로마토그래피, 이온교환 크로마토그래피, 친화도 크로마토그래피 등의 각종 크로마토그래피, HPLC 또는 이들의 방법을 조합하여 사용될 수 있으며, 당해 분야에 공지된 적합한 방법을 이용하여 배지 또는 미생물로부터 목적하는 L-발린을 회수할 수 있다.
또한, 본 출원의 L-발린 생산방법은, 추가적으로 정제 단계를 포함할 수 있다. 상기 정제는 당해 기술분야에 공지된 적합한 방법을 이용하여, 수행할 수 있다. 일 예에서, 본 출원의 L-발린 생산방법이 회수 단계와 정제 단계를 모두 포함하는 경우, 상기 회수 단계와 정제 단계는 순서에 상관없이 연속적 또는 비연속적으로 수행되거나, 동시에 또는 하나의 단계로 통합되어 수행될 수 있으나, 이에 제한되는 것은 아니다.
본 출원의 방법에서, 폴리뉴클레오티드, 벡터, 미생물, L-발린 등은 상기 다른 양태에서 기재한 바와 같다.
본 출원의 다른 하나의 양태는 강화된 다이하이드록시산 디하이드라타제의 활성; 및 하기 (1) 내지 (3)에서 선택되는 어느 하나 이상의 조합을 갖는 것을 특징으로 하는 미생물로의 변형하는 것을 포함하는, L-발린 생산능을 증가시키는 방법을 제공한다.
(1) 감소된 트랜스아미나제 C의 활성
(2) 약화된 피루베이트 디하이드로게나아제의 활성
(3) 감소된 시트레이트 신타아제의 활성
본 출원의 또 하나의 양태는 강화된 다이하이드록시산 디하이드라타제의 활성; 및 하기 (1) 내지 (3)에서 선택되는 어느 하나 이상의 조합을 갖는 미생물의 L-발린의 생산용도를 제공한다.
(1) 감소된 트랜스아미나제 C의 활성
(2) 약화된 피루베이트 디하이드로게나아제의 활성
(3) 감소된 시트레이트 신타아제의 활성
이하 본 출원을 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이들 실시예는 본 출원을 예시적으로 설명하기 위한 것으로 본 출원의 범위가 이들 실시예에 한정되는 것은 아니다.
실시예 1: 발린 생산 기반 균주 제작 및 평가
야생주 코리네박테리움 글루타미쿰 ATCC14067과 ATCC13869에 각각 1종의 변이[ilvN(A42V); Biotechnology and Bioprocess Engineering, June 2014, Volume 19, Issue 3, pp 456-467]를 도입하여 L-발린 생산능이 향상된 균주를 제작하였다.
구체적으로, 코리네박테리움 글루타미쿰 야생형인 ATCC14067 균주의 게노믹 DNA를 G-spin Total DNA 추출 미니 키트(Intron사, Cat. No 17045)를 이용하여 키트에 제공된 프로토콜에 따라 추출하였다. 상기 게노믹 DNA를 주형으로 서열번호 9와 서열번호 10의 프라이머 쌍 및 서열번호 11과 서열번호 12의 프라이머 쌍을 이용하여 PCR을 수행, 각각 537bp의 유전자 단편을 각각 얻었다. PCR은 94℃에서 5분간 변성한 후; 94℃에서 30초 변성, 55℃에서 30초 어닐링, 및 72℃초 중합을 25회 반복한 후; 72℃에서 7분간 중합반응의 조건에서 수행하였다.
상기 두 단편을 주형으로 서열번호 9와 서열번호 12를 의 프라이머 쌍을 이용하여 오버랩핑(Overlapping) PCR을 실시하여 1044bp의 PCR 결과물 (이하, "변이 도입 단편 2"라 명명함)을 얻었다.
상기 얻어진 변이 도입 단편 2를 제한효소 XbaI(New England Biolabs, Beverly, MA)로 처리한 후, 동일한 제한효소로 처리된 pDZ벡터와 T4 리가아제(New England Biolabs, Beverly, MA)를 이용하여 라이게이션하여 변이 도입 단편 2를 포함한 벡터를 제작하였다. 상기 ilvN 유전자의 A42V 변이 도입을 목적으로 하는 벡터를 pDZ-ilvN(A42V)라 명명하였다.
프라이머 염기 서열 서열번호
프라이머 1 AATTTCTAGAGGCAGACCCTATTCTATGAAGG 9
프라이머 2 AGTGTTTCGGTCTTTACAGACACGAGGGAC 10
프라이머 3 GTCCCTCGTGTCTGTAAAGACCGAAACACT 11
프라이머 4 AATTTCTAGACGTGGGAGTGTCACTCGCTTGG 12
이후, 상기 pDZ-ilvN(A42V)를 야생형인 코리네박테리움 글루타미쿰 ATCC14067과 ATCC13869균주에 각각 형질전환시켜 염색체 상에서 상동성 재조합을 유도하였다(van der Rest et al., Appl Microbiol Biotechnol 52:541-545, 1999). 상동성 서열의 재조합에 의해 염색체 상에 벡터가 삽입된 균주는 카나마이신(kanamycin) 25㎎/ℓ를 함유한 배지에서 선별하였다.
이후 상기에서 선별된 코리네박테리움 글루타미쿰 형질 전환주를 대상으로 서열번호 18과 서열번호 21을 이용한 PCR을 통하여 유전자 단편을 증폭한 뒤, 유전자 서열 분석을 통하여 변이가 제대로 도입되었음을 확인하였다. 상기 재조합 균주를 코리네박테리움 글루타미쿰 CJ7V 및 CJ8V라고 각각 명명하였다.
야생주 코리네박테리움 글루타미쿰 ATCC14067과 ATCC13869 균주, 상기의 CJ7V 및 CJ8V 균주들을 대상으로 발효 역가 실험을 실시하였다. 영양배지에서 계대 배양된 각 균주들을, 생산 배지 25 ㎖을 함유하는 250 ㎖ 코너-바플플라스크에 접종하고, 30℃에서 72시간 동안, 200rpm에서 진탕 배양하였다. 이후, HPLC를 이용하여 L-발린의 농도를 분석하여 하기 표 2에 나타내었다.
<영양배지 (pH 7.2)>
포도당 10g, 육즙 5g, 폴리펩톤 10g, 염화나트륨 2.5g, 효모엑기스 5g, 한천 20g, 유레아 2g (증류수 1리터 기준)
<생산배지 (pH 7.0)>
포도당 100 g, 황산암모늄 40 g, 대두단백질 2.5 g, 옥수수침지고형분(Corn Steep Solids) 5 g, 요소 3 g, 제2인산칼륨 1 g, 황산마그네슘7수염 0.5 g, 바이오틴 100 ㎍, 티아민-HCl 1 ㎎, 판토텐산칼슘 2 ㎎, 니코틴아마이드 3 ㎎, 탄산칼슘 30 g (증류수 1리터 기준)
균주 OD600 발린(g/L)
ATCC14067 95 1.5
CJ7V 77 2.2
ATCC13869 115 1.0
CJ8V 89 1.9
상기의 결과에서 보듯이, 야생형 코리네박테리움 글루타미쿰 ATCC14067 및 13869 균주와 대비하여 ilvN(A42V)유전자 변이가 도입된 CJ7V 및 CJ8V 균주의 발린 생산능이 증가된 것을 확인하였다.
실시예 2: 발린 고 생산능 균주 제작 및 평가
실시예 2-1. 발린 생합성 유전자 ilvD 강화 균주 제작 및 평가
발린 생합성 유전자인 ilvD 발현을 강화한 발린 고 생산능 균주를 제작하기 위하여 하기 서열번호 13 및 14의 프라이머 쌍, 서열번호 15 및 16의 프라이머 쌍 및 서열번호 17 및 18의 프라이머 쌍을 이용하여 상기 ilvD 유전자의 프로모터 교체를 위한 pDZ-Pcj7-ilvD 벡터를 제작 하였다.
ilvD 강화 벡터 제작 프라이머 서열
프라이머 염기 서열 서열번호
프라이머 5 TTCGAGCTCGGTACCCGGTCTAGAGCACTTTCGCTCGCACC 13
프라이머 6 GATTTGAAAAGCGCATCAGAAACATCCCAGCGCTAC 14
프라이머 7 GTAGCGCTGGGATGTTTCTGATGCGCTTTTCAAATC 15
프라이머 8 GAAACACTATGATCCCACTTCGTTCAAAAGTCACCACCGTC 16
프라이머 9 GACGGTGGTGACTTTTGAACGAAGTGGGATCATAGTGTTTC 17
프라이머 10 GCATGCCTGCAGGTCGACTCTAGAGCGTGTGCAACGCCGTC 18
구체적으로, pDZ-Pcj7-ilvD 벡터를 제작하기 위해서 코리네박테리움 글루타미쿰 야생형인 ATCC14067 균주의 게노믹 DNA를 주형으로 서열번호 13과와 서열번호 14의 프라이머 쌍, 서열번호 15와 서열번호 16의 프라이머 쌍 및 서열번호 17과 서열번호 18의 프라이머 쌍을 이용하여 PCR을 수행, 각각의 단편을 얻었다. PCR 은 94℃에서 5분간 변성한 후; 94℃에서 30초 변성, 55℃에서 30초 어닐링, 및 72℃초 중합을 25회 반복한 후; 72℃에서 7분간 중합반응의 조건에서 수행하였다.
상기 단편들을 주형으로 서열번호 13과 서열번호 18의 프라이머 쌍을 이용한 오버랩핑(Overlapping) PCR을 실시하여 얻어진 변이 도입 단편 3에 제한효소 XbaI(New England Biolabs, Beverly, MA)을 처리하고 동일한 제한효소로 처리된 pDZ벡터에 T4 리가아제(New England Biolabs, Beverly, MA)로 라이게이션하여 pDZ-Pcj7-ilvD 벡터를 제작하였다.
이후, 상기 제작된 pDZ-Pcj7-ilvD를 발린 생산 기반 균주인 CJ7V, CJ8V 및 KCCM11201P에 각각 형질전환시켜 염색체 상에서 상동성 재조합을 유도하였다(van der Rest et al., Appl Microbiol Biotechnol 52:541-545, 1999). 상동성 서열의 재조합에 의해 염색체 상에 벡터가 삽입된 균주는 카나마이신(kanamycin) 25㎎/ℓ를 함유한 배지에서 선별하였다 선별된 코리네박테리움 글루타미쿰 형질 전환주를 대상으로 서열번호 13과 서열번호 18의 프라이머 쌍을 이용한 PCR을 통하여 유전자 단편을 증폭한 뒤, 유전자 서열 분석을 통하여 변이가 제대로 도입되었음을 확인한 후 상기 선별된 재조합 균주를 각각 코리네박테리움 글루타미쿰 CJ7V:ilvD, CJ8V:ilvD, KCCM11201P:ilvD라 명명하였다. 선별된 ilvD 유전자 강화 균주들의 발효 역가를 실시예 1과 동일한 방법으로 수행하였고, 그 결과는 하기와 같다.
ilvD 강화 균주 L-발린 생산능
균주 OD600 발린(g/L)
CJ7V 77 2.2
CJ7V:ilvD 73 2.6
CJ8V 89 1.9
CJ8V:ilvD 88 2.2
KCCM11201P 62 2.6
KCCM11201P:ilvD 60 2.9
상기의 결과에서 보듯이, 발린 생합성 유전자 중 하나인 ilvD를 강화하였을 시 발린 생산 기반균주 CJ7V, CJ8V 및 KCCM11201P균주 모두 발린 생산능이 증가되는 것을 확인하였다.
실시예 2-2. avtA 결손 및 약화(a1g) 균주 제작 및 평가
발린 고 생산능 균주를 제작하기 위해, avtA를 약화(avtA 유전자의 개시코돈을 GTG로 변형) 또는 결손시키고자 하였다. 이에 하기 서열번호 19 및 20의 프라이머 쌍 및 서열번호 21 및 22의 프라이머 쌍을 이용하여 avtA 약화 균주(avtA 유전자의 개시코돈을 GTG로 변형)제작용 벡터 및 하기 서열번호 23 및 24의 프라이머 쌍 및 서열번호 25 및 26의 프라이머 쌍을 이용하여 avtA 결손균주 제작용 벡터를 제작하고, 각각 pDZ-avtA(A1g), pDZ-avtA(del)라 명명하였다.
구체적으로, avtA 약화 벡터(pDZ-avtA(A1g))를 제작하기 위해서 코리네박테리움 글루타미쿰 야생형 ATCC14067 균주의 게노믹 DNA를 주형으로 서열변호 19와 서열번호 20의 프라이머 쌍 및 서열번호 21 및 22의 프라이머 세트를 이용하여 94℃에서 5분간 변성한 후; 94℃에서 30초 변성, 55℃에서 30초 어닐링, 및 72℃초 중합을 25회 반복한 후; 72℃에서 7분간 중합반응 조건으로 PCR을 수행하였다. 각각의 얻어진 단편을 주형으로 서열번호 19와 서열번호 22의 프라이머 쌍을 이용하여 오버랩핑(Overlapping) PCR을 실시하였고 얻어진 변이 도입 단편 4를 제한효소 XbaI(New England Biolabs, Beverly, MA)로 처리한 후, 동일한 제한효소로 처리된 pDZ벡터에 T4 리가아제(New England Biolabs, Beverly, MA)로 라이게이션하여 pDZ-avtA(A1g) DNA를 제작하였다.
avtA 결손 벡터(pDZ-avtA(del))를 제작하기 위해서 코리네박테리움 글루타미쿰 야생형 ATCC14067 균주의 게노믹 DNA를 주형으로 서열변호 23와 서열번호 24의 프라이머 쌍 및 서열번호 25 및 26의 프라이머 쌍을 이용하여 94℃에서 5분간 변성한 후; 94℃에서 30초 변성, 55℃에서 30초 어닐링, 및 72℃초 중합을 25회 반복한 후; 72℃에서 7분간 중합반응 조건으로 PCR을 수행하였다. 각각의 얻어진 단편을 주형으로 서열번호 23와 서열번호 26의 프라이머 쌍을 이용하여 오버랩핑(Overlapping) PCR을 실시하였고 얻어진 변이 도입 단편 5를 제한효소 XbaI(New England Biolabs, Beverly, MA)로 처리한 후, 동일한 제한효소로 처리된 pDZ벡터에 T4 리가아제(New England Biolabs, Beverly, MA)로 라이게이션하여 pDZ-avtA(del) 벡터 DNA를 제작하였다.
avtA 약화 및 결손균주 벡터 제작 프라이머 서열
프라이머 염기 서열 서열번호
프라이머 11 GCTCGGTACCCGGGGATCCTCTAGACCGCTTCCTTGGCTGCCTGAAGATG 19
프라이머 12 TGCTTGGCTTCACAAGAGACAAGCCT 20
프라이머 13 AGGCTTGTCTCTTGTGAAGCCAAGCA 21
프라이머 14 GCCTGCAGGTCGACCTAGATCTAGACCTCATCAGAGATAAGAACAGCATC 22
프라이머 15 GCTCGGTACCCGGGGATCCTCTAGATACTCCGGTCTGCTTTATGCAGGTA 23
프라이머 16 AACTAACCTAGTCGCTTAAGAGACAAGCCTATCTGC 24
프라이머 17 GCAGATAGGCTTGTCTCTTAAGCGACTAGGTTAGTT 25
프라이머 18 GCCTGCAGGTCGACCTAGATCTAGAAAGTGCCACGAGCATTTCATCAGCT 26
이후, pDZ-avtA(del), pDZ-avtA(A1g)를 발린 생산 균주인 CJ7V:ilvD, CJ8V:ilvD 및 KCCM11201P:ilvD에 각각 형질전환시켜 염색체 상에서 상동성 재조합을 유도하였다(van der Rest et al., Appl Microbiol Biotechnol 52:541-545, 1999). 상동성 서열의 재조합에 의해 염색체 상에 벡터가 삽입된 균주는 카나마이신(kanamycin) 25㎎/ℓ를 함유한 배지에서 선별하였다.
이후 상기에서 선별된 코리네박테리움 글루타미쿰 형질 전환주를 대상으로 각각 서열번호 19 및 20, 서열번호 21 및 22, 서열번호 23 및 24, 서열번호 25 및 26의 프라이머 쌍을 이용한 PCR을 통하여 유전자 단편을 증폭한 뒤, 상기 실시예 1과 같은 방법으로 유전자 서열 분석을 통하여 변이가 제대로 도입되었음을 확인하였다. 상기 재조합 균주를 코리네박테리움 글루타미쿰 CJ7V:ilvD-avtA(del), CJ7V:ilvD-avtA (a1g), CJ8V:ilvD-avtA(del), CJ8V:ilvD-avtA (a1g), KCCM11201P:ilvD-avtA(del), KCCM11201P:ilvD-avtA (a1g)로 하기와 같이 명명하여 실시예 1과 동일한 방법으로 역가 평가를 수행하였다.
avtA 결손 및 약화균주 L-발린 생산능
균주 OD600 발린(g/L)
CJ7V:ilvD 73 2.6
CJ7V:ilvD-avtA(del) 71 2.8
CJ7V:ilvD-avtA(a1g) 73 2.6
CJ8V:ilvD 89 1.9
CJ8V:ilvD-avtA(del) 86 2.1
CJ8V:ilvD-avtA(a1g) 89 2.0
KCCM11201P:ilvD 60 2.9
KCCM11201P:ilvD-avtA(del) 57 3.2
KCCM11201P:ilvD-avtA (a1g) 60 2.9
상기의 결과에서 보듯이, avtA 결손의 경우 발린 생산능 강화 효과가 있었으며 avtA 발현을 약화시킨 경우에는 CJ8V:ilvD-avtA (alg)균주에서 CJ8V:ilvD 균주 대비 발린 생산능 증가를 확인하여 대조균인 ilvD 강화 균주들과 동등 또는 그 이상 수준의 발린 생산능을 보였다. 표 4에서의 CJ7V, CJ8V 및 KCCM11201P균주와 비교하면 ilvD 강화 및 avtA 결손이나 약화의 경우 모두 발린 생산능이 강화되었음을 확인하였다.
실시예 2-3. aceE 결손 및 약화(a1g, Q432A, K435A) 균주 제작 및 평가
발린 고 생산능 균주를 제작하기 위해, aceE를 약화 또는 결손시키고자 하였다. 이에 aceE가 약화된 균주를 제작하기 위해 서열번호 27 및 28, 서열번호 29 및 30의 프라이머 쌍을 이용하여 aceE 유전자의 개시코돈이 GTG로 변형된 균주 제작용 벡터 하기 서열번호 27 및 32, 서열번호 33 및 36의 프라이머 쌍을 이용하여 aceE(Q432A) 균주 제작용 벡터 및 서열번호 27 및 34, 서열번호 35 및 36의 프라이머 쌍을 이용하여 aceE(K435A) 균주 제작용 벡터를 제작하였고 또한 서열번호 37 및 38, 서열번호 39 및 40의 프라이머 쌍을 이용하여 ace 결손(aceE(del))균주 제작용 벡터를 제작하였다. 상기 제작된 벡터들을 각각 pDZ-aceE(A1g), pDZ-aceE(Q432A), pDZ-aceE(K435A), pDZ-aceE(del)라 명명하였다.
구체적으로, aceE의 개시코돈을 약화하는 벡터를 제작하기 위해서 코리네박테리움 글루타미쿰 야생형 ATCC14067 균주의 게노믹 DNA를 주형으로 서열변호 27와 서열번호 28의 프라이머 쌍 및 서열번호 29와 서열번호 30을 이용하여 94℃에서 5분간 변성한 후; 94℃에서 30초 변성, 55℃에서 30초 어닐링, 및 72℃초 중합을 25회 반복한 후; 72℃에서 7분간 중합반응 조건으로 PCR을 수행하였다. 각각의 얻어진 단편를 주형으로 서열번호 27과 서열번호 30의 프라이머 쌍을 이용하여 오버랩핑(Overlapping) PCR을 실시하였고 얻어진 변이 도입 단편 6을 제한효소 XbaI(New England Biolabs, Beverly, MA)로 처리한 후, 동일한 제한효소로 처리된 pDZ벡터에 T4 리가아제(New England Biolabs, Beverly, MA)를 이용하여 라이게이션하여 pDZ-aceE(A1g) 벡터 DNA를 제작하였다.
aceE(Q432A) 변이를 도입하는 벡터를 제작하기 위해서 코리네박테리움 글루타미쿰 야생형 ATCC14067 균주의 게노믹 DNA를 주형으로 서열변호 27과 서열번호 28 및 서열번호 33과 서열번호 36의 프라이머 쌍을 이용하여 94℃에서 5분간 변성한 후; 94℃에서 30초 변성, 55℃에서 30초 어닐링, 및 72℃초 중합을 25회 반복한 후; 72℃에서 7분간 중합반응 조건으로 PCR을 수행하였다. 각각의 얻어진 단편을 주형으로 서열번호 27과 서열번호 36의 프라이머 쌍을 이용하여 오버랩핑(Overlapping) PCR을 실시하였고 얻어진 변이 도입 단편 7을 제한효소 XbaI(New England Biolabs, Beverly, MA)로 처리한 후, 동일한 제한효소로 처리된 pDZ벡터에 T4 리가아제(New England Biolabs, Beverly, MA)를 이용하여 라이게이션하여 pDZ-aceE(Q432A) 벡터 DNA를 제작하였다.
aceE(K435A) 변이를 도입하는 벡터를 제작하기 위해서 코리네박테리움 글루타미쿰 야생형 ATCC14067 균주의 게노믹 DNA를 주형으로 서열변호 27과 서열번호 34 및 서열번호 35와 서열번호 36의 프라이머 쌍을 이용하여 94℃에서 5분간 변성한 후; 94℃에서 30초 변성, 55℃에서 30초 어닐링, 및 72℃초 중합을 25회 반복한 후; 72℃에서 7분간 중합반응 조건으로 PCR을 수행하였다. 각각의 얻어진 단편을 주형으로 서열번호 27과 서열번호 36의 프라이머 쌍을 이용하여 오버랩핑(Overlapping) PCR을 실시하였고 얻어진 변이 도입 단편 8을 제한효소 XbaI(New England Biolabs, Beverly, MA)로 처리한 후, 동일한 제한효소로 처리된 pDZ벡터에 T4 리가아제(New England Biolabs, Beverly, MA)를 이용하여 라이게이션하여 pDZ-aceE(K435A) 벡터 DNA를 제작하였다.
aceE(del) 변이를 도입하는 벡터를 제작하기 위해서 코리네박테리움 글루타미쿰 야생형 ATCC14067 균주의 게노믹 DNA를 주형으로 서열변호 37과 서열번호 38 및 서열번호 39와 서열번호 40의 프라이머 쌍을 이용하여 94℃에서 5분간 변성한 후; 94℃에서 30초 변성, 55℃에서 30초 어닐링, 및 72℃초 중합을 25회 반복한 후; 72℃에서 7분간 중합반응 조건으로 PCR을 수행하였다. 각각의 얻어진 단편을 주형으로 서열번호 37과 서열번호 40의 프라이머 쌍을 이용하여 오버랩핑(Overlapping) PCR을 실시하였고 얻어진 변이 도입 단편 9를 제한효소 XbaI(New England Biolabs, Beverly, MA)로 처리한 후, 동일한 제한효소로 처리된 pDZ벡터와 T4 리가아제(New England Biolabs, Beverly, MA)를 이용하여 라이게이션하여 pDZ-aceE(del) 벡터 DNA를 제작하였다.
aceE 결손 및 약화균주 벡터 제작 프라이머 서열
프라이머 염기 서열 서열번호
프라이머 19 GCTCGGTACCCGGGGATCCTCTAGATACCGTCCAACCGGTACTTTGAACC 27
프라이머 20 TTGATCGGCCACTTCCACAC 28
프라이머 21 GGTGTGGAAGTGGCCGATCAA 29
프라이머 22 GCCTGCAGGTCGACCTAGATCTAGAGATCGTCTTCAGAAAGGCGACCCTC 30
프라이머 23 GCTCGGTACCCGGGGATCCTCTAGAACCGTGGCATCAAGGACACCTCTGA 31
프라이머 24 AGCTTCTTCATTGCGTGGGTTG 32
프라이머 25 CAACCCACGCAATGAAGAAGCT 33
프라이머 26 AAGCGTCAGTGCCTTCATCTG 34
프라이머 27 CCAGATGAAGGCACTGACGCTT 35
프라이머 28 GCCTGCAGGTCGACCTAGATCTAGAAGATGGAGTCACCGGTGCGCTGGAA 36
프라이머 29 GCTCGGTACCCGGGGATCCTCTAGAACCTTTCCCTGGAATTTTTTCCTTT 37
프라이머 30 TGTCCCTTGAGGTGATTTCCACACCTCCTGTTGGAATG 38
프라이머 31 TCCAACAGGAGGTGTGGAAATCACCTCAAGGGACAGA 39
프라이머 32 GCCTGCAGGTCGACCTAGATCTAGATGCTGCGCGGCAAGCGCCGTGGATT 40
이후, pDZ-aceE(del), pDZ-aceE(A1g), pDZ-aceE(Q432A), pDZ-aceE(K435A) 를 발린 생산 균주인 CJ7V:ilvD, CJ8V:ilvD 및 KCCM11201P:ilvD에 각각 형질 전환시켜 염색체 상에서 상동성 재조합을 유도하였다(van der Rest et al., Appl Microbiol Biotechnol 52:541-545, 1999). 상동성 서열의 재조합에 의해 염색체 상에 벡터가 삽입된 균주는 카나마이신(kanamycin) 25㎎/ℓ를 함유한 배지에서 선별하였다.
이후 상기에서 선별된 코리네박테리움 글루타미쿰 형질 전환주를 대상으로 서열번호 27과 서열번호 36의 프라이머 쌍을 이용한 PCR을 통하여 유전자 단편을 증폭한 뒤, 유전자 서열 분석을 통하여 변이가 제대로 도입되었음을 확인하였다. 상기 재조합 균주를 코리네박테리움 글루타미쿰 CJ7V:ilvD-aceE(del), CJ7V:ilvD-aceE (a1g), CJ7V:ilvD-aceE(Q432A), CJ7V:ilvD-aceE(K435A), CJ8V:ilvD-aceE(del), CJ8V:ilvD-aceE (a1g), CJ8V:ilvD-aceE(Q432A), CJ8V:ilvD-aceE(K435A), KCCM11201P:ilvD-aceE(del), KCCM11201P:ilvD-aceE(a1g), KCCM11201P:ilvD-aceE(Q432A), KCCM11201P:ilvD-aceE(K435A)로 하기와 같이 명명하여 실시예 1과 동일한 방법으로 역가 평가 수행하였다.
aceE 결손 및 약화균주 L-발린 생산능
균주 OD600 발린(g/L)
CJ7V:ilvD 73 2.6
CJ7V:ilvD-aceE결손 21 1.1
CJ7V:ilvD-aceE약화(a1g) 69 2.8
CJ7V:ilvD-aceE약화(Q432A) 59 2.7
CJ7V:ilvD-aceE약화(K435A) 62 3.0
CJ8V:ilvD 89 1.9
CJ8V:ilvD-aceE결손 29 1.1
CJ8V:ilvD-aceE약화(a1g) 87 2.0
CJ8V:ilvD-aceE약화(Q432A) 77 2.1
CJ8V:ilvD-aceE약화(K435A) 81 2.4
KCCM11201P:ilvD 60 2.9
KCCM11201P:ilvD-aceE결손 13 1.0
KCCM11201P:ilvD-aceE약화(a1g) 59 3.0
KCCM11201P:ilvD-aceE약화(Q432A) 43 2.9
KCCM11201P:ilvD-aceE약화(K435A) 53 3.4
상기의 결과에서 보듯이, 다이하이드록시산 디하이드라타제(ilvD)의 활성이 강화된 균주에서 aceE가 추가적으로 결손된 균주의 경우, 생육 및 당소모 속도가 급격히 저하되어 발린 생산능이 감소하였다. 이에 반해 aceE가 약화된 균주들의 경우, 약화 정도에 따라 차이가 있긴 하였으나 생육 및 당소모 속도가 저하가 미미하였으며 발린 생산능이 증가되는 것을 확인하였다.
실시예 2-4. gltA 약화(a1g, N241T, M312I) 균주 제작 및 평가
발린 고 생산능 균주를 제작하기 위해, gltA를 약화시키고자 하였다. 이에 서열번호 41 및 42, 서열번호 43 및 44의 프라이머 쌍을 이용하여 gltA 유전자의 개시코돈이 GTG로 변형된 gltA 약화 균주 제작용 벡터, 서열번호 45 및 46, 서열번호 47 및 50의 프라이머 쌍을 이용하여 gltA(N241T) 균주 제작용 벡터 및 서열번호 45 및 48, 서열번호 49 및 50의 프라이머 쌍을 이용하여 gltA(M312I) 균주 제작용 벡터를 제작하고, 각각 각각, pDZ-gltA(A1g), pDZ-gltA(N241T), pDZ-gltA(M312I)라 명명하였다.
gltA 개시코돈 약화 변이를 도입하는 벡터를 제작하기 위해서 코리네박테리움 글루타미쿰 야생형 ATCC14067 균주의 게노믹 DNA를 주형으로 서열변호 41와 서열번호 42 및 서열번호 43과 서열번호 44의 프라이머 쌍을 이용하여 94℃에서 5분간 변성한 후; 94℃에서 30초 변성, 55℃에서 30초 어닐링, 및 72℃초 중합을 25회 반복한 후; 72℃에서 7분간 중합반응 조건으로 PCR을 수행하였다. 각각의 얻어진 단편(A, B)를 주형으로 서열번호 41와 서열번호 44의 프라이머 쌍을 이용하여 오버랩핑(Overlapping) PCR을 실시하였고 얻어진 변이 도입 단편 10을 제한효소 XbaI(New England Biolabs, Beverly, MA)로 처리한 후, 동일한 제한효소로 처리된 pDZ벡터에 T4 리가아제(New England Biolabs, Beverly, MA)로 라이게이션하여 pDZ-gltA(A1g) 벡터 DNA를 제작하였다.
gltA(N241T) 변이를 도입하는 벡터를 제작하기 위해서 코리네박테리움 글루타미쿰 야생형 ATCC14067 균주의 게노믹 DNA를 주형으로 서열변호 45과 서열번호 46 및 서열번호 47과 서열번호 50의 프라이머 쌍을 이용하여 94℃에서 5분간 변성한 후; 94℃에서 30초 변성, 55℃에서 30초 어닐링, 및 72℃초 중합을 25회 반복한 후; 72℃에서 7분간 중합반응 조건으로 PCR을 수행하였다. 각각의 얻어진 단편(A, B)를 주형으로 서열번호 45과 서열번호 50의 프라이머 쌍을 이용하여 오버랩핑(Overlapping) PCR을 실시하였고 얻어진 변이 도입 단편 11을 제한효소 XbaI(New England Biolabs, Beverly, MA)로 처리한 후, 동일한 제한효소로 처리된 pDZ 벡터에 T4 리가아제(New England Biolabs, Beverly, MA)로 라이게이션하여 pDZ-gltA(N241T) 벡터 DNA를 제작하였다.
gltA(M312I) 변이를 도입하는 벡터를 제작하기 위해서 코리네박테리움 글루타미쿰 야생형 ATCC14067 균주의 게노믹 DNA를 주형으로 서열변호 45와 서열번호 48 및 서열번호 49와 서열번호 50의 프라이머 쌍을 이용하여 94℃에서 5분간 변성한 후; 94℃에서 30초 변성, 55℃에서 30초 어닐링, 및 72℃초 중합을 25회 반복한 후; 72℃에서 7분간 중합반응 조건으로 PCR을 수행하였다. 각각의 얻어진 단편(A, B)를 주형으로 서열번호 45과 서열번호 50의 프라이머 쌍을 이용하여 오버랩핑(Overlapping) PCR을 실시하였고 얻어진 변이 도입 단편 12를 제한효소 XbaI(New England Biolabs, Beverly, MA)로 처리한 후, 동일한 제한효소로 처리된 pDZ 벡터에 T4 리가아제(New England Biolabs, Beverly, MA)로 라이게이션하여 pDZ-gltA(M312I) 벡터 DNA를 제작하였다.
gltA 약화균주 벡터 제작 프라이머 서열
프라이머 염기 서열 서열번호
프라이머 37 GCTCGGTACCCGGGGATCCTCTAGAACCCTGAAGCTGTCAGTTCCTAGCA 41
프라이머 38 CCCTTTCAAACACATTTGTTC 42
프라이머 39 CGAACAAATGTGTTTGAAAGGG 43
프라이머 40 GCCTGCAGGTCGACCTAGATCTAGATGCGCGGTGTGCGTACGCAGCCAGC 44
프라이머 41 GCTCGGTACCCGGGGATCCTCTAGATATGTGAGCACTGGCTCTACCGAGT 45
프라이머 42 AGGTGGAGCAGGTCTGCTCGTG 46
프라이머 43 CACGAGCAGACCTGCTCCACCT 47
프라이머 44 TGTCCGAAGCCGATGAGGCGGAC 48
프라이머 45 CGTCCGCCTCATCGGCTTCGGACA 49
프라이머 46 GCCTGCAGGTCGACCTAGATCTAGAGTCAGAGATTACGAGATCTTCCGGT 50
이후, pDZ-gltA(A1g), pDZ-gltA(N241T), pDZ-gltA(M312I)를 발린 생산 균주인 CJ7V:ilvD, CJ8V:ilvD 및 KCCM11201P:ilvD에 각각 형질 전환시켜 염색체 상에서 상동성 재조합을 유도하였다(van der Rest et al., Appl Microbiol Biotechnol 52:541-545, 1999). 상동성 서열의 재조합에 의해 염색체 상에 벡터가 삽입된 균주는 카나마이신(kanamycin) 25㎎/ℓ를 함유한 배지에서 선별하였다.
이후 상기에서 선별된 코리네박테리움 글루타미쿰 형질 전환주를 대상으로 서열번호 45과 서열번호 50의 프라이머 쌍을 이용한 PCR을 통하여 유전자 단편을 증폭한 뒤, 유전자 서열 분석을 통하여 변이가 제대로 도입되었음을 확인하였다. 상기 재조합 균주를 코리네박테리움 글루타미쿰 CJ7V:ilvD-gltA (a1g), CJ7V:ilvD-gltA(N241T), CJ7V:ilvD-gltA(M312I), CJ8V:ilvD-gltA(a1g), CJ8V:ilvD-gltA(N241T), CJ8V:ilvD-gltA(M312I), KCCM11201P:ilvD-gltA(a1g), KCCM11201P:ilvD-gltA(N241T), KCCM11201P:ilvD-gltA(M312I)로 명명하고 실시예 1과 동일한 방법으로 역가 평가 수행하였다.
gltA 약화균주 L-발린 생산능
균주 OD600 발린(g/L)
CJ7V:ilvD 73 2.6
CJ7V:ilvD-gltA(a1g) 69 2.7
CJ7V:ilvD-gltA(N241T) 61 2.8
CJ7V:ilvD-gltA(M312I) 63 2.8
CJ8V:ilvD 89 1.9
CJ8V:ilvD-gltA(a1g) 87 1.9
CJ8V:ilvD-gltA(N241T) 80 2.2
CJ8V:ilvD-gltA(M312I) 81 2.1
KCCM11201P:ilvD 60 2.9
KCCM11201P:ilvD-gltA(a1g) 59 3.0
KCCM11201P:ilvD-gltA(N241T) 51 3.2
KCCM11201P:ilvD-gltA(M312I) 55 3.1
상기의 결과에서 보듯이, 다이하이드록시산 디하이드라타제(ilvD)의 활성이 강화된 균주에서 gltA 약화 균주들의 경우, 약화 정도에 따라 차이가 있긴 하였으나 생육 및 당소모 속도가 저하가 미미하였으며 발린 생산능이 증가되는 것을 확인하였다.
실시예 2-5. 유효변이 형질 조합균주 제작 및 평가
상기 실시예 2-2 내지 2-4에서 확인한 결과로부터 각 변이의 다양한 조합시 발린 생산능에 시너지 효과가 있는지 확인하고자 하였다. pDZ-avtA(del), pDZ-aceE(K435A)벡터를 실시예 2-4에서 제작한 발린 생산 균주인 CJ7V:ilvD-gltA약화(N241T), CJ8V:ilvD-gltA약화(N241T), KCCM11201P:ilvD-gltA약화(N241T)에 각각 형질전환시켰다(van der Rest et al., Appl Microbiol Biotechnol 52:541-545, 1999). 상동성 서열의 재조합에 의해 염색체 상에 벡터가 삽입된 균주는 카나마이신(kanamycin) 25㎎/ℓ를 함유한 배지에서 선별하였다.
이후 2차 재조합이 완료된 상기 코리네박테리움 글루타미쿰 형질 전환주를 대상으로 서열번호 23과 서열번호 26의 프라이머 쌍 및 서열번호 27과 서열번호 36의 프라이머 쌍을 이용한 PCR을 통하여 유전자 단편을 증폭한 뒤, 유전자 서열 분석을 통하여 변이 삽입 균주를 확인하였다. 상기 재조합 균주를 코리네박테리움 글루타미쿰 하기와 같이 명명하여 실시예 1과 동일한 방법으로 역가 평가를 수행하였다.
유효 조합 균주 L-발린 생산능
균주 OD600 발린(g/L)
CJ7V:ilvD-gltA약화(N241T) 61 2.8
CJ7V:ilvD-gltA약화(N241T)-aceE약화(K435A) 59 3.2
CJ7V:ilvD-gltA약화(N241T)-avtA결손(del) 62 3.0
CJ8V:ilvD-gltA약화(N241T) 80 2.2
CJ8V:ilvD-gltA약화(N241T) aceE약화(K435A) 78 2.6
CJ8V:ilvD-gltA약화(N241T) avtA결손(del) 83 2.5
KCCM11201P:ilvD-gltA약화(N241T) 51 3.2
KCCM11201P:ilvD-gltA약화(N241T) aceE약화(K435A) 50 3.6
KCCM11201P:ilvD-gltA약화(N241T) avtA결손(del) 52 3.6
상기의 결과에서 보듯이, ilvD 강화 및 gltA 약화 형질에 aceE 약화형질 및 avtA 결손 형질이 각각 도입되었을 시 생육 및 당소모속도는 동등수준이며, 발린 생산능이 더욱 증가되는 것을 확인하였다.
상기에서 pDZ-aceE(K435A)벡터를 KCCM11201P:ilvD-gltA약화(N241T) 균주에 형질전환시켜 상동성 서열의 재조합에 의해 염색체 상에 ace(K435A) 변이가 도입된 균주를 CA08-1592로 명명하고 2020년 7월 3일자로 부다페스트 조약하의 국제기탁기관인 한국미생물보존센터(KCCM)에 국제기탁하여 KCCM12761P로 기탁번호를 부여 받았다.
이상의 설명으로부터, 본 출원이 속하는 기술분야의 당업자는 본 출원이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로 이해해야만 한다. 본 출원의 범위는 상기 상세한 설명보다는 후술하는 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 출원의 범위에 포함되는 것으로 해석되어야 한다.
Figure PCTKR2021011717-appb-img-000001

Claims (15)

  1. 강화된 다이하이드록시산 디하이드라타제(dihydroxy-acid dehydratase)의 활성; 및 하기 (1) 내지 (3)에서 선택되는 어느 하나 이상의 조합을 갖는, L-발린 생산 미생물.
    (1) 감소된 트랜스아미나제 C(transaminase C)의 활성
    (2) 약화된 피루베이트 디하이드로게나아제(pyruvate dehydrogenase)의 활성
    (3) 감소된 시트레이트 신타아제(citrate synthase)의 활성
  2. 제 1항에 있어서, 상기 미생물은 강화된 다이하이드록시산 디하이드라타제의 활성; 및 감소된 트랜스아미나제 C의 활성을 갖는, 미생물.
  3. 제 1항에 있어서, 상기 미생물은 강화된 다이하이드록시산 디하이드라타제의 활성; 및 약화된 피루베이트 디하이드로게나아제의 활성을 갖는, 미생물.
  4. 제 1항에 있어서, 상기 미생물은 강화된 다이하이드록시산 디하이드라타제의 활성; 및 감소된 시트레이트 신타아제의 활성을 갖는, 미생물.
  5. 제4항에 있어서, 상기 미생물은 추가적으로 감소된 트랜스아미나제 C의 활성 또는 약화된 피루베이트 디하이드로게나아제의 활성을 갖는, 미생물.
  6. 제1항에 있어서, 상기 다이하이드록시산 디하이드라타제는 ilvD 유전자에 의해 코딩되는, 미생물.
  7. 제1항에 있어서, 상기 트랜스아미나제 C는 avtA 유전자에 의해 코딩되는, 미생물.
  8. 제1항에 있어서, 상기 피루베이트 디하이드로게나아제는 aceE 유전자에 의해 코딩되는, 미생물.
  9. 제1항에 있어서, 상기 시트레이트 신타아제는 gltA 유전자에 의해 코딩되는, 미생물.
  10. 제1항에 있어서, 상기 약화된 피루베이트 디하이드로게나아제는 서열번호 3 의 아미노산 서열의 N-말단으로부터 432번째 또는 435번째 위치에 상응하는 아미노산이 다른 아미노산으로 치환된 것인, 미생물.
  11. 제1항에 있어서, 상기 감소된 시트레이트 신타아제는 서열번호 4의 아미노산 서열의 N-말단으로부터 241번째 또는 312번째 위치에 상응하는 아미노산이 다른 아미노산으로 치환된 것인, 미생물.
  12. 제1항에 있어서, 상기 L-발린 생산 미생물은 코리네박테리움 속(Corynebacterium sp.) 미생물.
  13. 제12항에 있어서, 상기 코리네박테리움속 미생물은 코리네박테리움 글루타미쿰(Corynebacterium glutamicum)인, 미생물.
  14. 제1항 내지 제13항 중 어느 한 항의 미생물을 배양하는 단계를 포함하는, L-발린의 생산방법.
  15. 제14항에 있어서, 상기 배양된 미생물 또는 배지로부터 L-발린을 회수하는 단계를 추가로 포함하는, L-발린의 생산방법.
PCT/KR2021/011717 2020-09-01 2021-09-01 L-발린 생산 미생물 및 이를 이용한 l-발린 생산 방법 WO2022050671A1 (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN202180071367.0A CN116670272A (zh) 2020-09-01 2021-09-01 生产l-缬氨酸的微生物和使用其生产l-缬氨酸的方法
CA3191427A CA3191427A1 (en) 2020-09-01 2021-09-01 Microorganism producing l-valine and method for producing l-valine using the same
JP2023514054A JP2023540717A (ja) 2020-09-01 2021-09-01 L-バリン生産微生物及びそれを用いたl-バリン生産方法
MX2023002502A MX2023002502A (es) 2020-09-01 2021-09-01 Microorganismos productores de l-valina y metodo de produccion de l-valina que utiliza los mismos.
US18/024,089 US20240026397A1 (en) 2020-09-01 2021-09-01 Microorganism producing l-valine and method for producing l-valine using the same
EP21864631.3A EP4190904A4 (en) 2020-09-01 2021-09-01 L-VALINE PRODUCING MICROORGANISMS AND L-VALINE PRODUCTION PROCESS THEREFROM
BR112023003780A BR112023003780A2 (pt) 2020-09-01 2021-09-01 Microrganismo produtor de l-valina e método para produzir l-valina usando o mesmo

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0111084 2020-09-01
KR1020200111084A KR102344689B1 (ko) 2020-09-01 2020-09-01 L-발린 생산 미생물 및 이를 이용한 l-발린 생산 방법

Publications (1)

Publication Number Publication Date
WO2022050671A1 true WO2022050671A1 (ko) 2022-03-10

Family

ID=79176511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/011717 WO2022050671A1 (ko) 2020-09-01 2021-09-01 L-발린 생산 미생물 및 이를 이용한 l-발린 생산 방법

Country Status (9)

Country Link
US (1) US20240026397A1 (ko)
EP (1) EP4190904A4 (ko)
JP (1) JP2023540717A (ko)
KR (1) KR102344689B1 (ko)
CN (1) CN116670272A (ko)
BR (1) BR112023003780A2 (ko)
CA (1) CA3191427A1 (ko)
MX (1) MX2023002502A (ko)
WO (1) WO2022050671A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102525072B1 (ko) * 2021-03-10 2023-04-24 씨제이제일제당 주식회사 신규한 시트레이트 신타아제 변이체 및 이를 이용한 l-아미노산 생산 방법

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100614029B1 (ko) * 1999-02-22 2006-08-23 포르슝스젠트룸 율리히 게엠베하 L-발린의 미생물학적 제조 방법
US7662943B2 (en) 2004-12-16 2010-02-16 Cj Cheiljedang Corporation Promoter sequences from Corynebacterium ammoniagenes
KR20160113377A (ko) * 2015-03-18 2016-09-29 씨제이제일제당 (주) 피루브산 디하이드로게나아제 변이체, 이를 포함하는 미생물 및 이를 이용한 l-아미노산 생산 방법
KR20160145827A (ko) * 2014-04-30 2016-12-20 에보닉 데구사 게엠베하 호알칼리성 박테리아를 사용하는 l-아미노산 생산 방법
CN106520655A (zh) * 2016-12-29 2017-03-22 廊坊梅花生物技术开发有限公司 重组菌株及其制备方法和生产l‑缬氨酸的方法
KR101915433B1 (ko) * 2018-02-13 2018-11-05 씨제이제일제당 (주) 시트레이트 신타아제 (Citrate synthase)의 활성이 약화된 변이형 폴리펩타이드 및 이를 이용한 L-아미노산 생산방법
US10273491B2 (en) 2015-01-29 2019-04-30 Cj Cheiljedang Corporation Promoter and uses thereof
US10457919B2 (en) 2014-08-05 2019-10-29 Cj Cheiljedang Corporation Feedback-resistant acetohydroxy acid synthase variant and method for producing L-valine using the same
US10584338B2 (en) 2016-08-31 2020-03-10 Cj Cheiljedang Corporation Promoter and use thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005019967A1 (de) * 2005-04-29 2006-11-02 Forschungszentrum Jülich GmbH Verfahren zur fermentativen Herstellung von L-Aminosäuren
KR102076532B1 (ko) * 2009-06-05 2020-02-13 에보니크 오퍼레이션즈 게엠베하 2-케토 카르복실산의 제조 방법
US9290770B2 (en) * 2011-08-22 2016-03-22 Research Institute Of Innovative Technology For The Earth Coryneform bacterium transformant and process for producing valine using the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100614029B1 (ko) * 1999-02-22 2006-08-23 포르슝스젠트룸 율리히 게엠베하 L-발린의 미생물학적 제조 방법
US7662943B2 (en) 2004-12-16 2010-02-16 Cj Cheiljedang Corporation Promoter sequences from Corynebacterium ammoniagenes
KR20160145827A (ko) * 2014-04-30 2016-12-20 에보닉 데구사 게엠베하 호알칼리성 박테리아를 사용하는 l-아미노산 생산 방법
US10457919B2 (en) 2014-08-05 2019-10-29 Cj Cheiljedang Corporation Feedback-resistant acetohydroxy acid synthase variant and method for producing L-valine using the same
US10273491B2 (en) 2015-01-29 2019-04-30 Cj Cheiljedang Corporation Promoter and uses thereof
KR20160113377A (ko) * 2015-03-18 2016-09-29 씨제이제일제당 (주) 피루브산 디하이드로게나아제 변이체, 이를 포함하는 미생물 및 이를 이용한 l-아미노산 생산 방법
US10584338B2 (en) 2016-08-31 2020-03-10 Cj Cheiljedang Corporation Promoter and use thereof
CN106520655A (zh) * 2016-12-29 2017-03-22 廊坊梅花生物技术开发有限公司 重组菌株及其制备方法和生产l‑缬氨酸的方法
KR101915433B1 (ko) * 2018-02-13 2018-11-05 씨제이제일제당 (주) 시트레이트 신타아제 (Citrate synthase)의 활성이 약화된 변이형 폴리펩타이드 및 이를 이용한 L-아미노산 생산방법

Non-Patent Citations (16)

* Cited by examiner, † Cited by third party
Title
"Atlas of Protein Sequence and Structure", 1979, NATIONAL BIOMEDICAL RESEARCH FOUNDATION, pages: 353 - 358
"Guide to Huge Computers", 1994, ACADEMIC PRESS
ATSCHUL, [S.] [F., J MOLEC BIOL, vol. 215, 1990, pages 403
BIOTECHNOLOGY AND BIOPROCESS ENGINEERING, vol. 19, June 2014 (2014-06-01), pages 456 - 467
CARILLO, SIAM J APPLIED MATH, vol. 48, 1988, pages 1073
DEVEREUX, J. ET AL., NUCLEIC ACIDS RESEARCH, vol. 12, 1984, pages 387
GRIBSKOV ET AL., NUCL. ACIDS RES., vol. 14, 1986, pages 6745
NEEDLEMAN ET AL., J MOL BIOL, vol. 48, 1970, pages 443
NEEDLEMANWUNSCH, J. MOL. BIOL., vol. 48, 1970, pages 443 - 453
PEARSON ET AL., PROC. NATL. ACAD. SCI. USA, vol. 85, 1988, pages 2444
RICE ET AL.: "EMBOSS: The European Molecular Biology Open Software Suite", TRENDS GENET, vol. 16, 2000, pages 276 - 277, XP004200114, DOI: 10.1016/S0168-9525(00)02024-2
SAMBROOK ET AL., MOLECULAR CLONING, 2012
See also references of EP4190904A4
SITNICKA ET AL.: "Functional Analysis of Genes", ADVANCES IN CELL BIOLOGY, vol. 2, 2010, pages 1 - 16
SMITHWATERMAN, ADV. APPL. MATH, vol. 2, 1981, pages 482
VAN DER REST ET AL., APPL MICROBIOL BIOTECHNOL, vol. 52, 1999, pages 541 - 545

Also Published As

Publication number Publication date
EP4190904A4 (en) 2024-01-24
JP2023540717A (ja) 2023-09-26
KR102344689B1 (ko) 2021-12-29
MX2023002502A (es) 2023-05-29
US20240026397A1 (en) 2024-01-25
CA3191427A1 (en) 2022-03-10
BR112023003780A2 (pt) 2023-03-28
CN116670272A (zh) 2023-08-29
EP4190904A1 (en) 2023-06-07

Similar Documents

Publication Publication Date Title
WO2015199396A1 (ko) O-아세틸 호모세린을 생산하는 미생물 및 상기 미생물을 이용하여 o-아세틸 호모세린을 생산하는 방법
WO2020218736A1 (ko) L-히스티딘 생산능이 강화된 미생물 및 이를 이용한 히스티딘 생산방법
WO2016208854A1 (ko) 퓨트레신 또는 오르니틴 생산 미생물 및 이를 이용한 퓨트레신 또는 오르니틴 생산방법
WO2021167414A1 (ko) 퓨린 뉴클레오티드를 생산하는 미생물 및 이를 이용한 퓨린 뉴클레오티드의 생산방법
WO2021177731A1 (ko) 글루타민 신테타아제 변이형 폴리펩티드 및 이를 이용한 l-글루타민 생산 방법
WO2022050671A1 (ko) L-발린 생산 미생물 및 이를 이용한 l-발린 생산 방법
WO2021060696A1 (ko) 디하이드로디피콜린산 리덕타제 변이형 폴리펩티드 및 이를 이용한 l-쓰레오닌 생산방법
WO2022191630A1 (ko) 신규한 시트레이트 신타아제 변이체 및 이를 이용한 l-발린 생산 방법
WO2022055094A1 (ko) L-글루탐산 생산 재조합 미생물 및 이를 이용한 l-글루탐산의 제조방법
WO2022124708A1 (ko) 신규한 분지 연쇄 아미노산 아미노트렌스퍼라아제 변이체 및 이를 이용한 이소류신 생산 방법
WO2022163904A1 (ko) 신규한 단백질 변이체 및 이를 이용한 l-라이신 생산 방법
WO2022164118A1 (ko) 프리페네이트 탈수 효소 변이체 및 이를 이용한 분지쇄 아미노산 생산 방법
WO2021261733A1 (ko) L-쓰레오닌 디하이드라타아제의 신규 변이체 및 이를 이용한 l-이소류신 생산 방법
WO2022005022A1 (ko) L-이소류신 생산능이 강화된 미생물 및 이를 이용한 l-이소류신 생산방법
WO2021045472A1 (ko) 신규한 프로모터 및 이를 이용한 목적 물질 생산 방법
WO2021153866A1 (ko) 시트레이트 신타아제의 활성이 약화된 신규한 변이형 폴리펩티드 및 이를 이용한 l-아미노산 생산 방법
WO2020218737A1 (ko) L-쓰레오닌 생산능이 강화된 미생물 및 이를 이용한 쓰레오닌 생산방법
WO2021060701A1 (ko) 메조 디아미노피멜레이트 디하이드로게네이즈 변이형 폴리펩타이드 및 이를 이용한 l-쓰레오닌 생산방법
WO2020256415A1 (ko) L-타이로신을 생산하는 미생물 및 이를 이용한 l-타이로신 생산 방법
WO2022191635A1 (ko) 신규한 시트레이트 신타아제 변이체 및 이를 이용한 l-아미노산 생산 방법
WO2022124511A1 (ko) 변이형 atp-의존적 프로테아제 및 이를 이용한 l-아미노산의 생산 방법
WO2021235855A1 (ko) L- 분지쇄 아미노산 생산능이 강화된 미생물 및 이를 이용하여 l-분지쇄 아미노산을 생산하는 방법
WO2022124786A1 (ko) 신규한 감마-아미노부티르산 퍼미에이즈 변이체 및 이를 이용한 이소류신 생산 방법
WO2022186487A1 (ko) 이소프로필말레이트 신타제 변이체 및 이를 이용한 l-류신의 생산 방법
WO2022216088A1 (ko) L-아르기닌을 생산하는 코리네박테리움 속 미생물 및 이를 이용한 l-아르기닌 생산방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21864631

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023514054

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3191427

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 18024089

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023003780

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2021864631

Country of ref document: EP

Effective date: 20230302

ENP Entry into the national phase

Ref document number: 112023003780

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230228

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 202180071367.0

Country of ref document: CN