WO2022191635A1 - 신규한 시트레이트 신타아제 변이체 및 이를 이용한 l-아미노산 생산 방법 - Google Patents
신규한 시트레이트 신타아제 변이체 및 이를 이용한 l-아미노산 생산 방법 Download PDFInfo
- Publication number
- WO2022191635A1 WO2022191635A1 PCT/KR2022/003359 KR2022003359W WO2022191635A1 WO 2022191635 A1 WO2022191635 A1 WO 2022191635A1 KR 2022003359 W KR2022003359 W KR 2022003359W WO 2022191635 A1 WO2022191635 A1 WO 2022191635A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- amino acid
- seq
- variant
- present application
- microorganism
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 47
- 150000008575 L-amino acids Chemical class 0.000 title claims abstract description 44
- 108010030844 2-methylcitrate synthase Proteins 0.000 title claims abstract description 24
- 108010071536 Citrate (Si)-synthase Proteins 0.000 title claims abstract description 24
- 102000006732 Citrate synthase Human genes 0.000 title claims abstract description 24
- 244000005700 microbiome Species 0.000 claims abstract description 98
- 229920001184 polypeptide Polymers 0.000 claims description 111
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 111
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 111
- 108091033319 polynucleotide Proteins 0.000 claims description 103
- 102000040430 polynucleotide Human genes 0.000 claims description 103
- 239000002157 polynucleotide Substances 0.000 claims description 103
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 claims description 48
- 150000001413 amino acids Chemical class 0.000 claims description 39
- 235000001014 amino acid Nutrition 0.000 claims description 33
- 229940024606 amino acid Drugs 0.000 claims description 32
- FCXZBWSIAGGPCB-YFKPBYRVSA-N O-acetyl-L-homoserine Chemical compound CC(=O)OCC[C@H]([NH3+])C([O-])=O FCXZBWSIAGGPCB-YFKPBYRVSA-N 0.000 claims description 29
- 229960004295 valine Drugs 0.000 claims description 24
- 239000002609 medium Substances 0.000 claims description 23
- 238000000034 method Methods 0.000 claims description 23
- 241000186216 Corynebacterium Species 0.000 claims description 16
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 claims description 14
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 claims description 14
- 239000004472 Lysine Substances 0.000 claims description 14
- 229960004452 methionine Drugs 0.000 claims description 14
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 claims description 13
- 235000018977 lysine Nutrition 0.000 claims description 13
- 241000186226 Corynebacterium glutamicum Species 0.000 claims description 12
- FFEARJCKVFRZRR-UHFFFAOYSA-N L-Methionine Natural products CSCCC(N)C(O)=O FFEARJCKVFRZRR-UHFFFAOYSA-N 0.000 claims description 12
- 229930195722 L-methionine Natural products 0.000 claims description 12
- 238000012258 culturing Methods 0.000 claims description 12
- 239000000203 mixture Substances 0.000 claims description 10
- 125000000487 histidyl group Chemical group [H]N([H])C(C(=O)O*)C([H])([H])C1=C([H])N([H])C([H])=N1 0.000 claims description 8
- 239000001963 growth medium Substances 0.000 claims description 6
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 claims description 4
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 claims description 4
- 235000013922 glutamic acid Nutrition 0.000 claims description 4
- 239000004220 glutamic acid Substances 0.000 claims description 4
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 claims description 2
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 claims description 2
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 claims description 2
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 claims description 2
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 claims description 2
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 claims description 2
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 claims description 2
- 235000004279 alanine Nutrition 0.000 claims description 2
- 235000009582 asparagine Nutrition 0.000 claims description 2
- 229960001230 asparagine Drugs 0.000 claims description 2
- 235000018417 cysteine Nutrition 0.000 claims description 2
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 claims description 2
- FVTCRASFADXXNN-SCRDCRAPSA-N flavin mononucleotide Chemical compound OP(=O)(O)OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O FVTCRASFADXXNN-SCRDCRAPSA-N 0.000 claims description 2
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 claims description 2
- 230000000694 effects Effects 0.000 description 70
- 108090000623 proteins and genes Proteins 0.000 description 66
- 125000003275 alpha amino acid group Chemical group 0.000 description 48
- 239000013598 vector Substances 0.000 description 48
- 230000014509 gene expression Effects 0.000 description 31
- 210000004027 cell Anatomy 0.000 description 25
- 230000004048 modification Effects 0.000 description 24
- 238000012986 modification Methods 0.000 description 24
- 210000000349 chromosome Anatomy 0.000 description 23
- 239000002773 nucleotide Substances 0.000 description 22
- 125000003729 nucleotide group Chemical group 0.000 description 22
- 230000035772 mutation Effects 0.000 description 19
- 235000018102 proteins Nutrition 0.000 description 19
- 102000004169 proteins and genes Human genes 0.000 description 19
- 239000012634 fragment Substances 0.000 description 18
- 101150106096 gltA gene Proteins 0.000 description 18
- 238000012217 deletion Methods 0.000 description 16
- 230000037430 deletion Effects 0.000 description 16
- 230000001965 increasing effect Effects 0.000 description 16
- 108020004414 DNA Proteins 0.000 description 15
- 101150042350 gltA2 gene Proteins 0.000 description 15
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 12
- 238000006467 substitution reaction Methods 0.000 description 12
- 108020004705 Codon Proteins 0.000 description 11
- 238000003780 insertion Methods 0.000 description 11
- 230000037431 insertion Effects 0.000 description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 238000004925 denaturation Methods 0.000 description 10
- 230000036425 denaturation Effects 0.000 description 10
- 230000000295 complement effect Effects 0.000 description 9
- 108091081024 Start codon Proteins 0.000 description 8
- 229910052799 carbon Inorganic materials 0.000 description 8
- 239000003550 marker Substances 0.000 description 8
- 239000013612 plasmid Substances 0.000 description 8
- 238000006116 polymerization reaction Methods 0.000 description 8
- 238000013518 transcription Methods 0.000 description 8
- 230000035897 transcription Effects 0.000 description 8
- 238000013519 translation Methods 0.000 description 8
- 238000007792 addition Methods 0.000 description 7
- 230000001747 exhibiting effect Effects 0.000 description 7
- 230000006801 homologous recombination Effects 0.000 description 7
- 238000002744 homologous recombination Methods 0.000 description 7
- 238000009396 hybridization Methods 0.000 description 7
- 150000007523 nucleic acids Chemical class 0.000 description 7
- 102000004190 Enzymes Human genes 0.000 description 6
- 108090000790 Enzymes Proteins 0.000 description 6
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 6
- 125000000539 amino acid group Chemical group 0.000 description 6
- 238000004422 calculation algorithm Methods 0.000 description 6
- 238000010367 cloning Methods 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 230000009466 transformation Effects 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 241000807905 Corynebacterium glutamicum ATCC 14067 Species 0.000 description 5
- 241000588724 Escherichia coli Species 0.000 description 5
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 5
- ZSLZBFCDCINBPY-ZSJPKINUSA-N acetyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 ZSLZBFCDCINBPY-ZSJPKINUSA-N 0.000 description 5
- 239000008103 glucose Substances 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 238000000746 purification Methods 0.000 description 5
- 230000006798 recombination Effects 0.000 description 5
- 238000005215 recombination Methods 0.000 description 5
- 108020003589 5' Untranslated Regions Proteins 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- 101100213659 Escherichia coli (strain K12) yjeH gene Proteins 0.000 description 4
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 4
- 108091028043 Nucleic acid sequence Proteins 0.000 description 4
- 108700026244 Open Reading Frames Proteins 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 240000008042 Zea mays Species 0.000 description 4
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 4
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 4
- 238000000137 annealing Methods 0.000 description 4
- 230000002238 attenuated effect Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 235000005822 corn Nutrition 0.000 description 4
- 230000004927 fusion Effects 0.000 description 4
- 101150077793 ilvH gene Proteins 0.000 description 4
- 101150060643 ilvN gene Proteins 0.000 description 4
- 229930027917 kanamycin Natural products 0.000 description 4
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 4
- 229960000318 kanamycin Drugs 0.000 description 4
- 229930182823 kanamycin A Natural products 0.000 description 4
- 235000013379 molasses Nutrition 0.000 description 4
- 102000039446 nucleic acids Human genes 0.000 description 4
- 108020004707 nucleic acids Proteins 0.000 description 4
- 235000015097 nutrients Nutrition 0.000 description 4
- KHPXUQMNIQBQEV-UHFFFAOYSA-N oxaloacetic acid Chemical compound OC(=O)CC(=O)C(O)=O KHPXUQMNIQBQEV-UHFFFAOYSA-N 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000013587 production medium Substances 0.000 description 4
- 108091008146 restriction endonucleases Proteins 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 101150080008 yjeH gene Proteins 0.000 description 4
- 108020005544 Antisense RNA Proteins 0.000 description 3
- 108010061618 O-succinylhomoserine (thiol)-lyase Proteins 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 238000012300 Sequence Analysis Methods 0.000 description 3
- 150000005693 branched-chain amino acids Chemical class 0.000 description 3
- 239000004202 carbamide Substances 0.000 description 3
- 238000004587 chromatography analysis Methods 0.000 description 3
- 230000002759 chromosomal effect Effects 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 239000003184 complementary RNA Substances 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 239000012153 distilled water Substances 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000004128 high performance liquid chromatography Methods 0.000 description 3
- 230000002779 inactivation Effects 0.000 description 3
- 230000003834 intracellular effect Effects 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 238000010369 molecular cloning Methods 0.000 description 3
- 230000002018 overexpression Effects 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000003827 upregulation Effects 0.000 description 3
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 2
- LDXJRKWFNNFDSA-UHFFFAOYSA-N 2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]ethanone Chemical compound C1CN(CC2=NNN=C21)CC(=O)N3CCN(CC3)C4=CN=C(N=C4)NCC5=CC(=CC=C5)OC(F)(F)F LDXJRKWFNNFDSA-UHFFFAOYSA-N 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 2
- 241000186145 Corynebacterium ammoniagenes Species 0.000 description 2
- 241000446654 Corynebacterium deserti Species 0.000 description 2
- 241001644925 Corynebacterium efficiens Species 0.000 description 2
- 241000291063 Corynebacterium halotolerans Species 0.000 description 2
- 241000128247 Corynebacterium pollutisoli Species 0.000 description 2
- 241000334675 Corynebacterium singulare Species 0.000 description 2
- 241000186308 Corynebacterium stationis Species 0.000 description 2
- 241000158523 Corynebacterium striatum Species 0.000 description 2
- 108091092584 GDNA Proteins 0.000 description 2
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 102000018697 Membrane Proteins Human genes 0.000 description 2
- 108010052285 Membrane Proteins Proteins 0.000 description 2
- LSDPWZHWYPCBBB-UHFFFAOYSA-N Methanethiol Chemical compound SC LSDPWZHWYPCBBB-UHFFFAOYSA-N 0.000 description 2
- DFPAKSUCGFBDDF-UHFFFAOYSA-N Nicotinamide Chemical compound NC(=O)C1=CC=CN=C1 DFPAKSUCGFBDDF-UHFFFAOYSA-N 0.000 description 2
- 108091034117 Oligonucleotide Proteins 0.000 description 2
- 239000001888 Peptone Substances 0.000 description 2
- 108010080698 Peptones Proteins 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- LCTONWCANYUPML-UHFFFAOYSA-N Pyruvic acid Chemical compound CC(=O)C(O)=O LCTONWCANYUPML-UHFFFAOYSA-N 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 102000008579 Transposases Human genes 0.000 description 2
- 108010020764 Transposases Proteins 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 2
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 2
- 235000011130 ammonium sulphate Nutrition 0.000 description 2
- 239000000074 antisense oligonucleotide Substances 0.000 description 2
- 238000012230 antisense oligonucleotides Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 229940041514 candida albicans extract Drugs 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 238000012136 culture method Methods 0.000 description 2
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 239000007857 degradation product Substances 0.000 description 2
- 230000003828 downregulation Effects 0.000 description 2
- 230000029142 excretion Effects 0.000 description 2
- 239000013604 expression vector Substances 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000000855 fermentation Methods 0.000 description 2
- 230000004151 fermentation Effects 0.000 description 2
- 238000012239 gene modification Methods 0.000 description 2
- 230000005017 genetic modification Effects 0.000 description 2
- 235000013617 genetically modified food Nutrition 0.000 description 2
- 230000034659 glycolysis Effects 0.000 description 2
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 2
- 238000001802 infusion Methods 0.000 description 2
- 150000002484 inorganic compounds Chemical class 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 2
- 235000019341 magnesium sulphate Nutrition 0.000 description 2
- 108020004999 messenger RNA Proteins 0.000 description 2
- 229930182817 methionine Natural products 0.000 description 2
- 235000006109 methionine Nutrition 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 235000019319 peptone Nutrition 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 230000000379 polymerizing effect Effects 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000010839 reverse transcription Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229960004793 sucrose Drugs 0.000 description 2
- 235000000346 sugar Nutrition 0.000 description 2
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- 239000011782 vitamin Substances 0.000 description 2
- 235000013343 vitamin Nutrition 0.000 description 2
- 229940088594 vitamin Drugs 0.000 description 2
- 229930003231 vitamin Natural products 0.000 description 2
- 239000012138 yeast extract Substances 0.000 description 2
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 1
- HMUNWXXNJPVALC-UHFFFAOYSA-N 1-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C(CN1CC2=C(CC1)NN=N2)=O HMUNWXXNJPVALC-UHFFFAOYSA-N 0.000 description 1
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 description 1
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- 101710110543 Acetolactate synthase isozyme 1 small subunit Proteins 0.000 description 1
- QTXZASLUYMRUAN-QLQASOTGSA-N Acetyl coenzyme A (Acetyl-CoA) Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1.O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 QTXZASLUYMRUAN-QLQASOTGSA-N 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- 229930024421 Adenine Natural products 0.000 description 1
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 description 1
- 239000005695 Ammonium acetate Substances 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 239000004254 Ammonium phosphate Substances 0.000 description 1
- 101100533902 Arabidopsis thaliana SPL13A gene Proteins 0.000 description 1
- 101100533904 Arabidopsis thaliana SPL13B gene Proteins 0.000 description 1
- 101100455080 Bacillus subtilis (strain 168) lmrB gene Proteins 0.000 description 1
- 108091033409 CRISPR Proteins 0.000 description 1
- 238000010354 CRISPR gene editing Methods 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- 241000186248 Corynebacterium callunae Species 0.000 description 1
- 241001605246 Corynebacterium crudilactis Species 0.000 description 1
- 241001134763 Corynebacterium flavescens Species 0.000 description 1
- 241001485655 Corynebacterium glutamicum ATCC 13032 Species 0.000 description 1
- 241000024402 Corynebacterium imitans Species 0.000 description 1
- 241000960580 Corynebacterium testudinoris Species 0.000 description 1
- YPWSLBHSMIKTPR-UHFFFAOYSA-N Cystathionine Natural products OC(=O)C(N)CCSSCC(N)C(O)=O YPWSLBHSMIKTPR-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- ILRYLPWNYFXEMH-UHFFFAOYSA-N D-cystathionine Natural products OC(=O)C(N)CCSCC(N)C(O)=O ILRYLPWNYFXEMH-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 238000012270 DNA recombination Methods 0.000 description 1
- 206010059866 Drug resistance Diseases 0.000 description 1
- 241000620209 Escherichia coli DH5[alpha] Species 0.000 description 1
- 241000701959 Escherichia virus Lambda Species 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 206010064571 Gene mutation Diseases 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 101710083973 Homocysteine synthase Proteins 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 235000019766 L-Lysine Nutrition 0.000 description 1
- ILRYLPWNYFXEMH-WHFBIAKZSA-N L-cystathionine Chemical compound [O-]C(=O)[C@@H]([NH3+])CCSC[C@H]([NH3+])C([O-])=O ILRYLPWNYFXEMH-WHFBIAKZSA-N 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- UKAUYVFTDYCKQA-VKHMYHEASA-N L-homoserine Chemical compound OC(=O)[C@@H](N)CCO UKAUYVFTDYCKQA-VKHMYHEASA-N 0.000 description 1
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- 240000003183 Manihot esculenta Species 0.000 description 1
- 235000016735 Manihot esculenta subsp esculenta Nutrition 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 108010021466 Mutant Proteins Proteins 0.000 description 1
- 102000008300 Mutant Proteins Human genes 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 101100070556 Oryza sativa subsp. japonica HSFA4D gene Proteins 0.000 description 1
- 101100043227 Oryza sativa subsp. japonica SPL13 gene Proteins 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 101150099282 SPL7 gene Proteins 0.000 description 1
- 240000000111 Saccharum officinarum Species 0.000 description 1
- 235000007201 Saccharum officinarum Nutrition 0.000 description 1
- 238000002105 Southern blotting Methods 0.000 description 1
- 108010073771 Soybean Proteins Proteins 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 125000000218 acetic acid group Chemical group C(C)(=O)* 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 229960000643 adenine Drugs 0.000 description 1
- 238000005377 adsorption chromatography Methods 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 235000019257 ammonium acetate Nutrition 0.000 description 1
- 229940043376 ammonium acetate Drugs 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 229910000148 ammonium phosphate Inorganic materials 0.000 description 1
- 235000019289 ammonium phosphates Nutrition 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 1
- 238000010364 biochemical engineering Methods 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- FAPWYRCQGJNNSJ-UBKPKTQASA-L calcium D-pantothenic acid Chemical compound [Ca+2].OCC(C)(C)[C@@H](O)C(=O)NCCC([O-])=O.OCC(C)(C)[C@@H](O)C(=O)NCCC([O-])=O FAPWYRCQGJNNSJ-UBKPKTQASA-L 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 229960002079 calcium pantothenate Drugs 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000013601 cosmid vector Substances 0.000 description 1
- 229940104302 cytosine Drugs 0.000 description 1
- 229940127089 cytotoxic agent Drugs 0.000 description 1
- 239000002254 cytotoxic agent Substances 0.000 description 1
- 231100000599 cytotoxic agent Toxicity 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 235000013681 dietary sucrose Nutrition 0.000 description 1
- ZPWVASYFFYYZEW-UHFFFAOYSA-L dipotassium hydrogen phosphate Chemical compound [K+].[K+].OP([O-])([O-])=O ZPWVASYFFYYZEW-UHFFFAOYSA-L 0.000 description 1
- 229910000396 dipotassium phosphate Inorganic materials 0.000 description 1
- 235000019797 dipotassium phosphate Nutrition 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000010230 functional analysis Methods 0.000 description 1
- 238000002523 gelfiltration Methods 0.000 description 1
- 238000012224 gene deletion Methods 0.000 description 1
- 230000030279 gene silencing Effects 0.000 description 1
- 238000012226 gene silencing method Methods 0.000 description 1
- 238000012252 genetic analysis Methods 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 230000007614 genetic variation Effects 0.000 description 1
- 238000010362 genome editing Methods 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000004941 influx Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- FBAFATDZDUQKNH-UHFFFAOYSA-M iron chloride Chemical compound [Cl-].[Fe] FBAFATDZDUQKNH-UHFFFAOYSA-M 0.000 description 1
- 229910000358 iron sulfate Inorganic materials 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 125000001909 leucine group Chemical group [H]N(*)C(C(*)=O)C([H])([H])C(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 229940099596 manganese sulfate Drugs 0.000 description 1
- 239000011702 manganese sulphate Substances 0.000 description 1
- 235000007079 manganese sulphate Nutrition 0.000 description 1
- SQQMAOCOWKFBNP-UHFFFAOYSA-L manganese(II) sulfate Chemical compound [Mn+2].[O-]S([O-])(=O)=O SQQMAOCOWKFBNP-UHFFFAOYSA-L 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 235000013372 meat Nutrition 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 102000035118 modified proteins Human genes 0.000 description 1
- 108091005573 modified proteins Proteins 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229960003966 nicotinamide Drugs 0.000 description 1
- 235000005152 nicotinamide Nutrition 0.000 description 1
- 239000011570 nicotinamide Substances 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 230000035764 nutrition Effects 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 125000001477 organic nitrogen group Chemical group 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 239000013600 plasmid vector Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920001522 polyglycol ester Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- LWIHDJKSTIGBAC-UHFFFAOYSA-K potassium phosphate Substances [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000007398 protein translocation Effects 0.000 description 1
- 229940107700 pyruvic acid Drugs 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 238000005185 salting out Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000002864 sequence alignment Methods 0.000 description 1
- 230000037432 silent mutation Effects 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 229940001941 soy protein Drugs 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 150000005846 sugar alcohols Chemical class 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000013076 target substance Substances 0.000 description 1
- 229960003495 thiamine Drugs 0.000 description 1
- DPJRMOMPQZCRJU-UHFFFAOYSA-M thiamine hydrochloride Chemical compound Cl.[Cl-].CC1=C(CCO)SC=[N+]1CC1=CN=C(C)N=C1N DPJRMOMPQZCRJU-UHFFFAOYSA-M 0.000 description 1
- 235000019190 thiamine hydrochloride Nutrition 0.000 description 1
- 239000011747 thiamine hydrochloride Substances 0.000 description 1
- 229940113082 thymine Drugs 0.000 description 1
- 230000005030 transcription termination Effects 0.000 description 1
- 238000011426 transformation method Methods 0.000 description 1
- 230000005945 translocation Effects 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 241001515965 unidentified phage Species 0.000 description 1
- 108700026220 vif Genes Proteins 0.000 description 1
- 150000003722 vitamin derivatives Chemical class 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 101150062776 yccA gene Proteins 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1025—Acyltransferases (2.3)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/20—Bacteria; Culture media therefor
- C12N1/205—Bacterial isolates
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/74—Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
- C12N15/77—Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Corynebacterium; for Brevibacterium
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P13/00—Preparation of nitrogen-containing organic compounds
- C12P13/04—Alpha- or beta- amino acids
- C12P13/06—Alanine; Leucine; Isoleucine; Serine; Homoserine
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P13/00—Preparation of nitrogen-containing organic compounds
- C12P13/04—Alpha- or beta- amino acids
- C12P13/08—Lysine; Diaminopimelic acid; Threonine; Valine
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P13/00—Preparation of nitrogen-containing organic compounds
- C12P13/04—Alpha- or beta- amino acids
- C12P13/12—Methionine; Cysteine; Cystine
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y203/00—Acyltransferases (2.3)
- C12Y203/03—Acyl groups converted into alkyl on transfer (2.3.3)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y203/00—Acyltransferases (2.3)
- C12Y203/03—Acyl groups converted into alkyl on transfer (2.3.3)
- C12Y203/03001—Citrate (Si)-synthase (2.3.3.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12R—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
- C12R2001/00—Microorganisms ; Processes using microorganisms
- C12R2001/01—Bacteria or Actinomycetales ; using bacteria or Actinomycetales
- C12R2001/15—Corynebacterium
Definitions
- the present application relates to a novel citrate synthase variant, a microorganism comprising the variant, and a method for producing L-amino acids using the microorganism.
- citrate synthase is an enzyme that produces citrate by polymerizing acetyl-CoA and oxaloacetate produced in the glycolysis process of microorganisms, and is also an important enzyme that determines carbon influx into the TCA pathway. to be.
- the present inventors completed the present application by confirming that a novel citrate synthase mutant increases L-amino acid production ability as a result of earnest efforts to produce L-amino acids in high yield.
- One object of the present application is to provide a citrate synthase variant in which lysine, an amino acid corresponding to position 415 of the amino acid sequence of SEQ ID NO: 1, is substituted with histidine.
- Another object of the present application is to provide a polynucleotide encoding the variant of the present application.
- Another object of the present application is to provide a microorganism of the genus Corynebacterium, which includes a mutant of the present application or a polynucleotide encoding the mutant.
- Another object of the present application is to provide a method for producing L-amino acids using the microorganism of the present application.
- Another object of the present application is the microorganism of the present application; Medium in which the microorganism of the present application is cultured; Or to provide a composition for the production of L- amino acids comprising a combination thereof.
- citrate synthase variant of the present application When the citrate synthase variant of the present application is used, it is possible to produce L-amino acids in high yield.
- One aspect of the present application is to provide a citrate synthase variant in which lysine, an amino acid corresponding to position 415 of the amino acid sequence of SEQ ID NO: 1, is substituted with histidine.
- the amino acid corresponding to position 415 based on the amino acid sequence of SEQ ID NO: 1 in the amino acid sequence set forth in SEQ ID NO: 1 is histidine, and at least 70% of the amino acid sequence described in SEQ ID NO: 1, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% or a variant having at least 99.9% homology or identity.
- the amino acid corresponding to position 415 based on the amino acid sequence of SEQ ID NO: 1 is histidine, and at least 70%, 75 with the amino acid sequence set forth in SEQ ID NO: 1 %, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7% or 99.9% or more homology or identity with an amino acid sequence having or comprising , or may consist of or consist essentially of the above amino acid sequence.
- variants having an amino acid sequence in which some sequences are deleted, modified, substituted, conservatively substituted or added are also included within the scope of the present application. is self-evident
- sequence additions or deletions naturally occurring mutations, silent mutations or conservation within the N-terminus, C-terminus and/or within the amino acid sequence that do not alter the function of the variants of the present application It is a case of having an enemy substitution.
- conservative substitution means substituting an amino acid for another amino acid having similar structural and/or chemical properties. Such amino acid substitutions may generally occur based on similarity in the polarity, charge, solubility, hydrophobicity, hydrophilicity and/or amphipathic nature of the residues. Typically, conservative substitutions may have little or no effect on the activity of the protein or polypeptide.
- variant means that one or more amino acids are conservatively substituted and/or modified so that they differ from the amino acid sequence before the mutation of the variant, but have functions or properties. refers to a polypeptide that is maintained. Such variants can generally be identified by modifying one or more amino acids in the amino acid sequence of the polypeptide and evaluating the properties of the modified polypeptide. That is, the ability of the variant may be increased, unchanged, or decreased compared to the polypeptide before the mutation. In addition, some variants may include variants in which one or more portions, such as an N-terminal leader sequence or a transmembrane domain, have been removed.
- variants may include variants in which a portion is removed from the N- and/or C-terminus of the mature protein.
- variant may be used interchangeably with terms such as mutant, modified, mutant polypeptide, mutated protein, mutant and mutant (in English, modified, modified polypeptide, modified protein, mutant, mutein, divergent, etc.) and, as long as it is a term used in a mutated sense, it is not limited thereto.
- the variant may be a variant in which lysine (Lysine, Lys, K), which is an amino acid corresponding to the 415th position of the amino acid sequence of SEQ ID NO: 1, is substituted with histidine (Histidine, His, H).
- variants may include deletions or additions of amino acids that have minimal effect on the properties and secondary structure of the polypeptide.
- a signal (or leader) sequence involved in protein translocation may be conjugated to the N-terminus of the mutant, either co-translationally or post-translationally.
- the variants may also be conjugated with other sequences or linkers for identification, purification, or synthesis.
- the term 'homology' or 'identity' refers to the degree of similarity between two given amino acid sequences or nucleotide sequences and may be expressed as a percentage.
- the terms homology and identity can often be used interchangeably.
- Sequence homology or identity of a conserved polynucleotide or polypeptide is determined by standard alignment algorithms, with default gap penalties established by the program used may be used. Substantially homologous or identical sequences are generally capable of hybridizing with all or part of a sequence under moderate or high stringent conditions. It is apparent that hybridization also includes hybridization with polynucleotides containing common codons or codons taking codon degeneracy into account in the polynucleotide.
- a GAP program can be defined as the total number of symbols in the shorter of the two sequences divided by the number of similarly aligned symbols (ie, nucleotides or amino acids).
- Default parameters for the GAP program are: (1) a binary comparison matrix (containing values of 1 for identity and 0 for non-identity) and Schwartz and Dayhoff, eds., Atlas Of Protein Sequence And Structure, National Biomedical Research Foundation , pp. 353-358 (1979), Gribskov et al (1986) Nucl. Acids Res. 14: weighted comparison matrix of 6745 (or EDNAFULL (EMBOSS version of NCBI NUC4.4) substitution matrix); (2) a penalty of 3.0 for each gap and an additional 0.10 penalty for each symbol in each gap (or a gap open penalty of 10, a gap extension penalty of 0.5); and (3) no penalty for end gaps.
- corresponding to refers to an amino acid residue at a position listed in a polypeptide, or an amino acid residue similar to, identical to, or homologous to a residue listed in a polypeptide. Identifying an amino acid at a corresponding position may be determining a specific amino acid in a sequence that refers to a specific sequence.
- corresponding region generally refers to a similar or corresponding position in a related protein or reference protein.
- any amino acid sequence is aligned with SEQ ID NO: 1, and based on this, each amino acid residue of the amino acid sequence can be numbered with reference to the numerical position of the amino acid residue corresponding to the amino acid residue of SEQ ID NO: 1.
- a sequence alignment algorithm such as that described in this application can identify the position of an amino acid, or a position at which modifications, such as substitutions, insertions, or deletions, occur compared to a query sequence (also referred to as a "reference sequence").
- Such alignments include, for example, the Needleman-Wunsch algorithm (Needleman and Wunsch, 1970, J. Mol. Biol. 48: 443-453), the Needleman program in the EMBOSS package (EMBOSS: The European Molecular Biology Open Software Suite, Rice et al. , 2000), Trends Genet. 16: 276-277), etc., but is not limited thereto, and a sequence alignment program known in the art, a pairwise sequence comparison algorithm, etc. may be appropriately used.
- citrate synthase is an enzyme that generates citrate by polymerizing acetyl-CoA and oxaloacetate produced in the glycolysis of microorganisms.
- the enzyme is capable of catalyzing the condensation reaction of acetyl coei with a 2-carbon acetate moiety from a molecule of 4-carbon oxaloacetate to form 6-carbon oxaloacetate.
- citrate synthase may be used interchangeably with citrate synthase, CS, GltA protein, or GltA.
- the GltA sequence can be obtained from GenBank of NCBI, which is a known database.
- the GltA may be a polypeptide having citrate synthase activity encoded by the gltA gene, but is not limited thereto.
- the mutant of the present application may have an activity to increase the ability to produce L-amino acids compared to the wild-type polypeptide.
- the variant of the present application may have 80% or more sequence identity with the amino acid sequence of SEQ ID NO: 1.
- the variant of the present application may include a polypeptide described in the amino acid sequence of SEQ ID NO: 3.
- the amino acid sequence of SEQ ID NO: 3 may be an amino acid sequence in which lysine corresponding to position 415 in the amino acid sequence from positions 362 to 415 from the N-terminus of the amino acid sequence set forth in SEQ ID NO: 1 is substituted with histidine.
- the variant of the present application may include an amino acid sequence of the following general formula 1:
- X 1 of Formula 1 is asparagine or serine
- X 2 is alanine or glutamic acid
- X 3 is tyrosine or cysteine.
- the variant of the present application may have at least 90% sequence identity with the amino acid sequence of SEQ ID NO: 8, 10 or 12.
- the variant of the present application may include, consist of, or consist essentially of an amino acid sequence having 90% or more sequence identity with the amino acid sequence of SEQ ID NO: 8, 10 or 12.
- the variant of the present application has the amino acid sequence of SEQ ID NO: 8, 10 or 12 and 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5 %, or 99.7% or more, or comprises an amino acid sequence having the sequence identity, or may consist of or consist essentially of an amino acid sequence having the sequence identity.
- Another aspect of the present application is to provide a polynucleotide encoding the variant of the present application.
- polynucleotide refers to a DNA or RNA strand of a certain length or longer as a polymer of nucleotides in which nucleotide monomers are linked in a long chain by covalent bonds, and more specifically, encoding the variant. polynucleotide fragments.
- the base corresponding to positions 1243 to 1245 based on the nucleotide sequence of SEQ ID NO: 2 is CAC, and at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.7%, or a polynucleotide described with a nucleotide sequence having at least 99.9%, less than 100% homology or identity may include
- a sequence encoding a polypeptide or protein having such homology or identity and exhibiting efficacy corresponding to the variant of the present application is a polynucleotide described as a nucleotide sequence in which some sequences are deleted, modified, substituted, conservatively substituted or added It is obvious that also included within the scope of the present application.
- the polynucleotides of the present application are various in the coding region within the range that does not change the amino acid sequence of the variants of the present application. Deformation can be made.
- the codon encoding the amino acid corresponding to the 415th position of SEQ ID NO: 1 may be one of the codons encoding histidine.
- polynucleotide of the present application may be included without limitation as long as it can hybridize under stringent conditions with a probe that can be prepared from a known gene sequence, for example, a sequence complementary to all or part of the polynucleotide sequence of the present application.
- stringent condition means a condition that enables specific hybridization between polynucleotides. These conditions are described in J. Sambrook et al., Molecular Cloning, A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory press, Cold Spring Harbor, New York, 1989; F.M. Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, Inc., New York, 9.50-9.51, 11.7-11.8).
- polynucleotides with high homology or identity 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, or a condition in which polynucleotides having 99% or more homology or identity hybridize with each other and polynucleotides with lower homology or identity do not hybridize, or a washing condition of conventional Southern hybridization at 60°C, 1XSSC, 0.1% SDS, specifically 60°C, 0.1XSSC, 0.1% SDS, more specifically 68°C, 0.1XSSC, 0.1% SDS at a salt concentration and temperature equivalent to one wash, specifically two to three washes conditions can be enumerated.
- Hybridization requires that two nucleic acids have complementary sequences, although mismatch between bases is possible depending on the stringency of hybridization.
- complementary is used to describe the relationship between nucleotide bases capable of hybridizing to each other.
- adenine is complementary to thymine
- cytosine is complementary to guanine.
- the polynucleotides of the present application may also include isolated nucleic acid fragments that are complementary to the overall sequence as well as substantially similar nucleotide sequences.
- a polynucleotide having homology or identity to the polynucleotide of the present application can be detected using the hybridization conditions including a hybridization step at a Tm value of 55° C. and using the above-described conditions.
- the Tm value may be 60° C., 63° C. or 65° C., but is not limited thereto and may be appropriately adjusted by those skilled in the art according to the purpose.
- the appropriate stringency for hybridizing the polynucleotides depends on the length of the polynucleotides and the degree of complementarity, and the parameters are well known in the art (eg, J. Sambrook et al., supra).
- the polynucleotide of the present application is a polynucleotide described with the nucleotide sequence at positions 1084 to 1245 based on the nucleotide sequence of SEQ ID NO: 9, 11 or 13, or a nucleic acid of SEQ ID NO: 9, 11, 13 or 15 It may include a polynucleotide described as a nucleotide sequence.
- the variant is as described in the other aspects above.
- Another aspect of the present application is to provide a vector comprising the polynucleotide of the present application.
- the vector may be an expression vector for expressing the polynucleotide in a host cell, but is not limited thereto.
- the vector of the present application may include a DNA preparation comprising a nucleotide sequence of a polynucleotide encoding the target polypeptide operably linked to a suitable expression control region (or expression control sequence) so that the target polypeptide can be expressed in a suitable host.
- the expression control region may include a promoter capable of initiating transcription, an optional operator sequence for regulating such transcription, a sequence encoding a suitable mRNA ribosome binding site, and a sequence regulating the termination of transcription and translation.
- the vector After transformation into an appropriate host cell, the vector can replicate or function independently of the host genome, and can be integrated into the genome itself.
- the vector used in the present application is not particularly limited, and any vector known in the art may be used.
- Examples of commonly used vectors include plasmids, cosmids, viruses and bacteriophages in a natural or recombinant state.
- pWE15, M13, MBL3, MBL4, IXII, ASHII, APII, t10, t11, Charon4A, and Charon21A may be used as phage vectors or cosmid vectors, and pDZ-based, pBR-based, and pUC-based plasmid vectors may be used.
- pBluescript II-based pGEM-based, pTZ-based, pCL-based, pET-based and the like
- pDZ, pDC, pDCM2, pACYC177, pACYC184, pCL, pECCG117 Biotechnology letters vol 13, No. 10, p. 721-726 (1991), Republic of Korea Patent No. 10-1992-0007401
- pUC19, pBR322, pMW118, pCC1BAC vector, etc. can be used.
- a polynucleotide encoding a target polypeptide may be inserted into a chromosome through a vector for intracellular chromosome insertion.
- the insertion of the polynucleotide into the chromosome may be performed by any method known in the art, for example, homologous recombination, but is not limited thereto.
- It may further include a selection marker (selection marker) for confirming whether the chromosome is inserted.
- the selection marker is used to select cells transformed with the vector, that is, to determine whether a target nucleic acid molecule is inserted, and selectable phenotypes such as drug resistance, auxotrophy, resistance to cytotoxic agents, or surface polypeptide expression. Markers to be given can be used. In an environment treated with a selective agent, only the cells expressing the selectable marker survive or exhibit other expression traits, so that the transformed cells can be selected.
- the term "transformation” refers to introducing a vector including a polynucleotide encoding a target polypeptide into a host cell or microorganism so that the polypeptide encoded by the polynucleotide can be expressed in the host cell.
- the transformed polynucleotide may include all of them regardless of whether they are inserted into the chromosome of the host cell or located outside the chromosome, as long as they can be expressed in the host cell.
- the polynucleotide includes DNA and/or RNA encoding a target polypeptide.
- the polynucleotide may be introduced in any form as long as it can be introduced and expressed into a host cell.
- the polynucleotide may be introduced into a host cell in the form of an expression cassette, which is a gene construct including all elements necessary for self-expression.
- the expression cassette may include a promoter operably linked to the polynucleotide, a transcription termination signal, a ribosome binding site, and a translation termination signal.
- the expression cassette may be in the form of an expression vector capable of self-replication.
- the polynucleotide may be introduced into a host cell in its own form and operably linked to a sequence required for expression in the host cell, but is not limited thereto.
- operably linked means that a promoter sequence that initiates and mediates transcription of a polynucleotide encoding the target variant of the present application and the polynucleotide sequence are functionally linked.
- variants and polynucleotides are as described in the other aspects above.
- Another aspect of the present application is to provide a microorganism comprising the mutant or polynucleotide of the present application, Corynebacterium genus (The genus of Corynebacterium ).
- the microorganism of the present application may include a mutant of the present application, a polynucleotide encoding the mutant, or a vector including the polynucleotide of the present application.
- microorganism or strain
- microorganism includes both wild-type microorganisms and microorganisms in which genetic modification has occurred naturally or artificially, and causes such as insertion of an external gene or enhanced or inactivated activity of an intrinsic gene
- a specific mechanism is weakened or enhanced as a microorganism, and may be a microorganism including genetic modification for the production of a desired polypeptide, protein or product.
- the microorganism of the present application includes a microorganism comprising any one or more of a mutant of the present application, a polynucleotide of the present application, and a vector including the polynucleotide of the present application; a microorganism modified to express a variant of the present application or a polynucleotide of the present application; a microorganism (eg, a recombinant strain) expressing a variant of the present application or a polynucleotide of the present application; Or it may be a microorganism (eg, a recombinant strain) having the mutant activity of the present application, but is not limited thereto.
- the microorganism of the present application may be a strain having the ability to produce L- amino acids.
- the L-amino acid production ability in the microorganism of the present application may be L-valine or O-acetyl-L-homoserine production ability.
- the microorganism of the present application is a microorganism naturally having GltA or L-amino acid production ability, or a mutant of the present application or a polynucleotide encoding the same in a microorganism having no GltA or L-amino acid production ability (or a vector containing the polynucleotide) ) may be introduced and/or may be a microorganism to which GltA or L-amino acid production ability is imparted, but is not limited thereto.
- the microorganism of the present application is a cell or microorganism that is transformed with a vector containing the polynucleotide of the present application or the polynucleotide of the present application, and expresses the variant of the present application, and for the purpose of the present application, the microorganism of the present application is It may include all microorganisms capable of producing L-amino acids, including the variants of the present application.
- the strain of the present application may be a recombinant strain having an increased ability to produce L-amino acids by introducing a polynucleotide encoding a variant of the present application into a natural wild-type microorganism or a microorganism producing L-amino acids.
- the recombinant strain with increased L-amino acid production ability is a natural wild-type microorganism or a citrate synthase unmodified microorganism (that is, a microorganism expressing a wild-type (SEQ ID NO: 1) protein or a microorganism that does not express the mutant of the present application) Compared to that, it may be a microorganism having an increased ability to produce L-amino acids, but is not limited thereto.
- the citrate synthase unmodified microorganism which is the target strain for comparing the increase in L-amino acid production ability, is ATCC14067 strain, ATCC13032 strain, ATCC13869 strain, Corynebacterium glutamicum CJ7V strain, Corynebacterium It may be a glutamicum CJ8V strain or a CA08-0072 strain, but is not limited thereto.
- the recombinant strain with increased production capacity has an L-amino acid production capacity of about 1% or more, 5% or more, 7% or more, about 10% or more, about 20% or more, compared to the parent strain or unmodified microorganism before mutation, or about 30% or more (the upper limit is not particularly limited, for example, about 200% or less, about 150% or less, about 100% or less, about 50% or less, about 45% or less, about 40% or less, or about 30% or less. Yes) may be increased, but it is not limited thereto as long as it has an increased amount of + value compared to the production capacity of the parent strain or unmodified microorganism before mutation.
- the recombinant strain with increased production capacity has an L-valine production capacity of about 1.01 times or more, about 1.05 times or more, about 1.07 times or more, about 1.1 times or more, about 1.2 times or more, compared to the parent strain or unmodified microorganism before mutation. It may be increased by at least twice or at least about 1.3 times (the upper limit is not particularly limited, and may be, for example, about 10 times or less, about 5 times or less, about 3 times or less, or about 2 times or less).
- the term "unmodified microorganism” does not exclude a strain containing a mutation that can occur naturally in a microorganism, it is a wild-type strain or a natural-type strain itself, or a genetic variation caused by natural or artificial factors. It may mean the strain before being changed.
- the unmodified microorganism may refer to a strain in which the protein variant described herein has not been introduced or has been introduced.
- the "unmodified microorganism” may be used interchangeably with "strain before modification", “microbe before modification”, “unmodified strain”, “unmodified strain”, “unmodified microorganism” or "reference microorganism”.
- the microorganism of the present application is Corynebacterium glutamicum ( Corynebacterium glutamicum ), Corynebacterium crudilactis ), Corynebacterium deserti ( Corynebacterium deserti ), Cory Nebacterium efficiens ( Corynebacterium efficiens ), Corynebacterium callunae ), Corynebacterium stationis , Corynebacterium stationis ), Corynebacterium singulare ( Corynebacterium singulare ), Corynebacterium halo Tolerans ( Corynebacterium halotolerans ), Corynebacterium striatum ( Corynebacterium striatum ), Corynebacterium ammoniagenes ( Corynebacterium ammoniagenes ), Corynebacterium pollutisoli ( Corynebacterium pollutisoli ), Corynebacterium imitans imitans imitans imitans imit
- the microorganism of the present application may be a microorganism in which the NCgl2335 protein is further weakened.
- the microorganism of the present application is acetolactate synthase isozyme 1 small subunit (IlvN), L-methionine / branched-chain amino acid exporter (L-methionine / branched-chain amino acid exporter, YjeH)
- the activity of a protein selected from the group consisting of may be an additionally enhanced microorganism.
- the L-valine-producing microorganism of the present application may be a microorganism that additionally enhances IlvN activity and/or weakens NCgl2335.
- the microorganism producing O-acetyl-L-homoserine of the present application may be a microorganism with enhanced YjeH (L-methionine/branched-chain amino acid exporter) activity.
- the term “attenuation” of polypeptide activity is a concept that includes both reduced or no activity compared to intrinsic activity.
- the attenuation may be used interchangeably with terms such as inactivation, deficiency, down-regulation, decrease, reduce, attenuation, and the like.
- the attenuation is when the activity of the polypeptide itself is reduced or eliminated compared to the activity of the polypeptide possessed by the original microorganism due to mutation of the polynucleotide encoding the polypeptide, etc.
- the overall polypeptide activity level and/or concentration (expression amount) in the cell is lower than that of the native strain due to (translation) inhibition, etc., when the expression of the polynucleotide is not made at all, and/or when the expression of the polynucleotide is Even if there is no activity of the polypeptide, it may also be included.
- the "intrinsic activity” refers to the activity of a specific polypeptide originally possessed by the parent strain, wild-type or unmodified microorganism before transformation when the trait is changed due to genetic mutation caused by natural or artificial factors. This may be used interchangeably with “activity before modification”. "Inactivation, deficiency, reduction, downregulation, reduction, attenuation” of the activity of the polypeptide compared to the intrinsic activity means that the activity of the specific polypeptide originally possessed by the parent strain or unmodified microorganism before transformation is lowered.
- Attenuation of the activity of such a polypeptide may be performed by any method known in the art, but is not limited thereto, and may be achieved by application of various methods well known in the art (eg, Nakashima N et al., Bacterial cellular engineering by genome editing and gene silencing. Int J Mol Sci. 2014;15(2):2773-2793, Sambrook et al. Molecular Cloning 2012, etc.).
- the attenuation of the polypeptide activity of the present application is
- an antisense oligonucleotide eg, antisense RNA
- an antisense oligonucleotide that complementarily binds to the transcript of said gene encoding the polypeptide
- deletion of a part or all of the gene encoding the polypeptide may be the removal of the entire polynucleotide encoding the endogenous target polypeptide in the chromosome, replacement with a polynucleotide in which some nucleotides are deleted, or replacement with a marker gene.
- the expression control region includes, but is not limited to, a promoter, an operator sequence, a sequence encoding a ribosome binding site, and a sequence regulating the termination of transcription and translation.
- the modification of the amino acid sequence or polynucleotide sequence of 3) and 4) above may result in deletion, insertion, non-conservative or conservative substitution of the amino acid sequence of the polypeptide or the polynucleotide sequence encoding the polypeptide, or these It may be an amino acid sequence or polynucleotide sequence improved to have a weaker activity or replacement with an amino acid sequence or polynucleotide sequence improved to have no activity, but is not limited thereto.
- the expression of a gene may be inhibited or attenuated, but is not limited thereto.
- the base sequence modification encoding the start codon or 5'-UTR region of the gene transcript encoding the polypeptide is, for example, a base encoding another start codon having a lower expression rate of the polypeptide compared to the intrinsic start codon It may be substituted with a sequence, but is not limited thereto.
- antisense oligonucleotide eg, antisense RNA
- antisense RNA an antisense oligonucleotide that complementarily binds to the transcript of the gene encoding the polypeptide
- Weintraub, H. et al. Antisense-RNA as a molecular tool. for genetic analysis, Reviews - Trends in Genetics, Vol. 1(1) 1986].
- a promoter transcribed in the opposite direction to the 3' end of the open reading frame (ORF) of the gene sequence encoding the polypeptide (Reverse transcription engineering, RTE) is complementary to the transcript of the gene encoding the polypeptide It may be to weaken the activity by creating a hostile antisense nucleotide.
- the term "enhancement" of a polypeptide activity means that the activity of the polypeptide is increased compared to the intrinsic activity.
- the reinforcement may be used interchangeably with terms such as activation, up-regulation, overexpression, and increase.
- activation, enhancement, up-regulation, overexpression, and increase may include all of those exhibiting an activity that was not originally possessed, or exhibiting an improved activity compared to an intrinsic activity or an activity prior to modification.
- the "intrinsic activity” refers to the activity of a specific polypeptide originally possessed by the parent strain or unmodified microorganism before the transformation when the trait is changed due to genetic mutation caused by natural or artificial factors. This may be used interchangeably with "activity before modification”.
- Enhancement means the activity and/or concentration (expression) of a specific polypeptide originally possessed by the parent strain or unmodified microorganism prior to transformation. amount), which means improved.
- the enrichment can be achieved by introducing an exogenous polypeptide, or by enhancing the activity and/or concentration (expression amount) of the endogenous polypeptide. Whether or not the activity of the polypeptide is enhanced can be confirmed from the increase in the level of activity, expression level, or the amount of product excreted from the polypeptide.
- the enhancement of the activity of the polypeptide can be applied by various methods well known in the art, and is not limited as long as it can enhance the activity of the target polypeptide compared to the microorganism before modification. Specifically, it may be one using genetic engineering and/or protein engineering well known to those skilled in the art, which is a routine method of molecular biology, but is not limited thereto (eg, Sitnicka et al. Functional Analysis of Genes. Advances in Cell). Biology 2010, Vol. 2. 1-16, Sambrook et al. Molecular Cloning 2012, etc.).
- modification of the polynucleotide sequence encoding the polypeptide to enhance the activity of the polypeptide eg, modification of the polynucleotide sequence of the polypeptide gene to encode a polypeptide that has been modified to enhance the activity of the polypeptide;
- the increase in the intracellular copy number of the polynucleotide encoding the polypeptide is achieved by introduction of a vector capable of replicating and functioning independently of the host, to which the polynucleotide encoding the polypeptide is operably linked, into a host cell.
- the polynucleotide encoding the polypeptide may be achieved by introducing one copy or two or more copies into a chromosome in a host cell.
- the introduction into the chromosome may be performed by introducing a vector capable of inserting the polynucleotide into the chromosome in the host cell into the host cell, but is not limited thereto.
- the vector is the same as described above.
- Replacing the gene expression control region (or expression control sequence) on the chromosome encoding the polypeptide with a sequence with strong activity is, for example, deletion, insertion, non-conservative or Conservative substitution or a combination thereof may result in a mutation in the sequence, or replacement with a sequence having a stronger activity.
- the expression control region is not particularly limited thereto, but may include a promoter, an operator sequence, a sequence encoding a ribosome binding site, and a sequence controlling the termination of transcription and translation.
- the original promoter may be replaced with a strong promoter, but is not limited thereto.
- Examples of known strong promoters include CJ1 to CJ7 promoters (US 7662943 B2), lac promoter, trp promoter, trc promoter, tac promoter, lambda phage PR promoter, PL promoter, tet promoter, gapA promoter, SPL7 promoter, SPL13 (sm3) promoter (US Patent US 10584338 B2), O2 promoter (US Patent US 10273491 B2), tkt promoter, yccA promoter, etc., but is not limited thereto.
- Modification of the nucleotide sequence encoding the start codon or 5'-UTR region of the gene transcript encoding the polypeptide is, for example, a nucleotide sequence encoding another start codon having a higher expression rate of the polypeptide compared to the intrinsic start codon. It may be a substitution, but is not limited thereto.
- the modification of the amino acid sequence or polynucleotide sequence of 4) and 5) above may include deletion, insertion, non-conservative or conservative substitution of the amino acid sequence of the polypeptide or the polynucleotide sequence encoding the polypeptide to enhance the activity of the polypeptide;
- a combination thereof may result in sequence mutation, or replacement with an amino acid sequence or polynucleotide sequence improved to have stronger activity or an amino acid sequence or polynucleotide sequence improved to increase activity, but is not limited thereto.
- the replacement may be specifically performed by inserting a polynucleotide into a chromosome by homologous recombination, but is not limited thereto.
- the vector used may further include a selection marker for confirming whether or not the chromosome is inserted.
- the selection marker is the same as described above.
- the introduction of the foreign polynucleotide exhibiting the activity of the polypeptide may be the introduction of the foreign polynucleotide encoding the polypeptide exhibiting the same/similar activity as the polypeptide into a host cell.
- the foreign polynucleotide is not limited in its origin or sequence as long as it exhibits the same/similar activity as the polypeptide.
- the method used for the introduction can be performed by appropriately selecting a known transformation method by those skilled in the art, and the introduced polynucleotide is expressed in a host cell to generate a polypeptide and increase its activity.
- Codon optimization of the polynucleotide encoding the polypeptide is codon-optimized so that the transcription or translation of the endogenous polynucleotide is increased in the host cell, or the transcription and translation of the foreign polynucleotide is optimized in the host cell. It may be that its codons are optimized so that the
- the tertiary structure of the polypeptide is analyzed and the exposed site is selected and modified or chemically modified, for example, by comparing the sequence information of the polypeptide to be analyzed with a database in which sequence information of known proteins is stored. It may be to determine a template protein candidate according to the degree, check the structure based on this, and select an exposed site to be modified or chemically modified and modified or modified.
- Such enhancement of polypeptide activity is to increase the activity or concentration of the corresponding polypeptide based on the activity or concentration of the polypeptide expressed in the wild-type or pre-modified microbial strain, or increase the amount of product produced from the polypeptide.
- the present invention is not limited thereto.
- Modification of some or all of the polynucleotide in the microorganism of the present application is (a) homologous recombination using a vector for chromosome insertion in the microorganism or engineered nuclease (e.g., CRISPR) -Cas9) and/or (b) induced by light and/or chemical treatment such as ultraviolet and radiation, but not limited thereto.
- the method of modifying part or all of the gene may include a method by DNA recombination technology.
- a part or all of the gene may be deleted.
- the injected nucleotide sequence or vector may include a dominant selection marker, but is not limited thereto.
- the microorganism producing L-valine of the present application may be a microorganism comprising the polypeptide described in the amino acid sequence of SEQ ID NO: 27 and/or the polynucleotide described in the nucleic acid sequence of SEQ ID NO: 28.
- the microorganism producing O-acetyl-L-homoserine of the present application includes the polypeptide described in the amino acid sequence of SEQ ID NO: 47 and/or the polynucleotide described in the nucleic acid sequence of SEQ ID NO: 48; It may be a microorganism comprising a mutation selected from the group consisting of polypeptide inactivation described in the amino acid sequence of SEQ ID NO: 37 and/or polynucleotide deletion described in the nucleotide sequence of SEQ ID NO: 38.
- Another aspect of the present application provides a method for producing L-amino acids, comprising culturing a microorganism of the genus Corynebacterium comprising the mutant or polynucleotide of the present application in a medium.
- the L-amino acid production method of the present application may include culturing a Corynebacterium glutamicum strain comprising the mutant of the present application or the polynucleotide of the present application or the vector of the present application in a medium.
- the L-amino acid may be L-valine, O-acetyl-L-homoserine or L-methionine.
- the term "cultivation” means growing the microorganisms of the genus Corynebacterium of the present application in appropriately controlled environmental conditions.
- the culture process of the present application may be performed according to a suitable medium and culture conditions known in the art. Such a culture process can be easily adjusted and used by those skilled in the art according to the selected strain.
- the culture may be a batch, continuous and/or fed-batch, but is not limited thereto.
- the term "medium” refers to a material in which nutrients required for culturing the microorganism of the genus Corynebacterium of the present application are mixed as a main component, and includes water essential for survival and development, as well as nutrients and development supplies, etc.
- any medium and other culture conditions used for culturing the microorganisms of the genus Corynebacterium of the present application may be used without particular limitation as long as they are media used for culturing conventional microorganisms, but the genus Corynebacterium of the present application
- the microorganisms can be cultured in a conventional medium containing an appropriate carbon source, nitrogen source, phosphorus, inorganic compound, amino acid and/or vitamin, etc. under aerobic conditions while controlling temperature, pH, and the like.
- the culture medium for microorganisms of the genus Corynebacterium can be found in the literature ["Manual of Methods for General Bacteriology” by the American Society for Bacteriology (Washington D.C., USA, 1981)].
- the carbon source includes carbohydrates such as glucose, saccharose, lactose, fructose, sucrose, maltose, and the like; sugar alcohols such as mannitol and sorbitol; organic acids such as pyruvic acid, lactic acid, citric acid and the like; amino acids such as glutamic acid, methionine, lysine, and the like may be included.
- natural organic nutrient sources such as starch hydrolyzate, molasses, blackstrap molasses, rice winter, cassava, sugar cane offal and corn steep liquor can be used, specifically glucose and sterilized pre-treated molasses (i.e., converted to reducing sugar). molasses) may be used, and other appropriate amounts of carbon sources may be variously used without limitation. These carbon sources may be used alone or in combination of two or more, but is not limited thereto.
- nitrogen source examples include inorganic nitrogen sources such as ammonia, ammonium sulfate, ammonium chloride, ammonium acetate, ammonium phosphate, anmonium carbonate, and ammonium nitrate; Amino acids such as glutamic acid, methionine, glutamine, and organic nitrogen sources such as peptone, NZ-amine, meat extract, yeast extract, malt extract, corn steep liquor, casein hydrolyzate, fish or degradation products thereof, defatted soybean cake or degradation products thereof, etc. can be used These nitrogen sources may be used alone or in combination of two or more, but is not limited thereto.
- inorganic nitrogen sources such as ammonia, ammonium sulfate, ammonium chloride, ammonium acetate, ammonium phosphate, anmonium carbonate, and ammonium nitrate
- Amino acids such as glutamic acid, methionine, glutamine
- organic nitrogen sources such as peptone, NZ-amine, meat extract, yeast extract
- the phosphorus may include potassium monobasic phosphate, dipotassium phosphate, or a sodium-containing salt corresponding thereto.
- potassium monobasic phosphate dipotassium phosphate
- sodium-containing salt corresponding thereto.
- sodium chloride, calcium chloride, iron chloride, magnesium sulfate, iron sulfate, manganese sulfate, calcium carbonate, etc. may be used, and in addition, amino acids, vitamins and/or suitable precursors may be included. These components or precursors may be added to the medium either batchwise or continuously. However, the present invention is not limited thereto.
- compounds such as ammonium hydroxide, potassium hydroxide, ammonia, phosphoric acid, sulfuric acid, etc. may be added to the medium in an appropriate manner to adjust the pH of the medium.
- an antifoaming agent such as fatty acid polyglycol ester may be used to suppress bubble formation.
- oxygen or oxygen-containing gas may be injected into the medium, or nitrogen, hydrogen or carbon dioxide gas may be injected without or without gas to maintain anaerobic and microaerobic conditions, it is not
- the culture temperature may be maintained at 20 to 45° C., specifically, 25 to 40° C., and may be cultured for about 10 to 160 hours, but is not limited thereto.
- the L-amino acid produced by the culture of the present application may be secreted into the medium or may remain in the cell.
- the L-amino acid production method of the present application includes the steps of preparing the microorganism of the genus Corynebacterium of the present application, preparing a medium for culturing the microorganism, or a combination thereof (regardless of the order, in any order) , for example, prior to the culturing step, may be further included.
- the method for producing L-amino acids of the present application may further include recovering L-amino acids from the culture medium (cultured medium) or the microorganism of the genus Corynebacterium of the present application.
- the recovering step may be further included after the culturing step.
- the recovery may be to collect the desired L-amino acid using a suitable method known in the art according to the culture method of the microorganism of the present application, for example, a batch, continuous or fed-batch culture method, etc. .
- a suitable method known in the art according to the culture method of the microorganism of the present application, for example, a batch, continuous or fed-batch culture method, etc. .
- chromatography such as island chromatography, HPLC, or a combination thereof may be used, and a desired L-amino acid may be recovered from a medium or a microorganism using a suitable method known in the art.
- the L-amino acid production method of the present application may include an additional purification step.
- the purification may be performed using a suitable method known in the art.
- the recovery step and the purification step are performed continuously or discontinuously, regardless of the order, or integrated into one step may be performed, but is not limited thereto.
- the L-methionine production method of the present application may further include the step of converting the O-acetyl-L-homoserine to L-methionine.
- the converting step may be further included after the culturing step or the recovering step.
- the converting step can be carried out using a suitable method known in the art (US 8426171 B2).
- the L-methionine production method of the present application is O-acetyl-L-homoserine, methyl mercaptan and O-acetyl homoserine sulfhydrylase (Oacetylhomoserine sulfhydrylase) or cystathionine- ⁇ -synthase (cystathionine) gamma-synthase) or O-succinyl homoserine sulfhydrylase (O-succinyl homoserine sulfhydrylase) to contact to produce L-methionine.
- Oacetylhomoserine sulfhydrylase Oacetylhomoserine sulfhydrylase
- cystathionine- ⁇ -synthase cystathionine- ⁇ -synthase
- O-succinyl homoserine sulfhydrylase O-succiny
- Another aspect of the present application is a microorganism of the genus Corynebacterium comprising a vector comprising a mutant of the present application, a polynucleotide encoding the mutant of the present application, or a polynucleotide of the present application; the culture medium; Or to provide a composition for the production of L- amino acids comprising a combination thereof.
- composition of the present application may further include any suitable excipients commonly used in compositions for the production of amino acids, and these excipients may be, for example, preservatives, wetting agents, dispersing agents, suspending agents, buffering agents, stabilizing agents or isotonic agents, etc.
- excipients commonly used in compositions for the production of amino acids
- these excipients may be, for example, preservatives, wetting agents, dispersing agents, suspending agents, buffering agents, stabilizing agents or isotonic agents, etc.
- the present invention is not limited thereto.
- the L-amino acid may be L-valine, O-acetyl-L-homoserine, or L-methionine.
- composition of the present application variants, polynucleotides, vectors, strains and media are the same as those described in the other aspects above.
- the present inventors have discovered that the 415th amino acid residue of GltA is an acetyl-coA (acetyl-coA) binding site, and when it is substituted with another amino acid, the Km value of acetyl-coA increases and citrate synthase activity is predicted to be weakened.
- a vector was constructed in which lysine, which is the 415th amino acid of GltA, was substituted with another amino acid.
- a vector containing mutations was constructed to replace lysine, the 415th amino acid, with histidine (K415H), tryptophan (K415W) and glycine (K415G).
- the primer pair of SEQ ID NOs: 15 and 17 and the primer pair of SEQ ID NOs: 16 and 18, the primer pair of SEQ ID NOs: 15 and 20 and SEQ ID NO: 18 and PCR was performed for the primer pair of 19, using the primer pair of SEQ ID NOs: 15 and 22 and the primer pair of SEQ ID NOs: 18 and 21, respectively.
- Overlapping PCR was performed again using the primer pair of SEQ ID NO: 15 and SEQ ID NO: 18 using the mixture of two fragments among the six fragments obtained above as a template to obtain three fragments, respectively.
- PCR was repeated 30 times at 94°C for 30 seconds, at 55°C for 30 seconds, and at 72°C for 1 minute and 30 seconds, and then at 72°C for 5 minutes.
- pDCM2 vector SEQ ID NO: 14, Republic of Korea Publication No. 10-2020-0136813
- smaI the three PCR products obtained above were each fusion cloned. Fusion cloning was performed using the In-Fusion® HD cloning kit (Clontech).
- the plasmids obtained as a result of cloning were named pDCM2-gltA (K415H), pDCM2-gltA (K415W), and pDCM2-gltA (K415G), respectively.
- the sequences of the primers used in this Example are shown in Table 1 below.
- PCR was performed using the primer pair of SEQ ID NOs: 29 and 31 and the primer pair of SEQ ID NOs: 30 and 32 using gDNA (genomic DNA) of wild-type Corynebacterium glutamicum ATCC14067 as a template, respectively.
- gDNA genomic DNA
- overlapping PCR was performed again to obtain three fragments, respectively.
- PCR was repeated 30 times at 94°C for 30 seconds, at 55°C for 30 seconds, and at 72°C for 1 minute and 30 seconds, and then at 72°C for 5 minutes.
- the pDCM2 vector was treated with smaI, and the three PCR products obtained above were each fusion cloned.
- the plasmids obtained as a result of cloning were named pDCM2-ilvN (A42V), respectively.
- the pDCM2-ilvN (A42V) was transformed into wild-type Corynebacterium glutamicum ATCC14067 and ATCC13869 strains, respectively, to induce homologous recombination on the chromosome (van der Rest et al., Appl Microbiol Biotechnol 52:541-545). , 1999).
- the strain into which the vector was inserted into the chromosome by recombination of the homologous sequence was selected in a medium containing 25 mg/L of kanamycin. After amplifying the gene fragment through PCR using the primer pair of SEQ ID NOs: 33 and 34 for the selected Corynebacterium glutamicum transformant, it was confirmed that the mutation was properly introduced through gene sequence analysis.
- the recombinant strains were named Corynebacterium glutamicum CJ7V and CJ8V, respectively.
- the sequences of the primers used in this Example are shown in Table 2 below.
- Glucose 10g broth 5g, polypeptone 10g, sodium chloride 2.5g, yeast extract 5g, agar 20g, urea 2g (based on 1 liter of distilled water)
- the L-valine-producing ability was evaluated by introducing a GltA mutant into the L-valine-producing strain.
- the pDCM2-gltA (K415H), pDCM2-gltA (K415W), and pDCM2-gltA (K415G) vectors constructed in Example 1 were subjected to chromosomal homologous recombination with L-valine-producing strains CJ7V, CJ8V and CA08-0072 (KCCM11201P). , US 8465962 B2), respectively.
- the strain into which the vector was inserted into the chromosome by recombination of the homologous sequence was selected in a medium containing 25 mg/L of kanamycin.
- the gene fragment was amplified through PCR using the primer pair of SEQ ID NOs: 23 and 24 (Table 4) for the Corynebacterium glutamicum transformant, and then mutated through gene sequence analysis Insertion strains were identified.
- the recombinant strain was named as follows, Corynebacterium glutamicum, and titer was evaluated in the same manner as in Example 2-1, and is shown in Table 5 below.
- CA08-0072:gltA(K415H) was named CA08-1688, and it was deposited with the Korea Microorganism Conservation Center, an institution under the Budapest Treaty, on September 28, 2020, and was given an accession number KCCM12795P.
- Example 3 O-acetyl-L- homoserine production enhancement strain production and O-acetyl-L- homoserine production capacity evaluation
- the gene (SEQ ID NO: 48) encoding the YjeH variant (SEQ ID NO: 47) was A chromosomal introduction vector containing
- a primer pair for amplifying the 5' upper region centering on the position of the gene encoding the transposase (SEQ ID NO: 38, gene number NCgl2335) and 40) and primer pairs (SEQ ID NOs: 41 and 42) for amplifying the 3' bottom region were designed.
- the primer pair of SEQ ID NOs: 39 and 42 inserted XbaI restriction enzyme sites at each end, and the primer pairs of SEQ ID NOs: 40 and 41 were designed to cross each other, and the restriction enzyme SmaI sequence was positioned at this site.
- the primer sequences are shown in Table 6 below.
- PCR was performed using the primer pair of SEQ ID NOs: 39 and 40 and the primer pair of SEQ ID NOs: 41 and 42 using the ATCC13032 wild-type (WT) chromosome as a template. PCR conditions were repeated 30 times of denaturation at 95°C for 5 minutes, denaturation at 95°C for 30 seconds, annealing at 55°C for 30 seconds, and polymerization for 30 seconds at 72°C, followed by polymerization at 72°C for 7 minutes. As a result, an 851 bp DNA fragment at the 5' upper end and an 847 bp DNA fragment at the 3' lower end were obtained centering on the deletion site of the NCgl2335 gene.
- PCR was performed using primer pairs of SEQ ID NOs: 39 and 42. PCR conditions were repeated 30 times of denaturation at 95°C for 5 minutes, denaturation at 95°C for 30 seconds, annealing at 55°C for 30 seconds, and polymerization for 90 seconds at 72°C, followed by polymerization at 72°C for 7 minutes.
- a 1648 bp DNA fragment containing a region capable of deletion of a gene (SEQ ID NO: 38, gene number NCgl2335) encoding a transposase was amplified.
- the obtained PCR product was fusion cloned using the SmaI restriction enzyme-treated pDCM2 vector and the Infusion HD cloning kit.
- the cloned vector was transformed into E. coli DH5 ⁇ , and the transformed E. coli was plated on LB solid medium containing 25 mg/L of kanamycin. After selecting colonies transformed with the plasmid into which the desired gene was inserted through PCR, the plasmid was obtained using the plasmid extraction method, and finally, a pDCM2- ⁇ NCgl2335 recombinant vector in which the NCgl2335 deletion cassette was cloned was prepared.
- a chromosome introduction vector including a gene (SEQ ID NO: 48) encoding a YjeH mutant derived from E. coli was constructed.
- a vector expressing the yjeH gene was prepared using the CJ7 promoter (US 7662943 B2).
- a pair of primers (SEQ ID NOs: 43 and 44) for amplifying the CJ7 promoter region and a pair of primers (SEQ ID NOs: 45 and 46) for amplifying the yjeH region of E. coli were designed. Primer sequences are shown in Table 7 below.
- PCR was performed using the primer pairs of SEQ ID NOs: 45 and 46, respectively carried out. PCR conditions were repeated 30 times of denaturation at 95°C for 5 minutes, denaturation at 95°C for 30 seconds, annealing at 55°C for 30 seconds, and polymerization for 90 seconds at 72°C, followed by polymerization at 72°C for 7 minutes. As a result, a 360 bp DNA fragment of the CJ7 promoter region and a 1297 bp DNA fragment of the yjeH gene region of E. coli were obtained.
- PCR was performed with SEQ ID NO: 43 and SEQ ID NO: 46 primers. PCR conditions were repeated 30 times of denaturation at 95°C for 5 minutes, denaturation at 95°C for 30 seconds, annealing at 55°C for 30 seconds, and polymerization for 90 seconds at 72°C, followed by polymerization at 72°C for 7 minutes. As a result, a 1614 bp DNA fragment including the CJ7 promoter and the site into which the yjeH gene was introduced was amplified.
- the gene-deleted DNA fragment obtained through PCR was cloned into pDCM2- ⁇ NCgl2335 vector treated with restriction enzyme SmaI using Infusion HD cloning kit, and pDCM2- ⁇ NCgl2335::PCJ7-yjeH(eco,WT) recombinant vector was prepared. .
- pDCM2- ⁇ NCgl2335::PCJ7-yjeH(eco,WT) plasmid as a template and using the primers of SEQ ID NO: 49 and SEQ ID NO: 50, phenylalanine, the 351th amino acid of the YjeH amino acid sequence, was substituted with leucine ( F351L).
- the plasmid containing the gene encoding the constructed mutant YjeH (F351L) was named pDCM2- ⁇ NCgl2335::PCJ7-yjeH(eco,F351L).
- the primer sequences are shown in Table 8 below.
- the prepared pDCM2- ⁇ NCgl2335, pDCM2- ⁇ NCgl2335::PCJ7-yjeH(eco,F351L) strains were transformed into ATCC13032 strain by electric pulse method, and through a secondary crossover process, ATCC13032 ⁇ NCgl2335 in which the NCgl2335 gene was deleted on the chromosome; ATCC13032 ⁇ NCgl2335::PCJ7-yjeH (eco,F351L) was obtained. Whether the gene encoding the NCgl2335 gene deletion and the YjeH variant was inserted was finally confirmed by comparison with ATCC13032 after PCR using the primer pair of SEQ ID NOs: 39 and 42.
- O-acetyl homoserine O-AH; O-Acetyl Homoserine
- O-acetyl homoserine was analyzed in the culture medium by culturing in the following manner.
- the GltA mutant was introduced into the O-acetyl-L-homoserine-producing strain of Example 3-2 to evaluate the ability to produce O-acetyl-L-homoserine.
- the pDCM2-gltA (K415H) vector constructed in Example 1 was subjected to chromosomal homologous recombination with wild-type strains ATCC13032, ATCC13032 ⁇ NCgl2335 and O-acetyl-L-homoserine-producing strain ATCC13032 ⁇ NCgl2335::PCJ7-yjeH ( eco, F351L) respectively.
- the strain into which the vector was inserted into the chromosome by recombination of the homologous sequence was selected in a medium containing 25 mg/L of kanamycin.
- gltA K415H mutation through gene sequence analysis Insertion strains were identified.
- the recombinant strain was named as follows, Corynebacterium glutamicum, and titer was evaluated in the same manner as in Example 3-2, and is shown in Table 10 below.
- the ATCC13032 ⁇ NCgl2335::PCJ7-yjeH(eco,F351L) gltA(K415H) was named CM04-1006, and was deposited with the Korea Microorganism Conservation Center, a trustee institution under the Budapest Treaty on October 21, 2020, and given an accession number KCCM12809P. received.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Plant Pathology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Tropical Medicine & Parasitology (AREA)
- Virology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
서열번호 | 프라이머 | 서열 |
15 | 프라이머 1 | TCGAGCTCGGTACCC CCGTTCGTATGATCGGTTCCGCACAGGCC |
16 | 프라이머 2 | GTGCAGCAGGCAAC CAC ATCAACCGCCCACG |
17 | 프라이머 3 | CGTGGGCGGTTGAT GTG GTTGCCTGCTGCAC |
18 | 프라이머 4 | CTCTAGAGGATCCCC GCCGTAAGCAGCCTCTGGTGGAATGGTCAGC |
19 | 프라이머 5 | GTGCAGCAGGCAAC TGG ATCAACCGCCCACG |
20 | 프라이머 6 | CGTGGGCGGTTGAT CCA GTTGCCTGCTGCAC |
21 | 프라이머 7 | GTGCAGCAGGCAAC GGC ATCAACCGCCCACG |
22 | 프라이머 8 | CGTGGGCGGTTGAT GCC GTTGCCTGCTGCAC |
서열번호 | 서열명 | 서열 |
29 | 프라이머 11 | TCGAGCTCGGTACCCC CGCGTCACCAAAGCGGA |
30 | 프라이머 12 | GTCCCTCGTGTCTGTAAAGACCGAAACACT |
31 | 프라이머 13 | AGTGTTTCGGTCTTTACAGACACGAGGGAC |
32 | 프라이머 14 | CTCTAGAGGATCCCC TTAGATCTTGGCCGGAGCCA |
33 | 프라이머 15 | CCGCGTCACCAAAGCGGA |
34 | 프라이머 16 | TTAGATCTTGGCCGGAGCCA |
균주 | L-발린(g/L) |
ATCC14067 | 1.5 |
CJ7V(ilvN(A42V)) | 2.2 |
ATCC13869 | 1.0 |
CJ8V(ilvN(A42V)) | 1.9 |
서열번호 | 서열명 | 서열 |
23 | 프라이머 9 | CCGTTCGTATGATCGGTTCCGCACAGGCC |
24 | 프라이머 10 | GCCGTAAGCAGCCTCTGGTGGAATGGTCAGC |
균주 | OD600 | L-발린(g/L) |
CJ7V | 77 | 2.2 |
CJ7V:gltA(K415H) | 75 | 2.5 |
CJ7V:gltA(K415W) | 47 | 1.2 |
CJ7V:gltA(K415G) | 42 | 1.0 |
CJ8V | 89 | 1.9 |
CJ8V:gltA(K415H) | 89 | 2.1 |
CJ8V:gltA(K415W) | 50 | 1.0 |
CJ8V:gltA(K415G) | 49 | 1.0 |
CA08-0072 | 62 | 2.6 |
CA08-0072:gltA(K415H) | 60 | 2.9 |
CA08-0072:gltA(K415W) | 35 | 1.8 |
CA08-0072:gltA(K415G) | 30 | 1.7 |
서열번호 | 서열명 | 서열 |
서열번호 39 | Tn_5 F | tgaattcgagctcggtacccCACCGACGCGCATCTGCCT |
서열번호 40 | Tn_5 R | GGTGTGGTGACTTTCAGCAGTTCCCGGGGGGGAGGAGGCATGTGGTGTTG |
서열번호 41 | Tn_3 F | CAACACCACATGCCTCCTCCCCCCCGGGAACTGCTGAAAGTCACCACACC |
서열번호 42 | Tn_3 R | gtcgactctagaggatccccCTCCCAAACCATTGAGGAATGG |
서열번호 | 서열명 | 서열 |
서열번호 43 | CJ7_yjeH F | ACACCACATGCCTCCTCcccAGAAACATCCCAGCGCTAC |
서열번호 44 | CJ7_yjeH R | AGTTCTTGTTTGAGTCCACTCATAGTGTTTCCTTTCGTTGGGT |
서열번호 45 | yjeH F | ACCCAACGAAAGGAAACACTATGAGTGGACTCAAACAAGAACTG |
서열번호 46 | yjeH R | GACTTTCAGCAGTTcccgggTTATGTGGTTATGCCATTTTCCGG |
서열번호 | 서열명 | 서열 |
서열번호 49 | F351L F | CAATGGCATCCTTATTATGATTT |
서열번호 50 | F351L R | AAATCATAATAAGGATGCCATTG |
균주명 | O-아세틸 호모세린(g/L) |
ATCC13032 | 0.3 |
ATCC13032 △NCgl2335 | 0.3 |
ATCC13032 △NCgl2335::PCJ7-yjeH(eco,F351L) | 1.0 |
균주 | O-AH (g/L) |
ATCC13032 | 0.3 |
ATCC13032 gltA(K415H) | 0.4 |
ATCC13032 △NCgl2335 | 0.3 |
ATCC13032 △NCgl2335 gltA(K415H) | 0.4 |
ATCC13032 △NCgl2335::PCJ7-yjeH(eco,F351L) | 1.0 |
ATCC13032 △NCgl2335::PCJ7-yjeH(eco,F351L) gltA(K415H) | 1.3 |
Claims (14)
- 서열번호 1의 아미노산 서열의 415번째 위치에 상응하는 아미노산인 리신이 히스티딘으로 치환된, 시트레이트 신타아제 변이체.
- 제1항에 있어서, 상기 변이체는 서열번호 1의 아미노산 서열과 80% 이상의 서열 동일성을 가진, 변이체.
- 제1항에 있어서, 상기 변이체는 서열번호 3의 아미노산 서열로 기재된 폴리펩티드를 포함하는, 변이체.
- 제1항에 있어서, 상기 변이체는 하기의 일반식 1의 아미노산 서열로 기재된 폴리펩티드를 포함하는, 변이체:[일반식 1]X1N HGGDATX2FMN KVKNKEDGVR LMGFGHRVYK NYDPRAAIVK ETAHEILEHL GGDDLLDLAI KLEEIALADD X3FISRKLYPN VDFYTGLIYR AMGFPTDFFT VLFAIGRLPG WIAHYREQLG AAGNH (서열번호 51);여기서 상기 일반식 1의 X1은 아스파라긴 또는 세린이고,X2는 알라닌 또는 글루탐산이고,X3은 티로신 또는 시스테인.
- 제1항에 있어서, 상기 변이체는 서열번호 8, 10 또는 12의 아미노산 서열과 90% 이상의 서열 동일성을 가진, 변이체.
- 제1항 내지 제5항 중 어느 한 항의 변이체를 코딩하는 폴리뉴클레오티드.
- 서열번호 1의 아미노산 서열의 415번째 위치에 상응하는 아미노산인 리신이 히스티딘으로 치환된 시트레이트 신타아제 변이체 또는 상기 변이체를 코딩하는 폴리뉴클레오티드를 포함하는, 코리네박테리움 속 미생물.
- 제7항에 있어서, 상기 미생물은 L-발린 또는 O-아세틸-L-호모세린 생산능을 가지는, 미생물.
- 제7항에 있어서, 상기 미생물은 코리네박테리움 글루타미쿰인, 미생물.
- 서열번호 1의 아미노산 서열의 415번째 위치에 상응하는 아미노산인 리신이 히스티딘으로 치환된 시트레이트 신타아제 변이체 또는 상기 변이체를 코딩하는 폴리뉴클레오티드를 포함하는 코리네박테리움 속 미생물을 배지에서 배양하는 단계를 포함하는, L-아미노산 생산 방법.
- 제10항에 있어서, 상기 방법은 배양된 배지 또는 미생물에서 L-아미노산을 회수하는 단계를 추가로 포함하는, L-아미노산 생산 방법.
- 제10항에 있어서, 상기 L-아미노산은 L-발린, O-아세틸-L-호모세린 또는 L-메티오닌인, L-아미노산 생산 방법.
- 서열번호 1의 아미노산 서열의 415번째 위치에 상응하는 아미노산인 리신이 히스티딘으로 치환된 시트레이트 신타아제 변이체 또는 상기 변이체를 코딩하는 폴리뉴클레오티드를 포함하는 코리네박테리움 속 미생물; 이를 배양한 배지; 또는 이들의 조합을 포함하는 L-아미노산 생산용 조성물.
- 제13항에 있어서, 상기 L-아미노산은 L-발린, O-아세틸-L-호모세린 또는 L-메티오닌인, L-아미노산 생산용 조성물.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22767531.1A EP4282959A1 (en) | 2021-03-10 | 2022-03-10 | Novel citrate synthase variant and method for producing l-amino acids using same |
JP2023551745A JP2024507936A (ja) | 2021-03-10 | 2022-03-10 | 新規なクエン酸シンターゼ変異体及びそれを用いたl-アミノ酸生産方法 |
BR112023017369A BR112023017369A2 (pt) | 2021-03-10 | 2022-03-10 | Nova variante de citrato sintase e método para produzir l-aminoácidos usando a mesma |
MX2023010437A MX2023010437A (es) | 2021-03-10 | 2022-03-10 | Nueva variante de citrato sintasa y procedimiento de produccion de l-aminoacidos usando la misma. |
CN202280020564.4A CN117500920A (zh) | 2021-03-10 | 2022-03-10 | 新型柠檬酸合酶变体和使用其生产l-氨基酸的方法 |
CA3210256A CA3210256A1 (en) | 2021-03-10 | 2022-03-10 | Novel citrate synthase variant and method for producing l-amino acids using same |
US18/549,838 US20240182872A1 (en) | 2021-03-10 | 2022-03-10 | Novel citrate synthase variant and method for producing l-amino acids using same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020210031641A KR102525072B1 (ko) | 2021-03-10 | 2021-03-10 | 신규한 시트레이트 신타아제 변이체 및 이를 이용한 l-아미노산 생산 방법 |
KR10-2021-0031641 | 2021-03-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022191635A1 true WO2022191635A1 (ko) | 2022-09-15 |
Family
ID=83228058
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2022/003359 WO2022191635A1 (ko) | 2021-03-10 | 2022-03-10 | 신규한 시트레이트 신타아제 변이체 및 이를 이용한 l-아미노산 생산 방법 |
Country Status (9)
Country | Link |
---|---|
US (1) | US20240182872A1 (ko) |
EP (1) | EP4282959A1 (ko) |
JP (1) | JP2024507936A (ko) |
KR (1) | KR102525072B1 (ko) |
CN (1) | CN117500920A (ko) |
BR (1) | BR112023017369A2 (ko) |
CA (1) | CA3210256A1 (ko) |
MX (1) | MX2023010437A (ko) |
WO (1) | WO2022191635A1 (ko) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080014618A1 (en) * | 2006-07-13 | 2008-01-17 | Degussa Gmbh | Method of production of l-amino acids |
KR101641770B1 (ko) * | 2014-06-23 | 2016-07-22 | 씨제이제일제당 (주) | O-아세틸 호모세린을 생산하는 미생물 및 상기 미생물을 이용하여 o-아세틸 호모세린을 생산하는 방법 |
KR101915433B1 (ko) * | 2018-02-13 | 2018-11-05 | 씨제이제일제당 (주) | 시트레이트 신타아제 (Citrate synthase)의 활성이 약화된 변이형 폴리펩타이드 및 이를 이용한 L-아미노산 생산방법 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102344689B1 (ko) * | 2020-09-01 | 2021-12-29 | 씨제이제일제당 주식회사 | L-발린 생산 미생물 및 이를 이용한 l-발린 생산 방법 |
KR20220110412A (ko) * | 2021-01-29 | 2022-08-08 | 씨제이제일제당 (주) | 신규한 단백질 변이체 및 이를 이용한 l-라이신 생산 방법 |
-
2021
- 2021-03-10 KR KR1020210031641A patent/KR102525072B1/ko active IP Right Grant
-
2022
- 2022-03-10 WO PCT/KR2022/003359 patent/WO2022191635A1/ko active Application Filing
- 2022-03-10 EP EP22767531.1A patent/EP4282959A1/en active Pending
- 2022-03-10 CA CA3210256A patent/CA3210256A1/en active Pending
- 2022-03-10 MX MX2023010437A patent/MX2023010437A/es unknown
- 2022-03-10 JP JP2023551745A patent/JP2024507936A/ja active Pending
- 2022-03-10 US US18/549,838 patent/US20240182872A1/en active Pending
- 2022-03-10 BR BR112023017369A patent/BR112023017369A2/pt unknown
- 2022-03-10 CN CN202280020564.4A patent/CN117500920A/zh active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080014618A1 (en) * | 2006-07-13 | 2008-01-17 | Degussa Gmbh | Method of production of l-amino acids |
KR101641770B1 (ko) * | 2014-06-23 | 2016-07-22 | 씨제이제일제당 (주) | O-아세틸 호모세린을 생산하는 미생물 및 상기 미생물을 이용하여 o-아세틸 호모세린을 생산하는 방법 |
KR101915433B1 (ko) * | 2018-02-13 | 2018-11-05 | 씨제이제일제당 (주) | 시트레이트 신타아제 (Citrate synthase)의 활성이 약화된 변이형 폴리펩타이드 및 이를 이용한 L-아미노산 생산방법 |
Non-Patent Citations (2)
Title |
---|
DATABASE PROTEIN 28 November 2019 (2019-11-28), ANONYMOUS : "MULTISPECIES: citrate synthase [Corynebacterium]", XP055964834, retrieved from NCBI Database accession no. WP_034983619 * |
JAN VAN OOYEN, STEPHAN NOACK, MICHAEL BOTT, ALEXANDER RETH, LOTHAR EGGELING: "Improved L-lysine production with Corynebacterium glutamicum and systemic insight into citrate synthase flux and activity", BIOTECHNOLOGY AND BIOENGINEERING, WILEY ¬ETC.|, vol. 109, no. 8, 22 August 2012 (2012-08-22), pages 2070 - 2081, XP055111478, ISSN: 00063592, DOI: 10.1002/bit.24486 * |
Also Published As
Publication number | Publication date |
---|---|
BR112023017369A2 (pt) | 2023-10-03 |
KR102525072B1 (ko) | 2023-04-24 |
EP4282959A1 (en) | 2023-11-29 |
MX2023010437A (es) | 2023-09-12 |
CA3210256A1 (en) | 2022-09-15 |
CN117500920A (zh) | 2024-02-02 |
US20240182872A1 (en) | 2024-06-06 |
JP2024507936A (ja) | 2024-02-21 |
KR20220127077A (ko) | 2022-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022163934A1 (ko) | 신규한 d-알라닌-d-알라닌 리가아제 a 변이체 및 이를 이용한 l-글루탐산 생산 방법 | |
WO2022163933A1 (ko) | 신규한 abc 트랜스포터 atp-결합 단백질 변이체 및 이를 이용한 l-글루탐산 생산 방법 | |
WO2022055094A1 (ko) | L-글루탐산 생산 재조합 미생물 및 이를 이용한 l-글루탐산의 제조방법 | |
WO2022050671A1 (ko) | L-발린 생산 미생물 및 이를 이용한 l-발린 생산 방법 | |
WO2022163917A1 (ko) | 신규한 단백질 변이체 및 이를 이용한 l-발린 생산 방법 | |
WO2022191630A1 (ko) | 신규한 시트레이트 신타아제 변이체 및 이를 이용한 l-발린 생산 방법 | |
WO2022216088A1 (ko) | L-아르기닌을 생산하는 코리네박테리움 속 미생물 및 이를 이용한 l-아르기닌 생산방법 | |
WO2022163935A1 (ko) | 신규한 글루코사민-6-포스페이트 디아미나제 변이체 및 이를 이용한 l-글루탐산 생산 방법 | |
WO2022154191A1 (ko) | 신규한 2,5-다이케토-d-글루콘산 리덕타제 변이체 및 이를 이용한 xmp 또는 gmp 생산 방법 | |
WO2022163922A1 (ko) | 신규한 아스파라긴 신타제 변이체 및 이를 이용한 l-발린 생산 방법 | |
WO2022154190A1 (ko) | 신규한 포스포노아세테이트 하이드롤라제 변이체 및 이를 이용한 xmp 또는 gmp 생산 방법 | |
WO2022163920A1 (ko) | 신규한 시스테인 설피네이트 디설피나제 변이체 및 이를 이용한 l-발린 생산 방법 | |
WO2022163904A1 (ko) | 신규한 단백질 변이체 및 이를 이용한 l-라이신 생산 방법 | |
WO2022005022A1 (ko) | L-이소류신 생산능이 강화된 미생물 및 이를 이용한 l-이소류신 생산방법 | |
WO2022191635A1 (ko) | 신규한 시트레이트 신타아제 변이체 및 이를 이용한 l-아미노산 생산 방법 | |
WO2022191633A1 (ko) | 신규한 시트레이트 신타아제 변이체 및 이를 이용한 o-아세틸-l-호모세린 또는 l-메티오닌 생산 방법 | |
WO2022163936A1 (ko) | 신규한 엑시뉴클레아제 abc 서브유닛 a 변이체 및 이를 이용한 l-글루탐산 생산 방법 | |
WO2022163919A1 (ko) | 신규한 우레아제 부속 단백질 변이체 및 이를 이용한 l-발린 생산 방법 | |
WO2022163926A1 (ko) | 신규한 프롤린 탈수소효소 변이체 및 이를 이용한 l-발린 생산 방법 | |
WO2022154188A1 (ko) | 신규한 폴리케타이드 신타제 변이체 및 이를 이용한 xmp 또는 gmp 생산 방법 | |
WO2022163924A1 (ko) | 신규한 5,10-메틸렌테트라하이드로폴레이트 리덕타제 변이체 및 이를 이용한 l-발린 생산 방법 | |
WO2022163941A1 (ko) | 신규한 스퍼미딘 신타아제 변이체 및 이를 이용한 l-글루탐산 생산 방법 | |
WO2022154189A1 (ko) | 신규한 피토엔 신타제 변이체 및 이를 이용한 xmp 또는 gmp 생산 방법 | |
WO2022163918A1 (ko) | 신규한 테트라하이드로디피콜리네이트 n-숙시닐트랜스퍼라제 변이체 및 이를 이용한 l-발린 생산 방법 | |
WO2022163925A1 (ko) | 신규한 단백질 변이체 및 이를 이용한 l-발린 생산 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22767531 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023551745 Country of ref document: JP Ref document number: 2022767531 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 3210256 Country of ref document: CA |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112023017369 Country of ref document: BR |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2023/010437 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18549838 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280020564.4 Country of ref document: CN |
|
ENP | Entry into the national phase |
Ref document number: 2022767531 Country of ref document: EP Effective date: 20230824 |
|
ENP | Entry into the national phase |
Ref document number: 112023017369 Country of ref document: BR Kind code of ref document: A2 Effective date: 20230828 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |