WO2022186487A1 - 이소프로필말레이트 신타제 변이체 및 이를 이용한 l-류신의 생산 방법 - Google Patents

이소프로필말레이트 신타제 변이체 및 이를 이용한 l-류신의 생산 방법 Download PDF

Info

Publication number
WO2022186487A1
WO2022186487A1 PCT/KR2022/001560 KR2022001560W WO2022186487A1 WO 2022186487 A1 WO2022186487 A1 WO 2022186487A1 KR 2022001560 W KR2022001560 W KR 2022001560W WO 2022186487 A1 WO2022186487 A1 WO 2022186487A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
amino acid
leua
leucine
present application
Prior art date
Application number
PCT/KR2022/001560
Other languages
English (en)
French (fr)
Inventor
이하윤
김주은
이지혜
Original Assignee
씨제이제일제당 (주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 씨제이제일제당 (주) filed Critical 씨제이제일제당 (주)
Priority to CN202280016563.2A priority Critical patent/CN117355605A/zh
Priority to EP22763472.2A priority patent/EP4253532A4/en
Priority to AU2022229156A priority patent/AU2022229156A1/en
Priority to JP2023540849A priority patent/JP2024501753A/ja
Priority to CA3204875A priority patent/CA3204875A1/en
Priority to MX2023009553A priority patent/MX2023009553A/es
Priority to US18/274,912 priority patent/US20240093252A1/en
Publication of WO2022186487A1 publication Critical patent/WO2022186487A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/77Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Corynebacterium; for Brevibacterium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/06Alanine; Leucine; Isoleucine; Serine; Homoserine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/03Acyl groups converted into alkyl on transfer (2.3.3)
    • C12Y203/030132-Isopropylmalate synthase (2.3.3.13)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/15Corynebacterium

Definitions

  • the present application relates to an isopropyl malate synthase variant and a method for producing L-leucine using the same.
  • L-leucine is a kind of essential amino acid and is an expensive amino acid widely used in medicine, food, feed additive, and industrial medicine, and is mainly produced using microorganisms. Fermentation production of branched chain amino acids including L-leucine is mainly made through microorganisms of the genus Escherichia or Corynebacterium, and 2-ketoisocaproate is produced from pyruvic acid through several steps. It is known to be biosynthesized as a precursor (Korean Patent No. 10-0220018, Korean Patent No. 10-0438146).
  • Isopropylmalate synthase an enzyme involved in L-leucine biosynthesis, replaces 2-ketoisovalerate generated in the valine biosynthesis pathway with isopropyl malate required for leucine biosynthesis instead of valine.
  • isopropylmalate is an enzyme in the first step of leucine biosynthesis, which is an important enzyme in the process of leucine biosynthesis.
  • the isopropyl malate synthase is subjected to feedback inhibition by the final product, L-leucine or a derivative thereof. Accordingly, there are various prior technologies for isopropyl malate synthase mutants whose feedback inhibition is released for the purpose of producing high-concentration leucine (US Patent Publication No. 2015-0079641, US Patent Registration No. 6403342), but still better variants are discovered research is ongoing.
  • One object of the present application is to provide a variant polypeptide having isopropylmalate synthase (isopropylmalate synthase) activity.
  • Another object of the present application is to provide a polynucleotide encoding the variant polypeptide of the present application.
  • Another object of the present application is to provide a vector comprising the polynucleotide of the present application.
  • Another object of the present application is the variant polypeptide of the present application; a polynucleotide encoding it; Or a vector comprising the same; to provide a microorganism containing, L- leucine-producing Corynebacterium ( The genus of Corynebacterium ).
  • Another object of the present application is the variant polypeptide of the present application; a polynucleotide encoding it; Or a vector comprising the same; to provide a method for producing L- leucine, comprising the step of culturing a microorganism of the genus Corynebacterium that produces L-leucine in a medium.
  • Another object of the present application is a Corynebacterium glutamicum strain comprising the variant polypeptide of the present application or the polynucleotide of the present application; Or to provide a composition for the production of L- leucine comprising; or a culture medium thereof.
  • the mutant polypeptide having isopropylmalate synthase activity has increased activity compared to wild-type isopropylmalate synthase, and it can be applied to mass production of L-leucine in high yield.
  • One aspect of the present application for achieving the above object provides a variant polypeptide having isopropylmalate synthase (isopropylmalate synthase) activity.
  • the amino acid residue at the position 138 is substituted with another amino acid residue in the amino acid sequence of SEQ ID NO: 1, ii) the amino acid residue at the position 162 is substituted with another amino acid residue , iii) the amino acid residue at the 211th position is substituted with another amino acid residue, iv) the amino acid residue at the 245th position is substituted with another amino acid residue, and v) the amino acid residue at the 588th position is It may include any one or more substitutions selected from the group consisting of substitutions with other amino acid residues.
  • IPMS isopropylmalate synthase
  • the LeuA sequence may be obtained from GenBank of NCBI, which is a known database, and specifically, it may be a protein having isopropylmalate synthase activity encoded by the leuA gene, but is not limited thereto.
  • the LeuA may be an enzyme derived from a microorganism of the genus Corynebacterium, and specifically, may be isopropyl malate synthase derived from Corynebacterium glutamicum .
  • LeuA of the present application may include the amino acid sequence of SEQ ID NO: 1, but is not limited thereto.
  • the LeuA may include a polypeptide having at least 80%, 90%, 95%, 96%, 97%, 98%, or 99% homology to the amino acid sequence of SEQ ID NO: 1.
  • a protein having an amino acid sequence in which some sequences are deleted, modified, substituted or added is also included within the scope of the present application. self-evident
  • conservative substitution means substituting an amino acid for another amino acid having similar structural and/or chemical properties. Such amino acid substitutions may generally occur based on similarity in the polarity, charge, solubility, hydrophobicity, hydrophilicity and/or amphipathic nature of the residues. Typically, conservative substitutions may have little or no effect on the activity of the protein or polypeptide.
  • LeuA of the present application may have, consist of, or consist essentially of, the amino acid sequence of SEQ ID NO: 1 or an amino acid sequence having 90% or more identity therewith.
  • variant polypeptide means that one or more amino acids are conservatively substituted and/or modified so that they differ from the amino acid sequence before the mutation of the variant polypeptide, but have functions or Refers to a polypeptide in which properties are maintained.
  • variant polypeptides can generally be identified by modifying one or more amino acids in the amino acid sequence of the polypeptide and evaluating the properties of the modified polypeptide. That is, the ability of the variant polypeptide may be increased, unchanged, or decreased compared to the polypeptide before the mutation.
  • variant polypeptides may include variant polypeptides in which one or more portions, such as an N-terminal leader sequence or a transmembrane domain, have been removed.
  • variant polypeptides may include variant polypeptides in which a portion has been removed from the N- and/or C-terminus of the mature protein.
  • mutant polypeptide may be used interchangeably with terms such as variant, modified, mutated protein, mutant and mutant (in English, modified, modified polypeptide, modified protein, mutant, mutein, divergent, etc.), If it is a term used in a mutated meaning, it is not limited thereto.
  • variant polypeptides may contain deletions or additions of amino acids that have minimal effect on the properties and secondary structure of the polypeptide.
  • a signal (or leader) sequence involved in protein translocation may be conjugated to the N-terminus of the variant polypeptide, either co-translationally or post-translationally.
  • the variant polypeptide may be conjugated with other sequences or linkers for identification, purification, or synthesis.
  • the variant polypeptide of the present application may have isopropylmalate synthase activity.
  • the variant polypeptide of the present application may have enhanced isopropylmalate synthase activity compared to a wild-type polypeptide having isopropylmalate synthase activity.
  • the amino acid residue at position 138 is substituted with another amino acid residue
  • the amino acid residue at position 162 is substituted with another amino acid residue
  • the amino acid residue at position 211 is substituted with another amino acid residue
  • the amino acid residue at position 245 is substituted with another amino acid residue
  • the amino acid residue at position 588 is different It may include any one or more substitutions selected from the group consisting of substitutions with amino acid residues, and specifically, i) in the amino acid sequence of SEQ ID NO: 1, i) leucine, which is the amino acid residue at the 138th position, is an amino acid other than leucine.
  • histidine which is the amino acid residue at position 162 is substituted with an amino acid residue other than histidine
  • serine which is the amino acid residue at position 211, is substituted with an amino acid residue other than serine
  • asparaginine which is the amino acid residue at position 245, is substituted with an amino acid residue other than asparaginine
  • v) isoleucine which is the amino acid residue at position 588, is replaced with an amino acid residue other than isoleucine.
  • It may include any one or more substitutions selected from the group consisting of substitutions, and more specifically, i) in the amino acid sequence of SEQ ID NO: 1, i) leucine, an amino acid residue at the position corresponding to the 138th position, is substituted with glycine, ii) the 162th position Histidine, the amino acid residue at the position corresponding to substitution, and v) may include any one or more substitutions selected from the group consisting of a substitution of proline for isoleucine, which is the amino acid residue at the position corresponding to the 588th, and further It may contain one or more, 2 or more, 3 or more, 4 or more, 5 substitutions by volume.
  • the two or more substitutions are a combination of i) and v); a combination of ii) and v); a combination of iii) and v); or a combination of iv) and v), but is not limited thereto.
  • the four or more substitutions may be a combination of i), ii), iii), and iv), but is not limited thereto.
  • the five or more substitutions may be a combination of i), ii), iii), iv) and v).
  • the variant polypeptide of the present application may be one having / comprising the amino acid sequence of SEQ ID NO: 6 or SEQ ID NO: 8 or SEQ ID NO: 10 or SEQ ID NO: 12 or SEQ ID NO: 14, or SEQ ID NO: 6 or SEQ ID NO: 8 or SEQ ID NO: 10 or It may consist of / consist essentially of the amino acid sequence of SEQ ID NO: 12 or SEQ ID NO: 14.
  • the variant polypeptide of the present application comprises at least 80%, 90%, 95%, 96%, 97%, 98%, or Having at least 99% identity or homology with less than 100% identity, i) the amino acid at the 138th position in the amino acid sequence of SEQ ID NO: 6 or SEQ ID NO: 8 or SEQ ID NO: 10 or SEQ ID NO: 12 or SEQ ID NO: 14 the residue is glycine, ii) the amino acid residue at position 162 is glutamate, iii) the amino acid residue at position 211 is leucine, iv) the amino acid residue at position 245 is serine, or v) 588 and a polypeptide in which the amino acid residue at the position corresponding to the second is proline.
  • SEQ ID NO: 6 may be an amino acid sequence in which leucine, which is an amino acid residue at a position corresponding to the 138th position in the amino acid sequence of SEQ ID NO: 1, is substituted with glycine, and SEQ ID NO: 8 is an amino acid at a position corresponding to the 162th position
  • the residue histidine may be an amino acid sequence in which glutamate is substituted
  • SEQ ID NO: 10 may be an amino acid sequence in which serine, an amino acid residue at the position corresponding to the 211th position, is substituted with leucine
  • SEQ ID NO: 12 is at position 588 It may be an amino acid sequence in which isoleucine, which is an amino acid residue at the corresponding position, is substituted with proline
  • SEQ ID NO: 14 may be an amino acid sequence in which asparaginine, which is an amino acid residue at the 245th position, is substituted with serine.
  • amino acid sequence having such identity or homology and exhibiting efficacy corresponding to the variant polypeptide of the present application is i) 138 in the amino acid sequence of SEQ ID NO: 6 or SEQ ID NO: 8 or SEQ ID NO: 10 or SEQ ID NO: 12 or SEQ ID NO: 14
  • Variant polypeptides having an amino acid sequence in which some sequence is deleted, modified, substituted, conservatively substituted or added other than the th, ii) 162 th, iii) 211 th, iv) 245 th, or v) 588 th are also disclosed in the present application. It may be obvious that it is included within the scope.
  • the substitution is (1) in which G, which is the 1673th nucleotide of the leuA gene encoding isopropylmalate synthase, is substituted with A, and arginine, the amino acid at the 558th position of the LeuA protein, is substituted with histidine.
  • the 739th and 740th nucleotides of CC may include any one or more of mutations (P247C) in which TG is substituted and proline, the 247th amino acid, is substituted with cysteine, as described above.
  • the variant polypeptide comprises i) the 247th, 558th and 561th mutations in addition to the 138th mutation (SEQ ID NO: 38); or ii) comprising the 247th, 558th and 561th mutations in addition to the 162th mutation (SEQ ID NO: 40); or iii) comprising the 247, 558 and 561 mutations in addition to the 211 th mutation (SEQ ID NO: 42); iv) comprising the 247th, 558th and 561th mutations in addition to the 245th mutation (SEQ ID NO: 44); v) comprising the 247, 558 and 561 th and mutations in addition to the 588 th mutation (SEQ ID NO: 46); iii) comprising the 247, 558 and 561 mutations in addition to the 211 th and v) 588 mutations (SEQ ID NO: 48); i) 138 th, ii) 162 th, iii) 211 th
  • corresponding to refers to an amino acid residue at a position listed in a polypeptide, or an amino acid residue similar to, identical to, or homologous to a residue listed in a polypeptide. Identifying an amino acid at a corresponding position may be determining a specific amino acid in a sequence that refers to a specific sequence.
  • corresponding region generally refers to a similar or corresponding position in a related protein or reference protein.
  • any amino acid sequence is aligned with SEQ ID NO: 1, and based on this, each amino acid residue of the amino acid sequence can be numbered with reference to the numerical position of the amino acid residue corresponding to the amino acid residue of SEQ ID NO: 1.
  • a sequence alignment algorithm such as that described in this application can identify the position of an amino acid, or a position at which modifications, such as substitutions, insertions, or deletions, occur compared to a query sequence (also referred to as a "reference sequence").
  • Such alignments include, for example, the Needleman-Wunsch algorithm (Needleman and Wunsch, 1970, J. Mol. Biol. 48: 443-453), the Needleman program in the EMBOSS package (EMBOSS: The European Molecular Biology Open Software Suite, Rice et al. , 2000), Trends Genet. 16: 276-277), etc., but is not limited thereto, and a sequence alignment program known in the art, a pairwise sequence comparison algorithm, etc. may be appropriately used.
  • the term 'homology' or 'identity' refers to the degree of similarity between two given amino acid sequences or nucleotide sequences and may be expressed as a percentage.
  • the terms homology and identity can often be used interchangeably.
  • Sequence homology or identity of a conserved polynucleotide or polypeptide is determined by standard alignment algorithms, with default gap penalties established by the program used may be used. Substantially homologous or identical sequences are generally capable of hybridizing with all or part of a sequence under moderate or high stringent conditions. It is apparent that hybridization also includes hybridization with polynucleotides containing common codons or codons taking codon degeneracy into account in the polynucleotide.
  • a GAP program can be defined as the total number of symbols in the shorter of the two sequences divided by the number of similarly aligned symbols (ie, nucleotides or amino acids).
  • Default parameters for the GAP program are: (1) a binary comparison matrix (containing values of 1 for identity and 0 for non-identity) and Schwartz and Dayhoff, eds., Atlas Of Protein Sequence And Structure, National Biomedical Research Foundation , pp. 353-358 (1979), Gribskov et al (1986) Nucl. Acids Res. 14: weighted comparison matrix of 6745 (or EDNAFULL (EMBOSS version of NCBI NUC4.4) substitution matrix); (2) a penalty of 3.0 for each gap and an additional 0.10 penalty for each symbol in each gap (or a gap open penalty of 10, a gap extension penalty of 0.5); and (3) no penalty for end gaps.
  • Another aspect of the present application is to provide a polynucleotide encoding the variant polypeptide of the present application.
  • polynucleotide refers to a DNA or RNA strand of a certain length or longer as a polymer of nucleotides in which nucleotide monomers are connected in a long chain form by covalent bonds, and more specifically, the mutant protein It refers to a polynucleotide fragment that encodes.
  • the polynucleotide encoding the variant polypeptide of the present application is SEQ ID NO: 6 or SEQ ID NO: 8 or SEQ ID NO: 10 or SEQ ID NO: 12 or SEQ ID NO: 14 or SEQ ID NO: 38 or SEQ ID NO: 40 or SEQ ID NO: 42 or SEQ ID NO: 44 or the sequence It may include, but is not limited to, a nucleotide sequence encoding an amino acid sequence set forth in No. 46 or SEQ ID NO: 48 or SEQ ID NO: 50 or SEQ ID NO: 52.
  • polynucleotide of the present application is SEQ ID NO: 7 or SEQ ID NO: 9 or SEQ ID NO: 11 or SEQ ID NO: 13 or SEQ ID NO: 15 or SEQ ID NO: 39 or SEQ ID NO: 41 or SEQ ID NO: 43 or SEQ ID NO: 45 or SEQ ID NO: 47 or SEQ ID NO: It may have or include the nucleotide sequence of No. 49 or SEQ ID NO: 51 or SEQ ID NO: 53.
  • it may consist of a nucleotide sequence having 80% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, and less than 100% homology or identity to SEQ ID NO: 53, but is not limited thereto.
  • polynucleotide of the present application may be included without limitation as long as it can hybridize under stringent conditions with a probe that can be prepared from a known gene sequence, for example, a sequence complementary to all or part of the polynucleotide sequence of the present application.
  • stringent condition means a condition that enables specific hybridization between polynucleotides. These conditions are described in J. Sambrook et al., Molecular Cloning, A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory press, Cold Spring Harbor, New York, 1989; F.M. Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, Inc., New York, 9.50-9.51, 11.7-11.8).
  • polynucleotides with high homology or identity 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, or a condition in which polynucleotides having 99% or more homology or identity hybridize with each other and polynucleotides with lower homology or identity do not hybridize, or a washing condition of conventional Southern hybridization at 60°C, 1XSSC, 0.1% SDS, specifically 60°C, 0.1XSSC, 0.1% SDS, more specifically 68°C, 0.1XSSC, 0.1% SDS at a salt concentration and temperature equivalent to one wash, specifically two to three washes conditions can be enumerated.
  • Hybridization requires that two nucleic acids have complementary sequences, although mismatch between bases is possible depending on the stringency of hybridization.
  • complementary is used to describe the relationship between nucleotide bases capable of hybridizing to each other.
  • adenine is complementary to thymine
  • cytosine is complementary to guanine.
  • the polynucleotides of the present application may also include isolated nucleic acid fragments that are complementary to the overall sequence as well as substantially similar nucleotide sequences.
  • a polynucleotide having homology or identity to the polynucleotide of the present application can be detected using the hybridization conditions including a hybridization step at a Tm value of 55° C. and using the above-described conditions.
  • the Tm value may be 60° C., 63° C. or 65° C., but is not limited thereto and may be appropriately adjusted by those skilled in the art according to the purpose.
  • the appropriate stringency for hybridizing the polynucleotides depends on the length of the polynucleotides and the degree of complementarity, and the parameters are well known in the art (eg, J. Sambrook et al., supra).
  • the polynucleotide of the present application may include SEQ ID NO: 6 or SEQ ID NO: 8 or SEQ ID NO: 10 or SEQ ID NO: 12 or SEQ ID NO: 14 or SEQ ID NO: 38 or SEQ ID NO: 40 or SEQ ID NO: 42 or SEQ ID NO: 44 or SEQ ID NO: 46 or sequence Any sequence encoding the amino acid sequence of SEQ ID NO: 48 or SEQ ID NO: 50 or SEQ ID NO: 52 may be included without limitation.
  • the variant polypeptide is as described in the other aspects above.
  • Another aspect of the present application is to provide a vector comprising the polynucleotide of the present application.
  • the vector of the present application refers to a DNA preparation containing the base sequence of a polynucleotide encoding the target polypeptide operably linked to a suitable expression control region (or expression control sequence) so that the target polypeptide can be expressed in a suitable host.
  • the expression control region may include a promoter capable of initiating transcription, an optional operator sequence for regulating such transcription, a sequence encoding a suitable mRNA ribosome binding site, and a sequence regulating the termination of transcription and translation.
  • the vector After transformation into an appropriate host cell, the vector can replicate or function independently of the host genome, and can be integrated into the genome itself.
  • the vector used in the present application is not particularly limited, and any vector known in the art may be used.
  • Examples of commonly used vectors include plasmids, cosmids, viruses and bacteriophages in a natural or recombinant state.
  • pWE15, M13, MBL3, MBL4, IXII, ASHII, APII, t10, t11, Charon4A, and Charon21A may be used as phage vectors or cosmid vectors
  • pBR-based, pUC-based, and pBluescriptII-based plasmid vectors may be used as plasmid vectors.
  • pGEM-based, pTZ-based, pCL-based, pET-based and the like can be used.
  • pDCM2 WO WO2021-187781 A1
  • pACYC177, pACYC184, pCL, pECCG117, pUC19, pBR322, pMW118, pCC1BAC vector and the like can be used.
  • a polynucleotide encoding a target polypeptide may be inserted into a chromosome through a vector for intracellular chromosome insertion.
  • the insertion of the polynucleotide into the chromosome may be performed by any method known in the art, for example, homologous recombination, but is not limited thereto.
  • It may further include a selection marker (selection marker) for confirming whether the chromosome is inserted.
  • the selection marker is used to select cells transformed with the vector, that is, to determine whether a target nucleic acid molecule is inserted, and selectable phenotypes such as drug resistance, auxotrophy, resistance to cytotoxic agents, or surface polypeptide expression. Markers to be given can be used. In an environment treated with a selective agent, only the cells expressing the selectable marker survive or exhibit other expression traits, so that the transformed cells can be selected.
  • the term "transformation” refers to introducing a vector including a polynucleotide encoding a target protein into a host cell or microorganism so that the protein encoded by the polynucleotide can be expressed in the host cell.
  • the transformed polynucleotide may include all of them regardless of whether they are inserted into the chromosome of the host cell or located outside the chromosome, as long as they can be expressed in the host cell.
  • the polynucleotide includes DNA and RNA encoding a target protein.
  • the polynucleotide may be introduced in any form as long as it can be introduced and expressed into a host cell.
  • the polynucleotide may be introduced into a host cell in the form of an expression cassette, which is a gene construct including all elements necessary for self-expression.
  • the expression cassette may include a promoter operably linked to the polynucleotide, a transcription termination signal, a ribosome binding site, and a translation termination signal.
  • the expression cassette may be in the form of an expression vector capable of self-replication.
  • the polynucleotide may be introduced into a host cell in its own form and operably linked to a sequence required for expression in the host cell, but is not limited thereto.
  • operably linked means that a promoter sequence that initiates and mediates transcription of a polynucleotide encoding the target variant protein of the present application and the gene sequence are functionally linked.
  • the polynucleotide is as described in the other aspects above.
  • Another aspect of the present application is a variant polypeptide of the present application; a polynucleotide encoding it; Or a vector comprising the same; to provide a microorganism containing, L- leucine-producing Corynebacterium ( The genus of Corynebacterium ).
  • microorganism includes both wild-type microorganisms and microorganisms in which genetic modification has occurred naturally or artificially, and a specific mechanism is As a weakened or enhanced microorganism, it may be a microorganism comprising genetic modification for the production of a desired polypeptide, protein or product.
  • the microorganism of the present application includes a microorganism comprising any one or more of a mutant of the present application, a polynucleotide of the present application, and a vector including the polynucleotide of the present application; a microorganism modified to express a variant of the present application or a polynucleotide of the present application; a microorganism (eg, a recombinant strain) expressing a variant of the present application, or a polynucleotide of the present application; Or it may be a microorganism (eg, a recombinant strain) having the mutant activity of the present application, but is not limited thereto.
  • the microorganism of the present application is a microorganism having isopropylmalate synthase activity or L-leucine-producing ability naturally, or a parent strain without isopropylmalate synthase activity or L-leucine-producing ability. It may be a microorganism that is expressed or L-leucine-producing ability is imparted, but is not limited thereto.
  • the microorganism of the present application is a cell or microorganism that is transformed with a vector containing a gene encoding the polynucleotide of the present application or the variant polypeptide of the present application, and expresses the variant polypeptide of the present application, for the purpose of the present application Phase
  • the microorganism of the present application may include all microorganisms capable of producing L-leucine, including the variant polypeptide of the present application.
  • the microorganism of the present application expresses the mutant polypeptide of the present application by introducing a polynucleotide encoding the mutant polypeptide of the present application into a natural wild-type microorganism or a microorganism producing L-leucine, thereby producing L-leucine It may be a recombinant microorganism with increased activity.
  • the recombinant microorganism having an increased ability to produce L-leucine may be a microorganism having an increased ability to produce L-leucine compared to a natural wild-type microorganism or an unmodified microorganism, but is not limited thereto.
  • the term "unmodified microorganism” does not exclude a strain containing a mutation that can occur naturally in a microorganism, it is a wild-type strain or a natural-type strain itself, or a genetic variation caused by natural or artificial factors. It may mean the strain before being changed.
  • the unmodified microorganism may refer to a strain in which the protein variant described herein has not been introduced or has been introduced.
  • the "unmodified microorganism” may be used interchangeably with "strain before modification", “microbe before modification”, “unmodified strain”, “unmodified strain”, “unmodified microorganism” or "reference microorganism”.
  • the microorganism of the present application is Corynebacterium glutamicum ( Corynebacterium glutamicum ), Corynebacterium crudilactis ( Corynebacterium crudilactis ), Corynebacterium deserti ( Corynebacterium deserti ), Corynebacterium ipish Ens ( Corynebacterium efficiens ), Corynebacterium callunae , Corynebacterium stationis , Corynebacterium singulare ), Corynebacterium halotolerans ( Corynebacterium halotolerans ) ), Corynebacterium striatum ( Corynebacterium striatum ), Corynebacterium ammoniagenes ), Corynebacterium pollutisoli ( Corynebacterium pollutisoli ), Corynebacterium imitans ( Corynebacterium imitans ), Coryne Bacterium testudin
  • the microorganism of the present application is i) 138 th, ii) 162 th, iii) 211 th, iv) 245 th, or v) 588 th , may be a microorganism comprising a nucleotide sequence encoding isopropyl malate synthase in which one or more amino acid residues are substituted with other amino acids, specifically, the substitution is (1) the leuA gene encoding isopropyl malate synthase Mutation in which the 1673th nucleotide, G, is substituted with A, and arginine, the 558th amino acid of the LeuA protein, is substituted with histidine (R558H), (2) GC, which is the 1682th and 1683th nucleotides of the leuA gene, is replaced with AT Either mutation (G561D) in
  • the microorganism producing L-leucine of the present application may be a microorganism in which isopropyl malate synthase activity is enhanced as it expresses isopropyl malate synthase including the above mutation.
  • the term "enhancement" of a polypeptide activity means that the activity of the polypeptide is increased compared to the intrinsic activity.
  • the reinforcement may be used interchangeably with terms such as up-regulation, overexpression, and increase.
  • the increase may include both exhibiting an activity that it did not originally have, or exhibiting an improved activity compared to intrinsic activity or activity before modification.
  • the "intrinsic activity” refers to the activity of a specific polypeptide originally possessed by the parent strain or unmodified microorganism before the transformation when the trait is changed due to genetic mutation caused by natural or artificial factors. This may be used interchangeably with "activity before modification”.
  • “Enhancement” or “increase” in the activity of a polypeptide compared to the intrinsic activity means that the activity of the specific polypeptide is improved compared to the original activity of the parent strain or the unmodified microorganism before transformation.
  • the enhancement can be achieved by introducing an exogenous polypeptide or by enhancing the activity of an endogenous polypeptide. Whether or not the activity of the polypeptide is enhanced can be confirmed from the increase in the level of activity, expression level, or the amount of product excreted from the polypeptide.
  • the enhancement of the activity of the polypeptide can be applied by various methods well known in the art, and is not limited as long as it can enhance the activity of the target polypeptide compared to the microorganism before modification. Specifically, it may be one using genetic engineering and/or protein engineering well known to those skilled in the art, which is a routine method of molecular biology, but is not limited thereto (eg, Sitnicka et al. Functional Analysis of Genes. Advances in Cell). Biology 2010, Vol. 2. 1-16, Sambrook et al. Molecular Cloning 2012, etc.).
  • the increase in the intracellular copy number of the polynucleotide encoding the polypeptide may be the introduction of a vector capable of replicating and functioning independently of the host to which the polynucleotide encoding the polypeptide is operably linked into the host cell. .
  • one or more copies of the polynucleotide encoding the polypeptide may be introduced into a chromosome in a host cell.
  • the introduction into the chromosome may be performed by introducing a vector capable of inserting the polynucleotide into the chromosome in the host cell into the host cell, but is not limited thereto.
  • the vector is the same as described above.
  • Replacing the gene expression control region (or expression control sequence) on the chromosome encoding the polypeptide with a sequence with strong activity is, for example, deletion, insertion, non-conservative or Conservative substitution or a combination thereof may result in a mutation in the sequence, or replacement with a sequence having a stronger activity.
  • the expression control region is not particularly limited thereto, but may include a promoter, an operator sequence, a sequence encoding a ribosome binding site, and a sequence controlling the termination of transcription and translation.
  • the original promoter may be replaced with a strong promoter, but is not limited thereto.
  • Examples of known strong promoters include cj1 to cj7 promoter (US Pat. No. 7662943 B2), lac promoter, trp promoter, trc promoter, tac promoter, lambda phage PR promoter, PL promoter, tet promoter, gapA promoter, SPL7 promoter, SPL13 (sm3) promoter (US Patent US 10584338 B2), O2 promoter (US Patent US 10273491 B2), tkt promoter and yccA promoter, but are not limited thereto.
  • the modification of the base sequence of the start codon or 5'-UTR region of the gene encoding the polypeptide may be, for example, substitution with another start codon having a higher polypeptide expression rate than the intrinsic start codon, but is not limited thereto. does not
  • the amino acid sequence of the polypeptide or the polynucleotide sequence encoding the polypeptide is deleted, inserted, non-conservative or conservative to enhance the activity of the polypeptide.
  • substitution or a combination thereof may result in a mutation in sequence, or replacement with an amino acid sequence or polynucleotide sequence improved to have stronger activity, or an amino acid sequence or polynucleotide sequence improved to increase activity, but is not limited thereto .
  • the replacement may be specifically performed by inserting a polynucleotide into a chromosome by homologous recombination, but is not limited thereto.
  • the vector used may further include a selection marker for confirming whether or not the chromosome is inserted. The selection marker is the same as described above.
  • the introduction of the foreign polynucleotide exhibiting the activity of the polypeptide may be the introduction of the foreign polynucleotide encoding the polypeptide exhibiting the same/similar activity as the polypeptide into a host cell.
  • the foreign polynucleotide is not limited in its origin or sequence as long as it exhibits the same/similar activity as the polypeptide.
  • the method used for the introduction can be performed by appropriately selecting a known transformation method by those skilled in the art, and the introduced polynucleotide is expressed in a host cell to generate a polypeptide and increase its activity.
  • Codon optimization of the polynucleotide encoding the polypeptide is codon-optimized so that the transcription or translation of the endogenous polynucleotide is increased in the host cell, or the transcription and translation of the foreign polynucleotide is optimized in the host cell. It may be that its codons are optimized so that the
  • the tertiary structure of the polypeptide is analyzed and the exposed site is selected and modified or chemically modified, for example, by comparing the sequence information of the polypeptide to be analyzed with a database in which sequence information of known proteins is stored. It may be to determine a template protein candidate according to the degree, check the structure based on this, and select an exposed site to be modified or chemically modified and modified or modified.
  • Such enhancement of polypeptide activity may be that the activity or concentration of the corresponding polypeptide is increased relative to the activity or concentration of the polypeptide expressed in the wild-type or pre-modified microbial strain, or the amount of product produced from the polypeptide may be increased.
  • the present invention is not limited thereto.
  • Modification of some or all of the polynucleotide in the microorganism of the present application is (a) homologous recombination using a vector for chromosome insertion in the microorganism or engineered nuclease (e.g., CRISPR) -Cas9) and/or (b) induced by light and/or chemical treatment such as ultraviolet and radiation, but not limited thereto.
  • the method for modifying part or all of the gene may include a method by DNA recombination technology.
  • a part or all of the gene may be deleted.
  • the injected nucleotide sequence or vector may include a dominant selection marker, but is not limited thereto.
  • the microorganism producing L-leucine of the present application is SEQ ID NO: 6 or SEQ ID NO: 8 or SEQ ID NO: 10 or SEQ ID NO: 12 or SEQ ID NO: 14 or SEQ ID NO: 38 or SEQ ID NO: 40 or SEQ ID NO: 42 or SEQ ID NO: 44 or a polypeptide comprising SEQ ID NO: 46 or SEQ ID NO: 48 or SEQ ID NO: 50 or SEQ ID NO: 52, SEQ ID NO: 6 or SEQ ID NO: 8 or SEQ ID NO: 10 or SEQ ID NO: 12 or SEQ ID NO: 14 or SEQ ID NO: 38 or SEQ ID NO: 40 or sequence SEQ ID NO: 42 or SEQ ID NO: 44 or SEQ ID NO: 46 or SEQ ID NO: 48 or SEQ ID NO: 50 or SEQ ID NO: 52 or a polynucleotide encoding a polypeptide comprising SEQ ID NO: 7 or SEQ ID NO: 9 or SEQ ID NO: 11 or SEQ ID NO: 13
  • variant polypeptides, polynucleotides, vectors, L-leucine, and the like are as described in the other aspects above.
  • Another aspect of the present application is a variant polypeptide of the present application; a polynucleotide encoding it; Or a vector comprising the same; provides a method for producing L- leucine, comprising the step of culturing a microorganism of the genus Corynebacterium that produces L- leucine in a medium.
  • the term "cultivation” means growing the Corynebacterium sp. strain of the present application under moderately controlled environmental conditions.
  • the culture process of the present application may be performed according to a suitable medium and culture conditions known in the art. Such a culture process can be easily adjusted and used by those skilled in the art according to the selected strain. Specifically, the culture may be batch, continuous, and fed-batch, but is not limited thereto.
  • the term "medium” refers to a material in which nutrients required for culturing the Corynebacterium sp. strain of the present application are mixed as a main component, and includes water essential for survival and development, as well as nutrients and development. supplies, etc.
  • any medium and other culture conditions used for culturing the Corynebacterium glutamicum strain of the present application may be used without any particular limitation as long as it is a medium used for culturing conventional microorganisms, but the Corynebacterium glutamicum of the present application Lium glutamicum strain can be cultured while controlling the temperature, pH, etc.
  • the carbon source includes carbohydrates such as glucose, saccharose, lactose, fructose, sucrose, maltose, and the like; sugar alcohols such as mannitol and sorbitol; organic acids such as pyruvic acid, lactic acid, citric acid and the like; amino acids such as glutamic acid, methionine, lysine, and the like may be included.
  • natural organic nutrient sources such as starch hydrolyzate, molasses, blackstrap molasses, rice winter, cassava, sugar cane offal and corn steep liquor can be used, specifically glucose and sterilized pre-treated molasses (i.e., converted to reducing sugar). molasses) may be used, and other appropriate amounts of carbon sources may be variously used without limitation. These carbon sources may be used alone or in combination of two or more, but is not limited thereto.
  • nitrogen source examples include inorganic nitrogen sources such as ammonia, ammonium sulfate, ammonium chloride, ammonium acetate, ammonium phosphate, anmonium carbonate, and ammonium nitrate; Amino acids such as glutamic acid, methionine, glutamine, and organic nitrogen sources such as peptone, NZ-amine, meat extract, yeast extract, malt extract, corn steep liquor, casein hydrolyzate, fish or degradation products thereof, defatted soybean cake or degradation products thereof, etc. can be used These nitrogen sources may be used alone or in combination of two or more, but is not limited thereto.
  • inorganic nitrogen sources such as ammonia, ammonium sulfate, ammonium chloride, ammonium acetate, ammonium phosphate, anmonium carbonate, and ammonium nitrate
  • Amino acids such as glutamic acid, methionine, glutamine
  • organic nitrogen sources such as peptone, NZ-amine, meat extract, yeast extract
  • the phosphorus may include potassium first potassium phosphate, second potassium phosphate, or a sodium-containing salt corresponding thereto.
  • potassium first potassium phosphate potassium phosphate
  • second potassium phosphate or a sodium-containing salt corresponding thereto.
  • sodium chloride, calcium chloride, iron chloride, magnesium sulfate, iron sulfate, manganese sulfate, calcium carbonate, etc. may be used, and in addition, amino acids, vitamins and/or suitable precursors may be included. These components or precursors may be added to the medium either batchwise or continuously. However, the present invention is not limited thereto.
  • compounds such as ammonium hydroxide, potassium hydroxide, ammonia, phosphoric acid, sulfuric acid, etc. may be added to the medium in an appropriate manner to adjust the pH of the medium.
  • an antifoaming agent such as fatty acid polyglycol ester may be used to suppress bubble formation.
  • oxygen or oxygen-containing gas may be injected into the medium, or nitrogen, hydrogen or carbon dioxide gas may be injected without or without gas to maintain anaerobic and microaerobic conditions, it is not
  • the culture temperature may be maintained at 20 to 45° C., specifically, 25 to 40° C., and may be cultured for about 10 to 160 hours, but is not limited thereto.
  • L-leucine produced by the culturing of the present application may be secreted into the medium or remaining in cells.
  • the L-leucine production method of the present application may further include preparing a Corynebacterium glutamicum strain of the present application or preparing a medium for culturing the strain.
  • the method for producing L-leucine of the present application may further include recovering L-leucine from the medium according to the culture or the Corynebacterium glutamicum strain of the present application.
  • the recovery may be to collect the desired L-leucine using a suitable method known in the art according to the culture method of the microorganism of the present application, for example, a batch, continuous or fed-batch culture method, etc. .
  • a suitable method known in the art for example, centrifugation, filtration, treatment with a crystallized protein precipitating agent (salting out method), extraction, ultrasonic disruption, ultrafiltration, dialysis, molecular sieve chromatography (gel filtration), adsorption chromatography, ion exchange chromatography, affinity
  • a suitable method known in the art may be used to recover the desired L-leucine from the medium or microorganism.
  • the L-leucine production method of the present application may include an additional purification step.
  • the purification may be performed using a suitable method known in the art.
  • the recovery step and the purification step are performed continuously or discontinuously, regardless of the order, or integrated into one step. may be performed, but is not limited thereto.
  • variant polypeptides, polynucleotides, L-leucine, and the like are as described in the other aspects above.
  • Corynebacterium glutamicum strain comprising a variant polypeptide of the present application or a polynucleotide of the present application; Or to provide a composition for the production of L- leucine comprising; or a culture medium thereof.
  • composition of the present application may further include any suitable excipients commonly used in compositions for the production of amino acids, and these excipients may be, for example, preservatives, wetting agents, dispersing agents, suspending agents, buffering agents, stabilizing agents or isotonic agents, etc.
  • excipients commonly used in compositions for the production of amino acids
  • these excipients may be, for example, preservatives, wetting agents, dispersing agents, suspending agents, buffering agents, stabilizing agents or isotonic agents, etc.
  • the present invention is not limited thereto.
  • variant polypeptides in the composition of the present application, variant polypeptides, polynucleotides, L-leucine, and the like are as described in the other aspects above.
  • Example 1 Construction of a DNA library encoding a mutated isopropylmalate synthase
  • a recombinant vector containing leuA was first prepared.
  • SEQ ID NO: 2 encoding the LeuA protein (SEQ ID NO: 1, Uniprot accession code: P42455) derived from wild-type Corynebacterium glutamicum , Corynebacterium glutamicum ATCC13032
  • primers of SEQ ID NOs: 3 and 4 were denatured at 94 ° C. for 1 minute, combined at 58 ° C. for 30 seconds, and polymerization using Pfu DNA polymerase at 72 ° C. for 1 minute was repeated 25 times to perform PCR.
  • the sequences of the primers used are shown in Table 1 below.
  • the PCR product was cloned into E. coli vector pCR2.1 using the TOPO cloning kit (Invitrogen) to obtain 'pCR-leuA'.
  • an error-prone PCR kit (error-prone PCR kit, clontech Diversify® PCR Random Mutagenesis Kit) was used to prepare a leuA mutation library.
  • a PCR reaction was performed using the primers of SEQ ID NO: 3 and SEQ ID NO: 4 listed in Table 1 under conditions in which 0 to 3 mutations per 1000 bp can occur.
  • PCR was performed by repeating 25 times of pre-heating at 94° C. for 30 seconds, denaturation at 94° C. for 30 seconds, and polymerization at 68° C. for 1 minute and 30 seconds.
  • the PCR product obtained at this time was denatured at 95 °C for 50 seconds using a megaprimer (50 ⁇ 125ng), combined at 60 °C for 50 seconds, and polymerized for 12 minutes at 68 °C 25 times repeated 25 times, followed by DpnI treatment, E. coli DH5 ⁇ was transformed through heat shock and spread on LB solid medium containing 25 mg/L of kanamycin. After selecting 20 transformed colonies, plasmids were obtained and nucleotide sequences were analyzed.
  • Fermentation potency was evaluated in the following manner for each colony in order to identify colonies in which L-leucine production was increased and L-phenylalanine production among aromatic amino acids was increased and decreased among the 10,000 secured colonies.
  • Badge type ingredient production medium Glucose 100g, (NH 4 ) 2 SO 4 40g, Soy Protein 2.5g, Corn Steep Solids 5g, Urea 3g, KH 2 PO 4 1g, MgSO 4 7H 2 O 0.5g, Biotin 100 ⁇ g, thiamine hydrochloride 1,000 ⁇ g, calcium-pantothenic acid 2000 ⁇ g, nicotinamide 3,000 ⁇ g, CaCO 3 30g; (based on 1 liter of distilled water), pH 7.0 nutrient medium Glucose 10g, broth 5g, polypeptone 10g, sodium chloride 2.5g, yeast extract 5g, agar 20g, urea 2g (based on 1 liter of distilled water)
  • Each colony was inoculated into a 250 ml corner-barpool flask containing 25 ug/ml of kanamycin in 25 ml of the production medium of Table 2 using platinum, and then cultured with shaking at 30 ° C. for 60 hours at 200 rpm. After completion of the culture, L-leucine production was measured by a method using high-performance liquid chromatography (HPLC, SHIMAZDU LC20A).
  • Corynebacterium glutamicum ATCC13032/pTOPO_leuA(mt)3847 having a mutation in the leuA gene has about 1.41 times the L-leucine production capacity compared to the parent strain, Corynebacterium glutamicum ATCC13032. improvement was confirmed.
  • ATCC13032/pTOPO_leuA(mt)4708, ATCC13032/pTOPO_leuA(mt)5109, ATCC13032/pTOPO_leuA(mt)7563, ATCC13032/pTOPO_leuA(mt)8459 compared to the parent strain are about 1.45, 1.59, 1.36, respectively. improvement was confirmed.
  • TCC which is nucleotides 631-633 of the leuA gene
  • CTT CTT
  • the ATCC13032/pTOPO_leuA(mt)7563 strain confirmed that AT, which is the 1762th-1763th nucleotides of the leuA gene, was substituted with CC.
  • This is the 588th of the LeuA protein (the 553th in the case of based on the known literature that the LeuA protein consists of 581 amino acids (SEQ ID NO: 5) by writing the translation initiation codon behind 35; hereafter, only the 588th) amino acid
  • isoleucine can encode a proline-substituted variant (hereinafter, I588P).
  • the amino acid sequence of the LeuA variant (I588P) and the nucleotide sequence of the leuA variant encoding it are the same as SEQ ID NO: 12 and SEQ ID NO: 13.
  • the vector for leuA (L138G, H162E, S211L, N245S, I588P) mutation was prepared using a site directed mutagenesis method. Specifically, using the primer pair of SEQ ID NO: 16 and SEQ ID NO: 17, the primer pair of SEQ ID NO: 18 and SEQ ID NO: 19 to generate L138G mutation using the chromosome of the wild-type Corynebacterium glutamicum ATCC13032 strain as a template, H162E PCR was performed using the primer pair of SEQ ID NO: 16 and SEQ ID NO: 20, and the primer pair of SEQ ID NO: 19 and SEQ ID NO: 21 to generate mutations.
  • the primer pair of SEQ ID NO: 16 and SEQ ID NO: 22, the primer pair of SEQ ID NO: 19 and SEQ ID NO: 23 were used to generate the S211L mutation, and the primer pair of SEQ ID NO: 16 and SEQ ID NO: 24, SEQ ID NO: 24 to generate the N245S mutation.
  • PCR was performed using the primer pair of 19 and SEQ ID NO: 25.
  • PCR was performed using the primer pair of SEQ ID NO: 16 and SEQ ID NO: 26, and the primer pair of SEQ ID NO: 19 and SEQ ID NO: 27 to generate the I588P mutation.
  • vectors 'pDCM2-leuA(S211L, I588P), pDCM2-leuA(L138G, H162E, S211L, N245S)', 'pDCM2-leuA(L138G, H162E, S211L, N245S), I588P)' was manufactured.
  • pDCM2-leuA (L138G), pDCM2-leuA (H162E), pDCM2-leuA (S211L), pDCM2-leuA (N245S), pDCM2-leuA (I588P), pDCM2-leuA (S211L, I588P), pDCM2-leuA (L138G, H162E, S211L, N245S), pDCM2-leuA (L138G, H162E, S211L, N245S, I588P) vectors were transformed into Corynebacterium glutamicum ATCC13032 strains by electroporation and phase The strain into which the vector was inserted into the chromosome by recombination of the homologous sequence was selected in a medium containing 25 mg/L of kanamycin.
  • the selected primary strain was again subjected to secondary crossover, and a strain into which the mutation of the target gene was introduced was selected. Finally, whether the leuA gene mutation was introduced into the transformed strain was confirmed that the mutation was introduced in the strain by performing PCR using the primers of SEQ ID NO: 3 and SEQ ID NO: 4 and then analyzing the nucleotide sequence.
  • strains produced each of which is 'ATCC13032_leuA_L138G', 'ATCC13032_leuA_H162E, ATCC13032_leuA_S211L', 'ATCC13032_leuA_N245S', 'ATCC13032_leuA_I588P', 'ATCC13032_leuA_I588P', 'ATCC' ATCC13032_leuA_(L138G, H162E, S211L, N245S, I588P)' was named.
  • Flask fermentation titer was evaluated to evaluate the L-leucine-producing ability of the 8 strains prepared above.
  • ATCC13032_leuA_L138G with L138G mutation in the leuA gene improved the yield of L-leucine by about 1.45 times compared to the parent strain, Corynebacterium glutamicum ATCC13032, and ATCC13032_leuA_H162E with H162E mutation was the parent strain.
  • the yield of L-leucine was improved by about 1.49 times, and ATCC13032_leuA_S211L with S211L mutation had an L-leucine yield of about 1.58 compared to the parent strain, Corynebacterium glutamicum ATCC13032.
  • ATCC13032_leuA_N245S with N245S mutation improved the yield of L-leucine by about 1.40 times compared to the parent strain, Corynebacterium glutamicum ATCC13032, and ATCC13032_leuA_I588P with I588P mutation was the parent strain, Corynebacterium glutamicum. Compared to Qom ATCC13032, the yield of L-leucine was improved by about 1.37 times, and in ATCC13032_leuA_(S211L, I588P), the yield of L-leucine, the parent strain, was improved by about 1.51 times.
  • ATCC13032_leuA_(L138G, H162E, S211L, N245S) and ATCC13032_leuA_(L138G, H162E, S211L, N245S, I588P) were confirmed that the yield of L-leucine was improved by about 1.56 times compared to the parent strain, Corynebacterium glutamicum.
  • pDCM2-leuA (R558H, G561D) vector (US Patent Publication No. 2021-0254111) containing leuA gene mutations (R558H, G561D) was transformed into Corynebacterium glutamicum ATCC13032 by electroporation, and A strain into which the vector was inserted into the chromosome was selected by recombination of the homologous sequence in a medium containing 25 mg/L of kanamycin. The selected primary strain was again subjected to a secondary crossover, and a strain into which the leuA gene mutation was introduced was selected.
  • An insertion vector was prepared to introduce a mutation (P247C) into the L-leucine-producing strain, CJL-8100.
  • PCR was performed using a pair of primers of SEQ ID NOs: 28 and 29, and primers of SEQ ID NOs: 54 and 55 using the chromosome of the CJL-8100 strain as a template. After denaturation at 94 °C for 5 minutes, PCR was repeated 30 times for 30 seconds at 94 °C, 30 seconds at 55 °C, and 1 minute and 30 seconds at 72 °C, followed by polymerization at 72 °C for 5 minutes.
  • the resultant PCR product was cloned by fusion of the homologous sequence of the terminal 15 bases between the DNA fragments using the linear pDCM2 vector digested with SmaI restriction enzyme and the In-Fusion enzyme, and the 558th amino acid in the LeuA amino acid sequence of the wild-type strain.
  • Vector pDCM2 containing a leuA mutation encoding a LeuA variant in which arginine is substituted with histidine and glycine at position 561 is substituted with aspartic acid, and proline (Pro) at position 247 of LeuA is substituted with cysteine (Cys) -leuA (P247C, R558H, G561D) was prepared.
  • the pDCM2-leuA (P247C, R558H, G561D) vector was transformed into wild-type Corynebacterium glutamicum ATCC13032 by electroporation and on the chromosome by recombination of the homologous sequence in a medium containing 25 mg/L of kanamycin. A strain into which the vector was inserted was selected. The selected primary strain was again subjected to a secondary crossover, and a strain into which the leuA gene mutation was introduced was selected.
  • the CA13-8105 was deposited with the Korea Microorganism Conservation Center, a trustee institution under the Budapest Treaty on April 29, 2020, and was given an accession number KCCM12709P.
  • V156A ilvE mutant
  • V156A a strain in which the ilvE mutant (V156A), which is a gene encoding branched-chain amino acid aminotransferase, was introduced (WO WO2021- 112469 A1).
  • the pDCM2-ilvE (V156A) vector containing the above ilvE gene mutation was transformed into Corynebacterium glutamicum CJL-8100 by electroporation, and the homologous sequence was obtained in a medium containing 25 mg/L of kanamycin.
  • a strain into which the vector was inserted into the chromosome by recombination was selected.
  • the selected primary strain was again subjected to secondary crossover, and a strain into which the mutation of the ilvE gene was introduced was selected. Finally, whether the mutation was introduced into the transformed strain was determined by PCR using the primer pair of SEQ ID NO: 30 and SEQ ID NO: 31 in Table 7 (94 °C 5 min, 94 °C 30 sec/55 °C 30 sec/72 °C 90 sec. Repeat 30 times, 72 °C for 5 minutes) and analyze the nucleotide sequence to confirm that the V156A mutation was introduced.
  • the strain transformed with the pDCM2-ilvE (V156A) vector was named 'CJL-8108'.
  • a site directed mutagenesis method was used to construct a vector for introducing gltA(M312I) mutations.
  • PCR was performed using the primers of Table 8 below using the chromosome of wild-type Corynebacterium glutamicum ATCC13032 as a template. After denaturation at 94 °C for 5 minutes, PCR was repeated 30 times for 30 seconds at 94 °C, 30 seconds at 55 °C, and 1 minute and 30 seconds at 72 °C, followed by polymerization at 72 °C for 5 minutes.
  • the resultant gene fragment was cloned by linking the homologous sequence of the 15 bases at the ends between the DNA fragments using a linear pDCM2 vector digested with SmaI restriction enzyme and an In-Fusion enzyme.
  • a vector pDCM2-gltA (M312I) was constructed.
  • the pDCM2-gltA (M312I) vector containing the above gltA gene mutation was transformed into Corynebacterium glutamicum CJL-8108 by electroporation and recombination of the homologous sequence was performed in a medium containing 25 mg/L of kanamycin.
  • a strain into which the vector was inserted on the chromosome was selected.
  • the selected primary strain was again subjected to a secondary crossover, and a strain into which a mutation of the gltA gene was introduced was selected.
  • Example 4-1 In order to introduce the mutations (L138G, H162E, S211L, N245S, I588P) selected in Example 2 into CJL-8109, the L-leucine-producing strain prepared in Example 4-1, an insertion vector was prepared.
  • PCR was performed using the chromosome of the CJL-8109 strain as a template and the primer pair in Table 4. PCR was performed by repeating 30 times of denaturation at 94 °C for 5 minutes, denaturation at 94 °C for 30 seconds, binding at 55 °C for 30 seconds, and polymerization at 72 °C for 1 minute and 30 seconds, followed by polymerization at 72 °C for 5 minutes.
  • the resulting PCR product was cloned by fusion of the homologous sequence of the terminal 15 bases between the DNA fragments using the infusion enzyme and the pDCM2 vector on the line cut with SmaI restriction enzyme, and cloned into a total of 8 vectors 'pDCM2-leuA (L138G, P247C, R558H).
  • the strain CJL-8109 an L-leucine-producing strain, was transformed with the vector prepared in Example 4-2, and the vector was inserted into the chromosome by recombination of the homologous sequence in a medium containing 25 mg/L of kanamycin. was selected. The selected primary strain was again subjected to secondary crossover, and a strain into which the mutation of the target gene was introduced was selected. Finally, whether the leuA gene mutation was introduced into the transformed strain was confirmed that the leuA mutation was introduced into the strain by performing PCR using the primers of SEQ ID NO: 3 and SEQ ID NO: 4 and then analyzing the nucleotide sequence. A total of 8 strains produced were named as shown in Table 11 below, and the amino acid sequence of the mutant containing the mutation and the nucleotide sequence of the leuA mutant encoding it were described in Table 10 below.
  • strain name strain number SEQ ID NO: CJL-8109_leuA_L138G, P247C, R558H, G561D CJL-8117 SEQ ID NOs: 38, 39 CJL-8109_leuA_H162E, P247C, R558H, G561D CJL-8118 SEQ ID NOs: 40, 41 CJL-8109_leuA_S211L, P247C, R558H, G561D CA13-8119 SEQ ID NOs: 42, 43 CJL-8109_leuA_N245S, P247C, R558H, G561D CJL-8120 SEQ ID NOs: 44, 45 CJL-8109_leuA_I588P, P247C, R558H, G561D CJL-8121 SEQ ID NOs: 46, 47 CJL-8109_leuA_S211L, P247C, R558H, G561D, I588P
  • wild-type Corynebacterium glutamicum ATCC13032 produced CJL-8109, CJL-8117, CJL-8118, CA13-8119, CJL-8120, CJL-8121, CJL-8122, CJL-8123, CJL-8125 strains of L-leucine production capacity was evaluated.
  • flask culture was carried out in the method of Example 2-1, and after completion of the culture, the L-leucine production of the parent strain and the mutant strain was measured using HPLC, and the results are shown in Table 11 below.
  • strain name L-leucine (g/L) ATCC13032 0.87 CJL-8109 2.89 CJL-8117 3.55 CJL-8118 3.67 CA13-8119 4.03 CJL-8120 3.46 CJL-8121 3.48 CJL-8122 4.52 CJL-8123 4.02 CJL-8125 4.01
  • L-leucine with L138G, H162E, S211L, N245S, I588P, S211L/I588P, L138G/H162E/S211L/N245S or L138G/H162E/S211L/N245S/I588P mutations in the leuA gene were L compared to the parent strain, wild-type Corynebacterium glutamicum ATCC13032. - It was confirmed that the leucine production capacity was improved by about 4 to 5 times.
  • L-leucine-producing strains Corynebacterium glutamicum CJL-8117, CJL-8118, CA13-8119, CJL-8120, CJL-8121, CJL-8122, CJL-8123, and CJL-8125 were Compared to Nebacterium glutamicum CJL-8109, it was confirmed that the L-leucine production ability was improved by about 1.2 to 1.6 times.
  • amino acids at positions 138, 162, 211, 245, and 588 in the amino acid sequence of the LeuA protein are important positions for L-leucine production activity.
  • the strains (CJL-8109, CJL-8117, CJL-8118, CA13-8119, CJL-8120, CJL-8121, CJL-8122, CJL -8123, CJL-8125) and wild-type Corynebacterium glutamicum ATCC13032 were inoculated with 1 platinum, respectively, and then cultured with shaking at 30° C. for 16 hours at 200 rpm. After completion of the culture, the culture medium was centrifuged, the supernatant was discarded, the pellet was washed and turbid with a lysis buffer solution, and the cells were disrupted. Protein quantification of the lysate followed the Bradford method, and a lysate containing 100 ⁇ g/ml of protein was used.
  • strain Relative isopropylmalate synthase activity (%) ATCC13032 100 CJL-8109 118 CJL-8117 121 CJL-8118 125 CA13-8119 138 CJL-8120 122 CJL-8121 130 CJL-8122 132 CJL-8123 135 CJL-8125 136
  • the L-leucine-producing strains CJL-8109 and CJL-8117, CJL-8118, CA13-8119, CJL-8120, CJL-8121, CJL-8122 transformed with the LeuA mutant expression vector , CJL-8123 and CJL-8125 confirmed that the activity of isopropyl malate synthase was improved by about 1.18 to 1.38 times compared to the control wild-type Corynebacterium glutamicum ATCC 13032.
  • the L-leucine-producing strains maintained the isopropyl malate synthase enzyme activity at 83% to 93%, respectively, even under the condition in which 2 g/L of leucine was added, thereby confirming that feedback inhibition by leucine was released. .
  • the CA13-8119 was deposited with the Korea Microorganism Conservation Center, a trustee institution under the Budapest Treaty on February 8, 2021, and was given an accession number KCCM12949P.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

본 출원은 이소프로필말레이트 신타제 변이체 및 이를 이용한 L-류신의 생산 방법에 관한 것이다.

Description

이소프로필말레이트 신타제 변이체 및 이를 이용한 L-류신의 생산 방법
본 출원은 이소프로필말레이트 신타제 변이체 및 이를 이용한 L-류신의 생산 방법에 관한 것이다.
L-류신은 필수 아미노산의 일종으로 의약, 식품, 사료첨가물 및 공업 약품 등에 광범위하게 사용되는 고가의 아미노산으로서, 주로 미생물을 이용하여 생산된다. L-류신을 포함한 분지쇄 아미노산의 발효 생산은, 주로 에스케리키아 속 미생물 또는 코리네박테리움 속 미생물을 통해 이루어지며, 피루브산으로부터 여러 단계를 거쳐 2-케토이소카프로산(2-ketoisocaproate)을 전구체로 생합성된다고 알려져 있다(대한민국 등록특허 제10-0220018호, 대한민국 등록특허 제10-0438146호).
상기 L-류신 생합성에 관여하는 효소인 이소프로필말레이트 신타제(isopropylmalate synthase)는 발린 생합성 경로 중 생성되는 2-케토아이소발러레이트(2-ketoisovalerate)를 발린 대신 류신 생합성에 필요한 이소프로필말레이트(isopropylmalate)로 전환하는 류신 생합성의 1 단계 효소로, 류신 생합성 과정에서 중요한 효소이다. 그러나 상기 이소프로필말레이트 신타제는 최종 산물인 L-류신 또는 이의 유도체에 의한 피드백 저해를 받는다. 이에 고농도 류신 생산을 목적으로 피드백 저해를 해제한 이소프로필말레이트 신타제 변이체에 대하여 다양한 선행기술이 존재하나(미국 공개특허 제2015-0079641호, 미국 등록특허 제6403342호), 여전히 더 나은 변이체 발굴에 대한 연구는 지속되고 있다.
본 발명자들은 고농도의 L-류신 생산에 사용할 수 있는 이소프로필말레이트 신타제 변이체를 개발하기 위해 예의 노력한 결과, 신규한 이소프로필말레이트 신타제 변이체를 개발하여, 이를 포함하는 미생물로부터 고수율로 L-류신을 생산할 수 있음을 확인하고, 본 출원을 완성하였다.
본 출원의 하나의 목적은 이소프로필말레이트 신타제(isopropylmalate synthase) 활성을 가지는 변이형 폴리펩티드를 제공하는 것이다.
본 출원의 다른 하나의 목적은 본 출원의 변이형 폴리펩티드를 코딩하는 폴리뉴클레오티드를 제공하는 것이다.
본 출원의 다른 하나의 목적은 본 출원의 폴리뉴클레오티드를 포함하는 벡터를 제공하는 것이다.
본 출원의 다른 하나의 목적은 본 출원의 변이형 폴리펩티드; 이를 코딩하는 폴리뉴클레오티드; 또는 이를 포함하는 벡터;를 포함하는, L-류신을 생산하는 코리네박테리움 속(The genus of Corynebacterium) 미생물을 제공하는 것이다.
본 출원의 다른 하나의 목적은 본 출원의 변이형 폴리펩티드; 이를 코딩하는 폴리뉴클레오티드; 또는 이를 포함하는 벡터;를 포함하는, L-류신을 생산하는 코리네박테리움 속 미생물을 배지에서 배양하는 단계를 포함하는, L-류신 생산방법을 제공하는 것이다.
본 출원의 또 하나의 목적은 본 출원의 변이형 폴리펩티드 또는 본 출원의 폴리뉴클레오티드를 포함하는 코리네박테리움 글루타미쿰 균주; 또는 이를 배양한 배지;를 포함하는 L-류신 생산용 조성물을 제공하는 것이다.
본 출원에서 이소프로필말레이트 신타제의 활성을 가지는 변이형 폴리펩티드는 야생형 이소프로필말레이트 신타제에 비해 활성이 증가되며, 이를 L-류신을 고수율로 대량 생산하는 데에 응용할 수 있다.
이를 구체적으로 설명하면 다음과 같다. 한편, 본 출원에서 개시된 각각의 설명 및 실시형태는 각각의 다른 설명 및 실시 형태에도 적용될 수 있다. 즉, 본 출원에서 개시된 다양한 요소들의 모든 조합이 본 출원의 범주에 속한다. 또한, 하기 기술된 구체적인 서술에 의하여 본 출원의 범주가 제한된다고 볼 수 없다. 또한, 당해 기술분야의 통상의 지식을 가진 자는 통상의 실험만을 사용하여 본 출원에 기재된 본 출원의 특정 양태에 대한 다수의 등가물을 인지하거나 확인할 수 있다. 또한, 이러한 등가물은 본 출원에 포함되는 것으로 의도된다.
상기 목적을 달성하기 위한 본 출원의 하나의 양태는, 이소프로필말레이트 신타제(isopropylmalate synthase) 활성을 가지는 변이형 폴리펩티드를 제공한다.
구체적으로, 상기 변이형 폴리펩티드는 서열번호 1의 아미노산 서열에서 i) 138 번째에 상응하는 위치의 아미노산 잔기가 다른 아미노산 잔기로 치환, ii) 162 번째에 상응하는 위치의 아미노산 잔기가 다른 아미노산 잔기로 치환, iii) 211 번째에 상응하는 위치의 아미노산 잔기가 다른 아미노산 잔기로 치환, iv) 245 번째에 상응하는 위치의 아미노산 잔기가 다른 아미노산 잔기로 치환, 및 v) 588 번째에 상응하는 위치의 아미노산 잔기가 다른 아미노산 잔기로의 치환으로 이루어지는 군으로부터 선택되는 어느 하나 이상의 치환을 포함하는 것일 수 있다.
본 출원에서 용어, "이소프로필말레이트 신타제(isopropylmalate synthase, IPMS)"는 2-케토아이소발러레이트(2-ketoisovalerate)를 아세틸-CoA와 반응시켜 L-류신의 전구체 중 하나인 이소프로필말레이트(isopropylmalate)로 전환하는 효소를 의미한다. 본 출원에서 상기 이소프로필말레이트 신타제는 이소프로필말레이트 합성효소, IPMS, LeuA 단백질 또는 LeuA로 혼용하여 사용될 수 있다.
본 출원에서 상기 LeuA는 공지의 데이터 베이스인 NCBI의 GenBank에서 그 서열을 얻을 수 있고, 구체적으로 leuA 유전자에 의해 코딩되는 이소프로필말레이트 신타제 활성을 갖는 단백질일 수 있으나, 이에 제한되지 않는다.
상기 LeuA는 코리네박테리움속 미생물 유래의 효소일 수 있고, 구체적으로 코리네박테리움 글루타미쿰(Corynebacterium glutamicum) 유래 이소프로필말레이트 신타제일 수 있다.
본 출원의 LeuA는 서열번호 1의 아미노산 서열을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다. 또한, 상기 LeuA는 서열번호 1의 아미노산 서열과 적어도 80 %, 90 %, 95 %, 96 %, 97 %, 98 %, 또는 99 % 상동성을 가지는 폴리펩티드를 포함할 수 있다. 또한, 이러한 상동성 또는 동일성을 가지며 상기 이소프로필말레이트 신타제에 상응하는 활성을 나타내는 아미노산 서열이라면, 일부 서열이 결손, 변형, 치환 또는 부가된 아미노산 서열을 갖는 단백질도 본 출원의 범위 내에 포함됨은 자명하다.
예를 들어, 상기 아미노산 서열 N-말단, C-말단 그리고/또는 내부에 본 출원의 단백질의 기능을 변경하지 않는 서열 추가 또는 결실, 자연적으로 발생할 수 있는 돌연변이, 잠재성 돌연변이(silent mutation) 또는 보존적 치환을 가지는 경우이다.
상기 "보존적 치환(conservative substitution)"은 한 아미노산을 유사한 구조적 및/또는 화학적 성질을 갖는 또 다른 아미노산으로 치환시키는 것을 의미한다. 이러한 아미노산 치환은 일반적으로 잔기의 극성, 전하, 용해도, 소수성, 친수성 및/또는 양친매성(amphipathic nature)에서의 유사성에 근거하여 발생할 수 있다. 통상적으로, 보존적 치환은 단백질 또는 폴리펩티드의 활성에 거의 영향을 미치지 않거나 또는 영향을 미치지 않을 수 있다.
본 출원의 LeuA는 서열번호 1의 아미노산 서열 또는 이와 90% 이상의 동일성을 갖는 아미노산 서열을 가지거나, 상기 아미노산 서열로 이루어지거나, 또는 상기 아미노산 서열로 필수적으로 이루어질(consisting essentially of) 수 있다.
본 출원에서 용어, "변이형 폴리펩티드(variant)"는 하나 이상의 아미노산이 보존적 치환(conservative substitution) 및/또는 변형(modification)되어 상기 변이형 폴리펩티드의 변이 전 아미노산 서열과 상이하나 기능(functions) 또는 특성(properties)이 유지되는 폴리펩티드를 지칭한다. 이러한 변이형 폴리펩티드는 일반적으로 상기 폴리펩티드의 아미노산 서열 중 하나 이상의 아미노산을 변형하고, 상기 변형된 폴리펩티드의 특성을 평가하여 동정(identify)될 수 있다. 즉, 변이형 폴리펩티드의 능력은 변이 전 폴리펩티드에 비하여 증가되거나, 변하지 않거나, 또는 감소될 수 있다. 또한, 일부 변이형 폴리펩티드는 N-말단 리더 서열 또는 막전이 도메인(transmembrane domain)과 같은 하나 이상의 부분이 제거된 변이형 폴리펩티드를 포함할 수 있다. 다른 변이형 폴리펩티드는 성숙 단백질(mature protein)의 N- 및/또는 C-말단으로부터 일부분이 제거된 변이형 폴리펩티드를 포함할 수 있다. 상기 용어 "변이형 폴리펩티드"는 변이형, 변형, 변이된 단백질, 변이 및 변이체 등의 용어(영문 표현으로는 modification, modified polypeptide, modified protein, mutant, mutein, divergent 등)가 혼용되어 사용될 수 있으며, 변이된 의미로 사용되는 용어라면 이에 제한되지 않는다.
또한, 변이형 폴리펩티드는 폴리펩티드의 특성과 2차 구조에 최소한의 영향을 갖는 아미노산들의 결실 또는 부가를 포함할 수 있다. 예를 들면 변이형 폴리펩티드의 N-말단에는 번역-동시에(co-translationally) 또는 번역-후에(post-translationally) 단백질의 이동(translocation)에 관여하는 시그널(또는 리더) 서열이 컨쥬게이트 될 수 있다. 또한 상기 변이형 폴리펩티드는 확인, 정제, 또는 합성할 수 있도록 다른 서열 또는 링커와 컨쥬게이트 될 수 있다.
본 출원의 변이형 폴리펩티드는 이소프로필말레이트 신타제 활성을 가질 수 있다. 또한, 본 출원의 변이형 폴리펩티드는 이소프로필말레이트 신타제 활성을 갖는 야생형 폴리펩티드에 비해 강화된 이소프로필말레이트 신타제 활성을 가질 수 있다.
본 출원의 변이형 폴리펩티드는 서열번호 1의 아미노산 서열에서 i) 138 번째에 상응하는 위치의 아미노산 잔기가 다른 아미노산 잔기로 치환, ii) 162 번째에 상응하는 위치의 아미노산 잔기가 다른 아미노산 잔기로 치환, iii) 211 번째에 상응하는 위치의 아미노산 잔기가 다른 아미노산 잔기로 치환, iv) 245 번째에 상응하는 위치의 아미노산 잔기가 다른 아미노산 잔기로 치환, 및 v) 588 번째에 상응하는 위치의 아미노산 잔기가 다른 아미노산 잔기로의 치환으로 이루어지는 군으로부터 선택되는 어느 하나 이상의 치환을 포함하는 것일 수 있고, 구체적으로 서열번호 1의 아미노산 서열에서 i) 138 번째에 상응하는 위치의 아미노산 잔기인 류신이 류신을 제외한 다른 아미노산 잔기로 치환, ii) 162 번째에 상응하는 위치의 아미노산 잔기인 히스티딘이 히스티딘을 제외한 다른 아미노산 잔기로 치환, iii) 211 번째에 상응하는 위치의 아미노산 잔기인 세린이 세린을 제외한 다른 아미노산 잔기로 치환, iv) 245 번째에 상응하는 위치의 아미노산 잔기인 아스파라기닌이 아스파라기닌을 제외한 다른 아미노산 잔기로 치환, 및 v) 588 번째에 상응하는 위치의 아미노산 잔기인 이소류신이 이소류신을 제외한 다른 아미노산 잔기로의 치환으로 이루어지는 군으로부터 선택되는 어느 하나 이상의 치환을 포함하는 것일 수 있으며, 보다 구체적으로 서열번호 1의 아미노산 서열에서 i) 138 번째에 상응하는 위치의 아미노산 잔기인 류신이 글라이신으로 치환, ii) 162 번째에 상응하는 위치의 아미노산 잔기인 히스티딘이 글루타메이트로 치환, iii) 211 번째에 상응하는 위치의 아미노산 잔기인 세린이 류신으로 치환, iv) 245 번째에 상응하는 위치의 아미노산 잔기인 아스파라기닌이 세린으로 치환, 및 v) 588 번째에 상응하는 위치의 아미노산 잔기인 이소류신이 프롤린으로의 치환으로 이루어지는 군으로부터 선택되는 어느 하나 이상의 치환을 포함하는 것일 수 있고, 더욱 구체적으로 1개 이상, 2개 이상, 3개 이상, 4개 이상, 5개의 치환을 포함하는 것일 수 있다. 상기 2개 이상의 치환은 상기 i) 및 v)의 조합; ii) 및 v)의 조합; iii) 및 v)의 조합; 또는 iv) 및 v)의 조합일 수 있으나, 이에 제한되지 않는다. 상기 4개 이상의 치환은 i), ii), iii), 및 iv)의 조합일 수 있으나, 이에 제한되지 않는다. 상기 5개 이상의 치환은 i), ii), iii), iv) 및 v)의 조합일 수 있다.
본 출원의 변이형 폴리펩티드는 서열번호 6 또는 서열번호 8 또는 서열번호 10 또는 서열번호 12 또는 서열번호 14의 아미노산 서열을 가지는/포함하는 것일 수 있거나, 서열번호 6 또는 서열번호 8 또는 서열번호 10 또는 서열번호 12 또는 서열번호 14의 아미노산 서열로 이루어진/필수적으로 이루어진 것일 수 있다. 본 출원의 변이형 폴리펩티드는 서열번호 6 또는 서열번호 8 또는 서열번호 10 또는 서열번호 12 또는 서열번호 14의 아미노산 서열과 적어도 80%, 90%, 95%, 96%, 97%, 98%, 또는 99% 이상, 및 100% 미만의 동일성 또는 상동성을 가지며, 상기 서열번호 6 또는 서열번호 8 또는 서열번호 10 또는 서열번호 12 또는 서열번호 14의 아미노산 서열에서 i) 138 번째에 상응하는 위치의 아미노산 잔기가 글라이신, ii) 162 번째에 상응하는 위치의 아미노산 잔기가 글루타메이트, iii) 211 번째에 상응하는 위치의 아미노산 잔기가 류신, iv) 245 번째에 상응하는 위치의 아미노산 잔기가 세린, 또는 v) 588 번째에 상응하는 위치의 아미노산 잔기가 프롤린인 폴리펩티드를 포함할 수 있다. 구체적으로, 상기 서열번호 6은 서열번호 1의 아미노산 서열에서 138 번째에 상응하는 위치의 아미노산 잔기인 류신이 글라이신으로 치환된 아미노산 서열일 수 있고, 상기 서열번호 8은 162 번째에 상응하는 위치의 아미노산 잔기인 히스티딘이 글루타메이트로 치환된 아미노산 서열일 수 있고, 상기 서열번호 10는 211 번째에 상응하는 위치의 아미노산 잔기인 세린이 류신으로 치환된 아민노산 서열일 수 있고, 상기 서열번호 12는 588 번째에 상응하는 위치의 아미노산 잔기인 이소류신이 프롤린으로 치환된 아미노산 서열일 수 있으며, 상기 서열번호 14은 245 번째에 상응하는 위치의 아미노산 잔기인 아스파라기닌이 세린으로 치환된 아미노산 서열일 수 있다.
또한, 이러한 동일성 또는 상동성을 가지며 본 출원의 변이형 폴리펩티드에 상응하는 효능을 나타내는 아미노산 서열이라면 서열번호 6 또는 서열번호 8 또는 서열번호 10 또는 서열번호 12 또는 서열번호 14의 아미노산 서열에서 i) 138 번째, ii) 162 번째, iii) 211 번째, iv) 245 번째, 또는 v) 588 번째 이외에, 일부 서열이 결실, 변형, 치환, 보존적 치환 또는 부가된 아미노산 서열을 갖는 변이형 폴리펩티드도 본 출원의 범위 내에 포함됨은 자명할 수 있다. 구체적으로, 상기 치환은 (1) 이소프로필말레이트 신타제를 코딩하는 leuA 유전자의 1673 번째 뉴클레오티드인 G가 A로 치환되어 LeuA 단백질의 558 번째에 상응하는 위치의 아미노산인 알지닌이 히스티딘으로 치환되는 변이(R558H), (2) leuA 유전자의 1682 번째, 1683 번째 뉴클레오티드인 GC가 AT로 치환되어 561 번째에 상응하는 위치의 아미노산인 글리신이 아스파르트산으로 치환되는 변이(G561D) 또는 (3) leuA 유전자의 739번째, 740번째 뉴클레오티드인 CC 가 TG 로 치환되어 247번째 아미노산인 프롤린이 시스테인으로 치환되는 변이(P247C) 중 어느 하나 이상을 포함할 수 있으며, 이에 대해서는 전술한 바와 같다.
보다 구체적으로, 상기 변이형 폴리펩티드는 상기 i) 138 번째 변이에 추가로 상기 247번째, 558번째 및 561번째 변이를 포함(서열번호 38); 또는 ii) 162 번째 변이에 추가로 상기 247번째, 558번째 및 561번째 변이를 포함(서열번호 40); 또는 iii) 211 번째 변이에 추가로 상기 247번째, 558번째 및 561번째 변이를 포함(서열번호 42); iv) 245 번째 변이에 추가로 상기 247번째, 558번째 및 561번째 변이를 포함(서열번호 44); v) 588 번째 변이에 추가로 상기 247번째, 558번째 및 561번째 및 변이를 포함(서열번호 46); iii) 211번째 및 v) 588 번째 변이에 추가로 상기 247번째, 558번째 및 561번째 변이를 포함 (서열번호 48); i) 138 번째, ii) 162 번째, iii) 211 번째 및 iv) 245번째 변이에 추가로 상기 247번째, 558번째 및 561번째 변이를 포함(서열번호 50); 또는 i) 138 번째, ii) 162 번째, iii) 211 번째, iv) 245 번째 및 v) 588 번째 변이에 추가로 상기 247번째, 558번째 및 561번째 변이를 포함(서열번호 52);하는 폴리펩티드를 포함할 수 있으나, 이에 제한되지 않는다.
본 출원에서 용어, "상응하는(corresponding to)"은, 폴리펩티드에서 열거되는 위치의 아미노산 잔기이거나, 또는 폴리펩티드에서 열거되는 잔기와 유사하거나 동일하거나 상동한 아미노산 잔기를 지칭한다. 상응하는 위치의 아미노산을 확인하는 것은 특정 서열을 참조하는 서열의 특정 아미노산을 결정하는 것일 수 있다. 본 출원에 사용된 "상응 영역"은 일반적으로 관련 단백질 또는 참조 (reference) 단백질에서의 유사하거나 대응되는 위치를 지칭한다.
예를 들어, 임의의 아미노산 서열을 서열번호 1과 정렬(align)하고, 이를 토대로 상기 아미노산 서열의 각 아미노산 잔기는 서열번호 1의 아미노산 잔기와 상응하는 아미노산 잔기의 숫자 위치를 참조하여 넘버링 할 수 있다. 예를 들어, 본 출원에 기재된 것과 같은 서열 정렬 알고리즘은, 쿼리 시퀀스("참조 서열"이라고도 함)와 비교하여 아미노산의 위치, 또는 치환, 삽입 또는 결실 등의 변형이 발생하는 위치를 확인할 수 있다.
이러한 정렬에는 예를 들어 Needleman-Wunsch 알고리즘 (Needleman 및 Wunsch, 1970, J. Mol. Biol. 48: 443-453), EMBOSS 패키지의 Needleman 프로그램 (EMBOSS: The European Molecular Biology Open Software Suite, Rice et al., 2000), Trends Genet. 16: 276-277) 등을 이용할 수 있으나, 이에 제한되지 않고 당업계에 알려진 서열 정렬 프로그램, 쌍 서열(pairwise sequence) 비교 알고리즘 등을 적절히 사용할 수 있다.
본 출원에서 용어, '상동성 (homology)' 또는 '동일성 (identity)'은 두 개의 주어진 아미노산 서열 또는 염기 서열 상호간 유사한 정도를 의미하며 백분율로 표시될 수 있다. 용어 상동성 및 동일성은 종종 상호교환적으로 이용될 수 있다.
보존된(conserved) 폴리뉴클레오티드 또는 폴리펩티드의 서열 상동성 또는 동일성은 표준 배열 알고리즘에 의해 결정되며, 사용되는 프로그램에 의해 확립된 디폴트 갭 페널티가 함께 이용될 수 있다. 실질적으로, 상동성을 갖거나(homologous) 또는 동일한(identical) 서열은 일반적으로 서열 전체 또는 일부분과 중간 또는 높은 엄격한 조건(stringent conditions)에서 하이브리드할 수 있다. 하이브리드화는 폴리뉴클레오티드에서 일반 코돈 또는 코돈 축퇴성을 고려한 코돈을 함유하는 폴리뉴클레오티드와의 하이브리드화 역시 포함됨이 자명하다.
임의의 두 폴리뉴클레오티드 또는 폴리펩티드 서열이 상동성, 유사성 또는 동일성을 갖는지 여부는, 예를 들어, Pearson et al (1988) [Proc. Natl. Acad. Sci. USA 85]: 2444에서와 같은 디폴트 파라미터를 이용하여 "FASTA" 프로그램과 같은 공지의 컴퓨터 알고리즘을 이용하여 결정될 수 있다. 또는, EMBOSS 패키지의 니들만 프로그램(EMBOSS: The European Molecular Biology Open Software Suite, Rice et al., 2000, Trends Genet. 16: 276-277)(버전 5.0.0 또는 이후 버전)에서 수행되는 바와 같은, 니들만-운치(Needleman-Wunsch) 알고리즘(Needleman and Wunsch, 1970, J. Mol. Biol. 48: 443-453)이 사용되어 결정될 수 있다(GCG 프로그램 패키지 (Devereux, J., et al, Nucleic Acids Research 12: 387 (1984)), BLASTP, BLASTN, FASTA (Atschul, [S.] [F.,] [ET AL, J MOLEC BIOL 215]: 403 (1990); Guide to Huge Computers, Martin J. Bishop, [ED.,] Academic Press, San Diego,1994, 및 [CARILLO ET AL/.](1988) SIAM J Applied Math 48: 1073을 포함한다). 예를 들어, 국립 생물공학 정보 데이터베이스 센터의 BLAST, 또는 ClustalW를 이용하여 상동성, 유사성 또는 동일성을 결정할 수 있다.
폴리뉴클레오티드 또는 폴리펩티드의 상동성, 유사성 또는 동일성은, 예를 들어, Smith and Waterman, Adv. Appl. Math (1981) 2:482 에 공지된 대로, 예를 들면, Needleman et al. (1970), J Mol Biol. 48:443과 같은 GAP 컴퓨터 프로그램을 이용하여 서열 정보를 비교함으로써 결정될 수 있다. 요약하면, GAP 프로그램은 두 서열 중 더 짧은 것에서의 기호의 전체 수로, 유사한 배열된 기호(즉, 뉴클레오티드 또는 아미노산)의 수를 나눈 값으로 정의할 수 있다. GAP 프로그램을 위한 디폴트 파라미터는 (1) 이진법 비교 매트릭스(동일성을 위해 1 그리고 비-동일성을 위해 0의 값을 함유함) 및 Schwartz and Dayhoff, eds., Atlas Of Protein Sequence And Structure, National Biomedical Research Foundation, pp. 353-358 (1979)에 의해 개시된 대로, Gribskov et al(1986) Nucl. Acids Res. 14: 6745의 가중된 비교 매트릭스 (또는 EDNAFULL (NCBI NUC4.4의 EMBOSS 버전) 치환 매트릭스); (2) 각 갭을 위한 3.0의 페널티 및 각 갭에서 각 기호를 위한 추가의 0.10 페널티 (또는 갭 개방 패널티 10, 갭 연장 패널티 0.5); 및 (3) 말단 갭을 위한 무 페널티를 포함할 수 있다.
본 출원의 다른 하나의 양태는 본 출원의 변이형 폴리펩티드를 코딩하는 폴리뉴클레오티드를 제공하는 것이다.
본 출원에서 용어, "폴리뉴클레오티드"는 뉴클레오티드 단위체(monomer)가 공유결합에 의해 길게 사슬모양으로 이어진 뉴클레오티드의 중합체(polymer)로 일정한 길이 이상의 DNA 또는 RNA 가닥으로서, 보다 구체적으로는 상기 변이형 단백질을 코딩하는 폴리뉴클레오티드 단편을 의미한다.
본 출원의 변이형 폴리펩티드를 코딩하는 폴리뉴클레오티드는 상기 서열번호 6 또는 서열번호 8 또는 서열번호 10 또는 서열번호 12 또는 서열번호 14 또는 서열번호 38 또는 서열번호 40 또는 서열번호 42 또는 서열번호 44 또는 서열번호 46 또는 서열번호 48 또는 서열번호 50 또는 서열번호 52로 기재한 아미노산 서열을 코딩하는 염기서열을 포함할 수 있으나, 이에 제한되지 않는다. 구체적으로, 본 출원의 폴리뉴클레오티드는 서열번호 7 또는 서열번호 9 또는 서열번호 11 또는 서열번호 13 또는 서열번호 15 또는 서열번호 39 또는 서열번호 41 또는 서열번호 43 또는 서열번호 45 또는 서열번호 47 또는 서열번호 49 또는 서열번호 51 또는 서열번호 53의 염기서열을 가지거나 포함할 수 있다.
상기 폴리뉴클레오티드는 코돈의 축퇴성(degeneracy)으로 인하여 또는 상기 폴리펩티드를 발현시키고자 하는 생물에서 선호되는 코돈을 고려하여, 폴리펩티드의 아미노산 서열을 변화시키지 않는 범위 내에서 코딩 영역에 다양한 변형이 이루어질 수 있다. 구체적으로, 서열번호 7 또는 서열번호 9 또는 서열번호 11 또는 서열번호 13 또는 서열번호 15 또는 서열번호 39 또는 서열번호 41 또는 서열번호 43 또는 서열번호 45 또는 서열번호 47 또는 서열번호 49 또는 서열번호 51 또는 서열번호 53과 상동성 또는 동일성이 80% 이상, 90% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상, 및 100% 미만인 염기서열로 이루어질 수 있으나, 이에 제한되지 않는다.
또한, 본 출원의 폴리뉴클레오티드는 공지의 유전자 서열로부터 제조될 수 있는 프로브, 예를 들면, 본 출원의 폴리뉴클레오티드 서열의 전체 또는 일부에 대한 상보 서열과 엄격한 조건 하에 하이브리드화할 수 있는 서열이라면 제한없이 포함될 수 있다. 상기 "엄격한 조건(stringent condition)"이란 폴리뉴클레오티드 간의 특이적 혼성화를 가능하게 하는 조건을 의미한다. 이러한 조건은 문헌(J. Sambrook et al.,Molecular Cloning, A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory press, Cold Spring Harbor, New York, 1989; F.M. Ausubel et al.,Current Protocols in Molecular Biology, John Wiley & Sons, Inc., New York, 9.50-9.51, 11.7-11.8 참조)에 구체적으로 기재되어 있다. 예를 들어, 상동성 또는 동일성이 높은 폴리뉴클레오티드끼리, 70% 이상, 75% 이상, 80% 이상, 85% 이상, 90% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상, 또는 99% 이상의 상동성 또는 동일성을 갖는 폴리뉴클레오티드끼리 하이브리드화하고, 그보다 상동성 또는 동일성이 낮은 폴리뉴클레오티드끼리 하이브리드화하지 않는 조건, 또는 통상의 써던 하이브리드화(southern hybridization)의 세척 조건인 60℃, 1XSSC, 0.1% SDS, 구체적으로 60℃, 0.1XSSC, 0.1% SDS, 보다 구체적으로 68℃, 0.1XSSC, 0.1% SDS에 상당하는 염 농도 및 온도에서, 1회, 구체적으로 2회 내지 3회 세정하는 조건을 열거할 수 있다.
혼성화는 비록 혼성화의 엄격도에 따라 염기 간의 미스매치(mismatch)가 가능할지라도, 두 개의 핵산이 상보적 서열을 가질 것을 요구한다. 용어, "상보적"은 서로 혼성화가 가능한 뉴클레오티드 염기 간의 관계를 기술하는데 사용된다. 예를 들면, DNA에 관하여, 아데닌은 티민에 상보적이며 시토신은 구아닌에 상보적이다. 따라서, 본 출원의 폴리뉴클레오티드는 또한 실질적으로 유사한 핵산염기 서열뿐만 아니라 전체 서열에 상보적인 단리된 핵산 단편을 포함할 수 있다.
구체적으로, 본 출원의 폴리뉴클레오티드와 상동성 또는 동일성을 가지는 폴리뉴클레오티드는 55℃의 Tm 값에서 혼성화 단계를 포함하는 혼성화 조건을 사용하고 상술한 조건을 사용하여 탐지할 수 있다. 또한, 상기 Tm 값은 60℃, 63℃ 또는 65℃일 수 있으나, 이에 제한되는 것은 아니고 그 목적에 따라 당업자에 의해 적절히 조절될 수 있다.
상기 폴리뉴클레오티드를 혼성화하는 적절한 엄격도는 폴리뉴클레오티드의 길이 및 상보성 정도에 의존하고 변수는 해당기술분야에 잘 알려져 있다(예컨대, J. Sambrook et al., 상동).
일예로, 본 출원의 폴리뉴클레오티드는 서열번호 6 또는 서열번호 8 또는 서열번호 10 또는 서열번호 12 또는 서열번호 14 또는 서열번호 38 또는 서열번호 40 또는 서열번호 42 또는 서열번호 44 또는 서열번호 46 또는 서열번호 48 또는 서열번호 50 또는 서열번호 52의 아미노산 서열을 코딩하는 서열이라면 제한없이 포함될 수 있다.
본 출원의 폴리뉴클레오티드에서, 변이형 폴리펩티드는 상기 다른 양태에서 기재한 바와 같다.
본 출원의 다른 하나의 양태는 본 출원의 폴리뉴클레오티드를 포함하는 벡터를 제공하는 것이다.
본 출원의 벡터는 적합한 숙주 내에서 목적 폴리펩티드를 발현시킬 수 있도록 적합한 발현조절영역(또는 발현조절서열)에 작동 가능하게 연결된 상기 목적 폴리펩티드를 코딩하는 폴리뉴클레오티드의 염기서열을 함유하는 DNA 제조물을 의미한다. 상기 발현조절영역은 전사를 개시할 수 있는 프로모터, 그러한 전사를 조절하기 위한 임의의 오퍼레이터 서열, 적합한 mRNA 리보좀 결합부위를 코딩하는 서열, 및 전사 및 해독의 종결을 조절하는 서열을 포함할 수 있다. 벡터는 적당한 숙주세포 내로 형질전환된 후, 숙주 게놈과 무관하게 복제되거나 기능할 수 있으며, 게놈 그 자체에 통합될 수 있다.
본 출원에서 사용되는 벡터는 특별히 한정되지 않으며, 당업계에 알려진 임의의 벡터를 이용할 수 있다. 통상 사용되는 벡터의 예로는 천연 상태이거나 재조합된 상태의 플라스미드, 코스미드, 바이러스 및 박테리오파지를 들 수 있다. 예를 들어, 파지 벡터 또는 코스미드 벡터로서 pWE15, M13, MBL3, MBL4, IXII, ASHII, APII, t10, t11, Charon4A, 및 Charon21A 등을 사용할 수 있으며, 플라스미드 벡터로서 pBR계, pUC계, pBluescriptII계, pGEM계, pTZ계, pCL계 및 pET계 등을 사용할 수 있다. 구체적으로는 pDCM2(WO WO2021-187781 A1), pACYC177, pACYC184, pCL, pECCG117, pUC19, pBR322, pMW118, pCC1BAC 벡터 등을 사용할 수 있다.
일례로 세포 내 염색체 삽입용 벡터를 통해 염색체 내에 목적 폴리펩티드를 코딩하는 폴리뉴클레오티드를 염색체 내로 삽입할 수 있다. 상기 폴리뉴클레오티드의 염색체 내로의 삽입은 당업계에 알려진 임의의 방법, 예를 들면, 상동재조합(homologous recombination)에 의하여 이루어질 수 있으나, 이에 한정되지는 않는다. 상기 염색체 삽입 여부를 확인하기 위한 선별 마커(selection marker)를 추가로 포함할 수 있다. 상기 선별 마커는 벡터로 형질전환된 세포를 선별, 즉 목적 핵산 분자의 삽입 여부를 확인하기 위한 것으로, 약물 내성, 영양 요구성, 세포 독성제에 대한 내성 또는 표면 폴리펩티드의 발현과 같은 선택가능 표현형을 부여하는 마커들이 사용될 수 있다. 선택제(selective agent)가 처리된 환경에서는 선별 마커를 발현하는 세포만 생존하거나 다른 표현 형질을 나타내므로, 형질전환된 세포를 선별할 수 있다.
본 출원에서 용어 "형질전환"은 표적 단백질을 코딩하는 폴리뉴클레오티드를 포함하는 벡터를 숙주세포 혹은 미생물 내에 도입하여 숙주세포 내에서 상기 폴리뉴클레오티드가 코딩하는 단백질이 발현할 수 있도록 하는 것을 의미한다. 형질전환된 폴리뉴클레오티드는 숙주세포 내에서 발현될 수 있기만 한다면, 숙주세포의 염색체 내에 삽입되어 위치하거나 염색체 외에 위치하거나 상관없이 이들 모두를 포함할 수 있다. 또한, 상기 폴리뉴클레오티드는 목적 단백질을 코딩하는 DNA 및 RNA를 포함한다. 상기 폴리뉴클레오티드는 숙주세포 내로 도입되어 발현될 수 있는 것이면, 어떠한 형태로도 도입될 수 있다. 예를 들면, 상기 폴리뉴클레오티드는 자체적으로 발현되는데 필요한 모든 요소를 포함하는 유전자 구조체인 발현 카세트(expression cassette)의 형태로 숙주세포에 도입될 수 있다. 상기 발현 카세트는 통상 상기 폴리뉴클레오티드에 작동 가능하게 연결되어 있는 프로모터(promoter), 전사 종결신호, 리보좀 결합부위 및 번역 종결신호를 포함할 수 있다. 상기 발현 카세트는 자체 복제가 가능한 발현 벡터 형태일 수 있다. 또한, 상기 폴리뉴클레오티드는 그 자체의 형태로 숙주세포에 도입되어 숙주세포에서 발현에 필요한 서열과 작동 가능하게 연결되어 있는 것일 수도 있으며, 이에 제한되지 않는다.
또한, 상기에서 용어 "작동 가능하게 연결"된 것이란 본 출원의 목적 변이형 단백질을 코딩하는 폴리뉴클레오티드의 전사를 개시 및 매개하도록 하는 프로모터 서열과 상기 유전자 서열이 기능적으로 연결되어 있는 것을 의미한다.
본 출원의 벡터에서, 폴리뉴클레오티드는 상기 다른 양태에서 기재한 바와 같다.
본 출원의 다른 하나의 양태는 본 출원의 변이형 폴리펩티드; 이를 코딩하는 폴리뉴클레오티드; 또는 이를 포함하는 벡터;를 포함하는, L-류신을 생산하는 코리네박테리움 속(The genus of Corynebacterium) 미생물을 제공하는 것이다.
본 출원에서 용어, "미생물"은 야생형 미생물이나 자연적 또는 인위적으로 유전적 변형이 일어난 미생물을 모두 포함하며, 외부 유전자가 삽입되거나 내재적 유전자의 활성이 강화되거나 불활성화되는 등의 원인으로 인해서 특정 기작이 약화되거나 강화된 미생물로서, 목적하는 폴리펩티드, 단백질 또는 산물의 생산을 위하여 유전적 변형(modification)을 포함하는 미생물일 수 있다.
본 출원의 미생물은 본 출원의 변이체, 본 출원의 폴리뉴클레오티드 및 본 출원의 폴리뉴클레오티드를 포함하는 벡터 중 어느 하나 이상을 포함하는 미생물; 본 출원의 변이체 또는 본 출원의 폴리뉴클레오티드를 발현하도록 변형된 미생물; 본 출원의 변이체, 또는 본 출원의 폴리뉴클레오티드를 발현하는 미생물 (예컨대, 재조합 균주); 또는 본 출원의 변이체 활성을 갖는 미생물 (예컨대, 재조합 균주)일 수 있으나, 이에 제한되지 않는다.
본 출원의 미생물은 자연적으로 이소프로필말레이트 신타제 활성 또는 L-류신 생산능을 가지고 있는 미생물, 또는 이소프로필말레이트 신타제 활성 또는 L-류신 생산능이 없는 모균주에 본 출원의 변이형 폴리펩티드가 발현되거나 L-류신 생산능이 부여된 미생물일 수 있으나 이에 제한되지 않는다.
구체적으로 본 출원의 미생물은 본 출원의 폴리뉴클레오티드 또는 본 출원의 변이형 폴리펩티드를 코딩하는 유전자를 포함하는 벡터로 형질전환되어, 본 출원의 변이형 폴리펩티드를 발현하는 세포 또는 미생물로서, 본 출원의 목적상 본 출원의 미생물은 본 출원의 변이형 폴리펩티드를 포함하여 L-류신을 생산할 수 있는 미생물을 모두 포함할 수 있다. 예를 들어, 본 출원의 미생물은 천연의 야생형 미생물 또는 L-류신을 생산하는 미생물에 본 출원의 변이형 폴리펩티드를 코딩하는 폴리뉴클레오티드가 도입됨으로써 본 출원의 변이형 폴리펩티드가 발현되어, L-류신 생산능이 증가된 재조합 미생물일 수 있다. 상기 L-류신 생산능이 증가된 재조합 미생물은, 천연의 야생형 미생물 또는 비변형 미생물에 비하여 L-류신 생산능이 증가된 미생물일 수 있으나, 이에 제한되는 것은 아니다.
본 출원에서 용어, "비변형 미생물"은 미생물에 자연적으로 발생할 수 있는 돌연변이를 포함하는 균주를 제외하는 것이 아니며, 야생형 균주 또는 천연형 균주 자체이거나, 자연적 또는 인위적 요인에 의한 유전적 변이로 형질이 변화되기 전 균주를 의미할 수 있다. 예를 들어, 상기 비변형 미생물은 본 명세서에 기재된 단백질 변이체가 도입되지 않거나 도입되기 전의 균주를 의미할 수 있다. 상기 "비변형 미생물"은 "변형 전 균주", "변형 전 미생물", "비변이 균주", "비변형 균주", "비변이 미생물" 또는 "기준 미생물"과 혼용될 수 있다.
구체적으로, 본 출원의 미생물은 코리네박테리움 글루타미쿰(Corynebacterium glutamicum), 코리네박테리움 크루디락티스(Corynebacterium crudilactis), 코리네박테리움 데세르티(Corynebacterium deserti), 코리네박테리움 이피시엔스(Corynebacterium efficiens), 코리네박테리움 칼루내(Corynebacterium callunae), 코리네박테리움 스테셔니스(Corynebacterium stationis), 코리네박테리움 싱굴라레(Corynebacterium singulare), 코리네박테리움 할로톨레란스(Corynebacterium halotolerans), 코리네박테리움 스트리아툼(Corynebacterium striatum), 코리네박테리움 암모니아게네스(Corynebacterium ammoniagenes), 코리네박테리움 폴루티솔리(Corynebacterium pollutisoli), 코리네박테리움 이미탄스(Corynebacterium imitans), 코리네박테리움 테스투디노리스(Corynebacterium testudinoris) 또는 코리네박테리움 플라베스센스(Corynebacterium flavescens)일 수 있다.
본 출원의 미생물은 본 출원의 이소프로필말레이트 신타제를 이루는 서열번호 1의 아미노산 서열에서 i) 138 번째, ii) 162 번째, iii) 211 번째, iv) 245 번째, 또는 v) 588 번째를 제외한, 하나 이상의 아미노산 잔기가 다른 아미노산으로 치환된 이소프로필말레이트 신타제를 코딩하는 염기서열을 포함하는 미생물일 수 있고, 구체적으로 상기 치환은 (1) 이소프로필말레이트 신타제를 코딩하는 leuA 유전자의 1673 번째 뉴클레오티드인 G가 A로 치환되어 LeuA 단백질의 558 번째 아미노산인 알지닌이 히스티딘으로 치환되는 변이(R558H), (2) leuA 유전자의 1682 번째, 1683 번째 뉴클레오티드인 GC가 AT로 치환되어 561 번째 아미노산인 글리신이 아스파르트산으로 치환되는 변이(G561D) 또는 (3) leuA 유전자의 739번째, 740번째 뉴클레오티드인 CC 가 TG 로 치환되어 247번째 아미노산인 프롤린이 시스테인으로 치환되는 변이(P247C) 중 어느 하나 이상을 포함할 수 있으며, 이에 대해서는 전술한 바와 같다.
구체적으로, 본 출원의 L-류신을 생산하는 미생물은 상기와 같은 변이를 포함하는 이소프로필말레이트 신타제를 발현함에 따라, 이소프로필말레이트 신타제 활성이 강화된 미생물일 수 있다.
본 출원에서 용어, 폴리펩티드 활성의 "강화"는, 폴리펩티드의 활성이 내재적 활성에 비하여 증가되는 것을 의미한다. 상기 강화는 상향조절(up-regulation), 과발현(overexpression), 증가(increase) 등의 용어와 혼용될 수 있다. 여기서 증가는 본래 가지고 있지 않았던 활성을 나타내게 되는 것, 또는 내재적 활성 또는 변형 전 활성에 비하여 향상된 활성을 나타내게 되는 것을 모두 포함할 수 있다. 상기 "내재적 활성"은 자연적 또는 인위적 요인에 의한 유전적 변이로 형질이 변화하는 경우, 형질 변화 전 모균주 또는 비변형 미생물이 본래 가지고 있던 특정 폴리펩티드의 활성을 의미한다. 이는 "변형 전 활성"과 혼용되어 사용될 수 있다. 폴리펩티드의 활성이 내재적 활성에 비하여 "강화" 또는 "증가"한다는 것은, 형질 변화 전 모균주 또는 비변형 미생물이 본래 가지고 있던 특정 폴리펩티드의 활성에 비하여 향상된 것을 의미한다.
상기 강화는 외래의 폴리펩티드를 도입하거나, 내재적인 폴리펩티드의 활성 강화를 통해 달성할 수 있다. 상기 폴리펩티드의 활성의 강화 여부는 해당 폴리펩티드의 활성 정도, 발현량 또는 해당 폴리펩티드로부터 배출되는 산물의 양의 증가로부터 확인할 수 있다.
상기 폴리펩티드의 활성의 강화는 당해 분야에 잘 알려진 다양한 방법의 적용이 가능하며, 목적 폴리펩티드의 활성을 변형전 미생물보다 강화시킬 수 있는 한, 제한되지 않는다. 구체적으로, 분자생물학의 일상적 방법인 당업계의 통상의 기술자에게 잘 알려진 유전자 공학 및/또는 단백질 공학을 이용한 것일 수 있으나, 이로 제한되지 않는다(예컨대, Sitnicka et al. Functional Analysis of Genes. Advances in Cell Biology. 2010, Vol. 2. 1-16, Sambrook et al. Molecular Cloning 2012 등).
구체적으로, 본 출원의 폴리펩티드 활성의 강화는
1) 폴리펩티드를 코딩하는 폴리뉴클레오티드의 세포 내 카피수 증가,
2) 폴리펩티드를 코딩하는 염색체상의 유전자 발현조절영역을 활성이 강력한 서열로 교체,
3) 폴리펩티드를 코딩하는 유전자의 개시코돈 또는 5'-UTR 지역 염기서열의 변형,
4) 폴리펩티드 활성이 증가되도록 상기 폴리펩티드의 아미노산 서열의 변형,
5) 폴리펩티드 활성이 증가되도록 상기 폴리펩티드를 코딩하는 폴리뉴클레오티드 서열의 변형,
6) 폴리펩티드의 활성을 나타내는 외래 폴리뉴클레오티드의 도입,
7) 폴리펩티드를 암호화하는 폴리뉴클레오티드의 코돈 최적화,
8) 폴리펩티드의 삼차구조를 분석하여 노출 부위를 선택하여 변형하거나 화학적으로 수식, 또는
9) 상기 1) 내지 8)의 조합일 수 있으나, 이에, 특별히 제한되는 것은 아니다.
보다 구체적으로,
상기 1) 폴리펩티드를 코딩하는 폴리뉴클레오티드의 세포 내 카피수 증가는, 해당 폴리펩티드를 코딩하는 폴리뉴클레오티드가 작동가능하게 연결된, 숙주와 무관하게 복제되고 기능할 수 있는 벡터가 숙주세포 내 도입된 것일 수 있다. 또는, 해당 폴리펩티드를 코딩하는 폴리뉴클레오티드가 숙주세포 내의 염색체 내에 1 카피 또는 2 copy 이상 도입된 것일 수 있다. 상기 염색체 내에 도입은 숙주세포 내의 염색체 내로 상기 폴리뉴클레오티드를 삽입시킬 수 있는 벡터가 숙주세포 내에 도입됨으로써 수행될 수 있으나, 이에 제한되지 않는다. 상기 벡터는 전술한 바와 같다.
상기 2) 폴리펩티드를 코딩하는 염색체상의 유전자 발현조절영역(또는 발현조절서열)을 활성이 강력한 서열로 교체는, 예를 들면, 상기 발현조절영역의 활성을 더욱 강화하도록 결실, 삽입, 비보존적 또는 보존적 치환 또는 이들의 조합으로 서열상의 변이 발생, 또는 더욱 강한 활성을 가지는 서열로의 교체일 수 있다. 상기 발현조절영역은, 특별히 이에 제한되지 않으나 프로모터, 오퍼레이터 서열, 리보좀 결합 부위를 코딩하는 서열, 그리고 전사 및 해독의 종결을 조절하는 서열 등을 포함할 수 있다. 일예로, 본래의 프로모터를 강력한 프로모터로 교체시키는 것일 수 있으나, 이에 제한되지 않는다.
공지된 강력한 프로모터의 예에는 cj1 내지 cj7 프로모터(미국등록특허 US 7662943 B2), lac 프로모터, trp 프로모터, trc 프로모터, tac 프로모터, 람다 파아지 PR 프로모터, PL 프로모터, tet 프로모터, gapA 프로모터, SPL7 프로모터, SPL13(sm3) 프로모터(미국등록특허 US 10584338 B2), O2 프로모터(미국등록특허 US 10273491 B2), tkt 프로모터 및 yccA 프로모터 등이 있으나, 이에 제한되지 않는다.
상기 3) 폴리펩티드를 코딩하는 유전자의 개시코돈 또는 5'-UTR 지역의 염기서열 변형은, 예를 들면, 내재적 개시코돈에 비해 폴리펩티드 발현율이 더 높은 다른 개시코돈으로 치환하는 것일 수 있으나, 이에 제한되지 않는다.
상기 4) 및 5)의 아미노산 서열 또는 폴리뉴클레오티드 서열을 변형시키는 방법은, 폴리펩티드의 활성을 강화하도록 상기 폴리펩티드의 아미노산 서열 또는 상기 폴리펩티드를 코딩하는 폴리뉴클레오티드 서열을 결실, 삽입, 비보존적 또는 보존적 치환 또는 이들의 조합으로 서열상의 변이 발생, 또는 더욱 강한 활성을 갖도록 개량된 아미노산 서열 또는 폴리뉴클레오티드 서열 또는 활성이 증가하도록 개량된 아미노산 서열 또는 폴리뉴클레오티드 서열로의 교체일 수 있으나, 이에 한정되는 것은 아니다. 상기 교체는 구체적으로 상동재조합에 의하여 폴리뉴클레오티드를 염색체내로 삽입함으로써 수행될 수 있으나, 이에 제한되지 않는다. 이때 사용되는 벡터는 염색체 삽입 여부를 확인하기 위한 선별 마커 (selection marker)를 추가로 포함할 수 있다. 상기 선별 마커는 전술한 바와 같다.
상기 6) 폴리펩티드의 활성을 나타내는 외래 폴리뉴클레오티드의 도입은, 상기 폴리펩티드와 동일/유사한 활성을 나타내는 폴리펩티드를 코딩하는 외래 폴리뉴클레오티드의 숙주세포 내 도입일 수 있다. 상기 외래 폴리뉴클레오티드는 상기 폴리펩티드와 동일/유사한 활성을 나타내는 한 그 유래나 서열에 제한이 없다. 상기 도입에 이용되는 방법은 공지된 형질전환 방법을 당업자가 적절히 선택하여 수행될 수 있으며, 숙주 세포 내에서 상기 도입된 폴리뉴클레오티드가 발현됨으로써 폴리펩티드가 생성되어 그 활성이 증가될 수 있다.
상기 7) 폴리펩티드를 암호화하는 폴리뉴클레오티드의 코돈 최적화는, 내재 폴리뉴클레오티드가 숙주세포 내에서 전사 또는 번역이 증가하도록 코돈 최적화한 것이거나, 또는 외래 폴리뉴클레오티드가 숙주세포 내에서 최적화된 전사, 번역이 이루어지도록 이의 코돈을 최적화한 것일 수 있다.
또한, 상기 8) 폴리펩티드의 삼차구조를 분석하여 노출 부위를 선택하여 변형하거나 화학적으로 수식하는 것은, 예를 들어 분석하고자 하는 폴리펩티드의 서열정보를 기지 단백질들의 서열정보가 저장된 데이터베이스와 비교함으로써 서열의 유사성 정도에 따라 주형 단백질 후보를 결정하고 이를 토대로 구조를 확인하여, 변형하거나 화학적으로 수식할 노출 부위를 선택하여 변형 또는 수식하는 것일 수 있다.
이와 같은 폴리펩티드 활성의 강화는, 상응하는 폴리펩티드의 활성 또는 농도가 야생형이나 변형 전 미생물 균주에서 발현된 폴리펩티드의 활성 또는 농도를 기준으로 하여 증가되거나, 해당 폴리펩티드로부터 생산되는 산물의 양의 증가되는 것일 수 있으나, 이에 제한되는 것은 아니다.
본 출원의 미생물에서 폴리뉴클레오티드의 일부 또는 전체의 변형 (예컨대, 상술한 단백질 변이체를 코딩하기 위한 변형)은 (a) 미생물 내 염색체 삽입용 벡터를 이용한 상동 재조합 또는 유전자가위 (engineered nuclease, e.g., CRISPR-Cas9)을 이용한 유전체 교정 및/또는 (b) 자외선 및 방사선 등과 같은 빛 및/또는 화학물질 처리에 의해 유도될 수 있으나 이에 제한되지 않는다. 상기 유전자 일부 또는 전체의 변형 방법에는 DNA 재조합 기술에 의한 방법이 포함될 수 있다. 예를 들면, 목적 유전자와 상동성이 있는 뉴클레오티드 서열을 포함하는 뉴클레오티드 서열 또는 벡터를 상기 미생물에 주입하여 상동 재조합(homologous recombination)이 일어나게 함으로써 유전자 일부 또는 전체의 결손이 이루어질 수 있다. 상기 주입되는 뉴클레오티드 서열 또는 벡터는 우성 선별 마커를 포함할 수 있으나, 이에 제한되는 것은 아니다.
보다 구체적으로, 본 출원의 L-류신을 생산하는 미생물은 서열번호 6 또는 서열번호 8 또는 서열번호 10 또는 서열번호 12 또는 서열번호 14 또는 서열번호 38 또는 서열번호 40 또는 서열번호 42 또는 서열번호 44 또는 서열번호 46 또는 서열번호 48 또는 서열번호 50 또는 서열번호 52를 포함하는 폴리펩티드, 서열번호 6 또는 서열번호 8 또는 서열번호 10 또는 서열번호 12 또는 서열번호 14 또는 서열번호 38 또는 서열번호 40 또는 서열번호 42 또는 서열번호 44 또는 서열번호 46 또는 서열번호 48 또는 서열번호 50 또는 서열번호 52를 포함하는 폴리펩티드를 코딩하는 폴리뉴클레오티드 또는 서열번호 7 또는 서열번호 9 또는 서열번호 11 또는 서열번호 13 또는 서열번호 15 또는 서열번호 39 또는 서열번호 41 또는 서열번호 43 또는 서열번호 45 또는 서열번호 47 또는 서열번호 49 또는 서열번호 51 또는 서열번호 53을 포함하는 폴리뉴클레오티드를 추가로 포함하는 미생물일 수 있다.
본 출원의 미생물에서, 변이형 폴리펩티드, 폴리뉴클레오티드, 벡터 및 L-류신 등은 상기 다른 양태에서 기재한 바와 같다.
본 출원의 다른 하나의 양태는 본 출원의 변이형 폴리펩티드; 이를 코딩하는 폴리뉴클레오티드; 또는 이를 포함하는 벡터;를 포함하는, L-류신을 생산하는 코리네박테리움 속 미생물을 배지에서 배양하는 단계를 포함하는, L-류신 생산방법을 제공한다.
본 출원에서, 용어 "배양"은 본 출원의 코리네박테리움 속 균주를 적당히 조절된 환경 조건에서 생육시키는 것을 의미한다. 본 출원의 배양과정은 당업계에 알려진 적당한 배지와 배양조건에 따라 이루어질 수 있다. 이러한 배양 과정은 선택되는 균주에 따라 당업자가 용이하게 조정하여 사용할 수 있다. 구체적으로 상기 배양은 회분식, 연속식 및 유가식일 수 있으나, 이에 제한되는 것은 아니다.
본 출원에서 용어, "배지"는 본 출원의 코리네박테리움 속 균주를 배양하기 위해 필요로 하는 영양물질을 주성분으로 혼합한 물질을 의미하며, 생존 및 발육에 불가결한 물을 비롯하여 영양물질 및 발육인자 등을 공급한다. 구체적으로, 본 출원의 코리네박테리움 글루타미쿰 균주의 배양에 사용되는 배지 및 기타 배양 조건은 통상의 미생물의 배양에 사용되는 배지라면 특별한 제한 없이 어느 것이나 사용할 수 있으나, 본 출원의 코리네박테리움 글루타미쿰 균주를 적당한 탄소원, 질소원, 인원, 무기화합물, 아미노산 및/또는 비타민 등을 함유한 통상의 배지 내에서 호기성 조건 하에서 온도, pH 등을 조절하면서 배양할 수 있다. 구체적으로, 코리네박테리움 속 균주에 대한 배양 배지는 문헌["Manual of Methods for General Bacteriology" by the American Society for Bacteriology (Washington D.C., USA, 1981)]에서 찾아 볼 수 있다.
본 출원에서 상기 탄소원으로는 글루코오스, 사카로오스, 락토오스, 프룩토오스, 수크로오스, 말토오스 등과 같은 탄수화물; 만니톨, 소르비톨 등과 같은 당 알코올, 피루브산, 락트산, 시트르산 등과 같은 유기산; 글루탐산, 메티오닌, 리신 등과 같은 아미노산 등이 포함될 수 있다. 또한, 전분 가수분해물, 당밀, 블랙스트랩 당밀, 쌀겨울, 카사버, 사탕수수 찌꺼기 및 옥수수 침지액 같은 천연의 유기 영양원을 사용할 수 있으며, 구체적으로는 글루코오스 및 살균된 전처리 당밀(즉, 환원당으로 전환된 당밀) 등과 같은 탄수화물이 사용될 수 있으며, 그 외의 적정량의 탄소원을 제한 없이 다양하게 이용할 수 있다. 이들 탄소원은 단독으로 사용되거나 2 종 이상이 조합되어 사용될 수 있으며, 이에 한정되는 것은 아니다.
상기 질소원으로는 암모니아, 황산암모늄, 염화암모늄, 초산암모늄, 인산암모늄, 탄산안모늄, 질산암모늄 등과 같은 무기질소원; 글루탐산, 메티오닌, 글루타민 등과 같은 아미노산, 펩톤, NZ-아민, 육류 추출물, 효모 추출물, 맥아 추출물, 옥수수 침지액, 카세인 가수분해물, 어류 또는 그의 분해생성물, 탈지 대두 케이크 또는 그의 분해 생성물 등과 같은 유기 질소원이 사용될 수 있다. 이들 질소원은 단독으로 사용되거나 2 종 이상이 조합되어 사용될 수 있으며, 이에 한정되는 것은 아니다.
상기 인원으로는 인산 제1칼륨, 인산 제2칼륨, 또는 이에 대응되는 소디움-함유 염 등이 포함될 수 있다. 무기화합물로는 염화나트륨, 염화칼슘, 염화철, 황산마그네슘, 황산철, 황산망간, 탄산칼슘 등이 사용될 수 있으며, 그 외에 아미노산, 비타민 및/또는 적절한 전구체 등이 포함될 수 있다. 이들 구성성분 또는 전구체는 배지에 회분식 또는 연속식으로 첨가될 수 있다. 그러나, 이에 한정되는 것은 아니다.
또한, 본 출원의 코리네박테리움 글루타미쿰 균주의 배양 중에 수산화암모늄, 수산화칼륨, 암모니아, 인산, 황산 등과 같은 화합물을 배지에 적절한 방식으로 첨가하여, 배지의 pH를 조정할 수 있다. 또한, 배양 중에는 지방산 폴리글리콜 에스테르와 같은 소포제를 사용하여 기포 생성을 억제할 수 있다. 또한, 배지의 호기 상태를 유지하기 위하여, 배지 내로 산소 또는 산소 함유 기체를 주입하거나 혐기 및 미호기 상태를 유지하기 위해 기체의 주입 없이 혹은 질소, 수소 또는 이산화탄소 가스를 주입할 수 있으며, 이에 한정되는 것은 아니다.
본 출원의 배양에서 배양온도는 20 내지 45℃, 구체적으로는 25 내지 40℃를 유지할 수 있고, 약 10 내지 160 시간 동안 배양할 수 있으나, 이에 한정되는 것은 아니다.
본 출원의 배양에 의하여 생산된 L-류신은 배지 중으로 분비되거나 세포 내에 잔류할 수 있다.
본 출원의 L-류신 생산방법은, 본 출원의 코리네박테리움 글루타미쿰 균주를 준비하는 단계 또는 상기 균주를 배양하기 위한 배지를 준비하는 단계를 추가로 포함할 수 있다.
본 출원의 L-류신 생산방법은, 상기 배양에 따른 배지 또는 본 출원의 코리네박테리움 글루타미쿰 균주로부터 L-류신을 회수하는 단계를 추가로 포함할 수 있다.
상기 회수는 본 출원의 미생물의 배양 방법, 예를 들어 회분식, 연속식 또는 유가식 배양 방법 등에 따라 당해 기술 분야에 공지된 적합한 방법을 이용하여 목적하는 L-류신을 수집(collect)하는 것일 수 있다. 예를 들어, 원심분리, 여과, 결정화 단백질 침전제에 의한 처리(염석법), 추출, 초음파 파쇄, 한외여과, 투석법, 분자체 크로마토그래피(겔여과), 흡착크로마토그래피, 이온교환 크로마토그래피, 친화도 크로마토그래피 등의 각종 크로마토그래피, HPLC 또는 이들의 방법을 조합하여 사용될 수 있으며, 당해 분야에 공지된 적합한 방법을 이용하여 배지 또는 미생물로부터 목적하는 L-류신을 회수할 수 있다.
또한, 본 출원의 L-류신 생산방법은, 추가적으로 정제 단계를 포함할 수 있다. 상기 정제는 당해 기술분야에 공지된 적합한 방법을 이용하여, 수행할 수 있다. 일 예에서, 본 출원의 L-류신 생산방법이 회수 단계와 정제 단계를 모두 포함하는 경우, 상기 회수 단계와 정제 단계는 순서에 상관없이 연속적 또는 비연속적으로 수행되거나, 동시에 또는 하나의 단계로 통합되어 수행될 수 있으나, 이에 제한되는 것은 아니다.
본 출원의 방법에서, 변이형 폴리펩티드, 폴리뉴클레오티드 및 L-류신 등은 상기 다른 양태에서 기재한 바와 같다.
본 출원의 또 하나의 양태는 본 출원의 변이형 폴리펩티드 또는 본 출원의 폴리뉴클레오티드를 포함하는 코리네박테리움 글루타미쿰 균주; 또는 이를 배양한 배지;를 포함하는 L-류신 생산용 조성물을 제공하는 것이다.
본 출원의 조성물은 아미노산 생산용 조성물에 통상 사용되는 임의의 적합한 부형제를 추가로 포함할 수 있으며, 이러한 부형제는, 예를 들어 보존제, 습윤제, 분산제, 현탁화제, 완충제, 안정화제 또는 등장화제 등일 수 있으나, 이에 한정되는 것은 아니다.
본 출원의 조성물에서, 변이형 폴리펩티드, 폴리뉴클레오티드 및 L-류신 등은 상기 다른 양태에서 기재한 바와 같다.
이하 본 출원을 실시예에 의해 보다 상세하게 설명한다. 그러나 하기 실시예는 본 출원을 예시하기 위한 바람직한 실시양태에 불과한 것이며 따라서, 본 출원의 권리범위를 이에 한정하는 것으로 의도되지는 않는다. 한편, 본 명세서에 기재되지 않은 기술적인 사항들은 본 출원의 기술 분야 또는 유사 기술 분야에서 숙련된 통상의 기술자이면 충분히 이해하고 용이하게 실시할 수 있다.
실시예 1. 변이된 이소프로필말레이트 신타제를 암호화하는 DNA 라이브러리 제작
1-1. leuA를 포함하는 벡터 제작
이소프로필말레이트 신타제(Isopropylmaleate synthase) 활성을 가지는 leuA 변이 라이브러리를 제작하기 위해 우선 leuA를 포함하는 재조합 벡터를 제작하였다. 야생형 코리네박테리움 글루타미쿰(Corynebacterium glutamicum) 유래의 LeuA 단백질(서열번호 1, Uniprot accession code: P42455)을 암호화하는 leuA 유전자(서열번호 2)를 증폭하기 위하여, 코리네박테리움 글루타미쿰 ATCC13032 야생주의 염색체를 주형으로 서열번호 3 및 4의 프라이머를 94 ℃에서 1 분간 변성, 58 ℃에서 30 초간 결합, 72 ℃에서 1 분간 Pfu DNA 중합효소를 이용한 중합을 25 회 반복하여 PCR을 수행하였다. 사용한 프라이머의 서열은 하기 표 1과 같다.
서열번호 서열명 서열(5'->3')
서열번호 3 Primer 1 TATGCTTCACCACATGACTTC
서열번호 4 Primer 2 AAATCATTTGAGAAAACTCGAGG
상기 PCR 산물을 TOPO 클로닝 키트(Invitrogen)를 이용하여 대장균 벡터 pCR2.1에 클로닝하여 'pCR-leuA'를 얻었다.
1-2. leuA 변이 라이브러리 제작
상기 실시예 1-1에서 제작된 벡터를 기반으로 에러-프론 PCR 키트(error-prone PCR kit, clontech Diversify® PCR Random Mutagenesis Kit)를 이용하여 leuA 변이 라이브러리를 제작하였다. 1000bp 당 0 내지 3개의 변이가 발생할 수 있는 조건에서, 상기 표 1에 기재된 서열번호 3과 서열번호 4의 프라이머를 이용하여 PCR 반응을 수행하였다.
구체적으로, 94 ℃에서 30초 동안 프리-히팅(pre-heating) 후, 94 ℃에서 30초 변성, 68 ℃에서 1분 30초 중합을 25회 반복하여 PCR을 수행하였다. 이 때 얻어진 PCR 산물을 메가프라이머(megaprimer, 50~125ng)를 이용하여 95 ℃에서 50초 변성, 60 ℃에서 50초 결합, 68 ℃에서 12분 중합을 25회 반복 수행한 후 DpnI 처리하여, 대장균 DH5α에 열 충격법을 통해 형질 전환하여 카나마이신 25 mg/L이 포함된 LB 고체배지에 도말 하였다. 형질전환된 콜로니 20종을 선별한 후 플라스미드를 획득하여 염기서열을 분석한 결과 2 mutations/kb 빈도로 서로 다른 위치에 변이가 도입된 것을 확인하였다. 약 20,000개의 형질전환된 대장균 콜로니를 취하여 플라스미드를 추출하였고, 이를 'pTOPO-leuA-library' 로 명명하였다.
실시예 2. 제작한 라이브러리 평가 및 변이체 선별
2-1. L-류신 생산량이 증가된 변이 균주 선별
상기 실시예 1-2에서 제작된 pTOPO-pheA-library를 야생형 코리네박테리움 글루타미쿰 (Corynebacterium glutamicum) ATCC13032 에 전기천공법으로 형질 전환한 후, 카나마이신 25mg/L를 함유한 영양배지(표 2)에 도말하여 변이 유전자가 삽입된 균주 10,000개의 콜로니를 선별하였다. 선별된 각 콜로니를 ATCC13032/pTOPO_pheA(mt)1부터 ATCC13032/ pTOPO_pheA(mt) 10,000 로 명명하였다.
확보된 10,000개의 콜로니 중 L-류신 생산이 늘어나며 방향족 아미노산 중 L-페닐알라닌 생산량이 증가 및 저감되는 콜로니를 확인하기 위해 각각의 콜로니에 대해 하기와 같은 방법으로 발효 역가 평가를 진행하였다.
배지 종류 성분
생산배지 포도당 100g, (NH4)2SO4 40g, 대두 단백질(Soy Protein) 2.5g, 옥수수 침지 고형분(Corn Steep Solids) 5 g, 요소 3g, KH2PO4 1g, MgSO7H2O 0.5g, 바이오틴 100㎍, 티아민 염산염 1,000㎍, 칼슘-판토텐산 2000㎍, 니코틴아미드 3,000㎍, CaCO3 30g; (증류수 1리터 기준), pH 7.0
영양배지 포도당 10g, 육즙 5g, 폴리펩톤 10g, 염화나트륨 2.5g, 효모엑기스 5g, 한천 20g, 유레아 2g (증류수 1리터 기준)
상기 표 2의 생산배지 25 ㎖에 25 ug/ml의 카나마이신을 함유하는 250 ㎖ 코너-바풀 플라스크에 각 콜로니를 백금이를 이용하여 접종한 후, 30 ℃에서 60 시간 동안 200 rpm으로 진탕 배양하였다. 배양 종료 후 고속 액체 크로마토그래피(HPLC, SHIMAZDU LC20A)를 이용한 방법에 의해 L-류신 생산량을 측정하였다.
그 결과, 10,000개의 콜로니 중 야생형 코리네박테리움 글루타미쿰 ATCC13032 대비 L-류신 생산능이 가장 향상된 균주 5종(ATCC13032 /pTOPO_leuA(mt)3847, ATCC13032/pTOPO_leuA(mt)4708, ATCC13032 /pTOPO_leuA(mt)5109, ATCC13032/pTOPO_leuA(mt)7563, ATCC13032 /pTOPO_leuA(mt)8459)을 선별하였다. 선별된 균주에서 생산된 L-류신의 농도는 하기 표 3와 같다.
균주명 L-류신 (g/L)
ATCC13032 0.87
ATCC13032/pTOPO_leuA(mt)3847 1.23
ATCC13032/pTOPO_leuA(mt)4708 1.27
ATCC13032/pTOPO_leuA(mt)5109 1.39
ATCC13032/pTOPO_leuA(mt)7563 1.19
ATCC13032/pTOPO_leuA(mt)8459 1.25
상기 표 3에 나타난 바와 같이, leuA 유전자에 변이가 있는 코리네박테리움 글루타미쿰 ATCC13032/pTOPO_leuA(mt)3847은 모균주인 코리네박테리움 글루타미쿰 ATCC13032 에 비해 L-류신 생산능이 약 1.41배 향상됨을 확인하였다. 또한, ATCC13032/pTOPO_leuA(mt)4708, ATCC13032/pTOPO_leuA(mt)5109, ATCC13032/pTOPO_leuA(mt)7563, ATCC13032/pTOPO_leuA(mt)8459는 모균주 대비 각각 약 1.45배, 1.59배, 1.36배, 1.38배 향상됨을 확인하였다.
2-2. L-류신 생산량이 증가된 변이 균주의 변이 확인
선별된 변이 균주 5종의 leuA 유전자 변이를 확인하기 위하여, 상기 표 1에 기재된 서열번호 3와 서열번호 4의 프라이머를 이용하여 각 변이 균주의 DNA를 주형으로 하여 94 ℃에서 5분간 변성 후, 94 ℃에서 30초 변성, 55 ℃에서 30초 결합, 72 ℃에서 1분 30초 중합을 30회 반복한 후, 72 ℃에서 5분 중합의 조건으로 PCR을 수행하고 DNA시퀀싱을 진행하였다.
시퀀싱 결과, ATCC13032/pTOPO_leuA(mt)3847 균주는 서열번호 2의 leuA 유전자의 412번째, 413번째 뉴클레오티드인 C와 T가 모두 G로 치환되어 있음을 확인하였다. 이는 LeuA 단백질의 138번째(번역 개시코돈을 35 개 뒤로 표기하여 LeuA 단백질이 581 개의 아미노산으로 이루어진 것(서열번호 5)으로 공지한 문헌에 기초하는 경우는 103 번째; 이하 138 번째로만 표기) 아미노산인 류신이 글라이신으로 치환된 변이체(이하, L138G)를 암호화할 수 있음을 의미한다. LeuA 변이체(L138G)의 아미노산 서열 및 이를 암호화하는 leuA 변이체의 염기서열은 서열번호 6 및 서열번호 7과 같다.
ATCC13032/pTOPO_leuA(mt)4708 균주는 leuA 유전자의 484번째, 486번째 뉴클레오티드인 C가 모두 G로 치환되어 있음을 확인하였다. 이는 LeuA 단백질의 162번째(번역 개시코돈을 35 개 뒤로 표기하여 LeuA 단백질이 581 개의 아미노산으로 이루어진 것(서열번호 5)으로 공지한 문헌에 기초하는 경우는 127 번째; 이하 162 번째로만 표기) 아미노산인 히스티딘이 글루타메이트로 치환된 변이체(이하, H162E)를 암호화할 수 있음을 의미한다. LeuA 변이체(H162E)의 아미노산 서열 및 이를 암호화하는 leuA 변이체의 염기서열은 서열번호 8 및 서열번호 9와 같다.
ATCC13032/pTOPO_leuA(mt)5109 균주는 leuA 유전자의 631번째-633번째 뉴클레오티드인 TCC가 CTT로 치환되어 있음을 확인하였다. 이는 LeuA 단백질의 211번째(번역 개시코돈을 35 개 뒤로 표기하여 LeuA 단백질이 581 개의 아미노산으로 이루어진 것(서열번호 5)으로 공지한 문헌에 기초하는 경우는 176 번째; 이하 211 번째로만 표기) 아미노산인 세린이 류신로 치환된 변이체(이하, S211L)를 암호화할 수 있음을 의미한다. LeuA 변이체(S211L)의 아미노산 서열 및 이를 암호화하는 leuA 변이체의 염기서열은 서열번호 10 및 서열번호 11과 같다.
ATCC13032/pTOPO_leuA(mt)7563 균주는 leuA 유전자의 1762번째-1763번째 뉴클레오티드인 AT가 CC로 치환되어 있음을 확인하였다. 이는 LeuA 단백질의 588번째(번역 개시코돈을 35 개 뒤로 표기하여 LeuA 단백질이 581 개의 아미노산으로 이루어진 것(서열번호 5)으로 공지한 문헌에 기초하는 경우는 553 번째; 이하 588 번째로만 표기) 아미노산인 이소류신이 프롤린으로 치환된 변이체(이하, I588P)를 암호화할 수 있음을 의미한다. LeuA 변이체(I588P)의 아미노산 서열 및 이를 암호화하는 leuA 변이체의 염기서열은 서열번호 12 및 서열번호 13과 같다.
또한, ATCC13032/pTOPO_leuA(mt)8459 균주는 leuA 유전자의 733번째-734번째 뉴클레오티드인 AA가 TC로 치환되어 있음을 확인하였다. 이는 LeuA 단백질의 245번째(번역 개시코돈을 35 개 뒤로 표기하여 LeuA 단백질이 581 개의 아미노산으로 이루어진 것(서열번호 5)으로 공지한 문헌에 기초하는 경우는 210 번째; 이하 245 번째로만 표기) 아미노산인 아스파라지닌이 세린으로 치환된 변이체(이하, N245S)를 암호화할 수 있음을 의미한다. LeuA 변이체(N245S)의 아미노산 서열 및 이를 암호화하는 leuA 변이체의 염기서열은 서열번호 14 및 서열번호 15와 같다.
이하 실시예에서는, 상기 변이(L138G, H162E, S211L, N245S, I588P)가 코리네 박테리움 속 미생물의 L-류신 생산량에 영향을 미치는지 확인하고자 하였다.
실시예 3. 선별된 변이 균주의 L-류신 생산능 확인
3-1. leuA 변이를 포함하는 삽입 벡터 제작
상기 실시예 2에서 선별된 변이를 균주 내로 도입하기 위해 삽입용 벡터를 제작하고자 하였다. leuA(L138G, H162E, S211L, N245S, I588P) 변이 도입용 벡터 제작은 위치 지정 돌연변이 생성(Site directed mutagenesis) 방법을 사용하였다. 구체적으로, 야생형 코리네박테리움 글루타미쿰 ATCC13032 균주의 염색체를 주형으로 L138G 변이를 생성하기 위해 서열번호 16 및 서열번호 17의 프라이머 쌍, 서열번호 18 및 서열번호 19의 프라이머 쌍을 이용하고, H162E 변이를 생성하기 위해 서열번호 16 및 서열번호 20의 프라이머 쌍, 서열번호 19 및 서열번호 21의 프라이머 쌍을 이용하여 PCR을 수행하였다. S211L 변이를 생성하기 위해 서열번호 16 및 서열번호 22의 프라이머 쌍, 서열번호 19 및 서열번호 23의 프라이머 쌍을 이용하고, N245S 변이를 생성하기 위해 서열번호 16 및 서열번호 24의 프라이머 쌍, 서열번호 19 및 서열번호 25의 프라이머 쌍을 이용하여 PCR을 수행하였다. I588P 변이를 생성하기 위해 서열번호 16 및 서열번호 26의 프라이머 쌍, 서열번호 19 및 서열번호 27의 프라이머 쌍을 이용하여 PCR을 수행하였다. 구체적으로, 94 ℃에서 5분간 변성 후에 94 ℃에서 30초 변성, 55 ℃에서 30초 결합, 72 ℃에서 1분 30초 중합을 30회 반복한 후, 72 ℃에서 5분 중합 조건으로 PCR을 수행하였다. 사용한 프라이머의 구체적인 서열은 하기 표 4에 기재하였다.
서열번호 서열명 서열(5'->3')
서열번호 16 Primer 3 GGTCGACTCTAGAGGATCCCCTATGCTTCACCACATGACTTC
서열번호 17 Primer 4 CAGGTGCTCACGAGCCTGAACCccAACCTGAATGGTGACATC
서열번호 18 Primer 5 GACGATGTCACCATTCAGGTTggGGTTCAGGCTCGTGAG
서열번호 19 Primer 6 GTGAATTCGAGCTCGGTACCCAAATCATTTGAGAAAACTCGAGGC
서열번호 20 Primer 7 GATGGAGGTTGAGTTGTAGAAcTcCACGATAACGTTTTTTGCG
서열번호 21 Primer 8 GGCGCAAAAAACGTTATCGTGgAgTTCTACAACTCAACCTCC
서열번호 22 Primer 9 AGTGCCGGTGAAGGACTCAGGaagGTACTGCCAGCGCC
서열번호 23 Primer 10 ACCAACTGGCGCTGGCAGTACcttCCTGAGTCCTTCACC
서열번호 24 Primer 11 CATCTCAACGGTGGAACACAGGgaGATGATCATTGGGTTCTC
서열번호 25 Primer 12 CCTGAGAACCCAATGATCATCtcCCTGTGTTCCACCG
서열번호 26 Primer 13 TGCCTTCAGCGAAGCGTAGGTGggGGAGCCAGCGATGC
서열번호 27 Primer 14 GGCGTCGGCATCGCTGGCTCCccCACCTACGCTTCGCTG
상기 PCR 산물을 SmaI 제한효소로 절단시킨 선상의 pDCM2 벡터와 인퓨전(In-Fusion) 효소를 이용해 DNA 단편 간의 말단 15 개 염기의 상동서열을 퓨전시켜 클로닝하여 LeuA의 아미노산을 치환하는 벡터 'pDCM2-leuA(L138G)', 'pDCM2-leuA(H162E)', 'pDCM2-leuA(S211L)', 'pDCM2-leuA(N245S)', 'pDCM2-leuA(I588P)'를 제작하였다. 또한 변이체를 조합함에 따라 leuA의 아미노산을 치환하는 벡터 'pDCM2-leuA(S211L, I588P), pDCM2-leuA(L138G, H162E, S211L, N245S)', 'pDCM2-leuA(L138G, H162E, S211L, N245S, I588P)'를 제작하였다.
3-2. 코리네박테리움 글루타미쿰 ATCC13032 균주 내 변이체 도입 및 평가
상기 실시예 3-1에서 제작한 pDCM2-leuA(L138G), pDCM2-leuA(H162E), pDCM2-leuA(S211L), pDCM2-leuA(N245S), pDCM2-leuA(I588P), pDCM2-leuA(S211L, I588P), pDCM2-leuA(L138G, H162E, S211L, N245S), pDCM2-leuA(L138G, H162E, S211L, N245S, I588P) 벡터를 코리네박테리움 글루타미쿰 ATCC13032 균주에 전기천공법으로 형질전환하고 상동성 서열의 재조합에 의해 염색체 상에 벡터가 삽입된 균주는 카나마이신 25 mg/L를 함유한 배지에서 선별하였다. 선별된 1차 균주는 다시 2차 교차를 거쳐, 목표 유전자의 변이가 도입된 균주를 선정하였다. 최종적으로 형질전환된 균주의 leuA 유전자 변이 도입의 여부는 서열번호 3과 서열번호 4의 프라이머를 이용하여 PCR을 수행한 후 염기서열을 분석함으로써 균주 내 변이가 도입되었음을 확인하였다. 제작된 균주는 총 8종이며, 각각 'ATCC13032_leuA_L138G', 'ATCC13032_leuA_H162E, ATCC13032_leuA_S211L', 'ATCC13032_leuA_N245S', 'ATCC13032_leuA_I588P', 'ATCC13032_leuA_(S211L, I588P)' 'ATCC13032_leuA_(L138G, H162E, S211L, N245S)', 'ATCC13032_leuA_(L138G, H162E, S211L, N245S, I588P)' 로 명명하였다.
상기 제작된 총 8종의 균주의 L-류신 생산능을 평가하기 위해 플라스크 발효역가 평가를 진행하였다. 각각의 생산배지 25 ㎖을 함유하는 250 ㎖ 코너-바풀 플라스크에 모균주인 코리네박테리움 글루타미쿰 ATCC13032 및 상기 제작한 ATCC13032_leuA_L138G, ATCC13032_leuA_H162E, ATCC13032_leuA_S211L, ATCC13032_leuA_N245S, ATCC13032_leuA_I588P, ATCC13032_leuA_(S211L, I588P), ATCC13032_leuA_(L138G, H162E, S211L, N245S), ATCC13032_leuA_(L138G, H162E, S211L, N245S, I588P)을 각각 1백금이 접종한 후, 30 ℃에서 60 시간 동안 200 rpm으로 진탕 배양하여 L-류신을 생산하였다. 배양종료 후 HPLC로 L-류신의 생산량을 측정하였다. 실험한 각 균주에 대한 배양액 중의 류신 농도는 하기 표 5와 같다.
균주명 류신 (g/L)
ATCC13032 0.87
ATCC13032_leuA_L138G 1.27
ATCC13032_leuA_H162E 1.30
ATCC13032_leuA_S211L 1.38
ATCC13032_leuA_N245S 1.22
ATCC13032_leuA_I588P 1.20
ATCC13032_leuA_(S211L, I588P) 1.32
ATCC13032_leuA_(L138G, H162E, S211L, N245S) 1.36
ATCC13032_leuA_(L138G, H162E, S211L, N245S, I588P) 1.35
상기 표 5에 나타난 바와 같이, leuA 유전자에 L138G 변이가 있는 ATCC13032_leuA_L138G는 모균주인 코리네박테리움 글루타미쿰 ATCC13032 에 비해 L-류신의 수율이 약 1.45 배 향상되었고, H162E 변이가 있는 ATCC13032_leuA_H162E는 모균주인 코리네박테리움 글루타미쿰 ATCC13032 에 비해 L-류신의 수율이 약 1.49 배 향상되었고, S211L 변이가 있는 ATCC13032_leuA_S211L는 모균주인 코리네박테리움 글루타미쿰 ATCC13032 에 비해 L-류신의 수율이 약 1.58 배 향상되었고, N245S 변이가 있는 ATCC13032_leuA_N245S는 모균주인 코리네박테리움 글루타미쿰 ATCC13032 에 비해 L-류신의 수율이 약 1.40 배 향상되었고, I588P 변이가 있는ATCC13032_leuA_I588P는 모균주인 코리네박테리움 글루타미쿰 ATCC13032 에 비해 L-류신의 수율이 약 1.37 배 향상되었고, ATCC13032_leuA_(S211L, I588P)는 모균주인 L-류신의 수율이 약 1.51 배 향상되었다. ATCC13032_leuA_(L138G, H162E, S211L, N245S)와 ATCC13032_leuA_(L138G, H162E, S211L, N245S, I588P)는 모균주인 코리네박테리움 글루타미쿰 에 비해 L-류신의 수율이 약 1.56 배 향상됨을 확인하였다.
실시예 4. 류신 생산주에서 leuA 선별 변이의 류신 생산능 확인
코리네박테리움 속 야생형의 균주는 류신을 생산하더라도 아주 극미량이 생산될 뿐이다. 이에 야생형 코리네박테리움 글루타미쿰 ATCC13032 유래의 류신 생산 균주를 제작하고, 선별한 변이를 도입하여 류신 생산능을 확인 하는 실험을 진행하였다. 구체적인 실험 방법 및 결과는 다음과 같다.
4-1. L-류신 생산주 CJL-8109 균주 제작
고농도의 L-류신 생산을 위한 균주로서 (1) leuA 유전자의 1673 번째 뉴클레오티드인 G가 A로 치환되어 LeuA 단백질의 558 번째 아미노산인 알지닌이 히스티딘으로 치환되는 변이(R558H), (2) leuA 유전자의 1682 번째, 1683 번째 뉴클레오티드인 GC가 AT로 치환되어 561 번째 아미노산인 글리신이 아스파르트산으로 치환되는 변이(G561D), 및 (3) leuA 유전자의 739번째, 740번째 뉴클레오티드인 CC 가 TG 로 치환되어 247번째 아미노산인 프롤린이 시스테인으로 치환되는 변이(P247C)를 포함하는 야생형 코리네박테리움 글루타미쿰 ATCC13032 유래의 균주를 제조하였다.
구체적으로, leuA 유전자 변이(R558H, G561D)를 포함하는 pDCM2-leuA(R558H, G561D) 벡터(미국 공개특허 제2021-0254111호)를 코리네박테리움 글루타미쿰 ATCC13032에 전기천공법으로 형질전환하고 카나마이신 25 mg/L를 함유한 배지에서 상동성 서열의 재조합에 의해 염색체 상에 벡터가 삽입된 균주를 선별하였다. 선별된 1차 균주는 다시 2차 교차를 거쳐, leuA 유전자의 변이가 도입된 균주를 선정하였다. 최종적으로 형질전환된 균주의 변이 도입 여부는 서열번호 28 및 55의 프라이머를 이용하여 PCR(94 ℃ 5분 후, 94 ℃ 30초/55 ℃ 30초/72 ℃ 90초 30회 반복, 72 ℃ 5분)을 수행하고 염기서열을 분석하여 R558H, G561D 변이가 도입된 것을 확인하였다. 사용한 프라이머의 구체적인 서열은 하기 표 6에 기재하였다. pDCM2-leuA(R558H, G561D) 벡터로 형질전환된 ATCC13032_leuA_(R558H, G561D) 균주를 'CJL-8100'으로 명명하였다.
서열번호 서열명 서열(5'->3')
서열번호 28 Primer 15 AACACGACCGGCATCCCGTCGC
서열번호 29 Primer 16 AAATCATTTGAGAAAACTCGAGG
서열번호 19 Primer 6 GTGAATTCGAGCTCGGTACCCAAATCATTTGAGAAAACTCGAGGC
서열번호 54 Primer 27 GGTGATCATCTCAACGGTGGAACACAGGTTGATGATCATTGGGTT
서열번호 55 Primer 28 AACCCAATGATCATCAACCTGTGTTCCACCGTTGAGATGATCACC
상기 L-류신 생산 균주인 CJL-8100에 변이(P247C)를 도입하기 위해 삽입용 벡터를 제작하였다.
구체적으로, CJL-8100 균주의 염색체를 주형으로 서열번호 28 및 29의 프라이머, 서열번호 54 및 55의 프라이머 쌍을 이용하여 PCR을 수행하였다. PCR은 94 ℃에서 5분간 변성 후, 94 ℃에서 30초, 55 ℃에서 30초, 72 ℃에서 1분 30초를 30회 반복한 후, 72 ℃에서 5분간 중합반응을 수행하였다. 그 결과 얻어진 PCR 산물을 SmaI 제한효소로 절단시킨 선상의 pDCM2 벡터와 In-Fusion 효소를 이용해 DNA 단편 간의 말단 15 개 염기의 상동서열을 퓨전시켜 클로닝하여, 야생형 균주의 LeuA 아미노산 서열에서 558 번째 아미노산인 알지닌이 히스티딘으로 치환되고, 561 번째 아미노산인 글리신이 아스파르트산으로 치환된 LeuA 변이체를 암호화하는 leuA 변이를 포함하고, LeuA의 247 번째 아미노산인 프롤린(Pro)을 시스테인(Cys)으로 치환하는 벡터 pDCM2-leuA(P247C, R558H, G561D)를 제작하였다.
상기 pDCM2-leuA(P247C, R558H, G561D) 벡터를 야생형 코리네박테리움 글루타미쿰 ATCC13032에 전기천공법으로 형질전환하고 카나마이신 25 mg/L를 함유한 배지에서 상동성 서열의 재조합에 의해 염색체 상에 벡터가 삽입된 균주를 선별하였다. 선별된 1차 균주는 다시 2차 교차를 거쳐, leuA 유전자의 변이가 도입된 균주를 선정하였다. 최종적으로 형질전환된 균주의 변이 도입 여부는 서열번호 3과 서열번호 4의 프라이머를 이용하여 PCR(94 ℃ 5분 변성 후, 94 ℃ 30초 변성, 55 ℃ 30초 결합, 72 ℃ 90초 중합 30회 반복, 72 ℃ 5분 중합)을 수행하고 염기서열을 분석하여 P247C, R558H, 및 G561D 변이가 도입된 것을 확인하였다. pDCM2-leuA(P247C, R558H, G561D) 벡터로 형질전환된 ATCC13032_leuA_(P247C, R558H, G561D) 균주를 'CA13-8105'으로 명명하였다.
상기 CA13-8105는 부다페스트조약 하의 수탁기관인 한국미생물보존센터에 2020년 4월 29일자로 기탁하여 수탁번호 KCCM12709P를 부여받았다.
제작한 CA13-8105 균주에서 L-류신 생산능을 높이기 위해 분지쇄 아미노산 아미노트랜스퍼라제(branched-chain amino acid aminotransferase)를 코딩하는 유전자인 ilvE 변이체(V156A)가 도입된 균주를 제작하였다(WO WO2021-112469 A1). 구체적으로 상기의 ilvE 유전자 변이를 포함하는 pDCM2-ilvE(V156A) 벡터를 코리네박테리움 글루타미쿰 CJL-8100에 전기천공법으로 형질전환하고 카나마이신 25 mg/L를 함유한 배지에서 상동성 서열의 재조합에 의해 염색체 상에 벡터가 삽입된 균주를 선별하였다. 선별된 1차 균주는 다시 2차 교차를 거쳐, ilvE 유전자의 변이가 도입된 균주를 선정하였다. 최종적으로 형질전환된 균주의 변이 도입 여부는 하기 표 7의 서열번호 30 및 서열번호 31의 프라이머 쌍을 이용하여 PCR(94 ℃ 5분 후, 94 ℃ 30초/55 ℃ 30초/72 ℃ 90초 30회 반복, 72 ℃ 5분)을 수행하고 염기서열을 분석하여 V156A 변이가 도입된 것을 확인하였다. pDCM2-ilvE(V156A) 벡터로 형질전환된 균주를 'CJL-8108'로 명명하였다.
서열번호 서열명 서열(5'->3')
서열번호 30 Primer 23 GTCACCCGATCGTCTGAAG
서열번호 31 Primer 24 GTCTTAAAACCGGTTGAT
제작한 CJL-8108 균주에 L-류신 생산능을 높여주기 위해 시트레이트 신타아제(Citrate Synthase) 활성을 약화시킨 gltA 변이체(M312I)가 도입된 균주를 제작하였다.
구체적으로, gltA(M312I) 변이 도입용 벡터 제작은 위치 지정 돌연변이 생성(Site directed mutagenesis) 방법을 사용하였다. 야생형 코리네박테리움 글루타미쿰 ATCC13032의 염색체를 주형으로 하기 표 8의 프라이머를 이용하여 PCR을 수행하였다. PCR은 94 ℃에서 5분간 변성 후, 94 ℃에서 30초, 55 ℃에서 30초, 72 ℃에서 1분 30초를 30회 반복한 후, 72 ℃에서 5분간 중합반응을 수행하였다. 그 결과 얻어진 유전자 단편을 SmaI 제한효소로 절단시킨 선상의 pDCM2 벡터와 인퓨전(In-Fusion) 효소를 이용해 DNA 단편간의 말단 15개 염기의 상동서열을 결합시켜 클로닝하여 312번째 아미노산인 메티오닌을 이소류신으로 치환하는 벡터 pDCM2-gltA(M312I)를 제작하였다.
서열번호 서열명 서열(5'->3')
32 gltA M312I Up F GTGAATTCGAGCTCGGTACCCGCGGGAATCCTGCGTTACCGC
33 gltA M312I Up R TGTAAACGCGGTGTCCGAAGCCGATGAGGCGGACGCCGTCTT
34 gltA M312I Down F AAGACGGCGTCCGCCTCATCGGCTTCGGACACCGCGTTTACA
35 gltA M312I Down R GGTCGACTCTAGAGGATCCCCTTAGCGCTCCTCGCGAGGAAC
상기의 gltA 유전자 변이를 포함하는 pDCM2-gltA(M312I) 벡터를 코리네박테리움 글루타미쿰 CJL-8108에 전기천공법으로 형질전환하고 카나마이신 25 mg/L를 함유한 배지에서 상동성 서열의 재조합에 의해 염색체 상에 벡터가 삽입된 균주를 선별하였다. 선별된 1차 균주는 다시 2차 교차를 거쳐, gltA 유전자의 변이가 도입된 균주를 선정하였다. 최종적으로 형질전환된 균주의 변이 도입 여부는 하기 표 9의 서열번호 36 및 서열번호 37의 프라이머를 이용하여 PCR(94 ℃ 5분 후, 94 ℃ 30초/55 ℃ 30초/72 ℃ 90초 30회 반복, 72 ℃ 5분)을 수행하고 염기서열을 분석하여 M312I 변이가 도입된 것을 확인하였다. pDCM2-gltA(M312I) 벡터로 형질전환된 균주를 'CJL-8109'로 명명하였다.
서열번호 서열명 서열(5'->3')
서열번호 36 Primer 25 CAATGCTGGCTGCGTACGC
서열번호 37 Primer 26 CTCCTCGCGAGGAACCAACT
4-2. leuA 변이를 포함하는 삽입 벡터 제작
실시예 4-1에서 제작한 L-류신 생산균주인 CJL-8109에 상기 실시예 2에서 선별된 변이(L138G, H162E, S211L, N245S, I588P)를 도입하기 위해 삽입용 벡터를 제작하고자 하였다.
CJL-8109 균주의 염색체를 주형으로 상기 표 4의 프라이머 쌍을 이용하여 PCR을 수행하였다. PCR은 94 ℃에서 5분간 변성 후, 94 ℃에서 30초 변성, 55 ℃에서 30초 결합, 72 ℃에서 1분 30초 중합을 30회 반복한 후, 72 ℃에서 5분간 중합하여 수행하였다. 그 결과 얻어진 PCR 산물을 SmaI 제한효소로 절단 시킨 선상의 pDCM2 벡터와 인퓨전 효소를 이용해 DNA 단편 간의 말단 15 개 염기의 상동서열을 퓨전시켜 클로닝하여 총 8개의 벡터 'pDCM2-leuA(L138G, P247C, R558H, G561D)', 'pDCM2-leuA(H162E, P247C, R558H, G561D)', 'pDCM2-leuA(S211L, P247C, R558H, G561D)', 'pDCM2-leuA(N245S, P247C, R558H, G561D)', 'pDCM2-leuA(P247C, R558H, G561D, I588P)', 'pDCM2-leuA(S211L, P247C, I588P)', 'pDCM2-leuA(L138G, H162E, S211L, N245S, P247C, R558H, G561D)', 'pDCM2-leuA(L138G, H162E, S211L, N245S, P247C, R558H, G561D, I588P)'를 제작하였다.
4-3. CJL-8109 균주 내 leuA 변이체 도입 및 평가
L-류신 생산 균주인 CJL-8109을 상기 실시예 4-2에서 제작한 벡터로 형질전환하고 상동성 서열의 재조합에 의해 염색체 상에 벡터가 삽입된 균주는 카나마이신 25 mg/L를 함유한 배지에서 선별하였다. 선별된 1차 균주는 다시 2차 교차를 거쳐, 목표 유전자의 변이가 도입된 균주를 선정하였다. 최종적으로 형질 전환된 균주의 leuA 유전자 변이 도입의 여부는 서열번호 3과 서열번호 4의 프라이머를 이용하여 PCR을 수행한 후 염기서열을 분석함으로써 균주내 leuA 변이가 도입되었음을 확인하였다. 제작된 총 8종의 균주는 하기 표 11와 같이 명명하였고, 변이를 포함하는 변이체의 아미노산 서열 및 이를 암호화하는 leuA 변이체의 염기서열의 서열을 하기 표 10에 기재하였다.
균주명 균주 번호 서열번호
CJL-8109_leuA_L138G, P247C, R558H, G561D CJL-8117 서열번호 38, 39
CJL-8109_leuA_H162E, P247C, R558H, G561D CJL-8118 서열번호 40, 41
CJL-8109_leuA_S211L, P247C, R558H, G561D CA13-8119 서열번호 42, 43
CJL-8109_leuA_N245S, P247C, R558H, G561D CJL-8120 서열번호 44, 45
CJL-8109_leuA_I588P, P247C, R558H, G561D CJL-8121 서열번호 46, 47
CJL-8109_leuA_S211L, P247C, R558H, G561D, I588P CJL-8122 서열번호 48, 49
CJL-8109_leuA_L138G, H162E, S211L, N245S, P247C, R558H, G561D CJL-8123 서열번호 50, 51
CJL-8109_leuA_L138G, H162E, S211L, N245S, P247C, R558H, G561D, I588P CJL-8125 서열번호 52, 53
이후, 야생형 코리네박테리움 글루타미쿰 ATCC13032, 제작된 CJL-8109, CJL-8117, CJL-8118, CA13-8119, CJL-8120, CJL-8121, CJL-8122, CJL-8123, CJL-8125 균주의 L-류신의 생산능을 평가하였다. 구체적으로, 실시예 2-1의 방법으로 플라스크 배양을 진행하였고, 배양 종료 후 HPLC를 이용하여, 모균주 및 변이 균주의 L-류신 생산량을 측정하고 그 결과를 하기 표 11에 기재하였다.
균주명 L-류신 (g/L)
ATCC13032 0.87
CJL-8109 2.89
CJL-8117 3.55
CJL-8118 3.67
CA13-8119 4.03
CJL-8120 3.46
CJL-8121 3.48
CJL-8122 4.52
CJL-8123 4.02
CJL-8125 4.01
상기 표 11에 나타난 바와 같이, leuA 유전자에 L138G, H162E, S211L, N245S, I588P, S211L/I588P, L138G/H162E/S211L/N245S 또는 L138G/H162E/S211L/N245S/I588P 변이가 추가로 있는 L-류신 생산균주인 CJL-8117, CJL-8118, CA13-8119, CJL-8120, CJL-8121, CJL-8122, CJL-8124 및 CJL-8125는 모균주인 야생형 코리네박테리움 글루타미쿰 ATCC13032에 비해 L-류신 생산능이 약 4 내지 5 배 향상됨을 확인하였다. 또한 L-류신 생산균주 코리네박테리움 글루타미쿰 CJL-8117, CJL-8118, CA13-8119, CJL-8120, CJL-8121, CJL-8122, CJL-8123, 및 CJL-8125는 모균주인 코리네박테리움 글루타미쿰 CJL-8109에 비해 L-류신 생산능이 약 1.2 내지 1.6 배 향상됨을 확인하였다.
상기 결과를 통해 LeuA 단백질의 아미노산 서열 중 138번째, 162번째, 211번째, 245번째, 588번째 위치의 아미노산이 L-류신 생산 활성에 중요한 위치임을 확인할 수 있다.
4-4. LeuA 변이체가 도입된 균주에서의 이소프로필말레이트 신타제 활성 측정
실시예 4-3에서 제작한 L-류신 생산균주인 CJL-8109 및 CJL-8117, CJL-8118, CA13-8119, CJL-8120, CJL-8121, CJL-8122, CJL-8123 및 CJL-8125에서 이소프로필 말레이트 신타제의 활성을 측정하기 위해, 하기와 같은 방법으로 실험하였다.
상기 표 2의 생산배지 25 ㎖을 함유하는 250㎖ 코너-바풀 플라스크에 상기 균주(CJL-8109, CJL-8117, CJL-8118, CA13-8119, CJL-8120, CJL-8121, CJL-8122, CJL-8123, CJL-8125) 및 야생형 코리네박테리움 글루타미쿰 ATCC13032를 각각 1 백금이 접종한 후, 30℃에서 16 시간 동안 200rpm으로 진탕 배양하였다. 배양 종료 후 배양액을 원심분리하여 상층액은 버리고, 펠렛을 용균완충용액으로 세척 및 혼탁하고 세포를 파쇄하였다. 용균액의 단백질 정량은 브래드포드법을 따랐으며, 100㎍/㎖의 단백질이 포함된 용균액을 이용하였다. 이때, 생성되는 CoA를 이용한 환원에 의해 DTNB(5,5'-디티오비스-(2-니트로벤조산), 엘만(Ellman) 시약)로부터 형성된 티오니트로벤조에이트(TNB)로 인한 412nm에서의 흡광 변화를 측정하여 이소프로필말레이트 신타제 효소의 활성을 측정하였다. 각 균주에서의 이소프로필말레이트 신타제의 활성 측정 결과는 하기 표 12와 같다.
균주 상대적인 이소프로필말레이트 신타제 활성 (%)
ATCC13032 100
CJL-8109 118
CJL-8117 121
CJL-8118 125
CA13-8119 138
CJL-8120 122
CJL-8121 130
CJL-8122 132
CJL-8123 135
CJL-8125 136
다음으로, 상기 효소의 류신에 대한 피드백 저해에 대한 해제 정도를 확인하기 위해 류신이 2g/L 첨가된 조건에서 100 ㎍/㎖의 단백질이 포함된 용균액을 이용하였을 때 생성되는 CoA를 측정함으로써 이소프로필말레이트 신타제의 활성을 측정하였다. 각 균주에서의 이소프로필말레이트 신타제의 활성 측정 결과는 하기 표 13과 같다.
균주 류신 0 g/l 류신 2 g/l
상대적인 이소프로필말레이트 신타제 활성 (%)
ATCC13032 100 36
CJL-8109 100 83
CJL-8117 100 83
CJL-8118 100 83
CA13-8119 100 93
CJL-8120 100 85
CJL-8121 100 88
CJL-8122 100 92
CJL-8123 100 90
CJL-8125 100 91
상기 표 12 및 표 13에 나타난 바와 같이 LeuA 변이체 발현 벡터가 형질 전환된 L-류신 생산균주 CJL-8109 및 CJL-8117, CJL-8118, CA13-8119, CJL-8120, CJL-8121, CJL-8122, CJL-8123, CJL-8125는 대조군인 야생형 코리네박테리움 글루타미쿰 ATCC 13032에 비해 이소프로필말레이트 신타제의 활성이 약 1.18 내지 1.38배로 향상됨을 확인하였다. 또한, 상기 L-류신 생산균주들은 류신이 2 g/L 첨가된 조건에서도 이소프로필말레이트 신타제 효소 활성을 각각 83% 내지 93% 로 유지하는 것을 확인하여 류신에 의한 피드백 저해가 해제 되었음을 확인하였다.
상기 CA13-8119는 부다페스트조약 하의 수탁기관인 한국미생물보존센터에 2021년 2월 8일자로 기탁하여 수탁번호 KCCM12949P를 부여받았다.
이상의 설명으로부터, 본 출원이 속하는 기술분야의 당업자는 본 출원이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로 이해해야만 한다. 본 출원의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 출원의 범위에 포함되는 것으로 해석되어야 한다.
Figure PCTKR2022001560-appb-img-000001
Figure PCTKR2022001560-appb-img-000002

Claims (14)

  1. 서열번호 1의 아미노산 서열에서 i) 138 번째에 상응하는 위치의 아미노산 잔기가 다른 아미노산 잔기로 치환, ii) 162 번째에 상응하는 위치의 아미노산 잔기가 다른 아미노산 잔기로 치환, iii) 211 번째에 상응하는 위치의 아미노산 잔기가 다른 아미노산 잔기로 치환, iv) 245 번째에 상응하는 위치의 아미노산 잔기가 다른 아미노산 잔기로 치환, 및 v) 588 번째에 상응하는 위치의 아미노산 잔기가 다른 아미노산 잔기로의 치환으로 이루어지는 군으로부터 선택되는 어느 하나 이상의 치환을 포함하는, 이소프로필말레이트 신타제(isopropylmalate synthase) 활성을 가지는 변이형 폴리펩티드.
  2. 제1항에 있어서, 상기 i)은 138 번째에 상응하는 위치의 아미노산 잔기인 류신이 글라이신으로 치환된 것인, 변이형 폴리펩티드.
  3. 제1항에 있어서, 상기 ii)는 162 번째에 상응하는 위치의 아미노산 잔기인 히스티딘이 글루타메이트로 치환된 것인, 변이형 폴리펩티드.
  4. 제1항에 있어서, 상기 iii)은 211 번째에 상응하는 위치의 아미노산 잔기인 세린이 류신으로 치환된 것인, 변이형 폴리펩티드.
  5. 제1항에 있어서, 상기 iv)는 245 번째에 상응하는 위치의 아미노산 잔기인 아스파라기닌이 세린으로 치환된 것인, 변이형 폴리펩티드.
  6. 제1항에 있어서, 상기 v)는 588 번째에 상응하는 위치의 아미노산 잔기인 이소류신이 프롤린으로 치환된 것인, 변이형 폴리펩티드.
  7. 제1항에 있어서, 상기 변이형 폴리펩티드는 서열번호 6, 서열번호 8, 서열번호 10, 서열번호 12, 및 서열번호 14으로 이루어지는 군으로부터 선택되는 어느 하나 이상의 아미노산 서열을 포함하는 것인, 변이형 폴리펩티드.
  8. 제1항 내지 제7항 중 어느 한 항의 변이형 폴리펩티드를 코딩하는 폴리뉴클레오티드.
  9. 제8항의 폴리뉴클레오티드를 포함하는 벡터.
  10. 제1항의 변이형 폴리펩티드; 이를 코딩하는 폴리뉴클레오티드; 또는 이를 포함하는 벡터;를 포함하는, L-류신을 생산하는 코리네박테리움 속(The genus of Corynebacterium) 미생물.
  11. 제10항에 있어서, 상기 코리네박테리움 속 미생물은 코리네박테리움 글루타미쿰(Corynebacterium glutamicum)인, 코리네박테리움 속 미생물.
  12. 제1항의 변이형 폴리펩티드; 이를 코딩하는 폴리뉴클레오티드; 또는 이를 포함하는 벡터;를 포함하는, L-류신을 생산하는 코리네박테리움 속 미생물을 배지에서 배양하는 단계를 포함하는, L-류신 생산방법.
  13. 제12항에 있어서, 상기 배양하는 단계 이후 배지 또는 미생물로부터 L-류신을 회수하는 단계를 추가적으로 포함하는, L-류신 생산방법.
  14. 제1항의 변이형 폴리펩티드, 이를 코딩하는 폴리뉴클레오티드, 또는 이를 포함하는 벡터를 포함하는, L-류신을 생산하는 코리네박테리움 속 미생물; 또는 이를 배양한 배지;를 포함하는 L-류신 생산용 조성물.
PCT/KR2022/001560 2021-03-05 2022-01-28 이소프로필말레이트 신타제 변이체 및 이를 이용한 l-류신의 생산 방법 WO2022186487A1 (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN202280016563.2A CN117355605A (zh) 2021-03-05 2022-01-28 异丙基苹果酸合酶变体和使用其产生l-亮氨酸的方法
EP22763472.2A EP4253532A4 (en) 2021-03-05 2022-01-28 ISOPROPYLMALATE SYNTHASE VARIANT AND METHOD FOR PRODUCING L-LEUCINE USING THE SAME
AU2022229156A AU2022229156A1 (en) 2021-03-05 2022-01-28 Isopropylmalate synthase variant and a method of producing L-leucine using the same
JP2023540849A JP2024501753A (ja) 2021-03-05 2022-01-28 イソプロピルリンゴ酸シンターゼ変異体及びそれを用いたl-ロイシンの生産方法
CA3204875A CA3204875A1 (en) 2021-03-05 2022-01-28 Isopropylmalate synthase variant and a method of producing l-leucine using the same
MX2023009553A MX2023009553A (es) 2021-03-05 2022-01-28 Variante de isopropilmalato sintasa y un procedimiento para producir l-leucina usando la misma.
US18/274,912 US20240093252A1 (en) 2021-03-05 2022-01-28 Isopropylmalate synthase variant and a method of producing l-leucine using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210029469A KR102527102B1 (ko) 2021-03-05 2021-03-05 이소프로필말레이트 신타제 변이체 및 이를 이용한 l-류신의 생산 방법
KR10-2021-0029469 2021-03-05

Publications (1)

Publication Number Publication Date
WO2022186487A1 true WO2022186487A1 (ko) 2022-09-09

Family

ID=83154166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/001560 WO2022186487A1 (ko) 2021-03-05 2022-01-28 이소프로필말레이트 신타제 변이체 및 이를 이용한 l-류신의 생산 방법

Country Status (9)

Country Link
US (1) US20240093252A1 (ko)
EP (1) EP4253532A4 (ko)
JP (1) JP2024501753A (ko)
KR (1) KR102527102B1 (ko)
CN (1) CN117355605A (ko)
AU (1) AU2022229156A1 (ko)
CA (1) CA3204875A1 (ko)
MX (1) MX2023009553A (ko)
WO (1) WO2022186487A1 (ko)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100220018B1 (ko) 1997-06-25 1999-10-01 손 경 식 L-루이신을 생산하는 신규한 미생물 코리네박테리움 글루타미컴(Corynebacterium glutamicum) CH45
US6403342B1 (en) 1999-07-09 2002-06-11 Anjinomoto Co., Inc. DNA coding for mutant isopropylmalate synthase L-leucine-producing microorganism and method for producing L-leucine
KR100438146B1 (ko) 1996-11-28 2004-11-03 씨제이 주식회사 L-루이신생산미생물인코리네박테리움글루타미컴ch25
US7662943B2 (en) 2004-12-16 2010-02-16 Cj Cheiljedang Corporation Promoter sequences from Corynebacterium ammoniagenes
KR20140067082A (ko) * 2011-09-02 2014-06-03 필립모리스 프로덕츠 에스.에이. 니코티아나 타바쿰으로부터의 이소프로필말레이트 합성효소 및 그의 방법 및 용도
EP2841568A1 (en) * 2012-04-27 2015-03-04 Evonik Industries AG Feedback-resistant alpha-isopropylmalate synthases
KR20180077008A (ko) * 2016-12-28 2018-07-06 씨제이제일제당 (주) 신규한 이소프로필말레이트 신타제 변이체 및 이를 이용한 l-류신의 생산 방법
US10273491B2 (en) 2015-01-29 2019-04-30 Cj Cheiljedang Corporation Promoter and uses thereof
US10584338B2 (en) 2016-08-31 2020-03-10 Cj Cheiljedang Corporation Promoter and use thereof
WO2021112469A1 (ko) 2019-12-06 2021-06-10 씨제이제일제당 (주) 신규한 분지쇄 아미노산 아미노트랜스퍼라제 변이체 및 이를 이용한 류신 생산방법
WO2021187781A1 (ko) 2020-03-17 2021-09-23 씨제이제일제당 (주) 프리페네이트 디하이드라타아제 활성 강화를 통한 l-트립토판을 생산하는 방법

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100438146B1 (ko) 1996-11-28 2004-11-03 씨제이 주식회사 L-루이신생산미생물인코리네박테리움글루타미컴ch25
KR100220018B1 (ko) 1997-06-25 1999-10-01 손 경 식 L-루이신을 생산하는 신규한 미생물 코리네박테리움 글루타미컴(Corynebacterium glutamicum) CH45
US6403342B1 (en) 1999-07-09 2002-06-11 Anjinomoto Co., Inc. DNA coding for mutant isopropylmalate synthase L-leucine-producing microorganism and method for producing L-leucine
EP1568776A2 (en) * 1999-07-09 2005-08-31 Ajinomoto Co., Inc. DNA coding for mutant isopropylmalate synthase, l-leucine-producing microorganism and method for producing l-leucine
US7662943B2 (en) 2004-12-16 2010-02-16 Cj Cheiljedang Corporation Promoter sequences from Corynebacterium ammoniagenes
KR20140067082A (ko) * 2011-09-02 2014-06-03 필립모리스 프로덕츠 에스.에이. 니코티아나 타바쿰으로부터의 이소프로필말레이트 합성효소 및 그의 방법 및 용도
EP2841568A1 (en) * 2012-04-27 2015-03-04 Evonik Industries AG Feedback-resistant alpha-isopropylmalate synthases
US20150079641A1 (en) 2012-04-27 2015-03-19 Evonik Industries Ag Feedback-resistant alpha-isopropylmalate synthases
US10273491B2 (en) 2015-01-29 2019-04-30 Cj Cheiljedang Corporation Promoter and uses thereof
US10584338B2 (en) 2016-08-31 2020-03-10 Cj Cheiljedang Corporation Promoter and use thereof
KR20180077008A (ko) * 2016-12-28 2018-07-06 씨제이제일제당 (주) 신규한 이소프로필말레이트 신타제 변이체 및 이를 이용한 l-류신의 생산 방법
US20210254111A1 (en) 2016-12-28 2021-08-19 Cj Cheiljedang Corporation Isopropylmalate synthase variant and a method of producing l-leucine using the same
WO2021112469A1 (ko) 2019-12-06 2021-06-10 씨제이제일제당 (주) 신규한 분지쇄 아미노산 아미노트랜스퍼라제 변이체 및 이를 이용한 류신 생산방법
WO2021187781A1 (ko) 2020-03-17 2021-09-23 씨제이제일제당 (주) 프리페네이트 디하이드라타아제 활성 강화를 통한 l-트립토판을 생산하는 방법

Non-Patent Citations (17)

* Cited by examiner, † Cited by third party
Title
"Guide to Huge Computers", 1994, ACADEMIC PRESS
"Manual of Methods for General Bacteriology", AMERICAN SOCIETY FOR BACTERIOLOGY, 1981
"National Biomedical Research Foundation", 1979, article "Atlas Of Protein Sequence And Structure", pages: 353 - 358
BLASTP, BLASTN, FASTA, ATSCHUL, S. F., J MOLEC BIOL 215, vol. 403, 1990
CARILLO ET AL., SIAM J APPLIED MATH, vol. 48, 1988, pages 1073
DEVEREUX, J. ET AL., NUCLEIC ACIDS RESEARCH, vol. 12, 1984, pages 387
GRIBSKOV ET AL., NUCL. ACIDS RES., vol. 14, 1986, pages 6745
J. SAMBROOK ET AL.: "Molecular Cloning, A Laboratory Manual", 1989, COLD SPRING HARBOR LABORATORY PRESS
KOHLHAW GUNTER B.: "Leucine Biosynthesis in Fungi: Entering Metabolism through the Back Door", MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, AMERICAN SOCIETY FOR MICROBIOLOGY, US, vol. 67, no. 1, 1 March 2003 (2003-03-01), US , pages 1 - 15, XP055963417, ISSN: 1092-2172, DOI: 10.1128/MMBR.67.1.1-15.2003 *
NEEDLEMAN ET AL., J MOL BIOL., vol. 48, 1970, pages 443
NEEDLEMANWUNSCH, J. MOL. BIOL., vol. 48, 1970, pages 443 - 453
PEARSON ET AL., PROC. NATL. ACAD. SCI. USA, vol. 85, 1988, pages 2444
RICE ET AL.: "EMBOSS: The European Molecular Biology Open Software Suite", TRENDS GENET., vol. 16, 2000, pages 276 - 277, XP004200114, DOI: 10.1016/S0168-9525(00)02024-2
SAMBROOK ET AL., MOLECULAR CLONING, 2012
See also references of EP4253532A4
SITNICKA ET AL., FUNCTIONAL ANALYSIS OF GENES. ADVANCES IN CELL BIOLOGY., vol. 2, 2010, pages 1 - 16
SMITHWATERMAN, ADV. APPL. MATH, vol. 2, 1981, pages 482

Also Published As

Publication number Publication date
CA3204875A1 (en) 2022-09-09
AU2022229156A9 (en) 2024-10-17
EP4253532A1 (en) 2023-10-04
KR20220125526A (ko) 2022-09-14
AU2022229156A1 (en) 2023-07-27
CN117355605A (zh) 2024-01-05
JP2024501753A (ja) 2024-01-15
KR102527102B1 (ko) 2023-04-28
EP4253532A4 (en) 2024-06-26
MX2023009553A (es) 2023-08-22
US20240093252A1 (en) 2024-03-21

Similar Documents

Publication Publication Date Title
WO2020027362A1 (ko) 신규 아데닐로석시네이트 신세타아제 및 이를 이용한 퓨린 뉴클레오티드 생산방법
WO2019160301A1 (ko) 시트레이트 신타아제의 활성이 약화된 변이형 폴리펩타이드 및 이를 이용한 l-아미노산 생산방법
WO2014148743A1 (ko) 퓨트레신 생산 재조합 미생물 및 이를 이용한 퓨트레신 생산방법
WO2021167414A1 (ko) 퓨린 뉴클레오티드를 생산하는 미생물 및 이를 이용한 퓨린 뉴클레오티드의 생산방법
WO2019231159A1 (ko) 변이형 호모세린 디하이드로게나제 및 이를 이용한 호모세린 또는 호모세린 유래 l-아미노산의 생산 방법
WO2021261733A1 (ko) L-쓰레오닌 디하이드라타아제의 신규 변이체 및 이를 이용한 l-이소류신 생산 방법
WO2022164118A1 (ko) 프리페네이트 탈수 효소 변이체 및 이를 이용한 분지쇄 아미노산 생산 방법
WO2022050671A1 (ko) L-발린 생산 미생물 및 이를 이용한 l-발린 생산 방법
WO2021177731A1 (ko) 글루타민 신테타아제 변이형 폴리펩티드 및 이를 이용한 l-글루타민 생산 방법
WO2022191630A1 (ko) 신규한 시트레이트 신타아제 변이체 및 이를 이용한 l-발린 생산 방법
WO2022216088A1 (ko) L-아르기닌을 생산하는 코리네박테리움 속 미생물 및 이를 이용한 l-아르기닌 생산방법
WO2021045472A1 (ko) 신규한 프로모터 및 이를 이용한 목적 물질 생산 방법
WO2022245176A1 (ko) 퓨린 뉴클레오티드를 생산하는 미생물 및 이를 이용한 퓨린 뉴클레오티드의 생산방법
WO2022163904A1 (ko) 신규한 단백질 변이체 및 이를 이용한 l-라이신 생산 방법
WO2022124708A1 (ko) 신규한 분지 연쇄 아미노산 아미노트렌스퍼라아제 변이체 및 이를 이용한 이소류신 생산 방법
WO2022005022A1 (ko) L-이소류신 생산능이 강화된 미생물 및 이를 이용한 l-이소류신 생산방법
WO2021153866A1 (ko) 시트레이트 신타아제의 활성이 약화된 신규한 변이형 폴리펩티드 및 이를 이용한 l-아미노산 생산 방법
WO2022186487A1 (ko) 이소프로필말레이트 신타제 변이체 및 이를 이용한 l-류신의 생산 방법
WO2021101000A1 (ko) 아세토하이드록시산 신타제 신규 변이체 및 이를 포함하는 미생물
WO2022191635A1 (ko) 신규한 시트레이트 신타아제 변이체 및 이를 이용한 l-아미노산 생산 방법
WO2022124511A1 (ko) 변이형 atp-의존적 프로테아제 및 이를 이용한 l-아미노산의 생산 방법
WO2022154188A1 (ko) 신규한 폴리케타이드 신타제 변이체 및 이를 이용한 xmp 또는 gmp 생산 방법
WO2022154189A1 (ko) 신규한 피토엔 신타제 변이체 및 이를 이용한 xmp 또는 gmp 생산 방법
WO2024096545A1 (ko) 퓨린 뉴클레오티드를 생산하는 미생물 및 이를 이용한 퓨린 뉴클레오티드의 생산 방법
WO2021235855A1 (ko) L- 분지쇄 아미노산 생산능이 강화된 미생물 및 이를 이용하여 l-분지쇄 아미노산을 생산하는 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22763472

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023540849

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2022763472

Country of ref document: EP

Effective date: 20230630

ENP Entry into the national phase

Ref document number: 3204875

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 202317048041

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2022229156

Country of ref document: AU

Date of ref document: 20220128

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18274912

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023015182

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: MX/A/2023/009553

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 202280016563.2

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 112023015182

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230727

NENP Non-entry into the national phase

Ref country code: DE