WO2021112469A1 - 신규한 분지쇄 아미노산 아미노트랜스퍼라제 변이체 및 이를 이용한 류신 생산방법 - Google Patents

신규한 분지쇄 아미노산 아미노트랜스퍼라제 변이체 및 이를 이용한 류신 생산방법 Download PDF

Info

Publication number
WO2021112469A1
WO2021112469A1 PCT/KR2020/016675 KR2020016675W WO2021112469A1 WO 2021112469 A1 WO2021112469 A1 WO 2021112469A1 KR 2020016675 W KR2020016675 W KR 2020016675W WO 2021112469 A1 WO2021112469 A1 WO 2021112469A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
variant
leucine
microorganism
protein
Prior art date
Application number
PCT/KR2020/016675
Other languages
English (en)
French (fr)
Inventor
배현정
김주은
백민지
이지혜
Original Assignee
씨제이제일제당 (주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 씨제이제일제당 (주) filed Critical 씨제이제일제당 (주)
Priority to EP20897508.6A priority Critical patent/EP4047085A4/en
Priority to CN202080083985.2A priority patent/CN115038787B/zh
Priority to US17/756,627 priority patent/US20220411832A1/en
Priority to AU2020398425A priority patent/AU2020398425A1/en
Priority to BR112022011021A priority patent/BR112022011021A2/pt
Priority to MX2022006827A priority patent/MX2022006827A/es
Priority to JP2022529090A priority patent/JP7378621B2/ja
Publication of WO2021112469A1 publication Critical patent/WO2021112469A1/ko
Priority to ZA2022/06109A priority patent/ZA202206109B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/06Alanine; Leucine; Isoleucine; Serine; Homoserine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/77Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Corynebacterium; for Brevibacterium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1096Transferases (2.) transferring nitrogenous groups (2.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y206/00Transferases transferring nitrogenous groups (2.6)
    • C12Y206/01Transaminases (2.6.1)
    • C12Y206/01042Branched-chain-amino-acid transaminase (2.6.1.42)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/101Plasmid DNA for bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/15Corynebacterium

Definitions

  • the present application relates to a novel branched chain amino acid aminotransferase variant and a leucine production method using the same.
  • Branched-chain amino acids refer to three types of valine, leucine, and isoleucine, and are known to be mainly metabolized in muscles and used as an energy source during activity. As branched chain amino acids are known to play an important role in maintaining and increasing muscle during activity, their usage is increasing. In particular, leucine is a kind of essential amino acid and is widely used in medicine, food, feed additive, and industrial medicine.
  • the production of leucine using microorganisms is mainly made through microorganisms of the genus Escherichia or microorganisms of the genus Corynebacterium (US 2020-0032305 A1), and goes through several steps from pyruvic acid to ketoisocaproate (2-ketoisocaproate) ) is known to be biosynthesized as a precursor.
  • enzymes used for leucine synthesis are equally used in the biosynthesis of branched-chain amino acids, it is difficult to industrially mass-produce one branched-chain amino acid through fermentation.
  • bcaT branched-chain amino acid aminotransferase
  • An object of the present application is a branched amino acid aminotransferase (branched amino acid aminotransferase) variant in which the 156th valine (V: valine) amino acid residue from the N-terminus of the amino acid sequence of SEQ ID NO: 1 is substituted with another amino acid; a polynucleotide encoding it; a vector containing it; It is to provide a microorganism containing it.
  • V valine
  • Another object of the present application is to provide a method for producing leucine, comprising the step of culturing the microorganism in a medium.
  • the branched-chain amino acid aminotransferase mutant of the present application increases leucine-producing ability compared to the wild-type, it can be widely used for more efficient mass production of leucine.
  • One aspect of the present application provides a branched amino acid aminotransferase (branched amino acid aminotransferase) variant in which the 156th valine (V: valine) amino acid residue from the N-terminus of the amino acid sequence of SEQ ID NO: 1 is substituted with another amino acid can do.
  • V valine
  • the present application may provide a branched-chain amino acid aminotransferase variant comprising one or more substitutions in the amino acid sequence of SEQ ID NO: 1, wherein the amino acid substitution is the 156th amino acid from the N-terminus to an amino acid other than valine. It may include substituted ones.
  • the 'other amino acid' is not limited as long as it is an amino acid other than the 156th amino acid of SEQ ID NO: 1, valine.
  • the variant may be a protein in which the 156th amino acid is substituted with a nonpolar amino acid in the amino acid sequence of SEQ ID NO: 1, and more specifically, the variant has the 156th valine in the amino acid sequence of SEQ ID NO: 1 alanine It may be a branched chain amino acid aminotransferase variant substituted with, but is not limited thereto.
  • branched-chain amino acid aminotransferase (bcaT) is an enzyme involved in the biosynthesis of branched-chain amino acids, and in the present application, the branched-chain amino acid aminotransferase is “bcaT", “trans It may be used interchangeably with “transaminase B", or "ilvE”. In addition, the branched chain amino acid aminotransferase may be one encoded by the ilvE gene, but is not limited thereto.
  • leucine is derived from pyruvic acid to acetolactic acid, dihydroxy isovaleric acid, ketoisovaleric acid, 2-isopropylmalic acid, 3-iso It is known to be biosynthesized via isopropylmalic acid and ketoisocaproic acid.
  • these biosynthetic processes are acetohydroxy acid synthase, acetohydroxyacid isomeroreductase, dihydroxy acid dehydratase, isopropyl malic acid synthase ( Catalyzed by enzymes such as isopropylmalic acid synthase, isopropylmalic acid dehydratase, isopropylmalic acid dehydrogenase, branched amino acid aminotransferase to be biosynthesized
  • the branched-chain amino acid aminotransferase may have its sequence obtained from GenBank of NCBI, a known database, but is not limited thereto, and branched-chain amino acid aminotransferase is secured based on various methods well known in the art. can do. Examples of the method include gene synthesis technology including codon optimization to secure enzymes with high efficiency in microorganisms of the genus Corynebacterium, which are commonly widely used for enzyme expression, or bioinformatics methods based on large-scale genome information of microorganisms. There is a screening method for useful enzyme resources by, but is not limited thereto.
  • the branched-chain amino acid aminotransferase to be mutated in the present application may be a branched-chain amino acid aminotransferase derived from Corynebacterium sp., specifically, a polypeptide comprising the amino acid sequence set forth in SEQ ID NO: 1 It may be a /protein, but a polypeptide/protein having the same activity may be included without limitation. As an example, it may include the amino acid sequence of SEQ ID NO: 1 or an amino acid sequence having 80% or more homology or identity therewith, but is not limited thereto.
  • the branched chain amino acid aminotransferase comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% or more homology or identity to SEQ ID NO: 1. can do.
  • a polypeptide/protein having an amino acid sequence in which some sequence is deleted, modified, substituted or added is also a polypeptide/protein having such homology or identity and exhibiting branched-chain amino acid aminotransferase activity, the polypeptide to be mutated in the present application It is obvious that it is included within the scope of /protein.
  • a protein or polypeptide having an amino acid sequence described in a specific SEQ ID NO:' or 'a protein or polypeptide having an amino acid sequence described in a specific SEQ ID NO:' in the present application a protein consisting of the amino acid sequence of the corresponding SEQ ID NO: It is apparent that a protein or polypeptide having an amino acid sequence in which some sequences are deleted, modified, substituted or added may also be used in the present application as long as it has the same or corresponding activity as the polypeptide.
  • variant means that one or more amino acids differ from the recited sequence in conservative substitution and/or modification, but the function of the protein ( functions) or properties (properties) are maintained.
  • a variant differs from an identified sequence by several amino acid substitutions, deletions or additions. Such variants can generally be identified by modifying one of the polypeptide sequences and evaluating the properties of the modified polypeptide. That is, the ability of the variant may be increased, unchanged, or decreased compared to the native protein.
  • some variants may include variants in which one or more portions, such as an N-terminal leader sequence or a transmembrane domain, are removed.
  • variants may include variants in which a portion is removed from the N- and/or C-terminus of the mature protein.
  • conservative substitution may refer to substituting one amino acid with another amino acid having similar structural and/or chemical properties.
  • Such variants may have, for example, one or more conservative substitutions while still retaining one or more biological activities.
  • Such amino acid substitutions may generally occur based on similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity and/or amphipathic nature of the residues.
  • conservative substitutions may have little or no effect on the activity of the polypeptide.
  • variants may contain deletions or additions of amino acids that have minimal effect on the properties and secondary structure of the polypeptide.
  • the variant, or variant polypeptide is conjugated with a signal (or leader) sequence at the N-terminus of the protein involved in the transfer of the protein co-translationally or post-translationally. can do.
  • the variants may also be conjugated with other sequences or linkers to identify, purify, or synthesize the polypeptide.
  • variant includes terms such as mutant, modified, mutated protein, mutant polypeptide, mutant, and variant protein (in English, modified, modified protein, modified polypeptide, mutant, mutein, divergent, variant, etc.) may be used, and if the term is used in a mutated sense, it is not limited thereto.
  • the variant may have a branched-chain amino acid aminotransferase activity that has been changed to have enhanced leucine-producing ability.
  • branched-chain amino acid aminotransferase variant refers to one or more amino acid substitutions in the amino acid sequence of a polypeptide having branched-chain amino acid aminotransferase activity
  • branched-chain amino acid aminotransferase variant means It can be used interchangeably with "polypeptide having branched chain amino acid aminotransferase activity”.
  • branched chain amino acid aminotransferase variant refers to a variant branched chain amino acid aminotransferase protein, a variant bcaT, a variant bcaT protein, a bcaT variant, a variant transaminase B protein, a variant form.
  • Transaminase B, transaminase B mutant, mutant ilvE protein, mutant ilvE, ilvE mutant, etc. may be used interchangeably, but as described above, if the term is used in the mutated sense, it is not limited thereto.
  • the 156th valine (V: valine) amino acid residue from the N-terminus of the amino acid sequence of SEQ ID NO: 1 is substituted with another amino acid
  • the branched-chain amino acid aminotransferase variant is a branched-chain amino acid aminotransferase activity It is apparent that in the amino acid sequence of a polypeptide having SEQ ID NO: 1, the amino acid corresponding to the 156th position from the N-terminus of SEQ ID NO: 1 may include a protein variant in which another amino acid is substituted.
  • the variant may have at least 70%, 75%, 80%, 85%, 90%, 95%, 97% or 99% homology or identity to the sequence of SEQ ID NO: 1 in a sequence of SEQ ID NO: 1 It may include a sequence in which the amino acid at the position corresponding to the 156th position from the N-terminus is substituted with another amino acid.
  • the 'other amino acid' may be an amino acid other than the amino acid corresponding to the 156th amino acid of SEQ ID NO: 1.
  • the variant may be one in which the amino acid corresponding to the 156th amino acid in the amino acid sequence of SEQ ID NO: 1 is substituted with a non-polar amino acid having structural and/or chemical properties similar to those of alanine.
  • the variant may be one in which the amino acid corresponding to amino acid 156 in the amino acid sequence of SEQ ID NO: 1 is substituted with alanine, but is not limited thereto.
  • corresponding position refers to an amino acid residue at a position listed in a protein or polypeptide, or an amino acid residue similar to, identical to, or homologous to a residue listed in a protein or polypeptide.
  • corresponding region generally refers to a similar or corresponding position in a related protein or reference protein.
  • specific numbering may be used for amino acid residue positions in proteins used in this application. For example, by aligning the polypeptide sequence of the protein of the present application with the target protein to be compared, it is possible to renumber the position corresponding to the amino acid residue position of the protein of the present application.
  • the branched-chain amino acid aminotransferase mutant of the present application may have an activity to increase leucine-producing ability in microorganisms compared to a wild-type or unmutated branched-chain amino acid aminotransferase protein.
  • the branched chain amino acid aminotransferase variant has the amino acid sequence of SEQ ID NO: 1 in which the 156th valine (V: valine) amino acid residue from the N-terminus of the amino acid sequence of SEQ ID NO: 1 is substituted with another amino acid, more specifically, alanine and 70%, 75%, 80%, 85%, 90%, 95%, 97%, or 99% or more homology or identity, and more specifically, 90% or more homology or identity with SEQ ID NO: 1 may be to have
  • the variant may consist of SEQ ID NO: 3, but is not limited thereto.
  • the amino acid corresponding to the 156th position from the N-terminus in SEQ ID NO: 3 is fixed (that is, the amino acid at the position corresponding to the 156th amino acid of SEQ ID NO: 3 is, SEQ ID NO: 3 is alanine identically to the 156th amino acid of SEQ ID NO: 3 and 70% or more, specifically 80%, 85%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95 %, 96%, 97%, 98% or 99% or more homology or identity to an amino acid sequence with or more, but is not limited thereto.
  • a protein having an amino acid sequence in which some sequences are deleted, modified, substituted or added in addition to the amino acid sequence at position 156 is also within the scope of the present application. The inclusion is obvious.
  • the term 'homology' or 'identity' refers to the degree to which two given amino acid sequences or nucleotide sequences are related to each other and may be expressed as a percentage.
  • Sequence homology or identity of a conserved polynucleotide or polypeptide is determined by standard alignment algorithms, with default gap penalties established by the program used may be used. Substantially, homologous or identical sequences are generally at least about 50%, 60%, 70%, 80% of the entire or full-length sequence under moderate or high stringent conditions. or more than 90% hybrid. Hybridization is also contemplated for polynucleotides containing degenerate codons instead of codons in the polynucleotides.
  • GAP program is defined as the total number of symbols in the shorter of two sequences divided by the number of similarly aligned symbols (ie, nucleotides or amino acids).
  • Default parameters for the GAP program are: (1) a binary comparison matrix (containing values of 1 for identity and 0 for non-identity) and Schwartz and Dayhoff, eds., Atlas Of Protein Sequence And Structure, National Biomedical Research Foundation , pp. 353-358 (1979), Gribskov et al (1986) Nucl. Acids Res. 14: weighted comparison matrix of 6745 (or EDNAFULL (EMBOSS version of NCBI NUC4.4) substitution matrix); (2) a penalty of 3.0 for each gap and an additional 0.10 penalty for each symbol in each gap (or a gap opening penalty of 10, a gap extension penalty of 0.5); and (3) no penalty for end gaps.
  • the term “homology” or “identity” may refer to a relevance between sequences.
  • Another aspect of the present application may provide a polynucleotide encoding the branched-chain amino acid aminotransferase variant.
  • another aspect of the present application may provide a vector including the polynucleotide.
  • polynucleotide refers to a DNA or RNA strand of a certain length or longer as a polymer of nucleotides in which nucleotide monomers are linked in a long chain by covalent bonds, and more specifically, the branched chain amino acid amino acids. It may be a polynucleotide fragment encoding a transferase variant.
  • the polynucleotide encoding the branched-chain amino acid aminotransferase variant of the present application may be included without limitation as long as it is a polynucleotide sequence encoding the branched-chain amino acid aminotransferase variant of the present application.
  • the polynucleotide encoding the branched-chain amino acid aminotransferase variant may be included without limitation as long as it is a sequence encoding a variant in which the 156th amino acid is substituted with another amino acid in the amino acid sequence of SEQ ID NO: 1.
  • polynucleotide sequence encoding a variant in which the 156th amino acid in the amino acid sequence of SEQ ID NO: 1 is substituted with alanine may be a polynucleotide sequence encoding the amino acid sequence of SEQ ID NO: 3, but is not limited thereto. More specifically, it may be composed of the polynucleotide sequence of SEQ ID NO: 4, but is not limited thereto.
  • polynucleotide various modifications can be made to the coding region within the range that does not change the amino acid sequence of the protein due to codon degeneracy or considering codons preferred in the organism to express the protein. . Accordingly, it is obvious that a polynucleotide that can be translated into a polypeptide consisting of the amino acid sequence of SEQ ID NO: 3 or a polypeptide having homology or identity thereto may also be included due to codon degeneracy.
  • the 156th amino acid in the amino acid sequence of SEQ ID NO: 1 is changed to another amino acid by hydridation under stringent conditions with a probe that can be prepared from a known gene sequence, for example, a sequence complementary to all or part of the nucleotide sequence. Any sequence encoding a substituted branched-chain amino acid aminotransferase variant may be included without limitation.
  • the "stringent condition” may be a condition that enables specific hybridization between polynucleotides. Such conditions are specifically described in the literature (eg, J. Sambrook et al., Molecular Cloning, A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory press, Cold Spring Harbor, New York, 1989). For example, genes having high homology or identity, 80% or more, 85% or more, specifically 90% or more, more specifically 95% or more, more specifically 97% or more, In particular, the conditions in which genes having 99% or more homology or identity hybridize with each other and genes with lower homology or identity do not hybridize, or at 60° C., which is a washing condition for normal Southern hybridization.
  • Hybridization requires that two nucleic acids have complementary sequences, although mismatch between bases is possible depending on the stringency of hybridization.
  • complementary is used to describe the relationship between nucleotide bases capable of hybridizing to each other. For example, with respect to DNA, adenine is complementary to thymine and cytosine is complementary to guanine. Accordingly, the present application may also include isolated nucleic acid fragments that are complementary to substantially similar nucleic acid sequences as well as the entire sequence.
  • polynucleotides having homology or identity can be detected using hybridization conditions including a hybridization step at a Tm value of 55° C. and using the conditions described above.
  • the Tm value may be 60 °C , 63 °C or 65 °C, but is not limited thereto and may be appropriately adjusted by those skilled in the art according to the purpose.
  • the term "vector” refers to a DNA preparation containing the nucleotide sequence of a polynucleotide encoding the variant protein of interest operably linked to a suitable regulatory sequence so that the variant protein of interest can be expressed in a suitable host.
  • suitable regulatory sequences may include a promoter capable of initiating transcription, an optional operator sequence for regulating such transcription, a sequence encoding a suitable mRNA ribosome binding site, and a sequence regulating the termination of transcription and translation.
  • the vector After transformation into a suitable host cell, the vector can replicate or function independently of the host genome, and can be integrated into the genome itself.
  • the vector used in the present application is not particularly limited, and any vector known in the art may be used.
  • Examples of commonly used vectors include plasmids, cosmids, viruses and bacteriophages in a natural or recombinant state.
  • pWE15, M13, MBL3, MBL4, IXII, ASHII, APII, t10, t11, Charon4A, and Charon21A may be used as phage vectors or cosmid vectors
  • pBR-based, pUC-based, and pBluescriptII-based plasmid vectors may be used as plasmid vectors.
  • pGEM-based, pTZ-based, pCL-based and pET-based and the like can be used.
  • pDZ, pACYC177, pACYC184, pCL, pECCG117, pUC19, pBR322, pMW118, pCC1BAC vectors, etc. may be used, but is not limited thereto.
  • a polynucleotide encoding a target mutant protein in a chromosome may be replaced with a mutated polynucleotide through a vector for intracellular chromosome insertion.
  • the insertion of the polynucleotide into the chromosome may be performed by any method known in the art, for example, homologous recombination, but is not limited thereto.
  • the polynucleotide may further include a selection marker for confirming whether or not the chromosome is inserted.
  • Selectable markers are used to select cells transformed with a vector, that is, to confirm whether a target nucleic acid molecule is inserted, and selectable phenotypes such as drug resistance, auxotrophic resistance, resistance to cytotoxic agents, or expression of surface variant proteins. Markers that give ? may be used. In an environment treated with a selective agent, only the cells expressing the selectable marker survive or exhibit other expression traits, so that the transformed cells can be selected.
  • Another aspect of the present application is the branched chain amino acid aminotransferase variant; a polynucleotide encoding the variant; And it can provide a microorganism comprising any one or more of the vector containing the polynucleotide.
  • the microorganism may be a microorganism prepared by transformation with a vector containing a polynucleotide encoding a mutant, but is not limited thereto.
  • the term "transformation" may refer to introducing a vector including a polynucleotide encoding a target protein into a host cell so that the protein encoded by the polynucleotide can be expressed in the host cell.
  • the transformed polynucleotide may include all of them regardless of whether they are inserted into the chromosome of the host cell or located outside the chromosome, as long as they can be expressed in the host cell.
  • the polynucleotide includes DNA and RNA encoding a target protein. The polynucleotide may be introduced into a host cell and expressed in any form, as long as it can be expressed.
  • the polynucleotide may be introduced into a host cell in the form of an expression cassette, which is a gene construct including all elements necessary for self-expression.
  • the expression cassette may include a promoter operably linked to the polynucleotide, a transcription termination signal, a ribosome binding site, and a translation termination signal.
  • the expression cassette may be in the form of an expression vector capable of self-replication.
  • the polynucleotide may be introduced into a host cell in its own form and operably linked to a sequence required for expression in the host cell, but is not limited thereto.
  • operably linked may be one in which the gene sequence is functionally linked to a promoter sequence that initiates and mediates transcription of the polynucleotide encoding the branched-chain amino acid aminotransferase of the present application. .
  • the microorganism of the present application is the branched chain amino acid aminotransferase variant; a polynucleotide encoding it; And it may be a microorganism having a leucine-producing ability, including any one or more of the vector containing the polynucleotide, but is not limited thereto.
  • the microorganism may be a microorganism having a leucine-producing ability naturally, or a microorganism in which a leucine-producing ability is imparted to a parent strain having no leucine-producing ability, but is not limited thereto.
  • the microorganism may be any microorganism capable of producing leucine by expressing the branched-chain amino acid aminotransferase variant.
  • the term "to be/are/are” a protein may refer to a state in which a target protein is introduced into a microorganism or modified to be expressed in a microorganism.
  • the target protein is a protein present in a microorganism, it may mean a state in which its activity is enhanced compared to before intrinsic or modification.
  • the "protein of interest” may be the aforementioned branched chain amino acid aminotransferase variant.
  • introduction of protein may mean that the microorganism exhibits the activity of a specific protein that it did not originally have, or exhibits improved activity compared to the intrinsic activity or activity before modification of the protein.
  • a polynucleotide encoding a specific protein may be introduced into a chromosome in a microorganism, or a vector including a polynucleotide encoding a specific protein may be introduced into the microorganism to exhibit its activity.
  • “enhancement of activity” may mean that the activity is improved compared to the intrinsic activity of a specific protein of the microorganism or the activity before modification.
  • “Intrinsic activity” may refer to the activity of a specific protein originally possessed by the parent strain before transformation when the trait of a microorganism is changed due to genetic variation caused by natural or artificial factors.
  • the enhancement of protein activity may be achieved by enhancing the expression of a gene encoding the protein, but is not limited thereto.
  • the enhancement of the activity of the protein variant includes increasing the intracellular copy number of the gene encoding the protein variant, a method of introducing a mutation into the expression control sequence of the gene encoding the protein variant, and the protein variant
  • a method of replacing a gene expression control sequence encoding a gene expression control sequence with a strong sequence a method of replacing a gene encoding a native protein having chromosomal branched-chain amino acid aminotransferase activity with a gene encoding the protein variant, the protein variant It may consist of any one or more methods selected from the group consisting of a method of additionally introducing a mutation into the gene encoding the mutant to enhance the activity of the mutant, and a method of introducing a protein mutant into a microorganism, but is not limited thereto.
  • modifying the expression control sequence so as to increase the expression of the polynucleotide is not particularly limited thereto, but deletion, insertion, non-conservative or conservative substitution of the nucleic acid sequence to further enhance the activity of the expression control sequence, or their It can be carried out by inducing a mutation in the sequence in combination, or by replacing it with a nucleic acid sequence having a stronger activity.
  • the expression control sequence is not particularly limited thereto, but may include a promoter, an operator sequence, a sequence encoding a ribosome binding site, a sequence for regulating the termination of transcription and translation, and the like.
  • a strong promoter may be linked to the upper portion of the polynucleotide expression unit instead of the original promoter, but is not limited thereto.
  • Examples of known strong promoters include cj1 to cj7 promoter (US 7662943 B2), lac promoter, trp promoter, trc promoter, tac promoter, lambda phage PR promoter, PL promoter, tet promoter, gapA promoter, SPL7 promoter, SPL13 (sm3) promoter (US 10584338 B2), O2 promoter (US 10273491 B2), tkt promoter, and yccA promoter, but are not limited thereto.
  • the modification of the polynucleotide sequence on the chromosome is not particularly limited thereto, but a mutation in the expression control sequence by deletion, insertion, non-conservative or conservative substitution of a nucleic acid sequence or a combination thereof to further enhance the activity of the polynucleotide sequence. It can be carried out by inducing and replacing with a polynucleotide sequence improved to have stronger activity.
  • Incorporation and enhancement of such protein activity is generally performed such that the activity or concentration of the corresponding protein is at least 1%, 10%, 25%, 50%, based on the activity or concentration of the protein in the wild-type or unmodified microbial strain. It may be increased by 75%, 100%, 150%, 200%, 300%, 400% or 500%, up to 1000% or 2000%, but is not limited thereto.
  • the microorganism may be any microorganism capable of expressing a mutant by transforming it with a vector containing a protein variant or a polynucleotide encoding a protein variant or a polynucleotide encoding the variant.
  • Escherichia sp. Serratia sp., Erwinia sp., Enterobacteria sp., Salmonella sp., Streptomyces
  • It may include microorganism strains such as Streptomyces sp., Pseudomonas sp., Brevibacterium sp., or Corynebacterium sp., specifically, Corynebacterium sp.
  • It may be a microorganism of the genus Nebacterium, and a more specific example may be Corynebacterium glutamicum, but is not limited thereto.
  • the microorganism of the present application may be a microorganism that produces leucine.
  • leucine-producing microorganism may be a microorganism in which leucine-producing ability is imparted to a microorganism having a leucine-producing ability naturally or a parent strain having no leucine-producing ability.
  • the microorganism producing the leucine is a microorganism genetically modified through any one or more of the branched chain amino acid aminotransferase variant, a polynucleotide encoding the same, and a vector comprising the polynucleotide; a microorganism modified to express the branched chain amino acid aminotransferase variant, or a polynucleotide encoding the same; It may be a recombinant microorganism expressing the branched chain amino acid aminotransferase variant, or a polynucleotide encoding the same, but is not limited thereto.
  • the leucine-producing microorganism is a microorganism capable of expressing a mutant by transforming with a vector containing a polynucleotide encoding a protein variant, or a polynucleotide encoding a mutant, and for the purpose of the present application, the microorganism is any microorganism capable of producing leucine, including ilvE mutants.
  • Escherichia sp. Serratia sp., Erwinia sp., Enterobacteria sp., Salmonella sp., Streptomyces It may include microorganism strains such as Streptomyces sp., Pseudomonas sp., Brevibacterium sp., or Corynebacterium sp., specifically, Corynebacterium sp. It may be a microorganism of the genus Nebacterium, and a more specific example may be Corynebacterium glutamicum, but is not limited thereto.
  • the term "leucine-producing Corynebacterium sp. microorganism” may refer to a microorganism of the genus Corynebacterium having a leucine-producing ability through wild-type or mutation. It was known that the microorganisms of the genus Corynebacterium can produce leucine to some extent, but the leucine-producing ability is remarkably low and it is difficult to industrially produce it.
  • a microorganism of the genus Corynebacterium having a leucine-producing ability refers to a native microorganism itself or a gene related to an external leucine production mechanism is inserted, or the activity of an intrinsic gene is strengthened, weakened, or inactivated to improve leucine-producing ability. It may mean a microorganism of the genus Corynebacterium that has been
  • the microorganism producing the leucine may include the branched-chain amino acid aminotransferase mutant of the present application, and may be a microorganism characterized in that the leucine-producing ability is increased.
  • the microorganism may have an increased leucine-producing ability compared to a microorganism that does not include a natural wild-type strain, the parent strain, or the mutant of the present application.
  • strain before modification or "microbe before modification” does not exclude a strain containing a mutation that may occur naturally in a microorganism, it is a wild-type strain or a natural-type strain itself, or caused by natural or artificial factors It may refer to a strain before the trait is changed due to genetic mutation.
  • pre-modified strain or “pre-modified microorganism” may be used interchangeably with “unmodified strain”, “unmodified strain”, “unmodified microorganism”, “unmodified microorganism” or “reference microorganism”.
  • the microorganism of the genus Corynebacterium may have enhanced expression of a gene in the leucine biosynthetic pathway or attenuated/inactivated expression of a gene involved in a leucine degradation pathway, specifically isopropyl malate
  • the synthase (isopropylmalate synthase) activity may be an additionally enhanced, leucine-producing microorganism of the genus Corynebacterium, but is not limited thereto.
  • the enhancement of protein activity is as described above.
  • weakened/inactivation of protein activity means that the expression of an enzyme or protein is not expressed at all compared to a natural wild-type strain, a parent strain, or a strain in which the protein is unmodified, or has no activity even if it is expressed. It may mean reduced. In this case, the decrease is when the activity of the protein is decreased compared to the activity of the protein possessed by the original microorganism due to mutation of the gene encoding the protein, modification of the expression control sequence, deletion of part or all of the gene, and the gene encoding the same When the overall protein activity level in the cell is lower than that of the native strain or the strain before transformation due to inhibition of expression or translation inhibition, the concept also includes a combination thereof.
  • the inactivation/attenuation may be achieved by applying various methods well known in the art.
  • the method include: 1) a method of deleting all or part of the gene encoding the protein; 2) modification of the expression control sequence to decrease the expression of the gene encoding the protein, 3) modification of the gene sequence encoding the protein so that the activity of the protein is removed or attenuated, 4) the gene encoding the protein introduction of an antisense oligonucleotide (eg, antisense RNA) that complementarily binds to the transcript of 5)
  • an antisense oligonucleotide eg, antisense RNA
  • a secondary structure is formed to make attachment of the ribosome impossible Way; 6)
  • Another aspect of the present application may provide a leucine production method comprising the step of culturing the microorganism.
  • the step of culturing the microorganism is not particularly limited, but may be performed by a known batch culture method, a continuous culture method, a fed-batch culture method, and the like.
  • the culture conditions are not particularly limited thereto, but use a basic compound (eg, sodium hydroxide, potassium hydroxide or ammonia) or an acidic compound (eg, phosphoric acid or sulfuric acid) to an appropriate pH (eg, pH 5 to 9, specifically can control pH 6 to 8, most specifically pH 6.8) and maintain aerobic conditions by introducing oxygen or an oxygen-containing gas mixture into the culture.
  • the culture temperature may be maintained at 20 to 45° C., specifically 25 to 40° C., and may be cultured for about 10 to 160 hours, but is not limited thereto.
  • the leucine produced by the culture may be secreted into the medium or remain in the cells.
  • the culture medium used is a carbon source, such as sugars and carbohydrates (eg glucose, sucrose, lactose, fructose, maltose, molasse, starch and cellulose), oils and fats (eg soybean oil) , sunflower seed oil, peanut oil and coconut oil), fatty acids (such as palmitic acid, stearic acid and linoleic acid), alcohols (such as glycerol and ethanol) and organic acids (such as acetic acid), either individually or in combination. can be used, but is not limited thereto.
  • sugars and carbohydrates eg glucose, sucrose, lactose, fructose, maltose, molasse, starch and cellulose
  • oils and fats eg soybean oil
  • sunflower seed oil e.g., sunflower seed oil
  • peanut oil and coconut oil e.glycerol and ethanol
  • organic acids such as acetic acid
  • Nitrogen sources include nitrogen-containing organic compounds (such as peptone, yeast extract, broth, malt extract, corn steep liquor, soy flour and urea), or inorganic compounds (such as ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate and ammonium nitrate) may be used individually or in combination, but is not limited thereto.
  • organic compounds such as peptone, yeast extract, broth, malt extract, corn steep liquor, soy flour and urea
  • inorganic compounds such as ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate and ammonium nitrate
  • potassium dihydrogen phosphate, dipotassium hydrogen phosphate, sodium-containing salt corresponding thereto, etc. may be used individually or in combination, but is not limited thereto.
  • the medium may contain essential growth-promoting substances such as other metal salts (eg, magnesium sulfate or iron sulfate), amino acids and vitamins.
  • the production method may further include recovering leucine from the cultured microorganism or culture medium.
  • a desired amino acid may be collected from the culture medium using a suitable method known in the art according to the culture method. For example, centrifugation, filtration, anion exchange chromatography, crystallization, HPLC, etc. may be used, and the desired leucine may be recovered from the medium or microorganism using a suitable method known in the art.
  • Another aspect of the present application is a branched amino acid aminotransferase (branched amino acid aminotransferase) variant in which the 156th valine (V: valine) amino acid residue from the N-terminus of the amino acid sequence of SEQ ID NO: 1 is substituted with another amino acid
  • a method for increasing leucine-producing ability can be provided, comprising modifying a microorganism to express it.
  • Another aspect of the present application may provide a use for increasing leucine production of the protein variant.
  • the protein variants are as described above.
  • a recombinant vector containing a part of ilvE was first constructed.
  • the amino acid sequence and nucleotide sequence of wild-type ilvE are as shown in SEQ ID NO: 1 and SEQ ID NO: 2, respectively.
  • PCR was performed using the primers of SEQ ID NO: 5 and SEQ ID NO: 6 using the chromosome of Corynebacterium glutamicun ATCC13032 as a template, and the amplified product was E. coli vector pCR2 using TOPO Cloning Kit (Invitrogen) cloned into .1 to obtain pCR-ilvE.
  • An ilvE mutation library was prepared based on the vector constructed in Example 1-1.
  • the library was prepared using the error-prone PCR kit (clontech Diversify® PCR Random Mutagenesis Kit). Under conditions in which mutations can occur, a PCR reaction was performed using SEQ ID NO: 5 and SEQ ID NO: 6 as primers. Specifically, after pre-heating at 94°C for 30 seconds under the condition that 0 to 3 mutations occur per 1000bp, the process of 30 seconds at 94°C and 1 minute and 30 seconds at 68°C was repeated 25 times.
  • Example 1-2 a leucine-producing strain derived from ATCC13032 was prepared, and the library vector prepared in Example 1-2 was introduced to select variants.
  • IPMS isopropylmalate synthase
  • the variant includes a mutation in which G, which is the 1673th nucleotide of the leuA gene encoding isopropylmalate synthase, is substituted with A, and arginine, the 558th amino acid of the IPMS protein, is substituted with histidine, and 1682th and 1683th nucleotides It contains a mutation in which GC is substituted with AT, and glycine, which is the 561th amino acid, is substituted with aspartic acid (US 2020-0032305 A1).
  • the pDC-leuA (R558H, G561D) vector containing the leuA mutation was transformed into wild-type ATCC13032, and the strain into which the vector was inserted into the chromosome by recombination of the homologous sequence was transformed into a medium containing 25 mg/L of kanamycin. was selected from
  • the selected primary strain was again subjected to a secondary cross-over, and a strain into which a mutation of the leuA gene was introduced was selected. Whether or not the mutation was introduced into the final transformed strain was confirmed that the mutation was introduced by performing PCR using the primers of SEQ ID NO: 7 and SEQ ID NO: 8 and then analyzing the nucleotide sequence.
  • the ATCC13032_leuA_(R558H, G561D) strain transformed with the pDC-leuA(R558H, G561D) vector was named CA13-8100.
  • the pTOPO-ilvE-library prepared in Example 1-2 was transformed into the leucine-producing strain CA13-8100 prepared in Example 2-1 by electroporation, and then spread on a nutrient medium containing 25 mg/L of kanamycin. Thus, 10,000 colonies of strains into which the mutant gene was inserted were secured, and each colony was named from CA13-8100/pTOPO_ilvE(mt)1 to CA13-8100/pTOPO_ilvE(mt)10000.
  • Fermentation potency was evaluated in the following manner for each colony in order to confirm the colonies with increased leucine production among the secured 10,000 colonies.
  • - Nutrient medium glucose 10g, broth 5g, polypeptone 10g, sodium chloride 2.5g, yeast extract 5g, agar 20g, urea 2g (based on 1 liter of distilled water)
  • Glucose 50 g Ammonium Sulfate 20 g, Corn Steep Solids 20 g, Potassium Dibasic 1 g, Magnesium Sulfate 0.5 g, Biotin 100 ⁇ g, Thiamine-HCl 1 mg, Calcium Carbonate 15 g (based on 1 liter of distilled water), pH 7.0
  • Each colony was inoculated into a 250 ml corner-barpool flask containing 25 ug/ml of kanamycin in 25 ml of autoclaved production medium using platinum ear, and then cultured with shaking at 30° C. for 60 hours at 200 rpm. After completion of the culture, leucine production was measured by a method using high-performance liquid chromatography (HPLC, SHIMAZDU LC20A), and one strain with the most improved leucine production capacity compared to the CA13-8100 strain was selected. The leucine concentrations produced in the selected strains are shown in Table 1 below.
  • PCR was performed in the CA13-8100/pTOPO_ilvE(mt)3012 strain using the primers of SEQ ID NO: 9 and SEQ ID NO: 10 and sequencing was performed, the ilvE gene was compared with ilvE of wild-type ATCC13032, and it was confirmed that the strain contains a mutation in the ilvE gene.
  • an insertion vector was prepared.
  • a site directed mutagenesis method was used to construct a vector for introducing ilvE (V156A) mutations.
  • Corynebacterium glutamicum PCR was performed using the primers of SEQ ID NOs: 11 and 12 and primer pairs of SEQ ID NOs: 13 and 14 using the ATCC13032 chromosome as a template. PCR was performed 30 times of denaturation at 94°C for 5 minutes, denaturation at 94°C for 30 seconds, annealing at 55°C for 30 seconds, and polymerization at 72°C for 1 minute and 30 seconds, followed by polymerization at 72°C for 5 minutes.
  • the resulting gene fragment was cloned by fusion of the homologous sequence of the terminal 15 base between the DNA fragments using the pDC vector on the line cut with PstI and XbaI restriction enzymes and the In-Fusion enzyme, and the 156th amino acid, valine (Val), was replaced with alanine ( Ala), a vector pDC-ilvE (V156A) was constructed.
  • the strain CA13-8100 a leucine-producing strain, was transformed with the pDC-ilvE (V156A) vector prepared in Example 3-1, and the vector was inserted into the chromosome by recombination of the homologous sequence, 25 mg of kanamycin. Selected on medium containing /L. The selected primary strain was again subjected to secondary cross-over, and a strain into which the mutation of the target gene was introduced was selected. Whether or not the ilvE gene mutation was introduced into the final transformed strain was confirmed that the ilvE mutation was introduced into the strain by performing PCR using the primers of SEQ ID NO: 9 and SEQ ID NO: 10 and then analyzing the nucleotide sequence.
  • the manufactured CA13-8100_ilvE_V156A was named CA13-8107.
  • wild-type Corynebacterium glutamicum ATCC13032 was transformed with the pDC-ilvE (V156A) vector, and the prepared strain ATCC13032_ilvE_V156A was named CA13-8106.
  • Flask culture was carried out in the same manner as in Example 2-2, and leucine production was measured by the method using HPLC after the culture was completed, and the culture results are shown in Table 2 below.
  • the CA13-8107 strain was deposited with the Korean Culture Center of Microorganisms (KCCM), an international depository under the Budapest Treaty, on November 15, 2019 and was given an accession number KCCM12630P.
  • KCCM Korean Culture Center of Microorganisms
  • the recombinant vector pDC-ilvE (V156A) prepared in Example 3-1 was transferred to leucine-producing strains Corynebacterium glutamicum KCCM11661P (US 10351859 B2), KCCM11662P (US 10351859 B2) by homologous recombination on chromosomes. transformed.
  • the above two strains were wild-type Corynebacterium glutamicum ATCC 14067 and Corynebacterium glutamicum ATCC 13869 with N-methyl-N'-nitro-N-nitrosoguanidine (N-Methyl-N'-nitro -Nnitrosoguanidine, NTG) is a mutant strain that has the ability to produce leucine.
  • the recombinant strains were named Corynebacterium glutamicum KCCM11661P_ilvE_V156A and KCCM11662P_ilvE_V156A.
  • flask culture was carried out in the same manner as in Example 2-2. After the culture was completed, the leucine production was measured by using HPLC, and the measured leucine concentrations are shown in Table 3 below. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 출원은 신규한 분지쇄 아미노산 아미노트랜스퍼라제 변이체 및 이를 이용한 류신 생산방법에 관한 것이다.

Description

신규한 분지쇄 아미노산 아미노트랜스퍼라제 변이체 및 이를 이용한 류신 생산방법
본 출원은 신규한 분지쇄 아미노산 아미노트랜스퍼라제 변이체 및 이를 이용한 류신 생산방법에 관한 것이다.
분지쇄 아미노산(branched-chain amino acid)은 발린, 류신, 이소류신의 3종을 지칭하며, 주로 근육에서 대사되어 활동 시에 에너지원으로 사용된다고 알려져 있다. 분지쇄 아미노산이 활동 시 근육 유지 및 증량에 중요한 역할을 한다고 알려지면서 그 사용량이 증가하고 있다. 특히, 류신은 필수 아미노산의 일종으로 의약, 식품, 사료첨가물 및 공업 약품 등에 광범위하게 사용된다.
한편, 미생물을 이용한 류신의 생산은, 주로 에스케리키아속 미생물 또는 코리네박테리움속 미생물을 통해 이루어지며(US 2020-0032305 A1), 피루브산으로부터 여러 단계를 거쳐 케토이소카프로산(2-ketoisocaproate)을 전구체로 생합성된다고 알려져 있다. 그러나 류신 합성에 이용되는 효소들은 분지쇄 아미노산 생합성 과정에 동일하게 사용되기 때문에, 한가지의 분지쇄 아미노산을 발효를 통해 공업적으로 대량 생산하는 데는 어려움이 있다.
본 발명자들은 종래에 비해 수율이 좋은 류신 생산방법을 개발하기 위해 예의 노력한 결과, 류신 생산능을 증가시키는 분지쇄 아미노산 아미노트랜스퍼라제 변이체(branched-chain amino acid aminotransferase; bcaT)를 발굴하여, 본 출원을 완성하였다.
본 출원의 목적은 서열번호 1의 아미노산 서열의 N-말단으로부터 156번째 발린(V: valine) 아미노산 잔기가 다른 아미노산으로 치환된, 분지쇄 아미노산 아미노트랜스퍼라제(branched amino acid aminotransferase) 변이체; 이를 코딩하는 폴리뉴클레오티드; 이를 포함하는 벡터; 이를 포함하는 미생물을 제공하는 것이다.
본 출원의 다른 목적은 상기 미생물을 배지에서 배양하는 단계를 포함하는, 류신 생산방법을 제공하는 것이다.
본 출원의 분지쇄 아미노산 아미노트랜스퍼라제 변이체는 야생형에 비하여 류신 생산능을 증가시키므로, 보다 효율적인 류신 대량 생산에 널리 활용될 수 있다.
이를 구체적으로 설명하면 다음과 같다. 한편, 본 출원에서 개시된 각각의 설명 및 실시형태는 각각의 다른 설명 및 실시 형태에도 적용될 수 있다. 즉, 본 출원에서 개시된 다양한 요소들의 모든 조합이 본 출원의 범주에 속한다. 또한, 하기 기술된 구체적인 서술에 의하여 본 출원의 범주가 제한된다고 볼 수 없다.
또한, 당해 기술분야의 통상의 지식을 가진 자는 통상의 실험만을 사용하여 본 출원에 기재된 본 출원의 특정 양태에 대한 다수의 등가물을 인지하거나 확인할 수 있다. 또한, 이러한 등가물은 본 출원에 포함되는 것으로 의도된다.
본 출원의 하나의 양태는 서열번호 1의 아미노산 서열의 N-말단으로부터 156번째 발린(V: valine) 아미노산 잔기가 다른 아미노산으로 치환된, 분지쇄 아미노산 아미노트랜스퍼라제(branched amino acid aminotransferase)변이체를 제공할 수 있다.
구체적으로, 본 출원은 서열번호 1의 아미노산 서열 내 하나 이상의 치환을 포함하는 분지쇄 아미노산 아미노트랜스퍼라제 변이체를 제공할 수 있으며, 상기 아미노산 치환은 N-말단으로부터 156번째 아미노산이 발린 이외의 다른 아미노산으로 치환된 것을 포함할 수 있다. 상기 '다른 아미노산'은 서열번호 1의 156번째 아미노산인 발린(Valine)을 제외한 다른 아미노산이면 제한되지 않는다. 구체적으로, 상기 변이체는 서열번호 1의 아미노산 서열에서 156번째 아미노산이 비극성(Nonpolar) 아미노산으로 치환된 단백질일 수 있으며, 보다 구체적으로, 상기 변이체는 서열번호 1의 아미노산 서열에서 상기 156번째 발린이 알라닌으로 치환된, 분지쇄 아미노산 아미노트랜스퍼라제 변이체일 수 있으나, 이에 제한되는 것은 아니다.
본 출원에서 용어 "분지쇄 아미노산 아미노트랜스퍼라제(branched-chain amino acid aminotransferase; bcaT)"는 분지쇄 아미노산의 생합성에 관여하는 효소로, 본 출원에서 분지쇄 아미노산 아미노트랜스퍼라제는 "bcaT","트랜스아미나제 B(transaminase B)", 또는 "ilvE" 와 혼용될 수 있다. 또한, 상기 분지쇄 아미노산 아미노트랜스퍼라제는 ilvE 유전자에 의해 코딩되는 것일 수 있으나 이에 제한되지 않는다.
미생물에 있어서, 류신은 피루브산으로부터 아세토젖산(acetolactic acid), 디하이드록시 이소발레르산(dihydroxy isovaleric acid), 케토이소발레르산(ketoisovaleric acid), 2-이소프로필말산(isopropylmalic acid), 3-이소프로필말산(isopropylmalic acid), 케토이소카프로산(isocaproic acid)을 경유하여 생합성되는 것으로 알려져 있다. 또한, 이러한 생합성 과정은 아세토하이드록시산신타제(acetohydroxy acid synthase), 아세토하이드록시산 이소메로리덕타아제(acetohydroxyacid isomeroreductase), 디하이드록시산 디하이드레타제(dihydroxy acid dehydratase), 이소프로필말산 신타제(isopropylmalic acid synthase), 이소프로필말산 디하이드레타제(isopropylmalic acid dehydratase), 이소프로필말산 디하이드로게나이제(isopropylmalic acid dehydrogenase), 분지쇄 아미노산 아미노트랜스퍼라제(branched amino acid aminotransferase)와 같은 효소들에 의하여 촉매되어 생합성된다.
그러나 분지쇄 아미노산 아미노트랜스퍼라제는 류신뿐만 아니라 발린, 이소류신의 생합성에도 관여하므로, 상기 효소를 조작하여 한 가지의 분지쇄 아미노산을 발효를 통해 공업적으로 제조하는 데는 문제가 있어 왔다.
본 출원에서 상기 분지쇄 아미노산 아미노트랜스퍼라제는 공지의 데이터 베이스인 NCBI의 GenBank에서 그 서열을 얻을 수 있으나, 이에 제한되지 않고, 당해 분야에서 잘 알려진 다양한 방법에 기초하여 분지쇄 아미노산 아미노트랜스퍼라제를 확보할 수 있다. 그 방법의 예로는 효소 발현에 통상적으로 널리 이용되는 코리네박테리움 속 미생물에서 효소를 고효율로 확보할 수 있도록 코돈 최적화가 포함된 유전자 합성 기술 또는 미생물의 대량 유전체 정보를 기반으로 생물정보학적 방법에 의한 유용 효소자원의 스크리닝 방법이 있으며, 이에 제한되는 것은 아니다.
본 출원에서 변이 대상이 되는 상기 분지쇄 아미노산 아미노트랜스퍼라제는 코리네박테리움속(Corynebacterium sp.) 유래 분지쇄 아미노산 아미노트랜스퍼라제일 수 있으며, 구체적으로는 서열번호 1로 기재된 아미노산 서열을 포함하는 폴리펩티드/단백질일 수 있으나, 동일한 활성을 갖는 폴리펩티드/단백질은 제한 없이 포함될 수 있다. 일 예로 서열번호 1의 아미노산 서열 또는 이와 80% 이상의 상동성(homology) 또는 동일성(identity)을 갖는 아미노산 서열을 포함할 수 있으나, 이에 제한되는 것은 아니다. 구체적으로 상기 분지쇄 아미노산 아미노트랜스퍼라제는 서열번호 1과 적어도 80%, 85%, 90%, 95%, 96%, 97%, 98%, 또는 99% 이상의 상동성 또는 동일성을 가지는 아미노산 서열을 포함할 수 있다. 또한, 일부 서열이 결실, 변형, 치환 또는 부가된 아미노산 서열을 갖는 폴리펩티드/단백질도 이러한 상동성 또는 동일성을 가지며 분지쇄 아미노산 아미노트랜스퍼라제 활성을 나타내는 폴리펩티드/단백질이라면, 본 출원의 변이 대상이 되는 폴리펩티드/단백질의 범위 내에 포함됨은 자명하다.
즉, 본 출원에서 '특정 서열번호로 기재된 아미노산 서열을 갖는 단백질 또는 폴리펩티드', '특정 서열번호로 기재된 아미노산 서열로 이루어진 단백질 또는 폴리펩티드'라고 기재되어 있다 하더라도, 해당 서열번호의 아미노산 서열로 이루어진 단백질 또는 폴리펩티드와 동일 혹은 상응하는 활성을 가지는 경우라면, 일부 서열이 결실, 변형, 치환 또는 부가된 아미노산 서열을 갖는 단백질 또는 폴리펩티드도 본 출원에서 사용될 수 있음은 자명하다. 예를 들어, '서열번호 1의 아미노산 서열로 이루어진 폴리펩티드'의 일부 서열이 결실, 변형 또는 치환되거나, 또는 그 폴리펩티드가 부가된 아미노산 서열을 포함하더라도 서열번호 1의 아미노산 서열로 이루어진 폴리펩티드'와 동일 혹은 상응하는 활성을 가지는 경우라면 '서열번호 1의 아미노산 서열로 이루어진 폴리펩티드'에 속할 수 있음은 자명하다.
본 출원에서 용어, "변이체(variant)"는 하나 이상의 아미노산이 보존적 치환(conservative substitution) 및/또는 변형(modification)에 있어서 상기 열거된 서열 (the recited sequence)과 상이하나, 상기 단백질의 기능(functions) 또는 특성(properties)이 유지되는 폴리펩티드일 수 있다. 변이체는 수 개의 아미노산 치환, 결실 또는 부가에 의해 식별되는 서열(identified sequence)과 상이하다. 이러한 변이체는 일반적으로 상기 폴리펩티드 서열 중 하나를 변형하고, 상기 변형된 폴리펩티드의 특성을 평가하여 식별될 수 있다. 즉, 변이체의 능력은 본래 단백질(native protein)에 비하여 증가되거나, 변하지 않거나, 또는 감소될 수 있다. 또한, 일부 변이체는 N-말단 리더 서열 또는 막전이 도메인(transmembrane domain)과 같은 하나 이상의 부분이 제거된 변이체를 포함할 수 있다. 다른 변이체는 성숙 단백질 (mature protein)의 N- 및/또는 C- 말단으로부터 일부분이 제거된 변이체를 포함할 수 있다. 본 출원에서 용어 "보존적 치환(conservative substitution)"은 한 아미노산을 유사한 구조적 및/또는 화학적 성질을 갖는 또 다른 아미노산으로 치환시키는 것을 의미할 수 있다. 상기 변이체는 하나 이상의 생물학적 활성을 여전히 보유하면서, 예를 들어 하나 이상의 보존적 치환을 가질 수 있다. 이러한 아미노산 치환은 일반적으로 잔기의 극성, 전하, 용해도, 소수성, 친수성 및/또는 양친매성(amphipathic nature)에서의 유사성에 근거하여 발생할 수 있다. 통상적으로, 보존적 치환은 폴리펩티드의 활성에 거의 영향을 미치지 않거나 또는 영향을 미치지 않을 수 있다.
또한, 변이체는 폴리펩티드의 특성과 2차 구조에 최소한의 영향을 갖는 아미노산들의 결실 또는 부가를 포함할 수 있다. 예를 들면 변이체, 또는 변이형 폴리펩티드는 번역-동시에(co-translationally) 또는 번역-후에(post-translationally) 단백질의 이전(transfer)에 관여하는 단백질 N-말단의 시그널 (또는 리더)서열과 컨쥬게이트 할 수 있다. 또한 상기 변이체는 폴리펩티드를 확인, 정제, 또는 합성할 수 있도록 다른 서열 또는 링커와 컨쥬게이트 될 수 있다.
상기 용어 "변이체"는 변이형, 변형, 변이된 단백질, 변이형 폴리펩티드, 변이, 변이형 단백질 등의 용어(영문 표현으로는 modification, modified protein, modified polypeptide, mutant, mutein, divergent, variant 등)가 사용될 수 있으며, 변이된 의미로 사용되는 용어라면 이에 제한되지 않는다. 본 출원의 목적상, 상기 변이체는, 분지쇄 아미노산 아미노트랜스퍼라제 활성이 변화되어, 류신 생산능이 강화된 것일 수 있다.
즉, 본 출원에서 "분지쇄 아미노산 아미노트랜스퍼라제 변이체"는 분지쇄 아미노산 아미노트랜스퍼라제 활성을 갖는 폴리펩티드의 아미노산 서열에서 하나 이상의 아미노산 치환을 포함하는 것으로, 상기 "분지쇄 아미노산 아미노트랜스퍼라제 변이체"는 용어 "분지쇄 아미노산 아미노트랜스퍼라제 활성을 가지는 폴리펩티드"와 상호 교환적으로 사용될 수 있다. 또한, 상기 용어 "분지쇄 아미노산 아미노트랜스퍼라제 변이체"는 변이형 분지쇄 아미노산 아미노트랜스퍼라제 단백질, 변이형 bcaT, 변이형 bcaT 단백질, bcaT 변이체, 변이형 트랜스아미나제 B(transaminase B) 단백질, 변이형 트랜스아미나제 B, 트랜스아미나제 B 변이체, 변이형 ilvE 단백질, 변이형 ilvE, ilvE 변이체 등과 혼용되어 사용될 수 있으나, 전술한 바와 같이 변이된 의미로 사용되는 용어라면 이에 제한되지 않는다.
상기 서열번호 1의 아미노산 서열의 N-말단으로부터 156번째 발린(V: valine) 아미노산 잔기가 다른 아미노산으로 치환된, 분지쇄 아미노산 아미노트랜스퍼라제(branched amino acid aminotransferase) 변이체는 분지쇄 아미노산 아미노트랜스퍼라제 활성을 갖는 폴리펩티드의 아미노산 서열에서, 서열번호 1의 N-말단으로부터 156번째 위치에 상응하는 아미노산이 다른 아미노산으로 치환된 단백질 변이체를 포함할 수 있음은 자명하다. 예를 들어, 상기 변이체는 서열번호 1의 서열과 적어도 70%, 75%, 80%, 85%, 90%, 95%, 97% 또는 99% 이상의 상동성 또는 동일성을 가지는 서열에서 서열번호 1의 N-말단으로부터 156번째 위치에 상응하는 위치의 아미노산이 다른 아미노산으로 치환된 서열을 포함하는 것일 수 있다.
상기 '다른 아미노산'은 서열번호 1의 156번째 아미노산에 상응하는 아미노산을 제외한 다른 아미노산일 수 있다. 구체적으로, 상기 변이체는 서열번호 1의 아미노산 서열에서 156번째 아미노산에 상응하는 아미노산이 알라닌과 유사한 구조적 및/또는 화학적 성질을 가지는 비극성 아미노산으로 치환된 것일 수 있다. 보다 구체적으로, 상기 변이체는 서열번호 1의 아미노산 서열에서 156번 아미노산에 상응하는 아미노산이 알라닌으로 치환된 것일 수 있으나 이에 제한되지 않는다.
본 출원에서 용어 “상응하는 위치(corresponding position)”는, 단백질 또는 폴리펩티드에서 열거되는 위치의 아미노산 잔기이거나, 또는 단백질 또는 폴리펩티드에서 열거되는 잔기와 유사하거나 동일하거나 상동한 아미노산 잔기를 지칭한다. 본 출원에 사용된 "상응 영역"은 일반적으로 관련 단백질 또는 레퍼런스 단백질에서의 유사하거나 대응되는 위치를 지칭한다.
본 출원에서, 본 출원에 사용되는 단백질 내의 아미노산 잔기 위치에 특정 넘버링이 사용될 수 있다. 예를 들면, 비교하고자 하는 대상 단백질과 본 출원의 단백질의 폴리펩티드 서열을 정렬함으로써, 본 출원의 단백질의 아미노산 잔기 위치에 상응하는 위치에 대해 재넘버링 하는 것이 가능하다.
본 출원의 분지쇄 아미노산 아미노트랜스퍼라제 변이체는 야생형 또는 비변이 분지쇄 아미노산 아미노트랜스퍼라제 단백질에 비하여 미생물에서의 류신 생산능이 증가되도록 하는 활성을 갖는 것일 수 있다.
상기 분지쇄 아미노산 아미노트랜스퍼라제 변이체는 서열번호 1의 아미노산 서열의 N-말단으로부터 156번째 발린(V: valine) 아미노산 잔기가 다른 아미노산, 보다 구체적으로는, 알라닌으로 치환된 것으로 서열번호 1의 아미노산 서열과 70%, 75%, 80%, 85%, 90%, 95%, 97% 또는 99% 이상의 상동성 또는 동일성을 가지는 것일 수 있으며, 보다 구체적으로는 서열번호 1과 90% 이상의 상동성 또는 동일성을 갖는 것일 수 있다.
일 구현예로, 상기 변이체는 서열번호 3으로 이루어진 것일 수 있으나 이에 제한되지 않는다. 또한, 상기 분지쇄 아미노산 아미노트랜스퍼라제 변이체는 서열번호 3에서 N-말단으로부터 156번째 위치에 상응하는 아미노산은 고정되고(즉, 서열번호 3의 156번째 아미노산에 상응하는 위치의 아미노산은, 서열번호 3의 156번째 아미노산과 동일하게 알라닌이고) 상기 서열번호 3과 70% 이상, 구체적으로는 80%, 85%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% 또는 99% 이상의 상동성 또는 동일성을 갖는 아미노산 서열을 포함할 수 있으나, 이에 제한되는 것은 아니다. 또한, 이러한 상동성 또는 동일성을 가지며 상기 단백질에 상응하는 효능을 나타내는 아미노산 서열이라면 156번째 위치의 아미노산 서열 이외에, 일부 서열이 결실, 변형, 치환 또는 부가된 아미노산 서열을 갖는 단백질도 본 출원의 범위 내에 포함됨은 자명하다.
본 출원에서 용어, '상동성(homology)' 또는 '동일성(identity)'은 두 개의 주어진 아미노산 서열 또는 염기 서열과 서로 관련된 정도를 의미하며 백분율로 표시될 수 있다.
용어 상동성 및 동일성은 종종 상호교환적으로 이용될 수 있다.
보존된 (conserved) 폴리뉴클레오티드 또는 폴리펩티드의 서열 상동성 또는 동일성은 표준 배열 알고리즘에 의해 결정되며, 사용되는 프로그램에 의해 확립된 디폴트 갭 페널티가 함께 이용될 수 있다. 실질적으로, 상동성을 갖거나 (homologous) 또는 동일한 (identical) 서열은 중간 또는 높은 엄격한 조건(stringent conditions)에서 일반적으로 서열 전체 또는 전체-길이의 적어도 약 50%, 60%, 70%, 80% 또는 90% 이상으로 하이브리드할 수 있다. 하이브리드화는 폴리뉴클레오티드에서 코돈 대신 축퇴 코돈을 함유하는 폴리뉴클레오티드 또한 고려될 수 있다.
임의의 두 폴리뉴클레오티드 또는 폴리펩티드 서열이 상동성, 유사성 또는 동일성을 갖는지 여부는 예를 들어, Pearson et al (1988)[Proc. Natl. Acad. Sci. USA 85]: 2444에서와 같은 디폴트 파라미터를 이용하여 "FASTA" 프로그램과 같은 공지의 컴퓨터 알고리즘을 이용하여 결정될 수 있다. 또는, EMBOSS 패키지의 니들만 프로그램(EMBOSS: The European Molecular Biology Open Software Suite, Rice et al., 2000, Trends Genet. 16: 276-277)(버전 5.0.0 또는 이후 버전)에서 수행되는 바와 같은, 니들만-운치(Needleman-Wunsch) 알고리즘(Needleman and Wunsch, 1970, J. Mol. Biol. 48: 443-453)이 사용되어 결정될 수 있다. (GCG 프로그램 패키지 (Devereux, J., et al, Nucleic Acids Research 12: 387 (1984)), BLASTP, BLASTN, FASTA (Atschul, [S.] [F.,] [ET AL, J MOLEC BIOL 215]: 403 (1990); Guide to Huge Computers, Martin J. Bishop, [ED.,] Academic Press, San Diego,1994, 및 [CARILLO ETA/.](1988) SIAM J Applied Math 48: 1073을 포함한다). 예를 들어, 국립 생물공학 정보 데이터베이스 센터의 BLAST, 또는 ClustalW를 이용하여 상동성, 유사성 또는 동일성을 결정할 수 있다.
폴리뉴클레오티드 또는 폴리펩티드의 상동성, 유사성 또는 동일성은 예를 들어, Smith and Waterman, Adv. Appl. Math (1981) 2:482에 공지된 대로, 예를 들면, Needleman et al. (1970), J Mol Biol.48: 443과 같은 GAP 컴퓨터 프로그램을 이용하여 서열 정보를 비교함으로써 결정될 수 있다. 요약하면, GAP 프로그램은 두 서열 중 더 짧은 것에서의 기호의 전체 수로, 유사한 배열된 기호(즉, 뉴클레오티드 또는 아미노산)의 수를 나눈 값으로 정의한다. GAP 프로그램을 위한 디폴트 파라미터는 (1) 이진법 비교 매트릭스(동일성을 위해 1 그리고 비-동일성을 위해 0의 값을 함유함) 및 Schwartz and Dayhoff, eds., Atlas Of Protein Sequence And Structure, National Biomedical Research Foundation, pp. 353-358 (1979)에 의해 개시된 대로, Gribskov et al(1986) Nucl. Acids Res. 14: 6745의 가중된 비교 매트릭스 (또는 EDNAFULL(NCBI NUC4.4의 EMBOSS 버전) 치환 매트릭스); (2) 각 갭을 위한 3.0의 페널티 및 각 갭에서 각 기호를 위한 추가의 0.10 페널티 (또는 갭 개방 패널티 10, 갭 연장 패널티 0.5); 및 (3) 말단 갭을 위한 무 페널티를 포함할 수 있다. 따라서, 본원에서 사용된 것으로서, 용어 "상동성" 또는 "동일성"은 서열들간의 관련성(relevance)을 나타낼 수 있다.
본 출원의 다른 하나의 양태는 상기 분지쇄 아미노산 아미노트랜스퍼라제 변이체를 코딩하는 폴리뉴클레오티드를 제공할 수 있다.
또한, 본 출원의 다른 하나의 양태는 상기 폴리뉴클레오티드를 포함하는 벡터를 제공할 수 있다.
본 출원에서 용어, "폴리뉴클레오티드"는 뉴클레오티드 단위체(monomer)가 공유결합에 의해 길게 사슬모양으로 이어진 뉴클레오티드의 중합체(polymer)로 일정한 길이 이상의 DNA 또는 RNA 가닥으로서, 보다 구체적으로는 상기 분지쇄 아미노산 아미노트랜스퍼라제 변이체를 코딩하는 폴리뉴클레오티드 단편일 수 있다.
본 출원의 분지쇄 아미노산 아미노트랜스퍼라제 변이체를 코딩하는 폴리뉴클레오티드는, 본 출원의 분지쇄 아미노산 아미노트랜스퍼라제 변이체를 코딩하는 폴리뉴클레오티드 서열이라면 제한 없이 포함될 수 있다. 상기 분지쇄 아미노산 아미노트랜스퍼라제 변이체를 코딩하는 폴리뉴클레오티드는 서열번호 1의 아미노산 서열에서 156번째 아미노산이 다른 아미노산으로 치환된 변이체를 코딩하는 서열이라면 제한 없이 포함될 수 있다. 구체적으로, 서열번호 1의 아미노산 서열에서 156번째 아미노산이 알라닌으로 치환된 변이체를 코딩하는 폴리뉴클레오티드 서열일 수 있다. 예를 들어, 본 출원의 분지쇄 아미노산 아미노트랜스퍼라제 변이체를 코딩하는 폴리뉴클레오티드는 서열번호 3의 아미노산 서열을 코딩하는 폴리뉴클레오티드 서열일 수 있으나, 이에 제한되는 것은 아니다. 보다 구체적으로는 서열번호 4의 폴리뉴클레오티드 서열로 구성된 것일 수 있으나, 이에 제한되는 것은 아니다.
상기 폴리뉴클레오티드는 코돈의 축퇴성(degeneracy)으로 인하여 또는 상기 단백질을 발현시키고자 하는 생물에서 선호되는 코돈을 고려하여, 단백질의 아미노산 서열을 변화시키지 않는 범위 내에서 코딩 영역에 다양한 변형이 이루어질 수 있다. 따라서, 코돈 축퇴성 (codon degeneracy)에 의해 상기 서열번호 3의 아미노산 서열로 이루어진 폴리펩타이드 또는 이와 상동성 또는 동일성을 가지는 폴리펩타이드로 번역될 수 있는 폴리뉴클레오티드 역시 포함될 수 있음은 자명하다.
또한 공지의 유전자 서열로부터 조제될 수 있는 프로브, 예를 들면, 상기 염기 서열의 전체 또는 일부에 대한 상보 서열과 엄격한 조건 하에 하이드리드화하여, 서열번호 1의 아미노산 서열에서 156번째 아미노산이 다른 아미노산으로 치환된 분지쇄 아미노산 아미노트랜스퍼라제 변이체를 코딩하는 서열이라면 제한없이 포함될 수 있다.
상기 "엄격한 조건(stringent condition)"이란 폴리뉴클레오티드 간의 특이적 혼성화를 가능하게 하는 조건일 수 있다. 이러한 조건은 문헌 (예컨대, J. Sambrook et al., Molecular Cloning, A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory press, Cold Spring Harbor, New York, 1989)에 구체적으로 기재되어 있다. 예를 들어, 상동성(homology) 또는 동일성(identity)이 높은 유전자끼리, 80% 이상, 85% 이상, 구체적으로는 90% 이상, 보다 구체적으로는 95% 이상, 더욱 구체적으로는 97% 이상, 특히 구체적으로는 99% 이상의 상동성 또는 동일성을 갖는 유전자끼리 하이브리드화하고, 그보다 상동성 또는 동일성이 낮은 유전자끼리 하이브리드화하지 않는 조건, 또는 통상의 써던 하이브리드화(southern hybridization)의 세척 조건인 60℃,1 X SSC, 0.1% SDS, 구체적으로는 60℃, 0.1 X SSC, 0.1% SDS, 보다 구체적으로는 68℃, 0.1 X SSC, 0.1% SDS에 상당하는 염 농도 및 온도에서, 1회, 구체적으로는 2회 내지 3회 세정하는 조건을 열거할 수 있다.
혼성화는 비록 혼성화의 엄격도에 따라 염기 간의 미스매치 (mismatch)가 가능할지라도, 두 개의 핵산이 상보적 서열을 가질 것을 요구한다. 용어, "상보적"은 서로 혼성화가 가능한 뉴클레오티드 염기 간의 관계를 기술하는데 사용된다. 예를 들면, DNA에 관하여, 아데닌은 티민에 상보적이며 시토신은 구아닌에 상보적이다. 따라서, 본 출원은 또한 실질적으로 유사한 핵산 서열뿐만 아니라 전체 서열에 상보적인 단리된 핵산 단편을 포함할 수 있다.
구체적으로, 상동성 또는 동일성을 가지는 폴리뉴클레오티드는 55℃의 Tm 값에서 혼성화 단계를 포함하는 혼성화 조건을 사용하고 상술한 조건을 사용하여 탐지할 수 있다. 또한, 상기 Tm 값은 60℃ , 63 ℃ 또는 65 ℃일 수 있으나, 이에 제한되는 것은 아니고 그 목적에 따라 당업자에 의해 적절히 조절될 수 있다.
폴리뉴클레오티드를 혼성화하는 적절한 엄격도는 폴리뉴클레오티드의 길이 및 상보성 정도에 의존하고 변수는 해당기술분야에 잘 알려져 있다(Sambrook et al., supra, 9.50-9.51, 11.7-11.8 참조).
본 출원에서 사용된 용어, "벡터"는 적합한 숙주 내에서 목적 변이형 단백질을 발현시킬 수 있도록 적합한 조절 서열에 작동 가능하게 연결된 상기 목적 변이형 단백질을 코딩하는 폴리뉴클레오티드의 염기서열을 함유하는 DNA 제조물일 수 있다. 상기 조절 서열은 전사를 개시할 수 있는 프로모터, 그러한 전사를 조절하기 위한 임의의 오퍼레이터 서열, 적합한 mRNA 리보좀 결합부위를 코딩하는 서열, 및 전사 및 해독의 종결을 조절하는 서열을 포함할 수 있다. 벡터는 적당한 숙주세포 내로 형질전환된 후, 숙주 게놈과 무관하게 복제되거나 기능할 수 있으며, 게놈 그 자체에 통합될 수 있다.
본 출원에서 사용되는 벡터는 특별히 한정되지 않으며, 당업계에 알려진 임의의 벡터를 이용할 수 있다. 통상 사용되는 벡터의 예로는 천연 상태이거나 재조합된 상태의 플라스미드, 코스미드, 바이러스 및 박테리오파지를 들 수 있다. 예를 들어, 파지 벡터 또는 코스미드 벡터로서 pWE15, M13, MBL3, MBL4, IXII, ASHII, APII, t10, t11, Charon4A, 및 Charon21A 등을 사용할 수 있으며, 플라스미드 벡터로서 pBR계, pUC계, pBluescriptII계, pGEM계, pTZ계, pCL계 및 pET계 등을 사용할 수 있다. 구체적으로는 pDZ, pACYC177, pACYC184, pCL, pECCG117, pUC19, pBR322, pMW118, pCC1BAC 벡터 등을 사용할 수 있으나 이에 제한되지 않는다.
일례로 세포 내 염색체 삽입용 벡터를 통해 염색체 내에 목적 변이형 단백질을 코딩하는 폴리뉴클레오티드를 변이된 폴리뉴클레오티드로 교체시킬 수 있다. 상기 폴리뉴클레오티드의 염색체 내로의 삽입은 당업계에 알려진 임의의 방법, 예를 들면, 상동 재조합(homologous recombination)에 의하여 이루어질 수 있으나, 이에 한정되지는 않는다. 상기 폴리뉴클레오티드는 염색체 삽입 여부를 확인하기 위한 선별 마커(selection marker)를 추가로 포함할 수 있다. 선별 마커는 벡터로 형질전환된 세포를 선별, 즉 목적 핵산 분자의 삽입 여부를 확인하기 위한 것으로, 약물 내성, 영양 요구성, 세포 독성제에 대한 내성 또는 표면 변이형 단백질의 발현과 같은 선택가능 표현형을 부여하는 마커들이 사용될 수 있다. 선택제(selective agent)가 처리된 환경에서는 선별 마커를 발현하는 세포만 생존하거나 다른 표현 형질을 나타내므로, 형질전환된 세포를 선별할 수 있다.
본 출원의 다른 하나의 양태는 상기 분지쇄 아미노산 아미노트랜스퍼라제 변이체; 상기 변이체를 코딩하는 폴리뉴클레오티드; 및 상기 폴리뉴클레오티드를 포함하는 벡터 중 어느 하나 이상을 포함하는 미생물을 제공할 수 있다.
구체적으로 상기 미생물은, 변이체를 코딩하는 폴리뉴클레오티드를 포함하는 벡터로 형질전환에 의해 제조되는 미생물일 수 있으나, 이에 제한되지 않는다.
본 출원에서 용어 "형질전환"은 표적 단백질을 코딩하는 폴리뉴클레오티드를 포함하는 벡터를 숙주세포 내에 도입하여 숙주세포 내에서 상기 폴리뉴클레오티드가 코딩하는 단백질이 발현할 수 있도록 하는 것을 의미할 수 있다. 형질전환된 폴리뉴클레오티드는 숙주세포 내에서 발현될 수 있기만 한다면, 숙주세포의 염색체 내에 삽입되어 위치하거나 염색체 외에 위치하거나 상관없이 이들 모두를 포함할 수 있다. 또한, 상기 폴리뉴클레오티드는 표적 단백질을 코딩하는 DNA 및 RNA를 포함한다. 상기 폴리뉴클레오티드는 숙주세포 내로 도입되어 발현될 수 있는 것이면, 어떠한 형태로 도입되는 것이든 상관없다. 예를 들면, 상기 폴리뉴클레오티드는 자체적으로 발현되는데 필요한 모든 요소를 포함하는 유전자 구조체인 발현 카세트 (expression cassette)의 형태로 숙주세포에 도입될 수 있다. 상기 발현 카세트는 통상 상기 폴리뉴클레오티드에 작동 가능하게 연결되어 있는 프로모터 (promoter), 전사 종결신호, 리보좀 결합부위 및 번역 종결신호를 포함할 수 있다. 상기 발현 카세트는 자체 복제가 가능한 발현 벡터 형태일 수 있다. 또한, 상기 폴리뉴클레오티드는 그 자체의 형태로 숙주세포에 도입되어 숙주세포에서 발현에 필요한 서열과 작동 가능하게 연결되어 있는 것일 수도 있으며, 이에 한정되지 않는다.
또한, 상기에서 용어 "작동 가능하게 연결"된 것이란 본 출원의 분지쇄 아미노산 아미노트랜스퍼라제를 코딩하는 폴리뉴클레오티드의 전사를 개시 및 매개하도록 하는 프로모터 서열과 상기 유전자 서열이 기능적으로 연결되어 있는 것일 수 있다.
본 출원의 미생물은 상기 분지쇄 아미노산 아미노트랜스퍼라제 변이체; 이를 코딩하는 폴리뉴클레오티드; 및 상기 폴리뉴클레오티드를 포함하는 벡터 중 어느 하나 이상을 포함하여 류신 생산능을 갖는 미생물일 수 있으나 이에 제한되지 않는다. 상기 미생물은, 자연적으로 류신 생산능을 가지고 있는 미생물, 또는 류신 생산능이 없는 모균주에 류신 생산능이 부여된 미생물 일 수 있으나 이에 제한되지 않는다.
본 출원의 목적상 상기 미생물은 상기 분지쇄 아미노산 아미노트랜스퍼라제 변이체를 발현하여 류신을 생산할 수 있는 미생물이라면 모두 가능하다.
본 출원에서 용어, 단백질이 "발현되도록/되는/하는"은 목적 단백질이 미생물 내에 도입되거나, 미생물내에서 발현되도록 변형된 상태를 의미할 수 있다. 상기 목적 단백질이 미생물내 존재하는 단백질인 경우 내재적 또는 변형전에 비하여 그 활성이 강화된 상태를 의미할 수 있다. 본 출원의 목적상 "목적 단백질"은 전술한 분지쇄 아미노산 아미노트랜스퍼라제 변이체일 수 있다.
구체적으로, "단백질의 도입"은, 미생물이 본래 가지고 있지 않았던 특정 단백질의 활성을 나타나게 되는 것 또는 해당 단백질의 내재적 활성 또는 변형 전 활성에 비하여 향상된 활성을 나타나게 되는 것을 의미할 수 있다. 예를 들어, 특정 단백질을 코딩하는 폴리뉴클레오티드가 미생물 내 염색체로 도입되거나, 특정 단백질을 코딩하는 폴리뉴클레오티드를 포함하는 벡터가 미생물 내로 도입되어 이의 활성이 나타나는 것일 수 있다.
또한, "활성의 강화"는 미생물이 가진 특정 단백질의 내재적 활성 또는 변형 전 활성에 비하여 활성이 향상된 것을 의미할 수 있다. "내재적 활성"은 자연적, 또는 인위적 요인에 의한 유전적 변이로 미생물의 형질이 변화하는 경우, 형질 변화 전 모균주가 본래 가지고 있던 특정 단백질의 활성을 의미할 수 있다. 일 구현예로 단백질 활성의 강화는 상기 단백질을 코딩하는 유전자의 발현 강화에 의해 달성될 수 있으나, 이에 제한되지 않는다.
구체적으로, 본 출원에서 상기 단백질 변이체의 활성 강화는, 상기 단백질 변이체를 코딩하는 유전자의 세포 내 카피수 증가, 상기 단백질 변이체를 코딩하는 유전자의 발현 조절 서열에 변이를 도입하는 방법, 상기 단백질 변이체를 코딩하는 유전자 발현 조절 서열을 활성이 강력한 서열로 교체하는 방법, 염색체상 분지쇄 아미노산 아미노트랜스퍼라제 활성을 갖는 자연형 단백질을 코딩하는 유전자를 상기 단백질 변이체를 코딩하는 유전자로 대체하는 방법, 상기 단백질 변이체의 활성이 강화되도록 상기 변이체를 코딩하는 유전자에 변이를 추가적으로 도입시키는 방법, 및 미생물에 단백질 변이체를 도입하는 방법으로 이루어진 군으로부터 선택되는 어느 하나 이상의 방법으로 이루어질 수 있으나 이에 제한되지 않는다.
다음으로, 폴리뉴클레오티드의 발현이 증가하도록 발현 조절서열을 변형하는 것은, 특별히 이에 제한되지 않으나, 상기 발현 조절서열의 활성을 더욱 강화하도록 핵산 서열을 결실, 삽입, 비보전적 또는 보전적 치환 또는 이들의 조합으로 서열상의 변이를 유도하여 수행하거나, 더욱 강한 활성을 갖는 핵산 서열로 교체함에 의하여 수행될 수 있다. 상기 발현 조절서열은, 특별히 이에 제한되지 않으나, 프로모터, 오퍼레이터 서열, 리보좀 결합부위를 코딩하는 서열, 전사 및 해독의 종결을 조절하는 서열 등을 포함할 수 있다.
상기 폴리뉴클레오티드 발현 단위의 상부에는 본래의 프로모터 대신 강력한 프로모터가 연결될 수 있으며 이에 한정되는 것은 아니다. 공지된 강력한 프로모터의 예에는 cj1 내지 cj7 프로모터(US 7662943 B2), lac 프로모터, trp 프로모터, trc 프로모터, tac 프로모터, 람다 파아지 PR 프로모터, PL 프로모터, tet 프로모터, gapA 프로모터, SPL7 프로모터, SPL13(sm3) 프로모터 (US 10584338 B2), O2 프로모터(US 10273491 B2), tkt 프로모터 및 yccA 프로모터 등이 있으나 이에 한정되는 것은 아니다.
아울러, 염색체상의 폴리뉴클레오티드 서열의 변형은, 특별히 이에 제한되지 않으나, 상기 폴리뉴클레오티드 서열의 활성을 더욱 강화하도록 핵산 서열을 결실, 삽입, 비보전적 또는 보전적 치환 또는 이들의 조합으로 발현 조절서열상의 변이를 유도하여 수행하거나, 더욱 강한 활성을 갖도록 개량된 폴리뉴클레오티드 서열로 교체함에 의하여 수행될 수 있다.
이와 같은 단백질 활성의 도입 및 강화는, 상응하는 단백질의 활성 또는 농도가 야생형이나 비변형 미생물 균주에서의 단백질의 활성 또는 농도를 기준으로 하여 일반적으로 최소 1%, 10%, 25%, 50%, 75%, 100%, 150%, 200%, 300%, 400% 또는 500%, 최대 1000% 또는 2000%까지 증가되는 것일 수 있으나, 이에 제한되는 것은 아니다.
상기 미생물은, 단백질 변이체를 포함하거나, 단백질 변이체를 코딩하는 폴리뉴클레오티드 또는 변이체를 코딩하는 폴리뉴클레오티드를 포함하는 벡터로 형질전환되어 변이체를 발현할 수 있는 미생물이라면 모두 가능하다. 구체적인 예로, 에스케리키아속(Escherichia sp.), 세라티아속(Serratia sp.), 어위니아속(Erwinia sp.), 엔테로박테리아속(Enterobacteria sp.), 살모넬라속(Salmonella sp.), 스트렙토마이세스속(Streptomyces sp.), 슈도모나스속(Pseudomonas sp.), 브레비박테리움속(Brevibacterium sp.) 속 또는 코리네박테리움속(Corynebacterium sp.) 등의 미생물 균주가 포함될 수 있으며, 구체적으로 코리네박테리움속 미생물일 수 있고, 보다 구체적인 예로는 코리네박테리움 글루타미쿰(Corynebacterium glutamicum)일 수 있으나 이에 한정되지 않는다.
본 출원의 미생물은 류신을 생산하는 미생물 일 수 있다.
본 출원에서 용어 "류신을 생산하는 미생물" 이란, 자연적으로 류신 생산능을 가지고 있는 미생물 또는 류신 생산능이 없는 모균주에 류신 생산능이 부여된 미생물일 수 있다. 또한, 상기 류신을 생산하는 미생물은 상기 분지쇄 아미노산 아미노트랜스퍼라제 변이체, 이를 코딩하는 폴리뉴클레오티드, 및 상기 폴리뉴클레오티드를 포함하는 벡터 중 어느 하나 이상을 통해 유전적으로 변형된 미생물; 상기 분지쇄 아미노산 아미노트랜스퍼라제 변이체, 또는 이를 코딩하는 폴리뉴클레오티드를 발현하도록 변형된 미생물; 상기 분지쇄 아미노산 아미노트랜스퍼라제 변이체, 또는 이를 코딩하는 폴리뉴클레오티드를 발현하는 재조합 미생물 일 수 있으나, 이에 제한되지 않는다.
상기 류신을 생산하는 미생물은, 단백질 변이체를 코딩하는 폴리뉴클레오티드를 포함하거나, 또는 변이체를 코딩하는 폴리뉴클레오티드를 포함하는 벡터로 형질전환되어 변이체를 발현할 수 있는 미생물로서, 본 출원의 목적상 상기 미생물은 ilvE 변이체를 포함하여 류신을 생산할 수 있는 미생물이라면 모두 가능하다. 구체적인 예로, 에스케리키아속(Escherichia sp.), 세라티아속(Serratia sp.), 어위니아속(Erwinia sp.), 엔테로박테리아속(Enterobacteria sp.), 살모넬라속(Salmonella sp.), 스트렙토마이세스속(Streptomyces sp.), 슈도모나스속(Pseudomonas sp.), 브레비박테리움속(Brevibacterium sp.) 속 또는 코리네박테리움속(Corynebacterium sp.) 등의 미생물 균주가 포함될 수 있으며, 구체적으로 코리네박테리움속 미생물일 수 있고, 보다 구체적인 예로는 코리네박테리움 글루타미쿰(Corynebacterium glutamicum)일 수 있으나 이에 한정되지 않는다.
본 출원에서 용어 "류신을 생산하는 코리네박테리움속 (Corynebacterium sp.) 미생물"이란, 야생형 또는 변이를 통하여 류신 생산능을 가지고 있는 코리네박테리움속 미생물을 의미할 수 있다. 코리네박테리움속 미생물이 류신을 어느 정도 생산할 수 있다는 것은 알려져 있었으나, 류신 생산능이 현저히 낮으며 이를 공업적으로 생산하기에는 어려움이 있는 상태이다. 따라서, 본 출원에서 류신 생산능을 가지는 코리네박테리움속 미생물이란 천연형 미생물 자체 또는 외부 류신 생산 기작과 관련된 유전자가 삽입되거나 내재적 유전자의 활성을 강화시키거나 약화 또는 불활성화시켜 향상된 류신 생산능을 가지게 된 코리네박테리움속 미생물을 의미할 수 있다. 본 출원의 목적상 상기 류신을 생산하는 미생물은 본 출원의 상기 분지쇄 아미노산 아미노트랜스퍼라제 변이체를 포함하여, 류신 생산능이 증가된 것을 특징으로 하는 미생물일 수 있다. 일 구현예로 상기 미생물은 천연의 야생형 균주, 모균주 또는 본 출원의 변이체를 포함하지 않는 미생물에 비해 류신 생산능이 증가한 것일 수 있다.
본 출원에서 용어, "변형 전 균주" 또는 “변형 전 미생물”은 미생물에 자연적으로 발생할 수 있는 돌연변이를 포함하는 균주를 제외하는 것이 아니며, 야생형 균주 또는 천연형 균주 자체이거나, 자연적 또는 인위적 요인에 의한 유전적 변이로 형질이 변화되기 전 균주를 의미할 수 있다. 상기 “변형 전 균주” 또는 “변형 전 미생물”은 “비변이 균주”, “비변형 균주”, “비변이 미생물”, “비변형 미생물” 또는 “기준 미생물”과 혼용될 수 있다.
일 구현예로, 상기 코리네박테리움 속 미생물은 류신 생합성 경로의 유전자의 발현이 강화되거나, 류신 분해 경로에 관여하는 유전자의 발현이 약화/불활성화된 것일 수 있으며, 구체적으로는 이소프로필말레이트 신타제(isopropylmalate synthase) 활성이 추가로 강화된, 류신을 생산하는 코리네박테리움 속 미생물일 수 있으나, 이에 제한되지 않는다. 단백질 활성의 강화는 전술한 바와 같다.
본 출원의 용어"단백질 활성의 약화/불활성화"는 효소 또는 단백질의 발현이 천연의 야생형 균주, 모균주 또는 해당 단백질이 비변형된 균주에 비하여 전혀 발현이 되지 않거나 또는 발현이 되더라도 그 활성이 없거나 감소된 것을 의미할 수 있다. 이때, 상기 감소는 상기 단백질을 코딩하는 유전자의 변이, 발현조절서열의 변형, 유전자 일부 또는 전체의 결손 등으로 단백질의 활성이 본래 미생물이 가지고 있는 단백질의 활성에 비해 감소한 경우와, 이를 코딩하는 유전자의 발현 저해 또는 번역(translation) 저해 등으로 세포 내에서 전체적인 단백질의 활성 정도가 천연형 균주 또는 변형전의 균주에 비하여 낮은 경우, 이들의 조합 역시 포함하는 개념이다. 본 출원에 있어서, 상기 불활성화/약화는 당해 분야에 잘 알려진 다양한 방법의 적용으로 달성될 수 있다. 상기 방법의 예로, 1) 상기 단백질을 코딩하는 상기 유전자의 전체 또는 일부를 결실시키는 방법; 2) 상기 단백질을 코딩하는 상기 유전자의 발현이 감소하도록 발현 조절 서열의 변형, 3) 상기 단백질의 활성이 제거 또는 약화되도록 단백질을 코딩하는 상기 유전자 서열의 변형, 4) 상기 단백질을 코딩하는 상기 유전자의 전사체에 상보적으로 결합하는 안티센스 올리고뉴클레오티드(예컨대, 안티센스 RNA)의 도입; 5) 상기 단백질을 코딩하는 상기 유전자의 사인-달가르노(Shine-Dalgarno) 서열 앞단에 사인-달가르노 서열과 상보적인 서열을 부가하여 2차 구조물을 형성시켜 리보솜(ribosome)의 부착을 불가능하게 만드는 방법; 6) 상기 단백질을 코딩하는 상기 유전자의 폴리뉴클레오티드 서열의 ORF(open reading frame)의 3' 말단에 반대 방향으로 전사되는 프로모터를 부가하는 방법(Reverse transcription engineering, RTE) 등이 있으며, 이들의 조합으로도 달성할 수 있으나, 이에 특별히 제한되는 것은 아니며, 당업계에 공지된 불활성화/약화 방법을 적절히 선택하여 적용할 수 있다.
본 출원의 다른 하나의 양태는, 상기 미생물을 배양하는 단계를 포함하는, 류신 생산방법을 제공할 수 있다.
상기 방법에 있어서, 상기 미생물을 배양하는 단계는, 특별히 제한되지 않으나, 공지된 회분식 배양방법, 연속식 배양방법, 유가식 배양방법 등에 의해 수행될 수 있다. 이때, 배양조건은, 특별히 이에 제한되지 않으나, 염기성 화합물 (예: 수산화나트륨, 수산화칼륨 또는 암모니아) 또는 산성 화합물 (예: 인산 또는 황산)을 사용하여 적정 pH (예컨대, pH 5 내지 9, 구체적으로는 pH 6 내지 8, 가장 구체적으로는 pH 6.8)를 조절할 수 있고, 산소 또는 산소-함유 가스 혼합물을 배양물에 도입시켜 호기성 조건을 유지할 수 있다. 배양온도는 20 내지 45℃, 구체적으로는 25 내지 40 ℃를 유지할 수 있고, 약 10 내지 160 시간 동안 배양할 수 있으나, 이에 제한 되는 것은 아니다. 상기 배양에 의하여 생산된 류신은 배지 중으로 분비되거나 세포 내에 잔류할 수 있다.
아울러, 사용되는 배양용 배지는 탄소 공급원으로는 당 및 탄수화물 (예: 글루코오스, 슈크로오스, 락토오스, 프럭토오스, 말토오스, 몰라세(molasse), 전분 및 셀룰로오스), 유지 및 지방 (예: 대두유, 해바라기씨유, 땅콩유 및 코코넛유), 지방산 (예: 팔미트산, 스테아르산 및 리놀레산), 알코올 (예: 글리세롤 및 에탄올) 및 유기산 (예: 아세트산) 등을 개별적으로 사용하거나 또는 혼합하여 사용할 수 있으나, 이에 제한되지 않는다. 질소 공급원으로는 질소-함유 유기 화합물 (예: 펩톤, 효모 추출액, 육즙, 맥아 추출액, 옥수수 침지액, 대두 박분 및 우레아), 또는 무기 화합물 (예: 황산암모늄, 염화암모늄, 인산암모늄, 탄산암모늄 및 질산암모늄) 등을 개별적으로 사용하거나 또는 혼합하여 사용할 수 있으나, 이에 제한되지 않는다. 인 공급원으로 인산 이수소칼륨, 인산수소이칼륨, 이에 상응하는 나트륨 함유 염 등을 개별적으로 사용하거나 또는 혼합하여 사용할 수 있으나, 이에 제한되지 않는다. 또한, 배지에는 기타 금속염 (예: 황산마그네슘 또는 황산철), 아미노산 및 비타민과 같은 필수성장-촉진 물질을 포함할 수 있다.
상기 생산 방법은 배양된 미생물 또는 배양 배지로부터 류신을 회수하는 단계를 더 포함할 수 있다.
류신을 분리 또는 회수하는 방법은 배양방법에 따라 당해 분야에 공지된 적합한 방법을 이용하여 배양액으로부터 목적하는 아미노산을 수집(collect)할 수 있다. 예를 들어, 원심분리, 여과, 음이온 교환 크로마토그래피, 결정화 및 HPLC 등이 사용될 수 있으며, 당해 분야에 공지된 적합한 방법을 이용하여 배지 또는 미생물로부터 목적하는 류신을 회수할 수 있다.
본 출원의 다른 하나의 양태는 서열번호 1의 아미노산 서열의 N-말단으로부터 156번째 발린(V: valine) 아미노산 잔기가 다른 아미노산으로 치환된, 분지쇄 아미노산 아미노트랜스퍼라제(branched amino acid aminotransferase) 변이체를 발현하도록 미생물을 변형하는 것을 포함하는 류신 생산능을 증가시키는 방법을 제공할 수 있다.
본 출원의 다른 하나의 양태는 상기 단백질 변이체의 류신 생산 증가 용도를 제공할 수 있다.
상기 단백질 변이체에 대해서는 전술한 바와 같다.
이하 본 출원을 실시예 및 실험예를 통하여 보다 상세하게 설명한다. 그러나 이들 실시예 및 실험예는 본 출원을 예시적으로 설명하기 위한 것으로 본 출원의 범위가 이들 실시예 및 실험예에 한정되는 것은 아니다.
실시예 1: ilvE 변이 발굴
1-1. ilvE를 포함하는 벡터 제작
분지쇄 아미노산 아미노트랜스퍼라제(branched-chain amino acid aminotransferase) 활성을 가지는 ilvE 변이 라이브러리를 제작하기 위해 우선 ilvE의 일부를 포함하는 재조합 벡터를 제작하였다. 야생형 ilvE의 아미노산 서열 및 뉴클레오티드 서열은 각각 서열번호 1 및 서열번호 2와 같다. 코리네박테리움 글루타미쿰 (Corynebacterium glutamicun) ATCC13032의 염색체를 주형으로 서열번호 5 및 서열번호 6의 프라이머를 이용하여 PCR을 수행하였으며, 상기 증폭산물을 TOPO Cloning Kit (Invitrogen)를 이용하여 대장균 벡터 pCR2.1에 클로닝하여 pCR-ilvE를 얻었다.
1-2. ilvE 변이 라이브러리 제작
상기 실시예 1-1에서 제작된 벡터를 기반으로 ilvE 변이 라이브러리를 제작하였다. 라이브러리는 error-prone PCR kit (clontech Diversify® PCR Random Mutagenesis Kit)를 이용하여 제작하였다. 변이가 발생할 수 있는 조건에서, 서열번호 5 및 서열번호 6을 프라이머로 하여 PCR 반응을 수행하였다. 구체적으로는, 1000bp 당 0에서 3개의 변이가 발생하는 조건으로 94 ℃에서 30초 pre-heating 후, 94 ℃에서 30초, 68 ℃에서 1분 30초의 과정을 25회 반복 수행하였다. 이 때 얻어진 PCR 산물을 megaprimer(500~125ng)로 하여 95 ℃에서 50초, 60 ℃에서 50초, 68 ℃에서 12분의 과정을 25회 반복 수행한 후 DpnI 처리하여, 대장균 DH5α에 형질전환하여 카나마이신(25mg/L)이 포함된 LB 고체배지에 도말하였다. 형질전환 된 콜로니 20종을 선별한 후 플라스미드를 획득하여 폴리뉴클레오티드 서열을 분석한 결과 2mutations/kb 빈도로 서로 다른 위치에 변이가 도입된 것을 확인하였다. 약 20,000개의 형질전환 된 대장균 콜로니를 취하여 플라스미드를 추출하였고, 이를 pTOPO-ilvE-library로 명명하였다.
실시예 2: 류신 생산주에서의 라이브러리 평가 및 변이체 선별
일반적으로 코리네박테리움 속 야생형의 균주는 류신을 생산하더라도 아주 미량이 생산될 뿐이다. 이에 ATCC13032 유래의 류신 생산 균주를 제작하고, 상기 실시예 1-2에서 제작한 라이브러리 벡터를 도입하여 변이체를 선별하였다.
2-1. 류신 생산주 CA13-8100 균주 제작
야생형 코리네박테리움 글루타미쿰 ATCC13032 유래의 류신 생산 균주를 제작하기 위해, 이소프로필말레이트 신타제(isopropylmalate synthase, 이하, "IPMS"로 지칭함) 변이체를 도입한 균주 CA13-8100 균주를 제작하였다.
구체적으로, 상기 변이체는 이소프로필말레이트 신타제를 코딩하는 leuA 유전자의 1673 번째 뉴클레오티드인 G가 A로 치환되어 IPMS 단백질의 558 번째 아미노산인 알지닌이 히스티딘으로 치환되는 변이와 1682 번째, 1683 번째 뉴클레오티드인 GC가 AT로 치환되어 561 번째 아미노산인 글리신이 아스파르트산으로 치환되는 변이를 포함한다(US 2020-0032305 A1).
상기 leuA 변이를 포함하는 pDC-leuA(R558H, G561D) 벡터를 야생형 ATCC13032에 형질전환하고 상동성 서열의 재조합에 의해 염색체 상에 벡터가 삽입된 균주를 카나마이신(kanamycin) 25 mg/L를 함유한 배지에서 선별하였다.
선별된 1차 균주는 다시 2차 교차(cross-over)를 거쳐, leuA 유전자의 변이가 도입된 균주를 선정하였다. 최종 형질전환된 균주의 변이 도입 여부는 서열번호 7과 서열번호 8의 프라이머를 이용하여 PCR을 수행한 후 염기서열을 분석함으로써 변이가 도입 되었음을 확인하였다.
pDC-leuA(R558H, G561D) 벡터로 형질전환된 ATCC13032_leuA_(R558H, G561D) 균주를 CA13-8100으로 명명하였다.
2-2. 라이브러리 평가 및 변이주 선별
상기 실시예 1-2에서 제작된 pTOPO-ilvE-library를 실시예 2-1에서 제작한 류신 생산주 CA13-8100에 전기천공법으로 형질 전환한 후, 카나마이신 25mg/L를 함유한 영양배지에 도말하여 변이 유전자가 삽입된 균주 10,000개의 콜로니를 확보하였으며, 각 콜로니를 CA13-8100/pTOPO_ilvE(mt)1부터 CA13-8100 /pTOPO_ilvE(mt)10000까지로 명명하였다.
확보된 10,000개의 콜로니 중 류신 생산이 늘어나는 콜로니를 확인하기 위해 각각의 콜로니에 대해 하기와 같은 방법으로 발효역가 평가를 진행하였다.
- 영양배지: 포도당 10g, 육즙 5g, 폴리펩톤 10g, 염화나트륨 2.5g, 효모엑기스 5g, 한천 20g, 유레아 2g (증류수 1리터 기준)
- 생산배지: 포도당 50 g, 황산암모늄 20 g, 옥수수침지고형분(Corn Steep Solids) 20 g, 제2인산칼륨 1 g, 황산마그네슘7수염 0.5 g, 바이오틴 100 ㎍, 티아민-HCl 1 ㎎, 탄산칼슘 15 g (증류수 1리터 기준), pH 7.0
가압 살균한 생산배지 25 ㎖에 25 ug/ml의 카나마이신을 함유하는 250 ㎖ 코너-바풀 플라스크에 각 콜로니를 백금이를 이용하여 접종한 후, 30℃에서 60 시간 동안 200 rpm으로 진탕 배양하였다. 배양 종료 후 고속액체크로마토그래피(HPLC, SHIMAZDU LC20A)를 이용한 방법에 의해 류신 생산량을 측정하여 CA13-8100 균주 대비 류신 생산능이 가장 향상된 균주 1종을 선별하였다. 선별된 균주에서 생산된 류신 농도는 아래 표 1과 같다.
균주명 류신 (g/L)
CA13-8100 3.4
CA13-8100/pTOPO_ilvE(mt)3012 3.97
2-3. 선별된 변이주의 돌연변이 확인
실시예 2-2에서 선별한 균주의 유전자 변이를 확인하기 위하여 서열번호 9 와 서열번호 10 의 프라이머를 이용하여 CA13-8100/pTOPO_ilvE(mt)3012 균주에서 PCR을 수행하고 시퀀싱을 진행하여, ilvE 유전자를 야생형 ATCC13032의 ilvE와 비교하였고 상기의 균주는 ilvE 유전자에 변이를 포함하고 있다는 것을 확인하였다.
구체적으로, CA13-8100/pTOPO_ilvE(mt)3012 균주는 ilvE 유전자의 503번째 뉴클레오티드인 T가 C로 치환되어 있음을 확인하였다(서열번호 4). 이는 ilvE의 아미노산 서열에서 156번째 발린이 알라닌으로 치환되는 변이이다(서열번호 3). 따라서, 이하 실시예 에서는, 상기 변이가 코리네박테리움 속 미생물의 류신 생산량에 영향을 미치는지 확인하고자 하였다.
실시예 3: ilvE 선별 변이의 류신 생산능 확인
3-1. ilvE 변이를 포함하는 삽입 벡터 제작
상기 실시예 2에서 선별된 변이를 균주 내로 도입하기 위해 삽입용 벡터를 제작하고자 하였다. ilvE(V156A) 변이 도입용 벡터 제작은 위치 지정 돌연변이 생성 (Site directed mutagenesis) 방법을 사용하였다. 코리네박테리움 글루타미쿰 ATCC13032의 염색체를 주형으로 서열번호 11 및 12의 프라이머, 서열번호 13 및 14의 프라이머 쌍을 이용하여 PCR을 수행하였다. PCR은 94℃에서 5분간 변성 후, 94℃에서 30초 변성, 55℃에서 30초 어닐링, 72℃에서 1분 30초 중합을 30회 반복한 후, 72℃에서 5분간 중합반응을 수행하였다. 그 결과 얻어진 유전자 단편을 PstI과 XbaI 제한효소로 절단 시킨 선상의 pDC 벡터와 In-Fusion 효소를 이용해 DNA 단편간의 말단 15 base의 상동서열을 fusion 시켜 클로닝하여 156 번째 아미노산인 발린 (Val)을 알라닌 (Ala)으로 치환하는 벡터 pDC-ilvE(V156A)를 제작하였다.
3-2. CA13-8100 균주 및 ATCC13032 내 ilvE 변이체 도입 및 류신 생산능 확인
류신 생산 균주인 CA13-8100을 상기 실시예 3-1에서 제작한 pDC-ilvE(V156A)벡터로 형질전환하고 상동성 서열의 재조합에 의해 염색체 상에 벡터가 삽입된 균주는 카나마이신(kanamycin) 25 mg/L를 함유한 배지에서 선별하였다. 선별된 1차 균주는 다시 2차 교차(cross-over)를 거쳐, 목표 유전자의 변이가 도입된 균주를 선정하였다. 최종 형질전환된 균주의 ilvE유전자 변이 도입의 여부는 서열번호 9와 서열번호 10의 프라이머를 이용하여 PCR을 수행한 후 염기서열을 분석함으로써 균주내 ilvE 변이가 도입 되었음을 확인하였다. 제작된 CA13-8100_ilvE_V156A를 CA13-8107로 명명하였다.
또한 동일한 방법으로 야생형 코리네박테리움 글루타미쿰 ATCC13032을 상기의pDC-ilvE(V156A)벡터로 형질전환하였고 제작된 균주 ATCC13032_ilvE_V156A는 CA13-8106으로 명명하였다.
상기 제작된 CA13-8106 및 CA13-8107 균주의 류신 생산능을 평가하였다. 실시예 2-2와 같은 방식으로 플라스크 배양을 진행하였고 배양 종료 후 HPLC를 이용한 방법에 의해 류신 생산량을 측정하였으며, 배양 결과는 아래 표 2와 같다.
균주명 류신 (g/L)
ATCC13032 0.14
ATCC13032_ilvE_V156A : CA13-8106 0.19
ATCC13032_leuA_(R558H, G561D) : CA13-8100 3.4
CA13-8100_ilvE_V156A : CA13-8107 4.1
상기 표 2에 나타난 바와 같이, 류신 생산균주인 코리네박테리움 글루타미쿰 CA13-8100은 모균주인 코리네박테리움 글루타미쿰 ATCC13032에 비해 류신 생산능이 상당히 향상됨을 확인하였다. 또한 CA13-8100 균주 내 ilvE V156A 변이를 도입한 CA13-8107 균주는 모균주 CA13-8100 대비 류신 생산능이 120 % 향상 됨을 확인하였다. 또한 야생형 ATCC13032 기반으로 변이를 도입한 CA13-8106 균주 역시 야생형 대비 류신 생산이 135% 늘어난 것을 확인할 수 있었다.
상기 결과를 통해, branched-chain amino acid aminotransferase인 ilvE의 아미노산 서열 중 상기 156 번째 위치의 아미노산이 ilvE 효소 활성에 중요한 위치임을 확인할 수 있다.
상기 CA13-8107 균주는 부다페스트 조약 하의 국제기탁기관인 한국미생물보존센터(Korean CultureCenter of Microorganisms, KCCM)에 2019년 11월 15일자로 기탁하여 기탁번호 KCCM12630P를 부여 받았다.
3-3. 코리네박테리움 글루타미쿰 KCCM11661P, KCCM11662P 균주 내 ilvE 변이체 도입 및 류신 생산능 확인
상기 실시예 3-1에서 제작한 재조합 벡터 pDC-ilvE(V156A)를 염색체 상에서의 상동 재조합에 의해 류신 생산균주인 코리네박테리움 글루타미쿰 KCCM11661P(US 10351859 B2), KCCM11662P(US 10351859 B2)에 형질전환시켰다. 상기의 두 균주는 야생형의 코리네박테리움 글루타미쿰 ATCC 14067 과 코리네박테리움 글루타미쿰 ATCC 13869를 N-메틸-N'-니트로-N-니트로소구아니딘(N-Methyl-N'-nitro-Nnitrosoguanidine, NTG)을 처리하여 류신 생산능을 가지게 된 변이주이다. 최종 형질전환된 균주를 대상으로 서열번호 9와 서열번호 10의 프라이머를 이용하여 PCR을 수행한 후 염기서열을 분석함으로써 ilvE 유전자 내로 변이가 도입 되었음을 확인하였다. 상기 재조합 균주를 코리네박테리움 글루타미쿰 KCCM11661P_ilvE_V156A 및 KCCM11662P_ilvE_V156A 라 명명하였다. 상기 균주의 류신 생성능을 확인하기 위하여 실시예 2-2와 같은 방식으로 플라스크 배양을 진행하였고 배양 종료 후 HPLC를 이용한 방법에 의해 류신 생산량을 측정하였으며, 측정한 류신의 농도를 하기 표 3에 나타내었다.
균주명 류신 (g/L)
KCCM11661P 2.7
KCCM11661P_ilvE_V156A 3.3
KCCM11662P 3.0
KCCM11662P_ilvE_V156A 3.6
상기 결과를 통해, branched-chain amino acid aminotransferase인 ilvE의 아미노산 서열 중 156 번째 위치의 아미노산이 ilvE 효소 활성에 중요한 위치임을 확인할 수 있으며, 특히 상기 위치의 아미노산을 다른 아미노산으로 치환했을 때 류신 생산능이 향상됨을 확인하였다.
이상의 설명으로부터, 본 출원이 속하는 기술분야의 당업자는 본 출원이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로 이해해야만 한다. 본 출원의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 출원의 범위에 포함되는 것으로 해석되어야 한다.
Figure PCTKR2020016675-appb-I000001

Claims (11)

  1. 서열번호 1의 아미노산 서열의 N-말단으로부터 156번째 발린(V: valine) 아미노산이 다른 아미노산으로 치환된, 분지쇄 아미노산 아미노트랜스퍼라제(branched amino acid aminotransferase) 변이체.
  2. 제1항에 있어서, 상기 156번째 발린은 알라닌(Alanine)으로 치환되는 것인, 분지쇄 아미노산 아미노트랜스퍼라제 변이체.
  3. 제1항에 있어서, 상기 변이체는 서열번호 1의 아미노산 서열과 90% 이상의 상동성 또는 동일성을 갖는 것인, 분지쇄 아미노산 아미노트랜스퍼라제 변이체.
  4. 제1항에 있어서, 상기 변이체는 서열번호 3의 아미노산 서열로 이루어진 것인, 분지쇄 아미노산 아미노트랜스퍼라제 변이체.
  5. 제1항 내지 제4항 중 어느 한 항의 변이체를 코딩하는 폴리뉴클레오티드.
  6. 제5항의 폴리뉴클레오티드를 포함하는 벡터.
  7. 제1항 내지 제4항 중 어느 한 항의 변이체; 상기 변이체를 코딩하는 폴리뉴클레오티드; 및 상기 폴리뉴클레오티드를 포함하는 벡터 중 어느 하나 이상을 포함하는, 코리네박테리움(Corynebacterium sp.) 속 미생물.
  8. 제7항에 있어서, 상기 코리네박테리움 속 미생물은 류신(leucine)을 생산하는, 코리네박테리움(Corynebacterium sp.) 속 미생물.
  9. 제7항에 있어서, 상기 코리네박테리움 속 미생물은 코리네박테리움 글루타미쿰(Corynebacterium glutamicum)인, 코리네박테리움 속 미생물.
  10. 제7항의 미생물을 배지에서 배양하는 단계를 포함하는, 류신 생산방법.
  11. 제10항에 있어서, 상기 배양된 미생물 또는 배지로부터 류신을 분리 또는 회수하는 단계를 더 포함하는, 류신 생산방법.
PCT/KR2020/016675 2019-12-06 2020-11-24 신규한 분지쇄 아미노산 아미노트랜스퍼라제 변이체 및 이를 이용한 류신 생산방법 WO2021112469A1 (ko)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP20897508.6A EP4047085A4 (en) 2019-12-06 2020-11-24 NOVEL MUTANT BRANCHED CHAIN AMINO ACID AMINOTRANSFERASE AND METHOD FOR PRODUCING LEUCINE USING THE SAME
CN202080083985.2A CN115038787B (zh) 2019-12-06 2020-11-24 新型支链氨基酸氨基转移酶变体和使用其的亮氨酸生产方法
US17/756,627 US20220411832A1 (en) 2019-12-06 2020-11-24 Novel branched-chain amino acid aminotransferase variant and method for producing leucine using the same
AU2020398425A AU2020398425A1 (en) 2019-12-06 2020-11-24 Novel branched-chain amino acid aminotransferase variant and method for producing leucine using the same
BR112022011021A BR112022011021A2 (pt) 2019-12-06 2020-11-24 Variante de aminotransferase de aminoácido de cadeia ramificada, polinucleotídeo, vetor, microrganismo e método para a produção de leucina
MX2022006827A MX2022006827A (es) 2019-12-06 2020-11-24 Nueva variante de aminotransferasa de aminoacido de cadena ramificada y procedimiento para producir leucina usando la misma.
JP2022529090A JP7378621B2 (ja) 2019-12-06 2020-11-24 新規な分枝鎖アミノ酸アミノトランスフェラーゼ変異体及びそれを用いたロイシン生産方法
ZA2022/06109A ZA202206109B (en) 2019-12-06 2022-06-01 Novel branched-chain amino acid aminotransferase variant and method for producing leucine using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190161716A KR102143964B1 (ko) 2019-12-06 2019-12-06 신규한 분지쇄 아미노산 아미노트랜스퍼라제 변이체 및 이를 이용한 류신 생산방법
KR10-2019-0161716 2019-12-06

Publications (1)

Publication Number Publication Date
WO2021112469A1 true WO2021112469A1 (ko) 2021-06-10

Family

ID=72038972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/016675 WO2021112469A1 (ko) 2019-12-06 2020-11-24 신규한 분지쇄 아미노산 아미노트랜스퍼라제 변이체 및 이를 이용한 류신 생산방법

Country Status (11)

Country Link
US (1) US20220411832A1 (ko)
EP (1) EP4047085A4 (ko)
JP (1) JP7378621B2 (ko)
KR (1) KR102143964B1 (ko)
CN (1) CN115038787B (ko)
AR (1) AR120644A1 (ko)
AU (1) AU2020398425A1 (ko)
BR (1) BR112022011021A2 (ko)
MX (1) MX2022006827A (ko)
WO (1) WO2021112469A1 (ko)
ZA (1) ZA202206109B (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022186487A1 (ko) 2021-03-05 2022-09-09 씨제이제일제당 (주) 이소프로필말레이트 신타제 변이체 및 이를 이용한 l-류신의 생산 방법

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102143964B1 (ko) * 2019-12-06 2020-08-12 씨제이제일제당 주식회사 신규한 분지쇄 아미노산 아미노트랜스퍼라제 변이체 및 이를 이용한 류신 생산방법
KR102470602B1 (ko) * 2020-12-11 2022-11-25 씨제이제일제당 주식회사 신규한 분지 연쇄 아미노산 아미노트렌스퍼라아제 변이체 및 이를 이용한 이소류신 생산 방법
KR102495918B1 (ko) 2021-01-26 2023-02-06 씨제이제일제당 주식회사 aroG 알돌라아제 (Phospho-2-dehydro-3-deoxyheptonate aldolase) 변이체 및 이를 이용한 분지쇄 아미노산 생산 방법
KR102527096B1 (ko) 2021-02-01 2023-04-28 씨제이제일제당 주식회사 프리페네이트 탈수 효소 (Prephenate dehydratase) 변이체 및 이를 이용한 분지쇄 아미노산 생산 방법

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5120654A (en) * 1986-10-29 1992-06-09 Hoechst Aktiengesellschaft Cloning and use of the transaminase gene ilve
US20030100054A1 (en) * 2000-12-20 2003-05-29 Brigitte Bathe Nucleotide sequences which code for the ilvE gene
US7220572B2 (en) * 2002-06-25 2007-05-22 Ajinomoto Co., Inc. Method for producing L-leucine
US20080261278A1 (en) * 2001-02-13 2008-10-23 Tabolina Ekaterina Aleksandrov Method for producing l-amino acid using bacteria belonging to the genus escherichia
US7662943B2 (en) 2004-12-16 2010-02-16 Cj Cheiljedang Corporation Promoter sequences from Corynebacterium ammoniagenes
KR20120098235A (ko) * 2011-02-28 2012-09-05 이화여자대학교 산학협력단 비천연 아미노산 생산 균주 및 이를 이용한 비천연 아미노산의 제조 방법
US10273491B2 (en) 2015-01-29 2019-04-30 Cj Cheiljedang Corporation Promoter and uses thereof
US10351859B2 (en) 2015-08-25 2019-07-16 Cj Cheiljedang Corporation Microorganism producing L-leucine and method for producing L-leucine using the same
US20200032305A1 (en) 2016-12-28 2020-01-30 Cj Cheiljedang Corporation A novel isopropylmalate synthase variant and a method of producing l-leucine using the same
US10584338B2 (en) 2016-08-31 2020-03-10 Cj Cheiljedang Corporation Promoter and use thereof
KR102143964B1 (ko) * 2019-12-06 2020-08-12 씨제이제일제당 주식회사 신규한 분지쇄 아미노산 아미노트랜스퍼라제 변이체 및 이를 이용한 류신 생산방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102286505B (zh) * 2011-05-26 2013-04-03 江南大学 用于发酵生产l-缬氨酸的重组dna、菌株及方法
CN109402034A (zh) 2018-10-26 2019-03-01 江南大学 只产一种支链氨基酸的重组菌及其应用
CN109294966A (zh) 2018-10-26 2019-02-01 江南大学 一种高产l-亮氨酸的谷氨酸棒杆菌重组菌及其构建方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5120654A (en) * 1986-10-29 1992-06-09 Hoechst Aktiengesellschaft Cloning and use of the transaminase gene ilve
US20030100054A1 (en) * 2000-12-20 2003-05-29 Brigitte Bathe Nucleotide sequences which code for the ilvE gene
US20080261278A1 (en) * 2001-02-13 2008-10-23 Tabolina Ekaterina Aleksandrov Method for producing l-amino acid using bacteria belonging to the genus escherichia
US7220572B2 (en) * 2002-06-25 2007-05-22 Ajinomoto Co., Inc. Method for producing L-leucine
US7662943B2 (en) 2004-12-16 2010-02-16 Cj Cheiljedang Corporation Promoter sequences from Corynebacterium ammoniagenes
KR20120098235A (ko) * 2011-02-28 2012-09-05 이화여자대학교 산학협력단 비천연 아미노산 생산 균주 및 이를 이용한 비천연 아미노산의 제조 방법
US10273491B2 (en) 2015-01-29 2019-04-30 Cj Cheiljedang Corporation Promoter and uses thereof
US10351859B2 (en) 2015-08-25 2019-07-16 Cj Cheiljedang Corporation Microorganism producing L-leucine and method for producing L-leucine using the same
US10584338B2 (en) 2016-08-31 2020-03-10 Cj Cheiljedang Corporation Promoter and use thereof
US20200032305A1 (en) 2016-12-28 2020-01-30 Cj Cheiljedang Corporation A novel isopropylmalate synthase variant and a method of producing l-leucine using the same
KR102143964B1 (ko) * 2019-12-06 2020-08-12 씨제이제일제당 주식회사 신규한 분지쇄 아미노산 아미노트랜스퍼라제 변이체 및 이를 이용한 류신 생산방법

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
"Atlas Of Protein Sequence And Structure", 1979, NATIONAL BIOMEDICAL RESEARCH FOUNDATION, pages: 353 - 358
"Guide to Huge Computers", 1994, ACADEMIC PRESS
"Needleman-Wunsch algorithm", J. MOL. BIOL., vol. 48, 1970, pages 443 - 453
ATSCHUL, S., J MOLEC BIOL, vol. 215, 1990, pages 403
CARILLO, SIAM J APPLIED MATH, vol. 48, 1988, pages 1073
DEVEREUX, J. ET AL., NUCLEIC ACIDS RESEARCH, vol. 12, 1984, pages 387
GRIBSKOV ET AL., NUCL. ACIDS RES., vol. 14, 1986, pages 6745
J SAMBROOK ET AL.: "Molecular Cloning, A Laboratory Manual", 1989, COLD SPRING HARBOR LABORATORY PRESS
NEEDLEMAN ET AL., J MOL BIOL., vol. 48, 1970, pages 443
PEARSON ET AL., PROC. NATL. ACAD. SCI. USA, vol. 85, 1988, pages 2444
RICE ET AL., TRENDS GENET, vol. 16, 2000, pages 276 - 277
SMITHWATERMAN, ADV. APPL. MATH, vol. 2, 1981, pages 482

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022186487A1 (ko) 2021-03-05 2022-09-09 씨제이제일제당 (주) 이소프로필말레이트 신타제 변이체 및 이를 이용한 l-류신의 생산 방법

Also Published As

Publication number Publication date
CN115038787A (zh) 2022-09-09
EP4047085A4 (en) 2022-12-28
CN115038787B (zh) 2024-04-12
EP4047085A1 (en) 2022-08-24
KR102143964B1 (ko) 2020-08-12
AR120644A1 (es) 2022-03-09
AU2020398425A1 (en) 2022-06-09
JP2023503077A (ja) 2023-01-26
BR112022011021A2 (pt) 2022-08-16
US20220411832A1 (en) 2022-12-29
ZA202206109B (en) 2023-04-26
JP7378621B2 (ja) 2023-11-13
MX2022006827A (es) 2022-07-12

Similar Documents

Publication Publication Date Title
WO2019160301A1 (ko) 시트레이트 신타아제의 활성이 약화된 변이형 폴리펩타이드 및 이를 이용한 l-아미노산 생산방법
WO2021112469A1 (ko) 신규한 분지쇄 아미노산 아미노트랜스퍼라제 변이체 및 이를 이용한 류신 생산방법
WO2019117398A1 (ko) 5'-이노신산을 생산하는 미생물 및 이를 이용한 5'-이노신산의 생산 방법
WO2015064917A1 (ko) L-라이신 생산능이 향상된 코리네박테리움 속 미생물 및 이를 이용한 l-라이신 생산방법
WO2022225322A1 (ko) 신규한 f0f1 atp 합성효소 서브유닛 알파 변이체 및 이를 이용한 xmp 또는 gmp 생산 방법
WO2022163917A1 (ko) 신규한 단백질 변이체 및 이를 이용한 l-발린 생산 방법
WO2022154190A1 (ko) 신규한 포스포노아세테이트 하이드롤라제 변이체 및 이를 이용한 xmp 또는 gmp 생산 방법
WO2022154191A1 (ko) 신규한 2,5-다이케토-d-글루콘산 리덕타제 변이체 및 이를 이용한 xmp 또는 gmp 생산 방법
WO2022154177A1 (ko) 신규한 3d-(3,5/4)-트리하이드록시사이클로헥세인-1,2-다이온 아실하이드롤라아제 변이체 및 이를 이용한 imp 생산 방법
WO2022154181A1 (ko) 신규한 1,4-알파-글루칸-분지 효소 변이체 및 이를 이용한 imp 생산 방법
WO2022225319A1 (ko) 신규한 l-세린 암모니아 분해 효소 변이체 및 이를 이용한 xmp 또는 gmp 생산 방법
WO2022225320A1 (ko) 신규한 포스포글리세린산 디하이드로게나제 변이체 및 이를 이용한 xmp 또는 gmp 생산 방법
WO2022163922A1 (ko) 신규한 아스파라긴 신타제 변이체 및 이를 이용한 l-발린 생산 방법
WO2022163935A1 (ko) 신규한 글루코사민-6-포스페이트 디아미나제 변이체 및 이를 이용한 l-글루탐산 생산 방법
WO2022154178A1 (ko) 신규한 혐기성 코프로포르피리노겐 iii 옥시다제 변이체 및 이를 이용한 imp 생산 방법
WO2022163920A1 (ko) 신규한 시스테인 설피네이트 디설피나제 변이체 및 이를 이용한 l-발린 생산 방법
WO2022231369A1 (ko) 신규한 포르메이트 의존성 포스포리보실글리신아미드 포밀 전이효소 변이체 및 이를 이용한 imp 생산 방법
WO2022225321A1 (ko) 신규한 f0f1 atp 합성효소 서브유닛 감마 변이체 및 이를 이용한 xmp 또는 gmp 생산 방법
WO2022231371A1 (ko) 신규한 5-(카르복시아미노)이미다졸리보뉴클레오티드합성효소 변이체 및 이를 이용한 imp 생산 방법
WO2022158646A1 (ko) 신규한 쿠퍼익스포팅 p-type 에이티피에이즈 a 변이체 및 이를 이용한 l-트립토판 생산 방법
WO2022231067A1 (ko) 신규한 이중기능성 pyr 오페론 전사조절자/우라실 포스포리보실 전달 효소 변이체 및 이를 이용한 imp 생산 방법
WO2022215800A1 (ko) 신규한 분지쇄아미노산 투과효소 변이체 및 이를 이용한 l-발린 생산 방법
WO2022158652A1 (ko) 신규한 사이토신 퍼미에이즈 변이체 및 이를 이용한 l-트립토판 생산 방법
WO2022154188A1 (ko) 신규한 폴리케타이드 신타제 변이체 및 이를 이용한 xmp 또는 gmp 생산 방법
WO2022154189A1 (ko) 신규한 피토엔 신타제 변이체 및 이를 이용한 xmp 또는 gmp 생산 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20897508

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022529090

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020897508

Country of ref document: EP

Effective date: 20220516

ENP Entry into the national phase

Ref document number: 2020398425

Country of ref document: AU

Date of ref document: 20201124

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022011021

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112022011021

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220606