WO2020218736A1 - L-히스티딘 생산능이 강화된 미생물 및 이를 이용한 히스티딘 생산방법 - Google Patents

L-히스티딘 생산능이 강화된 미생물 및 이를 이용한 히스티딘 생산방법 Download PDF

Info

Publication number
WO2020218736A1
WO2020218736A1 PCT/KR2020/003317 KR2020003317W WO2020218736A1 WO 2020218736 A1 WO2020218736 A1 WO 2020218736A1 KR 2020003317 W KR2020003317 W KR 2020003317W WO 2020218736 A1 WO2020218736 A1 WO 2020218736A1
Authority
WO
WIPO (PCT)
Prior art keywords
histidine
cyca
seq
microorganism
protein
Prior art date
Application number
PCT/KR2020/003317
Other languages
English (en)
French (fr)
Inventor
허란
권나라
서창일
Original Assignee
씨제이제일제당 (주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 씨제이제일제당 (주) filed Critical 씨제이제일제당 (주)
Priority to JP2021562963A priority Critical patent/JP7394868B2/ja
Priority to AU2020262366A priority patent/AU2020262366B2/en
Priority to BR112021021219A priority patent/BR112021021219A2/pt
Priority to CN202080044663.7A priority patent/CN114502735B/zh
Priority to CA3137694A priority patent/CA3137694A1/en
Priority to EP20794478.6A priority patent/EP3954776A4/en
Priority to US17/605,648 priority patent/US20220205003A1/en
Publication of WO2020218736A1 publication Critical patent/WO2020218736A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/24Proline; Hydroxyproline; Histidine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/24Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
    • C07K14/245Escherichia (G)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/34Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Corynebacterium (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/77Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Corynebacterium; for Brevibacterium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0014Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0014Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4)
    • C12N9/0016Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4) with NAD or NADP as acceptor (1.4.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1003Transferases (2.) transferring one-carbon groups (2.1)
    • C12N9/1014Hydroxymethyl-, formyl-transferases (2.1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1077Pentosyltransferases (2.4.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/13Transferases (2.) transferring sulfur containing groups (2.8)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/18Carboxylic ester hydrolases (3.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/15Corynebacterium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y104/00Oxidoreductases acting on the CH-NH2 group of donors (1.4)
    • C12Y104/04Oxidoreductases acting on the CH-NH2 group of donors (1.4) with a disulfide as acceptor (1.4.4)
    • C12Y104/04002Glycine dehydrogenase (decarboxylating) (1.4.4.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y201/00Transferases transferring one-carbon groups (2.1)
    • C12Y201/02Hydroxymethyl-, formyl- and related transferases (2.1.2)
    • C12Y201/0201Aminomethyltransferase (2.1.2.10)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12Y203/01181Lipoyl(octanoyl) transferase (2.3.1.181)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y208/00Transferases transferring sulfur-containing groups (2.8)
    • C12Y208/01Sulfurtransferases (2.8.1)
    • C12Y208/01008Lipoyl synthase (2.8.1.8)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/01Carboxylic ester hydrolases (3.1.1)
    • C12Y301/01013Sterol esterase (3.1.1.13)

Definitions

  • the present application relates to a microorganism having enhanced L-histidine production capacity and a histidine production method using the same.
  • L-histidine is one of the 20 standard amino acids. From a nutritional point of view, it is not required in large amounts in adults, but is classified as an essential amino acid corresponding to growing children. In addition, L-histidine is involved in important physiological processes such as antioxidant and immune regulation, and is used in the medical industry, such as gastrointestinal ulcer treatment, a raw material for circulatory system treatment, and amino acid solution formulation.
  • Histidine is particularly high in hemoglobin, so it is mainly produced through proteolytic extraction using blood meal as a raw material. However, this has disadvantages such as low efficiency and environmental pollution.
  • L-histidine it is possible to produce L-histidine through microbial fermentation, but large-scale industrialization has not yet been achieved. This is because the biosynthesis of L-histidine has a competitive relationship with PRPP, a precursor for nucleotide synthesis, and has a complex biosynthetic process and regulatory mechanism that requires high energy.
  • the L-histidine-producing ability of microorganisms used in the fermentation method has conventionally been improved by inducing mutagenesis, selecting mutants, and controlling the metabolism of strains through genetic improvement.
  • the production of histidine using microorganisms is known to be biosynthesized through several steps from PRPP, but the first enzyme ATP phosphoribosyl transferase, among the enzymes involved in histidine biosynthesis, inhibits feedback by the final product, L-histidine or a derivative thereof. Occurs, there is a problem in industrially mass-producing L-histidine (International Publication No. WO2014-029376). Due to these complex biosynthetic processes and regulatory mechanisms, in order to produce L-histidine through microbial culture, approaches from various perspectives related to microbial metabolism were required.
  • the present inventors introduced a glycine transporter cycA derived from Corynebacterium ammoniagenes in order to develop a usable microorganism by introducing glycine discharged from the cell, and as a result, a microorganism producing L-histidine in a high yield was completed.
  • the present application provides a microorganism of the genus Corynebacterium producing L-histidine with enhanced glycine transporter activity.
  • the present application provides a composition for producing L-histidine comprising the microorganism of the present application.
  • the present application provides a method for preparing L-histidine comprising culturing the microorganism of the present application.
  • the present application provides a use of a microorganism of the genus Corynebacterium in which the activity of a glycine transporter is enhanced to produce L-histidine.
  • the microorganism for producing L-histidine of the present application has excellent histidine production ability, it can be utilized for efficient mass production of L-histidine.
  • One aspect of the present application provides a microorganism of the genus Corynebacterium for producing L-histidine, having enhanced glycine transporter activity.
  • glycine transporter of the present application is included without limitation as long as it is a protein having a function of introducing glycine into cells, and specifically, D-serine/D-alanine/glycine transporter (D-serine/D -alanine/glycine transporter).
  • the glycine transporter may be used in combination with a D-serine/D-alanine/glycine transporter or a glycine influx protein.
  • the "D-serine/D-alanine/glycine transporter” is a protein that can participate in both serine, alanine and glycine transport, and is a known database, NCBI Genbank. The information can be obtained by searching the D-Serine/D-Alanine/glycine transporter sequence in the back.
  • the transporter may be specifically CycA or AapA, and more specifically, may be a CycA protein, but is not limited thereto.
  • CycA protein in the present application refers to a protein involved in uptake of serine, alanine and glycine. CycA protein is encoded by the cycA gene, and the cycA gene is Escherichia coli , Klebsialla pneumoniae , Mycobacterium bovis , and Salmonella enterica . , Erwinia amylovora ( Erwinia amylovora ) and Corynebacterium ammonia genes ( Corynebacterium ammoniagenes ) is known to exist in microorganisms.
  • the CycA protein of the present application may include any one capable of enhancing histidine-producing ability.
  • the CycA protein may be derived from a microorganism of the genus Corynebacterium or genus Escherichia, and more specifically, may be derived from Corynebacterium ammonia genera, but is not limited thereto.
  • the Corynebacterium ammoniagenes is the same species as Brevibacterium ammoniagenes , Corynebacterium stationis , Brevibacterium stationis ) And were classified in the same taxon (International Journal of Systematic and Evolutionary Microbiology 60: 874-879).
  • the Brevibacterium ammonia genera has been renamed to Corynebacterium staionis.
  • Corynebacterium ammoniagenes Corynebacterium ammoniagenes
  • Brevibacterium ammoniagenes Corynebacterium stasis
  • Brevibacterium stasis and Brevibacterium stasis
  • the CycA protein of the present application may include SEQ ID NO: 1 or an amino acid sequence having 70% or more homology or identity thereto.
  • the CycA protein comprises the amino acid sequence of SEQ ID NO: 1, or at least 70%, 75%, 80%, 85%, 86%, 87%, 88%, 89% with the amino acid sequence of SEQ ID NO: 1, Amino acid sequences having 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% homology or identity may be included.
  • an amino acid sequence having the homology or identity and exhibiting efficacy corresponding to the protein is included within the scope of the present application, even if some sequences have an amino acid sequence that has been deleted, modified, substituted or added.
  • a probe that can be prepared from a known gene sequence for example, a polypeptide encoded by a polynucleotide hybridized under stringent conditions with a complementary sequence to all or part of the nucleotide sequence encoding the polypeptide, serine, Polypeptides having alanine and glycine influx activity may also be included without limitation.
  • the "conservative substitution” refers to the substitution of one amino acid for another amino acid having similar structural and/or chemical properties. Such amino acid substitutions can generally occur based on similarity in the polarity, charge, solubility, hydrophobicity, hydrophilicity and/or amphipathic nature of the residues.
  • positively charged (basic) amino acids include arginine, lysine, and histidine
  • Negatively charged (acidic) amino acids include glutamic acid and aspartic acid
  • Aromatic amino acids include phenylalanine, tryptophan and tyrosine
  • hydrophobic amino acids include alanine, valine, isoleucine, leucine, methionine, phenylalanine, tyrosine and tryptophan.
  • polynucleotide has the meaning of comprehensively including DNA or RNA molecules, and nucleotides, which are basic structural units in polynucleotides, may include not only natural nucleotides but also analogs with modified sugar or base moieties ( Scheit, Nucleotide Analogs, John Wiley, New York (1980); Uhlman and Peyman, Chemical Reviews, 90:543-584 (1990)).
  • the polynucleotide is at least 70%, 75%, 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91 with the polynucleotide encoding the CycA protein of the present application or the CycA protein of the present application It may be a polynucleotide encoding a polypeptide having %, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% homology or identity.
  • a polynucleotide encoding a protein comprising an amino acid sequence having 70% or more homology or identity to SEQ ID NO: 1 or SEQ ID NO: 1 and at least 70% of the polynucleotide sequence of SEQ ID NO: 2 or SEQ ID NO: 2 , 75%, 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99 It may be a polynucleotide having% homology or identity.
  • a protein comprising an amino acid sequence having 70% or more identity to SEQ ID NO: 1 or SEQ ID NO: 1 by codon degeneracy, or a polynucleotide that can be translated into a protein having homology or identity thereto may also be included. It is self-evident.
  • a probe that can be prepared from a known gene sequence for example, a complementary sequence for all or a part of the polynucleotide sequence and hydride under stringent conditions, having 70% or more identity with the amino acid sequence of SEQ ID NO: 1
  • Any polynucleotide sequence encoding a protein comprising an amino acid sequence may be included without limitation.
  • the "stringent conditions" refer to conditions that allow specific hybridization between polynucleotides.
  • genes with high homology or identity 70% or more, 80% or more, specifically 85% or more, specifically 90% or more, more specifically 95% or more, more specifically 97% or more
  • a condition in which genes having more than 99% homology or identity are hybridized, and genes with lower homology or identity are not hybridized or a washing condition of ordinary Southern hybridization, which is 60°C, 1 ⁇ SSC, 0.1% SDS, specifically 60° C., 0.1 ⁇ SSC, 0.1% SDS, more specifically 68° C., 0.1 ⁇ SSC, at a salt concentration and temperature corresponding to 0.1% SDS, once, specifically 2 to 3 times Conditions for washing can be listed.
  • Hybridization requires that two polynucleotides have a complementary sequence, although a mismatch between bases is possible depending on the stringency of the hybridization.
  • the term "complementary" is used to describe the relationship between nucleotide bases capable of hybridizing to each other. For example, with respect to DNA, adenosine is complementary to thymine and cytosine is complementary to guanine.
  • the present application may also include substantially similar polynucleotide sequences as well as isolated polynucleotide fragments that are complementary to the entire sequence.
  • polynucleotides having homology or identity can be detected using hybridization conditions including a hybridization step at a Tm value of 55° C. and using the above-described conditions.
  • the Tm value may be 60°C, 63°C, or 65°C, but is not limited thereto and may be appropriately adjusted by a person skilled in the art according to the purpose.
  • homology refers to the degree to which two given amino acid sequences or base sequences are related and may be expressed as a percentage.
  • the terms homology and identity can often be used interchangeably.
  • the sequence homology or identity of a conserved polynucleotide or polypeptide is determined by standard alignment algorithms, and the default gap penalty established by the program used can be used together.
  • Substantially, homologous or identical sequences are generally at least about 50%, 60%, 70%, 80% of the sequence full or full-length in medium or high stringent conditions. Or it can hybridize to 90% or more. Hybridization is also contemplated for polynucleotides containing degenerate codons instead of codons in the polynucleotide.
  • Homology or identity to the polypeptide or polynucleotide sequence can be determined, for example, by the algorithm BLAST by literature [see Karlin and Altschul, Pro. Natl. Acad. Sci. USA, 90, 5873 (1993)] or FASTA by Pearson (Methods Enzymol., 183, 63, 1990). Based on this algorithm BLAST, a program called BLASTN or BLASTX has been developed (see: http://www.ncbi.nlm.nih.gov).
  • the term "enhancing the activity of a protein” in the present application means that the activity is improved compared to the intrinsic activity of a protein possessed by a microorganism or activity before modification.
  • the activity enhancement may include both introduction of a foreign protein and enhancement of the activity of an intrinsic protein. That is, introducing a foreign protein into a microorganism having an intrinsic activity of a specific protein, and introducing the protein into a microorganism having no intrinsic activity are also included.
  • the "protein introduction” means that the activity of a specific protein is introduced into a microorganism and modified to be expressed. This can also be expressed by enhancing the activity of the protein.
  • the term "intrinsic" refers to a condition originally possessed by the parent strain before the change in the trait when the trait of a microorganism is changed due to genetic variation caused by natural or artificial factors.
  • It may be performed by a method of transforming to be strengthened by a combination thereof, but is not limited thereto.
  • the 1) increase in the copy number of the polynucleotide may be performed in a form operably linked to a vector, but is not particularly limited thereto, or may be performed by being inserted into a chromosome in a host cell.
  • the polynucleotide encoding the protein of the present invention is operably linked to a vector capable of replicating and functioning independently of the host and introduced into a host cell, or the polynucleotide is inserted into a chromosome in the host cell.
  • the polynucleotide is operably linked to a vector capable of being introduced into a host cell, thereby increasing the number of copies of the polynucleotide in the chromosome of the host cell.
  • 2) modification of the expression control sequence to increase the expression of the polynucleotide is not particularly limited thereto, but deletion, insertion, non-conservative or conservative substitution of the nucleic acid sequence to further enhance the activity of the expression control sequence, or It may be performed by inducing a mutation in the sequence by a combination of, or by replacing with a nucleic acid sequence having a stronger activity.
  • the expression control sequence although not particularly limited thereto, may include a promoter, an operator sequence, a sequence encoding a ribosome binding site, a sequence controlling termination of transcription and translation, and the like.
  • a strong heterologous promoter may be connected to the upper part of the polynucleotide expression unit.
  • the strong promoter include CJ7 promoter (Korean Patent No. 0620092 and WO2006/065095), lysCP1 promoter (WO2009/096689), EF -Tu promoter, groEL promoter, aceA or aceB promoter, and the like, but are not limited thereto.
  • modification of the polynucleotide sequence on the chromosome is not particularly limited thereto, but the expression control sequence by deletion, insertion, non-conservative or conservative substitution of the nucleic acid sequence to further enhance the activity of the polynucleotide sequence, or a combination thereof It can be carried out by inducing a phase mutation, or by replacing with an improved polynucleotide sequence to have a stronger activity.
  • introduction of a foreign polynucleotide sequence may be performed by introducing a foreign polynucleotide encoding a protein exhibiting the same/similar activity as the protein, or a codon-optimized variant polynucleotide thereof into a host cell.
  • the foreign polynucleotide may be used without limitation in its origin or sequence as long as it exhibits the same/similar activity as the protein.
  • the introduced foreign polynucleotide can be introduced into the host cell by optimizing its codon so that optimized transcription and translation are performed in the host cell.
  • the introduction may be performed by appropriately selecting a known transformation method by a person skilled in the art, and the introduced polynucleotide may be expressed in a host cell to produce a protein, thereby increasing its activity.
  • the method of modifying to be enhanced by the combination of 1) to 4) above includes an increase in the copy number of the polynucleotide encoding the protein, modification of the expression control sequence to increase its expression, and the polynucleotide on the chromosome Modification of the sequence and the modification of foreign polynucleotides or codon-optimized variant polynucleotides exhibiting the activity of the protein may be applied together.
  • vector refers to a DNA preparation containing a polynucleotide sequence encoding the protein of interest operably linked to a suitable regulatory sequence so that the protein of interest can be expressed in a suitable host.
  • the regulatory sequence may include a promoter capable of initiating transcription, any operator sequence for regulating such transcription, a sequence encoding a suitable mRNA ribosome binding site, and a sequence controlling termination of transcription and translation.
  • Vectors can be transformed into a suitable host cell and then replicated or function independently of the host genome, and can be integrated into the genome itself.
  • a polynucleotide encoding a target protein in a chromosome may be replaced with a mutated polynucleotide through a vector for intracellular chromosome insertion. Insertion of the polynucleotide into the chromosome may be performed by any method known in the art, for example, homologous recombination, but is not limited thereto.
  • the vector of the present application is not particularly limited, and any vector known in the art may be used.
  • Examples of commonly used vectors include natural or recombinant plasmids, cosmids, viruses and bacteriophages.
  • pWE15, M13, MBL3, MBL4, IXII, ASHII, APII, t10, t11, Charon4A, Charon21A, etc. can be used as a phage vector or a cosmid vector, and as a plasmid vector, pBR system, pUC system, pBluescriptII system , pGEM system, pTZ system, pCL system, pET system, etc. can be used.
  • pDZ, pACYC177, pACYC184, pCL, pECCG117, pUC19, pBR322, pMW118, pCC1BAC vectors, and the like can be used.
  • transformation in the present application means introducing a vector containing a polynucleotide encoding a target protein into a host cell so that the protein encoded by the polynucleotide can be expressed in the host cell.
  • Transformed polynucleotides may include all of them, whether inserted into the chromosome of the host cell or located outside the chromosome, as long as it can be expressed in the host cell.
  • the polynucleotide includes DNA and RNA encoding the target protein.
  • the polynucleotide may be introduced in any form as long as it can be introduced into a host cell and expressed.
  • the polynucleotide may be introduced into a host cell in the form of an expression cassette, which is a gene construct containing all elements necessary for self-expression.
  • the expression cassette may generally include a promoter operably linked to the polynucleotide, a transcription termination signal, a ribosome binding site, and a translation termination signal.
  • the expression cassette may be in the form of an expression vector capable of self-replicating.
  • the polynucleotide may be introduced into a host cell in its own form and operably linked to a sequence required for expression in the host cell, but is not limited thereto.
  • operably linked in the present application means that the gene sequence is functionally linked to a promoter sequence that initiates and mediates transcription of a polynucleotide encoding a protein of interest herein.
  • the method of transforming the vector of the present application includes any method of introducing a nucleic acid into a cell, and may be performed by selecting an appropriate standard technique as known in the art depending on the host cell. For example, electroporation, calcium phosphate (CaPO 4 ) precipitation, calcium chloride (CaCl 2 ) precipitation, microinjection, polyethylene glycol (PEG) method, DEAE-dextran method, cationic liposome method, and Lithium acetate-DMSO method, etc., but is not limited thereto.
  • microorganism producing L-histidine includes both wild-type microorganisms or microorganisms that have undergone natural or artificial genetic modification, and naturally has L-histidine-producing ability or L-histidine-producing ability It may mean a microorganism to which L-histidine-producing ability is imparted to the missing parent strain. Microorganisms whose specific mechanisms are weakened or strengthened due to reasons such as insertion of an external gene or enhancement or inactivation of an intrinsic gene, and a microorganism whose genetic mutation or activity is enhanced for the production of the desired L-histidine. I can.
  • the microorganism producing the L-histidine may be a microorganism having enhanced glycine transporter activity.
  • the restriction of the feedback of the histidine biosynthetic enzyme is suppressed, the enzymes involved in the histidine biosynthesis pathway are strengthened or inhibited, or the activity of the enzyme or protein that does not affect histidine biosynthesis is inactivated, thereby preventing metabolism to the histidine biosynthetic pathway.
  • It may be a microorganism that produces histidine by smoothing it.
  • the activity of the CycA protein is enhanced, or the HisG polypeptide is additionally mutated to inhibit the feedback restriction of the histidine biosynthesis pathway, or histidine biosynthesis including hisE, hisG, hisA, hisF, hisI, hisD, hisC, hisB, hisN
  • It may be a microorganism having enhanced expression of one or more of the genes encoding the enzyme group of the pathway.
  • inactivating enzymes in the histidine decomposition pathway inactivating the activity of proteins or enzymes on the pathways that consume intermediates, cofactors, or energy sources on the histidine biosynthetic pathway, or inactivate proteins that introduce the target product, histidine. It may be an inactivated microorganism.
  • gamma-aminobutyrate permease NCgl1108 may be an inactivated microorganism.
  • it may be a microorganism in which the activity of a protein or enzyme that is not associated with the growth of microorganisms or histidine biosynthesis is inactivated. More specifically, it may be a microorganism that weakens the activity of formyltetrahydrofolate deformylase (PurU), or transposase (NCgl2131), which does not affect the growth of microorganisms and biosynthesis of L-histidine. have.
  • PurU formyltetrahydrofolate deformylase
  • NCgl2131 transposase
  • activation of protein activity means that the expression of an enzyme or protein is not expressed at all compared to a natural wild-type strain, a parent strain, or a strain in which the corresponding protein is unmodified. Means that. In this case, the decrease is when the activity of the protein is decreased compared to the activity of the protein originally possessed by the microorganism due to mutation of the gene encoding the protein, modification of the expression control sequence, or deletion of a part or all of the gene, and the gene encoding it In the case where the overall protein activity level in the cell is lower than that of the native strain or the strain before transformation due to inhibition of expression of or translation inhibition, the concept includes a combination thereof.
  • the inactivation can be achieved by applying various methods well known in the art.
  • the method include: 1) a method of deleting all or part of the gene encoding the protein; 2) modification of the expression control sequence to reduce the expression of the gene encoding the protein, 3) modification of the gene sequence encoding the protein so that the activity of the protein is removed or weakened, 4) the gene encoding the protein Introduction of antisense oligonucleotides (eg, antisense RNA) that complementarily bind to the transcript of 5)
  • a secondary structure is formed by adding a sequence complementary to the sine-Dalgarno sequence to the front of the sine-Dalgarno sequence of the gene encoding the protein, thereby making it impossible to attach a ribosome.
  • the microorganism of the present application may be any microorganism including the glycine transporter and capable of producing L-histidine.
  • the "microorganism capable of producing L-histidine” may be used interchangeably with “a microorganism producing L-histidine", “a microorganism having L-histidine producing ability”, and “a microorganism for producing L-histidine”.
  • the microorganism producing histidine of the present application may have additionally enhanced activity of a glycine-degrading protein.
  • the "microorganisms producing histidine” and “enhancing the activity of proteins” are as described above.
  • glycine degrading protein of the present application is a protein directly or indirectly involved in the glycine decomposition pathway, and each protein constituting the "glycine cleavage system (GCV)", or a complex of the proteins Or it may be used to mean the glycine decomposition system itself.
  • GCV glycine cleavage system
  • the glycine degrading protein comprises T-protein (GcvT), P-protein (GcvP), L-protein (GcvL), H-protein (GcvH), and LipB, a coenzyme of the glycine degrading system.
  • LipA may be any one or more proteins selected from the group consisting of, but is not limited thereto (John E. Cronan, Microbiology and Molecular Biology Reviews., 13 April 2016).
  • the glycine-decomposing protein may be derived from a microorganism of the genus Corynebacterium, specifically Corynebacterium ammoniagenes, but is not limited thereto.
  • the GcvP protein is SEQ ID NO: 26
  • GcvT protein is SEQ ID NO: 27
  • GcvH is SEQ ID NO: 28
  • LipA protein is SEQ ID NO: 29
  • LipB protein is SEQ ID NO: 30, or 70% or more, respectively, or It may have identity, but is not limited thereto.
  • the GcvP protein comprises the amino acid sequence of SEQ ID NO: 26, or at least 70%, 75%, 80%, 85%, 86%, 87%, 88%, 89% with the amino acid sequence of SEQ ID NO: 26, Amino acid sequences having 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% homology or identity may be included.
  • a probe that can be prepared from a known gene sequence for example, a polypeptide encoded by a polynucleotide hybridized under stringent conditions with a complementary sequence to all or part of the nucleotide sequence encoding the polypeptide, glycine digestion
  • a polypeptide having an activity may also be included without limitation.
  • the homology or identity is as described above.
  • the term "the genus of Corynebacterium microorganisms that produce L-histidine” means a microorganism that produces L-histidine, and the genus of the microorganisms may mean a microorganism belonging to the genus Corynebacterium. .
  • the microorganism producing the L-histidine is as described above.
  • the microorganism of the genus Corynebacterium having L-histidine-producing ability is enhanced with the activity of the glycine transporter of the present application or transformed with a vector containing a gene encoding the glycine transporter, It may mean a microorganism of the genus Corynebacterium that has improved L-histidine production capability. In addition, it may refer to a microorganism of the genus Corynebacterium whose activity of the glycine-degrading protein is enhanced or transformed with a vector containing a gene encoding the glycine-degrading protein to have improved L-histidine production capacity. .
  • microorganism of the genus Corynebacterium that has improved L-histidine-producing ability refers to a microorganism having improved L-histidine-producing ability than a parent strain or an unmodified microorganism before transformation.
  • The'unmodified microorganism' is a native strain of the genus Corynebacterium itself, or a microorganism that does not contain the gene encoding the glycine transporter, or is not transformed with a vector containing the gene encoding the glycine transporter. Means microorganisms.
  • the microorganism of the genus Corynebacterium may include all microorganisms of the genus Corynebacterium. Specifically, Corynebacterium glutamicum, Corynebacterium crudilactis, Corynebacterium deserti, Corynebacterium deserti, Corynebacterium efficiens , Corynebacterium callunae, Corynebacterium stationis, Corynebacterium singulare, Corynebacterium halotolerans, Corynebacterium Corynebacterium striatum, Corynebacterium ammoniagenes, Corynebacterium pollutisoli, Corynebacterium imitans, Corynebacterium testudinoris (Corynebacterium testudinoris) or Corynebacterium flavescens, and more specifically Corynebacterium glutamicum.
  • Another aspect of the present application provides a composition for producing L-histidine, including the microorganism for producing L-histidine of the present application.
  • the composition for producing L-histidine may mean a composition capable of producing L-histidine by a microorganism producing L-histidine of the present application.
  • the composition includes a microorganism that produces the L-histidine, and may include an additional component capable of producing histidine using the strain without limitation. Additional components capable of producing the histidine may further include, for example, any suitable excipients commonly used in fermentation compositions, or components of the medium. Such excipients may be, for example, a preservative, a wetting agent, a dispersing agent, a suspending agent, a buffering agent, a stabilizing agent, or an isotonic agent, but are not limited thereto.
  • Another aspect of the present application provides a use of a microorganism of the genus Corynebacterium with enhanced activity of a glycine transporter for production of L-histidine.
  • Glycine transporter “enhancing activity” or “microorganisms of the genus Corynebacterium” are as described above.
  • Another aspect of the present application provides a method for preparing L-histidine comprising the step of culturing the microorganism.
  • the medium and other culture conditions used for culturing the microorganisms of the present application may be used without particular limitation as long as it is a medium used for culturing the microorganisms of the genus Corynebacterium.
  • the microorganisms of the present application are suitable carbon sources, It can be cultured while controlling temperature, pH, etc. under aerobic or anaerobic conditions in a conventional medium containing nitrogen sources, personnel, inorganic compounds, amino acids and/or vitamins.
  • the carbon source includes carbohydrates such as glucose, fructose, sucrose, and maltose; Alcohols such as sugar alcohol and glycerol; Fatty acids such as palmitic acid, stearic acid, and linoleic acid; Organic acids such as pyruvic acid, lactic acid, acetic acid, and citric acid; Amino acids such as glutamic acid, methionine, and lysine may be included, but are not limited thereto.
  • carbohydrates such as glucose, fructose, sucrose, and maltose
  • Alcohols such as sugar alcohol and glycerol
  • Fatty acids such as palmitic acid, stearic acid, and linoleic acid
  • Organic acids such as pyruvic acid, lactic acid, acetic acid, and citric acid
  • Amino acids such as glutamic acid, methionine, and lysine may be included, but are not limited thereto.
  • natural organic nutrients such as starch hydrolyzate, molasses, black strap molasses, rice winter, cassava, sugarcane residue and corn steep liquor can be used, and sterilized pretreated molasses (ie, molasses converted to reducing sugar), etc.
  • Carbohydrates can be used, and other appropriate amounts of carbon sources can be used in various ways without limitation. These carbon sources may be used alone or in combination of two or more.
  • nitrogen source examples include inorganic nitrogen sources such as ammonia, ammonium sulfate, ammonium chloride, ammonium acetate, ammonium phosphate, ammonium carbonate, and ammonium nitrate; Amino acids such as glutamic acid, methionine, glutamine, etc., organic nitrogen sources such as peptone, NZ-amine, meat extract, yeast extract, malt extract, corn steep liquor, casein hydrolyzate, fish or its degradation products, skim soybean cake or its degradation products, etc. Can be used. These nitrogen sources may be used alone or in combination of two or more, but are not limited thereto.
  • inorganic nitrogen sources such as ammonia, ammonium sulfate, ammonium chloride, ammonium acetate, ammonium phosphate, ammonium carbonate, and ammonium nitrate
  • Amino acids such as glutamic acid, methionine, glutamine, etc.
  • organic nitrogen sources such as peptone, NZ-amine,
  • the personnel may include first potassium phosphate, second potassium phosphate, or a sodium-containing salt corresponding thereto.
  • the inorganic compound sodium chloride, calcium chloride, iron chloride, magnesium sulfate, iron sulfate, manganese sulfate, calcium carbonate, and the like may be used.
  • the medium may contain vitamins and/or suitable precursors.
  • the medium or precursor may be added to the culture in a batch or continuous manner, but is not limited thereto.
  • a compound such as ammonium hydroxide, potassium hydroxide, ammonia, phosphoric acid, or sulfuric acid may be added to the culture in an appropriate manner during the culture of the microorganism to adjust the pH of the culture.
  • an antifoaming agent such as fatty acid polyglycol ester can be used to suppress the generation of air bubbles.
  • oxygen or oxygen-containing gas may be injected into the culture, or nitrogen, hydrogen or carbon dioxide gas may be injected without the injection of gas to maintain the anaerobic and microaerobic state.
  • the temperature of the culture may be 25° C. to 40° C., and more specifically, 28° C. to 37° C., but is not limited thereto.
  • the cultivation period may be continued until the production amount of the desired useful substance is obtained, and specifically, may be 1 to 100 hours, but is not limited thereto.
  • the L-histidine production method may include the step of recovering L-histidine from at least one material selected from the microorganism, the medium, a culture thereof, a supernatant of the culture, an extract of the culture, and a lysate of the microorganism after the culturing step. have.
  • the target substance, L-histidine may be recovered from the culture medium using a suitable method known in the art according to the method of culturing the microorganism of the present application, for example, a batch, continuous, or fed-batch culture method.
  • a suitable method known in the art for example, a batch, continuous, or fed-batch culture method.
  • methods such as precipitation, centrifugation, filtration, chromatography, and crystallization may be used.
  • the culture medium may be centrifuged at a low speed to remove biomass, and the resulting supernatant may be separated through ion exchange chromatography, but is not limited thereto.
  • the recovery step may include a purification process.
  • the mutation of microorganisms was induced using the following method.
  • a mutant strain was obtained using the histidine-producing strain KCCM11795P (Korea Patent Application No. 10-2016-0030092) produced through NTG treatment derived from Corynebacterium glutamicum ATCC13032.
  • the KCCM11795P strain was cultured in an activation medium for 16 hours, the activated strain was inoculated into a seed medium, and cultured for 14 hours, and 5 ml of the culture solution was recovered. After washing the recovered culture solution with 100 mM citric buffer, NTG (N-Methyl-N'-nitro-N-nitrosoguanidine) was added to a final concentration of 200 mg/L, and then treated for 20 minutes. And washed with 100 mM phosphate buffer. As a result of calculating the mortality rate by spreading the strain treated with NTG on a minimal medium, the mortality rate was 85%.
  • Glucose 5% Bactopeptone 1%, Sodium Chloride 0.25%, Yeast Extract 1%, Urea 0.4%, pH 7.2
  • each strain was inoculated into a 250 ml corner-baffle flask containing 25 ml of the seed medium, and cultured with shaking at 30° C. for 20 hours and 200 rpm. Then, 1 ml of the seed culture was inoculated into a 250 ml corner-baffle flask containing 25 ml of the production medium, and cultured with shaking at 30° C. for 24 hours and 200 rpm. After completion of the culture, the production of L-histidine and L-glycine was measured by HPLC.
  • Glucose 5% ammonium sulfate 2%, potassium monophosphate 0.1%, magnesium sulfate heptahydrate 0.05%, CSL (corn immersion solution) 2.0%, biotin 200 ⁇ g/L, calcium carbonate, pH 7.2,
  • the strain CA14-0682 an artificial mutant strain having resistance to high concentration TRA, has a 15% yield of L-histidine-producing ability.
  • the CA14-0682 strain was safely deposited with the Korea Microorganism Conservation Center (KCCM) and was given a deposit number as KCCM 80179.
  • KCCM Korea Microorganism Conservation Center
  • Example 2 Construction of a glycine transporter (CycA (Cam)) introduction vector derived from Corynebacterium ammonia gene
  • cycA (cam), SEQ ID NO: 2) encoding the CycA protein (hereinafter, CycA (Cam), SEQ ID NO: 1) derived from Corynebacterium ammonia gene, is inserted into the Corynebacterium glutamicum chromosome.
  • purU was used as an insertion site in Corynebacterium glutamicum (Journal of Biotechnology 104, 5-25 Jorn Kalinowski et al, 2003).
  • PCR was performed using a primer pair of SEQ ID NO: 3 and SEQ ID NO: 4, and SEQ ID NO: 5 and SEQ ID NO: 6 using the chromosome of ATCC13032 as a template.
  • PfuUltraTM high-reliability DNA polymerase (Stratagene) was used as a polymerase for the PCR reaction, and PCR conditions were denaturing 95° C., 30 seconds; Annealing 55° C., 30 seconds; And polymerization reaction at 72° C. and 2 minutes were repeated 28 times, and then polymerization reaction was performed at 72° C. for 5 minutes.
  • DNA fragments of 1606 bp del-purU (SEQ ID NO: 7) and 1625 bp del-purU (SEQ ID NO: 8) were obtained, respectively.
  • the obtained DNA product was purified using QIAGEN's PCR Purification kit, and then cloned using the pDZ (Korean Registered Patent No. 10-0924065) vector and TaKaRa's Infusion Cloning Kit, thereby purU deletion and target gene insertion vector pDZ ⁇ purU was prepared.
  • a promoter-linked cycA (Cam) DNA fragment (hereinafter, Pn-cycA (Cam))
  • the primers of SEQ ID NO: 9 and SEQ ID NO: 10 were used using the Corynebacterium ammoniagenes ATCC 6872 chromosome as a template. Then, PCR was performed. PfuUltraTM high-reliability DNA polymerase (Stratagene) was used as a polymerase for the PCR reaction, and PCR conditions were denaturing 95° C., 30 seconds; Annealing 55° C., 30 seconds; And polymerization reaction at 72° C. and 90 seconds were repeated 28 times, followed by polymerization at 72° C. for 5 minutes.
  • PfuUltraTM high-reliability DNA polymerase (Stratagene) was used as a polymerase for the PCR reaction, and PCR conditions were denaturing 95° C., 30 seconds; Annealing 55° C., 30 seconds; And polymerization reaction at 72
  • Example 3 Preparation of strains for introducing glycine transporter derived from CA14-0682 strain and evaluation of histidine production ability
  • the vector pDZ ⁇ purU::Pn-cycA (cam) prepared in Example 2 was transformed into CA14-0682 strain, and the purU gene on the chromosome was replaced in the form of Pn-cycA (cam) through a secondary crossover process.
  • the prepared CA14-0682 ⁇ purU strain, CA14-0682 ⁇ purU::Pn-cycA (Cam) strain was cultured by the method performed in Example 1 to confirm the L-histidine production ability and L-glycine production amount.
  • the parent strain CA14-0682 showed the production ability of L-histidine 14.85 g/L and L-glycine 7.41 g/L, while the purU-deficient strain had the same level of L-histidine production ability than the parent strain, whereas CA14-0682 ⁇ purU ::Pn-cycA(Cam) strain increased L-histidine production capacity by 4.3% and L-glycine production decreased by 13.8%.
  • L-histidine production capacity was increased when L-glycine from outside the cell was introduced into the cell through the introduction of a glycine influx gene.
  • cycA a recombinant vector overexpressing cycA (Cam) was constructed.
  • the known promoter pcj7 derived from a microorganism of the genus Corynebacterium (Korea Patent Registration No. 10-0620092) and a promoter of the gene glyA encoding a known serine hydroxymethyltransferase (hereinafter, PglyA) were used.
  • PCR was performed using p117-cj7-gfp containing pcj7 as a template.
  • PfuUltraTM high-reliability DNA polymerase (Stratagene) was used as the polymerase for the PCR reaction, and the PCR reaction was denatured using the primers of SEQ ID NO: 12 and SEQ ID NO: 13 at 95° C. for 30 seconds; Annealing 55° C., 30 seconds; And the polymerization reaction was repeated 28 times at 72°C for 30 seconds, and then polymerization was performed at 72°C for 1 minute.
  • the PCR product amplified therefrom was purified using QIAGEN's PCR Purification kit to obtain a pcj7 fragment having a size of 350bp.
  • PCR was performed using the Corynebacterium ammoniagenes ATCC 6872 chromosome as a template.
  • PfuUltraTM high-reliability DNA polymerase (Stratagene) was used as a polymerase for the PCR reaction, and the PCR reaction was denatured using the primers of SEQ ID NO: 14 and SEQ ID NO: 10 at 95° C. for 30 seconds; Annealing 55° C., 30 seconds; And the polymerization reaction was repeated 28 times at 72°C for 30 seconds, and then polymerization was performed at 72°C for 1 minute.
  • the PCR product amplified therefrom was purified using a PCR Purification kit from QIAGEN to obtain a cycA(Cam) fragment containing a part of the pcj7 sequence at 5′ of 1647bp size.
  • fusion PCR was performed using the primers of SEQ ID NO: 12 and SEQ ID NO: 10. PCR reaction was denatured at 95° C. for 30 seconds; Annealing 55° C., 30 seconds; And polymerization reaction at 72° C. and 2 minutes were repeated 28 times, and then polymerization reaction was performed at 72° C. for 5 minutes. As a result, a 1964 bp pcj7-cycA (Cam) gene fragment was obtained, and the amplified product was purified using a PCR Purification kit from QIAGEN and used as an insert DNA fragment for vector construction (SEQ ID NO: 15).
  • the obtained DNA product is purified using QIAGEN's PCR Purification kit, and then cloned using the pDZ ⁇ purU vector and TaKaRa's Infusion Cloning Kit to replace the purU gene with the pcj7-cycA(Cam) gene. ::pcj7-cycA(Cam) was produced.
  • PCR was performed using the chromosome of ATCC13032 as a template to obtain a PglyA DNA fragment.
  • PfuUltraTM high-reliability DNA polymerase (Stratagene) was used as a polymerase for the PCR reaction, and the PCR reaction was denatured using the primers of SEQ ID NO: 16 and SEQ ID NO: 17 at 95° C. for 30 seconds; Annealing 55° C., 30 seconds; And the polymerization reaction was repeated 28 times at 72°C for 30 seconds, and then polymerization was performed at 72°C for 1 minute.
  • the PCR product amplified therefrom was purified using QIAGEN's PCR Purification kit to obtain a PglyA fragment having a size of 340 bp.
  • PCR was performed using the Corynebacterium ammoniagenes ATCC 6872 chromosome as a template.
  • PfuUltraTM high-reliability DNA polymerase (Stratagene) was used as a polymerase for the PCR reaction, and the PCR reaction was denatured using the primers of SEQ ID NO: 18 and SEQ ID NO: 10 at 95° C. for 30 seconds; Annealing 55° C., 30 seconds; And the polymerization reaction was repeated 28 times at 72°C for 30 seconds, and then polymerization was performed at 72°C for 1 minute.
  • the PCR product amplified therefrom was purified using QIAGEN's PCR Purification kit to obtain a cycA(Cam) fragment containing a part of the PglyA sequence at 5'of 1647bp size.
  • fusion PCR was performed using the primers of SEQ ID NO: 16 and SEQ ID NO: 10. PCR reaction was denatured at 95° C. for 30 seconds; Annealing 55° C., 30 seconds; And polymerization reaction at 72° C. and 2 minutes were repeated 28 times, and then polymerization reaction was performed at 72° C. for 5 minutes. As a result, a 1963bp PglyA-cycA(Cam) gene fragment was obtained, and the amplification product was purified using a PCR Purification kit from QIAGEN, and used as an insert DNA fragment for vector construction (SEQ ID NO: 19).
  • the obtained DNA product is purified using QIAGEN's PCR Purification kit, and then cloned using the pDZ ⁇ purU vector and TaKaRa's Infusion Cloning Kit to replace the purU gene with the PglyA-cycA (Cam) gene. ::PglyA-cycA (Cam) was produced.
  • CycA protein derived from Escherichia coli K-12 (hereinafter, CycA (Eco), SEQ ID NO: 20) previously known to compare the activity of the CycA protein derived from Corynebacterium ammoniagenes (Microbiology, 141 (Pt 1); 133-40, 1995) gene encoding cycA (hereinafter, cycA (Eco), SEQ ID NO: 21) was operatively linked to pcj7 to introduce a vector.
  • PCR was performed using p117-cj7-gfp containing pcj7 as a template.
  • PfuUltra TM high-reliability DNA polymerase (Stratagene) was used as a polymerase for the PCR reaction, and the PCR reaction was denatured using the primers of SEQ ID NO: 12 and SEQ ID NO: 22 at 95° C. for 30 seconds; Annealing 55° C., 30 seconds; And the polymerization reaction was repeated 28 times at 72°C for 30 seconds, and then polymerization was performed at 72°C for 1 minute.
  • the PCR product amplified therefrom was purified using QIAGEN's PCR Purification kit to obtain a pcj7 fragment having a size of 350bp.
  • PCR was performed using primers of SEQ ID NO: 23 and SEQ ID NO: 24 using the E. coli K-12 W3110 chromosome as a template.
  • PfuUltraTM high-reliability DNA polymerase (Stratagene) was used as a polymerase for the PCR reaction, and PCR conditions were denaturing 95° C., 30 seconds; Annealing 55° C., 30 seconds; And after the polymerization reaction was repeated 28 times at 72°C for 1 minute, polymerization was performed at 72°C for 5 minutes.
  • a 1659 bp cycA (Eco) gene fragment was obtained, and the amplified product was purified using a PCR Purification kit from QIAGEN and used as an insert DNA fragment for vector construction.
  • fusion PCR was performed using the primers of SEQ ID NO: 12 and SEQ ID NO: 24. PCR reaction was denatured at 95° C. for 30 seconds; Annealing 55° C., 30 seconds; And polymerization reaction at 72° C. and 90 seconds were repeated 28 times, followed by polymerization at 72° C. for 5 minutes. As a result, a 1985 bp pcj7-cycA (Eco) gene fragment was obtained (SEQ ID NO: 25).
  • the amplification product is purified using QIAGEN's PCR Purification kit, and then cloned into pDZ ⁇ purU vector using TaKaRa's Infusion Cloning Kit according to the manual provided, thereby replacing the purU gene with the pcj7-cycA(Eco) gene. ::pcj7-cycA (Eco) was produced.
  • Example 6 CA14-0682 strain-derived cycA (Cam) or cycA (Eco) overexpressing strain production and histidine production ability comparison
  • CA14-0682 strain as a parent strain, four vectors (pDZ ⁇ purU, pDZ ⁇ purU::pcj7-cycA(Cam), pDZ ⁇ purU::PglyA-cycA(Cam)) designed to produce cycA (Cam) or cycA (Eco) overexpressing strains , pDZ ⁇ purU::pcj7-cycA (Eco)) was transformed into CA14-0682 strain by electroporation, respectively, and purU deletion on chromosome and pcj7-cycA (Cam) or PglyA-cycA (Cam) through a secondary crossover process Alternatively, a strain substituted in the form of pcj7-cycA (Eco) was obtained.
  • CA14-0682 ⁇ purU::pcj7-cycA(Eco) strain into which E. coli-derived cycA was introduced had little Gly influx and showed less than the same level of histidine-producing ability compared to the parent strain.
  • CA14-0682 ⁇ purU::pcj7-cycA(Cam) strain and CA14-0682 ⁇ purU::PglyA_cycA(Cam) strain in which cycA derived from Corynebacterium ammoniagenes was fortified and introduced Gly production ability decreased, and histidine production ability was poor.
  • GCV system Glycine Cleavage System
  • gcvP-gcvT gcvH-lipB-lipA
  • gcvPT Corynebacterium ammoniagenes chromosome
  • gcvH-lipBA Corynebacterium ammoniagenes chromosome
  • PCR was performed using the primer pairs of SEQ ID NO: 36 and SEQ ID NO: 37, and SEQ ID NO: 38 and SEQ ID NO: 39 using the ATCC13032 chromosome as a template.
  • PfuUltraTM high-reliability DNA polymerase (Stratagene) was used as a polymerase for the PCR reaction, and PCR conditions were denaturing 95° C., 30 seconds; Annealing 55° C., 30 seconds; And polymerization reaction at 72° C. and 2 minutes were repeated 28 times, and then polymerization reaction was performed at 72° C. for 5 minutes.
  • DNA fragments of 531bp del-N2131L (SEQ ID NO: 40) and 555bp del-N2131R (SEQ ID NO: 41) were obtained, respectively.
  • the obtained DNA product was purified using QIAGEN's PCR Purification kit, and then cloned using a pDZ vector and TaKaRa's Infusion Cloning Kit to prepare a vector for NCgl2131 gene deletion and target gene insertion, pDZ ⁇ N2131.
  • PCR was performed using the primers of SEQ ID NO: 42 and SEQ ID NO: 43 using the Corynebacterium ammoniagenes ATCC 6872 chromosome as a template.
  • PfuUltraTM high-reliability DNA polymerase (Stratagene) was used as a polymerase for the PCR reaction, and PCR conditions were denaturing 95° C., 30 seconds; Annealing 55° C., 30 seconds; And polymerization reaction at 72° C. and 5 minutes were repeated 28 times, and then polymerization reaction was performed at 72° C. for 7 minutes.
  • a 4499 bp Pn_gcvPT (Cam) gene fragment including a promoter was obtained, and the amplification product was purified using a PCR Purification kit from QIAGEN and used as an insertion DNA fragment for vector construction (SEQ ID NO: 44).
  • Pn_gcvH-lipBA Cam
  • PfuUltraTM high-reliability DNA polymerase (Stratagene) was used as a polymerase for the PCR reaction, and PCR conditions were denaturing 95° C., 30 seconds; Annealing 55° C., 30 seconds; And after the polymerization reaction was repeated 28 times at 72°C for 1 minute, polymerization was performed at 72°C for 7 minutes.
  • fusion PCR was performed using the primers of SEQ ID NO: 42 and SEQ ID NO: 46. PCR reaction was denatured at 95° C. for 30 seconds; Annealing 55° C., 30 seconds; And the polymerization reaction was repeated 28 times at 72°C for 10 minutes, and then polymerization was performed at 72°C for 12 minutes.
  • Example 8 CA14-0682 strain-derived glycine degradation system and glycine transporter-introduced strain production and histidine production ability evaluation
  • the vectors pDZ ⁇ N2131 and pDZ ⁇ N2131::GCV (Cam) prepared in Example 7 were transformed into CA14-0682 strain and CA14-0682-cycA (Cam) strain, and the NCgl2131 gene deletion strain (CA14- 0682-cycA(Cam) ⁇ N2131), a strain introduced with a glycine digestion system alone, and two strains in which both a glycine digestion system and a glycine transporter were introduced (CA14-0682 ⁇ N2131::GCV(Cam), CA14-0682-cycA(Cam) ⁇ N2131) ::GCV(Cam)) was produced.
  • CA14-0682-cycA(Cam) ⁇ N2131 strain in which only the glycine influxer cycA(Cam) was introduced, increased histidine production by 7.6% and glycine production by 10.6% compared to CA14-0682 strain, and CA14- in Table 3 0682 ⁇ purU::PglyA_cycA(Cam) (named CA14-0682-cycA(Cam)) was confirmed at the same level as the strain result.
  • CA14-0682 ⁇ N2131::GCV(Cam) strain into which the glycine degradation system was introduced, histidine production was increased by 9.8% and glycine production decreased by 36.8% compared to the CA14-0682 strain.
  • the CA14-0682-cycA(Cam) ⁇ N2131::GCV(Cam) strain in which GCV was added to the CA14-0682-cycA(Cam) ⁇ N2131 strain, increased histidine production by 13.7% and glycine production by 69.1% compared to the parent strain. Decreased.
  • the first enzyme in the L-histidine biosynthetic pathway the 233th and 235th amino acids from the N-terminus of HisG were added from glycine to histidine (hereinafter, G233H mutation), threonine was simultaneously substituted with glutamine (hereinafter, T235Q) (SEQ ID NO: 48) (ACS Synth. Biol., 2014, 3 (1), pp 21-29).
  • residues 233 and 235 of the hisG polypeptide using the primers of SEQ ID NO: 49 and SEQ ID NO: 50 using the Corynebacterium glutamicum ATCC13032 chromosomal DNA as a template to create a vector for inserting the hisG polypeptide mutation.
  • the upstream region (hereinafter, G233H, T235Q-5'), using the primers of SEQ ID NO: 51 and SEQ ID NO: 52, the downstream region of residues 233 and 235 of the hisG polypeptide (hereinafter, G233H, T235Q -3') was obtained through PCR.
  • Solg TM Pfu-X DNA polymerase As the polymerase, Solg TM Pfu-X DNA polymerase was used, and PCR amplification conditions were after denaturation at 95°C for 5 minutes, denaturation at 95°C for 30 seconds, annealing at 60°C for 30 seconds, and polymerization at 72°C for 60 seconds. , Polymerization was performed at 72° C. for 5 minutes.
  • the amplified G233H,T235Q-5' fragment and G233H,T235Q-3' fragment were combined with pDZ and Gibson assembly (DG Gibson et al., NATURE METHODS, VOL.6 NO.5, MAY 2009, NEBuilder HiFi DNA Assembly Master Mix) method.
  • the hisG polypeptide mutant introduction vector pDZ-hisG was prepared by cloning using.
  • the prepared pDZ-hisG (G233H, T235Q) vector was transformed into a wild-type Corynebacterium glutamicum ATCC13032 strain by electroporation, and then amino acids 233 and 235 of the HisG polypeptide on the chromosome through a second crossover process were respectively Glycine to histidine and threonine to glutamine was replaced with a strain was obtained.
  • the genetic manipulation was confirmed through PCR and sequencing using SEQ ID NO: 53 and SEQ ID NO: 54, which can amplify the external regions of the homologous recombination upstream region and downstream region into which the gene was inserted, respectively, and this was named CA14-0011. .
  • biosynthetic genes separated into a total of four operons were produced and introduced into clusters in which promoters were substituted.
  • biosynthetic genes separated into a total of four operons were previously known as three synthetic promoters.
  • lysCP1 Korea Patent Registration No. 10-0930203
  • pcj7 or SPL13 (Korea Registration Patent No. 10-1783170 B1)
  • gapA gene promoter and operably linked, and each operon was clustered and introduced at once.
  • the insertion site was the Ncgl1108 gene encoding gamma-aminobutyrate permase (Microb Biotechnol. 2014 Jan;7(1):5-25).
  • NCgl1108 Upstream region (hereinafter, N1108-5') was identified using the primers of SEQ ID NO: 55 and SEQ ID NO: 56 using Corynebacterium glutamicum ATCC13032 chromosomal DNA as a template, Using the primers of SEQ ID NO: 57 and SEQ ID NO: 58, a gene fragment of the Ncgl1108 downstream (Downsteam) region (hereinafter, N1108-3') was obtained through PCR.
  • Solg TM Pfu-X DNA polymerase As the polymerase, Solg TM Pfu-X DNA polymerase was used, and PCR amplification conditions were after denaturation at 95°C for 5 minutes, denaturation at 95°C for 30 seconds, annealing at 60°C for 30 seconds, and polymerization at 72°C for 60 seconds. , Polymerization was carried out at 72° C. for 5 minutes.
  • the amplified N1108-5' fragment and the N1108-3' fragment were cloned using the pDZ and Gibson assembly method to construct an NCgl1108 deletion vector pDZ ⁇ N1108 vector.
  • the prepared pDZ- ⁇ NCgl1108 vector was transformed into CA14-0011 strain by electroporation, followed by a second crossover process to obtain a strain in which the NCgl1108 gene was disrupted on the chromosome.
  • the genetic manipulation was confirmed through PCR and sequencing using SEQ ID NO: 59 and SEQ ID NO: 60, which can amplify the external regions of the homologous recombination upstream region and the downstream region where the gene is crushed, respectively, and this was named CA14-0736. .
  • PCR was performed using the chromosome of the KCCM10919P strain (Korean Patent No. 10-0930203) as a template.
  • PfuUltraTM high-reliability DNA polymerase (Stratagene) was used as a polymerase for the PCR reaction, and the PCR reaction was denatured using the primers of SEQ ID NO: 61 and SEQ ID NO: 62 at 95° C. for 30 seconds; Annealing 55° C., 30 seconds; And the polymerization reaction was repeated 28 times at 72°C for 30 seconds, and then polymerization was performed at 72°C for 1 minute.
  • the PCR product amplified therefrom was purified using QIAGEN's PCR Purification kit to obtain a lysCP1 fragment.
  • PCR was performed using the chromosome of CA14-0011 strain as a template. PCR reaction was performed by denaturing the primers of SEQ ID NO: 63 and SEQ ID NO: 64 at 95° C. for 30 seconds; Annealing 55° C., 30 seconds; And polymerization reaction at 72° C. and 2 minutes were repeated 28 times, and then polymerization reaction was performed at 72° C. for 5 minutes.
  • the PCR product amplified therefrom was purified using QIAGEN's PCR Purification kit to obtain a hisE-hisG fragment.
  • PCR was performed using the Corynebacterium glutamicum ATCC13032 chromosome as a template.
  • PCR reaction was denatured using the primers of SEQ ID NO: 65 and SEQ ID NO: 66 at 95° C. for 30 seconds; Annealing 55° C., 30 seconds; And polymerization reaction at 72° C. and 2 minutes were repeated 28 times, and then polymerization reaction was performed at 72° C. for 5 minutes.
  • the PCR product amplified therefrom was purified using QIAGEN's PCR Purification kit to obtain a PgapA fragment.
  • PCR was performed using the chromosome of CA14-0011 as a template. PCR reaction was performed using the primers of SEQ ID NO: 67 and SEQ ID NO: 68, denatured at 95°C for 30 seconds; Annealing 55° C., 30 seconds; And polymerization reaction at 72° C. and 2 minutes were repeated 28 times, and then polymerization reaction was performed at 72° C. for 5 minutes.
  • the PCR product amplified therefrom was purified using QIAGEN's PCR Purification kit to obtain a hisA-impA-hisF-hisI fragment.
  • PCR was performed using SPL13 DNA as a template.
  • PCR reaction was denatured using the primers of SEQ ID NO: 69 and SEQ ID NO: 70, 30 seconds; Annealing 55° C., 30 seconds; And after the polymerization reaction was repeated 28 times at 72°C for 1 minute, polymerization was performed at 72°C for 5 minutes.
  • the PCR product amplified therefrom was purified using QIAGEN's PCR Purification kit to obtain an SPL13 DNA fragment.
  • PCR was performed using p117-cj7-gfp containing pcj7 as a template.
  • PfuUltra TM high-reliability DNA polymerase (Stratagene) was used as a polymerase for the PCR reaction, and the PCR reaction was denatured using the primers of SEQ ID NO: 71 and SEQ ID NO: 72 at 95° C. for 30 seconds; Annealing 55° C., 30 seconds; And the polymerization reaction was repeated 28 times at 72°C for 30 seconds, and then polymerization was performed at 72°C for 1 minute.
  • the PCR product amplified therefrom was purified using QIAGEN's PCR Purification kit to obtain a pcj7 fragment.
  • PCR was performed using the chromosome of the CA14-0011 strain as a template. PCR reaction was performed using the primers of SEQ ID NO: 73 and SEQ ID NO: 74, denatured at 95°C for 30 seconds; Annealing 55° C., 30 seconds; And polymerization reaction at 72° C. and 5 minutes were repeated 28 times, and then polymerization reaction was performed at 72° C. for 5 minutes.
  • the PCR product amplified therefrom was purified using QIAGEN's PCR Purification kit to obtain a hisD-hisC-hisB gene fragment.
  • PCR was performed using the chromosome of the CA14-0011 strain as a template. PCR reaction was denatured using the primers of SEQ ID NO: 75 and SEQ ID NO: 76 at 95° C. for 30 seconds; Annealing 55° C., 30 seconds; And polymerization reaction at 72° C. and 5 minutes were repeated 28 times, and then polymerization reaction was performed at 72° C. for 5 minutes.
  • the PCR product amplified therefrom was purified using QIAGEN's PCR Purification kit to obtain a cg0911-hisN gene fragment.
  • the obtained lysCP1 DNA fragment, hisE-hisG DNA fragment, PgapA DNA fragment, hisA-impA-hisF-hisI DNA fragment, SPL13 DNA fragment, hisD-hisC-hisB DNA fragment, pcj7 DNA fragment, cg0911-hisN DNA fragment was pDZ- L-histidine biosynthesis enhanced cluster introduction vector pDZ- ⁇ Ncgl1108::lysCP1_hisEG-PgapA_hisA-impA-hisFI-SPL13_HisDCB-pcj7_cg0911-hisN was constructed by cloning using ⁇ Ncgl1108 vector and Gibson assembly method.
  • the prepared pDZ- ⁇ Ncgl1108::lysCP1_hisEG-PgapA_hisA-impA-hisFI-SPL13_hisDCB-pcj7_cg0911-hisN vector was transformed by electroporation into CA14-0011 strain, followed by a secondary crossover process, and then the strain in which the biosynthetic gene was inserted on the chromosome Got it.
  • the genetic manipulation was confirmed through PCR and genome sequencing using SEQ ID NO: 59 and SEQ ID NO: 60, which can amplify the external regions of the homologous recombination upstream region and downstream region into which the gene was inserted, respectively, and this was named CA14-0737. I did.
  • the CA14-0737 strain was internationally deposited with the Korea Microbial Conservation Center (KCCM), an international depository under the Budapest Treaty, on November 27, 2018, and was given a deposit number as KCCM12411P.
  • KCCM Korea Microbial Conservation Center
  • Example 10 CA14-0737 strain-derived glycine transporter and glycine degradation system introduced strain production
  • the constructed vector 4 types (pDZ ⁇ purU, pDZ ⁇ purU::PglyA-cycA(Cam), pDZ ⁇ purU::pcj7-cycA(Cam), pDZ ⁇ purU::pcj7-cycA(Eco)) CA14-0737
  • the strain was transformed, and a purU gene deletion strain, a cycA (Cam) introduced strain, and a cycA (Eco) introduced strain were produced through a second cross-over process, which were CA14-0737 ⁇ purU, CA14-0737 ⁇ purU::PglyA-cycA(Cam) , CA14-0737 ⁇ purU::pcj7-cycA (Cam), CA14-0737 ⁇ purU::pcj7-cycA (Eco) were prepared.
  • CA14-0737 88.4 100 4.11 2.21 CA14-0737 ⁇ purU 87.9 100 4.20 2.24 CA14-0737 ⁇ purU::PglyA-cycA(Cam) 87.4 100 4.93 1.90 CA14-0737 ⁇ purU::pcj7-cycA(Cam) 84.1 100 4.97 1.95 CA14-0737 ⁇ purU::pcj7-cycA(Eco) 88.9 100 4.29 2.20
  • the CA14-0737 ⁇ purU::pcj7-cycA(Eco) strain into which E. coli-derived cycA was introduced showed almost no Gly influx and thus showed the same level of histidine-producing ability compared to the parent strain.
  • the CA14-0737 ⁇ purU::pcj7-cycA(Cam) strain in which cycA derived from Corynebacterium ammoniagenes was fortified histidine production capacity increased by 20.9% compared to the parent strain, and glycine production was decreased by 11.8%. .
  • CA14-0737 ⁇ purU::PglyA-cycA(Cam) strain was named CA14-0737-cycA(Cam).
  • the vectors pDZ ⁇ N2131 and pDZ ⁇ N2131::GCV (Cam) prepared in Example 7 were transformed into CA14-0737 strain and CA14-0737-cycA (Cam) strain, and the NCgl2131 gene deletion strain (CA14-0737) through a second crossover process.
  • -cycA(Cam) ⁇ N2131 a glycine decomposition system alone introduced strain and two strains into which both a glycine decomposing system and a glycine transporter were introduced (CA14-0737 ⁇ N2131::GCV(Cam), CA14-0737-cycA(Cam) ⁇ N2131: :GCV(Cam)) was produced.
  • CA14-0737-cycA(Cam) ⁇ N2131 strain CA14-0737 ⁇ N2131::GCV(Cam) strain
  • CA14-0737-cycA(Cam) ⁇ N2131::GCV(Cam) strain of L-histidine production and L-glycine In order to check the amount of production, it was cultured by the method performed in Example 1.
  • CA14-0737-cycA(Cam) strain was named CA14-0777, and CA14-0737-cycA(Cam) ⁇ N2131::GCV(Cam)
  • the strain was named CA14-0809, and the two strains were internationally deposited on April 15, 2019 with the Korea Microbial Conservation Center (KCCM), an international depository under the Budapest Treaty, and were given deposit numbers as KCCM12488P and KCCM12489P, respectively.
  • KCCM Korea Microbial Conservation Center

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Saccharide Compounds (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 출원은 L-히스티딘 생산능이 강화된 미생물 및 이를 이용한 히스티딘 생산방법에 관한 것이다.

Description

L-히스티딘 생산능이 강화된 미생물 및 이를 이용한 히스티딘 생산방법
본 출원은 L-히스티딘 생산능이 강화된 미생물 및 이를 이용한 히스티딘 생산방법에 관한 것이다.
L-히스티딘은 20개의 표준 아미노산들 가운데 하나의 아미노산으로, 영양학적인 관점에서 볼 때 성인에게는 많은 양이 요구되지 않지만, 성장기 어린이들에게는 해당하는 필수 아미노산으로 분류된다. 또한, L-히스티딘은 항산화와 면역 조절 등 중요한 생리적 과정에 관여하여 위장 궤양 치료제, 순환기계 치료제의 원료 및 아미노산 수액 제제 등 의학 산업에 사용된다.
히스티딘은 특히 헤모글로빈에 많이 들어 있어서, 주로 혈분을 원료로 하는 단백질 가수 분해 추출법을 통해 주로 생산된다. 그러나, 이는 낮은 효율과 환경 오염 등의 단점을 지니고 있다. 반면, 미생물 발효법을 통하여 L-히스티딘을 생산 하는 것은 가능하나, 대규모 공업화는 아직 이루어 지지 않았다. 이는 L-히스티딘의 생합성이 뉴클레오티드 합성 전구체인 PRPP와 경쟁 관계를 가지며, 고 에너지를 요구하는 복잡한 생합성 과정 및 조절 메커니즘을 가지고 있기 때문이다.
발효법에 사용되는 미생물의 L-히스티딘 생산능은 종래에는 돌연변이 유발 및 돌연변이체 선발 방법, 유전자 개량을 통한 균주의 신진대사를 조절하는 방법으로 개선시켰다. 최근 미생물을 이용한 히스티딘의 생산은 PRPP로부터 여러 단계를 거쳐 생합성 된다고 알려져 있으나, 히스티딘 생합성에 관여하는 효소들중 첫번째 효소인 ATP 포스포리보실 전이효소는 최종 산물인 L-히스티딘 또는 이의 유도체에 의한 피드백 저해가 발생하여 공업적으로 L-히스티딘을 대량생산하는데 문제점이 있다 (국제공개특허 제WO2014-029376호). 이러한 복잡한 생합성 과정 및 조절 메커니즘으로 인하여 L-히스티딘을 미생물 배양을 통해 생산하기 위해서는 미생물 대사와 관련된 다양한 시각에서의 접근이 필요하였다.
본 발명자들은 세포 밖으로 배출된 글리신을 유입시켜 이용 가능한 미생물을 개발하기 위해 코리네박테리움 암모니아게네스 유래 글리신 트랜스포터 cycA를 도입하였으며, 그 결과 높은 수율로 L-히스티딘을 생산하는 미생물을 완성하였다.
본 출원은 글리신 트랜스포터 활성이 강화된, L-히스티딘을 생산하는 코리네박테리움속 미생물을 제공한다.
본 출원은 본 출원의 미생물을 포함하는 L-히스티딘 생산용 조성물을 제공한다.
본 출원은 본 출원의 미생물을 배양하는 단계를 포함하는 L-히스티딘 제조방법을 제공한다.
본 출원은 글리신 트랜스포터의 활성이 강화된 코리네박테리움 속 미생물의 L-히스티딘 생산 용도를 제공한다.
본 출원의 L-히스티딘 생산용 미생물은 우수한 히스티딘 생산능을 갖는바, 효율적인 L-히스티딘의 대량 생산에 활용될 수 있다.
이를 구체적으로 설명하면 다음과 같다. 한편, 본 출원에서 개시된 각각의 설명 및 실시형태는 각각의 다른 설명 및 실시 형태에도 적용될 수 있다. 즉, 본 출원에서 개시된 다양한 요소들의 모든 조합이 본 출원의 범주에 속한다. 또한, 하기 기술된 구체적인 서술에 의하여 본 출원의 범주가 제한된다고 볼 수 없다.
또한, 당해 기술분야의 통상의 지식을 가진 자는 통상의 실험만을 사용하여 본 출원에 기재된 본 출원의 특정 양태에 대한 다수의 등가물을 인지하거나 확인할 수 있다. 또한, 이러한 등가물은 본 출원에 포함되는 것으로 의도된다.
본 출원의 하나의 양태는 글리신 트랜스포터 활성이 강화된, L-히스티딘 생산용 코리네박테리움 속 미생물을 제공한다.
본 출원의 용어 "글리신 트랜스포터(glycine transporter)" 는 세포 내로 글리신을 유입하는 기능을 갖는 단백질이라면 제한 없이 포함되며, 구체적으로는 D-세린/D-알라닌/글리신 트랜스포터(D-serine/D-alanine/glycine transporter)일 수 있다. 상기 글리신 트랜스포터는 D-세린/D-알라닌/글리신 트랜스포터 또는 글리신 유입 단백질과 혼용되어 사용될 수 있다.
상기 "D-세린/D-알라닌/글리신 트랜스포터(D-serine/D-alanine/glycine transporter)"는, 세린, 알라닌 및 글리신 수송에 모두 관여할 수 있는 단백질로, 공지의 데이터 베이스인 NCBI Genbank 등에서 D-Serine/D-Alanine/glycine transporter 서열을 검색하여 그 정보를 얻을 수 있다. 상기 트랜스포터는 구체적으로 CycA, AapA 일 수 있고, 보다 구체적으로는 CycA 단백질일 수 있으나, 이에 제한되지 않는다.
본 출원의 "CycA 단백질"은 세린, 알라닌 및 글리신 유입(uptake)에 관여하는 단백질을 의미한다. CycA 단백질은 cycA 유전자에 의해 코딩되며, cycA 유전자는 에스케리키아 콜라이(Escherichia coli), 크렙시엘라 뉴모니에(Klebsialla pneumoniae), 마이코박테리움 보비스(Mycobacterium bovis), 살모넬라 엔테리카(Salmonella enterica), 어위니아 아밀로보라(Erwinia amylovora) 및 코리네박테리움 암모니아게네스(Corynebacterium ammoniagenes) 등의 미생물에 존재하는 것으로 알려져 있다.
본 출원의 목적상, 본 출원의 CycA 단백질은 히스티딘 생산능을 강화할 수 있는 것이면 어느 것이든 포함될 수 있다. 구체적으로 상기 CycA 단백질은 코리네박테리움속 또는 에스케리키아속 미생물 유래일 수 있고, 보다 구체적으로는 코리네박테리움 암모니아게네스 유래일 수 있으나, 이에 제한되지 않는다. 상기 코리네박테리움 암모니아게네스(Corynebacterium ammoniagenes)는 브레비박테리움 암모니아게네스(Brevibacterium ammoniagenes)와 동종으로, 코리네박테리움 스테이셔니스(Corynebacterium stationis), 브레비박테리움 스테이셔니스(Brevibacterium stationis)와 동일 분류군(taxon)으로 분류되었다(International Journal of Systematic and Evolutionary Microbiology 60: 874-879). 또한 상기 브레비박테리움 암모니아게네스는 코리네박테리움 스테이셔니스로 변경되어 명명된 바 있다.
따라서, 본 출원에서 용어 코리네박테리움 암모니아게네스, 브레비박테리움 암모니아게네스, 코리네박테리움 스테이셔니스, 브레비박테리움 스테이셔니스는 서로 혼용되어 사용될 수 있다.
본 출원의 CycA 단백질은 서열번호 1 또는 이와 70% 이상의 상동성 또는 동일성을 갖는 아미노산 서열을 포함하는 것일 수 있다.
구체적으로, 상기 CycA 단백질은 서열번호 1의 아미노산 서열을 포함하거나, 또는 서열번호 1의 아미노산 서열과 적어도 70%, 75%, 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% 또는 99% 상동성 또는 동일성을 가지는 아미노산 서열을 포함할 수 있다. 또한, 상기 상동성 또는 동일성을 가지며, 상기 단백질에 상응하는 효능을 나타내는 아미노산 서열이라면, 일부 서열이 결실, 변형, 치환 또는 부가된 아미노산 서열을 가지더라도 본 출원의 범위 내에 포함됨은 자명하다.
더불어, 공지의 유전자 서열로부터 조제될 수 있는 프로브, 예를 들면, 상기 폴리펩티드를 암호화하는 염기서열의 전체 또는 일부에 대한 상보 서열과 엄격한 조건 하에 하이브리드화되는 폴리뉴클레오티드에 의해 코딩되는 폴리펩티드로서, 세린, 알라닌 및 글리신 유입 활성을 갖는 폴리펩티드도 제한 없이 포함될 수 있다.
즉, 본 출원에서 '특정 서열번호로 기재된 아미노산 서열을 포함하는 단백질 또는 폴리펩타이드', '특정 서열번호로 기재된 아미노산 서열로 이루어진 단백질 또는 폴리펩타이드' 또는 '특정 서열번호로 기재된 아미노산 서열을 갖는 단백질 또는 폴리펩타이드'라고 기재되어 있더라도, 해당 서열번호의 아미노산 서열로 이루어진 폴리펩타이드와 동일 혹은 상응하는 활성을 가지는 경우라면, 일부 서열이 결실, 변형, 치환, 보존적 치환 또는 부가된 아미노산 서열을 갖는 단백질도 본 출원에서 사용될 수 있음은 자명하다. 예를 들어, 상기 아미노산 서열 N-말단 그리고/또는 C-말단에 단백질의 기능을 변경하지 않는 서열 추가, 자연적으로 발생할 수 있는 돌연변이, 이의 잠재성 돌연변이 (silent mutation) 또는 보존적 치환을 가지는 경우이다.
상기 "보존적 치환(conservative substitution)"은 한 아미노산을 유사한 구조적 및/또는 화학적 성질을 갖는 또 다른 아미노산으로 치환시키는 것을 의미한다. 이러한 아미노산 치환은 일반적으로 잔기의 극성, 전하, 용해도, 소수성, 친수성 및/또는 양친매성(amphipathic nature)에서의 유사성에 근거하여 발생할 수 있다. 예를 들면, 양으로 하전된 (염기성) 아미노산은 알지닌, 라이신, 및 히스티딘을 포함하고; 음으로 하전된 (산성) 아미노산은 글루탐산 및 아스파르트산을 포함하고; 방향족 아미노산은 페닐알라닌, 트립토판 및 타이로신을 포함하고, 소수성 아미노산은 알라닌, 발린, 이소류신, 류신, 메티오닌, 페닐알라닌, 타이로신 및 트립토판을 포함한다.
본 출원에서 용어 "폴리뉴클레오티드"는 DNA 또는 RNA 분자를 포괄적으로 포함하는 의미를 가지며, 폴리뉴클레오티드에서 기본 구성 단위인 뉴클레오티드는 천연 뉴클레오티드 뿐만 아니라, 당 또는 염기 부위가 변형된 유사체도 포함할 수 있다(Scheit, Nucleotide Analogs, John Wiley, New York(1980); Uhlman 및 Peyman, Chemical Reviews, 90:543-584(1990) 참조).
상기 폴리뉴클레오티드는 본 출원의 CycA 단백질을 코딩하는 폴리뉴클레오티드 또는 본 출원의 CycA 단백질과 적어도 70%, 75%, 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% 또는 99% 상동성 또는 동일성을 갖는 폴리펩티드를 암호화는 폴리뉴클레오티드일 수 있다. 구체적으로 예를 들어, 서열번호 1 또는 서열번호 1과 70% 이상의 상동성 또는 동일성을 갖는 아미노산 서열을 포함하는 단백질을 코딩하는 폴리뉴클레오티드는 서열번호 2 또는 서열번호 2의 폴리뉴클레오티드 서열과 적어도 70%, 75%, 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% 또는 99% 상동성 또는 동일성을 가지는 폴리뉴클레오티드일 수 있다.
또한, 코돈 축퇴성 (codon degeneracy)에 의해 서열번호 1 또는 서열번호 1과 70% 이상의 동일성을 갖는 아미노산 서열을 포함하는 단백질 또는 이와 상동성 또는 동일성을 가지는 단백질로 번역될 수 있는 폴리뉴클레오티드 역시 포함될 수 있음은 자명하다. 또는 공지의 유전자 서열로부터 조제될 수 있는 프로브, 예를 들면, 상기 폴리뉴클레오티드 서열의 전체 또는 일부에 대한 상보 서열과 엄격한 조건 하에 하이드리드화하여, 서열번호 1의 아미노산 서열과 70% 이상의 동일성을 갖는 아미노산 서열을 포함하는 단백질을 코딩하는 폴리뉴클레오티드 서열이라면 제한없이 포함될 수 있다. 상기 "엄격한 조건"이란 폴리뉴클레오티드 간의 특이적 혼성화를 가능하게 하는 조건을 의미한다. 이러한 조건은 문헌 (예컨대, J. Sambrook et al., Molecular Cloning, A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory press, Cold Spring Harbor, New York, 1989; F.M. Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, Inc., New York)에 구체적으로 기재되어 있다. 예를 들어, 상동성 또는 동일성이 높은 유전자끼리, 70% 이상, 80% 이상, 구체적으로는 85% 이상, 구체적으로는 90% 이상, 보다 구체적으로는 95% 이상, 더욱 구체적으로는 97% 이상, 특히 구체적으로는 99% 이상의 상동성 또는 동일성을 갖는 유전자끼리 하이브리드화하고, 그보다 상동성 또는 동일성이 낮은 유전자끼리 하이브리드화하지 않는 조건, 또는 통상의 써던 하이브리드화의 세척 조건인 60℃, 1ХSSC, 0.1% SDS, 구체적으로는 60℃, 0.1ХSSC, 0.1% SDS, 보다 구체적으로는 68℃, 0.1ХSSC, 0.1% SDS에 상당하는 염 농도 및 온도에서, 1회, 구체적으로는 2회 내지 3회 세정하는 조건을 열거할 수 있다. 혼성화는 비록 혼성화의 엄격도에 따라 염기 간의 미스매치 (mismatch)가 가능할지라도, 두 개의 폴리뉴클레오티드가 상보적 서열을 가질 것을 요구한다. 용어, "상보적"은 서로 혼성화가 가능한 뉴클레오티드 염기 간의 관계를 기술하는데 사용된다. 예를 들면, DNA에 관하여, 아데노신은 티민에 상보적이며 시토신은 구아닌에 상보적이다. 따라서, 본 출원은 또한 실질적으로 유사한 폴리뉴클레오티드 서열뿐만 아니라 전체 서열에 상보적인 단리된 폴리뉴클레오티드 단편을 포함할 수 있다.
구체적으로, 상동성 또는 동일성을 가지는 폴리뉴클레오티드는 55 ℃의 Tm 값에서 혼성화 단계를 포함하는 혼성화 조건을 사용하고 상술한 조건을 사용하여 탐지할 수 있다. 또한, 상기 Tm 값은 60 ℃, 63 ℃ 또는 65 ℃일 수 있으나, 이에 제한되는 것은 아니고 그 목적에 따라 당업자에 의해 적절히 조절될 수 있다.
본 출원에서 용어 "상동성(homology)" 또는 "동일성(identity)"은 두 개의 주어진 아미노산 서열 또는 염기 서열과 관련된 정도를 의미하며 백분율로 표시될 수 있다. 용어 상동성 및 동일성은 종종 상호교환적으로 이용될 수 있다. 보존된 (conserved) 폴리뉴클레오티드 또는 폴리펩타이드의 서열 상동성 또는 동일성은 표준 배열 알고리즘에 의해 결정되며, 사용되는 프로그램에 의해 확립된 디폴트 갭 페널티가 함께 이용될 수 있다. 실질적으로, 상동성을 갖거나 (homologous) 또는 동일한 (identical) 서열은 중간 또는 높은 엄격한 조건(stringent conditions)에서 일반적으로 서열 전체 또는 전체-길이의 적어도 약 50%, 60%, 70%, 80% 또는 90% 이상으로 하이브리드할 수 있다. 하이브리드화는 폴리뉴클레오티드에서 코돈 대신 축퇴 코돈을 함유하는 폴리뉴클레오티드 또한 고려된다.
상기 폴리펩타이드 또는 폴리뉴클레오티드 서열에 대한 상동성 또는 동일성은 예를 들면, 문헌에 의한 알고리즘 BLAST[참조: Karlin 및 Altschul, Pro. Natl. Acad. Sci. USA, 90, 5873(1993)]나 Pearson에 의한 FASTA(참조: Methods Enzymol., 183, 63, 1990)을 사용하여 결정할 수 있다. 이러한 알고리즘 BLAST에 기초하여, BLASTN이나 BLASTX라고 불리는 프로그램이 개발되어 있다(참조: http://www.ncbi.nlm.nih.gov). 또한, 임의의 아미노산 또는 폴리뉴클레오티드 서열이 상동성, 유사성 또는 동일성을 갖는지 여부는 정의된 엄격한 조건하에서 써던 혼성화 실험에 의해 서열을 비교함으로써 확인할 수 있으며, 정의되는 적절한 혼성화 조건은 해당 기술 범위 내이고, 당업자에게 잘 알려진 방법(예컨대, J. Sambrook et al., Molecular Cloning, A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory press, Cold Spring Harbor, New York, 1989; F.M. Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, Inc., New York)으로 결정될 수 있다.
본 출원의 용어 "단백질의 활성 강화" 는 미생물이 가진 단백질의 내재적 활성 또는 변형 전 활성에 비하여 활성이 향상되는 것을 의미한다. 상기 활성 강화는 외래의 단백질을 도입하는 것과, 내재적인 단백질의 활성 강화를 모두 포함할 수 있다. 즉, 특정 단백질의 내재적 활성이 있는 미생물에 외래 단백질을 도입하는 것과, 내재적 활성이 없는 미생물에 상기 단백질을 도입하는 것도 포함한다. 상기 "단백질 도입"은 특정 단백질의 활성이 미생물 내로 도입되어 발현되도록 변형되는 것을 의미한다. 이는 해당 단백질의 활성 강화로도 표현될 수 있다.
본 출원의 용어 "내재적"은 자연적, 또는 인위적 요인에 의한 유전적 변이로 미생물의 형질이 변화하는 경우, 형질 변화 전 모균주가 본래 가지고 있던 상태를 의미한다.
본 출원에서 활성 강화는,
1) 상기 단백질을 암호화하는 폴리뉴클레오티드의 카피수 증가,
2) 상기 폴리뉴클레오티드의 발현이 증가하도록 발현조절 서열의 변형,
3) 상기 단백질의 활성이 강화되도록 염색체 상의 폴리뉴클레오티드 서열의 변형,
4) 상기 단백질의 활성을 나타내는 외래 폴리뉴클레오티드 또는 상기 폴리뉴클레오티드의 코돈 최적화된 변이형 폴리뉴클레오티드의 도입, 또는
5) 이의 조합에 의해 강화되도록 변형하는 방법 등에 의하여 수행될 수 있으나, 이에 제한되지 않는다.
상기 1) 폴리뉴클레오티드의 카피수 증가는, 특별히 이에 제한되지 않으나, 벡터에 작동 가능하게 연결된 형태로 수행되거나, 숙주세포 내의 염색체 내로 삽입됨으로써 수행될 수 있다. 구체적으로, 숙주와 무관하게 복제되고 기능할 수 있는 벡터에 본원의 단백질을 암호화하는 폴리뉴클레오티드가 작동 가능하게 연결되어 숙주세포 내에 도입됨으로써 수행될 수 있거나, 숙주세포 내의 염색체 내로 상기 폴리뉴클레오티드를 삽입시킬 수 있는 벡터에 상기 폴리뉴클레오티드가 작동 가능하게 연결되어 숙주세포 내에 도입됨으로써 상기 숙주세포의 염색체 내 상기 폴리뉴클레오티드의 카피수를 증가시키는 방법으로 수행될 수 있다.
다음으로, 2) 폴리뉴클레오티드의 발현이 증가하도록 발현조절 서열의 변형은, 특별히 이에 제한되지 않으나, 상기 발현조절 서열의 활성을 더욱 강화하도록 핵산 서열을 결실, 삽입, 비보전적 또는 보전적 치환 또는 이들의 조합으로 서열상의 변이를 유도하여 수행하거나, 더욱 강한 활성을 가지는 핵산 서열로 교체함에 의하여 수행될 수 있다. 상기 발현조절 서열은, 특별히 이에 제한되지 않으나 프로모터, 오퍼레이터 서열, 리보좀 결합 부위를 코딩하는 서열, 전사 및 해독의 종결을 조절하는 서열 등을 포함할 수 있다.
상기 폴리뉴클레오티드 발현 단위의 상부에는 본래의 프로모터 대신 강력한 이종 프로모터가 연결될 수 있는데, 상기 강력한 프로모터의 예로는 CJ7 프로모터(대한민국 등록특허 제0620092호 및 WO2006/065095), lysCP1 프로모터(WO2009/096689), EF-Tu 프로모터, groEL 프로모터, aceA 혹은 aceB 프로모터 등이 있으나, 이에 한정되지 않는다. 아울러, 3) 염색체 상의 폴리뉴클레오티드 서열의 변형은, 특별히 이에 제한되지 않으나, 상기 폴리뉴클레오티드 서열의 활성을 더욱 강화하도록 핵산 서열을 결실, 삽입, 비보전적 또는 보전적 치환 또는 이들의 조합으로 발현조절 서열상의 변이를 유도하여 수행하거나, 더욱 강한 활성을 갖도록 개량된 폴리뉴클레오티드 서열로 교체함에 의하여 수행될 수 있다.
또한, 4) 외래 폴리뉴클레오티드 서열의 도입은, 상기 단백질과 동일/유사한 활성을 나타내는 단백질을 암호화하는 외래 폴리뉴클레오티드, 또는 이의 코돈 최적화된 변이형 폴리뉴클레오티드를 숙주세포 내로 도입하여 수행될 수 있다. 상기 외래 폴리뉴클레오티드는 상기 단백질과 동일/유사한 활성을 나타내는 한 그 유래나 서열에 제한 없이 사용될 수 있다. 또한 도입된 상기 외래 폴리뉴클레오티드가 숙주세포 내에서 최적화된 전사, 번역이 이루어지도록 이의 코돈을 최적화하여 숙주세포 내로 도입할 수 있다. 상기 도입은 공지된 형질전환 방법을 당업자가 적절히 선택하여 수행될 수 있으며, 숙주 세포 내에서 상기 도입된 폴리뉴클레오티드가 발현됨으로써 단백질이 생성되어 그 활성이 증가될 수 있다.
마지막으로, 5) 상기 1) 내지 4)의 조합에 의해 강화되도록 변형하는 방법은, 상기 단백질을 암호화하는 폴리뉴클레오티드의 카피수 증가, 이의 발현이 증가하도록 발현조절 서열의 변형, 염색체 상의 상기 폴리뉴클레오티드 서열의 변형 및 상기 단백질의 활성을 나타내는 외래 폴리뉴클레오티드 또는 이의 코돈 최적화된 변이형 폴리뉴클레오티드의 변형 중 하나 이상의 방법을 함께 적용하여 수행될 수 있다.
본 출원의 용어 "벡터"는 적합한 숙주 내에서 목적 단백질을 발현시킬 수 있도록 적합한 조절 서열에 작동 가능하게 연결된 상기 목적 단백질을 코딩하는 폴리뉴클레오티드 서열을 함유하는 DNA 제조물을 의미한다. 상기 조절 서열은 전사를 개시할 수 있는 프로모터, 그러한 전사를 조절하기 위한 임의의 오퍼레이터 서열, 적합한 mRNA 리보좀 결합부위를 코딩하는 서열, 및 전사 및 해독의 종결을 조절하는 서열을 포함할 수 있다. 벡터는 적당한 숙주세포 내로 형질전환된 후, 숙주 게놈과 무관하게 복제되거나 기능할 수 있으며, 게놈 그 자체에 통합될 수 있다. 일례로 세포 내 염색체 삽입용 벡터를 통해 염색체 내에 목적 단백질을 코딩하는 폴리뉴클레오티드를 변이된 폴리뉴클레오티드로 교체시킬 수 있다. 상기 폴리뉴클레오티드의 염색체 내로의 삽입은 당업계에 알려진 임의의 방법, 예를 들면, 상동재조합에 의하여 이루어질 수 있으나, 이에 한정되지는 않는다.
본 출원의 벡터는 특별히 한정되지 않으며, 당업계에 알려진 임의의 벡터를 이용할 수 있다. 통상 사용되는 벡터의 예로는 천연 상태이거나 재조합된 상태의 플라스미드, 코스미드, 바이러스 및 박테리오파지를 들 수 있다. 예를 들어, 파지 벡터 또는 코스미드 벡터로서 pWE15, M13, MBL3, MBL4, IXII, ASHII, APII, t10, t11, Charon4A, 및 Charon21A 등을 사용할 수 있으며, 플라스미드 벡터로서 pBR계, pUC계, pBluescriptII계, pGEM계, pTZ계, pCL계 및 pET계 등을 사용할 수 있다. 구체적으로는 pDZ, pACYC177, pACYC184, pCL, pECCG117, pUC19, pBR322, pMW118, pCC1BAC 벡터 등을 사용할 수 있다.
본 출원의 용어 "형질전환"은 표적 단백질을 코딩하는 폴리뉴클레오티드를 포함하는 벡터를 숙주세포 내에 도입하여 숙주세포 내에서 상기 폴리뉴클레오티드가 코딩하는 단백질이 발현할 수 있도록 하는 것을 의미한다. 형질전환된 폴리뉴클레오티드는 숙주세포 내에서 발현될 수 있기만 한다면, 숙주세포의 염색체 내에 삽입되어 위치하거나 염색체 외에 위치하거나 상관없이 이들 모두를 포함할 수 있다. 또한, 상기 폴리뉴클레오티드는 표적 단백질을 코딩하는 DNA 및 RNA를 포함한다. 상기 폴리뉴클레오티드는 숙주세포 내로 도입되어 발현될 수 있는 것이면, 어떠한 형태로 도입되는 것이든 상관없다. 예를 들면, 상기 폴리뉴클레오티드는 자체적으로 발현되는데 필요한 모든 요소를 포함하는 유전자 구조체인 발현 카세트 (expression cassette)의 형태로 숙주세포에 도입될 수 있다. 상기 발현 카세트는 통상 상기 폴리뉴클레오티드에 작동 가능하게 연결되어 있는 프로모터 (promoter), 전사 종결신호, 리보좀 결합부위 및 번역 종결신호를 포함할 수 있다. 상기 발현 카세트는 자체 복제가 가능한 발현 벡터 형태일 수 있다. 또한, 상기 폴리뉴클레오티드는 그 자체의 형태로 숙주세포에 도입되어 숙주세포에서 발현에 필요한 서열과 작동 가능하게 연결되어 있는 것일 수도 있으며, 이에 한정되지 않는다.
또한, 본 출원의 용어 "작동 가능하게 연결"된 것이란 본원의 목적 단백질을 코딩하는 폴리뉴클레오티드의 전사를 개시 및 매개하도록 하는 프로모터 서열과 상기 유전자 서열이 기능적으로 연결되어 있는 것을 의미한다.
본 출원의 벡터를 형질전환 시키는 방법은 핵산을 세포 내로 도입하는 어떤 방법도 포함되며, 숙주세포에 따라 당 분야에서 공지된 바와 같이 적합한 표준 기술을 선택하여 수행할 수 있다. 예를 들어, 전기천공법 (electroporation), 인산칼슘 (CaPO4) 침전, 염화칼슘 (CaCl2) 침전, 미세주입법 (microinjection), 폴리에틸렌 글리콜 (PEG)법, DEAE-덱스트란법, 양이온 리포좀법, 및 초산 리튬-DMSO법 등이 있으나, 이에 제한되지 않는다.
본 출원의 용어 "L-히스티딘을 생산하는 미생물"은 야생형 미생물이나 자연적 또는 인위적으로 유전적 변형이 일어난 미생물을 모두 포함하며, 자연적으로 L-히스티딘 생산능을 가지고 있는 미생물 또는 L-히스티딘의 생산능이 없는 모균주에 L-히스티딘의 생산능이 부여된 미생물을 의미할 수 있다. 외부 유전자가 삽입되거나 내재적 유전자의 활성이 강화되거나 불활성화되는 등의 원인으로 인해서 특정 기작이 약화되거나 강화된 미생물로서, 목적하는 L-히스티딘 생산을 위하여 유전적 변이가 일어나거나 활성을 강화시킨 미생물 일 수 있다.
예를 들어, 상기 L-히스티딘을 생산하는 미생물은 글리신 트랜스포터 활성이 강화된 미생물일 수 있다. 또는 이에 추가로 히스티딘 생합성 효소의 피드백 제한이 억제되거나, 히스티딘 생합성 경로에 관여하는 효소를 강화 또는 억제하거나, 히스티딘 생합성에 영향을 미치지 않는 효소 또는 단백질의 활성이 불활성화 되어 히스티딘 생합성 경로로의 대사를 원활하게 함으로써 히스티딘을 생산하는 미생물일 수 있다.
구체적으로, CycA 단백질의 활성이 강화되거나, 추가적으로 HisG 폴리펩티드가 변이되어 히스티딘 생합성 경로의 피드백 제한을 억제시키거나, hisE, hisG, hisA, hisF, hisI, hisD, hisC, hisB, hisN을 포함하는 히스티딘 생합성경로의 효소군을 코딩하는 유전자 중 하나 이상의 발현을 강화시킨 미생물일 수 있다. 또한, 히스티딘 분해 경로의 효소를 불활성화키거나, 히스티딘 생합성 경로상의 중간체, 보조인자, 또는 에너지원을 소모하는 경로상의 단백질 또는 효소의 활성을 불활성화시키거나, 목적산물인 히스티딘을 유입하는 단백질을 불활성화시킨 미생물일 수 있다. 예를 들어 감마-아미노부티레이트 퍼미아제(gamma-aminobutyrate permease, NCgl1108)가 불활성화된 미생물 일 수 있다.
또한, 이에 추가적으로, 미생물의 생장 또는 히스티딘 생합성과 연관되지 않는 단백질 또는 효소의 활성을 불활성화 시킨 미생물일 수 있다. 보다 구체적으로, 미생물의 생장 및 L-히스티딘의 생합성에 영향을 미치지 않는 포밀테트라하이드로포레이트 디포밀라아제(Formyltetrahydrofolate deformylase, PurU), 또는 트랜스포사제(Transposase, NCgl2131)의 활성을 약화시킨 미생물일 수 있다.
본 출원의 용어 "단백질 활성의 불활성화"는 효소 또는 단백질의 발현이 천연의 야생형 균주, 모균주 또는 해당 단백질이 비변형된 균주에 비하여 전혀 발현이 되지 않거나 또는 발현이 되더라도 그 활성이 없거나 감소된 것을 의미한다. 이때, 상기 감소는 상기 단백질을 암호화하는 유전자의 변이, 발현조절서열의 변형, 유전자 일부 또는 전체의 결손 등으로 단백질의 활성이 본래 미생물이 가지고 있는 단백질의 활성에 비해 감소한 경우와, 이를 암호화하는 유전자의 발현 저해 또는 번역(translation) 저해 등으로 세포 내에서 전체적인 단백질의 활성 정도가 천연형 균주 또는 변형전의 균주에 비하여 낮은 경우, 이들의 조합 역시 포함하는 개념이다. 본 출원에 있어서, 상기 불활성화는 당해 분야에 잘 알려진 다양한 방법의 적용으로 달성될 수 있다. 상기 방법의 예로, 1) 상기 단백질을 암호화하는 상기 유전자의 전체 또는 일부를 결실시키는 방법; 2) 상기 단백질을 암호화하는 상기 유전자의 발현이 감소하도록 발현 조절 서열의 변형, 3) 상기 단백질의 활성이 제거 또는 약화되도록 단백질을 암호화하는 상기 유전자 서열의 변형, 4) 상기 단백질을 암호화하는 상기 유전자의 전사체에 상보적으로 결합하는 안티센스 올리고뉴클레오티드(예컨대, 안티센스 RNA)의 도입; 5) 상기 단백질을 암호화하는 상기 유전자의 사인-달가르노(Shine-Dalgarno) 서열 앞단에 사인-달가르노 서열과 상보적인 서열을 부가하여 2차 구조물을 형성시켜 리보솜(ribosome)의 부착을 불가능하게 만드는 방법; 6) 상기 단백질을 암호화하는 상기 유전자의 폴리뉴클레오티드 서열의 ORF(open reading frame)의 3' 말단에 반대 방향으로 전사되는 프로모터를 부가하는 방법(Reverse transcription engineering, RTE) 등이 있으며, 이들의 조합으로도 달성할 수 있으나, 이에, 특별히 제한되는 것은 아니다.
다만 이는 한 가지 예에 불과하며, 이에 제한되지 않고, 다양한 공지의 L-히스티딘 생합성경로의 효소를 암호화하는 유전자의 발현을 증진시키거나 분해경로의 효소를 불활성화시키거나, 히스티딘 생합성 경로상의 중간체, 보조인자, 또는 에너지원을 소모하는 경로상의 효소를 불활성화 시킨 미생물일 수 있다. 상기의 L-히스티딘을 생산하는 미생물은 공지의 다양한 방법을 적용하여 제조될 수 있다.
본 출원의 목적상 본 출원의 미생물은 상기 글리신 트랜스포터를 포함하고 L-히스티딘을 생산할 수 있는 미생물이라면 모두 가능하다.
본 출원에서 상기 "L-히스티딘을 생산할 수 있는 미생물"은 "L-히스티딘을 생산하는 미생물", "L-히스티딘 생산능을 갖는 미생물", "L-히스티딘 생산용 미생물"과 혼용되어 사용될 수 있다.
본 출원의 히스티딘을 생산하는 미생물은 글리신 분해 단백질의 활성이 추가로 강화된 것일 수 있다. 상기 "히스티딘을 생산하는 미생물", "단백질의 활성 강화"는 전술한 바와 같다.
본 출원의 용어 "글리신 분해 단백질"은 글리신 분해 경로에 직접 또는 간접적으로 관여하는 단백질로,"글리신 분해 시스템(glycine cleavage system; GCV)"을 구성하는 각각의 단백질, 또는 상기 단백질의 복합체(complex) 또는 상기 글리신 분해 시스템 자체를 의미하는 것으로 사용될 수 있다.
구체적으로, 상기 글리신 분해 단백질은 글리신 분해 시스템을 구성하는 T-단백질(GcvT), P-단백질(GcvP), L-단백질(GcvL), H-단백질(GcvH) 및 상기 글리신 분해 시스템의 조효소인 LipB, LipA로 구성된 군에서 선택되는 어느 하나 이상의 단백질일 수 있으나, 이에 제한되지 않는다(John E. Cronan, Microbiology and Molecular Biology Reviews., 13 April 2016). 상기 글리신 분해 단백질은 코리네박테리움 속 미생물 유래, 구체적으로 코리네박테리움 암모니아게네스 유래일 수 있으나, 이에 제한되지 않는다. 예를 들어, 상기 GcvP 단백질은 서열번호 26, GcvT 단백질은 서열번호 27, GcvH는 서열번호 28, LipA 단백질은 서열번호 29, LipB 단백질은 서열번호 30 또는 상기 서열번호와 각각 70% 이상의 상동성 또는 동일성을 갖는 것일 수 있으나, 이에 제한되지 않는다. 구체적으로, 상기 GcvP 단백질은 서열번호 26의 아미노산 서열을 포함하거나, 또는 서열번호 26의 아미노산 서열과 적어도 70%, 75%, 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% 또는 99% 상동성 또는 동일성을 가지는 아미노산 서열을 포함할 수 있다. 상기 상동성 또는 동일성에 대한 설명은 GcvT, GcvH, LipA, LipB에 대해서도 동일하다. 또한, 상기 상동성 또는 동일성을 가지며, 상기 단백질에 상응하는 효능을 나타내는 아미노산 서열이라면, 일부 서열이 결실, 변형, 치환 또는 부가된 아미노산 서열을 가지더라도 본 출원의 범위 내에 포함됨은 자명하다.
더불어, 공지의 유전자 서열로부터 조제될 수 있는 프로브, 예를 들면, 상기 폴리펩티드를 암호화하는 염기서열의 전체 또는 일부에 대한 상보 서열과 엄격한 조건 하에 하이브리드화되는 폴리뉴클레오티드에 의해 코딩되는 폴리펩티드로서, 글리신 분해 활성을 갖는 폴리펩티드도 제한 없이 포함될 수 있다.
상기 상동성 또는 동일성은 전술한 바와 같다.
본 출원에서 용어 "L-히스티딘을 생산하는 코리네박테리움 속 (the genus of Corynebacterium) 미생물"이란, L-히스티딘을 생산하는 미생물로써, 미생물의 속이 코리네박테리움 속에 속하는 미생물을 의미할 수 있다. 상기 L-히스티딘을 생산하는 미생물은 전술한 바와 같다. 구체적으로, 본 출원에서 L-히스티딘 생산능을 가지는 코리네박테리움속 미생물이란 본 출원의 글리신 트랜스포터의 활성이 강화되거나, 또는 상기 글리신 트랜스포터를 코딩하는 유전자를 포함하는 벡터로 형질전환되어, 향상된 L-히스티딘 생산능을 가지게 된 코리네박테리움속 미생물을 의미할 수 있다. 또한 이에 추가적으로 글리신 분해 단백질의 활성이 강화되거나, 또는 상기 글리신 분해 단백질을 코딩하는 유전자를 포함하는 벡터로 형질전환되어, 향상된 L-히스티딘 생산능을 가지게 된 코리네박테리움속 미생물을 의미할 수 있다. 상기 "향상된 L-히스티딘 생산능을 가지게 된 코리네박테리움 속 미생물"은 형질 변화 전 모균주 또는 비변형 미생물보다 L-히스티딘 생산능이 향상된 미생물을 의미한다. 상기 '비변형 미생물'은 천연형 코리네박테리움 속 균주 자체이거나, 상기 글리신 트랜스포터를 코딩하는 유전자를 포함하지 않는 미생물, 또는 상기 글리신 트랜스포터를 코딩하는 유전자를 포함하는 벡터로 형질전환되지 않은 미생물을 의미한다.
본 출원에서 "코리네박테리움 속 미생물"은 모든 코리네박테리움 속 미생물을 포함할 수 있다. 구체적으로, 코리네박테리움 글루타미쿰(Corynebacterium glutamicum), 코리네박테리움 크루디락티스(Corynebacterium crudilactis), 코리네박테리움 데세르티(Corynebacterium deserti), 코리네박테리움 이피시엔스(Corynebacterium efficiens), 코리네박테리움 칼루내(Corynebacterium callunae), 코리네박테리움 스테셔니스(Corynebacterium stationis), 코리네박테리움 싱굴라레(Corynebacterium singulare), 코리네박테리움 할로톨레란스(Corynebacterium halotolerans), 코리네박테리움 스트리아툼(Corynebacterium striatum), 코리네박테리움 암모니아게네스(Corynebacterium ammoniagenes), 코리네박테리움 폴루티솔리(Corynebacterium pollutisoli), 코리네박테리움 이미탄스Cxorynebacterium imitans), 코리네박테리움 테스투디노리스(Corynebacterium testudinoris) 또는 코리네박테리움 플라베스센스(Corynebacterium flavescens)일 수 있고, 더욱 구체적으로 코리네박테리움 글루타미쿰일 수 있다.
본 출원의 다른 하나의 양태는 본 출원의 L-히스티딘 생산용 미생물을 포함하는, L-히스티딘 생산용 조성물을 제공한다.
상기 L-히스티딘 생산용 조성물은 본 출원의 L-히스티딘을 생산하는 미생물에 의해 L-히스티딘을 생산할 수 있는 조성물을 의미할 수 있다. 상기 조성물은 상기 L-히스티딘을 생산하는 미생물을 포함하며, 상기 균주를 이용하여 히스티딘을 생산할 수 있는 추가적인 구성을 제한없이 포함할 수 있다. 상기 히스티딘을 생산할 수 있는 추가적인 구성은 예를 들어, 발효용 조성물에 통상 사용되는 임의의 적합한 부형제, 또는 배지의 구성 성분을 추가로 포함할 수 있다. 이러한 부형제로는, 예를 들어, 보존제, 습윤제, 분산제, 현탁화제, 완충제, 안정화제 또는 등장화제 등일 수 있으나, 이에 한정되는 것은 아니다.
본 출원의 다른 하나의 양태는 글리신 트랜스포터의 활성이 강화된 코리네박테리움 속 미생물의 L-히스티딘 생산 용도를 제공한다.
"글리신 트랜스포터(glycine transporter)", "활성 강화" 또는 "코리네박테리움 속 미생물"은 전술한 바와 같다.
본 출원의 다른 하나의 양태는 상기 미생물 배양하는 단계를 포함하는 L-히스티딘 제조방법을 제공한다.
본 출원의 미생물의 배양에 사용되는 배지 및 기타 배양 조건은 통상의 코리네박테리움속 미생물의 배양에 사용되는 배지라면 특별한 제한 없이 어느 것이나 사용될 수 있으며, 구체적으로는 본 출원의 미생물을 적당한 탄소원, 질소원, 인원, 무기화합물, 아미노산 및/또는 비타민 등을 함유한 통상의 배지 내에서 호기성 또는 혐기성 조건 하에서 온도, pH 등을 조절하면서 배양할 수 있다.
본 출원에서 상기 탄소원으로는 글루코오스, 프룩토오스, 수크로오스, 말토오스 등과 같은 탄수화물; 당 알코올, 글리세롤 등과 같은 알코올; 팔미트산, 스테아린산, 리놀레산과 같은 지방산; 피루브산, 락트산, 아세트산, 시트르산과 같은 유기산; 글루탐산, 메티오닌, 리신 등과 같은 아미노산 등이 포함될 수 있으나, 이에 제한되지 않는다. 또한, 전분 가수분해물, 당밀, 블랙스트랩 당밀, 쌀겨울, 카사버, 사탕수수 찌꺼기 및 옥수수 침지액 같은 천연의 유기 영양원을 사용할 수 있으며, 살균된 전처리 당밀(즉, 환원당으로 전환된 당밀) 등과 같은 탄수화물이 사용될 수 있고, 그 외의 적정량의 탄소원을 제한 없이 다양하게 이용할 수 있다. 이들 탄소원은 단독으로 사용되거나 2 종 이상이 조합되어 사용될 수 있다.
상기 질소원으로는 암모니아, 황산암모늄, 염화암모늄, 초산암모늄, 인산암모늄, 탄산안모늄, 질산암모늄 등과 같은 무기질소원; 글루탐산, 메티오닌, 글루타민 등과 같은 아미노산, 펩톤, NZ-아민, 육류 추출물, 효모 추출물, 맥아 추출물, 옥수수 침지액, 카세인 가수분해물, 어류 또는 그의 분해생성물, 탈지 대두 케이크 또는 그의 분해 생성물 등과 같은 유기 질소원이 사용될 수 있다. 이들 질소원은 단독으로 사용되거나 2 종 이상이 조합되어 사용될 수 있으나, 이에 제한되지 않는다.
상기 인원으로는 인산 제1칼륨, 인산 제2칼륨, 또는 이에 대응되는 소디움-함유 염 등이 포함될 수 있다. 무기화합물로는 염화나트륨, 염화칼슘, 염화철, 황산마그네슘, 황산철, 황산망간, 탄산칼슘 등이 사용될 수 있다.
그 외에 상기 배지에는 비타민 및/또는 적절한 전구체 등이 포함될 수 있다. 상기 배지 또는 전구체는 배양물에 회분식 또는 연속식으로 첨가될 수 있으며, 이에 제한되지 않는다.
본 출원에서, 미생물의 배양 중에 수산화암모늄, 수산화칼륨, 암모니아, 인산, 황산 등과 같은 화합물을 배양물에 적절한 방식으로 첨가하여, 배양물의 pH를 조정할 수 있다. 또한, 배양 중에는 지방산 폴리글리콜 에스테르와 같은 소포제를 사용하여 기포 생성을 억제할 수 있다. 또한, 배양물의 호기 상태를 유지하기 위하여, 배양물 내로 산소 또는 산소 함유 기체를 주입하거나 혐기 및 미호기 상태를 유지하기 위해 기체의 주입 없이 혹은 질소, 수소 또는 이산화탄소 가스를 주입할 수 있다.
배양물의 온도는 25℃내지 40℃일 수 있으며, 보다 구체적으로는 28℃내지 37℃일 수 있으나 이에 제한되지 않는다. 배양 기간은 원하는 유용 물질의 생성량이 수득될 때까지 계속될 수 있으며, 구체적으로는 1 시간 내지 100 시간일 수 있으나 이에 제한되지 않는다.
상기 L-히스티딘 제조방법은 상기 배양 단계 이후 상기 미생물, 상기 배지, 이의 배양물, 배양물의 상등액, 배양물의 추출물 및 상기 미생물의 파쇄물 중에서 선택된 하나 이상의 물질로부터 L-히스티딘을 회수하는 단계를 포함할 수 있다.
상기 회수 단계는 본 출원의 미생물의 배양 방법, 예를 들어 회분식, 연속식 또는 유가식 배양 방법 등에 따라 당해 기술 분야에 공지된 적합한 방법을 이용하여 배양액으로부터 목적 물질인 L-히스티딘을 회수할 수 있다. 예를 들어, 상기 L-히스티딘의 회수는 침전, 원심분리, 여과, 크로마토그래피 및 결정화 등의 방법이 이용될 수 있다. 예를 들면, 배양물을 저속 원심분리하여 바이오매스를 제거하고 얻어진 상등액을, 이온교환 크로마토그래피를 통하여 분리할 수 있으나, 이에 한정되는 것은 아니다.
상기 회수 단계는 정제 공정을 포함할 수 있다.
이하 본 출원을 실시예 및 실험예를 통하여 보다 상세하게 설명한다. 그러나 이들 실시예 및 실험예는 본 출원을 예시적으로 설명하기 위한 것으로 본 출원의 범위가 이들 실시예 및 실험예에 한정되는 것은 아니다.
실시예 1. 히스티딘 고생산능 인공돌연변이주 제작
L-히스티딘의 고생산능을 가지는 인공돌연변이주를 얻기 위해 하기와 같은 방법을 사용하여 미생물의 변이를 유도하였다.
구체적으로, 코리네박테리움 글루타미쿰 ATCC13032 유래로 NTG 처리를 통해 만들어진 히스티딘 생산균주 KCCM11795P(대한민국 출원특허 10-2016-0030092)균주를 이용하여 돌연변이주를 수득하였다. KCCM11795P 균주를 활성화 배지에서 16시간 동안 배양하여 활성화된 균주를 종배지에 접종하여 14시간 동안 배양한 후, 배양액 5 ㎖를 회수하였다. 회수한 배양액을 100 mM 시트르산 완충용액(citric buffer)으로 세척한 후, NTG(N-Methyl-N'-nitro-N-nitrosoguanidine)를 최종농도 200 mg/L가 되게 첨가한 후, 20분 동안 처리하고, 100 mM 인산 완충용액(phosphate buffer)으로 세척하였다. NTG로 처리된 균주를 최소배지에 도말하여 사멸율을 계산해본 결과 사멸율은 85%였다.
L-히스티딘의 유도체에 해당하는 1, 2, 4-트리아졸-3-알라닌(TRA)에 대한 내성 변이주를 구하기 위해서, NTG가 처리된 균주를 1, 2, 4-트리아졸-3-알라닌이 각각 0.2 g/L, 0.5 g/L, 1 g/L 농도로 첨가된 최소배지에 도말 하고, 30℃에서 5일간 배양하여 세 가지 농도에서 찾은 변이주 중 히스티딘 생산능이 가장 높아진 1, 2, 4-트리아졸-3-알라닌 내성 인공돌연변이주를 획득하였고, 본 균주를 CA14-0682로 명명 하였다.
<활성화배지>
육즙 1%, 폴리펩톤 1%, 소듐클로라이드 0.5%, 효모엑기스 1%, 한천 2%, pH 7.2
<종배지>
포도당 5%, 박토펩톤 1%, 소듐클로라이드 0.25%, 효모엑기스 1%, 요소 0.4%, pH 7.2
<최소배지>
포도당 1.0%, 황산암모늄 0.4%, 황산마그네슘 0.04%, 인산제1칼륨 0.1%, 요소 0.1%, 티아민 0.001%, 비오틴 200 ㎍/L, 한천 2%, pH 7.0
선별된 CA14-0682 균주의 L-히스티딘 생산능 및 L-글리신 생성량을 확인하기 위하여 아래와 같은 방법으로 배양하였다. 종 배지 25 ㎖을 함유하는 250 ㎖ 코너-바플 플라스크에 각 균주들을 접종하고, 30 ℃에서 20 시간 동안, 200 rpm으로 진탕 배양하였다. 그런 다음, 생산 배지 25 ㎖을 함유하는 250 ㎖ 코너-바플 플라스크에 1 ㎖의 종 배양액을 접종하고 30 ℃에서 24시간 동안, 200 rpm에서 진탕 배양하였다. 배양 종료 후 HPLC에 의해 L-히스티딘 및 L-글리신 생산량을 측정하였다.
<생산배지>
포도당 5%, 황산암모늄 2%, 제1인산칼륨 0.1%, 황산마그네슘7수염 0.05%, CSL(옥수수 침지액) 2.0%, 비오틴 200 ㎍/L, 탄산칼슘, pH 7.2,
CA14-0682 균주의 L-히스티딘 및 L-글리신 생산량
OD 사용한 포도당 (g/L) 히스티딘 생산량 (g/L) 글리신 생산량 (g/L)
KCCM11795P 110.2 100 2.99 1.41
CA14-0682 50.1 100 14.25 6.99
배양 결과를 통해 고농도 TRA에 대한 내성을 갖는 인공돌연변이주 CA14-0682 균주가 15% 수준 수율의 L-히스티딘 생산능을 갖는 것을 확인하였다.
상기 CA14-0682균주는 한국미생물보존센터(KCCM)에 안전 기탁하여 KCCM 80179로 기탁번호를 부여받았다.
실시예 2. 코리네박테리움 암모니아게네스 유래 글리신 트랜스포터(CycA(Cam)) 도입 벡터 제작
코리네박테리움 글루타미쿰 염색체 내에 코리네박테리움 암모니아게네스 유래 CycA 단백질(이하, CycA(Cam), 서열번호 1)을 암호화하는 유전자 cycA(이하, cycA(cam), 서열번호 2)를 삽입하기 위해 코리네박테리움 글루타미쿰에서 purU를 삽입 site로 이용하였다(Journal of Biotechnology 104, 5-25 Jorn Kalinowski et al, 2003). purU 결손 및 타겟 유전자 삽입 벡터를 제작하기 위해 ATCC13032의 염색체를 주형으로 하여 서열번호 3과 서열번호 4, 서열번호 5와 서열번호 6의 프라이머 쌍을 이용하여 PCR을 각각 수행하였다. PCR 반응을 위한 중합효소로는 PfuUltraTM 고-신뢰 DNA 폴리머라제(Stratagene)를 사용하였으며, PCR 조건은 변성 95℃, 30초; 어닐링 55℃, 30초; 및 중합반응 72℃, 2분을 28회 반복한 후, 72℃에서 5분간 중합반응을 수행하였다. 그 결과 각각 1606bp의 del-purU(서열번호 7)와 1625bp의 del-purU(서열번호 8)의 DNA 단편을 수득하였다. 수득한 DNA산물을 QIAGEN사의 PCR Purification kit를 사용하여 정제한 후 pDZ(대한민국 등록 특허 제10-0924065호) 벡터와 다카라(TaKaRa)의 Infusion Cloning Kit를 사용하여 클로닝함으로써 purU 결손 및 타겟 유전자 삽입용 벡터 pDZΔpurU을 제작하였다.
프로모터와 연결된 형태의 cycA(Cam) DNA 단편(이하, Pn-cycA(Cam))을 수득하기 위해 코리네박테리움 암모니아게네스 ATCC 6872 염색체를 주형으로 하여 서열번호 9 및 서열번호 10의 프라이머를 이용하여 PCR을 수행하였다. PCR 반응을 위한 중합효소로는 PfuUltraTM 고-신뢰 DNA 폴리머라제(Stratagene)를 사용하였으며, PCR 조건은 변성 95℃, 30초; 어닐링 55℃, 30초; 및 중합반응 72℃, 90초를 28회 반복한 후, 72℃에서 5분간 중합반응을 수행하였다. 그 결과, 1970bp의 Pn-cycA(cam) DNA 단편을 수득하였으며, 이 증폭산물을 QIAGEN사의 PCR Purification kit를 사용하여 정제하여 벡터 제작을 위한 삽입 DNA 단편으로 사용하였다(서열번호 11). 수득한 DNA산물을 QIAGEN사의 PCR Purification kit를 사용하여 정제한 후 상기 제작된 pDZΔpurU 벡터와 다카라(TaKaRa)의 Infusion Cloning Kit를 사용하여 클로닝함으로써 cycA(Cam)도입 벡터 pDZΔpurU::Pn-cycA(Cam)을 제작하였다.
실시예 3. CA14-0682 균주 유래 글리신 트랜스포터 도입 균주 제작 및 히스티딘 생산능 평가
상기 실시예 2에서 제작된 벡터 pDZΔpurU::Pn-cycA(cam)을 CA14-0682 균주에 형질전환하고, 2차 교차 과정을 거쳐 염색체 상의 purU 유전자가 Pn-cycA(cam) 형태로 치환되어 있는 균주를 제작하였으며, 이를 CA14-0682ΔpurU::Pn-cycA(cam)로 명명하였다.
제작된 CA14-0682ΔpurU 균주, CA14-0682ΔpurU::Pn-cycA(Cam)균주의 L-히스티딘 생산능 및 L-글리신 생성량을 확인하고자 실시예 1에서 수행한 방법으로 배양하였다.
CA14-0682 유래 cycA(cam) 도입균주의 L-히스티딘 및 L-글리신 생산량
OD 사용한 포도당 (g/L) 히스티딘 생산량 (g/L) 글리신 생산량 (g/L)
CA14-0682 50.2 100 14.85 7.41
CA14-0682ΔpurU 50.1 100 14.88 7.42
CA14-0682ΔpurU::Pn-cycA(Cam) 49.7 100 15.49 6.51
평가 결과 모균주 CA14-0682 균주는 L-히스티딘 14.85 g/L, L-글리신 7.41 g/L 수준의 생성능을 나타내었고, purU 결손 균주는 L-히스티딘 생산능이 모균주 대비 동등수준인 반면 CA14-0682ΔpurU::Pn-cycA(Cam)균주는 L-히스티딘 생산능이 4.3% 증가되고, L-글리신 생산량이 13.8% 감소되었다. 이를 통해 세포 밖의 L-글리신을 글리신 유입 유전자 도입을 통해 세포 안으로 유입시키면 L-히스티딘 생성능이 증가되는 것을 확인할 수 있었다.
실시예 4. CycA(Cam) 과발현 재조합 벡터 제작
세포내 cycA(Cam)을 더욱 강하게 발현시키기 위하여 cycA(Cam) 과발현 재조합 벡터를 제작하였다. 공지된 코리네박테리움 속 미생물 유래의 프로모터 pcj7(대한민국 등록특허 제10-0620092호)와 공지된 세린 하이드록시메틸트렌스퍼라제를 코딩하는 유전자 glyA의 프로모터(이하, PglyA)를 사용하였다.
pcj7 프로모터 DNA 단편을 수득하기 위해 pcj7을 포함하는 p117-cj7-gfp를 주형으로 하여 PCR을 실시하였다. PCR 반응을 위한 중합효소로는 PfuUltraTM 고-신뢰 DNA 폴리머라제(Stratagene)를 사용하였으며, PCR 반응은 서열번호 12및 서열번호 13의 프라이머를 사용하여 변성 95℃, 30초; 어닐링 55℃, 30초; 및 중합반응 72℃, 30초를 28회 반복한 후, 72℃에서 1분간 중합반응을 수행하였다. 이로부터 증폭된 PCR 결과물을 QIAGEN사의 PCR Purification kit를 사용하여 정제하여 350bp 크기의 pcj7 단편을 수득하였다.
5'에 pcj7 서열 일부를 포함하는 cycA(Cam) DNA 단편을 수득하기 위해 코리네박테리움 암모니아게네스 ATCC 6872 염색체를 주형으로 하여 PCR을 실시하였다. PCR 반응을 위한 중합효소로는 PfuUltraTM 고-신뢰 DNA 폴리머라제(Stratagene)를 사용하였으며, PCR 반응은 서열번호 14및 서열번호 10의 프라이머를 사용하여 변성 95℃, 30초; 어닐링 55℃, 30초; 및 중합반응 72℃, 30초를 28회 반복한 후, 72℃에서 1분간 중합반응을 수행하였다. 이로부터 증폭된 PCR 결과물을 QIAGEN사의 PCR Purification kit를 사용하여 정제하여 1647bp 크기의 5'에 pcj7 서열 일부를 포함하는 cycA(Cam) 단편을 수득하였다.
위에서 수득한 pcj7 단편과 cycA(Cam) 단편을 주형으로 하고, 서열번호 12및 서열번호 10의 프라이머를 사용하여 융합(sewing) PCR을 실시하였다. PCR 반응은 변성 95℃, 30초; 어닐링 55℃, 30초; 및 중합반응 72℃, 2분을 28회 반복한 후, 72℃에서 5분간 중합반응을 수행하였다. 그 결과, 1964bp의 pcj7-cycA(Cam) 유전자 단편을 수득하였으며, 이 증폭산물을 QIAGEN사의 PCR Purification kit를 사용하여 정제하여 벡터 제작을 위한 삽입 DNA 단편으로 사용하였다(서열번호 15). 수득한 DNA산물을 QIAGEN사의 PCR Purification kit를 사용하여 정제한 후 상기 제작된 pDZΔpurU 벡터와 다카라(TaKaRa)의 Infusion Cloning Kit를 사용하여 클로닝함으로써 purU 유전자를 pcj7-cycA(Cam) 유전자로 치환시키는 벡터 pDZΔpurU::pcj7-cycA(Cam)을 제작하였다.
또한, PglyA DNA단편을 수득하기 위해 ATCC13032의 염색체를 주형으로 하여 PCR을실시하였다. PCR 반응을 위한 중합효소로는 PfuUltraTM 고-신뢰 DNA 폴리머라제(Stratagene)를 사용하였으며, PCR 반응은 서열번호 16 및 서열번호 17의 프라이머를 사용하여 변성 95℃, 30초; 어닐링 55℃, 30초; 및 중합반응 72℃, 30초를 28회 반복한 후, 72℃에서 1분간 중합반응을 수행하였다. 이로부터 증폭된 PCR 결과물을 QIAGEN사의 PCR Purification kit를 사용하여 정제하여 340bp 크기의 PglyA 단편을 수득하였다.
5'에 PglyA 서열 일부를 포함하는 cycA(Cam) DNA 단편을 수득하기 위해 코리네박테리움 암모니아게네스 ATCC 6872 염색체를 주형으로 하여 PCR을 실시하였다. PCR 반응을 위한 중합효소로는 PfuUltraTM 고-신뢰 DNA 폴리머라제(Stratagene)를 사용하였으며, PCR 반응은 서열번호 18 및 서열번호 10의 프라이머를 사용하여 변성 95℃, 30초; 어닐링 55℃, 30초; 및 중합반응 72℃, 30초를 28회 반복한 후, 72℃에서 1분간 중합반응을 수행하였다. 이로부터 증폭된 PCR 결과물을 QIAGEN사의 PCR Purification kit를 사용하여 정제하여 1647bp 크기의 5'에 PglyA 서열 일부를 포함하는 cycA(Cam) 단편을 수득하였다.
위에서 수득한 PglyA 단편과 cycA(Cam) 단편을 주형으로 하고, 서열번호 16 및 서열번호 10의 프라이머를 사용하여 융합(sewing) PCR을 실시하였다. PCR 반응은 변성 95℃, 30초; 어닐링 55℃, 30초; 및 중합반응 72℃, 2분을 28회 반복한 후, 72℃에서 5분간 중합반응을 수행하였다. 그 결과, 1963bp의 PglyA-cycA(Cam) 유전자 단편을 수득하였으며, 이 증폭산물을 QIAGEN사의 PCR Purification kit를 사용하여 정제하여 벡터 제작을 위한 삽입 DNA 단편으로 사용하였다(서열번호 19). 수득한 DNA산물을 QIAGEN사의 PCR Purification kit를 사용하여 정제한 후 상기 제작된 pDZΔpurU 벡터와 다카라(TaKaRa)의 Infusion Cloning Kit를 사용하여 클로닝함으로써 purU 유전자를 PglyA-cycA(Cam) 유전자로 치환시키는 벡터 pDZΔpurU::PglyA-cycA(Cam)을 제작하였다.
실시예 5. 대장균 유래 글리신 트랜스포터(CycA(Eco)) 도입 벡터 제작
한편, 코리네박테리움 암모니아게네스 유래 CycA 단백질과 그 활성을 비교하기 위해 기공지된 대장균 K-12 유래의 CycA 단백질(이하 CycA(Eco), 서열번호 20)(Microbiology, 141(Pt 1); 133-40, 1995)을 암호화하는 유전자 cycA(이하, cycA(Eco), 서열번호 21)를 pcj7과 작동 가능하도록 연결하여 도입하기 위한 벡터를 제작하였다.
pcj7 프로모터 DNA 단편을 수득하기 위해 pcj7을 포함하는 p117-cj7-gfp를 주형으로 하여 PCR을 실시하였다. PCR 반응을 위한 중합효소로는 PfuUltraTM 고-신뢰 DNA 폴리머라제(Stratagene)를 사용하였으며, PCR 반응은 서열번호 12및 서열번호 22의 프라이머를 사용하여 변성 95℃, 30초; 어닐링 55℃, 30초; 및 중합반응 72℃, 30초를 28회 반복한 후, 72℃에서 1분간 중합반응을 수행하였다. 이로부터 증폭된 PCR 결과물을 QIAGEN사의 PCR Purification kit를 사용하여 정제하여 350bp 크기의 pcj7 단편을 수득하였다.
5'에 pcj7 서열 일부를 포함하는 cycA(Eco) 유전자 단편을 수득하기 위해 대장균 K-12 W3110 염색체를 주형으로 하여 서열번호 23 및 서열번호 24의 프라이머를 이용하여 PCR을 수행하였다. PCR 반응을 위한 중합효소로는 PfuUltraTM 고-신뢰 DNA 폴리머라제(Stratagene)를 사용하였으며, PCR 조건은 변성 95℃, 30초; 어닐링 55℃,30초; 및 중합반응 72℃, 1분을 28회 반복한 후, 72℃에서 5분간 중합반응을 수행하였다. 그 결과, 1659bp의 cycA(Eco) 유전자 단편을 수득하였으며, 이 증폭산물을 QIAGEN사의 PCR Purification kit를 사용하여 정제하여 벡터 제작을 위한 삽입 DNA 단편으로 사용하였다.
상기 pcj7 단편과 cycA(Eco) 단편을 주형으로 하고, 서열번호 12 및 서열번호 24의 프라이머를 사용하여 융합(sewing) PCR을 실시하였다. PCR 반응은 변성 95℃, 30초; 어닐링 55℃, 30초; 및 중합반응 72℃, 90초를 28회 반복한 후, 72℃에서 5분간 중합반응을 수행하였다. 그 결과, 1985bp의 pcj7-cycA(Eco) 유전자 단편을 수득하였다(서열번호 25). 이 증폭산물을 QIAGEN사의 PCR Purification kit를 사용하여 정제한 후 pDZΔpurU 벡터에 다카라(TaKaRa)의 Infusion Cloning Kit를 사용하여 제공된 매뉴얼에 따라 클로닝함으로써 purU 유전자를 pcj7-cycA(Eco) 유전자로 치환시키는 벡터 pDZΔpurU::pcj7-cycA(Eco)를 제작하였다.
실시예 6. CA14-0682 균주 유래 cycA(Cam) 또는 cycA(Eco) 과발현 균주 제작 및 히스티딘 생산능 비교
CA14-0682 균주를 모균주로 cycA(Cam) 또는 cycA(Eco) 과발현 균주를 제작하기 위하여 제작된 벡터4종(pDZΔpurU, pDZΔpurU::pcj7-cycA(Cam), pDZΔpurU::PglyA-cycA(Cam), pDZΔpurU::pcj7-cycA(Eco))을 각각 전기천공법으로 CA14-0682 균주에 형질전환하고, 2차 교차 과정을 거쳐 염색체 상의 purU 결실 및 pcj7-cycA(Cam) 또는 PglyA-cycA(Cam) 또는 pcj7-cycA(Eco) 형태로 치환되어 있는 균주를 얻었다. 상기 과정을 통해 균주 4종 (CA14-0682ΔpurU, CA14-0682ΔpurU::pcj7-cycA(Cam), CA14-0682ΔpurU::PglyA-cycA(Cam), CA14-0682ΔpurU::pcj7-cycA(Eco))을 제작하였다.
제작된 4종 균주의 L-히스티딘 생산능 및 L-글리신 생성량을 확인하기 위하여 실시예 1과 동일한 방법으로 배양하였다
CA14-0682 유래 cycA 도입균주의 L-히스티딘 및 L-글리신 생산량
OD 사용한 포도당 (g/L) 히스티딘 생산량 (g/L) 글리신 생산량 (g/L)
CA14-0682 50.3 100 15.11 7.46
CA14-0682ΔpurU 50.5 100 15.05 7.42
CA14-0682ΔpurU::pcj7_cycA(Cam) 40.1 100 16.18 5.99
CA14-0682ΔpurU::PglyA_cycA(Cam) 44.7 100 16.14 5.89
CA14-0682ΔpurU::pcj7_cycA(Eco) 51.3 100 15.01 7.25
평가 결과 대장균 유래 cycA가 도입된 CA14-0682ΔpurU::pcj7-cycA(Eco) 균주의 경우 Gly 유입능이 거의 없고 모균주 대비 동등 수준 이하의 히스티딘 생산능을 나타냈다. 반면, 코리네박테리움 암모니아게네스 유래 cycA가 강화 도입된 CA14-0682ΔpurU::pcj7-cycA(Cam) 균주와 CA14-0682ΔpurU::PglyA_cycA(Cam) 균주의 경우 Gly생산능이 감소하고, 히스티딘 생산능이 모균주 대비 각각 7.1%, 6.8% 증가됨을 확인할 수 있었다. 이를 통해 코리네박테리움 글루타미쿰 내에 도입된 코리네박테리움 암모니아게네스 유래 cycA가 대장균 유래 cycA보다 더 높은 글리신 유입능을 갖고 유입된 글리신을 통해 히스티딘 생산능 증가에 더 큰 효과를 나타냄을 확인할 수 있었다. 또한, cycA(Cam)를 도입한 경우 glyA 프로모터를 통해 발현 시킬 경우 Cellmass 확보에 좀 더 유리함을 확인하였다. 상기 CA14-0682ΔpurU::PglyA-cycA(Cam) 균주를 CA14-0682-cycA(Cam) 균주로 명명하였다.
실시예 7. 코리네박테리움 암모니아게네스 유래 글리신 분해 시스템 도입 벡터 제작
앞서 히스티딘 생산능 증가에 글리신 트랜스포터의 활성이 영향을 미침을 확인하였으므로, 세포내로 유입된 글리신의 세포내 이용능을 더욱 증가시키는 경우의 히스티딘 생산능을 확인하고자 하였다. 구체적으로는 글리신 분해 시스템(Glycine Cleavage System, 이하 GCV system)을 도입하였다. 코리네박테리움 글루타미쿰 균주 내에는 GCV system을 구성하는 단백질 6종 중 L-단백질, LipB, LipA을 코딩하는 유전자만 알려져 있을 뿐 나머지 3종 단백질을 코딩하는 유전자는 알려진 바 없다. 따라서 코리네박테리움 암모니아게네스 유래 GCV system을 도입하기 위하여 P-단백질(서열번호 26), T-단백질(서열번호 27), H-단백질(서열번호 28), LipA(서열번호 29), LipB(서열번호 30)를 코딩하는 유전자(gcvP(서열번호 31), gcvT(서열번호 32), gcvH(서열번호 33), lipA(서열번호 34), lipB(서열번호 35)) 도입 벡터를 제작하였다. 상기 유전자들은 코리네박테리움 암모니아게네스 염색체 내에 2쌍의 오페론(gcvP-gcvT, gcvH-lipB-lipA)을 형성하고 있다(이하, gcvPT, gcvH-lipBA). GCV system을 도입하기 위하여 코리네박테리움 글루타미쿰의 트렌스포존을 코딩하는 유전자 중 NCgl2131 유전자를 삽입 site로 사용하였다(Journal of Biotechnology 104, 5-25 Jorn Kalinowski et al, 2003). NCgl2131 유전자를 gcv 시스템 유전자들로 치환하기 위하여 NCgl2131 결손 및 타겟 유전자 삽입 벡터를 제작하였다. 벡터를 제작하기 위해 ATCC13032의 염색체를 주형으로 하여 서열번호 36 과 서열번호 37, 서열번호 38 과 서열번호 39의 프라이머 쌍을 이용하여 PCR을 각각 수행하였다. PCR 반응을 위한 중합효소로는 PfuUltraTM 고-신뢰 DNA 폴리머라제(Stratagene)를 사용하였으며, PCR 조건은 변성 95℃, 30초; 어닐링 55℃, 30초; 및 중합반응 72℃, 2분을 28회 반복한 후, 72℃에서 5분간 중합반응을 수행하였다. 그 결과 각각 531bp의 del-N2131L(서열번호 40)와 555bp의 del-N2131R(서열번호 41)의 DNA 단편을 수득하였다. 수득한 DNA산물을 QIAGEN사의 PCR Purification kit를 사용하여 정제한 후 pDZ 벡터와 다카라(TaKaRa)의 Infusion Cloning Kit를 사용하여 클로닝함으로써 NCgl2131 유전자결손 및 타겟 유전자 삽입용 벡터 pDZΔN2131을 제작하였다.
프로모터와 연결된 형태의 gcvPT 유전자 단편(이하, Pn_gcvPT(cam))을 수득하기 위해 코리네박테리움 암모니아게네스 ATCC 6872 염색체를 주형으로 하여 서열번호 42 및 서열번호 43의 프라이머를 이용하여 PCR을 수행하였다. PCR 반응을 위한 중합효소로는 PfuUltraTM 고-신뢰 DNA 폴리머라제(Stratagene)를 사용하였으며, PCR 조건은 변성 95℃, 30초; 어닐링 55℃, 30초; 및 중합반응 72℃, 5분을 28회 반복한 후, 72℃에서 7분간 중합반응을 수행하였다. 그 결과, 프로모터를 포함한 4499bp의 Pn_gcvPT(Cam) 유전자 단편을 수득하였으며, 이 증폭산물을 QIAGEN사의 PCR Purification kit를 사용하여 정제하여 벡터 제작을 위한 삽입 DNA 단편으로 사용하였다(서열번호 44).
프로모터와 연결된 형태의 gcvH-lipBA 유전자 단편(이하, Pn_gcvH-lipBA(Cam))을 수득하기 위해 코리네박테리움 암모니아게네스 ATCC 6872 염색체를 주형으로 하여 서열번호 45 및 서열번호 46의 프라이머를 이용하여 PCR을 수행하였다. PCR 반응을 위한 중합효소로는 PfuUltraTM 고-신뢰 DNA 폴리머라제(Stratagene)를 사용하였으며, PCR 조건은 변성 95℃, 30초; 어닐링 55℃, 30초; 및 중합반응 72℃, 1분을 28회 반복한 후, 72℃에서 7분간 중합반응을 수행하였다. 그 결과, 프로모터를 포함한 3053bp의 Pn_gcvH-lipBA(Cam) 유전자 단편을 수득하였으며, 이 증폭산물을 QIAGEN사의 PCR Purification kit를 사용하여 정제하여 벡터 제작을 위한 삽입 DNA 단편으로 사용하였다 (서열번호 47).
상기 수득한 Pn_gcvPT(Cam) 단편, Pn_gcvH-lipBA(Cam) 단편을 주형으로 하고, 서열번호 42 및 서열번호 46의 프라이머를 사용하여 융합(sewing) PCR을 실시하였다. PCR 반응은 변성 95℃, 30초; 어닐링 55℃, 30초; 및 중합반응 72℃, 10분을 28회 반복한 후, 72℃에서 12분간 중합반응을 수행하였다. 그 결과, 8259bp의 Pn_gcvPT(Cam)_Pn-gcvH-lipBA(Cam) 유전자 단편을 수득하였으며, 이 증폭산물을 QIAGEN사의 PCR Purification kit를 사용하여 정제하여 제작된 pDZΔN2131 벡터와 다카라(TaKaRa)의 Infusion Cloning Kit를 사용하여 클로닝함으로써 NCgl2131 유전자를 Pn_gcvPT(Cam)-Pn_gcvH-lipBA(Cam) 유전자로 치환시키는 벡터 pDZΔN2131::GCV(Cam)을 제작하였다.
실시예 8. CA14-0682 균주 유래 글리신 분해 시스템 및 글리신 트랜스포터 도입 균주 제작 및 히스티딘 생산능 평가
상기 실시예 7에서 제작된 벡터 pDZΔN2131, pDZΔN2131::GCV(Cam)을 CA14-0682 균주와 CA14-0682-cycA(Cam) 균주에 형질전환하고, 2차 교차 과정을 거쳐 NCgl2131 유전자 결실 균주(CA14-0682-cycA(Cam)ΔN2131), 글리신 분해 시스템 단독 도입 균주 및 글리신 분해 시스템과 글리신 트랜스포터가 모두 도입된 균주 2종(CA14-0682ΔN2131::GCV(Cam), CA14-0682-cycA(Cam)ΔN2131::GCV(Cam))을 제작하였다. 제작된 CA14-0682-cycA(Cam)ΔN2131, CA14-0682ΔN2131::GCV(Cam) 균주, CA14-0682-cycA(Cam)ΔN2131::GCV(Cam) 균주의 L-히스티딘 생산능 및 L-글리신 생성량을 확인하고자 실시예 1에서 수행된 방법으로 배양하였다.
CA14-0682 유래 cycA(cam) 및 글리신 분해시스템 도입균주의 L-히스티딘 및 L-글리신 생산량
OD 사용한 포도당 (g/L) 히스티딘 생산량 (g/L) 글리신 생산량 (g/L)
CA14-0682 53.6 100 15.05 7.47
CA14-0682- cycA(Cam)ΔN2131 45.1 100 16.19 6.68
CA14-0682ΔN2131::GCV(Cam) 48.9 100 16.52 4.72
CA14-0682-cycA(Cam)ΔN2131::GCV(Cam) 42.3 100 17.11 2.31
평가 결과 글리신 유입자 cycA(Cam)만 도입된 CA14-0682-cycA(Cam)ΔN2131 균주의 경우 CA14-0682 균주 대비 히스티딘 생성량은 7.6% 증가되고, 글리신 생성량은 10.6% 감소되었으며, 표3의 CA14-0682ΔpurU::PglyA_cycA(Cam)(CA14-0682-cycA(Cam)로 명명)균주 결과와 동등수준으로 확인되었다. 글리신 분해 시스템이 도입된 CA14-0682ΔN2131::GCV(Cam)균주의 경우 CA14-0682 균주 대비 히스티딘 생성량은 9.8% 증가되고 글리신 생성량이 36.8% 감소되었다. 반면, CA14-0682-cycA(Cam)ΔN2131 균주에 추가적으로 GCV가 도입된 CA14-0682-cycA(Cam)ΔN2131::GCV(Cam) 균주는 히스티딘 생성량은 13.7% 증가되고 글리신 생성량은 모균주 대비 69.1% 감소되었다. 따라서 글리신 유입자 또는 글리신 분해 유전자만 도입되어도 히스티딘 생산성 증가 및 글리신 생산량 감소에 효과가 있지만 글리신 분해 시스템과 함께 도입되면 세포 내 생성되는 글리신이 분해되면서 히스티딘 생성능이 더욱 크게 증가됨을 확인하였다.
실시예 9. 야생형 코리네박테리움 글루타미쿰 유래 L-히스티딘 생산 균주 제작
다음으로, 야생형 코리네박테리움 글루타미쿰 균주에서 CycA 도입 및 GCV system 도입의 효과를 확인하기 위해, 먼저 야생형의 코리네박테리움 글루타미쿰 ATCC13032 균주로부터 L-히스티딘 생산균주를 개발하였다.
실시예 9-1: HisG 폴리펩티드 변이 도입
먼저, L-히스티딘 생합성 경로의 첫번째 효소인 HisG 폴리펩티드의 피드백 제한(Feedback inhibition)을 해소하기 위해 HisG의 N-말단으로부터 233번째와 235번째 아미노산을 각각 글리신(Glycine)에서 히스티딘(histidine)(이하, G233H 변이), 쓰레오닌(Threonine)에서 글루타민(Glutamine)(이하, T235Q)로 동시에 치환하였다 (서열번호 48) (ACS Synth. Biol., 2014, 3 (1), pp 21-29).
구체적으로, hisG 폴리펩티드 변이를 삽입하기 위한 벡터를 제작하기 위하여 코리네박테리움 글루타미쿰 ATCC13032 염색체 DNA를 주형으로 하여 서열번호 49과 서열번호 50의 프라이머를 이용하여 hisG 폴리펩티드의 233번, 235번 잔기 업스트림 (Upstream) 지역(이하, G233H,T235Q-5')을, 서열번호 51와 서열번호 52의 프라이머를 이용하여 hisG 폴리펩티드의 233번, 235번 잔기 다운스트림 (Downsteam) 지역(이하, G233H,T235Q-3')의 유전자 단편을 PCR을 수행을 통해 수득하였다. 중합효소는 SolgTM Pfu-X DNA 폴리머라제를 사용하였으며, PCR 증폭 조건은 95℃ 에서 5분간 변성 후, 95℃ 30초 변성, 60℃ 30초 어닐링, 72℃ 60초 중합을 30회 반복한 후, 72℃에서 5분간 중합반응을 수행하였다.
증폭된 G233H,T235Q-5' 단편과 G233H,T235Q-3' 단편을 pDZ와 깁슨 어셈블리 (DG Gibson et al., NATURE METHODS, VOL.6 NO.5, MAY 2009, NEBuilder HiFi DNA Assembly Master Mix) 방법을 이용하여 클로닝함으로써 hisG 폴리펩티드 변이 도입 벡터 pDZ-hisG(G233H, T235Q)를 제작하였다.
제작된 pDZ-hisG(G233H, T235Q) 벡터를 야생형 코리네박테리움 글루타미쿰 ATCC13032 균주에 전기천공법으로 형질 전환 후, 2차 교차 과정을 거쳐 염색체 상에서 HisG 폴리펩티드의 233번, 235번 아미노산이 각각 글라이신에서 히스티딘, 쓰레오닌에서 글루타민으로 교체된 균주를 얻었다. 유전자가 삽입된 상동재조합 업스트림 지역과 다운스트림 지역의 외부 부위를 각각 증폭할 수 있는 서열번호 53와 서열번호 54을 이용한 PCR 법과 시퀀싱을 통해 해당 유전적 조작을 확인하였으며, 이를 CA14-0011 로 명명하였다.
실시예 9-2: 히스티딘 생합성 경로 강화
다음으로, L-히스티딘 생합성 경로 강화를 위해, 총 4개의 오페론(operon)으로 분리되어 있는 생합성 유전자들을 프로모터가 치환된 형태의 cluster로 제작하여 도입하였다. 구체적으로, 총 4개의 오페론(operon)(hisE-hisG, hisA-impA-hisF-hisI, hisD-hisC-hisB, cg0911-hisN)으로 분리되어 있는 생합성 유전자들을 기존에 공지된 바 있는 합성 프로모터 3종(lysCP1(대한민국 등록특허 제10-0930203호), pcj7, 또는 SPL13(대한민국 등록특허 제10-1783170 B1)) 또는 gapA 유전자 프로모터와 작동 가능하게 연결하고 각 오페론을 clustering하여 한꺼번에 도입하였다. 삽입 부위는 감마-아미노부티레이트 퍼미아제를 코딩하는 Ncgl1108 유전자(Microb Biotechnol. 2014 Jan;7(1):5-25)를 사용하였다.
구체적인 실험 방법은 다음과 같다. NCgl1108 유전자 결손 벡터를 제작하기 위해 코리네박테리움 글루타미쿰 ATCC13032 염색체 DNA를 주형으로 하여 서열번호 55와 서열번호 56의 프라이머를 이용하여 NCgl1108 업스트림 (Upstream) 지역(이하, N1108-5')을, 서열번호 57과 서열번호 58의 프라이머를 이용하여 Ncgl1108 다운스트림 (Downsteam) 지역(이하, N1108-3')의 유전자 단편을 PCR을 수행을 통해 수득하였다. 중합효소는 SolgTM Pfu-X DNA 폴리머라제를 사용하였으며, PCR 증폭 조건은 95℃에서 5분간 변성 후, 95℃ 30초 변성, 60℃ 30초 어닐링, 72℃ 60초 중합을 30회 반복한 후, 72℃ 에서 5분간 중합반응을 수행하였다. 증폭된 N1108-5' 단편과 N1108-3' 단편을 pDZ와 깁슨 어셈블리 방법을 이용하여 클로닝함으로써 NCgl1108 결손 벡터 pDZΔN1108 벡터를 제작하였다.
제작된 pDZ-ΔNCgl1108 벡터를 CA14-0011 균주에 전기천공법으로 형질 전환 후, 2차 교차 과정을 거쳐 염색체 상에서 NCgl1108 유전자가 파쇄된 균주를 얻었다. 유전자가 파쇄된 상동재조합 업스트림 지역과 다운스트림 지역의 외부 부위를 각각 증폭할 수 있는 서열번호 59과 서열번호 60를 이용한 PCR 법과 시퀀싱을 통해 해당 유전적 조작을 확인하였으며, 이를 CA14-0736 로 명명하였다.
히스티딘 생합성 cluster 강화를 위해 4개의 오페론 유전자군과 치환할 프로모터 부분을 확보하고자 하였다. lysCP1 프로모터 단편과 hisE-hisG 단편, gapA 프로모터 단편과 hisA-impA-hisF-hisI 단편, SPL13 단편과 hisD-hisC-hisB 단편, pcj7 단편과 cg0911-hisN 단편을 수득하였다.
lysCP1 DNA단편을 수득하기 위해 KCCM10919P 균주(대한민국 등록특허 제10-0930203호)의 염색체를 주형으로 하여 PCR을실시하였다. PCR 반응을 위한 중합효소로는 PfuUltraTM 고-신뢰 DNA 폴리머라제(Stratagene)를 사용하였으며, PCR 반응은 서열번호 61 및 서열번호 62의 프라이머를 사용하여 변성 95℃, 30초; 어닐링 55℃, 30초; 및 중합반응 72℃, 30초를 28회 반복한 후, 72℃에서 1분간 중합반응을 수행하였다. 이로부터 증폭된 PCR 결과물을 QIAGEN사의 PCR Purification kit를 사용하여 정제하여 lysCP1 단편을 수득하였다.
hisE-hisG 유전자 단편을 수득하기 위해 CA14-0011 균주의 염색체를 주형으로 PCR을 실시하였다. PCR 반응은 서열번호 63 및 서열번호 64의 프라이머를 사용하여 변성 95℃, 30초; 어닐링 55℃, 30초; 및 중합반응 72℃, 2분을 28회 반복한 후, 72℃에서 5분간 중합반응을 수행하였다. 이로부터 증폭된 PCR 결과물을 QIAGEN사의 PCR Purification kit를 사용하여 정제하여 hisE-hisG 단편을 수득하였다.
코리네박테리움 글루타미쿰 유래 gapA 유전자의 프로모터 DNA 단편(이하, PgapA)을 수득하기 위해 코리네박테리움 글루타미쿰 ATCC13032 염색체를 주형으로 PCR을 실시하였다. PCR 반응은 서열번호 65 및 서열번호 66의 프라이머를 사용하여 변성 95℃, 30초; 어닐링 55℃, 30초; 및 중합반응 72℃, 2분을 28회 반복한 후, 72℃에서 5분간 중합반응을 수행하였다. 이로부터 증폭된 PCR 결과물을 QIAGEN사의 PCR Purification kit를 사용하여 정제하여 PgapA 단편을 수득하였다.
hisA-impA-hisF-hisI 유전자 단편을 수득하기 위해 CA14-0011 균주의 염색체를 주형으로 PCR을 실시하였다. PCR 반응은 서열번호 67 및 서열번호 68의 프라이머를 사용하여 변성 95℃, 30초; 어닐링 55℃, 30초; 및 중합반응 72℃, 2분을 28회 반복한 후, 72℃에서 5분간 중합반응을 수행하였다. 이로부터 증폭된 PCR 결과물을 QIAGEN사의 PCR Purification kit를 사용하여 정제하여 hisA-impA-hisF-hisI 단편을 수득하였다.
SPL13 DNA 단편을 수득하기 위해 SPL13 DNA를 주형으로 PCR을 실시하였다. PCR 반응은 서열번호 69 및 서열번호 70의 프라이머를 사용하여 변성 95℃, 30초; 어닐링 55℃, 30초; 및 중합반응 72℃, 1분을 28회 반복한 후, 72℃에서 5분간 중합반응을 수행하였다. 이로부터 증폭된 PCR 결과물을 QIAGEN사의 PCR Purification kit를 사용하여 정제하여 SPL13 DNA 단편을 수득하였다.
pcj7 프로모터 DNA 단편을 수득하기 위해 pcj7을 포함하는 p117-cj7-gfp를 주형으로 하여 PCR을 실시하였다. PCR 반응을 위한 중합효소로는 PfuUltraTM 고-신뢰 DNA 폴리머라제(Stratagene)를 사용하였으며, PCR 반응은 서열번호 71 및 서열번호 72 의 프라이머를 사용하여 변성 95℃, 30초; 어닐링 55℃, 30초; 및 중합반응 72℃, 30초를 28회 반복한 후, 72℃에서 1분간 중합반응을 수행하였다. 이로부터 증폭된 PCR 결과물을 QIAGEN사의 PCR Purification kit를 사용하여 정제하여 pcj7 단편을 수득하였다.
hisD-hisC-hisB 유전자 단편을 수득하기 위해 CA14-0011 균주의 염색체를 주형으로 PCR을 실시하였다. PCR 반응은 서열번호 73 및 서열번호 74의 프라이머를 사용하여 변성 95℃, 30초; 어닐링 55℃, 30초; 및 중합반응 72℃, 5분을 28회 반복한 후, 72℃에서 5분간 중합반응을 수행하였다. 이로부터 증폭된 PCR 결과물을 QIAGEN사의 PCR Purification kit를 사용하여 정제하여 hisD-hisC-hisB 유전자 단편을 수득하였다.
cg0911-hisN 유전자 단편을 수득하기 위해 CA14-0011 균주의 염색체를 주형으로 PCR을 실시하였다. PCR 반응은 서열번호 75 및 서열번호 76의 프라이머를 사용하여 변성 95℃, 30초; 어닐링 55℃, 30초; 및 중합반응 72℃, 5분을 28회 반복한 후, 72℃에서 5분간 중합반응을 수행하였다. 이로부터 증폭된 PCR 결과물을 QIAGEN사의 PCR Purification kit를 사용하여 정제하여 cg0911-hisN 유전자 단편을 수득하였다.
수득한 lysCP1 DNA 단편, hisE-hisG DNA 단편, PgapA DNA 단편, hisA-impA-hisF-hisI DNA 단편, SPL13 DNA 단편, hisD-hisC-hisB DNA 단편, pcj7 DNA 단편, cg0911-hisN DNA 단편을 pDZ-ΔNcgl1108 벡터와 깁슨 어셈블리 방법을 이용하여 클로닝함으로써 L-히스티딘 생합성 강화 cluster 도입벡터 pDZ-ΔNcgl1108::lysCP1_hisEG-PgapA_hisA-impA-hisFI-SPL13_HisDCB-pcj7_cg0911-hisN을 제작하였다.
제작된 pDZ-ΔNcgl1108::lysCP1_hisEG-PgapA_hisA-impA-hisFI-SPL13_hisDCB-pcj7_cg0911-hisN 벡터를 CA14-0011 균주에 전기천공법으로 형질 전환 후, 2차 교차 과정을 거쳐 염색체 상에서 생합성 유전자가 삽입된 균주를 얻었다. 유전자가 삽입된 상동재조합 업스트림 지역과 다운스트림 지역의 외부 부위를 각각 증폭할 수 있는 서열번호 59과 서열번호 60를 이용한 PCR 법과 게놈 시퀀싱을 통해 해당 유전적 조작을 확인하였으며, 이를 CA14-0737 로 명명하였다.
상기 CA14-0737균주를 부다페스트 조약하의 국제기탁기관인 한국미생물보존센터(KCCM)에 2018년 11월 27일자로 국제 기탁하여 KCCM12411P로 기탁번호를 부여받았다.
실시예 10. CA14-0737 균주 유래 글리신 트랜스포터 및 글리신 분해 시스템 도입 균주 제작
상기 제작된 벡터 4종(pDZΔpurU, pDZΔpurU::PglyA-cycA(Cam), pDZΔpurU::pcj7-cycA(Cam), pDZΔpurU::pcj7-cycA(Eco)을 CA14-0737 균주에 형질전환하고, 2차 교차 과정을 거쳐 purU 유전자 결실 균주, cycA(Cam) 도입 균주, cycA(Eco) 도입 균주를 제작하였으며, 이를 CA14-0737ΔpurU, CA14-0737ΔpurU::PglyA-cycA(Cam), CA14-0737ΔpurU::pcj7-cycA(Cam), CA14-0737ΔpurU::pcj7-cycA(Eco)을 제작하였다. 제작된 CA14-0737ΔpurU, CA14-0737ΔpurU::PglyA-cycA(Cam), CA14-0737ΔpurU::pcj7-cycA(Cam), CA14-0737ΔpurU::pcj7-cycA(Eco) 균주의 L-히스티딘 생산능 및 L-글리신 생성량을 확인하고자 실시예 1에서 수행된 방법으로 배양하였다.
CA14-0737 유래 cycA 도입균주의 L-히스티딘 및 L-글리신 생산량
OD 사용한 포도당 (g/L) 히스티딘 생산량 (g/L) 글리신 생산량 (g/L)
CA14-0737 88.4 100 4.11 2.21
CA14-0737ΔpurU 87.9 100 4.20 2.24
CA14-0737ΔpurU::PglyA-cycA(Cam) 87.4 100 4.93 1.90
CA14-0737ΔpurU::pcj7-cycA(Cam) 84.1 100 4.97 1.95
CA14-0737ΔpurU::pcj7-cycA(Eco) 88.9 100 4.29 2.20
평가 결과 대장균 유래 cycA가 도입된 CA14-0737ΔpurU::pcj7-cycA(Eco) 균주의 경우 Gly 유입능이 거의 없어 모균주 대비 동등 수준의 히스티딘 생산능을 나타냈다. 반면, 코리네박테리움 암모니아게네스 유래 cycA가 강화 도입된 CA14-0737ΔpurU::pcj7-cycA(Cam) 균주의 경우 히스티딘 생산능은 모균주 대비 20.9% 증가되고 글리신 생성량은 11.8% 감소됨을 확인할 수 있었다. cycA(Cam)을 glyA 프로모터를 통해 발현 시킨 균주 또한 히스티딘 생산능은 20% 증가되고, 글리신 생성량이 14% 감소되었다. 이를 통해 코리네박테리움 글루타미쿰 내에 도입된 코리네박테리움 암모니아게네스 유래 cycA가 대장균 유래 cycA보다 더 높은 글리신 유입능을 갖고 유입된 글리신을 통해 히스티딘 생산능 증가에 더 큰 효과를 나타냄을 확인할 수 있었다. 이 중 CA14-0737ΔpurU::PglyA-cycA(Cam) 균주를 CA14-0737-cycA(Cam)으로 명명하였다.
실시예 7에서 제작된 벡터 pDZΔN2131, pDZΔN2131::GCV(Cam)을 CA14-0737 균주와 CA14-0737-cycA(Cam) 균주에 형질전환하고, 2차 교차 과정을 거쳐 NCgl2131 유전자 결실 균주(CA14-0737-cycA(Cam)ΔN2131), 글리신 분해 시스템 단독 도입 균주 및 글리신 분해 시스템과 글리신 트랜스포터가 모두 도입된 균주 2종(CA14-0737ΔN2131::GCV(Cam), CA14-0737-cycA(Cam)ΔN2131::GCV(Cam))을 제작하였다. 제작된 CA14-0737-cycA(Cam)ΔN2131 균주, CA14-0737ΔN2131::GCV(Cam) 균주, CA14-0737-cycA(Cam)ΔN2131::GCV(Cam) 균주의 L-히스티딘 생산능 및 L-글리신 생성량을 확인하고자 실시예 1에서 수행된 방법으로 배양하였다.
CA14-0737 유래 cycA(cam) 및 글리신 분해시스템 도입균주의 L-히스티딘 및 L-글리신 생산량
OD 사용한 포도당 (g/L) 히스티딘 생산량 (g/L) 글리신 생산량 (g/L)
CA14-0737 88.1 100 4.15 2.17
CA14-0737-cycA(Cam)ΔN2131 75.1 100 4.89 1.48
CA14-0737ΔN2131::GCV(Cam) 78.2 100 5.42 0.94
CA14-0737-cycA(Cam)ΔN2131::GCV(Cam) 71.3 100 5.97 0.46
평가 결과 글리신 트랜스포터 cycA(Cam)만 도입된 CA14-0737-cycA(Cam) ΔN2131 균주의 경우 모균주 대비 히스티딘 생성량은 17.8% 증가되고, 글리신 생성량이 13% 감소되었고, 글리신 트랜스포터 cycA(cam)과 GCV가 동시에 도입된 CA14-0737-cycA(Cam)ΔN2131::GCV(Cam) 균주는 히스티딘 생성량은 43.9% 증가되고 글리신 생성량은 모균주 대비 78.8% 감소되었다. 글리신 분해 시스템이 도입된 CA14-0737ΔN2131::GCV(Cam)균주의 경우 모균주 대비 히스티딘 생성량은 30.6% 증가되고 글리신 생성량이 56.7% 감소되었으나 여전히 배양액에 글리신은 축적되고, 히스티딘 생산성 또한 cycA(Cam)과 동시에 도입된 균주 대비 낮은 것을 확인하였다. 따라서 글리신 트랜스포터 또는 글리신 분해 시스템만 도입되도 히스티딘 생산성 증가 및 글리신 생산량 감소에 효과가 있지만 글리신 트랜스포터와 글리신 분해 시스템이 함께 도입되면 세포 내 생성되는 글리신이 분해되면서 히스티딘 생성능이 더욱 크게 증가됨을 확인하였다. CA14-0737-cycA(Cam) 균주는 CA14-0777로 명명하고, CA14-0737-cycA(Cam)ΔN2131::GCV(Cam) 균주는 CA14-0809로 명명하여, 상기 2종의 균주를 부다페스트 조약하의 국제기탁기관인 한국미생물보존센터(KCCM)에 2019년 4월 15일자로 국제 기탁하여 각각 KCCM12488P, KCCM12489P 로 기탁번호를 부여받았다.
이상의 설명으로부터, 본 출원이 속하는 기술분야의 당업자는 본 출원이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로 이해해야만 한다. 본 출원의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 출원의 범위에 포함되는 것으로 해석되어야 한다.
Figure PCTKR2020003317-appb-I000001
Figure PCTKR2020003317-appb-I000002
Figure PCTKR2020003317-appb-I000003

Claims (12)

  1. 글리신 트랜스포터의 활성이 강화된, L-히스티딘을 생산하는 코리네박테리움 속 미생물.
  2. 제1항에 있어서, 상기 글리신 트랜스포터는 코리네박테리움 암모니아게네스(Corynebacterium ammoniagenes) 유래인, 미생물.
  3. 제1항에 있어서, 상기 글리신 트랜스포터 단백질은 CycA 단백질인, 미생물.
  4. 제1항에 있어서, 상기 글리신 트랜스포터는 서열번호 1 또는 이와 90% 이상의 서열 상동성을 갖는 아미노산 서열을 포함하는 것인, 미생물.
  5. 제1항에 있어서, 상기 미생물은 글리신 분해 단백질의 활성이 추가로 강화된, 미생물.
  6. 제1항에 있어서, 상기 글리신 분해 단백질은 GcvP, GcvT, GcvH, LipB 및 LipA로 구성된 군에서 선택되는 하나 이상의 단백질인, 미생물.
  7. 제6항에 있어서, 상기 글리신 분해 단백질은 코리네박테리움 암모니아게네스 유래인, 미생물.
  8. 제6항에 있어서, 상기 GcvP는 서열번호 26, GcvT 단백질은 서열번호 27, GcvH는 서열번호 28, LipA 단백질은 서열번호 29, LipB 단백질은 서열번호 30 또는 상기 서열번호와 각각 90% 이상의 상동성을 갖는 아미노산 서열을 포함하는 것인, 미생물.
  9. 제1항에 있어서, 상기 L-히스티딘을 생산하는 코리네박테리움 속 미생물은 코리네박테리움 글루타미쿰(Corynebacterium glutamicum)인, 미생물.
  10. 제1항 내지 제9항 중 한 항의 미생물을 포함하는 L-히스티딘 생산용 조성물.
  11. 제1항 내지 제9항 중 한 항의 미생물을 배지에서 배양하는 단계; 및
    상기 미생물 및 배지에서 L-히스티딘을 회수하는 단계를 포함하는, L-히스티딘 제조방법.
  12. 글리신 트랜스포터의 활성이 강화된 코리네박테리움 속 미생물의 L-히스티딘 생산 용도.
PCT/KR2020/003317 2019-04-22 2020-03-10 L-히스티딘 생산능이 강화된 미생물 및 이를 이용한 히스티딘 생산방법 WO2020218736A1 (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2021562963A JP7394868B2 (ja) 2019-04-22 2020-03-10 L-ヒスチジン生産能が強化された微生物及びそれを用いたヒスチジン生産方法
AU2020262366A AU2020262366B2 (en) 2019-04-22 2020-03-10 Microorganism with enhanced L-histidine production capacity and method for producing histidine by using same
BR112021021219A BR112021021219A2 (pt) 2019-04-22 2020-03-10 Micro-organismo com capacidade de produção de l-histidina melhorada e método para produzir histidina com uso do mesmo
CN202080044663.7A CN114502735B (zh) 2019-04-22 2020-03-10 L-组氨酸产生能力增强的微生物和用其产生组氨酸的方法
CA3137694A CA3137694A1 (en) 2019-04-22 2020-03-10 Microorganism with enhanced l-histidine production capacity and method for producing histidine by using same
EP20794478.6A EP3954776A4 (en) 2019-04-22 2020-03-10 MICROORGANISM WITH IMPROVED ACTIVITY OF L-HISTIDINE PRODUCTION AND METHOD OF PRODUCTION OF HISTIDINE USING THEREOF
US17/605,648 US20220205003A1 (en) 2019-04-22 2020-03-10 Microorganism with enhanced l-histidine production capacity and method for producing histidine by using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190046934A KR102204917B1 (ko) 2019-04-22 2019-04-22 L-히스티딘 생산능이 강화된 미생물 및 이를 이용한 히스티딘 생산방법
KR10-2019-0046934 2019-04-22

Publications (1)

Publication Number Publication Date
WO2020218736A1 true WO2020218736A1 (ko) 2020-10-29

Family

ID=66846257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/003317 WO2020218736A1 (ko) 2019-04-22 2020-03-10 L-히스티딘 생산능이 강화된 미생물 및 이를 이용한 히스티딘 생산방법

Country Status (8)

Country Link
US (1) US20220205003A1 (ko)
EP (1) EP3954776A4 (ko)
JP (1) JP7394868B2 (ko)
KR (1) KR102204917B1 (ko)
AU (1) AU2020262366B2 (ko)
BR (1) BR112021021219A2 (ko)
CA (1) CA3137694A1 (ko)
WO (1) WO2020218736A1 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102204917B1 (ko) * 2019-04-22 2021-01-20 씨제이제일제당 주식회사 L-히스티딘 생산능이 강화된 미생물 및 이를 이용한 히스티딘 생산방법
WO2022005022A1 (ko) * 2020-06-29 2022-01-06 씨제이제일제당 (주) L-이소류신 생산능이 강화된 미생물 및 이를 이용한 l-이소류신 생산방법
KR20220092182A (ko) * 2020-12-24 2022-07-01 씨제이제일제당 (주) L-히스티딘 배출 단백질 및 이를 이용한 l-히스티딘 생산 방법
KR20240000168A (ko) * 2022-06-23 2024-01-02 씨제이제일제당 (주) L-히스티딘 배출 단백질 및 이를 이용한 l-히스티딘 생산 방법
KR20240000169A (ko) * 2022-06-23 2024-01-02 씨제이제일제당 (주) L-히스티딘 배출 단백질 및 이를 이용한 l-히스티딘 생산 방법
CN116254242B (zh) * 2022-12-21 2024-01-30 江南大学 一种atp磷酸核苷转移酶突变体及产l-组氨酸的谷氨酸棒杆菌

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006065095A1 (en) 2004-12-16 2006-06-22 Cj Corporation Novel promoter nucleic acid derived from corynebacterium genus bacteria, expression cassette comprising the promoter and vector comprising the cassette, host cell comprising the vector and method for expressing a gene using the cell
WO2009096689A2 (ko) 2008-01-28 2009-08-06 Cj Cheiljedang Corporation 개량된 프로모터 및 이를 이용한 l-라이신의 생산 방법
KR100924065B1 (ko) 2006-09-15 2009-10-27 씨제이제일제당 (주) L-라이신 생산능이 향상된 코리네박테리아 및 그를 이용한 l-라이신 생산 방법
WO2014029376A1 (de) 2012-08-22 2014-02-27 Forschungszentrum Jülich GmbH Verfahren zur herstellung von vektoren enthaltend ein für in seiner feedback-inhibierung gemindertes oder ausgeschaltetes enzym kodierendes gen und deren verwendung für die herstellung von aminosäuren und nukleotiden
KR20160030092A (ko) 2013-05-08 2016-03-16 다우 코닝 코포레이션 친수성 유기실란
US20170051324A1 (en) * 2014-04-30 2017-02-23 Evonik Degussa Gmbh Method for Producing L-Amino Acids in Corynebacteria Using a Glycine Cleavage System
KR20170106685A (ko) * 2016-03-14 2017-09-22 씨제이제일제당 (주) L-히스티딘을 생산하는 코리네박테리움 글루타미컴 변이주 및 이를 이용한 l-히스티딘의 생산방법
KR101783170B1 (ko) 2016-08-31 2017-09-29 씨제이제일제당 (주) 신규 프로모터 및 이의 용도
US9896704B2 (en) * 2015-04-22 2018-02-20 Ajinomoto Co., Inc. Method for producing L-isoleucine using a bacterium of the family Enterobacteriaceae having overexpressed the cycA gene
KR20190065984A (ko) * 2019-04-22 2019-06-12 씨제이제일제당 (주) L-히스티딘 생산능이 강화된 미생물 및 이를 이용한 히스티딘 생산방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63146796A (ja) * 1986-12-10 1988-06-18 Kyowa Hakko Kogyo Co Ltd L−ヒスチジンの製造法
KR101904666B1 (ko) 2017-08-02 2018-11-29 씨제이제일제당 (주) Atp 포스포리보실기 전이효소 변이체 및 이를 이용한 l-히스티딘 생산방법
KR102175112B1 (ko) * 2019-04-22 2020-11-06 씨제이제일제당 주식회사 L-쓰레오닌 생산능이 강화된 미생물 및 이를 이용한 쓰레오닌 생산방법

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006065095A1 (en) 2004-12-16 2006-06-22 Cj Corporation Novel promoter nucleic acid derived from corynebacterium genus bacteria, expression cassette comprising the promoter and vector comprising the cassette, host cell comprising the vector and method for expressing a gene using the cell
KR100620092B1 (ko) 2004-12-16 2006-09-08 씨제이 주식회사 코리네박테리움 속 세포로부터 유래된 신규한 프로모터서열, 그를 포함하는 발현 카세트 및 벡터, 상기 벡터를포함하는 숙주 세포 및 그를 이용하여 유전자를 발현하는방법
KR100924065B1 (ko) 2006-09-15 2009-10-27 씨제이제일제당 (주) L-라이신 생산능이 향상된 코리네박테리아 및 그를 이용한 l-라이신 생산 방법
WO2009096689A2 (ko) 2008-01-28 2009-08-06 Cj Cheiljedang Corporation 개량된 프로모터 및 이를 이용한 l-라이신의 생산 방법
KR100930203B1 (ko) 2008-01-28 2009-12-07 씨제이제일제당 (주) 개량된 프로모터 및 이를 이용한 l-라이신의 생산 방법
WO2014029376A1 (de) 2012-08-22 2014-02-27 Forschungszentrum Jülich GmbH Verfahren zur herstellung von vektoren enthaltend ein für in seiner feedback-inhibierung gemindertes oder ausgeschaltetes enzym kodierendes gen und deren verwendung für die herstellung von aminosäuren und nukleotiden
KR20160030092A (ko) 2013-05-08 2016-03-16 다우 코닝 코포레이션 친수성 유기실란
US20170051324A1 (en) * 2014-04-30 2017-02-23 Evonik Degussa Gmbh Method for Producing L-Amino Acids in Corynebacteria Using a Glycine Cleavage System
US9896704B2 (en) * 2015-04-22 2018-02-20 Ajinomoto Co., Inc. Method for producing L-isoleucine using a bacterium of the family Enterobacteriaceae having overexpressed the cycA gene
KR20170106685A (ko) * 2016-03-14 2017-09-22 씨제이제일제당 (주) L-히스티딘을 생산하는 코리네박테리움 글루타미컴 변이주 및 이를 이용한 l-히스티딘의 생산방법
KR101783170B1 (ko) 2016-08-31 2017-09-29 씨제이제일제당 (주) 신규 프로모터 및 이의 용도
KR20190065984A (ko) * 2019-04-22 2019-06-12 씨제이제일제당 (주) L-히스티딘 생산능이 강화된 미생물 및 이를 이용한 히스티딘 생산방법

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
ACS SYNTH. BIOL., vol. 3, no. 1, 2014, pages 21 - 29
ALTSCHUL, PRO. NATL. ACAD. SCI. USA, vol. 90, 1993, pages 5873
DATABASE Protein 11 March 2017 (2017-03-11), "D-serine/D-alanine/glycine transporter [Corynebacterium stationis]", XP055752862, retrieved from NCBI Database accession no. WP_079005619.1 *
DG GIBSON ET AL., NATURE METHODS, vol. 6, 5 May 2009 (2009-05-05)
INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, vol. 60, pages 874 - 879
J. SAMBROOK ET AL.: "Molecular Cloning, A Laboratory Manual", 1989, COLD SPRING HARBOR LABORATORY PRESS
JOHN E. CRONAN, MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 13 April 2016 (2016-04-13)
JORN KALINOWSKI ET AL., JOURNAL OF BIOTECHNOLOGY, vol. 104, 2003, pages 5 - 25
MICROB BIOTECHNOL., vol. 7, no. 1, January 2014 (2014-01-01), pages 5 - 25
MICROBIOLOGY, vol. 141, 1995, pages 133 - 40
PEARSON, METHODS ENZYMOL., vol. 183, 1990, pages 63
SCHEIT: "Nucleotide Analogs", 1980, JOHN WILEY
UHLMANPEYMAN, CHEMICAL REVIEWS, vol. 90, 1990, pages 543 - 584

Also Published As

Publication number Publication date
EP3954776A4 (en) 2022-04-20
EP3954776A1 (en) 2022-02-16
AU2020262366A1 (en) 2021-11-18
BR112021021219A2 (pt) 2021-12-21
US20220205003A1 (en) 2022-06-30
KR102204917B1 (ko) 2021-01-20
KR20190065984A (ko) 2019-06-12
JP2022529831A (ja) 2022-06-24
AU2020262366B2 (en) 2023-09-28
JP7394868B2 (ja) 2023-12-08
CN114502735A (zh) 2022-05-13
CA3137694A1 (en) 2020-10-29

Similar Documents

Publication Publication Date Title
WO2020218736A1 (ko) L-히스티딘 생산능이 강화된 미생물 및 이를 이용한 히스티딘 생산방법
WO2019164346A1 (ko) L-트립토판을 생산하는 재조합 코리네형 미생물 및 이를 이용한 l-트립토판을 생산하는 방법
WO2022055094A1 (ko) L-글루탐산 생산 재조합 미생물 및 이를 이용한 l-글루탐산의 제조방법
WO2020218737A1 (ko) L-쓰레오닌 생산능이 강화된 미생물 및 이를 이용한 쓰레오닌 생산방법
WO2020256415A1 (ko) L-타이로신을 생산하는 미생물 및 이를 이용한 l-타이로신 생산 방법
WO2022154191A1 (ko) 신규한 2,5-다이케토-d-글루콘산 리덕타제 변이체 및 이를 이용한 xmp 또는 gmp 생산 방법
WO2022154190A1 (ko) 신규한 포스포노아세테이트 하이드롤라제 변이체 및 이를 이용한 xmp 또는 gmp 생산 방법
WO2022154177A1 (ko) 신규한 3d-(3,5/4)-트리하이드록시사이클로헥세인-1,2-다이온 아실하이드롤라아제 변이체 및 이를 이용한 imp 생산 방법
WO2022005022A1 (ko) L-이소류신 생산능이 강화된 미생물 및 이를 이용한 l-이소류신 생산방법
WO2022163935A1 (ko) 신규한 글루코사민-6-포스페이트 디아미나제 변이체 및 이를 이용한 l-글루탐산 생산 방법
WO2022191630A1 (ko) 신규한 시트레이트 신타아제 변이체 및 이를 이용한 l-발린 생산 방법
WO2022050671A1 (ko) L-발린 생산 미생물 및 이를 이용한 l-발린 생산 방법
WO2022154188A1 (ko) 신규한 폴리케타이드 신타제 변이체 및 이를 이용한 xmp 또는 gmp 생산 방법
WO2022154189A1 (ko) 신규한 피토엔 신타제 변이체 및 이를 이용한 xmp 또는 gmp 생산 방법
WO2022163929A1 (ko) 신규한 펩티딜-디펩티다제 변이체 및 이를 이용한 xmp 또는 gmp 생산 방법
WO2022163930A1 (ko) 신규한 2-숙시닐-5-엔도피루빌-6-하이드록시-3-사이클로헥센-1-카복실레이트 신타아제 변이체 및 이를 이용한 xmp 또는 gmp 생산 방법
WO2022154179A1 (ko) 신규한 d-알라닌--d-알라닌 리가아제 변이체 및 이를 이용한 imp 생산 방법
WO2022154185A1 (ko) 신규한 펩타이드 메티오닌 설폭사이드 환원효소 변이체 및 이를 이용한 imp 생산 방법
WO2022154184A1 (ko) 신규한 셀레니드, 물 디키나제 변이체 및 이를 이용한 imp 생산 방법
WO2022163936A1 (ko) 신규한 엑시뉴클레아제 abc 서브유닛 a 변이체 및 이를 이용한 l-글루탐산 생산 방법
WO2022163940A1 (ko) 신규한 갈락토사이드 o-아세틸트랜스퍼라제 변이체 및 이를 이용한 l-글루탐산 생산 방법
WO2022154180A1 (ko) 신규한 포름아미도피리미딘-dna 글리코실라제 변이체 및 이를 이용한 imp 생산 방법
WO2022163933A1 (ko) 신규한 abc 트랜스포터 atp-결합 단백질 변이체 및 이를 이용한 l-글루탐산 생산 방법
WO2022163932A1 (ko) 신규한 알데하이드 디하이드로게나제 변이체 및 이를 이용한 xmp 또는 gmp 생산 방법
WO2022216088A1 (ko) L-아르기닌을 생산하는 코리네박테리움 속 미생물 및 이를 이용한 l-아르기닌 생산방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20794478

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3137694

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2021562963

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021021219

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2020262366

Country of ref document: AU

Date of ref document: 20200310

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020794478

Country of ref document: EP

Effective date: 20211108

ENP Entry into the national phase

Ref document number: 112021021219

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20211022