WO2021083207A1 - 一种双苯酚金属配合物及其制备方法和应用 - Google Patents

一种双苯酚金属配合物及其制备方法和应用 Download PDF

Info

Publication number
WO2021083207A1
WO2021083207A1 PCT/CN2020/124376 CN2020124376W WO2021083207A1 WO 2021083207 A1 WO2021083207 A1 WO 2021083207A1 CN 2020124376 W CN2020124376 W CN 2020124376W WO 2021083207 A1 WO2021083207 A1 WO 2021083207A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
bisphenol
metal complex
substituted
unsubstituted
Prior art date
Application number
PCT/CN2020/124376
Other languages
English (en)
French (fr)
Inventor
韩书亮
李昊坤
宋文波
金钊
王路生
方园园
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司北京化工研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司北京化工研究院 filed Critical 中国石油化工股份有限公司
Priority to KR1020227018106A priority Critical patent/KR20220092932A/ko
Priority to BR112022008102A priority patent/BR112022008102A2/pt
Priority to CA3159350A priority patent/CA3159350A1/en
Priority to US17/772,262 priority patent/US20220380397A1/en
Priority to CN202080074687.7A priority patent/CN114599685B/zh
Priority to EP20882922.6A priority patent/EP4053167A4/en
Priority to JP2022525125A priority patent/JP2023501196A/ja
Publication of WO2021083207A1 publication Critical patent/WO2021083207A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/64003Titanium, zirconium, hafnium or compounds thereof the metallic compound containing a multidentate ligand, i.e. a ligand capable of donating two or more pairs of electrons to form a coordinate or ionic bond
    • C08F4/64006Bidentate ligand
    • C08F4/64068Dianionic ligand
    • C08F4/64079OO
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/642Component covered by group C08F4/64 with an organo-aluminium compound
    • C08F4/6428Component covered by group C08F4/64 with an organo-aluminium compound with an aluminoxane, i.e. a compound containing an Al-O-Al- group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2410/00Features related to the catalyst preparation, the catalyst use or to the deactivation of the catalyst
    • C08F2410/03Multinuclear procatalyst, i.e. containing two or more metals, being different or not
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/04Cp or analog not bridged to a non-Cp X ancillary anionic donor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/07Heteroatom-substituted Cp, i.e. Cp or analog where at least one of the substituent of the Cp or analog ring is or contains a heteroatom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65908Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound

Definitions

  • the invention relates to a bisphenol metal complex, a preparation method and application thereof, and belongs to the field of organic synthesis.
  • coordination polymerization catalysts represented by Ziegler-Natta catalysts has promoted the rapid development of the polyolefin industry.
  • metal catalysts for solution polymerization has become one of the hotspots in the field of coordination polymerization, and transition metal catalysts based on phenol ligands belong to one of them.
  • This type of catalyst has good olefin catalytic activity.
  • the 2,6-diisopropyl phenol titanium catalyst has successfully realized the homopolymerization of ethylene to obtain linear polyethylene (Nomura K, Naga N, Miki M, et al., Macromolecules).
  • the ethyl grafting rate (12%) of the polymer obtained by using the double boron co-catalyst is also higher than the ethyl grafting rate (2.7%) of the polymer obtained by using the single boron co-catalyst (Li, H.; Marks, TJProc. Natl. Acad. Sci. 2006, 103, 15295).
  • CN201010204671.1 discloses the homopolymerization of ethylene and the copolymerization of ethylene with monomers such as hexene and octene using a double titanium metal catalyst.
  • the polymerization activity under normal pressure is on the order of 10 4 g ⁇ mol -1 (Ti) ⁇ h -1 ,
  • the molecular weight of the copolymer is about 300,000, and the molecular weight distribution is greater than 2.
  • the inventors conducted diligent research and found that a type of bisphenol metal complexes exhibit high catalytic efficiency and high comonomer combination when used in olefin polymerization, thus completing the present invention.
  • an object of the present invention is to provide a bisphenol metal complex.
  • Another object of the present invention is to provide a method for preparing the bisphenol metal complex.
  • Another object of the present invention is to provide the application of the bisphenol metal complex as a component of a catalyst system in olefin polymerization.
  • substituted means that one or more of the hydrogen atoms on the group in question is replaced by a C 1 -C 6 alkyl, phenyl, benzyl, halogen, heteroatom, or heteroatom-containing group. Groups such as C 1 -C 6 alkoxy substituted, or carbon atoms on the main chain are substituted with heteroatoms.
  • substituents include, but are not limited to, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, pentyl, isopentyl, hexyl, cyclopentyl, cyclohexyl, phenyl, benzyl, Fluorine, chlorine, bromine, iodine, methoxy, ethoxy.
  • halogen or "halogen atom” used herein refers to at least one of fluorine, chlorine, bromine, and iodine.
  • heteroatom refers to at least one selected from O, S, N, P, B, Si, Ge, and tin.
  • polymerization as used herein includes homopolymerization and copolymerization.
  • polymer as used herein includes homopolymers, copolymers and terpolymers.
  • catalyst component refers to a main catalyst component or a procatalyst, which together with a conventional cocatalyst such as aluminum alkyl and optional external electron donors constitute a catalyst for olefin polymerization (such a combination Also known as catalyst system in the art).
  • the present disclosure provides a bisphenol metal complex, the structure of which is shown in formula I:
  • R 1 and R 1 ' are each independently selected from hydrogen and a substituted or unsubstituted, a C 1 -C 20 hydrocarbon group
  • R 3 -R 7, R 3 ' -R 7 ' are each independently selected from hydrogen and a substituted or unsubstituted substituted C 1 -C 20 hydrocarbon group, and R 3 -R 7 in any two adjacent groups are optionally joined to form any two adjacent groups are optionally 3 '-R 7' ring, and R Linked to form a ring
  • M and M' are each independently selected from Group 4 metals
  • each X is independently selected from the following group: hydrocarbon groups with 1-20 carbon atoms, hydride, amino, alkoxy, alkylthio , Alkylphosphonium, halide, diene, amine, phosphine, ether, and combinations thereof
  • m and n are independently an integer of 1-4
  • L is a divalent linking group.
  • the divalent linking group L is a divalent hydrocarbon group having 1-30 carbon atoms or a divalent linking group having a substantially hydrocarbon nature.
  • substantially hydrocarbon-like divalent linking group refers to a divalent group exhibiting hydrocarbon properties as a whole. Such a group allows one or more heteroatoms to be included in the hydrocarbon chain, but does not have Active hydrogen.
  • the divalent linking group L useful in the present invention may be selected from the following group: C1-C30 alkylene, C1-C30 heteroalkylene, C5-C30 cycloalkylene, C4-C30 heterocycloalkylene, C2-C30 alkenylene, C2-C30 heteroalkenylene, C4-C30 cycloalkenylene, C4-C30 heterocycloalkenylene, C2-C30 alkynylene, C2-C30 heteroalkynylene, C6-C30 Arylene, and C4-C30 heteroarylene.
  • L examples include but are not limited to: methylene, 1,2-ethylene, 1,3-propylene, 1,2-cyclopentyl, 1,3-cyclopentyl, 1,2-cyclohexyl Pentyl, 1,3-cyclohexyl, 1,4-cyclohexyl, 1,2-phenylene, 1,3-phenylene, 1,4-phenylene, 1,8-naphthylene, 1 ,8-anthrylene, 1,8-fluorenylene, 1,8-carbazolylidene, 4,5-acridinediyl, 4H-dibenzopyran-1,9-diyl, in the above Corresponding groups with one or more alkyl substituents such as C1-C6 alkyl substituents on the carbon chain and/or ring of the group.
  • alkyl substituents such as C1-C6 alkyl substituents on the carbon chain and/or ring of the group.
  • the structure of the bisphenol metal complex of the present disclosure is shown in Formula Ia:
  • R 1 and R 1 ' are each independently selected from hydrogen and a substituted or unsubstituted C 1 -C 20 hydrocarbon group of;
  • R 3 -R 7, R 3 ' -R 7 ' are each independently selected from hydrogen and substituted or unsubstituted C 1 -C 20 hydrocarbon group, and R 3 -R 7 in any two adjacent groups are optionally joined to form a ring is, and R 3 '-R 7' of any two adjacent groups Optional connection to form a ring;
  • R 8 and R 9 are each independently selected from hydrogen and substituted or unsubstituted C 1 -C 20 hydrocarbon groups;
  • R are each independently selected from hydrogen and substituted or unsubstituted C 1 -C 20 hydrocarbon groups ;
  • M and M' are each independently selected from Group 4 metals;
  • each X is independently selected from the following group: hydrocarbon groups with 1-20 carbon atoms, hydride, amino, alkoxy, alkylthio, alkane phosphorous Group
  • the structure of the bisphenol metal complex of the present disclosure is shown in Formula Ib:
  • R 1, R 1 ', R 2, R 2' is independently selected from hydrogen and a substituted or unsubstituted C 1 -C 20 hydrocarbon group of;
  • R 3 -R 7, R 3 '-R 7' are each independently Is selected from hydrogen and substituted or unsubstituted C 1 -C 20 hydrocarbon groups, and any two adjacent groups in R 3 -R 7 are optionally connected to form a ring, and any two of R 3 ′-R 7 ′ Two adjacent groups are optionally connected to form a ring;
  • R 8 and R 9 are each independently selected from hydrogen and substituted or unsubstituted C 1 -C 20 hydrocarbon groups;
  • M and M' are each independently selected from Group 4 metals ;
  • Each X is independently selected from the following group: hydrocarbon groups with 1-20 carbon atoms, hydride, amino, alkoxy, alkylthio, alkylphosphorus, halide, diene, amine, phosphine, ether, And their combination.
  • R 1 , R 1 ′, R 2 , R 2 ′ are each independently selected from hydrogen, substituted or unsubstituted C 1 -C 20 linear or Branched alkyl and substituted or unsubstituted C 6 -C 20 aryl, preferably selected from hydrogen and substituted or unsubstituted C 1 -C 10 linear or branched alkyl, more preferably selected from hydrogen and substituted Or unsubstituted C 1 -C 6 linear or branched alkyl.
  • R 3 -R 7, R 3 '-R 7' are each independently selected from hydrogen and a substituted or unsubstituted, a C 1 -C 20 linear or Branched chain alkyl, preferably selected from hydrogen and substituted or unsubstituted C 1 -C 10 linear or branched alkyl, more preferably selected from hydrogen and substituted or unsubstituted C 1 -C 6 linear or branched Alkyl.
  • R 8 and R 9 are each independently selected from hydrogen and substituted or unsubstituted C 1 -C 20 linear or branched alkyl groups, preferably selected from hydrogen and The substituted or unsubstituted C 1 -C 10 linear or branched alkyl group is more preferably selected from hydrogen and the substituted or unsubstituted C 1 -C 6 linear or branched alkyl group.
  • M and M' are each independently selected from titanium, zirconium and hafnium, preferably titanium.
  • each X is independently selected from methyl, fluorine, chlorine, bromine and iodine, preferably methyl or chlorine.
  • the bisphenol metal complex is at least one selected from the complexes represented by the following formula Ib:
  • the present invention provides a method for preparing the above-mentioned bisphenol metal complex, which includes the following steps:
  • R 3 -R 7 , M and X have the same meanings as defined above for formula I.
  • the present invention provides a method for preparing the bisphenol metal complex represented by formula Ib, which includes the following steps:
  • R 1 , R 1 ′, R 2 , R 2 ′, R 8 and R 9 have the same meaning as defined above for formula Ib;
  • M 1 is selected from Group IA metals, preferably lithium, sodium or potassium, and R is hydrogen or a C 1 -C 10 linear or branched alkyl group;
  • R 3 -R 7 , M and X have the same meanings as defined above for formula Ib.
  • the preparation method includes: reacting the bisphenol compound represented by formula II with the metal compound represented by formula III in an organic solvent to obtain the bisphenol di-salt represented by formula IV The compound is then reacted with the metal complex represented by formula V in an organic solvent to obtain the bisphenol metal complex represented by formula Ib.
  • the organic solvent is selected from tetrahydrofuran, diethyl ether, 1,4-dioxane, and dichloromethane.
  • the bisphenol compound is at least one selected from the bisphenol compounds represented by the following formula II:
  • the metal compound represented by formula III is at least one selected from KH, NaH, MeLi, EtLi, PrLi and BuLi.
  • the compound represented by formula IV is at least one selected from the following compounds:
  • the metal complex represented by formula V is selected from at least one of the following metal complexes:
  • the molar ratio of the bisphenol compound represented by formula II to the compound represented by formula III is 1: (1-20), for example, 1:2.5, 1:3, 1: 3.5, 1:4, 1:4.5, 1:5, 1:5.5, 1:6, 1:6.5, 1:7, 1:7.5, 1:8, 1:8.5, 1:9, 1:9.5, 1:10, 1:10.5, 1:11, 1:11.5, 1:12, 1:12.5, 1:13, 1:13.5, 1:14, 1:14.5, 1:15, 1:15.5, 1: 16, 1:16.5, 1:17, 1:17.5, 1:18, 1:18.5, 1:19, 1:19.5, 1:20 and any value between them, preferably 1: (2-10) , More preferably 1: (4-8).
  • the reaction temperature for the reaction of the bisphenol compound represented by formula II with the compound represented by formula III is -78°C to 60°C, such as -60°C, -50°C, -40°C. °C, -30 °C, -20 °C, -10 °C, 0 °C, 10 °C, 20 °C, 30 °C and any value in between, preferably -10 °C to 40 °C.
  • the reaction time of the reaction between the bisphenol compound represented by formula II and the compound represented by formula III is 1-10 hours, such as 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5 and any value between them, preferably 1.5 to 3 hours.
  • the molar ratio of the compound represented by formula IV to the metal compound represented by formula V is 1: (1.8-2.4), for example, 1:1.9, 1:2, 1:2.1 , 1:2.2, 1:2.3, 1:2.4 and any value between them, preferably 1:2.
  • the number of moles of the bisphenol compound can be regarded as the number of moles of the compound represented by formula IV.
  • the reaction temperature of the reaction between the compound represented by formula IV and the metal compound represented by formula V is -78°C to 60°C, such as -60°C, -50°C, -40°C , -30°C, -20°C, -10°C, 0°C, 10°C, 20°C, 30°C and any value in between, preferably -10°C to 40°C.
  • the reaction time of the reaction between the compound represented by formula IV and the metal compound represented by formula V is 6-24 hours, such as 6, 7, 8, 9, 10, 11, 12 , 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 and any value between them, preferably 6-19 hours.
  • the present invention provides the application of the above-mentioned bisphenol metal complex in olefin polymerization, wherein the bisphenol metal complex is used as a main catalyst (or a catalyst compound) of an olefin polymerization catalyst.
  • the olefin polymerization catalyst further includes a co-catalyst, and the co-catalyst is selected from organoaluminum compounds and organoboron compounds.
  • Polymerization activity The polymer obtained by polymerization is dried and weighed, and the catalyst activity is obtained by dividing it by the amount of catalyst added during polymerization.
  • the melting point of the polymer is tested by differential scanning calorimetry (DSC): a 10 mg sample is placed in a crucible and measured on a METTLER DSC1 differential scanning calorimeter. In a nitrogen atmosphere, the temperature is increased from -70°C to 200°C at a heating rate of 10°C/min, and the temperature is kept for 1 min, and the temperature is reduced to -70°C at 10°C/min. The temperature is kept for 3 minutes, and then the temperature is increased to 200°C at 10°C/min , Record the second heating scan data.
  • DSC differential scanning calorimetry
  • the content of comonomer in the polymer is measured by high-temperature nuclear magnetic carbon spectroscopy.
  • the bisphenol compound 3 (2.24 mmol) was dissolved in a ether solvent, and pure KH solid (8.96 mmol) was added to the solution at -78°C, and then reacted for 1 hour, returned to room temperature, and continued to react for 2 hours. After that, the solution was transferred to the dichloromethane solution of metal complex 2 (4.48 mmol) at -78°C through a double-angle needle, and reacted at this temperature for 1 hour, then the system was gradually returned to room temperature, and then reacted for 12 hour.
  • the bisphenol compound 4 (2.00 mmol) was dissolved in a tetrahydrofuran solvent, and pure NaH solid (12.00 mmol) was added to the solution at -10°C and reacted for 1 hour, returned to room temperature, and continued to react for 1 hour. After that, the solution was transferred to the tetrahydrofuran solution of metal complex 1 (4.00 mmol) at -10°C through a double-angled needle, and reacted at this temperature for half an hour, then the system was gradually returned to room temperature, and the reaction was continued for another 8 hours.
  • the 500mL polymerizer was evacuated and vented with nitrogen twice, then evacuated and then vented with ethylene gas, and then 10mL (2mmol/mL) of toluene solution of methylaluminoxane (MAO) was added successively.
  • ethylene with a pressure of 1.0MPa was introduced, and reacted at 20°C under this pressure for 20 minutes, and then ethanol was added to terminate the reaction, and 2.8g of polymer was obtained. It was confirmed by calculation that the polymerization activity was 8.4 ⁇ 10 5 g ⁇ mol -1 (Ti) ⁇ h -1 .
  • the melting point measured by DSC is 133.5°C; the M w measured by GPC is 1.9 ⁇ 10 5 , and the M w /M n is 4.82.
  • the 500mL polymerizer after heating and drying was evacuated and ventilated twice with nitrogen, then evacuated and then ethylene gas was ventilated, and then 2mL (0.5mmol/mL) of n-hexane solution of triisobutylaluminum was added in sequence, after anhydrous and oxygen-free 150mL of treated n-hexane, and 1mL (2.5 ⁇ mol/mL) of toluene solution containing bisphenol metal complex 7, and then add boron-containing reagent [Ph 3 C][B(C 6 F 5 ) 4 ] 2mL (5 ⁇ mol/mL) ).
  • the melting point measured by DSC is 133.3°C; the M w measured by GPC is 1.8 ⁇ 10 5 , and the M w /M n is 6.84.
  • the 500ml polymerizer after heating and drying was evacuated and ventilated twice with nitrogen, then evacuated and then ethylene gas was ventilated, and then 6.8ml (mass fraction 10%) of methylaluminoxane (MAO) in toluene solution was added in sequence, 1- 15ml of hexene, 150ml of n-hexane after anhydrous and oxygen-free treatment, and 2ml (2.5 ⁇ mol/mL) of the toluene solution of bisphenol metal complex 7.
  • MAO methylaluminoxane
  • the melting point measured by DSC is 103°C; the M w measured by GPC is 1.9 ⁇ 10 5 and the M w /M n is 1.92; the molar content of 1-hexene measured by high temperature nuclear magnetic carbon spectroscopy is 5.3%.
  • the 500mL polymerizer after heating and drying was evacuated and ventilated twice with nitrogen, then evacuated and then ethylene gas was ventilated, and then 2mL (0.5mmol/mL) of n-hexane solution of triisobutylaluminum was added in sequence, after anhydrous and oxygen-free 150mL of treated n-hexane, and 2mL (2.5 ⁇ mol/mL) of toluene solution containing bisphenol metal complex A, then add boron-containing reagent [Ph 3 C][B(C 6 F 5 ) 4 ]3mL (5 ⁇ mol/mL) ).
  • the melting point measured by DSC is 130.0°C; the M w measured by GPC is 3.4 ⁇ 10 5 , and the M w /M n is 8.53.
  • the 500ml polymerizer after heating and drying was evacuated and vented with nitrogen twice, and then evacuated, ethylene gas was vented, and then 2mL (0.5mmol/mL) of n-hexane solution of triisobutylaluminum was added successively, 1-octene 9.3 ml, 150mL of n-hexane after anhydrous and oxygen-free treatment, and 2mL (2.5 ⁇ mol/mL) of toluene solution containing bisphenol metal complex A, then add boron-containing reagent [Ph 3 C][B(C 6 F 5 ) 4 ] 3mL (5 ⁇ mol/mL).
  • the melting point measured by DSC is 125.5°C; the M w measured by GPC is 5.6 ⁇ 10 4 and the M w /M n is 2.91; the molar content of 1-octene measured by high temperature nuclear magnetic carbon spectroscopy is 2.4%.
  • any numerical value mentioned in the present invention if there is only a two-unit interval between any lowest value and any highest value, it includes all values from the lowest value to the highest value that increase by one unit at a time.
  • the amount of a component is declared, or the value of process variables such as temperature, pressure, time, etc. is 50-90, in this specification it means specifically enumerating 51-89, 52-88... and 69 Values such as -71 and 70-71.
  • 0.1, 0.01, 0.001, or 0.0001 can be considered as a unit.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本发明公开了一种双苯酚金属配合物,其结构如式I所示,其中R1和R1'各自独立地选自氢和取代或未取代的C1-C20的烃基;R3-R7、R3'-R7'各自独立地选自氢和取代或未取代的C1-C20的烃基,并且R3-R7中任何两个相邻的基团任选连接形成环,和R3'-R7'中任何两个相邻的基团任选连接形成环;M和M'各自独立地选自第4族金属;每个X独立地选自下组:具有1-20个碳原子的烃基,氢负离子,氨基,烷氧基,烷硫基,烷磷基,卤根,二烯,胺,膦,醚,和它们的组合;m和n独立地为1-4的整数;并且L是二价连接基团。

Description

一种双苯酚金属配合物及其制备方法和应用
相关申请的交叉参考
本申请要求2019年10月28日提交的CN201911032105.4,CN201911033274.X,CN201911032074.2,CN201911032096.9和CN201911033277.3的优先权,通过引用并且为了所有的目的将所述文件整体结合在本申请中。
技术领域
本发明涉及一种双苯酚金属配合物及其制备方法和应用,属于有机合成领域。
背景技术
以Ziegler-Natta催化剂为代表的配位聚合催化剂的应用促进了聚烯烃工业的快速发展。如今,溶液聚合所用金属催化剂的开发成为了配位聚合领域研究的热点之一,基于苯酚配体的过渡金属催化剂属于其中的一种。该类催化剂具有良好的烯烃催化活性,例如2,6-二异丙基苯酚合钛催化剂成功实现了乙烯的均聚,得到线性聚乙烯(Nomura K,Naga N,Miki M,et al.,Macromolecules 1998,31,7588-7597),并且用于乙烯与α-烯烃共聚时可以得到高α-烯烃含量的共聚物,其可以是一种热塑弹性体。
同时,基于活性酶催化研究结果,人们逐渐发展出具有协同作用的催化剂。研究表明,在使用双锆金属催化剂时,与单锆金属催化剂相比,乙烯的聚合活性以及得到聚合物的分子量相差不多,但聚合物链中的乙基接枝率要高许多,达到12%,而利用单锆金属催化剂催化乙烯得到的聚合物中乙基接枝率只有1.1%。同时,在使用双锆金属催化剂时,利用双硼助催化剂得到聚合物的乙基接枝率(12%)也要高于使用单硼助催化剂得到聚合物的乙基接枝率(2.7%)(Li,H.;Marks,T.J.Proc.Natl.Acad.Sci.2006,103,15295)。
CN201010204671.1公开了采用双钛金属催化剂的乙烯均聚以及乙烯与己烯、辛烯等单体的共聚,常压下聚合活性为10 4g·mol -1(Ti)·h -1数量级,共聚物分子量为30万左右,分子量分布大于2。
本领域仍需要开发显示希望的催化性能的新型金属化合物。
发明概述
本发明人进行了勤勉的研究,结果发现一类双苯酚金属配合物在用于烯烃聚合时显示了高的催化效率和高的共聚单体结合,由此完成了本发明。
因此,本发明的一个目的是提供一种双苯酚金属配合物。
本发明的另一个目的是提供制备所述双苯酚金属配合物的方法。
本发明的又一个目的是提供所述双苯酚金属配合物作为催化剂体系的组分在烯烃聚合中的应用。
优选实施方案的详细描述
现在将描述本发明的各种具体的实施方案、变例,包括优选实施方案和在本文中采用的定义。尽管以下详细的描述给出了具体的、优选的实施方案,本领域技术人员将明白,这些实施方案仅是示例性的,并且本发明可以被以其它方式实践。对本“发明”的任何提及可以指权利要求书所定义的发明的一项或多项但不必全部。小标题的使用仅是为了方便的目的,并且不限制本发明的范围。
就本发明和所附权利要求书而言,使用在Chemical and Engineering News,63(5),pg.27(1985)中描述的周期表族的新编号方案。
本文中使用的术语“取代的”是指所讨论的基团上的一个或多个氢原子被C 1-C 6烷基、苯基、苄基、卤原子、杂原子、含杂原子的基团如C 1-C 6烷氧基取代,或者主链上的碳原子被杂原子取代。取代基的实例包括但不限于甲基、乙基、丙基、异丙基、丁基、异丁基、戊基、异戊基、己基、环戊基、环己基、苯基、苄基、氟、氯、溴、碘、甲氧基、乙氧基。
本文中使用的术语“卤素”或“卤原子”是指氟、氯、溴和碘中的至少一个。
本文中使用的术语“杂原子”是指选自O,S,N,P、B、Si、Ge和锡中的至少一个。
本文中使用的术语“聚合”包括均聚和共聚。本文中使用的术语“聚合物”包括均聚物、共聚物和三元共聚物。
本文中使用的术语“催化剂组分”是指主催化剂组分或前催化剂,其与常规的助催化剂如烷基铝和任选的外给电子体一起构成用于烯烃聚合的催化剂(这样的组合在本领域中也被称为催化剂体系)。
在第一方面,本公开提供了一种双苯酚金属配合物,其结构如式I所示:
Figure PCTCN2020124376-appb-000001
其中R 1和R 1'各自独立地选自氢和取代或未取代的C 1-C 20的烃基;R 3-R 7、R 3'-R 7'各自独立地选自氢和取代或未取代的C 1-C 20的烃基,并且R 3-R 7中任何两个相邻的基团任选连接形成环,和R 3'-R 7'中任何两个相邻的基团任选连接形成环;M和M'各自独立地选自第4族金属;每个X独立地选自下组:具有1-20个碳原子的烃基,氢负离子,氨基,烷氧基,烷硫基,烷磷基,卤根,二烯,胺,膦,醚,和它们的组合;m和n独立地为1-4的整数;并且L是二价连接基团。
在一些实施方案中,所述二价连接基团L是具有1-30个碳原子的二价烃基或基本上烃性质的二价连接基团。本文中使用的术语“基本上烃性质的二价连接基团”是指整体上显示烃性质的二价基团,这样的基团允许在烃链中包括一个或多个杂原子,但不具有活泼氢。 在本发明中有用的二价连接基团L可以选自下组:C1-C30亚烷基,C1-C30亚杂烷基,C5-C30亚环烷基,C4-C30亚杂环烷基,C2-C30亚烯基,C2-C30亚杂烯基,C4-C30亚环烯基,C4-C30亚杂环烯基,C2-C30亚炔基,C2-C30亚杂炔基,C6-C30亚芳基,和C4-C30亚杂芳基。L的实例包括但不限于:亚甲基,1,2-亚乙基,1,3-亚丙基,1,2-环戊基,1,3-环戊基,1,2-环己戊基,1,3-环己基,1,4-环己基,1,2-亚苯基,1,3-亚苯基,1,4-亚苯基,1,8-亚萘基,1,8-亚蒽基,1,8-亚芴基,1,8-亚咔唑基,4,5-吖啶二基,4H-二苯并吡喃-1,9-二基,在上述基团的碳链上和/或环上具有一个或多个烷基如C1-C6烷基取代基的相应基团。
在一些优选的实施方案中,本公开的双苯酚金属配合物的结构如式Ia所示:
Figure PCTCN2020124376-appb-000002
其中,R 1和R 1'各自独立地选自氢和取代或未取代的C 1-C 20的烃基;R 3-R 7、R 3'-R 7'各自独立地选自氢和取代或未取代的C 1-C 20的烃基,并且R 3-R 7中任何两个相邻的基团任选连接形成环,和R 3'-R 7'中任何两个相邻的基团任选连接形成环;R 8和R 9各自独立地选自氢和取代或未取代的C 1-C 20的烃基;R各自独立地选自氢和取代或未取代的C 1-C 20的烃基;M和M'各自独立地选自第4族金属;每个X独立地选自下组:具有1-20个碳原子的烃基,氢负离子,氨基,烷氧基,烷硫基,烷磷基,卤根,二烯,胺,膦,醚,和它们的组合;并且m和n独立地为1-4的整数。
在一些优选的实施方案中,本公开的双苯酚金属配合物的结构如式Ib所示:
Figure PCTCN2020124376-appb-000003
其中,R 1、R 1'、R 2、R 2'各自独立地选自氢和取代或未取代的C 1-C 20的烃基;R 3-R 7、R 3'-R 7'各自独立地选自氢和取代或未取代的C 1-C 20的烃基,并且R 3-R 7中任何两个相邻的基团任选连接形成环,和R 3'-R 7'中任何两个相邻的基团任选连接形成环;R 8和R 9各自独立地选自氢和取代或未取代的C 1-C 20的烃基;M和M'各自独立地选自第4族金属;每个X独立地选自下组:具有1-20个碳原子的烃基,氢负离子,氨基,烷氧基,烷硫基,烷磷基,卤根,二烯,胺,膦,醚,和它们的组合。
在一些优选的实施方案中,式I、Ia和Ib中,R 1、R 1'、R 2、R 2'各自独立地选自氢、取代或未取代的C 1-C 20的直链或支链烷基和取代或未取代的C 6-C 20的芳基,优选选自氢和 取代或未取代的C 1-C 10的直链或支链烷基,更优选选自氢和取代或未取代的C 1-C 6的直链或支链烷基。
在一些优选的实施方案中,式I、Ia和Ib中,R 3-R 7、R 3'-R 7'各自独立地选自氢和取代或未取代的C 1-C 20的直链或支链烷基,优选选自氢和取代或未取代的C 1-C 10的直链或支链烷基,更优选选自氢和取代或未取代的C 1-C 6的直链或支链烷基。
在一些优选的实施方案中,式Ia和Ib中,R 8和R 9各自独立地选自氢和取代或未取代的C 1-C 20的直链或支链烷基,优选选自氢和取代或未取代的C 1-C 10的直链或支链烷基,更优选选自氢和取代或未取代的C 1-C 6的直链或支链烷基。
在一些优选的实施方案中,式I、Ia和Ib中,M和M'各自独立地选自钛、锆和铪,优选为钛。
在一些优选的实施方案中,式I、Ia和Ib中,每个X独立地选自甲基、氟、氯、溴和碘,优选为甲基或氯。
在一些的实施方案中,所述双苯酚金属配合物是选自以下式Ib所示的配合物中的至少一种:
Figure PCTCN2020124376-appb-000004
双苯酚金属配合物1:R 1=R 2=R 1'=R 2'=Me,R 3=R 4=R 5=R 6=R 7=R 3'=R 4'=R 5'=R 6'=R 7'=R 8=R 9=H,M=M'=Ti,X=Cl;
双苯酚金属配合物2:R 1=R 2=R 1'=R 2'=Et,R 3=R 4=R 5=R 6=R 7=R 3'=R 4'=R 5'=R 6'=R 7'=R 8=R 9=H,M=M'=Ti,X=Cl;
双苯酚金属配合物3:R 1=R 2=R 1'=R 2'=iPr,R 3=R 4=R 5=R 6=R 7=R 3'=R 4'=R 5'=R 6'=R 7'=R 8=R 9=H,M=M'=Ti,X=Cl;
双苯酚金属配合物4:R 1=R 2=R 1'=R 2'=tBu,R 3=R 4=R 5=R 6=R 7=R 3'=R 4'=R 5'=R 6'=R 7'=R 8=R 9=H,M=M'=Ti,X=Cl;
双苯酚金属配合物5:R 1=R 2=R 1'=R 2'=Me,R 3=R 4=R 5=R 6=R 7=R 3'=R 4'=R 5'=R 6'=R 7'=Me,R 8=R 9=H,M=M'=Ti,X=Cl;
双苯酚金属配合物6:R 1=R 2=R 1'=R 2'=Et,R 3=R 4=R 5=R 6=R 7=R 3'=R 4'=R 5'=R 6'=R 7'=Me,R 8=R 9=H,M=M'=Ti,X=Cl;
双苯酚金属配合物7:R 1=R 2=R 1'=R 2'=iPr,R 3=R 4=R 5=R 6=R 7=R 3'=R 4'=R 5'=R 6'=R 7'=Me,R 8=R 9=H,M=M'=Ti,X=Cl;
双苯酚金属配合物8:R 1=R 2=R 1'=R 2'=tBu,R 3=R 4=R 5=R 6=R 7=R 3'=R 4'=R 5'=R 6'=R 7'=Me,R 8=R 9=H,M=M'=Ti,X=Cl;
和其中X=甲基的相应化合物。
在第二方面,本发明提供了一种制备上述的双苯酚金属配合物的方法,包括如下步骤:
1)将相应的双苯酚化合物与强碱反应,形成双酚二盐;和
2)将所述双酚二盐与式V所示的金属配合物反应,得到式I所示的双苯酚金属配合物,
Figure PCTCN2020124376-appb-000005
其中,R 3-R 7、M和X具有与上面针对式I所定义的相同含义。
在一些具体的实施方案中,本发明提供了一种制备上述式Ib所示的双苯酚金属配合物的方法,包括如下步骤:
1)将式II所示的双苯酚化合物与式III所示的金属化合物反应,得到式IV所示的双酚二盐化合物;和
2)将式IV所示的双酚二盐化合物与式V所示的金属配合物反应,得到式Ib所示的双苯酚金属配合物;
Figure PCTCN2020124376-appb-000006
式II和IV中,R 1、R 1'、R 2、R 2'、R 8和R 9具有与上面针对式Ib所定义的相同含义;
式III中,M 1选自IA族金属,优选为锂、钠或钾,R为氢或C 1-C 10的直链或支链烷基;
式V中,R 3-R 7、M和X具有与上面针对式Ib所定义的相同含义。
在本发明的一些优选的实施方案中,所述制备方法包括:将式II所示的双苯酚化合物与式III所示的金属化合物在有机溶剂中反应,得到式IV所示的双酚二盐化合物,然后再与式V所示的金属配合物在有机溶剂中反应,得到式Ib所示的双苯酚金属配合物。
根据本发明的一些实施方案,所述有机溶剂选自四氢呋喃、乙醚、1,4-二氧六环和二氯甲烷。
在本发明的一些优选的实施方案中,所述双苯酚化合物是选自以下式II所示的双苯酚化合物中的至少一种:
Figure PCTCN2020124376-appb-000007
双苯酚化合物1:R 1=R 2=R 1'=R 2'=Me,R 8=R 9=H;
双苯酚化合物2:R 1=R 2=R 1'=R 2'=Et,R 8=R 9=H;
双苯酚化合物3:R 1=R 2=R 1'=R 2'=iPr,R 8=R 9=H;
双苯酚化合物4:R 1=R 2=R 1'=R 2'=tBu,R 8=R 9=H。
在本发明的一些优选的实施方案中,所述式III所示的金属化合物是选自KH、NaH、MeLi、EtLi、PrLi和BuLi中的至少一种。
在本发明的一些优选的实施方案中,所述式IV所示的化合物是选自以下化合物中的至少一种:
Figure PCTCN2020124376-appb-000008
酚盐化合物1:R 1=R 2=R 1'=R 2'=Me,R 8=R 9=H,M 1=Li;
酚盐化合物2:R 1=R 2=R 1'=R 2'=Et,R 8=R 9=H,M 1=Li;
酚盐化合物3:R 1=R 2=R 1'=R 2'=iPr,R 8=R 9=H,M 1=Li;
酚盐化合物4:R 1=R 2=R 1'=R 2'=tBu,R 8=R 9=H,M 1=Li;
酚盐化合物5:R 1=R 2=R 1'=R 2'=Me,R 8=R 9=H,M 1=Na;
酚盐化合物6:R 1=R 2=R 1'=R 2'=Et,R 8=R 9=H,M 1=Na;
酚盐化合物7:R 1=R 2=R 1'=R 2'=iPr,R 8=R 9=H,M 1=Na;
酚盐化合物8:R 1=R 2=R 1'=R 2'=tBu,R 8=R 9=H,M 1=Na;
酚盐化合物9:R 1=R 2=R 1'=R 2'=Me,R 8=R 9=H,M 1=K;
酚盐化合物10:R 1=R 2=R 1'=R 2'=Et,R 8=R 9=H,M 1=K;
酚盐化合物11:R 1=R 2=R 1'=R 2'=iPr,R 8=R 9=H,M 1=K;
酚盐化合物12:R 1=R 2=R 1'=R 2'=tBu,R 8=R 9=H,M 1=K。
在本发明的一些优选的实施方案中,所述式V所示的金属配合物选自以下金属配合物中的至少一种:
Figure PCTCN2020124376-appb-000009
金属配合物1:R 3=R 4=R 5=R 6=R 7=H,M=Ti,X=Cl;
金属配合物2:R 3=R 4=R 5=R 6=R 7=Me,M=Ti,X=Cl。
在本发明方法的一些优选的实施方案中,式II所示的双苯酚化合物与式III所示的化合物的摩尔比为1:(1-20),例如1:2.5、1:3、1:3.5、1:4、1:4.5、1:5、1:5.5、1:6、1:6.5、1:7、1:7.5、1:8、1:8.5、1:9、1:9.5、1:10、1:10.5、1:11、1:11.5、1:12、1:12.5、1:13、1:13.5、 1:14、1:14.5、1:15、1:15.5、1:16、1:16.5、1:17、1:17.5、1:18、1:18.5、1:19、1:19.5、1:20以及它们之间的任意值,优选为1:(2-10),更优选为1:(4-8)。
在本发明方法的一些优选的实施方案中,式II所示的双苯酚化合物与式III所示的化合物反应的反应温度为-78℃至60℃,例如-60℃、-50℃、-40℃、-30℃、-20℃、-10℃、0℃、10℃、20℃、30℃以及它们之间的任意值,优选为-10℃至40℃。
在本发明方法的一些优选的实施方案中,式II所示的双苯酚化合物与式III所示的化合物反应的反应时间为1-10小时,例如1.5、2、2.5、3、3.5、4、4.5、5、5.5、6、6.5、7、7.5、8、8.5、9、9.5以及它们之间的任意值,优选为1.5-3小时。
在本发明方法的一些优选的实施方案中,式IV所示的化合物与式V所示的金属化合物的摩尔比为1:(1.8-2.4),例如1:1.9、1:2、1:2.1、1:2.2、1:2.3、1:2.4以及它们之间的任意值,优选为1:2。简单地,所述双苯酚化合物的摩尔数可以视为所述式IV所示的化合物的摩尔数。
在本发明方法的一些优选的实施方案中,式IV所示的化合物与式V所示的金属化合物反应的反应温度为-78℃至60℃,例如-60℃、-50℃、-40℃、-30℃、-20℃、-10℃、0℃、10℃、20℃、30℃以及它们之间的任意值,优选为-10℃至40℃。
在本发明方法的一些优选的实施方案中,式IV所示的化合物与式V所示的金属化合物反应的反应时间为6-24小时,例如6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24以及它们之间的任意值,优选为6-19小时。
在第三方面,本发明提供了上述的双苯酚金属配合物在烯烃聚合中的应用,其中所述双苯酚金属配合物被用作烯烃聚合催化剂的主催化剂(或者催化剂化合物)。
在一些实施方案中,所述烯烃聚合催化剂还包括助催化剂,所述助催化剂选自有机铝化合物和有机硼化合物。
具体实施方式
下面结合具体实施例对本发明作进一步说明,但并不构成对本发明的任何限制。
以下实施例中,涉及的评价和测试方法如下:
1、核磁氢谱及核磁碳谱于Bruker-300核磁共振仪上以氘代氯仿为溶剂在110℃下进行测试。
2、高分辨质谱于Bruker ESI-Q/TOF MS质谱仪上以乙腈作为分散溶剂测定。
3、聚合活性:将聚合所得聚合物干燥后称重,除以聚合时所加入的催化剂量得到催化剂活性。
4、聚合物的分子量及分子量分布PDI(PDI=Mw/Mn):采用PL-GPC220,以1,2,4-三氯苯为溶剂,在150℃下测定(标样:PS,流速:1.0mL/min,柱子:3×Plgel 10um M1×ED-B 300×7.5nm)。
5、聚合物的熔点采用示差扫描量热法(DSC)测试:将10mg样品置于坩埚中,在METTLER DSC1差示扫描量热仪上测定。在氮气氛围下,以10℃/min的升温速度从-70℃ 升温到200℃,保温l min,以10℃/min降至-70℃,保温3min,然后以10℃/min升至200℃,记录第二次升温扫描数据。
6、聚合物中共聚单体的含量由高温核磁碳谱测得。
实施例1-双苯酚金属配合物7的制备
将双苯酚化合物3(2.24mmol)溶于乙醚溶剂中,在–78℃下向该溶液中加入纯KH固体(8.96mmol)后反应1小时,回复至室温,继续反应2小时。之后,在–78℃将该溶液通过双角针转移至金属配合物2(4.48mmol)的二氯甲烷溶液中,并在该温度下反应1小时,然后将体系逐渐恢复至室温,再反应12小时。反应结束后,用真空线将溶剂除去,残余物用二氯甲烷洗涤并通过硅藻土过滤,将滤液抽干,粗产品用二氯甲烷/正己烷重结晶,得到橙色产品(产率90%),表征数据如下:
1H NMR(CDCl 3,400MHz):δ=7.45(dd,J=7.6,2.0Hz,2H,aryl-H),7.25(s,4H,aryl-H),7.14-7.21(m,4H,aryl-H),3.13(m,4H,CH),2.18(s,30H,CH 3),1.80(s,6H,CH 3),1.03(d,J=6.8Hz,24H,CH 3).
13C NMR(CDCl 3,100MHz):δ=159.1,146.9,138.9,133.5,132.8,130.6,130.4,130.0,124.5,122.9,34.3,33.9,26.3,24.3,13.1.
ESI-MS for C 59H 72Cl 4O 3Ti 2:M=1064.34。
实施例2-双苯酚金属配合物4的制备
将双苯酚化合物4(2.00mmol)溶于四氢呋喃溶剂中,在–10℃下向该溶液中加入纯NaH固体(12.00mmol)后反应1小时,回复至室温,继续反应1小时。之后,在–10℃将该溶液通过双角针转移至金属配合物1(4.00mmol)的四氢呋喃溶液中,并在该温度下反应半小时,然后将体系逐渐恢复至室温,再反应8小时。反应结束后,用真空线将溶剂除去,残余物用二氯甲烷洗涤并通过硅藻土过滤,将滤液抽干,粗产品用二氯甲烷/正己烷重结晶,得到橙色产品(产率92%),表征数据如下:ESI-MS for C 51H 56Cl 4O 3Ti 2:M/Z=954.21。
实施例3-双苯酚金属配合物A的制备
Figure PCTCN2020124376-appb-000010
将双苯酚化合物3(2.24mmol)溶于乙醚溶剂中,在–78℃下向该溶液中加入n-BuLi(4.48mmol,1.6mol/L)后反应1小时,回复至室温,继续反应2小时。之后,在–78℃将该溶液通过双角针转移至茚基钛金属配合物(4.48mmol)的乙醚溶液中,并在该温度下反应1小时,然后将体系逐渐恢复至室温,再反应12小时。反应结束后,用真空线将溶剂除去,残余物用二氯甲烷洗涤并通过硅藻土过滤,将滤液抽干,粗产品用二氯甲烷/正己烷 重结晶,得到紫红色产品(产率60%)。
1H NMR(CDCl 3,400MHz):δ=7.74(dd,J=6.4,2.8Hz,4H,aryl-H),7.47(t,J=4.8Hz,2H,aryl-H),7.37(dd,J=6.4,2.8Hz,4H,aryl-H),7.22(s,4H,aryl-H),7.18(d,J=4.8Hz,4H,aryl-H),6.78(d,J=3.6Hz,4H,aryl-H),6.42(t,J=3.2Hz,2H,aryl-H),3.25(sept,4H,CH),2.18(s,30H,CH 3),1.82(s,6H,CH 3),1.08(d,J=6.8Hz,24H,CH 3).
13C NMR(CDCl 3,100MHz):δ=164.5,146.8,138.5,134.6,130.6,130.3,129.9,129.7,128.3,125.9,125.8,124.5,123.0,120.4,113.3,34.2,34.0,26.8,23.8
实施例4-双苯酚金属配合物B的制备
Figure PCTCN2020124376-appb-000011
将双苯酚化合物3(1.00mmol)溶于四氢呋喃溶剂中,在–78℃下向该溶液中加入n-BuLi(2.00mmol,1.6mol/L)后反应1小时,回复至室温,继续反应2小时。之后,在–78℃将该溶液通过双角针转移至五甲基环戊二烯基铪金属配合物(2.00mmol)的四氢呋喃溶液中,并在该温度下反应1小时,然后将体系逐渐恢复至室温,再加热至50℃反应12小时。反应结束后,用真空线将溶剂除去,残余物用二氯甲烷洗涤并通过硅藻土过滤,将滤液抽干,粗产品用二氯甲烷/正己烷重结晶,得到紫色产品(产率21%)。
1H NMR(CDCl 3,400MHz):δ=7.40(dd,J=7.4,2.2Hz,2H,aryl-H),7.16-7.11(m,4H,aryl-H),7.08(s,4H,aryl-H),2.93(sept,4H,CH),2.22(s,30H,CH 3),1.77(s,6H,CH 3),1.04(d,J=6.8Hz,24H,CH 3).
实施例5
将经过加热干燥后的500mL聚合釜抽真空通氮气两次,再抽真空后通入乙烯气,然后依次加入甲基铝氧烷(MAO)的甲苯溶液10mL(2mmol/mL),经过无水无氧处理的正己烷150mL,以及含有双苯酚金属配合物7的甲苯溶液1mL(5μmol/mL)。在机械搅拌下通入压力为1.0MPa的乙烯,并在此压力下于20℃反应20min,之后加入乙醇终止反应,得到聚合物2.8g,经计算确定,聚合活性为8.4×10 5g·mol -1(Ti)·h -1
DSC测得熔点为133.5℃;GPC测得聚乙烯的M w为1.9×10 5,M w/M n为4.82。
实施例6
将经过加热干燥后的500mL聚合釜抽真空通氮气两次,再抽真空后通入乙烯气,然后依次加入三异丁基铝的正己烷溶液2mL(0.5mmol/mL),经过无水无氧处理的正己烷 150mL,以及含有双苯酚金属配合物7的甲苯溶液1mL(2.5μmol/mL),再加入含硼试剂[Ph 3C][B(C 6F 5) 4]2mL(5μmol/mL)。在机械搅拌下通入压力为1.0MPa的乙烯,并在此压力下于80℃反应20min,之后加入乙醇终止反应,得到聚合物5.1g,经计算确定,聚合活性为3.06×10 6g·mol -1(Ti)·h -1
DSC测得熔点为133.3℃;GPC测得聚乙烯的M w为1.8×10 5,M w/M n为6.84。
实施例7
将经过加热干燥后的500ml聚合釜抽真空通氮气两次,再抽真空后通入乙烯气,然后依次加入甲基铝氧烷(MAO)的甲苯溶液6.8ml(质量分数10%),1-己烯15ml,经过无水无氧处理的正己烷150ml,双苯酚金属配合物7的甲苯溶液2ml(2.5μmol/mL)。在机械搅拌下通入压力为3atm的乙烯,并在此压力下于25℃反应20min,加入乙醇终止反应,得到聚合物5.21g,活性1.56×10 6g·mol -1(Ti)·h -1
DSC测得熔点为103℃;GPC测得聚乙烯的M w为1.9×10 5,M w/M n为1.92;高温核磁碳谱测得1-己烯摩尔含量为5.3%。
实施例8
将经过加热干燥后的500mL聚合釜抽真空通氮气两次,再抽真空后通入乙烯气,然后依次加入三异丁基铝的正己烷溶液2mL(0.5mmol/mL),经过无水无氧处理的正己烷150mL,以及含有双苯酚金属配合物A的甲苯溶液2mL(2.5μmol/mL),再加入含硼试剂[Ph 3C][B(C 6F 5) 4]3mL(5μmol/mL)。在机械搅拌下通入压力为0.4MPa的乙烯,并在此压力下于40℃反应10min,之后加入乙醇终止反应,得到聚合物1.3g,经计算确定,聚合活性为7.8×10 5g·mol -1(Ti)·h -1
DSC测得熔点为130.0℃;GPC测得聚乙烯的M w为3.4×10 5,M w/M n为8.53。
实施例9
将经过加热干燥后的500ml聚合釜抽真空通氮气两次,再抽真空后通入乙烯气,然后依次加入三异丁基铝的正己烷溶液2mL(0.5mmol/mL),1-辛烯9.3ml,经过无水无氧处理的正己烷150mL,以及含有双苯酚金属配合物A的甲苯溶液2mL(2.5μmol/mL),再加入含硼试剂[Ph 3C][B(C 6F 5) 4]3mL(5μmol/mL)。在机械搅拌下通入压力为0.4MPa的乙烯,并在此压力下于40℃反应10min,加入乙醇终止反应,得到聚合物2.25g,活性1.35×10 6g·mol -1(Ti)·h -1
DSC测得熔点为125.5℃;GPC测得聚乙烯的M w为5.6×10 4,M w/M n为2.91;高温核磁碳谱测得1-辛烯摩尔含量为2.4%。
在本发明中的提到的任何数值,如果在任何最低值和任何最高值之间只是有两个单位的间隔,则包括从最低值到最高值的每次增加一个单位的所有值。例如,如果声明一种组分的量,或诸如温度、压力、时间等工艺变量的值为50-90,在本说明书中它的意思是具 体列举了51-89、52-88……以及69-71以及70-71等数值。对于非整数的值,可以适当考虑以0.1、0.01、0.001或0.0001为一单位。这仅是一些特殊指明的例子。在本申请中,以相似方式,所列举的最低值和最高值之间的数值的所有可能组合都被认为已经公开。
应当注意的是,以上所述的实施例仅用于解释本发明,并不构成对本发明的任何限制。通过参照典型实施例对本发明进行了描述,但应当理解为其中所用的词语为描述性和解释性词汇,而不是限定性词汇。可以按规定在本发明权利要求的范围内对本发明作出修改,以及在不背离本发明的范围和精神内对本发明进行修订。尽管其中描述的本发明涉及特定的方法、材料和实施例,但是并不意味着本发明限于其中公开的特定例,相反,本发明可扩展至其他所有具有相同功能的方法和应用。

Claims (9)

  1. 一种双苯酚金属配合物,其结构如式I所示:
    Figure PCTCN2020124376-appb-100001
    其中R 1和R 1'各自独立地选自氢和取代或未取代的C 1-C 20的烃基;R 3-R 7、R 3'-R 7'各自独立地选自氢和取代或未取代的C 1-C 20的烃基,并且R 3-R 7中任何两个相邻的基团任选连接形成环,和R 3'-R 7'中任何两个相邻的基团任选连接形成环;M和M'各自独立地选自第4族金属;每个X独立地选自下组:具有1-20个碳原子的烃基,氢负离子,氨基,烷氧基,烷硫基,烷磷基,卤根,二烯,胺,膦,醚,和它们的组合;m和n独立地为1-4的整数;并且L是二价连接基团。
  2. 权利要求1的双苯酚金属配合物,其结构如式Ia所示:
    Figure PCTCN2020124376-appb-100002
    其中,R 1和R 1'各自独立地选自氢和取代或未取代的C 1-C 20的烃基;R 3-R 7、R 3'-R 7'各自独立地选自氢和取代或未取代的C 1-C 20的烃基,并且R 3-R 7中任何两个相邻的基团任选连接形成环,和R 3'-R 7'中任何两个相邻的基团任选连接形成环;R 8和R 9各自独立地选自氢和取代或未取代的C 1-C 20的烃基;R各自独立地选自氢和取代或未取代的C 1-C 20的烃基;M和M'各自独立地选自第4族金属;每个X独立地选自下组:具有1-20个碳原子的烃基,氢负离子,氨基,烷氧基,烷硫基,烷磷基,卤根,二烯,胺,膦,醚,和它们的组合;并且m和n独立地为1-4的整数。
  3. 权利要求1的双苯酚金属配合物,其结构如式Ib所示:
    Figure PCTCN2020124376-appb-100003
    其中,R 1、R 1'、R 2、R 2'各自独立地选自氢和取代或未取代的C 1-C 20的烃基;R 3-R 7、R 3'-R 7'各自独立地选自氢和取代或未取代的C 1-C 20的烃基,并且R 3-R 7中任何两个相邻的基团任选连接形成环,和R 3'-R 7'中任何两个相邻的基团任选连接形成环;R 8和R 9各自独立地选自氢和取代或未取代的C 1-C 20的烃基;M和M'各自独立地选自第4族金属;每个X独立地选自下组:具有1-20个碳原子的烃基,氢负离子,氨基,烷氧基,烷硫基,烷磷基,卤根,二烯,胺,膦,醚,和它们的组合。
  4. 权利要求1-3中任一项所述的双苯酚金属配合物,其具有以下特征中至少之一:
    -式I、Ia和Ib中,R 1、R 1'、R 2、R 2'各自独立地选自氢、取代或未取代的C 1-C 20的直链或支链烷基和取代或未取代的C 6-C 20的芳基,优选选自氢和取代或未取代的C 1-C 10的直链或支链烷基,更优选选自氢和取代或未取代的C 1-C 6的直链或支链烷基;
    -式I、Ia和Ib中,R 3-R 7、R 3'-R 7'各自独立地选自氢和取代或未取代的C 1-C 20的直链或支链烷基,优选选自氢和取代或未取代的C 1-C 10的直链或支链烷基,更优选选自氢和取代或未取代的C 1-C 6的直链或支链烷基;
    -式Ia和Ib中,R 8和R 9各自独立地选自氢和取代或未取代的C 1-C 20的直链或支链烷基,优选选自氢和取代或未取代的C 1-C 10的直链或支链烷基,更优选选自氢和取代或未取代的C 1-C 6的直链或支链烷基;
    -式I、Ia和Ib中,M和M'各自独立地选自钛、锆和铪,优选为钛;
    -式I、Ia和Ib中,每个X独立地选自甲基、氟、氯、溴和碘,优选为甲基或氯。
  5. 权利要求3所述的双苯酚金属配合物,其选自以下式Ib所示的配合物中的至少一种:
    Figure PCTCN2020124376-appb-100004
    双苯酚金属配合物1:R 1=R 2=R 1'=R 2'=Me,R 3=R 4=R 5=R 6=R 7=R 3'=R 4'=R 5'=R 6'=R 7'=R 8=R 9=H,M=M'=Ti,X=Cl;
    双苯酚金属配合物2:R 1=R 2=R 1'=R 2'=Et,R 3=R 4=R 5=R 6=R 7=R 3'=R 4'=R 5'=R 6'=R 7'=R 8=R 9=H,M=M'=Ti,X=Cl;
    双苯酚金属配合物3:R 1=R 2=R 1'=R 2'=iPr,R 3=R 4=R 5=R 6=R 7=R 3'=R 4'=R 5'=R 6'=R 7'=R 8=R 9=H,M=M'=Ti,X=Cl;
    双苯酚金属配合物4:R 1=R 2=R 1'=R 2'=tBu,R 3=R 4=R 5=R 6=R 7=R 3'=R 4'=R 5'=R 6'=R 7'=R 8=R 9=H,M=M'=Ti,X=Cl;
    双苯酚金属配合物5:R 1=R 2=R 1'=R 2'=Me,R 3=R 4=R 5=R 6=R 7=R 3'=R 4'=R 5'=R 6'=R 7'=Me,R 8=R 9=H,M=M'=Ti,X=Cl;
    双苯酚金属配合物6:R 1=R 2=R 1'=R 2'=Et,R 3=R 4=R 5=R 6=R 7=R 3'=R 4'=R 5'=R 6'=R 7'=Me,R 8=R 9=H,M=M'=Ti,X=Cl;
    双苯酚金属配合物7:R 1=R 2=R 1'=R 2'=iPr,R 3=R 4=R 5=R 6=R 7=R 3'=R 4'=R 5'=R 6'=R 7'=Me,R 8=R 9=H,M=M'=Ti,X=Cl;
    双苯酚金属配合物8:R 1=R 2=R 1'=R 2'=tBu,R 3=R 4=R 5=R 6=R 7=R 3'=R 4'=R 5'=R 6'=R 7'=Me,R 8=R 9=H,M=M'=Ti,X=Cl;
    和其中X=甲基的相应化合物。
  6. 制备权利要求1所述的双苯酚金属配合物的方法,包括如下步骤:
    1)将相应的双苯酚化合物与强碱反应,形成双酚二盐;
    2)将所述双酚二盐与式V所示的金属配合物反应,得到式I所示的双苯酚金属配合物,
    Figure PCTCN2020124376-appb-100005
    其中,R 3-R 7、M和X具有与权利要求1中针对式I中所定义的相同含义。
  7. 制备权利要求3所述的双苯酚金属配合物的方法,包括如下步骤:
    1)将式II所示的双苯酚化合物与式III所示的金属化合物反应,得到式IV所示的双酚二盐化合物;和
    2)将式IV所示的双酚二盐化合物与式V所示的金属配合物反应,得到式Ib所示的双苯酚金属配合物;
    Figure PCTCN2020124376-appb-100006
    式II和IV中,R 1、R 1'、R 2、R 2'、R 8和R 9具有与权利要求7中针对式Ib所定义的相同含义;
    式III中,M 1选自IA族金属,优选为锂、钠或钾,R为氢或C 1-C 10的直链或支链烷基;
    式V中,R 3-R 7、M和X具有与权利要求7中针对式Ib所定义的相同含义。
  8. 权利要求7所述的方法,其具有以下特征中至少之一:
    -式II所示的双苯酚化合物与式III所示的化合物的摩尔比为1:(1-20),优选为1:(4-8);
    -式II所示的双苯酚化合物与式III所示的化合物反应的反应温度为-78℃至60℃,优选-10℃至40℃;
    -式II所示的双苯酚化合物与式III所示的化合物反应的反应时间为1-10小时,优选1.5-3小时;
    -式IV所示的化合物与式V所示的金属化合物的摩尔比为1:(1.8-2.4),优选为1:2;
    -式IV所示的化合物与式V所示的金属化合物反应的反应温度为-78℃至60℃,优选-10℃至40℃;和
    -式IV所示的化合物与式V所示的金属化合物反应的反应时间为6-24小时,优选8-16小时。
  9. 权利要求1-5中任一项所述的双苯酚金属配合物在烯烃聚合中的应用。
PCT/CN2020/124376 2019-10-28 2020-10-28 一种双苯酚金属配合物及其制备方法和应用 WO2021083207A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020227018106A KR20220092932A (ko) 2019-10-28 2020-10-28 비페놀 금속 착물, 및 이의 제조 방법 및 용도
BR112022008102A BR112022008102A2 (pt) 2019-10-28 2020-10-28 Complexo de metal bisfenol, método para preparar o complexo de metal bisfenol e uso do complexo de metal bisfenol
CA3159350A CA3159350A1 (en) 2019-10-28 2020-10-28 Biphenol metal complex, preparation method therefor and use thereof
US17/772,262 US20220380397A1 (en) 2019-10-28 2020-10-28 Biphenol metal complex, preparation method therefor and use thereof
CN202080074687.7A CN114599685B (zh) 2019-10-28 2020-10-28 一种双苯酚金属配合物及其制备方法和应用
EP20882922.6A EP4053167A4 (en) 2019-10-28 2020-10-28 BISPHENOL-METAL COMPLEX, ASSOCIATED PREPARATION METHOD AND ASSOCIATED USE
JP2022525125A JP2023501196A (ja) 2019-10-28 2020-10-28 ビフェノール金属錯体、その製造方法およびその使用

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
CN201911033274 2019-10-28
CN201911032096.9 2019-10-28
CN201911032105.4 2019-10-28
CN201911033277.3 2019-10-28
CN201911032096 2019-10-28
CN201911033274.X 2019-10-28
CN201911033277 2019-10-28
CN201911032105 2019-10-28
CN201911032074.2 2019-10-28
CN201911032074 2019-10-28

Publications (1)

Publication Number Publication Date
WO2021083207A1 true WO2021083207A1 (zh) 2021-05-06

Family

ID=75714575

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2020/124376 WO2021083207A1 (zh) 2019-10-28 2020-10-28 一种双苯酚金属配合物及其制备方法和应用
PCT/CN2020/124337 WO2021083194A1 (zh) 2019-10-28 2020-10-28 一种烯烃聚合用催化剂和使用其的聚合方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/124337 WO2021083194A1 (zh) 2019-10-28 2020-10-28 一种烯烃聚合用催化剂和使用其的聚合方法

Country Status (8)

Country Link
US (2) US20220372177A1 (zh)
EP (2) EP4053167A4 (zh)
JP (2) JP2023501196A (zh)
KR (2) KR20220093147A (zh)
CN (2) CN114945602A (zh)
BR (2) BR112022007933A2 (zh)
CA (2) CA3159350A1 (zh)
WO (2) WO2021083207A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113264963A (zh) * 2021-05-19 2021-08-17 青岛科技大学 一种耐高温高活性限定几何构型催化剂的制备与应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004052980A1 (en) * 2002-12-11 2004-06-24 Johnson Matthey Plc Polymerisation reaction and catalyst therefor
US20040143077A1 (en) * 1998-06-08 2004-07-22 Samsung General Chemicals Co., Ltd. New metallocene catalysts for olefin or styrene polymerization and polymerization method using the metallocene catalysts
CN1955200A (zh) * 2005-10-26 2007-05-02 Lg化学株式会社 多核半金属茂催化剂和使用该多核半金属茂催化剂制备间同立构聚苯乙烯的方法
CN104693327A (zh) * 2015-02-15 2015-06-10 北京化工大学 双金属半茂催化剂及其制备方法与应用
CN110386957A (zh) * 2018-04-20 2019-10-29 中国石油化工股份有限公司 异核双金属配合物及其制备方法及在制备双峰分布的烯烃聚合物中的应用
CN110386955A (zh) * 2018-04-20 2019-10-29 中国石油化工股份有限公司 前过渡金属化合物及其制备方法和中间体以及在烯烃聚合中的应用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100287955B1 (ko) * 1998-06-08 2001-05-02 유현식 올레핀계 또는 스티렌계 중합용 신규 메탈로센 촉매 및 이를 이용한 중합방법
JP2004231846A (ja) * 2003-01-31 2004-08-19 Mitsui Chemicals Inc オレフィン重合用触媒およびオレフィンの重合方法
CN101864010B (zh) * 2010-06-21 2011-08-10 北京大学 双金属催化剂前体及其在烯烃聚合或共聚合中的应用
CN102268032B (zh) * 2011-06-16 2014-03-26 北京大学 双金属杂配体催化剂前体及其合成方法和应用
CN104023844A (zh) * 2011-11-02 2014-09-03 沙特基础工业公司 用于烯烃聚合与共聚合的多核茂金属催化剂化合物以及其制造方法
CN104725533B (zh) * 2013-12-18 2016-12-07 中国石油化工股份有限公司 一种烯烃聚合催化剂和烯烃聚合方法以及聚烯烃
WO2019070889A1 (en) * 2017-10-03 2019-04-11 The University Of North Carolina At Chapel Hill REGYLELECTIVE C-H XANTHYLATION AS PLATFORM TECHNOLOGY FOR FUNCTIONALIZATION OF POLYMERS
CN108191907B (zh) * 2017-12-14 2020-06-12 中南民族大学 非茂类双齿双钒配合物及制备方法与用途

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040143077A1 (en) * 1998-06-08 2004-07-22 Samsung General Chemicals Co., Ltd. New metallocene catalysts for olefin or styrene polymerization and polymerization method using the metallocene catalysts
WO2004052980A1 (en) * 2002-12-11 2004-06-24 Johnson Matthey Plc Polymerisation reaction and catalyst therefor
CN1955200A (zh) * 2005-10-26 2007-05-02 Lg化学株式会社 多核半金属茂催化剂和使用该多核半金属茂催化剂制备间同立构聚苯乙烯的方法
CN104693327A (zh) * 2015-02-15 2015-06-10 北京化工大学 双金属半茂催化剂及其制备方法与应用
CN110386957A (zh) * 2018-04-20 2019-10-29 中国石油化工股份有限公司 异核双金属配合物及其制备方法及在制备双峰分布的烯烃聚合物中的应用
CN110386955A (zh) * 2018-04-20 2019-10-29 中国石油化工股份有限公司 前过渡金属化合物及其制备方法和中间体以及在烯烃聚合中的应用

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
CHEMICAL AND ENGINEERING NEWS, vol. 63, no. 5, 1985, pages 27
LI, H.MARKS, T., J. PROC. NATL. ACAD. SCI., vol. 103, 2006, pages 15295
MCNEVIN MICHAEL J., HAGADORN JOHN R.: "Dititanium Complexes of Preorganized Binucleating Bis(amidinates)", INORGANIC CHEMISTRY, AMERICAN CHEMICAL SOCIETY, EASTON , US, vol. 43, no. 26, 1 December 2004 (2004-12-01), Easton , US, pages 8547 - 8554, XP055813149, ISSN: 0020-1669, DOI: 10.1021/ic0488841 *
NOMURA KNAGA NMIKI M ET AL., MACROMOLECULES, vol. 31, 1998, pages 7588 - 7597
See also references of EP4053167A4
WANG, TIESHI: "Synthesis of Oxygen-bridged Binuclear Titanium and Nickel Complexes and Application in Catalysis of Bimodal Polyethylene", CHEMICAL JOURNAL OF CHINESE UNIVERSITIES, vol. 39, no. 11, 1 November 2018 (2018-11-01), pages 2586 - 2593, XP055813155 *
ZHANG LI, CHEN XIONG, XIAO XIAO, LUO DERONG, ZENG YI, LI TINGCHENG, LI XIANGDAN, ZHANG AIQING, XIE GUANGYONG: "A novel tridentate [ONS] binuclear titanium complex bearing oxo-bridged macrocyclic structure for ethylene polymerization", JOURNAL OF ORGANOMETALLIC CHEMISTRY, ELSEVIER, AMSTERDAM, NL, vol. 856, 1 February 2018 (2018-02-01), AMSTERDAM, NL, pages 50 - 55, XP055813151, ISSN: 0022-328X, DOI: 10.1016/j.jorganchem.2017.12.024 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113264963A (zh) * 2021-05-19 2021-08-17 青岛科技大学 一种耐高温高活性限定几何构型催化剂的制备与应用

Also Published As

Publication number Publication date
EP4053168A1 (en) 2022-09-07
BR112022008102A2 (pt) 2022-07-19
CA3159350A1 (en) 2021-05-06
CN114599685A (zh) 2022-06-07
WO2021083194A1 (zh) 2021-05-06
JP2023501197A (ja) 2023-01-18
KR20220092932A (ko) 2022-07-04
US20220380397A1 (en) 2022-12-01
EP4053168A4 (en) 2023-11-29
US20220372177A1 (en) 2022-11-24
EP4053167A4 (en) 2023-11-29
BR112022007933A2 (pt) 2022-07-12
JP2023501196A (ja) 2023-01-18
EP4053167A1 (en) 2022-09-07
CN114945602A (zh) 2022-08-26
CA3159336A1 (en) 2021-05-06
CN114599685B (zh) 2023-11-24
KR20220093147A (ko) 2022-07-05

Similar Documents

Publication Publication Date Title
KR101549206B1 (ko) 안사-메탈로센 화합물 및 이를 이용한 담지 촉매의 제조방법
KR20110013286A (ko) 메탈로센 화합물, 이를 포함하는 촉매 조성물 및 이를 이용하여 제조된 올레핀계 중합체
WO2021083207A1 (zh) 一种双苯酚金属配合物及其制备方法和应用
KR100958676B1 (ko) 이핵으로 구속된 배열을 갖는 균일계 촉매의 합성방법 및이를 이용하여 제조한 선형알파올레핀 공중합체
US8236907B2 (en) Neutral bimetallic transition metal phenoxyiminato catalysts and related polymerization methods
KR20220094138A (ko) 금속-리간드 착체, 이를 포함하는 에틸렌계 중합체 제조용 촉매 조성물 및 이를 이용한 에틸렌계 중합체의 제조방법
JP4465794B2 (ja) オレフィン重合用触媒及びそれを用いたオレフィン重合体の製造方法
Tang et al. Pyridine-amido aluminum catalyst precursors for 1, 3-butadiene transition-metal-free stereospecific polymerization
KR100834889B1 (ko) 전이금속 화합물, 프로필렌 중합용 촉매, 및 상기 촉매를이용한 프로필렌 중합체의 제조방법
CN112724163B (zh) 一种双苯酚金属配合物及其制备方法和应用
CN112724291B (zh) 一种乙烯均聚合方法及乙烯均聚物
EP4332129A1 (en) Branched olefin polymer, preparation method therefor and use thereof
WO2024066024A1 (zh) 一种茂金属化合物、制备方法和应用
WO2024078527A1 (zh) 膦-酚后过渡金属配合物及其制备方法和应用
KR102011927B1 (ko) 촉매 조성물 및 이를 이용한 폴리올레핀의 제조방법
CN116261572A (zh) 金属-配体配合物、包含其的用于制备基于乙烯的聚合物的催化剂组合物、以及使用其的基于乙烯的聚合物的制备方法
KR20230069618A (ko) 초고분자량 폴리올레핀 중합용 메탈로센 화합물 및 이를 이용한 초고분자량 폴리올레핀 중합체의 제조방법
KR20170074678A (ko) 신규한 전이금속 화합물
CN113816981A (zh) 一种双核含氮配体ivb过渡金属配合物及其在烯烃高温聚合中的用途
KR102077756B1 (ko) 신규한 전이금속 화합물의 제조방법
KR102128569B1 (ko) 신규한 전이금속 화합물
CN117720567A (zh) 一种[onn]三齿金属配合物、其制备方法及用途
KR20000000694A (ko) 폴리에틸렌 제조용 메탈로센 촉매 및 이를 이용한 중합방법
CN117777183A (zh) 一种金属催化剂及其制备方法和应用
CN117683061A (zh) 一种茂金属化合物配体及制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20882922

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022525125

Country of ref document: JP

Kind code of ref document: A

Ref document number: 3159350

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022008102

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20227018106

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020882922

Country of ref document: EP

Effective date: 20220530

ENP Entry into the national phase

Ref document number: 112022008102

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220428

WWE Wipo information: entry into national phase

Ref document number: 522432435

Country of ref document: SA