WO2024078527A1 - 膦-酚后过渡金属配合物及其制备方法和应用 - Google Patents

膦-酚后过渡金属配合物及其制备方法和应用 Download PDF

Info

Publication number
WO2024078527A1
WO2024078527A1 PCT/CN2023/123997 CN2023123997W WO2024078527A1 WO 2024078527 A1 WO2024078527 A1 WO 2024078527A1 CN 2023123997 W CN2023123997 W CN 2023123997W WO 2024078527 A1 WO2024078527 A1 WO 2024078527A1
Authority
WO
WIPO (PCT)
Prior art keywords
complex
formula
methyl
represented
complex represented
Prior art date
Application number
PCT/CN2023/123997
Other languages
English (en)
French (fr)
Inventor
高榕
苟清强
郭子芳
张然荻
赖菁菁
王莹
安京燕
乐强
宋至慧
李昕阳
Original Assignee
中国石油化工股份有限公司
中石化(北京)化工研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司, 中石化(北京)化工研究院有限公司 filed Critical 中国石油化工股份有限公司
Publication of WO2024078527A1 publication Critical patent/WO2024078527A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/04Nickel compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • B01J31/2442Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring comprising condensed ring systems
    • B01J31/2447Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring comprising condensed ring systems and phosphine-P atoms as substituents on a ring of the condensed system or on a further attached ring
    • B01J31/2452Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring comprising condensed ring systems and phosphine-P atoms as substituents on a ring of the condensed system or on a further attached ring with more than one complexing phosphine-P atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • C07C2/26Catalytic processes with hydrides or organic compounds
    • C07C2/36Catalytic processes with hydrides or organic compounds as phosphines, arsines, stilbines or bismuthines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/006Palladium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/006Palladium compounds
    • C07F15/0066Palladium compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/04Nickel compounds
    • C07F15/045Nickel compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F232/00Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system
    • C08F232/08Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system having condensed rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/70Iron group metals, platinum group metals or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/20Olefin oligomerisation or telomerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/824Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/847Nickel
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • C07C2531/24Phosphines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the invention relates to the technical field of olefin polymerization catalysts, and in particular to a phosphine-phenol late transition metal complex and a preparation method and application thereof.
  • polyolefin resin Compared with other resin materials, polyolefin resin has excellent environmental compatibility, so it is widely used in industry and life.
  • Polyethylene resin is an important polyolefin resin.
  • Industrial polyethylene catalysts include Ziegler-Natta catalysts (see, for example, DE Pat 889229 (1953); IT Pat 545332 (1956) and IT Pat 536899 (1955); Chem. Rev., 2000, 100, 1169 and related documents of this special issue), Phillips catalysts (see, for example, Belg. Pat. 530617 (1955); Chem. Rev. 1996, 96, 3327) and metallocene catalysts (see, for example, W.
  • the existing ethylene gas phase polymerization process usually requires a polymerization temperature of 85°C or above, and the ethylene solution polymerization process usually requires a polymerization temperature of 130-250°C. Therefore, it is necessary to develop a late transition metal catalyst suitable for use at relatively high temperatures such as 80°C or higher to meet the requirements of existing gas phase and solution ethylene polymerization devices.
  • the object of the present invention is to provide a phosphine-phenol late transition metal complex and a preparation method and application thereof.
  • the phosphine-phenol late transition metal complex has good thermal stability.
  • the metal complex can still maintain a high ethylene polymerization activity at a relatively high temperature, and the molecular weight distribution of the obtained polymer is relatively narrow.
  • the present invention provides a phosphine-phenol late transition metal complex, the structural formula of which is shown in formula (I):
  • M is selected from Group VIII metals
  • R 1 is selected from substituted or unsubstituted C6-C20 aromatic groups
  • R 3 and R 4 are each independently selected from halogen, C1-C10 hydrocarbon groups, P(R 5 ) 3 , NR 6 R 7 and OR 8 R 9 , or R 3 and R 4 are interconnected to form an eight-membered ring
  • R 5 is selected from substituted or unsubstituted C1-C10 alkyl groups and substituted or unsubstituted C6-C10 aromatic groups
  • R 6 , R 7 , R 8 and R 9 are each independently selected from C1-C10 hydrocarbon groups
  • R 6 , R 7 and N are interconnected to form a five-membered ring or a six-membered ring
  • R 8 , R 9 and O are interconnected to form a five-membered ring or a six-membered ring.
  • R 5 includes a C1-C6 alkyl group (eg, methyl, ethyl, propyl, or a combination thereof), a C6-C10 aryl group (eg, phenyl, benzyl, phenethyl, or a combination thereof), or a combination thereof.
  • a C1-C6 alkyl group eg, methyl, ethyl, propyl, or a combination thereof
  • C6-C10 aryl group eg, phenyl, benzyl, phenethyl, or a combination thereof
  • the C6-C20 aryl group (including the C6-C15 aryl group) is selected from phenyl, 4-methylphenyl, 4-ethylphenyl, dimethylphenyl, vinylphenyl, anthracenyl, naphthyl, or biphenyl.
  • the substituent is selected from hydrogen, halogen, hydroxyl, substituted or unsubstituted alkoxy (preferably C1-C6 alkoxy), substituted or unsubstituted C1-C20 hydrocarbon group.
  • the substituents are selected from halogen, hydroxy, C1-C6 alkyl, halogenated C1-C6 alkyl, C1-C6 alkoxy and halogenated C1-C6 alkoxy.
  • halo is selected from fluoro, chloro, bromo or iodo.
  • halogenated includes monohalogenated, dihalogenated or perhalogenated, such as monofluoroated, difluoroated or perfluoroated.
  • the C1-C10 hydrocarbon group includes a C1-C8 hydrocarbon group (such as a C1-C6 alkyl group) or a C7-C10 aralkyl group
  • the aralkyl group includes but is not limited to: phenylmethyl, phenylethyl, phenyln-propyl, phenylisopropyl, phenyln-butyl and phenylt-butyl.
  • the C1-C20 hydrocarbon group includes a C1-C8 hydrocarbon group (such as a C1-C6 alkyl group), preferably a methyl group, an ethyl group or a propyl group; and or a C6-C15 aryl group.
  • a C1-C8 hydrocarbon group such as a C1-C6 alkyl group
  • a methyl group such as an ethyl group or a propyl group
  • C6-C15 aryl group such as a C6 alkyl group
  • the C1-C6 alkyl group is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, n-pentyl, isopentyl, n-hexyl, isohexyl and 3,3-dimethylbutyl.
  • the C1-C6 alkoxy group is selected from methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, n-pentoxy, isopentoxy, n-hexoxy, isohexoxy and 3,3-dimethylbutoxy.
  • the halogen is selected from fluorine, chlorine, bromine and iodine.
  • radicals apply equally to the definitions of radicals in other preferred or related structures mentioned above or below.
  • the structural formula of the phosphine-phenol late transition metal complex is as shown in formula (II),
  • R 11 -R 15 are each independently selected from hydrogen, halogen, hydroxyl, substituted or unsubstituted alkoxy or substituted or unsubstituted C1-C20 hydrocarbon group; preferably, for substituted alkoxy and substituted C1-C20 hydrocarbon group, the substituents are selected from halogen, hydroxyl, C1-C6 alkyl, halogenated C1-C6 alkyl, C1-C6 alkoxy and halogenated C1-C6 alkoxy.
  • M is selected from nickel and palladium.
  • R 11 -R 15 are each independently selected from hydrogen, halogen, hydroxy, substituted or unsubstituted alkoxy or substituted or unsubstituted C1-C10 alkyl and substituted or unsubstituted C6-C15 aryl.
  • At least one of R 3 and R 4 is selected from halogen and C1-C8 hydrocarbon group, or R 3 and R 4 are connected to each other to form an eight-membered ring.
  • the substituents are independently selected from halogen, hydroxy, C1-C6 alkyl, halogenated C1-C6 alkyl, C1-C6 alkoxy and halogenated C1-C6 alkoxy.
  • halo is selected from fluoro, chloro, bromo or iodo.
  • the halogenated group includes monohalogenated, dihalogenated or perhalogenated.
  • the C1-C6 alkyl group is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, n-pentyl, isopentyl, n-hexyl, isohexyl and 3,3-dimethylbutyl.
  • the C1-C6 alkoxy group is selected from methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, n-pentoxy, isopentoxy, n-hexoxy, isohexoxy and 3,3-dimethylbutoxy.
  • the halogen is selected from fluorine, chlorine, bromine and iodine.
  • the second aspect of the present invention provides a method for preparing the above-mentioned phosphine-phenol late transition metal complex, the method comprising:
  • the M metal is selected from Group VIII metals, preferably nickel and/or palladium; the definition of R 1 is the same as described above.
  • the M metal compound is selected from the group consisting of at least one of dimethyldipyridinium nickel, bis(1,5-cyclooctadiene)nickel, dichlorotetrapyridinium nickel, ethylene glycol dimethyl ether nickel bromide, ethylene glycol dimethyl ether nickel chloride, dichlorobis(trimethylphosphine)nickel, bis(pyridine)bis[(trimethylsilyl)methyl]nickel, chloro(phenyl)(N,N,N',N'-tetramethyl-1,2-ethylenediamine)nickel, dibenzyldipyridinium nickel, phenyl(trimethylphosphine)nickel bromide, phenyl(triethylphosphine)nickel chloride, diphenylbis(trimethylphosphine)nickel, dichlorobis(trimethylphosphine)nickel, dimethyldipyridinium palladium, dichlorodipyridinium palladium, bis(
  • the reaction of step (2) is carried out in the presence of a reaction solvent, and the reaction solvent is tetrahydrofuran.
  • the third aspect of the present invention provides the use of the above phosphine-phenol late transition metal complex in olefin polymerization.
  • the fourth aspect of the present invention provides an olefin polymerization method, comprising carrying out an olefin polymerization reaction in the presence of the above-mentioned phosphine-phenol post-transition metal complex.
  • the temperature of the olefin polymerization reaction is -78°C to 200°C, preferably -20°C to 150°C, and the pressure is 0.01 to 10 MPa, preferably 0.01 to 5 MPa.
  • the phosphine-phenol late transition metal complex of the present invention is used as an olefin polymerization catalyst, has high homopolymerization/copolymerization activity, can catalyze olefin polymerization at a high temperature, and the prepared olefin polymer has a significantly higher molecular weight.
  • the phosphine-phenol late transition metal complex of the present invention can catalyze ethylene polymerization with high activity, and in particular, can maintain high polymerization activity at a relatively high polymerization temperature.
  • the phosphine-phenol late transition metal complex described in the present invention has higher copolymerization performance of ethylene and ⁇ -olefin or polar monomer as an olefin polymerization catalyst.
  • any values of the ranges disclosed in this article are not limited to the precise ranges or values, and these ranges or values should be understood to include values close to these ranges or values.
  • the endpoint values of each range, the endpoint values of each range and the individual point values, and the individual point values can be combined with each other to obtain one or more new numerical ranges, which should be regarded as specifically disclosed in this article.
  • M is selected from Group VIII metals
  • R 1 is selected from substituted or unsubstituted C6-C20 aromatic groups
  • R 3 and R 4 are each independently selected from halogen, C1-C10 hydrocarbon groups, P(R 5 ) 3 , NR 6 R 7 and OR 8 R 9 , or R 3 and R 4 are interconnected to form an eight-membered ring
  • R 5 is selected from substituted or unsubstituted C1-C10 alkyl groups and substituted or unsubstituted C6-C10 aromatic groups
  • R 6 , R 7 , R 8 and R 9 are each independently selected from C1-C10 hydrocarbon groups
  • R 6 , R 7 and N are interconnected to form a five-membered ring or a six-membered ring
  • R 8 , R 9 and O are interconnected to form a five-membered ring or a six-membered ring.
  • R 11 -R 15 are each independently selected from hydrogen, halogen, hydroxyl, substituted or unsubstituted alkoxy or substituted or unsubstituted C1-C20 hydrocarbon group.
  • R 11 -R 15 are each independently selected from hydrogen, halogen, hydroxyl, substituted or unsubstituted C1-C6 alkoxy or substituted or unsubstituted C1-C10 alkyl and substituted or unsubstituted C6-C15 aryl.
  • M is selected from nickel and palladium.
  • R 3 and R 4 are selected from halogen and C1-C8 hydrocarbon group, or R 3 and R 4 are connected to each other to form an eight-membered ring.
  • R 3 and R 4 are each independently selected from halogen and C1-C8 hydrocarbon group (such as C1-C8 alkyl or aryl).
  • R 3 is selected from halogen and C1-C8 hydrocarbon group (such as C1-C8 alkyl or aryl)
  • R 4 is selected from P(R 5 ) 3 , NR 6 R 7 and OR 8 R 9 , wherein R 5 is selected from substituted or unsubstituted C1-C10 alkyl group and substituted or unsubstituted C6-C10 aryl group
  • R 6 , R 7 , R 8 and R 9 are each selected from C1-C6 hydrocarbon group
  • R 6 , R 7 and N are connected to each other to form a five-membered ring or a six-membered ring
  • R 8 , R 9 and O are connected to each other to form a five-membered ring or a six-membered ring.
  • R 3 and R 4 are linked to each other to form an eight-membered ring.
  • R 3 and R 4 when R 3 and R 4 are connected to each other to form an eight-membered ring, R 3 and R 4 can be connected to each other to form cyclooctene, etc.
  • R 3 and/or R 4 are each independently selected from P(R 5 ) 3 , for example, they can be PMe 3 , PPh 3 , PEt 3 , etc.
  • R 3 and/or R 4 are each independently selected from NR 6 R 7 , for example, they can be pyridine (C 5 H 5 N), 2-methylpyridine, 3-methylpyridine, 4-methylpyridine, etc.
  • R 3 and/or R 4 are each independently selected from OR 8 R 9 , for example, they can be tetrahydrofuran (C 4 H 8 O), 2-methyltetrahydrofuran, 3-methyltetrahydrofuran, 2,5-dimethyltetrahydrofuran, 2,2-dimethyltetrahydrofuran, etc.
  • Me refers to methyl
  • Ph refers to phenyl
  • Et refers to ethyl.
  • the "substituted" in “substituted or unsubstituted” means containing substituents, and the substituents here can be independently selected from halogen, hydroxyl, C1-C6 alkyl, halogenated C1-C6 alkyl, C1-C6 alkoxy and halogenated C1-C6 alkoxy.
  • the halogenated is selected from fluoro, chloro, bromo or iodo.
  • the alkyl group (such as C1-C6 alkyl, C1-C8 alkyl or C1-C10 alkyl) can be independently selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, n-pentyl, isopentyl, n-hexyl, isohexyl and 3,3-dimethylbutyl.
  • the alkoxy group (such as C1-C6 alkoxy group) can be independently selected from methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, n-pentoxy, isopentoxy, n-hexoxy, isohexoxy and 3,3-dimethylbutoxy.
  • the aryl group (such as C6-C10 aryl group or C6-C15 aryl group) can be independently selected from phenyl, 4-methylphenyl, 4-ethylphenyl, dimethylphenyl, vinylphenyl, anthracenyl, naphthyl, biphenyl group, and the like.
  • the halogen is independently selected from fluorine, chlorine, bromine and iodine.
  • the phosphine-phenol late transition metal complex is selected from the group consisting of the following complexes:
  • Complex 1 a complex represented by formula (II), wherein M is Ni, R 11 -R 15 are H, R 3 is methyl, and R 4 is pyridine (in this case, the N on the pyridine forms a coordination with the metal Ni);
  • Complex 2 a complex represented by formula (II), wherein M is Ni, R 11 -R 15 are F, R 3 is methyl, and R 4 is pyridine;
  • Complex 3 a complex represented by formula (II), wherein M is Ni, R 11 is phenyl, R 12 -R 15 are H, R 3 is methyl, and R 4 is pyridine;
  • Complex 4 a complex represented by formula (II), wherein M is Ni, R 11 is a methyl group, R 12 -R 15 are H, R 3 is a methyl group, and R 4 is pyridine;
  • Complex 5 a complex represented by formula (II), wherein M is Ni, R 13 is a methyl group, R 11 , R 12 , R 14 and R 15 are H, R 3 is a methyl group, and R 4 is pyridine;
  • Complex 6 a complex represented by formula (II), wherein M is Ni, R 13 is -CF 3 , R 11 , R 12 , R 14 and R 15 are H, R 3 is methyl, and R 4 is pyridine;
  • Complex 7 A complex represented by formula (II), wherein M is Ni, R 13 is F, R 11 , R 12 , R 14 and R 15 are H, R 3 is methyl, and R 4 is pyridine;
  • Complex 8 A complex represented by formula (II), wherein M is Ni, R 13 is Cl, R 11 , R 12 , R 14 and R 15 are H, R 3 is methyl, and R 4 is pyridine;
  • Complex 9 a complex represented by formula (II), wherein M is Ni, R 11 , R 13 and R 15 are methyl groups, R 12 and R 14 are H, R 3 is methyl group, and R 4 is pyridine;
  • Complex 10 a complex represented by formula (II), wherein M is Ni, R 13 is a methoxy group, R 11 , R 12 , R 14 and R 15 are H, R 3 is a methyl group, and R 4 is pyridine;
  • Complex 11 A complex represented by formula (II), wherein M is Ni, R 12 and R 14 are methyl groups, R 11 , R 13 and R 15 are H, R 3 is methyl group, and R 4 is pyridine;
  • Complex 12 A complex represented by formula (II), wherein M is Ni, R 12 and R 14 are methyl groups, R 13 is a methoxy group, R 11 and R 15 are H, R 3 is a methyl group, and R 4 is pyridine;
  • Complex 13 A complex represented by formula (II), wherein M is Ni, R 12 and R 14 are -CF 3 , R 11 , R 13 and R 15 are H, R 3 is methyl, and R 4 is pyridine;
  • Complex 14 a complex represented by formula (II), wherein M is Ni, R 11 and R 15 are methoxy groups, R 12 -R 14 are H, R 3 is methyl, and R 4 is pyridine;
  • Complex 15 A complex represented by formula (II), wherein M is Ni, R 11 is a methoxy group, R 12 -R 15 are H, R 3 is a methyl group, and R 4 is pyridine;
  • Complex 16 A complex represented by formula (II), wherein M is Ni, R 11 -R 15 are H, R 3 is phenyl, and R 4 is PMe 3 ;
  • Complex 17 A complex represented by formula (II), wherein M is Ni, R 11 and R 15 are F, R 3 is phenyl, and R 4 is PMe 3 ;
  • Complex 18 A complex represented by formula (II), wherein M is Ni, R 11 is phenyl, R 12 -R 15 are H, R 3 is phenyl, and R 4 is PMe 3 ;
  • Complex 19 A complex represented by formula (II), wherein M is Ni, R 11 is methyl, R 12 -R 15 are H, R 3 is phenyl, R 4 is PMe 3 ;
  • Complex 20 A complex represented by formula (II), wherein M is Ni, R 13 is methyl, R 11 , R 12 , R 14 and R 15 are H, R 3 is phenyl, and R 4 is PMe 3 ;
  • Complex 21 A complex represented by formula (II), wherein M is Ni, R 13 is -CF 3 , R 11 , R 12 , R 14 and R 15 are H, R 3 is phenyl, and R 4 is PMe 3 ;
  • Complex 22 A complex represented by formula (II), wherein M is Ni, R 13 is F, R 11 , R 12 , R 14 and R 15 are H, R 3 is phenyl, and R 4 is PMe 3 ;
  • Complex 23 A complex represented by formula (II), wherein M is Ni, R 13 is Cl, R 11 , R 12 , R 14 and R 15 are H, R 3 is phenyl, and R 4 is PMe 3 ;
  • Complex 24 A complex represented by formula (II), wherein M is Ni, R 11 , R 13 and R 15 are methyl groups, R 12 and R 14 are H, R 3 is phenyl, and R 4 is PMe 3 ;
  • Complex 25 A complex represented by formula (II), wherein M is Ni, R 13 is methoxy, R 11 , R 12 , R 14 and R 15 are H, R 3 is phenyl, and R 4 is PMe 3 ;
  • Complex 26 A complex represented by formula (II), wherein M is Ni, R 12 and R 14 are methyl groups, R 11 , R 13 and R 15 are H, R 3 is phenyl, and R 4 is PMe 3 ;
  • Complex 27 A complex represented by formula (II), wherein M is Ni, R 12 and R 14 are methyl groups, R 13 is methoxy, R 11 and R 15 are H, R 3 is phenyl, and R 4 is PMe 3 ;
  • Complex 28 A complex represented by formula (II), wherein M is Ni, R 12 and R 14 are -CF 3 , R 11 , R 13 and R 15 are H, R 3 is phenyl, and R 4 is PMe 3 ;
  • Complex 29 A complex represented by formula (II), wherein M is Ni, R 11 and R 15 are methoxy groups, R 12 -R 14 are H, R 3 is phenyl, and R 4 is PMe 3 ;
  • Complex 30 A complex represented by formula (II), wherein M is Ni, R 11 is a methoxy group, R 12 -R 15 are H, R 3 is a phenyl group, and R 4 is PMe 3 ;
  • Complex 31 A complex represented by formula (II), wherein M is Ni, R 11 -R 15 are H, and R 3 and R 4 are connected to each other to form cyclooctene;
  • Complex 32 A complex represented by formula (II), wherein M is Ni, R 11 is phenyl, R 12 -R 15 are H, and R 3 and R 4 are connected to each other to form cyclooctene;
  • Complex 33 A complex represented by formula (II), wherein M is Ni, R 11 is phenyl, R 12 -R 15 are H, and R 3 and R 4 are connected to each other to form cyclooctene;
  • Complex 34 A complex represented by formula (II), wherein M is Ni, R 13 is a methoxy group, R 11 , R 12 , R 14 and R 15 are H, and R 3 and R 4 are connected to each other to form cyclooctene;
  • Complex 35 A complex represented by formula (II), wherein M is Ni, R 12 and R 14 are -CF 3 , R 11 , R 13 and R 15 are H, and R 3 and R 4 are connected to each other to form cyclooctene;
  • Complex 36 A complex represented by formula (II), wherein M is Ni, R 11 and R 15 are methoxy groups, R 12 -R 14 are H, and R 3 and R 4 are connected to each other to form cyclooctene;
  • Complex 37 A complex represented by formula (II), wherein M is Ni, R 11 is a methoxy group, R 12 -R 15 are H, and R 3 and R 4 are connected to each other to form cyclooctene;
  • Complex 38 A complex represented by formula (II), wherein M is Ni, R 11 -R 15 are H, R 3 is Cl, and R 4 is tetrahydrofuran (in this case, O on tetrahydrofuran forms a coordination with metal Ni);
  • Complex 39 A complex represented by formula (II), wherein M is Ni, R 11 -R 15 are F, R 3 is Cl, and R 4 is tetrahydrofuran;
  • Complex 40 A complex represented by formula (II), wherein M is Ni, R 11 is phenyl, R 12 -R 15 are H, R 3 is Cl, and R 4 is tetrahydrofuran;
  • Complex 41 A complex represented by formula (II), wherein M is Ni, R 11 is methyl, R 12 -R 15 are H, R 3 is Cl, and R 4 is tetrahydrofuran;
  • Complex 42 A complex represented by formula (II), wherein M is Ni, R 13 is methyl, R 11 , R 12 , R 14 and R 15 are H, R 3 is Cl, and R 4 is tetrahydrofuran;
  • Complex 43 A complex represented by formula (II), wherein M is Ni, R 13 is -CF 3 , R 11 , R 12 , R 14 and R 15 are H, R 3 is Cl, and R 4 is tetrahydrofuran;
  • Complex 44 A complex represented by formula (II), wherein M is Ni, R 13 is F, R 11 , R 12 , R 14 and R 15 are H, R 3 is Cl, and R 4 is tetrahydrofuran;
  • Complex 45 A complex represented by formula (II), wherein M is Ni, R 13 is Cl, R 11 , R 12 , R 14 and R 15 are H, R 3 is Cl, and R 4 is tetrahydrofuran;
  • Complex 46 A complex represented by formula (II), wherein M is Ni, R 11 , R 13 and R 15 are methyl groups, R 12 and R 14 are H, R 3 is Cl, and R 4 is tetrahydrofuran;
  • Complex 47 A complex represented by formula (II), wherein M is Ni, R 13 is methoxy, R 11 , R 12 , R 14 and R 15 are H, R 3 is Cl, and R 4 is tetrahydrofuran;
  • Complex 48 A complex represented by formula (II), wherein M is Ni, R 12 and R 14 are methyl groups, R 11 , R 13 and R 15 are H, R 3 is Cl, and R 4 is tetrahydrofuran;
  • Complex 49 A complex represented by formula (II), wherein M is Ni, R 12 and R 14 are methyl groups, R 13 is a methoxy group, R 11 and R 15 are H, R 3 is Cl, and R 4 is tetrahydrofuran;
  • Complex 50 A complex represented by formula (II), wherein M is Ni, R 12 and R 14 are -CF 3 , R 11 , R 13 and R 15 are H, R 3 is Cl, and R 4 is tetrahydrofuran;
  • Complex 51 A complex represented by formula (II), wherein M is Ni, R 11 and R 15 are methoxy groups, R 12 -R 14 are H, R 3 is Cl, and R 4 is tetrahydrofuran;
  • Complex 52 A complex represented by formula (II), wherein M is Ni, R 11 is methoxy, R 12 -R 15 are H, R 3 is Cl, and R 4 is tetrahydrofuran;
  • Complex 53 A complex represented by formula (II), wherein M is Ni, R 11 -R 15 are H, R 3 is Br, and R 4 is tetrahydrofuran;
  • Complex 54 A complex represented by formula (II), wherein M is Ni, R 11 -R 15 are F, R 3 is Br, and R 4 is tetrahydrofuran;
  • Complex 55 A complex represented by formula (II), wherein M is Ni, R 11 is phenyl, R 12 -R 15 are H, R 3 is Br, and R 4 is tetrahydrofuran;
  • Complex 56 A complex represented by formula (II), wherein M is Ni, R 11 is methyl, R 12 -R 15 are H, R 3 is Br, and R 4 is tetrahydrofuran;
  • Complex 57 A complex represented by formula (II), wherein M is Ni, R 13 is methyl, R 11 , R 12 , R 14 and R 15 are H, R 3 is Br, and R 4 is tetrahydrofuran;
  • Complex 58 A complex represented by formula (II), wherein M is Ni, R 13 is -CF 3 , R 11 , R 12 , R 14 and R 15 are H, R 3 is Br, and R 4 is tetrahydrofuran;
  • Complex 59 A complex represented by formula (II), wherein M is Ni, R 13 is F, R 11 , R 12 , R 14 and R 15 are H, R 3 is Br, and R 4 is tetrahydrofuran;
  • Complex 60 A complex represented by formula (II), wherein M is Ni, R 13 is Cl, R 11 , R 12 , R 14 and R 15 are H, R 3 is Br, and R 4 is tetrahydrofuran;
  • Complex 61 A complex represented by formula (II), wherein M is Ni, R 11 , R 13 and R 15 are methyl groups, R 12 and R 14 are H, R 3 is Br, and R 4 is tetrahydrofuran;
  • Complex 62 A complex represented by formula (II), wherein M is Ni, R 13 is methoxy, R 11 , R 12 , R 14 and R 15 are H, R 3 is Br, and R 4 is tetrahydrofuran;
  • Complex 63 A complex represented by formula (II), wherein M is Ni, R 12 and R 14 are methyl groups, R 11 , R 13 and R 15 are H, R 3 is Br, and R 4 is tetrahydrofuran;
  • Complex 64 a complex represented by formula (II), wherein M is Ni, R 12 and R 14 are methyl groups, R 13 is methoxy, R 11 and R 15 are H, R 3 is Br, and R 4 is tetrahydrofuran;
  • Complex 65 A complex represented by formula (II), wherein M is Ni, R 12 and R 14 are -CF 3 , R 11 , R 13 and R 15 are H, R 3 is Br, and R 4 is tetrahydrofuran;
  • Complex 66 A complex represented by formula (II), wherein M is Ni, R 11 and R 15 are methoxy groups, R 12 -R 14 are H, R 3 is Br, and R 4 is tetrahydrofuran;
  • Complex 67 A complex represented by formula (II), wherein M is Ni, R 11 is a methoxy group, R 12 -R 15 are H, and R 3 is Br, R4 is tetrahydrofuran;
  • Complex 68 A complex represented by formula (II), wherein M is Pd, R 11 -R 15 are H, R 3 is methyl, and R 4 is pyridine;
  • Complex 69 A complex represented by formula (II), wherein M is Pd, R 11 -R 15 are F, R 3 is methyl, and R 4 is pyridine;
  • Complex 70 A complex represented by formula (II), wherein M is Pd, R 11 is phenyl, R 12 -R 15 are H, R 3 is methyl, and R 4 is pyridine;
  • Complex 71 A complex represented by formula (II), wherein M is Pd, R 11 is phenyl, R 12 -R 15 are H, R 3 is methyl, and R 4 is pyridine;
  • Complex 72 A complex represented by formula (II), wherein M is Pd, R 11 is methyl, R 12 -R 15 are H, R 3 is methyl, and R 4 is pyridine;
  • Complex 73 A complex represented by formula (II), wherein M is Pd, R 13 is a methyl group, R 11 , R 12 , R 14 and R 15 are H, R 3 is a methyl group, and R 4 is pyridine;
  • Complex 74 A complex represented by formula (II), wherein M is Pd, R 13 is -CF 3 , R 11 , R 12 , R 14 and R 15 are H, R 3 is methyl, and R 4 is pyridine;
  • Complex 75 A complex represented by formula (II), wherein M is Pd, R 13 is F, R 11 , R 12 , R 14 and R 15 are H, R 3 is methyl, and R 4 is pyridine;
  • Complex 76 A complex represented by formula (II), wherein M is Pd, R 13 is Cl, R 11 , R 12 , R 14 and R 15 are H, R 3 is methyl, and R 4 is pyridine;
  • Complex 77 A complex represented by formula (II), wherein M is Pd, R 11 , R 13 and R 15 are methyl groups, R 12 and R 14 are H, R 3 is methyl group, and R 4 is pyridine;
  • Complex 78 A complex represented by formula (II), wherein M is Pd, R 13 is methoxy, R 11 , R 12 , R 14 and R 15 are H, R 3 is methyl, and R 4 is pyridine;
  • Complex 79 A complex represented by formula (II), wherein M is Pd, R 12 and R 14 are methyl groups, R 11 , R 13 and R 15 are H, R 3 is methyl group, and R 4 is pyridine;
  • Complex 80 A complex represented by formula (II), wherein M is Pd, R 12 and R 14 are methyl groups, R 13 is a methoxy group, R 11 and R 15 are H, R 3 is a methyl group, and R 4 is pyridine;
  • Complex 81 A complex represented by formula (II), wherein M is Pd, R 12 and R 14 are -CF 3 , R 11 , R 13 and R 15 are H, R 3 is methyl, and R 4 is pyridine;
  • Complex 82 A complex represented by formula (II), wherein M is Pd, R 11 and R 15 are methoxy groups, R 12 -R 14 are H, R 3 is methyl, and R 4 is pyridine;
  • Complex 83 A complex represented by formula (II), wherein M is Pd, R 11 is a methoxy group, R 12 -R 15 are H, R 3 is a methyl group, and R 4 is pyridine;
  • Complex 84 A complex represented by formula (II), wherein M is Pd, R 11 -R 15 are H, R 3 is methyl, and R 4 is Cl;
  • Complex 85 A complex represented by formula (II), wherein M is Pd, R 11 is phenyl, R 12 -R 15 are H, R 3 is methyl, and R 4 is Cl;
  • Complex 86 A complex represented by formula (II), wherein M is Pd, R 13 is a methoxy group, R 11 , R 12 , R 14 and R 15 are H, R 3 is a methyl group, and R 4 is Cl;
  • Complex 87 A complex represented by formula (II), wherein M is Pd, R 12 and R 14 are -CF 3 , R 11 , R 13 and R 15 are H, R 3 is methyl, and R 4 is Cl;
  • Complex 88 A complex represented by formula (II), wherein M is Pd, R 11 and R 15 are methoxy groups, R 12 -R 14 are H, R 3 is methyl, and R 4 is Cl;
  • Complex 89 A complex represented by formula (II), wherein M is Pd, R 11 is a methoxy group, R 12 -R 15 are H, R 3 is a methyl group, and R 4 is Cl.
  • the above-mentioned method of phosphine-phenol late transition metal complex may include:
  • the M metal is selected from Group VIII metals, preferably nickel and/or palladium; the definition of R 1 is the same as described above.
  • the M metal compound can be selected from nickel dimethyldipyridyl (Py 2 NiMe 2 ), bis(1,5-cyclooctadiene) nickel (Ni(COD) 2 ), nickel dichlorotetrapyridyl (Ni 2 Cl 2 Py 4 ), ethylene glycol dimethyl ether nickel bromide ((DME)NiBr 2 ), ethylene glycol dimethyl ether nickel chloride ((DME)NiCl 2 ), dichlorobis(trimethylphosphine) nickel (NiCl 2 (PMe 3 ) 2 ), bis(pyridine)bis[(trimethylsilyl)methyl]nickel (Ni(Py) 2 (CH 2 SiMe 3 ) 2 ), chloro(phenyl)(N,N,N',N'-tetramethyl-1,2-ethylenediamine)nickel (NiArBr(TMEDA)), dibenzyldipyridylnickel (Ni(CH 2 NiMe 2 ), chlor
  • the reaction of step (2) is carried out in the presence of a reaction solvent.
  • the reaction solvent can be selected from toluene and tetrahydrofuran.
  • the reaction solvent is tetrahydrofuran.
  • step (1) and step (2) is as shown in the following reaction formula.
  • M, R 3 , R 4 , R 11 to R 15 are as defined above.
  • the preparation process of step (1) comprises: in a protective gas (such as nitrogen) atmosphere, dissolving the compound represented by formula (III) in anhydrous ether, adding a hydrogen extraction agent (such as n-butyl lithium) at room temperature, stirring at room temperature, adding tetrahydrofuran, and further stirring the obtained black solution containing a precipitate; then adding the compound represented by formula (V), stirring at room temperature, and adding NH4Cl aqueous solution to quench; then extracting the organic phase with ethyl acetate, drying the obtained organic phase with anhydrous sodium sulfate, and recrystallizing with dichloromethane/hexane to obtain a yellow crystalline compound; then adding methanol and concentrated hydrochloric acid, reflux reaction, removing the organic solvent after the reaction is completed, dissolving the product in ethyl acetate, adding NaHCO3 aqueous solution to neutralize, extracting the organic phase, and then drying, filtering, concentrating, and
  • the preparation process of step (2) comprises: in a protective gas (such as nitrogen) atmosphere, dissolving the ligand obtained in step (1) and the M metal compound in an organic solvent (such as toluene, tetrahydrofuran, etc.), respectively, and then stirring and mixing the ligand solution and the M metal compound solution and reacting at room temperature, filtering, concentrating the filtrate, adding heptane for recrystallization, and obtaining the phosphine-phenol post-transition metal complex described in the present invention.
  • a protective gas such as nitrogen
  • an organic solvent such as toluene, tetrahydrofuran, etc.
  • the present invention also provides the use of the above phosphine-phenol late transition metal complex in olefin polymerization.
  • the olefin includes ethylene and ⁇ -olefin containing polar groups.
  • the phosphine-phenol post-transition metal complex of the present invention can be used as a catalyst for homopolymerization or copolymerization of olefins, and is particularly suitable for homopolymerization of ethylene or copolymerization of ethylene with other ⁇ -olefins and olefins with polar functional groups such as hydroxyl, carboxyl, ester, etc., wherein the ⁇ -olefin is independently selected from at least one of propylene, butene, pentene, hexene, octene and 4-methyl-1-pentene.
  • the olefin with a polar functional group is a vinyl monomer containing one or more hydroxyl, carboxyl, ester groups, and the same molecule of the vinyl monomer can contain multiple different polar groups.
  • another embodiment of the method for preparing an ⁇ -olefin polymer is (a) an ⁇ -olefin and (b) a (methyl) Acrylate monomers, vinyl monomers or allyl monomers are copolymerized in the presence of the above-mentioned phosphine-phenol post-transition metal complex.
  • R 31 is H or a C1-C10 hydrocarbon group.
  • R 31 is H or a C1-C5 hydrocarbon group. More preferably, R 31 is H or a methyl group.
  • the number of carbon atoms of R 32 is 1-30, preferably 1-12, and more preferably 1-8.
  • hetero atom optionally contained in R 32 it can be selected from oxygen, sulfur, selenium, phosphorus, nitrogen, silicon, fluorine, boron, etc. Among these hetero atoms, oxygen, silicon and fluorine are preferred, and oxygen is more preferred. In addition, R 32 not containing a hetero atom is also preferred.
  • the (meth)acrylate monomer include, but are not limited to: methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, tert-butyl (meth)acrylate, pentyl (meth)acrylate, hexyl (meth)acrylate, cyclohexyl (meth)acrylate, octyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, nonyl (meth)acrylate, decyl (meth)acrylate, dodecyl (meth)acrylate, phenyl (meth)acrylate, toluyl (meth)acrylate,
  • the (meth)acrylate monomers may be used alone or in combination of two or more.
  • the olefin is a C2-C16 olefin.
  • the olefin is selected from ethylene and an ⁇ -olefin or cycloolefin having 3-16 carbon atoms.
  • the cycloolefin includes but is not limited to cyclobutene, cyclopentene, cyclohexene, cycloheptene, cyclooctene, norbornene, etc.
  • the present invention also provides an olefin polymerization method, comprising carrying out an olefin polymerization reaction in the presence of the above-mentioned phosphine-phenol post-transition metal complex.
  • the olefin polymerization reaction can be homopolymerization or copolymerization.
  • the temperature of the olefin polymerization reaction can be -78°C to 200°C, preferably -20°C to 150°C, and the pressure can be 0.01 to 10 MPa, preferably 0.01 to 5 MPa.
  • pressure refers to the ethylene pressure in the polymerization system, expressed as absolute pressure.
  • the olefin is a C2-C16 olefin.
  • the olefin includes a C2-C16 ⁇ -olefin or a cycloolefin.
  • the olefin comprises ethylene
  • the olefin includes ethylene and an ⁇ -olefin or a cycloolefin containing a polar group.
  • the olefin polymerization reaction is carried out by olefin monomers in a solvent
  • the polymerization solvent is selected from one or more of alkanes, aromatic hydrocarbons and halogenated hydrocarbons.
  • the polymerization solvent is selected from one or more of hexane, pentane, heptane, benzene, toluene, dichloromethane, chloroform, chlorobenzene and dichloroethane, preferably one or more of hexane, toluene and heptane.
  • alkyl refers to a straight chain alkyl, a branched alkyl or a cycloalkyl, including but not limited to: methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, tert-pentyl, neopentyl, n-hexyl, n-heptyl, n-octyl, n-decyl, cyclopropyl, cyclopentyl, cyclohexyl, 4-methylcyclohexyl, 4-ethylcyclohexyl, 4-n-propylcyclohexyl and 4-n-butylcyclohexyl.
  • alkenyl refers to straight-chain alkenyl, branched-chain alkenyl or cycloalkenyl, including but not limited to vinyl, allyl and butenyl.
  • examples of the aralkyl group include, but are not limited to, phenylmethyl, phenylethyl, phenyl-n-propyl, phenyl-isopropyl, phenyl-n-butyl and phenyl-t-butyl.
  • examples of the alkylaryl group include, but are not limited to, tolyl, ethylphenyl, n-propylphenyl, isopropylphenyl, n-butylphenyl and tert-butylphenyl.
  • Complex 1 A complex represented by formula (II), wherein M is Ni, R 11 -R 15 are H, R 3 is methyl, and R 4 is pyridine.
  • the organic phase was extracted with ethyl acetate, and the obtained organic phase was dried over anhydrous sodium sulfate and recrystallized from dichloromethane/hexane to obtain a yellow crystalline compound (15.54 g).
  • Methanol (100 mL) and 5 mL of concentrated hydrochloric acid (37 wt%) were added, and the mixture was refluxed for 16 h.
  • the organic solvent was removed, the product was dissolved in ethyl acetate, and an aqueous NaHCO 3 solution was added for neutralization.
  • ligand L 1 (0.654 g, 1 mmol) and metal nickel source (Py 2 NiMe 2 ) (0.49 g, 2 mmol) were dissolved in toluene (10 mL) respectively.
  • the ligand solution was then dripped into the metal nickel source solution dropwise, stirred vigorously, reacted at room temperature for 10 h, filtered to obtain a brown-yellow solution, the solvent was concentrated, and frozen and crystallized at -30°C to obtain naphthol-phosphine neutral nickel complex 1 with a yield of 76%.
  • a 1L stainless steel polymerization kettle equipped with mechanical stirring was dried continuously at 130°C for 6h, and vacuum was evacuated while hot and replaced with N2 gas 3 times. 500mL of toluene was injected into the polymerization kettle, and 9.6mg (10 ⁇ mol) of complex 1 was added. At 50°C, the ethylene pressure was maintained at 10atm, and the reaction was stirred vigorously for 20min. It was neutralized with an ethanol solution acidified with 10wt% hydrochloric acid to obtain polyethylene, and the polymer was dried and weighed to test the polymerization activity. The test data of the weight average molecular weight, molecular weight distribution and polymerization activity of the obtained polymer are shown in Table 1.
  • Complex 1 A complex represented by formula (II), wherein M is Ni, R 11 -R 15 are H, R 3 is methyl, and R 4 is pyridine.
  • a 1L stainless steel polymerization reactor equipped with mechanical stirring was dried continuously at 130°C for 6 h, and then vacuumed and replaced with N2 gas while hot. 3 times. 500 mL of hexane was injected into the polymerization kettle, and 9.6 mg (10 ⁇ mol) of complex 1 was added. At 70°C, the ethylene pressure was maintained at 10 atm, and the reaction was stirred vigorously for 30 minutes. It was neutralized with an ethanol solution acidified with 10 wt% hydrochloric acid to obtain polyethylene, and the polymer was dried and weighed to test the polymerization activity. The test data of the weight average molecular weight, molecular weight distribution and polymerization activity of the obtained polymer are shown in Table 1.
  • Complex 1 A complex represented by formula (II), wherein M is Ni, R 11 -R 15 are H, R 3 is methyl, and R 4 is pyridine.
  • a 1L stainless steel polymerization kettle equipped with mechanical stirring was dried continuously at 130°C for 6h, and vacuum was evacuated while hot and replaced with N2 gas 3 times. 500mL of hexane was injected into the polymerization kettle, and 9.6mg (10 ⁇ mol) of complex 1 was added. At 100°C, the ethylene pressure was maintained at 14atm, and the reaction was stirred vigorously for 30min. It was neutralized with an ethanol solution acidified with 10wt% hydrochloric acid to obtain polyethylene, and the polymer was dried and weighed to test the polymerization activity. The test data of the weight average molecular weight, molecular weight distribution and polymerization activity of the obtained polymer are shown in Table 1.
  • Complex 1 A complex represented by formula (II), wherein M is Ni, R 11 -R 15 are H, R 3 is methyl, and R 4 is pyridine.
  • a 100 mL stainless steel polymerization kettle equipped with mechanical stirring was dried continuously at 130°C for 6 h, evacuated while hot and replaced with N2 gas 3 times.
  • 50 mL of toluene, 0.9 mL (10 mmol) of methyl acrylate, and 9.6 mg (10 ⁇ mol) of complex 1 were injected into the polymerization kettle.
  • the ethylene pressure was maintained at 15 atm and the reaction was stirred vigorously for 60 min.
  • the polymer was neutralized with an ethanol solution acidified with 10 wt% hydrochloric acid to obtain a polymer, which was dried and weighed to test the polymerization activity.
  • Table 1 The test data of the weight average molecular weight, molecular weight distribution, polymerization activity and comonomer content of the obtained polymer are shown in Table 1.
  • Complex 1 A complex represented by formula (II), wherein M is Ni, R 11 -R 15 are H, R 3 is methyl, and R 4 is pyridine.
  • a 100 mL stainless steel polymerization kettle equipped with mechanical stirring was dried continuously at 130°C for 6 h, evacuated while hot and replaced with N2 gas 3 times.
  • 50 mL of toluene, 1.4 mL (10 mmol) of butyl acrylate were injected into the polymerization kettle, and 9.6 mg (10 ⁇ mol) of complex 1 were added.
  • the ethylene pressure was maintained at 15 atm, and the reaction was stirred vigorously for 60 min.
  • the polymer was neutralized with an ethanol solution acidified with 10 wt% hydrochloric acid to obtain a polymer, which was dried and weighed to test the polymerization activity.
  • Table 1 The test data of the weight average molecular weight, molecular weight distribution, polymerization activity and comonomer content of the obtained polymer are shown in Table 1.
  • Complex 16 A complex represented by formula (II), wherein M is Ni, R 11 -R 15 are H, R 3 is phenyl, and R 4 is PMe 3 .
  • ligand L 1 was prepared.
  • a 1L stainless steel polymerization kettle equipped with mechanical stirring was dried continuously at 130°C for 6h, evacuated while hot and replaced with N2 gas three times.
  • 500mL of toluene was injected into the polymerization kettle, and 10.8mg (10 ⁇ mol) of complex 16 was added.
  • the ethylene pressure was maintained at 10atm, and the reaction was stirred vigorously for 20min.
  • the obtained product was a C4-C24 oligomer.
  • Complex 53 A complex represented by formula (II), wherein M is Ni, R 11 -R 15 are H, R 3 is Br, and R 4 is tetrahydrofuran.
  • ligand L 1 was prepared.
  • a 1L stainless steel polymerization kettle equipped with mechanical stirring was dried continuously at 130°C for 6h, evacuated while hot and replaced with N2 gas 3 times.
  • 500mL of toluene was injected into the polymerization kettle, and 10.7mg (10 ⁇ mol) of complex 53 was added.
  • the ethylene pressure was maintained at 10atm, and the reaction was stirred vigorously for 20min. It was neutralized with an ethanol solution acidified with 10wt% hydrochloric acid to obtain polyethylene, and the polymer was dried and weighed to test the polymerization activity.
  • Table 1 The test data of the weight average molecular weight, molecular weight distribution and polymerization activity of the obtained polymer are shown in Table 1.
  • Complex 53 A complex represented by formula (II), wherein M is Ni, R 11 -R 15 are H, R 3 is Br, and R 4 is tetrahydrofuran.
  • a 1L stainless steel polymerization kettle equipped with mechanical stirring was dried continuously at 130°C for 6h, evacuated while hot and replaced with N2 gas three times. 500mL of hexane was injected into the polymerization kettle, and 10.7mg (10 ⁇ mol) of complex 53 was added. At 80°C, the ethylene pressure was maintained at 10atm, and the reaction was stirred vigorously for 30min. The polyethylene was neutralized with 10wt% hydrochloric acid-acidified ethanol solution to obtain polyethylene. The obtained polymer was dried and weighed to test the polymerization activity. The test data of the weight average molecular weight, molecular weight distribution and polymerization activity of the obtained polymer are shown in Table 1.
  • Complex 53 A complex represented by formula (II), wherein M is Ni, R 11 -R 15 are H, R 3 is Br, and R 4 is tetrahydrofuran.
  • a 100 mL stainless steel polymerization kettle equipped with mechanical stirring was dried continuously at 130°C for 6 h, evacuated while hot and replaced with N2 gas 3 times.
  • 50 mL of toluene, 0.9 mL (0.01 mol) of methyl acrylate, and 10.7 mg (10 ⁇ mol) of complex 53 were injected into the polymerization kettle.
  • the ethylene pressure was maintained at 15 atm and the reaction was stirred vigorously for 60 min.
  • the polymer was neutralized with an ethanol solution acidified with 10 wt% hydrochloric acid to obtain a polymer, which was dried and weighed to test the polymerization activity.
  • Table 1 The test data of the weight average molecular weight, molecular weight distribution, polymerization activity and comonomer content of the obtained polymer are shown in Table 1.
  • Complex 65 A complex represented by formula (II), wherein M is Ni, R 12 and R 14 are -CF 3 , R 11 , R 13 and R 15 are H, R 3 is Br, and R 4 is tetrahydrofuran.
  • a 1L stainless steel polymerization kettle equipped with mechanical stirring was dried continuously at 130°C for 6h, and vacuum was evacuated while hot and replaced with N2 gas 3 times.
  • 500mL of toluene was injected into the polymerization kettle, and 8.1mg (5 ⁇ mol) of complex 65 was added.
  • the ethylene pressure was maintained at 10atm, and the reaction was stirred vigorously for 20min. It was neutralized with an ethanol solution acidified with 10wt% hydrochloric acid to obtain polyethylene, and the polymer was dried and weighed to test the polymerization activity.
  • Table 1 The test data of the weight average molecular weight, molecular weight distribution and polymerization activity of the obtained polymer are shown in Table 1.
  • Complex 65 A complex represented by formula (II), wherein M is Ni, R 12 and R 14 are -CF 3 , R 11 , R 13 and R 15 are H, R 3 is Br, and R 4 is tetrahydrofuran.
  • a 1L stainless steel polymerization kettle equipped with mechanical stirring was dried continuously at 130°C for 6h, evacuated while hot and replaced with N2 gas 3 times.
  • 500mL of hexane was injected into the polymerization kettle, and 8.1mg (5 ⁇ mol) of complex 65 was added.
  • the ethylene pressure was maintained at 10atm, and the reaction was stirred vigorously for 30min. It was neutralized with an ethanol solution acidified with 10wt% hydrochloric acid to obtain polyethylene, and the polymer was dried and weighed to test the polymerization activity.
  • Table 1 The test data of the weight average molecular weight, molecular weight distribution and polymerization activity of the obtained polymer are shown in Table 1.
  • Complex 65 A complex represented by formula (II), wherein M is Ni, R 12 and R 14 are -CF 3 , R 11 , R 13 and R 15 are H, R 3 is Br, and R 4 is tetrahydrofuran.
  • a 100 mL stainless steel polymerization kettle equipped with mechanical stirring was dried continuously at 130°C for 6 h, evacuated while hot and replaced with N2 gas 3 times.
  • 50 mL of toluene, 0.9 mL (10 mmol) of methyl acrylate, and 8.1 mg (5 ⁇ mol) of complex 65 were injected into the polymerization kettle.
  • the ethylene pressure was maintained at 15 atm and the reaction was stirred vigorously for 60 min.
  • the polymer was neutralized with an ethanol solution acidified with 10 wt% hydrochloric acid to obtain a polymer, which was dried and weighed to test the polymerization activity.
  • Table 1 The test data of the weight average molecular weight, molecular weight distribution, polymerization activity and comonomer content of the obtained polymer are shown in Table 1.
  • Complex 11 A complex represented by formula (II), wherein M is Ni, R 12 and R 14 are methyl groups, R 11 , R 13 and R 15 are H, R 3 is methyl group, and R 4 is pyridine.
  • the organic phase was extracted with ethyl acetate, and the obtained organic phase was dried over anhydrous sodium sulfate and recrystallized from dichloromethane/hexane to obtain a white crystalline compound.
  • Methanol (100 mL) and 5 mL of concentrated hydrochloric acid (37 wt%) were added, and the mixture was refluxed for 16 h.
  • the organic solvent was removed, the product was dissolved in ethyl acetate, and an aqueous NaHCO 3 solution was added for neutralization.
  • a 1L stainless steel polymerization kettle equipped with mechanical stirring was dried continuously at 130°C for 6h, and vacuum was evacuated while hot and replaced with N2 gas 3 times.
  • 500mL of toluene was injected into the polymerization kettle, and 11.8mg (10 ⁇ mol) of complex 11 was added.
  • the ethylene pressure was maintained at 10atm, and the reaction was stirred vigorously for 20min. It was neutralized with an ethanol solution acidified with 10wt% hydrochloric acid to obtain polyethylene, and the polymer was dried and weighed to test the polymerization activity.
  • Table 1 The test data of the weight average molecular weight, molecular weight distribution and polymerization activity of the obtained polymer are shown in Table 1.
  • Complex 68 A complex represented by formula (II), wherein M is Pd, R 11 -R 15 are H, R 3 is methyl, and R 4 is pyridine.
  • ligand L 1 was prepared.
  • ligand L 1 (0.65 g, 1 mmol) was dissolved in toluene (20 mL) and added dropwise to a toluene (15 mL) solution of a metal palladium source (TMEDA) PdMe 2 (0.51 g, 2 mmol).
  • TEDA metal palladium source
  • the ligand solution was then added dropwise to the metal palladium source solution, stirred vigorously, and reacted at room temperature for 5 h.
  • 0.6 mL of pyridine was added, and the reaction was allowed to proceed overnight.
  • a black solution was obtained by filtering.
  • the solvent was removed in vacuo to obtain palladium complex 68 with a yield of 84%.
  • a 100 mL glass polymerization tube equipped with mechanical stirring was dried continuously at 130°C for 6 h, and vacuum was evacuated while hot and replaced with N2 gas three times.
  • 5.0 mL of toluene and 5.0 mL of norbornene were injected into the polymerization kettle, and 4.2 mg ( 4 ⁇ mol) of complex 68 were added.
  • 40 ⁇ mol of B( C6F5 ) 3 was added, and the reaction was stirred vigorously at 60°C for 10 min. It was neutralized with an ethanol solution acidified with 10 wt% hydrochloric acid to obtain polynorbornene, and the polymer was dried and weighed to test the polymerization activity.
  • Table 1 The test data of the weight average molecular weight, molecular weight distribution and polymerization activity of the obtained polymer are shown in Table 1.
  • Complex 62 A complex represented by formula (II), wherein M is Ni, R 13 is methoxy, R 11 , R 12 , R 14 and R 15 are H, R 3 is Br, and R 4 is tetrahydrofuran.
  • the organic phase was extracted with ethyl acetate, and the obtained organic phase was dried over anhydrous sodium sulfate and recrystallized from dichloromethane/hexane to obtain a white crystalline compound.
  • Methanol (100 mL) and 5 mL of concentrated hydrochloric acid (37 wt%) were added, and the mixture was refluxed for 16 h.
  • the organic solvent was removed, the compound was dissolved in ethyl acetate, and an aqueous NaHCO 3 solution was added for neutralization.
  • a 1L stainless steel polymerization kettle equipped with mechanical stirring was dried continuously at 130°C for 6h, evacuated while hot and replaced with N2 gas 3 times.
  • 500mL of toluene was injected into the polymerization kettle, and 6.0mg (5 ⁇ mol) of complex 62 was added.
  • the ethylene pressure was maintained at 10atm, and the reaction was stirred vigorously for 20min. It was neutralized with an ethanol solution acidified with 10wt% hydrochloric acid to obtain polyethylene, and the polymer was dried and weighed to test the polymerization activity.
  • Table 1 The test data of the weight average molecular weight, molecular weight distribution and polymerization activity of the obtained polymer are shown in Table 1.
  • 10atm ethylene A 1L stainless steel polymerization kettle equipped with mechanical stirring was dried continuously at 130°C for 6h, vacuumed while hot and replaced with N2 gas 3 times. 500mL of hexane was injected into the polymerization kettle, and then 5.0ml of methylaluminoxane (MAO) (1.53mol/L toluene solution) was added, and 10.1mg (20 ⁇ mol) of complex A (synthesis process reference Acta Agron.Sin.2012,29,1381; ACS Catalysis 2021,11,5,2902-2911) was added. At 70°C, the ethylene pressure was maintained at 10atm and the reaction was stirred vigorously for 30min.
  • MAO methylaluminoxane
  • a 100mL stainless steel polymerization kettle equipped with mechanical stirring was dried continuously at 130°C for 6h, evacuated while hot and replaced with N2 gas 3 times.
  • 50mL of toluene, 0.9mL (10.0mmol) of methyl acrylate, and 10.1mg (10 ⁇ mol) of complex A were injected into the polymerization kettle.
  • the ethylene pressure was maintained at 15atm and the reaction was stirred vigorously for 60min.
  • the polymer was neutralized with an ethanol solution acidified with 10wt% hydrochloric acid to obtain a polymer, which was dried and weighed to test the polymerization activity.
  • Table 1 The test data of the weight average molecular weight, molecular weight distribution, polymerization activity and comonomer content of the obtained polymer are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

本发明涉及烯烃聚合催化剂技术领域,公开了一种膦-酚后过渡金属配合物及其制备方法和应用。该膦-酚后过渡金属配合物的结构式如式(I)所示,其中,R1选自取代或未取代的C1-C20烃基,R3和R4各自独立选自卤素、C1-C10烃基、-P(R5)3、-NR6R7和-OR8R9,其中R5为取代或未取代的C1-C10烷基或芳基,R6、R7、R8和R9各自独立选自C1-C10烃基,并且R6与R7以及R8与R9任选地相互连接形成五元环或六元环。使用本发明的金属配合物作为烯烃聚合催化剂,相似聚合条件下,具有更高的均/共聚合活性,所得聚合物的分子量明显较高,分子量分布更窄。

Description

膦-酚后过渡金属配合物及其制备方法和应用 技术领域
本发明涉及烯烃聚合催化剂技术领域,具体涉及一种膦-酚后过渡金属配合物及其制备方法和应用。
背景技术
聚烯烃树脂与其它树脂材料相比具有优良的环境协调性,因此被广泛应用在工业和生活中。聚乙烯树脂是一种重要的聚烯烃树脂。工业化的聚乙烯催化剂有Ziegler-Natta型催化剂(参见例如DE Pat 889229(1953);IT Pat 545332(1956)和IT Pat 536899(1955);Chem.Rev.,2000,100,1169及该特辑相关文献),Phillips型催化剂(参见例如Belg.Pat.530617(1955);Chem.Rev.1996,96,3327)和茂金属型催化剂(参见例如W.Kaminsky,Metalorganic Catalysts for Synthesis and Polymerization,Berlin:Springer,1999),以及近年来快速发展的后过渡金属配合物型的高效乙烯齐聚和聚合催化剂。例如,1995年Brookhart等报道了一类α-二亚胺Ni(II)的配合物,可以高活性的聚合乙烯。但是由于该类催化剂存在明显的“链行走”,得到的聚合物支化度较高。此外,膦磺酸中性钯配合物是另一个经典的乙烯均/共聚的催化剂,自2002年首次被Pugh课题组报道以来受到广泛关注。Mecking,Nozaki,Jordon等多个课题组深入研究了该类催化剂引发乙烯的共聚反应行为以及催化机理,进一步推动了后过渡金属催化剂的发展。
现有乙烯气相聚合工艺通常要求聚合温度为85℃以上,乙烯溶液聚合工艺通常要求聚合温度为130-250℃。因此,需要开发适合在相对较高的温度如80℃或更高的温度下使用的后过渡金属催化剂,以满足现有气相、溶液法乙烯聚合装置的要求。
发明内容
本发明的目的是提供一种膦-酚后过渡金属配合物及其制备方法和应用,该膦-酚后过渡金属配合物具有良好的热稳定性,特别地,该金属配合物在较高温度下仍可保持较高的乙烯聚合活性,且所得聚合物分子量分布较窄。
为了实现上述目的,本发明一方面提供了一种膦-酚后过渡金属配合物,其结构式如式(I)所示,
其中,M选自ⅤIII族金属,R1选自取代或未取代的C6-C20芳基,R3和R4各自独立选自卤素、C1-C10烃基、P(R5)3、NR6R7和OR8R9,或者R3和R4相互连接形成八元环,其中R5选自取代或未取代的C1-C10烷基以及取代或未取代的C6-C10芳基,R6、R7、R8和R9各自独立选自C1-C10烃基,或者R6、R7与N相互连接形成五元环或六元环,或者R8、R9与O相互连接形成五元环或六元环。
优选地,R5包括C1-C6烷基(例如甲基、乙基、丙基或其组合)、C6-C10芳基(例如苯基、苯甲基、苯乙基或其组合)或其组合。
优选地,C6-C20芳基(包括C6-C15芳基)选自苯基、4-甲基苯基、4-乙基苯基、二甲基苯基、乙烯基苯基、蒽基、萘基、或联苯基。
优选地,对于取代的C6-C20芳基,其取代基选自氢、卤素、羟基、取代或未取代的烷氧基(优选C1-C6烷氧基)、取代或未取代的C1-C20烃基。
优选地,对于取代的烷氧基和取代的C1-C20烃基,其取代基选自卤素、羟基、C1-C6烷基、卤代的C1-C6烷基、C1-C6烷氧基和卤代的C1-C6烷氧基。
优选地,卤代选自氟代、氯代、溴代或碘代。
优选地,卤代包括单卤代、二卤代或全卤代,例如单氟代、二氟代或全氟代。
优选地,C1-C10烃基包括C1-C8烃基(如C1-C6烷基)或C7-C10芳烷基,所述芳烷基包括但不限于:苯基甲基、苯基乙基、苯基正丙基、苯基异丙基、苯基正丁基和苯基叔丁基。
优选地,C1-C20烃基包括C1-C8烃基(如C1-C6烷基),优选甲基、乙基或丙基;以及或C6-C15芳基。
优选地,所述C1-C6烷基选自甲基、乙基、正丙基、异丙基、正丁基、异丁基、正戊基、异戊基、正己基、异己基和3,3-二甲基丁基。
优选地,所述C1-C6烷氧基选自甲氧基、乙氧基、正丙氧基、异丙氧基、正丁氧基、异丁氧基、正戊氧基、异戊氧基、正己氧基、异己氧基和3,3-二甲基丁氧基。
优选地,所述卤素选自氟、氯、溴和碘。
除非另有明确说明,上述基团定义同样适用于上下文所述的其它优选或相关结构中基团的定义。
优选地,所述膦-酚后过渡金属配合物的结构式如式(II)所示,
其中,R11-R15各自独立选自氢、卤素、羟基、取代或未取代的烷氧基或取代或未取代的C1-C20烃基;优选地,对于取代的烷氧基和取代的C1-C20烃基,其取代基选自卤素、羟基、C1-C6烷基、卤代的C1-C6烷基、C1-C6烷氧基和卤代的C1-C6烷氧基。
优选地,M选自镍和钯。
优选地,R11-R15各自独立选自氢、卤素、羟基、取代或未取代的烷氧基或取代或未取代的C1-C10烷基以及取代或未取代的C6-C15芳基。
优选地,R3和R4中的至少一个选自卤素以及C1-C8烃基,或者R3和R4相互连接形成八元环。
优选地,优选地,对于取代的烷氧基和取代的C1-C10烷基以及取代的C6-C15芳基,取代基独立地选自卤素、羟基、C1-C6烷基、卤代的C1-C6烷基、C1-C6烷氧基和卤代的C1-C6烷氧基。
优选地,卤代选自氟代、氯代、溴代或碘代。
优选地,卤代包括单卤代、二卤代或全卤代。优选地,所述C1-C6烷基选自甲基、乙基、正丙基、异丙基、正丁基、异丁基、正戊基、异戊基、正己基、异己基和3,3-二甲基丁基。
优选地,所述C1-C6烷氧基选自甲氧基、乙氧基、正丙氧基、异丙氧基、正丁氧基、异丁氧基、正戊氧基、异戊氧基、正己氧基、异己氧基和3,3-二甲基丁氧基。
优选地,所述卤素选自氟、氯、溴和碘。本发明第二方面提供了一种制备上述膦-酚后过渡金属配合物的方法,该方法包括:
(1)将式(III)所示的化合物与式(IV)所示的化合物进行反应,生成配体;
(2)将所述配体与M金属化合物进行反应;
其中,M金属选自ⅤIII族金属,优选为镍和/或钯;R1的定义与前文描述的相同。
优选地,所述M金属化合物选自所述M金属化合物选自二甲基二吡啶镍、双(1,5-环辛二烯)镍、二氯四吡啶镍、乙二醇二甲醚溴化镍、乙二醇二甲醚氯化镍、二氯二(三甲基膦)合镍、二(吡啶)二[(三甲硅基)甲基]镍、氯(苯基)(N,N,N',N'-四甲基-1,2-乙二胺)镍、二苄基二吡啶镍、苯基(三甲基膦)溴化镍、苯基(三乙基膦)氯化镍、二苯基二(三甲基膦)合镍、二氯二(三甲基膦)合镍、二甲基二吡啶合钯、二氯二吡啶钯、二(吡啶)二[(三甲硅基)甲基]钯、二苄基二吡啶钯和甲基-1,5-环辛二烯-氯化钯中的至少一种。
优选地,步骤(2)的反应在反应溶剂的存在下进行,所述反应溶剂为四氢呋喃。
本发明第三方面提供了上述膦-酚后过渡金属配合物在烯烃聚合中的应用。
本发明第四方面提供了一种烯烃聚合方法,包括在上述膦-酚后过渡金属配合物的存在下进行烯烃聚合反应。
优选地,所述烯烃聚合反应的温度为-78℃~200℃,优选为-20℃~150℃,压力为0.01~10MPa,优选0.01~5MPa。
本发明所述的膦-酚后过渡金属配合物用作烯烃聚合催化剂,具有较高的均/共聚合活性,能够实现较高温度下催化烯烃聚合,制备的烯烃聚合物具有明显较高的分子量。
与现有技术相比,本发明的技术方案具有以下优点:
(1)本发明所述的膦-酚后过渡金属配合物合成方法简单易行。
(2)本发明所述的膦-酚后过渡金属配合物能高活性地催化乙烯聚合,特别是,可在较高聚合温度下仍保持较高的聚合活性。
(3)本发明所述的膦-酚后过渡金属配合物作为烯烃聚合催化剂具有更高的乙烯与α-烯烃或极性单体的共聚合性能。
具体实施方式
以下对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施 方式仅用于说明和解释本发明,并不用于限制本发明。
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
本发明所述的膦-酚后过渡金属配合物的结构式如式(I)所示,
其中,M选自ⅤIII族金属,R1选自取代或未取代的C6-C20芳基,R3和R4各自独立选自卤素、C1-C10烃基、P(R5)3、NR6R7和OR8R9,或者R3和R4相互连接形成八元环,其中R5选自取代或未取代的C1-C10烷基以及取代或未取代的C6-C10芳基,R6、R7、R8和R9各自独立选自C1-C10烃基,或者R6、R7与N相互连接形成五元环或六元环,或者R8、R9与O相互连接形成五元环或六元环。
在较优选的实施方式中,所述膦-酚后过渡金属配合物的结构式如式(II)所示,
其中,R11-R15各自独立选自氢、卤素、羟基、取代或未取代的烷氧基或取代或未取代的C1-C20烃基。在优选情况下,R11-R15各自独立选自氢、卤素、羟基、取代或未取代的C1-C6烷氧基或取代或未取代的C1-C10烷基以及取代或未取代的C6-C15芳基。
在式(I)和式(II)中,优选情况下,M选自镍和钯。
在式(I)和式(II)中,优选情况下,R3和R4中的至少一个选自卤素以及C1-C8烃基,或者R3和R4相互连接形成八元环。在一种实施方式中,R3和R4各自独立选自卤素以及C1-C8烃基(如C1-C8烷基或芳基)。在另一种实施方式中,R3选自卤素以及C1-C8烃基(如C1-C8烷基或芳基),R4选自P(R5)3、NR6R7和OR8R9,其中R5选自取代或未取代的C1-C10烷基以及取代或未取代的C6-C10芳基,R6、R7、R8和R9各自选自C1-C6烃基,并且R6、R7与N相互连接形成五元环或六元环,R8、R9与O相互连接形成五元环或六元环。在再一种实施方式中,R3和R4相互连接形成八元环。
在本发明中,当R3和R4相互连接形成八元环时,R3、R4可以相互连接形成环辛烯等。当R3和/或R4各自独立选自P(R5)3时,例如可以为PMe3、PPh3、PEt3等。当R3和/或R4各自独立选自NR6R7时,例如可以为吡啶(C5H5N)、2-甲基吡啶、3-甲基吡啶、4-甲基吡啶等。当R3和/或R4各自独立选自OR8R9时,例如可以为四氢呋喃(C4H8O)、2-甲基四氢呋喃、3-甲基四氢呋喃、2,5-二甲基四氢呋喃、2,2-二甲基四氢呋喃等。在本文中,“Me”是指甲基,“Ph”是指苯基,“Et”是指乙基。
在本发明中,“取代或未取代的”中的“取代”是指含有取代基,这里的取代基可以独立地选自卤素、羟基、C1-C6烷基、卤代的C1-C6烷基、C1-C6烷氧基和卤代的C1-C6烷氧基。优选地,卤代选自氟代、氯代、溴代或碘代。
在本发明中,烷基(如C1-C6烷基、C1-C8烷基或C1-C10烷基)可以独立地选自甲基、乙基、正丙基、异丙基、正丁基、异丁基、正戊基、异戊基、正己基、异己基和3,3-二甲基丁基。
在本发明中,烷氧基(如C1-C6烷氧基)可以独立地选自甲氧基、乙氧基、正丙氧基、异丙氧基、正丁氧基、异丁氧基、正戊氧基、异戊氧基、正己氧基、异己氧基和3,3-二甲基丁氧基。
在本发明中,芳基(如C6-C10芳基或C6-C15芳基)可以独立地选自苯基、4-甲基苯基、4-乙基苯基、二甲基苯基、乙烯基苯基、蒽基、萘基、或联苯基等。
在本发明中,所述卤素独立地选自氟、氯、溴和碘。
在进一步优选的实施方式中,所述膦-酚后过渡金属配合物选自由以下配合物所组成的组中,
配合物1:式(Ⅱ)所示配合物,其中M为Ni,R11-R15为H,R3为甲基,R4为吡啶(此时,吡啶上的N与金属Ni形成配位);
配合物2:式(Ⅱ)所示配合物,其中M为Ni,R11-R15为F,R3为甲基,R4为吡啶;
配合物3:式(Ⅱ)所示配合物,其中M为Ni,R11为苯基,R12-R15为H,R3为甲基,R4为吡啶;
配合物4:式(Ⅱ)所示配合物,其中M为Ni,R11为甲基,R12-R15为H,R3为甲基,R4为吡啶;
配合物5:式(Ⅱ)所示配合物,其中M为Ni,R13为甲基,R11、R12、R14和R15为H,R3为甲基,R4为吡啶;
配合物6:式(Ⅱ)所示配合物,其中M为Ni,R13为-CF3,R11、R12、R14和R15为H,R3为甲基,R4为吡啶;
配合物7:式(Ⅱ)所示配合物,其中M为Ni,R13为F,R11、R12、R14和R15为H,R3为甲基,R4为吡啶;
配合物8:式(Ⅱ)所示配合物,其中M为Ni,R13为Cl,R11、R12、R14和R15为H,R3为甲基,R4为吡啶;
配合物9:式(Ⅱ)所示配合物,其中M为Ni,R11、R13和R15为甲基,R12和R14为H,R3为甲基,R4为吡啶;
配合物10:式(Ⅱ)所示配合物,其中M为Ni,R13为甲氧基,R11、R12、R14和R15为H,R3为甲基,R4为吡啶;
配合物11:式(Ⅱ)所示配合物,其中M为Ni,R12和R14为甲基,R11、R13和R15为H,R3为甲基,R4为吡啶;
配合物12:式(Ⅱ)所示配合物,其中M为Ni,R12和R14为甲基,R13为甲氧基,R11和R15为H,R3为甲基,R4为吡啶;
配合物13:式(Ⅱ)所示配合物,其中M为Ni,R12和R14为-CF3,R11、R13和R15为H,R3为甲基,R4为吡啶;
配合物14:式(Ⅱ)所示配合物,其中M为Ni,R11和R15为甲氧基,R12-R14为H,R3为甲基,R4为吡啶;
配合物15:式(Ⅱ)所示配合物,其中M为Ni,R11为甲氧基,R12-R15为H,R3为甲基,R4为吡啶;
配合物16:式(Ⅱ)所示配合物,其中M为Ni,R11-R15为H,R3为苯基,R4为PMe3
配合物17:式(Ⅱ)所示配合物,其中M为Ni,R11和R15为F,R3为苯基,R4为PMe3
配合物18:式(Ⅱ)所示配合物,其中M为Ni,R11为苯基,R12-R15为H,R3为苯基,R4为PMe3
配合物19:式(Ⅱ)所示配合物,其中M为Ni,R11为甲基,R12-R15为H,R3为苯基, R4为PMe3
配合物20:式(Ⅱ)所示配合物,其中M为Ni,R13为甲基,R11、R12、R14和R15为H,R3为苯基,R4为PMe3
配合物21:式(Ⅱ)所示配合物,其中M为Ni,R13为-CF3,R11、R12、R14和R15为H,R3为苯基,R4为PMe3
配合物22:式(Ⅱ)所示配合物,其中M为Ni,R13为F,R11、R12、R14和R15为H,R3为苯基,R4为PMe3
配合物23:式(Ⅱ)所示配合物,其中M为Ni,R13为Cl,R11、R12、R14和R15为H,R3为苯基,R4为PMe3
配合物24:式(Ⅱ)所示配合物,其中M为Ni,R11、R13和R15为甲基,R12和R14为H,R3为苯基,R4为PMe3
配合物25:式(Ⅱ)所示配合物,其中M为Ni,R13为甲氧基,R11、R12、R14和R15为H,R3为苯基,R4为PMe3
配合物26:式(Ⅱ)所示配合物,其中M为Ni,R12和R14为甲基,R11、R13和R15为H,R3为苯基,R4为PMe3
配合物27:式(Ⅱ)所示配合物,其中M为Ni,R12和R14为甲基,R13为甲氧基,R11和R15为H,R3为苯基,R4为PMe3
配合物28:式(Ⅱ)所示配合物,其中M为Ni,R12和R14为-CF3,R11、R13和R15为H,R3为苯基,R4为PMe3
配合物29:式(Ⅱ)所示配合物,其中M为Ni,R11和R15为甲氧基,R12-R14为H,R3为苯基,R4为PMe3
配合物30:式(Ⅱ)所示配合物,其中M为Ni,R11为甲氧基,R12-R15为H,R3为苯基,R4为PMe3
配合物31:式(Ⅱ)所示配合物,其中M为Ni,R11-R15为H,R3、R4相互连接形成环辛烯;
配合物32:式(Ⅱ)所示配合物,其中M为Ni,R11为苯基,R12-R15为H,R3、R4相互连接形成环辛烯;
配合物33:式(Ⅱ)所示配合物,其中M为Ni,R11为苯基,R12-R15为H,R3、R4相互连接形成环辛烯;
配合物34:式(Ⅱ)所示配合物,其中M为Ni,R13为甲氧基,R11、R12、R14和R15为H,R3、R4相互连接形成环辛烯;
配合物35:式(Ⅱ)所示配合物,其中M为Ni,R12和R14为-CF3,R11、R13和R15为H,R3、R4相互连接形成环辛烯;
配合物36:式(Ⅱ)所示配合物,其中M为Ni,R11和R15为甲氧基,R12-R14为H,R3、R4相互连接形成环辛烯;
配合物37:式(Ⅱ)所示配合物,其中M为Ni,R11为甲氧基,R12-R15为H,R3、R4相互连接形成环辛烯;
配合物38:式(Ⅱ)所示配合物,其中M为Ni,R11-R15为H,R3为Cl,R4为四氢呋喃(此时,四氢呋喃上的O与金属Ni形成配位);
配合物39:式(Ⅱ)所示配合物,其中M为Ni,R11-R15为F,R3为Cl,R4为四氢呋喃;
配合物40:式(Ⅱ)所示配合物,其中M为Ni,R11为苯基,R12-R15为H,R3为Cl,R4为四氢呋喃;
配合物41:式(Ⅱ)所示配合物,其中M为Ni,R11为甲基,R12-R15为H,R3为Cl,R4为四氢呋喃;
配合物42:式(Ⅱ)所示配合物,其中M为Ni,R13为甲基,R11、R12、R14和R15为H,R3为Cl,R4为四氢呋喃;
配合物43:式(Ⅱ)所示配合物,其中M为Ni,R13为-CF3,R11、R12、R14和R15为H,R3为Cl,R4为四氢呋喃;
配合物44:式(Ⅱ)所示配合物,其中M为Ni,R13为F,R11、R12、R14和R15为H,R3为Cl,R4为四氢呋喃;
配合物45:式(Ⅱ)所示配合物,其中M为Ni,R13为Cl,R11、R12、R14和R15为H,R3为Cl,R4为四氢呋喃;
配合物46:式(Ⅱ)所示配合物,其中M为Ni,R11、R13和R15为甲基,R12和R14为H,R3为Cl,R4为四氢呋喃;
配合物47:式(Ⅱ)所示配合物,其中M为Ni,R13为甲氧基,R11、R12、R14和R15为H,R3为Cl,R4为四氢呋喃;
配合物48:式(Ⅱ)所示配合物,其中M为Ni,R12和R14为甲基,R11、R13和R15为H,R3为Cl,R4为四氢呋喃;
配合物49:式(Ⅱ)所示配合物,其中M为Ni,R12和R14为甲基,R13为甲氧基,R11和R15为H,R3为Cl,R4为四氢呋喃;
配合物50:式(Ⅱ)所示配合物,其中M为Ni,R12和R14为-CF3,R11、R13和R15为H,R3为Cl,R4为四氢呋喃;
配合物51:式(Ⅱ)所示配合物,其中M为Ni,R11和R15为甲氧基,R12-R14为H,R3为Cl,R4为四氢呋喃;
配合物52:式(Ⅱ)所示配合物,其中M为Ni,R11为甲氧基,R12-R15为H,R3为Cl,R4为四氢呋喃;
配合物53:式(Ⅱ)所示配合物,其中M为Ni,R11-R15为H,R3为Br,R4为四氢呋喃;
配合物54:式(Ⅱ)所示配合物,其中M为Ni,R11-R15为F,R3为Br,R4为四氢呋喃;
配合物55:式(Ⅱ)所示配合物,其中M为Ni,R11为苯基,R12-R15为H,R3为Br,R4为四氢呋喃;
配合物56:式(Ⅱ)所示配合物,其中M为Ni,R11为甲基,R12-R15为H,R3为Br,R4为四氢呋喃;
配合物57:式(Ⅱ)所示配合物,其中M为Ni,R13为甲基,R11、R12、R14和R15为H,R3为Br,R4为四氢呋喃;
配合物58:式(Ⅱ)所示配合物,其中M为Ni,R13为-CF3,R11、R12、R14和R15为H,R3为Br,R4为四氢呋喃;
配合物59:式(Ⅱ)所示配合物,其中M为Ni,R13为F,R11、R12、R14和R15为H,R3为Br,R4为四氢呋喃;
配合物60:式(Ⅱ)所示配合物,其中M为Ni,R13为Cl,R11、R12、R14和R15为H,R3为Br,R4为四氢呋喃;
配合物61:式(Ⅱ)所示配合物,其中M为Ni,R11、R13和R15为甲基,R12和R14为H,R3为Br,R4为四氢呋喃;
配合物62:式(Ⅱ)所示配合物,其中M为Ni,R13为甲氧基,R11、R12、R14和R15为H,R3为Br,R4为四氢呋喃;
配合物63:式(Ⅱ)所示配合物,其中M为Ni,R12和R14为甲基,R11、R13和R15为H,R3为Br,R4为四氢呋喃;
配合物64:式(Ⅱ)所示配合物,其中M为Ni,R12和R14为甲基,R13为甲氧基,R11和R15为H,R3为Br,R4为四氢呋喃;
配合物65:式(Ⅱ)所示配合物,其中M为Ni,R12和R14为-CF3,R11、R13和R15为H,R3为Br,R4为四氢呋喃;
配合物66:式(Ⅱ)所示配合物,其中M为Ni,R11和R15为甲氧基,R12-R14为H,R3为Br,R4为四氢呋喃;
配合物67:式(Ⅱ)所示配合物,其中M为Ni,R11为甲氧基,R12-R15为H,R3为Br, R4为四氢呋喃;
配合物68:式(Ⅱ)所示配合物,其中M为Pd,R11-R15为H,R3为甲基,R4为吡啶;
配合物69:式(Ⅱ)所示配合物,其中M为Pd,R11-R15为F,R3为甲基,R4为吡啶;
配合物70:式(Ⅱ)所示配合物,其中M为Pd,R11为苯基,R12-R15为H,R3为甲基,R4为吡啶;
配合物71:式(Ⅱ)所示配合物,其中M为Pd,R11为苯基,R12-R15为H,R3为甲基,R4为吡啶;
配合物72:式(Ⅱ)所示配合物,其中M为Pd,R11为甲基,R12-R15为H,R3为甲基,R4为吡啶;
配合物73:式(Ⅱ)所示配合物,其中M为Pd,R13为甲基,R11、R12、R14和R15为H,R3为甲基,R4为吡啶;
配合物74:式(Ⅱ)所示配合物,其中M为Pd,R13为-CF3,R11、R12、R14和R15为H,R3为甲基,R4为吡啶;
配合物75:式(Ⅱ)所示配合物,其中M为Pd,R13为F,R11、R12、R14和R15为H,R3为甲基,R4为吡啶;
配合物76:式(Ⅱ)所示配合物,其中M为Pd,R13为Cl,R11、R12、R14和R15为H,R3为甲基,R4为吡啶;
配合物77:式(Ⅱ)所示配合物,其中M为Pd,R11、R13和R15为甲基,R12和R14为H,R3为甲基,R4为吡啶;
配合物78:式(Ⅱ)所示配合物,其中M为Pd,R13为甲氧基,R11、R12、R14和R15为H,R3为甲基,R4为吡啶;
配合物79:式(Ⅱ)所示配合物,其中M为Pd,R12和R14为甲基,R11、R13和R15为H,R3为甲基,R4为吡啶;
配合物80:式(Ⅱ)所示配合物,其中M为Pd,R12和R14为甲基,R13为甲氧基,R11和R15为H,R3为甲基,R4为吡啶;
配合物81:式(Ⅱ)所示配合物,其中M为Pd,R12和R14为-CF3,R11、R13和R15为H,R3为甲基,R4为吡啶;
配合物82:式(Ⅱ)所示配合物,其中M为Pd,R11和R15为甲氧基,R12-R14为H,R3为甲基,R4为吡啶;
配合物83:式(Ⅱ)所示配合物,其中M为Pd,R11为甲氧基,R12-R15为H,R3为甲基,R4为吡啶;
配合物84:式(Ⅱ)所示配合物,其中M为Pd,R11-R15为H,R3为甲基,R4为Cl;
配合物85:式(Ⅱ)所示配合物,其中M为Pd,R11为苯基,R12-R15为H,R3为甲基,R4为Cl;
配合物86:式(Ⅱ)所示配合物,其中M为Pd,R13为甲氧基,R11、R12、R14和R15为H,R3为甲基,R4为Cl;
配合物87:式(Ⅱ)所示配合物,其中M为Pd,R12和R14为-CF3,R11、R13和R15为H,R3为甲基,R4为Cl;
配合物88:式(Ⅱ)所示配合物,其中M为Pd,R11和R15为甲氧基,R12-R14为H,R3为甲基,R4为Cl;
配合物89:式(Ⅱ)所示配合物,其中M为Pd,R11为甲氧基,R12-R15为H,R3为甲基,R4为Cl。
上述膦-酚后过渡金属配合物的方法可以包括:
(1)将式(III)所示的化合物与式(IV)所示的化合物进行反应,生成配体;
(2)将所述配体与M金属化合物进行反应;
其中,M金属选自ⅤIII族金属,优选为镍和/或钯;R1的定义与前文描述的相同。
在本发明所述的方法中,所述M金属化合物可以选自二甲基二吡啶镍(Py2NiMe2)、双(1,5-环辛二烯)镍(Ni(COD)2)、二氯四吡啶镍(Ni2Cl2Py4)、乙二醇二甲醚溴化镍((DME)NiBr2)、乙二醇二甲醚氯化镍((DME)NiCl2)、二氯二(三甲基膦)合镍(NiCl2(PMe3)2)、二(吡啶)二[(三甲硅基)甲基]镍(Ni(Py)2(CH2SiMe3)2)、氯(苯基)(N,N,N',N'-四甲基-1,2-乙二胺)镍(NiArBr(TMEDA))、二苄基二吡啶镍(Ni(CH2Ph)2Py2)、苯基(三甲基膦)溴化镍(NiPhBr(PMe3)2、苯基(三乙基膦)氯化镍(NiPhCl(PEt3)2)、二苯基二(三甲基膦)合镍(NiPh2(PMe3)2)、二氯二(三甲基膦)合镍(NiCl2(PMe3)2)、二甲基二吡啶合钯(Pd(Me)2Py2)、二氯二吡啶钯(PdCl2Py2)、二(吡啶)二[(三甲硅基)甲基]钯(Pd(Py)2(CH2SiMe3)2)、二苄基二吡啶钯(Pd(CH2Ph)2Py2)和甲基-1,5-环辛二烯-氯化钯(Pd(COD)ClMe)中的至少一种。
在本发明所述的方法中,步骤(2)的反应在反应溶剂的存在下进行。在具体的实施 方式中,所述反应溶剂可以选自甲苯和四氢呋喃。在优选情况下,所述反应溶剂为四氢呋喃。
在较优选的实施方式中,步骤(1)和步骤(2)的反应过程如以下反应式所示。
其中,M、R3、R4、R11-R15的定义与前文描述的相同。
在一种具体实施方式中,步骤(1)的制备过程包括:在保护气体(如氮气)氛围中,将式(III)所示的化合物溶解于无水乙醚中,室温下加入拔氢剂(如正丁基锂),室温下搅拌,添加四氢呋喃,将得到的含有沉淀物的黑色溶液进一步搅拌;接着加入式(V)所示的化合物,室温下搅拌,添加NH4Cl水溶液淬灭;然后用乙酸乙酯萃取有机相,将得到的有机相用无水硫酸钠干燥,用二氯甲烷/己烷重结晶,得到黄色晶体化合物;之后加入甲醇、浓盐酸,回流反应,反应完成后去除有机溶剂,将产物溶于乙酸乙酯,加入NaHCO3水溶液中和,萃取有机相,接着依次进行干燥、过滤、浓缩、柱层析,得到配体。
在一种具体实施方式中,步骤(2)的制备过程包括:在保护气体(如氮气)氛围中,将步骤(1)得到的配体和所述M金属化合物分别溶解于有机溶剂(如甲苯、四氢呋喃等),之后将配体溶液与M金属化合物的溶液搅拌混合并在室温下反应,过滤,将滤液浓缩,加入庚烷重结晶,得到本发明所述的膦-酚后过渡金属配合物。
本发明还提供了上述膦-酚后过渡金属配合物在烯烃聚合中的应用。优选地,所述烯烃包括乙烯和含极性基团的ɑ-烯烃。
本发明所述的膦-酚后过渡金属配合物可以作为催化剂用于烯烃的均聚合或共聚合反应,特别适用于乙烯均聚合或乙烯与其它α-烯烃以及带有羟基、羧基、酯基等极性官能团的烯烃的共聚合反应,其中α-烯烃独立地选自丙烯、丁烯、戊烯、己烯、辛烯和4-甲基-1-戊烯中的至少一种。带有极性官能团的烯烃是含有一个或多个羟基、羧基、酯基的乙烯基单体,同一分子乙烯基单体中可以含有多个不同的极性基团。
在本发明中,α-烯烃聚合物的制备方法的另一实施方式是(a)α-烯烃和(b)(甲基) 丙烯酸酯单体、乙烯基单体或烯丙基单体在上述膦-酚后过渡金属配合物的存在下进行共聚合反应。本发明中的(甲基)丙烯酸酯单体由通式CH2=C(R31)CO2(R32)表示,其中,R31可以为H或C1-C10烃基,其可具有支链、环和/或不饱和键;R32可以为C1-C30烃基,其可具有支链、环和/或不饱和键,并且R32可在其中任何位置含有杂原子。当R31的碳原子数是11以上时,倾向于较少显示聚合活性。因此,R31为H或C1-C10烃基。优选情况下,R31为H或C1-C5烃基。更优选地,R31为H或甲基。
类似地,当R32的碳原子数大于30时,倾向于较少显示聚合活性。因此,R32的碳原子数为1-30,优选为1-12,更优选为1-8。
此外,作为R32中任选含有的杂原子,可以选自氧、硫、硒、磷、氮、硅、氟、硼等。这些杂原子之中,氧、硅和氟是优选的,并且氧是更优选的。另外,不含杂原子的R32也是优选的。
进一步优选地,所述(甲基)丙烯酸酯单体的具体实例包括但不限于:(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸正丙酯、(甲基)丙烯酸异丙酯、(甲基)丙烯酸正丁酯、(甲基)丙烯酸异丁酯、(甲基)丙烯酸叔丁酯、(甲基)丙烯酸戊酯、(甲基)丙烯酸己酯、(甲基)丙烯酸环己酯、(甲基)丙烯酸辛酯、(甲基)丙烯酸2-乙基己酯、(甲基)丙烯酸壬酯、(甲基)丙烯酸癸酯、(甲基)丙烯酸十二烷基酯、(甲基)丙烯酸苯酯、(甲基)丙烯酸甲苯酰酯、(甲基)丙烯酸苄基酯、(甲基)丙烯酸羟乙酯、(甲基)丙烯酸二甲基氨基乙酯、(甲基)丙烯酸二乙基氨基乙酯、(甲基)丙烯酸-2-氨基乙酯、(甲基)丙烯酸2-甲氧基乙酯、(甲基)丙烯酸-3-甲氧基丙酯、(甲基)丙烯酸缩水甘油基酯、(甲基)丙烯酸环氧乙烷酯、(甲基)丙烯酸三氟甲基酯、(甲基)丙烯酸2-三氟甲基乙基酯、(甲基)丙烯酸全氟乙基酯、(甲基)丙烯酰胺、(甲基)丙烯酰基二甲基酰胺、(甲基)丙烯酸2-羟基丁酯、(甲基)丙烯酸4-羟基丁酯等。上述(甲基)丙烯酸酯单体可以单独使用,也可以多种组合使用。
在本发明中,所述烯烃为C2-C16烯烃。优选地,所述烯烃选自乙烯以及具有3-16个碳原子的α-烯烃或环烯烃。所述环烯烃包括但不限于:环丁烯、环戊烯、环己烯、环庚烯、环辛烯、降冰片烯等。
本发明还提供了一种烯烃聚合方法,包括在上述膦-酚后过渡金属配合物的存在下进行烯烃聚合反应。所述烯烃聚合反应可以为均聚或共聚。
所述烯烃聚合反应的温度可以为-78℃~200℃,优选为-20℃~150℃,压力可以为0.01~10MPa,优选0.01~5MPa。在这里,“压力”是指聚合体系中的乙烯压力,用绝对压力表示。
在本发明所述的烯烃聚合方法中,所述烯烃为C2-C16烯烃。
根据本发明的一种实施方式,所述烯烃包括C2-C16的α-烯烃或环烯烃。
根据本发明的一种实施方式,所述烯烃包括乙烯。
根据本发明的一种实施方式,所述烯烃包括乙烯和含有极性基团的ɑ-烯烃或环烯烃。
根据本发明的一种实施方式,所述烯烃聚合反应由烯烃单体在溶剂内进行,聚合用溶剂选自烷烃、芳香烃和卤代烃中的一种或多种。具体地,所述聚合用溶剂选自己烷、戊烷、庚烷、苯、甲苯、二氯甲烷、氯仿、氯苯和二氯乙烷中的一种或多种,优选为己烷、甲苯和庚烷中的一种或多种。
在本发明中,烷基是指直链烷基、支链烷基或环烷基,包括但不限于:甲基、乙基、正丙基、异丙基、正丁基、仲丁基、异丁基、叔丁基、正戊基、异戊基、叔戊基、新戊基、正己基、正庚基、正辛基、正癸基、环丙基、环戊基、环己基、4-甲基环己基、4-乙基环己基、4-正丙基环己基和4-正丁基环己基。
在本发明中,烯基是指直链烯基、支链烯基或环烯基,包括但不限于:乙烯基、烯丙基、丁烯基。
在本发明中,芳烷基的实例包括但不限于:苯基甲基、苯基乙基、苯基正丙基、苯基异丙基、苯基正丁基和苯基叔丁基。
在本发明中,烷芳基的实例包括但不限于:甲苯基、乙苯基、正丙基苯基、异丙基苯基、正丁基苯基和叔丁基苯基。
下面通过实施例来进一步说明本发明所述的膦-酚后过渡金属配合物及其制备方法和应用。实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体操作过程,但本发明的保护范围不限于下述实施例。
以下实施例中的实验方法,如无特殊说明,均为本领域常规方法。下述实施例中所用的实验材料,如无特殊说明,均可商购得到。
以下实施例和对比例中所使用的分析表征仪器和测试方法如下:
(1)核磁共振仪:Bruker DMX 300(300MHz),以四甲基硅烷(TMS)为内标。
(2)聚合物的分子量及分子量分布PDI(PDI=Mw/Mn):采用PL-GPC220色谱仪,以三氯苯为溶剂,在150℃下测定(其中,标样:PS,流速:1.0mL/min,色谱柱:3×PLgel 10um M1×ED-B,300×7.5nm)。
(3)活性测量方法:聚合物经盐酸乙醇溶液洗涤,真空干燥,称得聚合物的重量。聚合活性的计算方法为:聚合物重量(g)/金属(mol)×60/聚合时间(min)。
(4)聚合物的共聚单体含量分析:采用1H NMR、13C NMR谱测定,在400MHz Bruker Avance 400核磁共振波谱仪上,利用10mm PASEX 13探针,在120℃下以1,2,4-三氯苯溶 解聚合物样品,分析测试得到。
实施例1
配合物1:式(Ⅱ)所示配合物,其中M为Ni,R11-R15为H,R3为甲基,R4为吡啶。
在氮气氛围中,将式(III)所示化合物(11.23g,30mmol,S型)溶解于无水乙醚(150mL)中,室温下滴加正丁基锂溶液(2.7M,33.3mL,90mmol),室温下搅拌4h,添加四氢呋喃(150mL),将得到的含有沉淀物的黑色溶液进一步搅拌1h。在0℃下添加氯化二苯基膦(PPh2Cl)(90mmol,16.7mL)。室温下搅拌1h后,添加NH4Cl水溶液(5mL)淬灭。用乙酸乙酯萃取有机相,将得到的有机相用无水硫酸钠进行干燥,用二氯甲烷/己烷重结晶,得到黄色晶体化合物(15.54g)。加入甲醇(100mL)、5mL浓盐酸(37wt%),回流反应16h,用薄层色谱法(TLC)跟踪反应完成后,去除有机溶剂,将产物溶于乙酸乙酯,加入NaHCO3水溶液中和,萃取有机相,用无水MgSO4干燥,过滤,浓缩,柱层析(二氯甲烷为溶剂)得到配体L1,产率为67%。1H NMR(400MHz,CDCl3):δ=5.41(s,2H),7.13-7.15(m,2H),7.24-7.29(m,4H),7.38-7.45(m,22H),7.62-7.64(m,2H).31P NMR(162MHz,CDCl3):δ=-17.19(s)。高分辨质谱测试:理论计算值为:654.19;测量值为:655.20。
在氮气氛围中,将配体L1(0.654g,1mmol)和金属镍源(Py2NiMe2)(0.49g,2mmol)分别溶于甲苯(10mL)中。之后将配体溶液逐滴滴入金属镍源溶液中,剧烈搅拌,室温下反应10h,过滤得到棕黄色溶液,浓缩溶剂,-30℃冷冻结晶,得到萘酚-膦中性镍配合物1,产率为76%。1H NMR(400MHz,CDCl3):δ:7.92(m,8H),7.58-7.63(m,2H),7.32-7.50(m,22H),7.22-7.34(m,4H),7.10-7.15(m,2H),6.60(m,2H),-0.41(d,6H)。31P NMR(162MHz,CDCl3)δ:30.98。元素分析测试C56H46N2Ni2O2P2:理论计算值为:C,70.19;H,4.84;N,2.92;测试值为:C,69.94;H,4.92;N,2.84。
将装有机械搅拌的1L不锈钢聚合釜在130℃连续干燥6h,趁热抽真空并用N2气置换3次。向聚合釜注入500mL的甲苯,加入9.6mg(10μmol)配合物1。在50℃下,保持10atm的乙烯压力,剧烈搅拌反应20min。用10wt%盐酸酸化的乙醇溶液中和,得到聚乙烯,聚合物干燥称重测试聚合活性。所得聚合物的重均分子量、分子量分布和聚合活性的测试数据如表1所示。
实施例2
配合物1:式(Ⅱ)所示配合物,其中M为Ni,R11-R15为H,R3为甲基,R4为吡啶。
将装有机械搅拌的1L不锈钢聚合釜在130℃连续干燥6h,趁热抽真空并用N2气置换 3次。向聚合釜注入500mL的己烷,加入9.6mg(10μmol)配合物1。在70℃下,保持10atm的乙烯压力,剧烈搅拌反应30min。用10wt%盐酸酸化的乙醇溶液中和,得到聚乙烯,聚合物干燥称重测试聚合活性。所得聚合物的重均分子量、分子量分布和聚合活性的测试数据如表1所示。
实施例3
配合物1:式(Ⅱ)所示配合物,其中M为Ni,R11-R15为H,R3为甲基,R4为吡啶。
将装有机械搅拌的1L不锈钢聚合釜在130℃连续干燥6h,趁热抽真空并用N2气置换3次。向聚合釜注入500mL的己烷,加入9.6mg(10μmol)配合物1。在100℃下,保持14atm的乙烯压力,剧烈搅拌反应30min。用10wt%盐酸酸化的乙醇溶液中和,得到聚乙烯,聚合物干燥称重测试聚合活性。所得聚合物的重均分子量、分子量分布和聚合活性的测试数据如表1所示。
实施例4
配合物1:式(Ⅱ)所示配合物,其中M为Ni,R11-R15为H,R3为甲基,R4为吡啶。
将装有机械搅拌的100mL不锈钢聚合釜在130℃连续干燥6h,趁热抽真空并用N2气置换3次。向聚合釜注入50mL的甲苯,0.9mL(10mmol)丙烯酸甲酯,加入9.6mg(10μmol)配合物1。在70℃下,保持15atm的乙烯压力,剧烈搅拌反应60min。用10wt%盐酸酸化的乙醇溶液中和,得到聚合物,聚合物干燥称重测试聚合活性。所得聚合物的重均分子量、分子量分布、聚合活性和共聚单体含量的测试数据如表1所示。
实施例5
配合物1:式(Ⅱ)所示配合物,其中M为Ni,R11-R15为H,R3为甲基,R4为吡啶。
将装有机械搅拌的100mL不锈钢聚合釜在130℃连续干燥6h,趁热抽真空并用N2气置换3次。向聚合釜注入50mL的甲苯,1.4mL(10mmol)丙烯酸丁酯,加入9.6mg(10μmol)配合物1。在70℃下,保持15atm的乙烯压力,剧烈搅拌反应60min。用10wt%盐酸酸化的乙醇溶液中和,得到聚合物,聚合物干燥称重测试聚合活性。所得聚合物的重均分子量、分子量分布、聚合活性和共聚单体含量的测试数据如表1所示。
实施例6
配合物16:式(Ⅱ)所示配合物,其中M为Ni,R11-R15为H,R3为苯基,R4为PMe3
按照实施例1中的方法制备配体L1
在氮气氛围中,将配体L1(0.654g,1mmol)、PMe3(1mol/L,2mL)溶于20mL甲苯,在0℃下滴入Ni(COD)2(0.55g,2mmol)的30mL甲苯溶液。常温下反应16h,50℃加热2h,蒸干溶剂。加入5mL甲苯,过滤,加入100mL庚烷,冷冻重结晶,得到配合物16,产率为72%。元素分析测试C62H58Ni2O2P4:理论计算值为:C,69.18;H,5.43;测试值为:C,79.02;H,5.71。
将装有机械搅拌的1L不锈钢聚合釜在130℃连续干燥6h,趁热抽真空并用N2气置换3次。向聚合釜注入500mL的甲苯,加入10.8mg(10μmol)配合物16。在50℃下,保持10atm的乙烯压力,剧烈搅拌反应20min,所得产物为C4-C24的齐聚物。
实施例7
配合物53:式(II)所示配合物,其中M为Ni,R11-R15为H,R3为Br,R4为四氢呋喃。
按照实施例1中的方法制备配体L1
在氮气氛围中,将配体L1(0.654g,1mmol)溶解于四氢呋喃中,加入过量NaH(0.072g,3mmol),室温下搅拌10h,过滤除去NaH。滴入(DME)NiBr2(0.617g,2mmol)四氢呋喃溶液,常温下反应过夜,抽干溶剂,加入二氯甲烷(40mL)溶解,过滤去除滤饼,滤液浓缩,加入庚烷重结晶,得到配合物53,产率为79%。元素分析测试C52H46Br2Ni2O4P2:理论计算值为:C,58.15;H,4.32;测试值为:C,58.01;H,4.53。
将装有机械搅拌的1L不锈钢聚合釜在130℃连续干燥6h,趁热抽真空并用N2气置换3次。向聚合釜注入500mL的甲苯,加入10.7mg(10μmol)配合物53。在30℃下,保持10atm的乙烯压力,剧烈搅拌反应20min。用10wt%盐酸酸化的乙醇溶液中和,得到聚乙烯,聚合物干燥称重测试聚合活性。所得聚合物的重均分子量、分子量分布和聚合活性的测试数据如表1所示。
实施例8
配合物53:式(Ⅱ)所示配合物,其中M为Ni,R11-R15为H,R3为Br,R4为四氢呋喃。
将装有机械搅拌的1L不锈钢聚合釜在130℃连续干燥6h,趁热抽真空并用N2气置换3次。向聚合釜注入500mL的己烷,加入10.7mg(10μmol)配合物53。在80℃下,保持10atm的乙烯压力,剧烈搅拌反应30min。用10wt%盐酸酸化的乙醇溶液中和,得到聚乙烯,聚 合物干燥称重测试聚合活性。所得聚合物的重均分子量、分子量分布和聚合活性的测试数据如表1所示。
实施例9
配合物53:式(Ⅱ)所示配合物,其中M为Ni,R11-R15为H,R3为Br,R4为四氢呋喃。
将装有机械搅拌的100mL不锈钢聚合釜在130℃连续干燥6h,趁热抽真空并用N2气置换3次。向聚合釜注入50mL的甲苯,0.9mL(0.01mol)丙烯酸甲酯,加入10.7mg(10μmol)配合物53。在70℃下,保持15atm的乙烯压力,剧烈搅拌反应60min。用10wt%盐酸酸化的乙醇溶液中和,得到聚合物,聚合物干燥称重测试聚合活性。所得聚合物的重均分子量、分子量分布、聚合活性和共聚单体含量的测试数据如表1所示。
实施例10
配合物65:式(Ⅱ)所示配合物,其中M为Ni,R12和R14为-CF3,R11、R13和R15为H,R3为Br,R4为四氢呋喃。
在氮气氛围中,将式(III)所示化合物(3.74g,10mmol,R型)溶解于无水乙醚(120mL)中,室温下滴加正丁基锂溶液(2.7M,11.1mL,30mmol),室温下搅拌4h,添加四氢呋喃(120mL),将得到的含有沉淀物的黑色溶液进一步搅拌1h。在0℃下添加双(3,5-二(三氟甲基)苯基)氯膦(30mmol,14.78g)。室温下搅拌1h后,添加NH4Cl水溶液(5mL)淬灭。用乙酸乙酯萃取有机相,将得到的有机相用无水硫酸钠进行干燥,用二氯甲烷/己烷重结晶,得到白色晶体化合物。加入甲醇(100mL)、5mL浓盐酸(37wt%),回流反应16h,用TLC跟踪反应完成后,去除有机溶剂,将产物溶于乙酸乙酯,加入NaHCO3水溶液中和,萃取有机相,用无水MgSO4干燥,过滤,浓缩,柱层析(二氯甲烷为溶剂)得到配体L2 4.78g,产率为40%。1H NMR(400MHz,DMSO)δ:9.10(s,2H),8.17(s,2H),8.13(s,2H),8.08(dd,J=13.3,6.5Hz,8H),7.81(d,J=7.6Hz,2H),7.56(d,J=8.4Hz,2H),7.27(dd,4H),6.90(d,J=8.2Hz,2H)。高分辨质谱测试:理论计算值为:1198.09;测试值为:1198.95。31P NMR(162MHz,DMSO):δ=-8.37(s)。1H NMR(400MHz,CDCl3)δ5.14(s,2H),7.08-7.11(m,2H),7.41-7.46(m,4H),7.63(d,2H),7.78-7.81(m,2H),7.84(d,4H),7.86(d,4H),7.91(s,2H),7.94(s,2H)。
在氮气氛围中,将配体L2(1.20g,1mmol)溶解于四氢呋喃中,加入过量NaH(0.072g,3mmol),室温下搅拌10h,过滤除去NaH。滴入(DME)NiBr2(0.617g,2mmol)四氢呋喃溶 液,常温下反应过夜,抽干溶剂,加入二氯甲烷(40mL)溶解,过滤去除滤饼,滤液浓缩,加入庚烷重结晶,得到配合物65,产率为76%。元素分析测试C60H38Br2F24Ni2O4P2:理论计算值为:C,44.54;H,2.37;测试值为:C,44.31;H,2.51。
将装有机械搅拌的1L不锈钢聚合釜在130℃连续干燥6h,趁热抽真空并用N2气置换3次。向聚合釜注入500mL的甲苯,加入8.1mg(5μmol)配合物65。在30℃下,保持10atm的乙烯压力,剧烈搅拌反应20min。用10wt%盐酸酸化的乙醇溶液中和,得到聚乙烯,聚合物干燥称重测试聚合活性。所得聚合物的重均分子量、分子量分布和聚合活性的测试数据如表1所示。
实施例11
配合物65:式(Ⅱ)所示配合物,其中M为Ni,R12和R14为-CF3,R11、R13和R15为H,R3为Br,R4为四氢呋喃。
将装有机械搅拌的1L不锈钢聚合釜在130℃连续干燥6h,趁热抽真空并用N2气置换3次。向聚合釜注入500mL的己烷,加入8.1mg(5μmol)配合物65。在80℃下,保持10atm的乙烯压力,剧烈搅拌反应30min。用10wt%盐酸酸化的乙醇溶液中和,得到聚乙烯,聚合物干燥称重测试聚合活性。所得聚合物的重均分子量、分子量分布和聚合活性的测试数据如表1所示。
实施例12
配合物65:式(Ⅱ)所示配合物,其中M为Ni,R12和R14为-CF3,R11、R13和R15为H,R3为Br,R4为四氢呋喃。
将装有机械搅拌的100mL不锈钢聚合釜在130℃连续干燥6h,趁热抽真空并用N2气置换3次。向聚合釜注入50mL的甲苯,0.9mL(10mmol)丙烯酸甲酯,加入8.1mg(5μmol)配合物65。在50℃下,保持15atm的乙烯压力,剧烈搅拌反应60min。用10wt%盐酸酸化的乙醇溶液中和,得到聚合物,聚合物干燥称重测试聚合活性。所得聚合物的重均分子量、分子量分布、聚合活性和共聚单体含量的测试数据如表1所示。
实施例13
配合物11:式(Ⅱ)所示配合物,其中M为Ni,R12和R14为甲基,R11、R13和R15为H,R3为甲基,R4为吡啶。
其合成步骤同上述实施例1中的配合物1相似,将氯化二苯基膦替换为氯二(3,5-二甲 基苯基)膦。
在氮气氛围中,将式(III)所示化合物(3.74g,10mmol,R型)溶解于无水乙醚(120mL)中,室温下滴加正丁基锂溶液(2.5M,12mL,30mmol),室温下搅拌4h,添加四氢呋喃(120mL),将含有沉淀物的黑色溶液进一步搅拌1h。在0℃下添加氯二(3,5-二甲基苯基)膦(30mmol,8.30g)。室温下搅拌1h后,添加NH4Cl水溶液(5mL)淬灭。用乙酸乙酯萃取有机相,将得到的有机相用无水硫酸钠进行干燥,用二氯甲烷/己烷重结晶,得到白色晶体化合物。加入甲醇(100mL)、5mL浓盐酸(37wt%),回流反应16h,用TLC跟踪反应完成后,去除有机溶剂,将产物溶于乙酸乙酯,加入NaHCO3水溶液中和,萃取有机相,用无水MgSO4干燥,过滤,浓缩,柱层析(二氯甲烷为溶剂)得到配体L3,产率为58%。1H NMR(400MHz,CDCl3)δ:2.28(s,24H),5.43(s,2H),6.96–7.05(m,12H),7.17(m,2H),7.24-7.29(m,4H),7.43(d,2H),7.65(m,2H)。高分辨质谱测试:理论计算值为:766.31;测试值为:767.32。31P NMR(162MHz,CDCl3)δ=-15.4(s)。
在氮气氛围中,将配体L3(0.77g,1mmol)溶解于四氢呋喃中,加入过量NaH(0.072g,3mmol),室温下搅拌10h,过滤除去NaH。滴入(DME)NiBr2(0.617g,2mmol)四氢呋喃溶液,常温下反应过夜,抽干溶剂,加入二氯甲烷(40mL)溶解,过滤去除滤饼,滤液浓缩,加入庚烷重结晶,得到配合物11,产率为76%。元素分析测试C60H62Br2Ni2O4P2:理论计算值为:C,60.75;H,5.27;测试值为:C,60.37;H,5.51。
将装有机械搅拌的1L不锈钢聚合釜在130℃连续干燥6h,趁热抽真空并用N2气置换3次。向聚合釜注入500mL的甲苯,加入11.8mg(10μmol)配合物11。在50℃下,保持10atm的乙烯压力,剧烈搅拌反应20min。用10wt%盐酸酸化的乙醇溶液中和,得到聚乙烯,聚合物干燥称重测试聚合活性。所得聚合物的重均分子量、分子量分布和聚合活性的测试数据如表1所示。
实施例14
配合物68:式(Ⅱ)所示配合物,其中M为Pd,R11-R15为H,R3为甲基,R4为吡啶。
按照实施例1中的方法制备配体L1
在氮气氛围中,将配体L1(0.65g,1mmol)溶于甲苯(20mL)中,滴入金属钯源(TMEDA)PdMe2(0.51g,2mmol)的甲苯(15mL)溶液中。之后将配体溶液逐滴滴入金属钯源溶液中,剧烈搅拌,室温下反应5h,加入0.6mL吡啶,反应过夜,过滤得黑色溶液。真空除去溶剂,得到钯配合物68,产率为84%。1H NMR(400MHz,C6D6)δ:8.92(m,4H),7.79(m,6H,),7.33(m,2H),7.07-7.18(m,22H),6.94-7.00(m,4H),6.81-6.86(m,2H),0.73(d, 6H)。元素分析测试C56H46N2O2P2Pd2:理论计算值为:C,63.83;H,4.40;N,2.66;测试值为:C,63.62;H,4.60;N,2.73。
将装有机械搅拌的100mL玻璃聚合管在130℃连续干燥6h,趁热抽真空并用N2气置换3次。向聚合釜注入5.0mL的甲苯,5.0mL的降冰片烯,加入4.2mg(4μmol)配合物68。加入40μmol B(C6F5)3,60℃下剧烈搅拌反应10min。用10wt%盐酸酸化的乙醇溶液中和,得到聚降冰片烯,聚合物干燥称重测试聚合活性。所得聚合物的重均分子量、分子量分布和聚合活性的测试数据如表1所示。
实施例15
配合物62:式(Ⅱ)所示配合物,其中M为Ni,R13为甲氧基,R11、R12、R14和R15为H,R3为Br,R4为四氢呋喃。
在氮气氛围中,将式(III)所示化合物(3.74g,10mmol,S型)溶解于无水乙醚(120mL)中,室温条件下滴加正丁基锂己烷溶液(2.7M,11.1mL,30mmol),室温下搅拌4h,添加四氢呋喃(120mL),将得到的含有沉淀物的黑色溶液进一步搅拌1h。在0℃下添加二(4-甲氧基)氯化膦(30mmol,8.42g)。室温下搅拌1h后,添加NH4Cl水溶液(5mL)淬灭。用乙酸乙酯萃取有机相,将得到的有机相用无水硫酸钠进行干燥,用二氯甲烷/己烷重结晶,得到白色晶体化合物。加入甲醇(100mL)、5mL浓盐酸(37wt%),回流反应16h,用TLC跟踪反应完成后,去除有机溶剂,将化合物溶于乙酸乙酯,加入NaHCO3水溶液中和,萃取有机相,用无水MgSO4干燥,过滤,浓缩,柱层析(二氯甲烷为溶剂)得到配体L4,产率为56%。元素分析测试C48H40O6P2:理论计算值为:C,74.41;H,5.20;测试值为:C,74.32;H,5.38。
在氮气氛围中,将配体L4(0.77g,1mmol)溶解于四氢呋喃中,加入过量NaH(0.072g,3mmol),室温下搅拌10h,过滤除去NaH。滴入(DME)NiBr2(0.617g,2mmol)四氢呋喃溶液,常温下反应过夜,抽干溶剂,加入二氯甲烷(40mL)溶解,过滤去除滤饼,滤液浓缩,加入庚烷重结晶,得到配合物62,产率为77%。元素分析测试C56H54Br2Ni2O8P2:理论计算值为:C,56.32;H,4.56;测试值为:C,56.31;H,5.11。
将装有机械搅拌的1L不锈钢聚合釜在130℃连续干燥6h,趁热抽真空并用N2气置换3次。向聚合釜注入500mL的甲苯,加入6.0mg(5μmol)配合物62。在30℃下,保持10atm的乙烯压力,剧烈搅拌反应20min。用10wt%盐酸酸化的乙醇溶液中和,得到聚乙烯,聚合物干燥称重测试聚合活性。所得聚合物的重均分子量、分子量分布和聚合活性的测试数据如表1所示。
对比例1
10atm乙烯:将装有机械搅拌的1L不锈钢聚合釜在130℃连续干燥6h,趁热抽真空并用N2气置换3次。向聚合釜注入500mL的己烷,再加入5.0ml甲基铝氧烷(MAO)(1.53mol/L的甲苯溶液),加入10.1mg(20μmol)配合物A(合成过程参考文献Acta Agron.Sin.2012,29,1381;ACS Catalysis 2021,11,5,2902-2911),在70℃下,保持10atm的乙烯压力,剧烈搅拌反应30min。用10wt%盐酸酸化的乙醇溶液中和,得到聚乙烯,聚合物干燥称重测试聚合活性。所得聚合物的重均分子量、分子量分布和聚合活性的测试数据如表1所示。
对比例2
将装有机械搅拌的100mL不锈钢聚合釜在130℃连续干燥6h,趁热抽真空并用N2气置换3次。向聚合釜注入50mL的甲苯,0.9mL(10.0mmol)丙烯酸甲酯,加入10.1mg(10μmol)配合物A。在70℃下,保持15atm的乙烯压力,剧烈搅拌反应60min。用10wt%盐酸酸化的乙醇溶液中和,得到聚合物,聚合物干燥称重测试聚合活性。所得聚合物的重均分子量、分子量分布、聚合活性和共聚单体含量的测试数据如表1所示。
对比例3
将装有机械搅拌的100mL玻璃聚合管在130℃C连续干燥6h,趁热抽真空并用N2气置换3次。向聚合釜注入5.0mL的甲苯,5.0mL的降冰片烯,加入4.3mg(8μmol)配合物B(合成过程参考文献Appl Organometal Chem.2017;e4013)。加入40μmol B(C6F5)3,60℃下剧烈搅拌反应10min。用10wt%盐酸酸化的乙醇溶液中和,得到聚降冰片烯,聚合物干燥称重测试聚合活性。所得聚合物的重均分子量、分子量分布和聚合活性的测试数据如表1所示。
表1
由表1的数据可以看出,使用本发明的金属配合物作为烯烃聚合催化剂,相似聚合条件下,具有更高的均/共聚合活性,所得聚合物的分子量明显提高,分子量分布更窄。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个技术特征以任何其它 的合适方式进行组合,这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。

Claims (11)

  1. 一种膦-酚后过渡金属配合物,其特征在于,其结构式如式(I)所示,
    其中,M选自ⅤIII族金属,R1选自取代或未取代的C6-C20芳基,R3和R4各自独立选自卤素、C1-C10烃基、P(R5)3、NR6R7和OR8R9,或者R3和R4相互连接形成八元环,其中R5选自取代或未取代的C1-C10烷基以及取代或未取代的C6-C10芳基,R6、R7、R8和R9各自独立选自C1-C10烃基,或者R6、R7与N相互连接形成五元环或六元环,或者R8、R9与O相互连接形成五元环或六元环,
    优选地,C6-C20芳基选自苯基、4-甲基苯基、4-乙基苯基、二甲基苯基、乙烯基苯基、蒽基、萘基、或联苯基;
    优选地,对于取代的C6-C20芳基,其取代基选自氢、卤素、羟基、取代或未取代的烷氧基、取代或未取代的C1-C20烃基;优选地,烷氧基为C1-C6烷氧基;
    优选地,对于取代的烷氧基和取代的C1-C20烃基,其取代基选自卤素、羟基、C1-C6烷基、卤代的C1-C6烷基、C1-C6烷氧基和卤代的C1-C6烷氧基;
    优选地,C1-C10烃基选自C1-C8烃基;和/或
    优选地,C1-C20烃基选自C1-C10烷基或C6-C15芳基。
  2. 根据权利要求1所述的膦-酚后过渡金属配合物,其特征在于,其结构式如式(II)所示,
    其中,R11-R15各自独立选自氢、卤素、羟基、取代或未取代的烷氧基、取代或未取代的C1-C20烃基;优选地,对于取代的烷氧基和取代的C1-C20烃基,其取代基选自卤素、羟基、C1-C6烷基、卤代的C1-C6烷基、C1-C6烷氧基和卤代的C1-C6烷氧基。
  3. 根据权利要求1或2所述的膦-酚后过渡金属配合物,其特征在于,M选自镍和钯。
  4. 根据权利要求1-3中任意一项所述的膦-酚后过渡金属配合物,其特征在于,R11-R15各自独立选自氢、卤素、羟基、取代或未取代的烷氧基或取代或未取代的C1-C10烷基以及取代或未取代的C6-C15芳基;
    优选地,R3和R4中的至少一个选自卤素以及C1-C8烃基,或者R3和R4相互连接形成八元环;
    优选地,对于取代的烷氧基、取代的C1-C10烷基以及取代的C6-C15芳基,取代基独立地选自卤素、羟基、C1-C6烷基、卤代的C1-C6烷基、C1-C6烷氧基和卤代的C1-C6烷氧基;
    优选地,所述C1-C6烷基选自甲基、乙基、正丙基、异丙基、正丁基、异丁基、正戊基、异戊基、正己基、异己基和3,3-二甲基丁基;
    优选地,所述C1-C6烷氧基选自甲氧基、乙氧基、正丙氧基、异丙氧基、正丁氧基、异丁氧基、正戊氧基、异戊氧基、正己氧基、异己氧基和3,3-二甲基丁氧基;
    优选地,所述卤素选自氟、氯、溴和碘。
  5. 根据权利要求1-4中任意一项所述的膦-酚后过渡金属配合物,其特征在于,其选自由以下配合物所组成的组中,
    配合物1:式(Ⅱ)所示配合物,其中M为Ni,R11-R15为H,R3为甲基,R4为吡啶;
    配合物2:式(Ⅱ)所示配合物,其中M为Ni,R11-R15为F,R3为甲基,R4为吡啶;
    配合物3:式(Ⅱ)所示配合物,其中M为Ni,R11为苯基,R12-R15为H,R3为甲基,R4为吡啶;
    配合物4:式(Ⅱ)所示配合物,其中M为Ni,R11为甲基,R12-R15为H,R3为甲基,R4为吡啶;
    配合物5:式(Ⅱ)所示配合物,其中M为Ni,R13为甲基,R11、R12、R14和R15为H,R3为甲基,R4为吡啶;
    配合物6:式(Ⅱ)所示配合物,其中M为Ni,R13为-CF3,R11、R12、R14和R15为H,R3为甲基,R4为吡啶;
    配合物7:式(Ⅱ)所示配合物,其中M为Ni,R13为F,R11、R12、R14和R15为H,R3为甲基,R4为吡啶;
    配合物8:式(Ⅱ)所示配合物,其中M为Ni,R13为Cl,R11、R12、R14和R15为H,R3为甲基,R4为吡啶;
    配合物9:式(Ⅱ)所示配合物,其中M为Ni,R11、R13和R15为甲基,R12和R14为H,R3为甲基,R4为吡啶;
    配合物10:式(Ⅱ)所示配合物,其中M为Ni,R13为甲氧基,R11、R12、R14和R15为H,R3为甲基,R4为吡啶;
    配合物11:式(Ⅱ)所示配合物,其中M为Ni,R12和R14为甲基,R11、R13和R15为H,R3为甲基,R4为吡啶;
    配合物12:式(Ⅱ)所示配合物,其中M为Ni,R12和R14为甲基,R13为甲氧基,R11和R15为H,R3为甲基,R4为吡啶;
    配合物13:式(Ⅱ)所示配合物,其中M为Ni,R12和R14为-CF3,R11、R13和R15为H,R3为甲基,R4为吡啶;
    配合物14:式(Ⅱ)所示配合物,其中M为Ni,R11和R15为甲氧基,R12-R14为H,R3为甲基,R4为吡啶;
    配合物15:式(Ⅱ)所示配合物,其中M为Ni,R11为甲氧基,R12-R15为H,R3为甲基,R4为吡啶;
    配合物16:式(Ⅱ)所示配合物,其中M为Ni,R11-R15为H,R3为苯基,R4为PMe3
    配合物17:式(Ⅱ)所示配合物,其中M为Ni,R11和R15为F,R3为苯基,R4为PMe3
    配合物18:式(Ⅱ)所示配合物,其中M为Ni,R11为苯基,R12-R15为H,R3为苯基, R4为PMe3
    配合物19:式(Ⅱ)所示配合物,其中M为Ni,R11为甲基,R12-R15为H,R3为苯基,R4为PMe3
    配合物20:式(Ⅱ)所示配合物,其中M为Ni,R13为甲基,R11、R12、R14和R15为H,R3为苯基,R4为PMe3
    配合物21:式(Ⅱ)所示配合物,其中M为Ni,R13为-CF3,R11、R12、R14和R15为H,R3为苯基,R4为PMe3
    配合物22:式(Ⅱ)所示配合物,其中M为Ni,R13为F,R11、R12、R14和R15为H,R3为苯基,R4为PMe3
    配合物23:式(Ⅱ)所示配合物,其中M为Ni,R13为Cl,R11、R12、R14和R15为H,R3为苯基,R4为PMe3
    配合物24:式(Ⅱ)所示配合物,其中M为Ni,R11、R13和R15为甲基,R12和R14为H,R3为苯基,R4为PMe3
    配合物25:式(Ⅱ)所示配合物,其中M为Ni,R13为甲氧基,R11、R12、R14和R15为H,R3为苯基,R4为PMe3
    配合物26:式(Ⅱ)所示配合物,其中M为Ni,R12和R14为甲基,R11、R13和R15为H,R3为苯基,R4为PMe3
    配合物27:式(Ⅱ)所示配合物,其中M为Ni,R12和R14为甲基,R13为甲氧基,R11和R15为H,R3为苯基,R4为PMe3
    配合物28:式(Ⅱ)所示配合物,其中M为Ni,R12和R14为-CF3,R11、R13和R15为H,R3为苯基,R4为PMe3
    配合物29:式(Ⅱ)所示配合物,其中M为Ni,R11和R15为甲氧基,R12-R14为H,R3为苯基,R4为PMe3
    配合物30:式(Ⅱ)所示配合物,其中M为Ni,R11为甲氧基,R12-R15为H,R3为苯基,R4为PMe3
    配合物31:式(Ⅱ)所示配合物,其中M为Ni,R11-R15为H,R3、R4相互连接形成环辛烯;
    配合物32:式(Ⅱ)所示配合物,其中M为Ni,R11为苯基,R12-R15为H,R3、R4相互连接形成环辛烯;
    配合物33:式(Ⅱ)所示配合物,其中M为Ni,R11为苯基,R12-R15为H,R3、R4相互连接形成环辛烯;
    配合物34:式(Ⅱ)所示配合物,其中M为Ni,R13为甲氧基,R11、R12、R14和R15为H,R3、R4相互连接形成环辛烯;
    配合物35:式(Ⅱ)所示配合物,其中M为Ni,R12和R14为-CF3,R11、R13和R15为H,R3、R4相互连接形成环辛烯;
    配合物36:式(Ⅱ)所示配合物,其中M为Ni,R11和R15为甲氧基,R12-R14为H,R3、R4相互连接形成环辛烯;
    配合物37:式(Ⅱ)所示配合物,其中M为Ni,R11为甲氧基,R12-R15为H,R3、R4相互连接形成环辛烯;
    配合物38:式(Ⅱ)所示配合物,其中M为Ni,R11-R15为H,R3为Cl,R4为四氢呋喃;
    配合物39:式(Ⅱ)所示配合物,其中M为Ni,R11-R15为F,R3为Cl,R4为四氢呋喃;
    配合物40:式(Ⅱ)所示配合物,其中M为Ni,R11为苯基,R12-R15为H,R3为Cl,R4为四氢呋喃;
    配合物41:式(Ⅱ)所示配合物,其中M为Ni,R11为甲基,R12-R15为H,R3为Cl,R4为四氢呋喃;
    配合物42:式(Ⅱ)所示配合物,其中M为Ni,R13为甲基,R11、R12、R14和R15为H,R3为Cl,R4为四氢呋喃;
    配合物43:式(Ⅱ)所示配合物,其中M为Ni,R13为-CF3,R11、R12、R14和R15为H,R3为Cl,R4为四氢呋喃;
    配合物44:式(Ⅱ)所示配合物,其中M为Ni,R13为F,R11、R12、R14和R15为H,R3为Cl,R4为四氢呋喃;
    配合物45:式(Ⅱ)所示配合物,其中M为Ni,R13为Cl,R11、R12、R14和R15为H,R3为Cl,R4为四氢呋喃;
    配合物46:式(Ⅱ)所示配合物,其中M为Ni,R11、R13和R15为甲基,R12和R14为H,R3为Cl,R4为四氢呋喃;
    配合物47:式(Ⅱ)所示配合物,其中M为Ni,R13为甲氧基,R11、R12、R14和R15为H,R3为Cl,R4为四氢呋喃;
    配合物48:式(Ⅱ)所示配合物,其中M为Ni,R12和R14为甲基,R11、R13和R15为H,R3为Cl,R4为四氢呋喃;
    配合物49:式(Ⅱ)所示配合物,其中M为Ni,R12和R14为甲基,R13为甲氧基,R11和R15为H,R3为Cl,R4为四氢呋喃;
    配合物50:式(Ⅱ)所示配合物,其中M为Ni,R12和R14为-CF3,R11、R13和R15为H, R3为Cl,R4为四氢呋喃;
    配合物51:式(Ⅱ)所示配合物,其中M为Ni,R11和R15为甲氧基,R12-R14为H,R3为Cl,R4为四氢呋喃;
    配合物52:式(Ⅱ)所示配合物,其中M为Ni,R11为甲氧基,R12-R15为H,R3为Cl,R4为四氢呋喃;
    配合物53:式(Ⅱ)所示配合物,其中M为Ni,R11-R15为H,R3为Br,R4为四氢呋喃;
    配合物54:式(Ⅱ)所示配合物,其中M为Ni,R11-R15为F,R3为Br,R4为四氢呋喃;
    配合物55:式(Ⅱ)所示配合物,其中M为Ni,R11为苯基,R12-R15为H,R3为Br,R4为四氢呋喃;
    配合物56:式(Ⅱ)所示配合物,其中M为Ni,R11为甲基,R12-R15为H,R3为Br,R4为四氢呋喃;
    配合物57:式(Ⅱ)所示配合物,其中M为Ni,R13为甲基,R11、R12、R14和R15为H,R3为Br,R4为四氢呋喃;
    配合物58:式(Ⅱ)所示配合物,其中M为Ni,R13为-CF3,R11、R12、R14和R15为H,R3为Br,R4为四氢呋喃;
    配合物59:式(Ⅱ)所示配合物,其中M为Ni,R13为F,R11、R12、R14和R15为H,R3为Br,R4为四氢呋喃;
    配合物60:式(Ⅱ)所示配合物,其中M为Ni,R13为Cl,R11、R12、R14和R15为H,R3为Br,R4为四氢呋喃;
    配合物61:式(Ⅱ)所示配合物,其中M为Ni,R11、R13和R15为甲基,R12和R14为H,R3为Br,R4为四氢呋喃;
    配合物62:式(Ⅱ)所示配合物,其中M为Ni,R13为甲氧基,R11、R12、R14和R15为H,R3为Br,R4为四氢呋喃;
    配合物63:式(Ⅱ)所示配合物,其中M为Ni,R12和R14为甲基,R11、R13和R15为H,R3为Br,R4为四氢呋喃;
    配合物64:式(Ⅱ)所示配合物,其中M为Ni,R12和R14为甲基,R13为甲氧基,R11和R15为H,R3为Br,R4为四氢呋喃;
    配合物65:式(Ⅱ)所示配合物,其中M为Ni,R12和R14为-CF3,R11、R13和R15为H,R3为Br,R4为四氢呋喃;
    配合物66:式(Ⅱ)所示配合物,其中M为Ni,R11和R15为甲氧基,R12-R14为H,R3为Br,R4为四氢呋喃;
    配合物67:式(Ⅱ)所示配合物,其中M为Ni,R11为甲氧基,R12-R15为H,R3为Br,R4为四氢呋喃;
    配合物68:式(Ⅱ)所示配合物,其中M为Pd,R11-R15为H,R3为甲基,R4为吡啶;
    配合物69:式(Ⅱ)所示配合物,其中M为Pd,R11-R15为F,R3为甲基,R4为吡啶;
    配合物70:式(Ⅱ)所示配合物,其中M为Pd,R11为苯基,R12-R15为H,R3为甲基,R4为吡啶;
    配合物71:式(Ⅱ)所示配合物,其中M为Pd,R11为苯基,R12-R15为H,R3为甲基,R4为吡啶;
    配合物72:式(Ⅱ)所示配合物,其中M为Pd,R11为甲基,R12-R15为H,R3为甲基,R4为吡啶;
    配合物73:式(Ⅱ)所示配合物,其中M为Pd,R13为甲基,R11、R12、R14和R15为H,R3为甲基,R4为吡啶;
    配合物74:式(Ⅱ)所示配合物,其中M为Pd,R13为-CF3,R11、R12、R14和R15为H,R3为甲基,R4为吡啶;
    配合物75:式(Ⅱ)所示配合物,其中M为Pd,R13为F,R11、R12、R14和R15为H,R3为甲基,R4为吡啶;
    配合物76:式(Ⅱ)所示配合物,其中M为Pd,R13为Cl,R11、R12、R14和R15为H,R3为甲基,R4为吡啶;
    配合物77:式(Ⅱ)所示配合物,其中M为Pd,R11、R13和R15为甲基,R12和R14为H,R3为甲基,R4为吡啶;
    配合物78:式(Ⅱ)所示配合物,其中M为Pd,R13为甲氧基,R11、R12、R14和R15为H,R3为甲基,R4为吡啶;
    配合物79:式(Ⅱ)所示配合物,其中M为Pd,R12和R14为甲基,R11、R13和R15为H,R3为甲基,R4为吡啶;
    配合物80:式(Ⅱ)所示配合物,其中M为Pd,R12和R14为甲基,R13为甲氧基,R11和R15为H,R3为甲基,R4为吡啶;
    配合物81:式(Ⅱ)所示配合物,其中M为Pd,R12和R14为-CF3,R11、R13和R15为H,R3为甲基,R4为吡啶;
    配合物82:式(Ⅱ)所示配合物,其中M为Pd,R11和R15为甲氧基,R12-R14为H,R3为甲基,R4为吡啶;
    配合物83:式(Ⅱ)所示配合物,其中M为Pd,R11为甲氧基,R12-R15为H,R3为甲基, R4为吡啶;
    配合物84:式(Ⅱ)所示配合物,其中M为Pd,R11-R15为H,R3为甲基,R4为Cl;
    配合物85:式(Ⅱ)所示配合物,其中M为Pd,R11为苯基,R12-R15为H,R3为甲基,R4为Cl;
    配合物86:式(Ⅱ)所示配合物,其中M为Pd,R13为甲氧基,R11、R12、R14和R15为H,R3为甲基,R4为Cl;
    配合物87:式(Ⅱ)所示配合物,其中M为Pd,R12和R14为-CF3,R11、R13和R15为H,R3为甲基,R4为Cl;
    配合物88:式(Ⅱ)所示配合物,其中M为Pd,R11和R15为甲氧基,R12-R14为H,R3为甲基,R4为Cl;
    配合物89:式(Ⅱ)所示配合物,其中M为Pd,R11为甲氧基,R12-R15为H,R3为甲基,R4为Cl。
  6. 一种制备权利要求1-5中任意一项所述的膦-酚后过渡金属配合物的方法,其特征在于,该方法包括:
    (1)将式(III)所示的化合物与式(IV)所示的化合物进行反应,生成配体;
    (2)将所述配体与M金属化合物进行反应;
    其中,M金属选自ⅤIII族金属,优选为镍和/或钯;R1的定义与权利要求1相同。
  7. 根据权利要求6所述的方法,其特征在于,所述M金属化合物选自二甲基二吡啶镍、双(1,5-环辛二烯)镍、二氯四吡啶镍、乙二醇二甲醚溴化镍、乙二醇二甲醚氯化镍、二氯二(三甲基膦)合镍、二(吡啶)二[(三甲硅基)甲基]镍、氯(苯基)(N,N,N',N'-四甲基-1,2-乙二胺)镍、二苄基二吡啶镍、苯基(三甲基膦)溴化镍、苯基(三乙基膦)氯化镍、二苯基二(三甲基膦)合镍、二氯二(三甲基膦)合镍、二甲基二吡啶合钯、二氯二吡啶钯、二(吡啶)二[(三甲硅基)甲基]钯、二苄基二吡啶钯和甲基-1,5-环辛二烯-氯化钯中的至少一种。
  8. 根据权利要求6或7所述的方法,其特征在于,步骤(2)的反应在反应溶剂的存 在下进行,所述反应溶剂为四氢呋喃。
  9. 权利要求1-5中任意一项所述的膦-酚后过渡金属配合物在烯烃聚合中的应用。
  10. 一种烯烃聚合方法,其特征在于,包括在权利要求1-5中任意一项所述的膦-酚后过渡金属配合物的存在下进行烯烃聚合反应;
    优选地,所述烯烃聚合反应的温度为-78℃~200℃,优选为-20℃~150℃,压力为0.01~10MPa,优选0.01~5MPa。
  11. 一种α-烯烃聚合物的制备方法,其特征在于,包括将(a)α-烯烃和(b)(甲基)丙烯酸酯单体、乙烯基单体或烯丙基单体在权利要求1-5中任意一项所述的膦-酚后过渡金属配合物的存在下进行共聚合反应;
    优选地,所述(甲基)丙烯酸酯单体由通式CH2=C(R31)CO2(R32)表示,其中,
    优选地,R31为H或C1-C10烃基,其任选地具有支链、环和/或不饱和键;
    优选地,R32为C1-C30烃基,其任选地具有支链、环和/或不饱和键,并且R32任选地在其中任何位置含有杂原子。
PCT/CN2023/123997 2022-10-11 2023-10-11 膦-酚后过渡金属配合物及其制备方法和应用 WO2024078527A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211242003.7 2022-10-11
CN202211242003.7A CN117903208A (zh) 2022-10-11 2022-10-11 膦-酚后过渡金属配合物及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2024078527A1 true WO2024078527A1 (zh) 2024-04-18

Family

ID=90668843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/123997 WO2024078527A1 (zh) 2022-10-11 2023-10-11 膦-酚后过渡金属配合物及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN117903208A (zh)
WO (1) WO2024078527A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1270596A (zh) * 1997-09-15 2000-10-18 陶氏化学公司 双金属配合物和从其获得的聚合催化剂
CN109320558A (zh) * 2018-09-10 2019-02-12 天津大学 一种萘酚骨架酚-膦中性镍催化剂制备方法和制备乙烯/乙烯基极性单体共聚物的应用
CN113651909A (zh) * 2021-09-22 2021-11-16 安徽大学 一种含有羟基磷-酚镍催化剂、其制备方法及其在催化配位共聚中的应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1270596A (zh) * 1997-09-15 2000-10-18 陶氏化学公司 双金属配合物和从其获得的聚合催化剂
CN109320558A (zh) * 2018-09-10 2019-02-12 天津大学 一种萘酚骨架酚-膦中性镍催化剂制备方法和制备乙烯/乙烯基极性单体共聚物的应用
CN113651909A (zh) * 2021-09-22 2021-11-16 安徽大学 一种含有羟基磷-酚镍催化剂、其制备方法及其在催化配位共聚中的应用

Also Published As

Publication number Publication date
CN117903208A (zh) 2024-04-19

Similar Documents

Publication Publication Date Title
JP6441490B2 (ja) オレフィンオリゴマー化方法
CN106397261B (zh) 一种二亚胺配体化合物、配合物及应用
CN105482000B (zh) 一种烯烃聚合催化剂及其制备和应用方法
CN106349294B (zh) 苯胺蒽醌后过渡金属配合物及其制备方法与应用
CN105481998B (zh) 一种烯烃聚合催化剂及其制备和应用方法
Yang et al. Homo-and copolymerization of norbornene with tridentate nickel complexes bearing o-aryloxide-N-heterocyclic carbene ligands
WO2012122854A1 (zh) 不对称α二亚胺镍配合物催化剂及其制备方法与应用
KR101049260B1 (ko) 새로운 포스트 메탈로센형 전이금속 화합물
CN107641138A (zh) 用于乙烯和1‑己烯聚合的含有邻位二苯甲基取代的不对称α‑二亚胺镍(Ⅱ)配合物
CN109320558B (zh) 一种萘酚骨架酚-膦中性镍催化剂制备方法和制备乙烯/乙烯基极性单体共聚物的应用
CN101889029B (zh) 用于烯烃聚合的含有四唑基团的非茂金属型催化剂和使用该催化剂的烯烃聚合方法
KR20020023421A (ko) 비스이미디노 화합물, 그의 전이금속 착물, 및 촉매로서그의 용도
CN101613425B (zh) 具有双峰和/或宽峰分布分子量分布的聚乙烯的催化剂
US20030060357A1 (en) Catalysts for olefin polymerization
CN105461757B (zh) 一种多核后过渡金属烯烃聚合催化剂
WO2024078527A1 (zh) 膦-酚后过渡金属配合物及其制备方法和应用
CN110563771B (zh) 一种金属配合物、中间体、其制备方法及应用
WO2021083207A1 (zh) 一种双苯酚金属配合物及其制备方法和应用
Wang et al. Dinuclear nickel (II) complexes bearing two pyrazolylimine ligands: Synthesis characterization, and catalytic properties for vinyl-type polymerization of norbornene
CN111116787B (zh) 二胺配体、二胺配合物、包含该二胺配合物的催化剂
WO2021083330A1 (zh) 胺基亚胺金属配合物及其制备方法和应用
WO2024078528A1 (zh) 一种膦-酚过渡金属配合物及其制备方法和应用
CN109879814A (zh) 一种配体及其配合物以及制备方法和应用
CN118620001A (zh) 一种金属有机配合物及其制备方法和应用
WO2024078525A1 (zh) 一种膦-酚单茂金属配合物及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23876728

Country of ref document: EP

Kind code of ref document: A1