WO2021083330A1 - 胺基亚胺金属配合物及其制备方法和应用 - Google Patents

胺基亚胺金属配合物及其制备方法和应用 Download PDF

Info

Publication number
WO2021083330A1
WO2021083330A1 PCT/CN2020/125279 CN2020125279W WO2021083330A1 WO 2021083330 A1 WO2021083330 A1 WO 2021083330A1 CN 2020125279 W CN2020125279 W CN 2020125279W WO 2021083330 A1 WO2021083330 A1 WO 2021083330A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituent
formula
ethyl
group
complex
Prior art date
Application number
PCT/CN2020/125279
Other languages
English (en)
French (fr)
Inventor
高榕
赖菁菁
郭子芳
苟清强
周俊领
张晓帆
刘东兵
林洁
李昕阳
张军辉
顾元宁
李岩
安京燕
赵慧
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司北京化工研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201911049822.8A external-priority patent/CN112745360B/zh
Priority claimed from CN201911049911.2A external-priority patent/CN112745363B/zh
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司北京化工研究院 filed Critical 中国石油化工股份有限公司
Priority to JP2022525360A priority Critical patent/JP2022554294A/ja
Priority to KR1020227018118A priority patent/KR20220106983A/ko
Priority to BR112022008291A priority patent/BR112022008291A2/pt
Priority to US17/755,484 priority patent/US20230002432A1/en
Priority to EP20882056.3A priority patent/EP4053138A4/en
Priority to CA3159750A priority patent/CA3159750A1/en
Publication of WO2021083330A1 publication Critical patent/WO2021083330A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/04Nickel compounds
    • C07F15/045Nickel compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/04Nickel compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/70Iron group metals, platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2410/00Features related to the catalyst preparation, the catalyst use or to the deactivation of the catalyst
    • C08F2410/03Multinuclear procatalyst, i.e. containing two or more metals, being different or not
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the invention relates to an aminoimine metal complex and a preparation method and application thereof.
  • polyolefin resin Compared with other resin materials, polyolefin resin has excellent environmental compatibility, so it is widely used in industry and life.
  • Polyethylene resin is an important polyolefin resin.
  • Industrialized polyethylene catalysts include Ziegler-Natta type catalysts (see, for example, DE Pat 889229 (1953); IT Pat 545332 (1956) and IT Pat 536899 (1955); Chem. Rev., 2000, 100, 1169 and related documents of this special issue. ), Phillips type catalysts (see, for example, Belg. Pat. 530617 (1955); Chem. Rev. 1996, 96, 3327) and metallocene type catalysts (see, for example, W.
  • the ⁇ -diimine nickel catalyst has attracted much attention because of its high activity and the polymer molecular weight and branching degree can be adjusted in a wide range. Companies such as Du Pont have applied for multiple patents (WO 96/23010, WO 98/03521, WO 98/40374, WO 99/05189, WO 99/62968, WO 00/06620, US 6,103,658, US 6,660,677).
  • This type of ⁇ -diimine nickel catalyst can catalyze the oligomerization or polymerization of ethylene with high activity under the action of methylaluminoxane or aluminum alkyl at room temperature or low temperature. However, when the reaction temperature is increased above 50°C, the activity of this type of ⁇ -diimide nickel catalyst generally decreases rapidly, and the molecular weight of the prepared polyethylene decreases rapidly as the polymerization temperature increases.
  • the current post-transition metal catalysts for active polymerization of ethylene one is to lower the polymerization temperature, inhibit the occurrence of chain transfer at low temperatures ( ⁇ 5°C) to achieve active polymerization, and the other is to increase the steric hindrance of the ligand. Inhibit chain transfer to achieve living polymerization at higher temperatures.
  • the too low temperature is not suitable for the existing industrial reaction equipment, and the too large steric hindrance of the ligand makes the design and synthesis of the catalyst more difficult. Therefore, it is of great significance to develop active polymerization catalysts that are relatively simple to synthesize and are resistant to high temperatures.
  • One of the objectives of the present invention is to overcome the shortcomings of the prior art, and provide an aminoimine metal complex with good thermal stability, so as to realize the polymerization of ethylene at a higher temperature to prepare branched polyethylene with high molecular weight.
  • the present invention provides an aminoimine metal complex as shown in formula I:
  • R 1 and R 2 are each independently selected from C1-C30 hydrocarbon groups with or without substituent Q;
  • R 3 is independently selected from hydrogen and C1-C20 with or without substituent Q Hydrocarbyl;
  • R 5 -R 8 are each independently selected from hydrogen, halogen, hydroxyl, C1-C20 hydrocarbyl with or without substituent Q, and R 5 -R 8 are optionally connected to each other to form a ring or ring System;
  • R 12 is independently selected from C1-C20 hydrocarbon groups with substituent Q or without substituent Q;
  • Y is independently selected from VIA group non-metal atoms;
  • M is independently selected from group VIII metals;
  • X is independently selected from halogen , C1-C10 hydrocarbyl groups with or without substituent Q and C1-C10 hydrocarbyl groups with or without substituent Q.
  • R 1 and R 2 are independently selected from the group consisting of C1-C20 alkyl groups with or without substituent Q and those with or without substituent Q C6-C20 aryl.
  • R 1 and/or R 2 are groups as shown in formula A:
  • R 1 -R 5 are each independently selected from hydrogen, halogen, hydroxyl, C1-C20 alkyl with or without substituent Q, C2-C20 alkenes with or without substituent Q Group, C2-C20 alkynyl with or without substituent Q, C1-C20 alkoxy with or without substituent Q, C2- with or without substituent Q C20 alkenyloxy group, C2-C20 alkynyloxy group with substituent Q or without substituent Q, C6-C20 aryl group with substituent Q or without substituent Q, substituent Q or without substituent Q C6-C20 aryloxy group, C7-C20 aralkyl group with substituent Q or without substituent Q, C7-C20 aralkyloxy group with substituent Q or without substituent Q, substituent Q or The C7-C20 alkaryl group without substituent Q and the C7-C20 alkaryloxy group with or without substituent Q, and R 1 -R 5 are optionally connected to each
  • R 1 -R 5 are each independently selected from hydrogen, halogen, hydroxyl, C1-C10 alkyl with or without substituent Q, C2-C10 with or without substituent Q Alkenyl, C2-C10 alkynyl with or without substituent Q, C1-C10 alkoxy with or without substituent Q, C2 with or without substituent Q -C10 alkenyloxy group, C2-C10 alkynyloxy group with substituent Q or without substituent Q, C6-C15 aryl group with substituent Q or without substituent Q, substituent Q or without substituent The C6-C15 aryloxy group of Q, the C7-C15 aralkyl group with substituent Q or without substituent Q, the C7-C15 aralkyloxy group with substituent Q or without substituent Q, and the substituent Q Or a C7-C15 alkaryl group without substituent Q and a C7-C15 alkaryloxy group with or without substituent Q.
  • M is independently selected from nickel and palladium.
  • Y is independently selected from O and S.
  • X is independently selected from halogen, C1-C10 alkyl with or without substituent Q and C1-C10 alkoxy with or without substituent Q, preferably independently
  • the ground is selected from halogen, C1-C6 alkyl with or without substituent Q, and C1-C6 alkoxy with or without substituent Q.
  • R 12 is independently selected from C1-C20 alkyl groups containing substituent Q or without substituent Q, preferably C1-C20 alkyl containing substituent Q or without substituent Q
  • a C10 alkyl group is more preferably a C1-C6 alkyl group containing Q substituents or not containing Q substituents.
  • R 3 is selected from a C1-C20 alkyl group containing substituent Q or without substituent Q, a C6-C20 aryl group containing substituent Q or without substituent Q , C7-C20 aralkyl with or without substituent Q and C7-C20 alkaryl with or without substituent Q.
  • R 3 is selected from a C1-C10 alkyl group with or without substituent Q, a C6-C10 aryl group with or without substituent Q, and a substituent Q or without substituent The C7-C15 aralkyl group of Q and the C7-C15 alkaryl group with or without substituent Q. More preferably, R 3 is selected from C1-C6 alkyl groups with or without substituent Q, such as methyl, ethyl, propyl or butyl.
  • the substituent Q is selected from halogen, hydroxyl, C1-C10 alkyl, halogenated C1-C10 alkyl, C1-C10 alkoxy and halogenated C1-C10 alkoxy, preferably It is selected from halogen, hydroxy, C1-C6 alkyl, halogenated C1-C6 alkyl, C1-C6 alkoxy and halogenated C1-C6 alkoxy.
  • Examples of the C1-C6 alkyl group include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, n-pentyl, isopentyl, n-hexyl, isohexyl and 3,3- Dimethylbutyl.
  • Examples of the C1-C6 alkoxy group include methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, n-pentoxy, isopentoxy, n-hexyl Oxy, isohexoxy and 3,3-dimethylbutoxy.
  • halogen refers to fluorine, chlorine, bromine or iodine.
  • aminoimine metal complex of the present invention is represented by Formula III:
  • R 1 -R 11 are each independently selected from hydrogen, halogen, hydroxyl, C1-C20 alkyl with or without substituent Q, C2-C20 alkenes with or without substituent Q Group, C2-C20 alkynyl with or without substituent Q, C1-C20 alkoxy with or without substituent Q, C2- with or without substituent Q C20 alkenyloxy group, C2-C20 alkynyloxy group with substituent Q or without substituent Q, C6-C20 aryl group with substituent Q or without substituent Q, substituent Q or without substituent Q C6-C20 aryloxy group, C7-C20 aralkyl group with substituent Q or without substituent Q, C7-C20 aralkyloxy group with substituent Q or without substituent Q, substituent Q or C7-C20 alkaryl group without substituent Q and C7-C20 alkaryloxy group with or without substituent Q; R 3 , R 12 , Y, M and X
  • the R 1 -R 11 are each independently selected from hydrogen, halogen, hydroxyl, C1-C10 alkyl with or without substituent Q, with or without substituent
  • R 1 -R 11 are each independently selected from hydrogen, C1-C10 alkyl, halogenated C1-C10 alkyl, C1-C10 alkoxy, halogenated C1-C10 alkoxy and halogen, more It is preferably selected from hydrogen, C1-C6 alkyl, halogenated C1-C6 alkyl, C1-C6 alkoxy, halogenated C1-C6 alkoxy and halogen.
  • aminoimine metal complexes of the present invention are selected from the following group:
  • aminoimine metal complex of the present invention has a structure as shown in formula IV:
  • R 1 and R 2 are each independently selected from C1-C30 hydrocarbon groups with substituent Q or without substituent Q;
  • R 21 -R 24 are each independently selected from hydrogen, halogen, hydroxyl, substituent Q or not C1-C20 hydrocarbyl group containing substituent Q and C1-C20 hydrocarbyloxy group containing substituent Q or without substituent Q, and R 21 -R 24 are optionally connected to each other to form a ring or ring system, preferably substituted or unsubstituted
  • R 5 is independently selected from hydrogen and C1-C20 hydrocarbon groups with or without substituent Q;
  • R 11 is independently selected from C1-C20 hydrocarbon groups with or without substituent Q;
  • Y is independently selected from VIA group non-metal atoms;
  • M is independently selected from group VIII metals;
  • X is independently selected from halogen, C1-C10 hydrocarbon group containing substituent Q or without substituent Q and substituent Q or without Substituent Q is a
  • substituted refers to substitution by a substituent Q, for example.
  • R 1 and R 2 are independently selected from C1-C20 alkyl with or without substituent Q and C6 with or without substituent Q -C20 aryl.
  • R 1 and/or R 2 are groups as shown in formula A:
  • R 1 -R 5 are each independently selected from hydrogen, halogen, hydroxyl, C1-C20 alkyl with or without substituent Q, C2-C20 alkenes with or without substituent Q Group, C2-C20 alkynyl with or without substituent Q, C1-C20 alkoxy with or without substituent Q, C2- with or without substituent Q C20 alkenyloxy group, C2-C20 alkynyloxy group with substituent Q or without substituent Q, C6-C20 aryl group with substituent Q or without substituent Q, substituent Q or without substituent Q C6-C20 aryloxy group, C7-C20 aralkyl group with substituent Q or without substituent Q, C7-C20 aralkyloxy group with substituent Q or without substituent Q, substituent Q or The C7-C20 alkaryl group without substituent Q and the C7-C20 alkaryloxy group with or without substituent Q, and R 1 -R 5 are optionally connected to each
  • R 1 -R 5 are each independently selected from hydrogen, halogen, hydroxyl, C1-C10 alkyl with or without substituent Q, C2-C10 with or without substituent Q Alkenyl, C2-C10 alkynyl with or without substituent Q, C1-C10 alkoxy with or without substituent Q, C2 with or without substituent Q -C10 alkenyloxy group, C2-C10 alkynyloxy group with substituent Q or without substituent Q, C6-C15 aryl group with substituent Q or without substituent Q, substituent Q or without substituent The C6-C15 aryloxy group of Q, the C7-C15 aralkyl group with substituent Q or without substituent Q, the C7-C15 aralkyloxy group with substituent Q or without substituent Q, and the substituent Q Or a C7-C15 alkaryl group without substituent Q and a C7-C15 alkaryloxy group with or without substituent Q.
  • R 1 -R 5 are each independently selected from hydrogen, halogen, hydroxyl, C1-C6 alkyl with or without substituent Q, C2- with substituent Q or without substituent Q C6 alkenyl, C2-C6 alkynyl with or without substituent Q, C1-C6 alkoxy with or without substituent Q, with or without substituent Q C2-C6 alkenyloxy group, C2-C6 alkynyloxy group with substituent Q or without substituent Q, C6-C10 aryl group with substituent Q or without substituent Q, substituent Q or without substituent C7-C10 aralkyl group of group Q, C7-C10 alkaryl group containing substituent Q or without substituent Q, C6-C10 aryloxy group containing substituent Q or without substituent Q, containing substituent Q Or a C7-C10 aralkyloxy group without substituent Q and a C7-C10 alkylaryloxy group with or without substituent Q.
  • M is independently selected from nickel and palladium.
  • Y is independently selected from O and S.
  • X is independently selected from halogen, C1-C10 alkyl with or without substituent Q, and C1-C10 alkoxy with or without substituent Q
  • the group is preferably independently selected from the group consisting of halogen, C1-C6 alkyl with or without substituent Q, and C1-C6 alkoxy with or without substituent Q.
  • R 11 is independently selected from a C1-C20 alkyl group with or without substituent Q, preferably a C1-C10 alkyl group with or without substituent Q , A C1-C6 alkyl group having substituent Q or no substituent Q is more preferred.
  • R 5 is independently selected from C1-C20 alkyl with or without substituent Q, C6-C20 aryl with or without substituent Q, A C7-C20 aralkyl group with or without substituent Q and a C7-C20 alkaryl group with or without substituent Q.
  • R 5 is independently selected from a C1-C10 alkyl group with or without substituent Q, a C6-C10 aryl group with or without substituent Q, and a C6-C10 aryl group with or without substituent Q.
  • R 5 is independently selected from C1-C6 alkyl groups with or without substituent Q, such as methyl, ethyl, propyl or butyl.
  • the substituent Q is selected from the group consisting of halogen, hydroxy, C1-C10 alkyl, halogenated C1-C10 alkyl, C1-C10 alkoxy, and halogenated C1-C10 alkane.
  • the oxy group is preferably selected from halogen, hydroxy, C1-C6 alkyl, halogenated C1-C6 alkyl, C1-C6 alkoxy and halogenated C1-C6 alkoxy.
  • the C1-C6 alkyl group is selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, n-pentyl, isopentyl, n-hexyl, isohexyl and 3, 3-Dimethylbutyl.
  • the C1-C6 alkoxy group is selected from methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, n-pentoxy, isopentoxy , N-hexyloxy, isohexyloxy and 3,3-dimethylbutoxy.
  • R 21 -R 24 are each independently selected from hydrogen, halogen, hydroxyl, C1-C20 alkyl with or without substituent Q, with or without substituent Q C2-C20 alkenyl of substituent Q, C2-C20 alkynyl with substituent Q or without substituent Q, C1-C20 alkoxy with substituent Q or without substituent Q, substituent Q or C2-C20 alkenyloxy without substituent Q, C2-C20 alkynyloxy with substituent Q or without substituent Q, C6-C20 aryl with substituent Q or without substituent Q, with substitution Group Q or C7-C20 aralkyl without substituent Q, C7-C20 alkaryl with substituent Q or without substituent Q, C6-C20 aryloxy with substituent or without substituent, containing Substituent Q or C7-C20 aralkyloxy without substituent Q and C7-C20 alkaryloxy with substituent Q or without substituent,
  • R 21 -R 24 are each independently selected from hydrogen, halogen, hydroxyl, C1-C10 alkyl with or without substituent Q, C2-C10 with or without substituent Q Alkenyl, C2-C10 alkynyl with or without substituent Q, C1-C10 alkoxy with or without substituent Q, C2 with or without substituent Q -C10 alkenyloxy group, C2-C10 alkynyloxy group with substituent Q or without substituent Q, C6-C15 aryl group with substituent Q or without substituent Q, substituent Q or without substituent
  • R 21 -R 24 are each independently selected from hydrogen, C1-C10 alkyl, halogenated C1-C10 alkyl, C1-C10 alkoxy, halogenated C1-C10 alkoxy and halogen, More preferably, it is selected from hydrogen, C1-C6 alkyl, halogenated C1-C6 alkyl, C1-C6 alkoxy, halogenated C1-C6 alkoxy and halogen.
  • the aminoimine metal complex of the present invention has a structure as shown in Formula IVa:
  • R 31 -R 34 have the same meaning as R 21 -R 24 in formula IV, preferably R 33 and R 34 are hydrogen, and R 1 , R 2 , R 5 , R 11 , Y, M and X are as before Defined for Formula IV.
  • aminoimine metal complex of the present invention is represented by the following formula V or V':
  • aminoimine metal complexes of the present invention are selected from the following group:
  • the present invention provides a method for preparing the aminoimine metal complex, including: step 1) the aminoimine compound represented by formula VI is subjected to MX n and R 12 YH Reaction to generate the aminoimine metal complex shown in formula I,
  • R 1 , R 2 , R 3 , R 5 -R 8 in formula VI have the same definition as in formula I;
  • M and X in MX n have the same definitions as in formula I, and n is the number of X satisfying the valence state of M;
  • R 12 in R 12 YH have the same definitions as in Formula I.
  • aminoimine compound represented by formula VI is represented by the following formula VIa:
  • R 1 -R 11 and R 3 have the same definitions as in Formula III.
  • the preparation of the aminoimine compound represented by formula VI includes step 2) reacting the diketone compound represented by formula VII with A(R 3 ) a and an amine compound to produce
  • the amine compound is R 1 NH 2 and R 2 NH 2 ;
  • R 1 , R 2 , R 3 , R 5 -R 8 have the same definitions as in formula I, and A is selected from one or more of aluminum, zinc, lithium and magnesium.
  • the molar ratio of A(R 3 ) a to the amine compound is greater than or equal to 2.0, preferably 2.0-6.0, more preferably 3.0-6.0.
  • the diketone compound represented by the formula VII is represented by the following formula VIIa:
  • R 6 -R 11 have the same definition as in Formula III.
  • the reaction in step 1) is carried out in an organic solvent.
  • the organic solvent is a halogenated alkane, and more preferably, the organic solvent is selected from the group consisting of dichloromethane, chloroform and 1,2- One or more of dichloroethane.
  • the reaction in step 2) is carried out in an aprotic solvent.
  • the aprotic solvent is one or more of toluene, benzene, and xylene.
  • the preparation of the aminoimine compound represented by formula VI includes contacting and reacting the diimine compound represented by formula VIII with A(R 3 ) a or a Grignard reagent to generate the The aminoimine compound represented by formula VI,
  • R 1 , R 2 , R 5 -R 8 have the same definitions as in formula I;
  • A is selected from one or more of aluminum, zinc, lithium and magnesium, R 3 has the same definition as in formula I, and a is the number that satisfies the valence state R 3 of A;
  • Grignard reagent is R 3 MgX, wherein R 3 has the same definition as in formula I, and X is halogen, preferably bromine and/or chlorine.
  • the diimine compound represented by formula VIII is represented by the following formula Villa:
  • R 1 -R 11 have the same definition as in Formula III.
  • the preparation method includes performing a first reflux reaction of the amine compound represented by formula (a) with A(R 3 ) a in a solvent, and then reacting with the diketone represented by formula Vila The compound undergoes a second reflux reaction to produce a compound represented by formula VIa,
  • examples of amine compounds may be 2,6-dimethylaniline, 2,6-diethylaniline, 2,6-diisopropylaniline, 2,4,6-tri Methylaniline, 2,4,6-triethylaniline and 2,4,6-triisopropylaniline, 2,6-difluoroaniline, 2,6-dibromoaniline, 2,6-dichloroaniline , 2,6-Dimethyl-4-bromoaniline.
  • the amine compound and A(R 3 ) a are refluxed in the solvent toluene.
  • the conditions of the first reflux reaction include: the reaction temperature is 10-120° C., and the reaction time is 2-12 hours.
  • the time for the second reflux reaction is 2-12 hours, preferably 4-12 hours.
  • the product does not need to be post-treated, and the diketone can be directly added to perform the second reflux reaction, and the operation is simple.
  • A(R 3 ) a includes alkyl aluminum, alkyl zinc and alkyl lithium, preferably selected from C1-C6 alkyl aluminum, C1-C6 alkyl zinc and C1-C6 alkyl lithium , More preferably selected from one or more of tri-C1-C6 alkyl aluminum, di-C1-C6 alkyl zinc and C1-C6 alkyl lithium, such as trimethyl aluminum, triethyl aluminum, tripropyl aluminum , Diethyl zinc and butyl lithium.
  • the MXn includes nickel halide, such as nickel bromide and nickel chloride, and derivatives of MXn include 1,2-dimethoxyethane nickel halide, such as 1,2-dimethyl Oxyethane nickel bromide and 1,2-dimethoxyethane nickel chloride.
  • the present invention also provides the application of the above-mentioned aminoimine metal complex in olefin polymerization.
  • the olefins include ethylene and ⁇ -olefins with polar groups.
  • the present invention also provides a catalyst for olefin polymerization, the catalyst comprising the above-mentioned aminoimine metal complex.
  • the catalyst further includes a co-catalyst, the co-catalyst is selected from organoaluminum compounds and/or organoboron compounds; the organoaluminum compound is selected from alkylaluminoxanes or the general formula is AlR n X 1 3-n organoaluminum compound (alkyl aluminum or alkyl aluminum halide), general formula AlR n X 1 3-n , R is H, C 1 -C 20 hydrocarbon group or C 1 -C 20 hydrocarbon Oxy group, preferably C 1 -C 20 alkyl, C 1 -C 20 alkoxy, C 7 -C 20 aralkyl or C 6 -C 20 aryl; X 1 is halogen, preferably chlorine or bromine; 0 ⁇ n ⁇ 3.
  • the co-catalyst is selected from organoaluminum compounds and/or organoboron compounds
  • the organoaluminum compound is selected from alkylaluminoxanes or the general formula is
  • organoaluminum compound examples include, but are not limited to: trimethylaluminum, triethylaluminum, triisobutylaluminum, tri-n-hexylaluminum, trioctylaluminum, monohydrogen two Ethyl aluminum, diisobutyl aluminum monohydrogen, diethyl aluminum chloride, diisobutyl aluminum chloride, sesquiethyl aluminum chloride, ethyl aluminum dichloro, methylaluminoxane (MAO), and Modified methyl aluminoxane (MMAO).
  • the organoaluminum compound is methylaluminoxane (MAO).
  • the organoboron compound is selected from aromatic hydrocarbon boron and borate.
  • the aromatic hydrocarbyl boron is preferably substituted or unsubstituted phenyl boron, more preferably tris(pentafluorophenyl) boron.
  • the borate is preferably N,N-dimethylanilinium tetrakis (pentafluorophenyl) borate and/or triphenylmethyl tetrakis (pentafluorophenyl) borate.
  • the molar ratio of aluminum in the co-catalyst to M in the main catalyst is (10-10 7 ):1, for example, 10:1 , 20:1, 50:1, 100:1, 200:1, 300:1, 500:1, 700:1, 800:1, 1000:1, 2000:1, 3000:1, 5000:1, 10000 :1, 100000:1, 1000000:1, 10000000:1 and any value between them, preferably (10-100000):1, more preferably (100-10000):1; when the cocatalyst is organic
  • the molar ratio of boron in the promoter to M in the main catalyst is (0.1-1000):1, for example, 0.1:1, 0.2:1, 0.5:1, 1:1, 2:1 , 3:1, 5:1, 8:1, 10:1, 20:1, 50:1, 100:1, 200:1, 300:1, 500:1, 700:1, 800:1, 1000 :1 and any value
  • the olefin polymerized by the catalyst of the present invention is a C2-C16 olefin.
  • the olefin is ethylene or an ⁇ -olefin having 3-16 carbon atoms.
  • the catalyst further includes a chain transfer agent selected from one or more of aluminum alkyl, magnesium alkyl, boron alkyl, and zinc alkyl.
  • the molar ratio of the transfer agent to M in the main catalyst is (0.1-5000):1.
  • the present invention also provides an olefin polymerization method, which comprises performing an olefin polymerization reaction such as homopolymerization or copolymerization in the presence of the above-mentioned aminoimine metal complex or the above-mentioned catalyst.
  • an olefin polymerization reaction such as homopolymerization or copolymerization in the presence of the above-mentioned aminoimine metal complex or the above-mentioned catalyst.
  • the temperature of the polymerization reaction is -78°C to 200°C, preferably -20°C to 150°C
  • the polymerization pressure is 0.01 to 10.0 MPa, preferably 0.01 to 2.0 MPa.
  • the olefins include C2-C16 olefins.
  • the olefin includes a C2-C16 ⁇ -olefin.
  • the olefin includes ethylene
  • the polymerization temperature is -78°C to 200°C, preferably -20°C to 150°C.
  • the polymerization pressure is 0.01-10.0 MPa, preferably 0.01-2.0 MPa.
  • the polymerization is carried out by olefin monomers in a solvent, and the solvent for polymerization is selected from one or more of alkanes, aromatic hydrocarbons and halogenated hydrocarbons.
  • the polymerization solvent is selected from one or more of hexane, pentane, heptane, benzene, toluene, dichloromethane, chloroform and dichloroethane, preferably hexane, toluene And one or more of heptane.
  • the alkyl group refers to a straight chain alkyl group, a branched chain alkyl group or a cycloalkyl group.
  • a C 1 -C 20 alkyl group refers to a C 1 -C 20 straight chain alkyl group, a C 3 -C 20 branched chain alkyl group, or a C 3 -C 20 cycloalkyl group.
  • Examples include but are not limited to: methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, tert-pentyl, neopentyl Base, n-hexyl, n-heptyl, n-octyl and n-decyl.
  • C 3 -C 20 cycloalkyl groups include, but are not limited to: cyclopropyl, cyclopentyl, cyclohexyl, 4-methylcyclohexyl, 4-ethylcyclohexyl, 4-n-propylcyclohexyl, and 4- N-Butylcyclohexyl.
  • C 6 -C 20 aryl groups include, but are not limited to: phenyl, 4-methylphenyl, 4-ethylphenyl, dimethylphenyl, vinylphenyl.
  • alkenyl refers to straight chain alkenyl, branched alkenyl or cycloalkenyl.
  • a C 2 -C 20 alkenyl group refers to a C 2 -C 20 straight chain alkenyl group, a C 3 -C 20 branched chain alkenyl group, or a C 3 -C 20 cycloalkenyl group. Examples include, but are not limited to: vinyl, allyl, butenyl.
  • C 7 -C 20 aralkyl groups include, but are not limited to: phenylmethyl, phenylethyl, phenyl n-propyl, phenyl isopropyl, phenyl n-butyl, and phenyl t-butyl.
  • C 7 -C 20 alkaryl groups include, but are not limited to: tolyl, ethylphenyl, n-propylphenyl, isopropylphenyl, n-butylphenyl, and tert-butylphenyl.
  • the present invention has the following advantages:
  • the method for synthesizing the complex of the present invention is simple and easy to implement, and the trinuclear complex can be directly prepared from the ligand.
  • the catalyst of the present invention can catalyze the polymerization of ethylene with high activity under the action of organoaluminum or organoboron promoter. Particularly, high polymerization activity can be maintained at a higher polymerization temperature (above 90 degrees). (The activity of nickel diimide catalysts reported in the previous literature or patents is greatly attenuated above 50 degrees, and the molecular weight is greatly reduced).
  • the catalyst of the present invention has higher copolymerization performance with ⁇ -olefin or polar monomer.
  • Activity measurement method gravimetric method, activity is expressed as polymer weight (g)/nickel (mol) ⁇ 2.
  • Ethylene polymerization was carried out according to the ethylene polymerization procedure described in Example 1, but the polymerization temperature was 60°C. The results are shown in Table 1.
  • Ethylene polymerization was carried out according to the ethylene polymerization procedure described in Example 1, but the polymerization temperature was 60°C and the polymerization time was 10 min. The results are shown in Table 1.
  • Ethylene polymerization was carried out according to the ethylene polymerization procedure described in Example 1, but the polymerization temperature was 60°C and the polymerization time was 20 min. The results are shown in Table 1.
  • Ethylene polymerization was carried out according to the ethylene polymerization procedure described in Example 1, but the polymerization temperature was 60°C and the polymerization time was 60 min. The results are shown in Table 1.
  • Ethylene polymerization was carried out according to the ethylene polymerization procedure described in Example 1, but the polymerization temperature was 90°C. The results are shown in Table 1.
  • 10atm ethylene polymerization A 1L stainless steel polymerization vessel equipped with mechanical stirring was continuously dried at 130°C for 6hrs, vacuumed while hot, and replaced with N 2 gas 3 times. Inject 500ml of hexane, then add 0.8ml of monochlorodiethylaluminum (2.0mol/l toluene solution), and add 4.4mg (2.5 ⁇ mol) of complex Ni1. At 60°C, maintaining an ethylene pressure of 10 atm, vigorously stir the reaction for 30 minutes. It is neutralized with an ethanol solution acidified with 10 wt% hydrochloric acid to obtain polyethylene. The results are shown in Table 1.
  • a 1L stainless steel polymerization vessel equipped with mechanical stirring was continuously dried at 130°C for 6 hours, evacuated while hot, and replaced with N 2 gas 3 times. Inject 500mL of hexane into the polymerization kettle, and at the same time add 4.4mg (2.5 ⁇ mol) of complex Ni1, 6mL 10-undecen-1-ol, 30mL triethylaluminum (1.0mol/L hexane solution), 5.0mL MAO (1.53 mol/L toluene solution), at 30° C., maintain an ethylene pressure of 10 atm, and stir for 30 min. Finally, it is neutralized with an ethanol solution acidified with 10 wt% hydrochloric acid to obtain a polymer. The results are shown in Table 1.
  • a 1L stainless steel polymerization vessel equipped with mechanical stirring was continuously dried at 130°C for 6 hours, evacuated while hot, and replaced with N 2 gas 3 times. Inject 500 mL of hexane into the polymerizer, and at the same time add 4.4 mg (2.5 ⁇ mol) of complex Ni1, 5.52 g of 10-undecylenic acid, 30 mL of triethyl aluminum (1.0 mol/L hexane solution), and 5.0 mL of MAO ( 1.53mol/L toluene solution), at 30°C, maintaining an ethylene pressure of 10 atm, and stirring the reaction for 30 min. Finally, it is neutralized with an ethanol solution acidified with 10 wt% hydrochloric acid to obtain a polymer. The results are shown in Table 1.
  • Ethylene polymerization was carried out according to the ethylene polymerization procedure described in Example 10, but the polymerization temperature was 60°C. The results are shown in Table 1.
  • a 1L stainless steel polymerization vessel equipped with mechanical stirring was continuously dried at 130°C for 6hrs, vacuumed while hot, and replaced with N 2 gas 3 times. Inject 500ml of hexane, then add 5.0ml methylaluminoxane (MAO) (1.53mol/l toluene solution), add 3.8mg (2.5 ⁇ mol) complex Ni3, 10ml 1-hexene. At 60°C, maintaining an ethylene pressure of 10 atm, vigorously stir the reaction for 30 minutes. It was neutralized with an ethanol solution acidified with 10 wt% hydrochloric acid to obtain a polymer. The results are shown in Table 1.
  • a 1L stainless steel polymerization vessel equipped with mechanical stirring was continuously dried at 130°C for 6hrs, vacuumed while hot, and replaced with N 2 gas 3 times. Inject 500 ml of hexane, then add 5.0 ml of methyl aluminoxane (MAO) (1.53 mol/l toluene solution), and add 5.5 mg (7.5 ⁇ mol) of comparative catalyst A. At 60°C, maintaining an ethylene pressure of 10 atm, vigorously stir the reaction for 30 minutes. It was neutralized with an ethanol solution acidified with 10 wt% hydrochloric acid to obtain a polymer. The results are shown in Table 1.
  • Example 1 Ni1 7.62 51.0 1.02
  • Example 2 Ni1 8.33 38.4 1.05
  • Example 3 Ni1 8.62 14.2 1.02
  • Example 4 Ni1 8.42 30.4 1.03
  • Example 5 Ni1 7.67 62.4 1.02
  • Example 6 Ni1 4.27 13.2 1.07
  • Example 7 Ni1 6.24 27.2 1.23
  • Example 9 Ni1 4.60 14.2 1.11
  • Example 10 Ni2 4.08 15.4 1.03
  • Example 11 Ni2 4.28 8.4 1.03
  • Example 12 Ni3 3.21 9.3 1.05
  • Example 13 Ni3 3.54 10.1 1.04 Comparative example 1 A 0.78 21.3 1.54 Comparative example 2 B 0.43 18.4 1.43
  • complexes of the present invention may be a high activity catalyst for ethylene polymerization at higher temperatures
  • the ethylene polymerization activity of the catalyst of the present invention is up to 8.62 ⁇ 10 6 g ⁇ mol -1 (Ni) ⁇ h - 1. It can catalyze the copolymerization of ethylene and higher ⁇ -olefin with high activity, and the obtained copolymer has a narrow molecular weight distribution.
  • the complex of the present invention is used as a main catalyst, the polymerization activity is much higher, and the molecular weight distribution of the obtained polymer is narrower.
  • a 1L stainless steel polymerization vessel equipped with mechanical stirring was continuously dried at 130°C for 6hrs, vacuumed while hot, and replaced with N 2 gas 3 times. Inject 500 mL of hexane, then add 5.0 mL of methylaluminoxane (MAO) (1.53 mol/l toluene solution), and add 4.1 mg (2.5 ⁇ mol) of the complex Ni4. At 60°C, maintaining an ethylene pressure of 10 atm, vigorously stir the reaction for 30 minutes. It is neutralized with an ethanol solution acidified with 10 wt% hydrochloric acid to obtain polyethylene. The results are shown in Table 2.
  • MAO methylaluminoxane
  • Ethylene polymerization was carried out according to the ethylene polymerization procedure described in Example 14, but the polymerization temperature was 100°C. The results are shown in Table 2.
  • Ethylene polymerization was carried out according to the ethylene polymerization procedure described in Example 14, but 0.75 mL of diethyl aluminum monochloride (2.0 mol/L toluene solution) was used instead of the methylaluminoxane. The results are shown in Table 2.
  • a 1L stainless steel polymerization vessel equipped with mechanical stirring was continuously dried at 130°C for 6hrs, vacuumed while hot, and replaced with N 2 gas 3 times. Inject 500 mL of hexane, then add 5.0 mL of methylaluminoxane (MAO) (1.53 mol/L toluene solution), and add 4.7 mg (2.5 ⁇ mol) of the complex Ni5. At 60°C, maintaining an ethylene pressure of 10 atm, vigorously stir the reaction for 30 minutes. It is neutralized with an ethanol solution acidified with 10 wt% hydrochloric acid to obtain polyethylene. The results are shown in Table 2.
  • MAO methylaluminoxane
  • Ethylene polymerization was carried out according to the ethylene polymerization procedure described in Example 17, but the polymerization time was 10 min. The results are shown in Table 2.
  • Ethylene polymerization was carried out according to the ethylene polymerization procedure described in Example 17, but the polymerization time was 20 min. The results are shown in Table 2.
  • Ethylene polymerization was carried out according to the ethylene polymerization procedure described in Example 17, but the polymerization time was 60 min. The results are shown in Table 2.
  • Ethylene polymerization was carried out according to the ethylene polymerization procedure described in Example 17, but the polymerization temperature was 100°C. The results are shown in Table 2.
  • a 1L stainless steel polymerization vessel equipped with mechanical stirring was continuously dried at 130°C for 6hrs, vacuumed while hot, and replaced with N 2 gas 3 times. Inject 500mL of hexane, 10mL of 1-hexene, then add 5.0mL of methylaluminoxane (MAO) (1.53mol/L toluene solution), add 4.7mg (2.5 ⁇ mol) of complex Ni5, and then vacuum and use Ethylene was replaced 3 times. At 100°C, maintaining an ethylene pressure of 10 atm, vigorously stir the reaction for 30 minutes. It is neutralized with an ethanol solution acidified with 10 wt% hydrochloric acid to obtain polyethylene. The results are shown in Table 2.
  • MAO methylaluminoxane
  • a 1L stainless steel polymerization vessel equipped with mechanical stirring was continuously dried at 130°C for 6 hours, evacuated while hot, and replaced with N 2 gas 3 times. Inject 500mL of hexane into the polymerization system, while adding 6mL 10-undecen-1-ol, 30mL triethylaluminum (1.0mol/L hexane solution), 5.0mL methylaluminoxane MAO (1.53mol/ L toluene solution), 4.7 mg (2.5 ⁇ mol) of the complex Ni5, at 30° C., maintaining an ethylene pressure of 10 atm, and stirring and reacting for 30 min. Finally, it is neutralized with an ethanol solution acidified with 5% hydrochloric acid by volume to obtain a polymer. The results are shown in Table 2.
  • Ethylene copolymerization was carried out according to the ethylene copolymerization procedure described in Example 23, but the polymerization temperature was 60°C. The results are shown in Table 2.
  • a 1L stainless steel polymerization vessel equipped with mechanical stirring was continuously dried at 130°C for 6 hours, evacuated while hot, and replaced with N 2 gas 3 times. Inject 500mL of hexane into the polymerization system, while adding 5.52g of 10-undecylenic acid, 30mL of triethylaluminum (1.0mol/L of hexane solution), 5.0mL of methylaluminoxane MAO (1.53mol/L of Toluene solution), 4.7 mg (2.5 ⁇ mol) of complex Ni5, at 30° C., maintaining an ethylene pressure of 10 atm, and stirring and reacting for 30 min. Finally, it is neutralized with an ethanol solution acidified with 5% hydrochloric acid by volume to obtain a polymer. The results are shown in Table 2.
  • Ethylene copolymerization was carried out according to the ethylene copolymerization procedure described in Example 25, but the polymerization temperature was 60°C. The results are shown in Table 2.
  • a 1L stainless steel polymerization vessel equipped with mechanical stirring was continuously dried at 130°C for 6hrs, vacuumed while hot, and replaced with N 2 gas 3 times. Inject 500 mL of hexane, then add 5.0 mL of methylaluminoxane (MAO) (1.53 mol/L toluene solution), and add 4.8 mg (2.5 ⁇ mol) of the complex Ni6. At 100°C, maintaining an ethylene pressure of 10 atm, vigorously stir the reaction for 30 minutes. It is neutralized with an ethanol solution acidified with 10 wt% hydrochloric acid to obtain polyethylene. The results are shown in Table 2.
  • MAO methylaluminoxane
  • a 1L stainless steel polymerization vessel equipped with mechanical stirring was continuously dried at 130°C for 6hrs, vacuumed while hot, and replaced with N 2 gas 3 times. Inject 500 mL of hexane, then add 5.0 mL of methylaluminoxane (MAO) (1.53 mol/L toluene solution), and add 4.2 mg (2.5 ⁇ mol) of the complex Ni7. At 60°C, maintaining an ethylene pressure of 10 atm, vigorously stir the reaction for 30 minutes. It is neutralized with an ethanol solution acidified with 10 wt% hydrochloric acid to obtain polyethylene. The results are shown in Table 2.
  • MAO methylaluminoxane
  • Ethylene polymerization was carried out according to the ethylene polymerization procedure described in Example 28, but the polymerization temperature was 100°C. The results are shown in Table 2.
  • Ethylene polymerization was carried out according to the ethylene polymerization procedure described in Example 30, but the polymerization temperature was 100°C. The results are shown in Table 2.
  • a 1L stainless steel polymerization vessel equipped with mechanical stirring was continuously dried at 130°C for 6hrs, vacuumed while hot, and replaced with N 2 gas 3 times. Inject 500 mL of hexane, then add 5.0 mL of methylaluminoxane (MAO) (1.53 mol/L toluene solution), 10 mL of 1-hexene, and add 4.6 mg (2.5 ⁇ mol) of the complex Ni8. At 100°C, maintaining an ethylene pressure of 10 atm, vigorously stir the reaction for 30 minutes. It was neutralized with an ethanol solution acidified with 10 wt% hydrochloric acid to obtain a polymer. The results are shown in Table 2.
  • MAO methylaluminoxane
  • Ethylene polymerization A 1L stainless steel polymerizer equipped with mechanical stirring was continuously dried at 130°C for 6hrs, vacuumed while hot, and replaced with N 2 gas for 3 times. Inject 500 mL of hexane, then add 5.0 mL of methylaluminoxane (MAO) (1.53 mol/L toluene solution), and add 5.5 mg (7.5 ⁇ mol) of comparative catalyst C. At 100°C, maintaining an ethylene pressure of 10 atm, vigorously stir the reaction for 30 minutes. It is neutralized with an ethanol solution acidified with 10 wt% hydrochloric acid to obtain polyethylene. The results are shown in Table 2.
  • MAO methylaluminoxane

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

本发明涉及一种式I所示的胺基亚胺金属配合物及其制备方法和应用,该配合物用于作为烯烃聚合用催化剂的主催化剂,能实现较高温度下催化乙烯聚合,制备高分子量的支化聚乙烯。

Description

胺基亚胺金属配合物及其制备方法和应用 技术领域
本发明涉及一种胺基亚胺金属配合物及其制备方法和应用。
背景技术
聚烯烃树脂与其它树脂材料相比具有优良的环境协调性,因此被广泛应用在工业和生活中。聚乙烯树脂是一种重要的聚烯烃树脂。工业化的聚乙烯催化剂有Ziegler-Natta型催化剂(参见例如DE Pat 889229(1953);IT Pat 545332(1956)和IT Pat 536899(1955);Chem.Rev.,2000,100,1169及该特辑相关文献),Phillips型催化剂(参见例如Belg.Pat.530617(1955);Chem.Rev.1996,96,3327)和茂金属型催化剂(参见例如W.Kaminsky,M乙基alorganic Catalysts for Synthesis and Poly甲基rization,Berlin:Springer,1999),以及近年来快速发展的后过渡金属配合物型的高效乙烯齐聚和聚合催化剂。例如1995年,Brookhart等报道了一类α-二亚胺Ni(II)的配合物,可以高活性的聚合乙烯。
α-二亚胺镍催化剂由于具有高活性且聚合物分子量和支化度可以在很大范围内调控而倍受关注。Du Pont等公司申请了多个专利(WO 96/23010,WO 98/03521,WO 98/40374,WO 99/05189,WO 99/62968,WO 00/06620,US 6,103,658,US 6,660,677)。这类α-二亚胺镍催化剂在甲基铝氧烷或者烷基铝作用下,在常温或低温下能高活性的催化乙烯齐聚或聚合。但当升高反应温度高于50℃时,这类α-二亚胺镍催化剂活性通常迅速降低,所制备的聚乙烯的分子量随聚合温度提高而迅速下降。
Bazan等报道了ɑ-亚胺酰胺镍催化剂可催化乙烯活性聚合(Macromolecules,2003,36,9731-9735),并在此基础上合成了ɑ-酮-β-二亚胺镍催化剂(Chem.Commun.2009,6177-6179)。使用该催化剂在-10℃下催化乙烯、丙烯活性聚合,得到分子量分布1.1以下的烯烃产物。Long等人报道了一种大位阻的ɑ-二亚胺镍催化剂能在60℃下催化乙烯活性聚合,分子量分布为1.11(ACS Catalysis 2014,4,2501-2504)。中山大学伍青研究组开发研究的2-氨甲基吡啶镍催化剂也可实现乙烯活性聚合(Chem.Commun,2010,46,4321-4323)。
当前的后过渡金属催化剂乙烯活性聚合的方式,一种是降低聚合温度,在低温下(<5℃)下抑制链转移的发生以达到活性聚合,另一种是依靠增大配体位阻来抑制链转移,以达到更高温度下的活性聚合。然而过低的温度不适用于现有的工业反应装置,过大的配体位阻又使得催化剂的设计合成变得更加困难。因而开发合成较为简单,且耐高温的活性聚合催化剂具有重要的意义。
发明内容
本发明目的之一是克服现有技术存在的不足,提供一种具有良好热稳定性的胺基亚胺金属配合物,以实现较高温度下催化乙烯聚合,制备高分子量的支化聚乙烯。
在第一个方面,本发明提供了如式I所示的胺基亚胺金属配合物:
Figure PCTCN2020125279-appb-000001
其中,R 1和R 2各自独立地选自含取代基Q或不含取代基Q的C1-C30烃基;R 3独立地选自氢和含取代基Q或不含取代基Q的C1-C20烃基;R 5-R 8各自独立地选自氢、卤素、羟基、含取代基Q或不含取代基Q的C1-C20烃基,并且R 5-R 8任选地相互连接以形成环或环体系;R 12独立地选自含取代基Q或不含取代基Q的C1-C20烃基;Y独立地选自VIA族非金属原子;M独立地选自Ⅷ族金属;X独立地选自卤素、含取代基Q或不含取代基Q的C1-C10烃基和含取代基Q或不含取代基Q的C1-C10烃氧基。
在一些实施方案中,在所述式I中,R 1和R 2独立地选自含取代基Q或不含取代基Q的C1-C20烷基和含取代基Q或不含取代基Q的C6-C20芳基。优选地,R 1和/或R 2是如式A所示的基团:
Figure PCTCN2020125279-appb-000002
其中,R 1-R 5各自独立地选自氢、卤素、羟基、含取代基Q或不含取代基Q的C1-C20烷基、含取代基Q或不含取代基Q的C2-C20烯基、含取代基Q或不含取代基Q的C2-C20炔基、含取代基Q或不含取代基Q的C1-C20烷氧基、含取代基Q或不含取代基Q的C2-C20烯氧基、含取代基Q或不含取代基Q的C2-C20炔氧基、含取代基Q或不含取代基Q的C6-C20芳基、含取代基Q或不含取代基Q的C6-C20芳氧基、含取代基Q或不含取代基Q的C7-C20芳烷基、含取代基Q或不含取代基Q的C7-C20芳烷氧基、含取代基Q或不含取代基Q的C7-C20烷芳基和含取代基Q或不含取代基Q的C7-C20烷芳氧基,并且R 1-R 5任选地相互连接形成环或环体系。优选地,R 1-R 5各自独立地选自氢、卤素、羟基、含取代基Q或不含取代基Q的C1-C10烷基、含取代基Q或不含取代基Q的C2-C10烯基、含取代基Q或不含取代基Q的C2-C10炔基、含取代基Q或不含取代基Q的C1-C10烷氧基、含取代基Q或不含取代基Q的C2-C10烯氧基、含取代基Q或不含取代基Q的C2-C10炔氧基、含取代基Q或不含取代基Q的C6-C15芳基、含取代基Q或不含取代基Q的C6-C15芳氧基、含取代基Q或不含取代基Q的C7-C15芳烷基、含取代基Q或不含取代基Q的C7-C15芳烷氧基、含取代基Q或不含取代基Q的C7-C15烷芳基和含取代基Q或不含取代基Q的C7-C15烷芳氧基。
在一些实施方案中,M独立地选自镍和钯。
在一些实施方案中,Y独立地选自O和S。
在一些实施方案中,X独立地选自卤素、含取代基Q或不含取代基Q的C1-C10烷基和含取代基Q或不含取代基Q的C1-C10烷氧基,优选独立地选自卤素、含取代基Q或不含取代基Q的C1-C6烷基和含取代基Q或不含取代基Q的C1-C6烷氧基。
在一些实施方案中,在所述式I中,R 12独立地选自含取代基Q或不含取代基Q的 C1-C20烷基,优选含取代基Q或不含取代基Q的C1-C10烷基,更优选含取代基Q或不含取代基Q的C1-C6烷基。
在一些实施方案中,在所述式I中,R 3选自含取代基Q或不含取代基Q的C1-C20烷基、含取代基Q或不含取代基Q的C6-C20芳基、含取代基Q或不含取代基Q的C7-C20芳烷基和含取代基Q或不含取代基Q的C7-C20烷芳基。优选地,R 3选自含取代基Q或不含取代基Q的C1-C10烷基、含取代基Q或不含取代基Q的C6-C10芳基、含取代基Q或不含取代基Q的C7-C15芳烷基和含取代基Q或不含取代基Q的C7-C15烷芳基。更优选地,R 3选自含取代基Q或不含取代基Q的C1-C6烷基,如甲基、乙基、丙基或丁基。
在一些实施方案中,所述取代基Q选自卤素、羟基、C1-C10烷基、卤代的C1-C10烷基、C1-C10烷氧基和卤代的C1-C10烷氧基,优选选自卤素、羟基、C1-C6烷基、卤代的C1-C6烷基、C1-C6烷氧基和卤代的C1-C6烷氧基。
所述C1-C6烷基的实例包括甲基、乙基、正丙基、异丙基、正丁基、异丁基、正戊基、异戊基、正己基、异己基和3,3-二甲基丁基。
所述C1-C6烷氧基的实例包括甲氧基、乙氧基、正丙氧基、异丙氧基、正丁氧基、异丁氧基、正戊氧基、异戊氧基、正己氧基、异己氧基和3,3-二甲基丁氧基。
本文中使用的术语“卤素”是指氟、氯、溴或碘。
在一些实施方案中,本发明的胺基亚胺金属配合物如式III所示:
Figure PCTCN2020125279-appb-000003
其中,R 1-R 11各自独立地选自氢、卤素、羟基、含取代基Q或不含取代基Q的C1-C20烷基、含取代基Q或不含取代基Q的C2-C20烯基、含取代基Q或不含取代基Q的C2-C20炔基、含取代基Q或不含取代基Q的C1-C20烷氧基、含取代基Q或不含取代基Q的C2-C20烯氧基、含取代基Q或不含取代基Q的C2-C20炔氧基、含取代基Q或不含取代基Q的C6-C20芳基、含取代基Q或不含取代基Q的C6-C20芳氧基、含取代基Q或不含取代基Q的C7-C20芳烷基、含取代基Q或不含取代基Q的C7-C20芳烷氧基、含取代基Q或不含取代基Q的C7-C20烷芳基和含取代基Q或不含取代基Q的C7-C20烷芳氧基;R 3、R 12、Y、M和X如前面针对式I所定义。
在一些实施方案中,所述R 1-R 11各自独立地选自氢、卤素、羟基、含取代基Q或不含取代基Q的C1-C10烷基、含取代基Q或不含取代基Q的C2-C10烯基、含取代基Q或不含取代基Q的C2-C10炔基、含取代基Q或不含取代基Q的C1-C10烷氧基、含取代 基Q或不含取代基Q的C2-C10烯氧基、含取代基Q或不含取代基Q的C2-C10炔氧基、含取代基Q或不含取代基Q的C6-C15芳基、含取代基Q或不含取代基Q的C6-C15芳氧基、含取代基Q或不含取代基Q的C7-C15芳烷基、含取代基Q或不含取代基Q的C7-C15芳烷氧基、含取代基Q或不含取代基Q的C7-C15烷芳基和含取代基Q或不含取代基Q的C7-C15烷芳氧基。优选地,R 1-R 11各自独立地选自氢、C1-C10烷基、卤代的C1-C10烷基、C1-C10烷氧基、卤代的C1-C10烷氧基和卤素,更优选选自氢、C1-C6烷基、卤代的C1-C6烷基、C1-C6烷氧基、卤代的C1-C6烷氧基和卤素。
在一些实施方案中,本发明的胺基亚胺金属配合物选自下组:
式III所示的配合物,其中R 1=R 3=异丙基,R 2=R 4=R 5=R 6=R 7=R 10=H,R 8=R 9=R 11=CH 3,R 3=CH 3,R 12=甲基,M=Ni,Y=O,X=Br;
式III所示的配合物,其中R 1=R 3=异丙基,R 2=R 4=R 5=R 6=R 7=R 10=H,R 8=R 9=R 11=CH 3,R 3=乙基,R 12=甲基,M=Ni,Y=O,X=Br;
式III所示的配合物,其中R 1=R 3=乙基,R 2=R 4=R 5=R 6=R 7=R 10=H,R 8=R 9=R 11=CH 3,R 3=CH 3,R 12=甲基,M=Ni,Y=O,X=Br;
式III所示的配合物,其中R 1=R 3=乙基,R 2=R 4=R 5=R 6=R 7=R 10=H,R 8=R 9=R 11=CH 3,R 3=乙基,R 12=甲基,M=Ni,Y=O,X=Br;
式III所示的配合物,其中R 1=R 3=甲基,R 2=R 4=R 5=R 6=R 7=R 10=H,R 8=R 9=R 11=CH 3,R 3=CH 3,R 12=甲基,M=Ni,Y=O,X=Br;
式III所示的配合物,其中R 1=R 3=甲基,R 2=R 4=R 5=R 6=R 7=R 10=H,R 8=R 9=R 11=CH 3,R 3=乙基,R 12=甲基,M=Ni,Y=O,X=Br;
式III所示的配合物,其中R 1=R 3=异丙基,R 2=R 4=R 5=R 6=R 7=R 10=H,R 8=R 9=R 11=CH 3,R 3=CH 3,R 12=乙基,M=Ni,Y=O,X=Br;
式III所示的配合物,其中R 1=R 3=异丙基,R 2=R 4=R 5=R 6=R 7=R 10=H,R 8=R 9=R 11=CH 3,R 3=乙基,R 12=乙基,M=Ni,Y=O,X=Br;
式III所示的配合物,其中R 1=R 3=乙基,R 2=R 4=R 5=R 6=R 7=R 10=H,R 8=R 9=R 11=CH 3,R 3=CH 3,R 12=乙基,M=Ni,Y=O,X=Br;
式III所示的配合物,其中R 1=R 3=乙基,R 2=R 4=R 5=R 6=R 7=R 10=H,R 8=R 9=R 11=CH 3,R 3=乙基,R 12=乙基,M=Ni,Y=O,X=Br;
式III所示的配合物,其中R 1=R 3=甲基,R 2=R 4=R 5=R 6=R 7=R 10=H,R 8=R 9=R 11=CH 3,R 3=CH 3,R 12=乙基,M=Ni,Y=O,X=Br;
式III所示的配合物,其中R 1=R 3=甲基,R 2=R 4=R 5=R 6=R 7=R 10=H,R 8=R 9=R 11=CH 3,R 3=乙基,R 12=乙基,M=Ni,Y=O,X=Br;
式III所示的配合物,其中R 1=R 3=甲基,R 2=R 4=R 5=R 6=R 7=R 10=H,R 8=R 9=R 11=CH 3,R 3=CH 3,R 12=i-Pr,M=Ni,Y=O,X=Br;
式III所示的配合物,其中R 1-R 3=甲基,R 4-R 7=R 10=H,R 8=R 9=R 11=CH 3,R 3=乙基,R 12=乙基,M=Ni,Y=O,X=Br;
式III所示的配合物,其中R 1-R 3=甲基,R 4-R 7=R 10=H,R 8=R 9=R 11=CH 3,R 3=CH 3,R 12=乙基,M=Ni,Y=O,X=Br;
式III所示的配合物,其中R 1=R 3=甲基,R 2=Br,R 4-R 7=R 10=H,R 8=R 9=R 11=R 3=CH 3, R 12=乙基,M=Ni,Y=O,X=Br;
式III所示的配合物,其中R 1=R 3=甲基,R 2=Br,R 4-R 7=R 10=H,R 8=R 9=R 11=CH 3,R 3=乙基,R 12=乙基,M=Ni,Y=O,X=Br;
式III所示的配合物,其中R 1=R 3=F,R 2=R 4-R 7=R 10=H,R 8=R 9=R 11=CH 3,R 3=乙基,R 12=乙基,M=Ni,Y=O,X=Br;
式III所示的配合物,其中R 1=R 3=Cl,R 2=R 4-R 7=R 10=H,R 8=R 9=R 11=CH 3,R 3=乙基,R 12=乙基,M=Ni,Y=O,X=Br;
式III所示的配合物,其中R 1=R 3=Br,R 2=R 4-R 7=R 10=H,R 8=R 9=R 11=CH 3,R 3=乙基,R 12=乙基,M=Ni,Y=O,X=Br;
式III所示的配合物,其中R 1=R 3=甲基,R 2=R 4-R 7=R 10=H,R 8=R 9=R 11=CH 3,R 3=乙基,R 12=异丁基,M=Ni,Y=O,X=Br;
式III所示的配合物,其中R 1=R 3=乙基,R 2=R 4-R 7=R 10=H,R 8=R 9=R 11=CH 3,R 3=CH 3,R 12=异丁基,M=Ni,Y=O,X=Br;
式III所示的配合物,其中R 1=R 3=异丙基,R 2=R 4-R 7=R 10=H,R 8=R 9=R 11=CH 3,R 3=CH 3,R 12=异丁基,M=Ni,Y=O,X=Br;
式III所示的配合物,其中R 1-R 3=甲基,R 4-R 7=R 10=H,R 8=R 9=R 11=CH 3,R 3=CH 3,R 12=异丁基,M=Ni,Y=O,X=Br;
式III所示的配合物,其中R 1=R 3=甲基,R 2=Br,R 4-R 7=R 10=H,R 8=R 9=R 11=甲基,R 3=异丙基,R 12=异丁基,M=Ni,Y=O,X=Br;
式III所示的配合物,其中R 1=R 3=F,R 2=R 4-R 7=R 10=H,R 8=R 9=R 11=CH 3,R 3=异丙基,R 12=异丁基,M=Ni,Y=O,X=Br;
式III所示的配合物,其中R 1=R 3=Cl,R 2=R 4-R 7=R 10=H,R 8=R 9=R 11=CH 3,R 3=异丙基,R 12=异丁基,M=Ni,Y=O,X=Br;
式III所示的配合物,其中R 1=R 3=Br,R 2=R 4-R 7=R 10=H,R 8=R 9=R 11=CH 3,R 3=异丙基,R 12=异丁基,M=Ni,Y=O,X=Br;
式III所示的配合物,其中R 1=R 3=甲基,R 2=R 4-R 7=R 10=H,R 8=R 9=CH 3,R 11=溴代甲基,R 3=异丙基,R 12=乙基,M=Ni,Y=O,X=Br;
式III所示的配合物,其中R 1=R 3=乙基,R 2=R 4-R 7=R 10=H,R 8=R 9=CH 3,R 11=CH 2Br,R 3=异丙基,R 12=乙基,M=Ni,Y=O,X=Br;
式III所示的配合物,其中R 1=R 3=异丙基,R 2=R 4-R 7=R 10=H,R 8=R 9=CH 3,R 11=CH 2Br,R 3=乙基,R 12=乙基,M=Ni,Y=O,X=Br;
式III所示的配合物,其中R 1-R 3=甲基,R 4-R 7=R 10=H,R 8=R 9=CH 3,R 11=CH 2Br,R 12=乙基,M=Ni,Y=O,X=Br;
式III所示的配合物,其中R 1=R 3=甲基,R 2=Br,R 4-R 7=R 10=H,R 8=R 9=甲基,R 3=乙基,R 11=CH 2Br,R 12=乙基,M=Ni,Y=O,X=Br;
式III所示的配合物,其中R 1=R 3=F,R 2=R 4-R 7=R 10=H,R 8=R 9=甲基,R 11=CH 2Br,R 3=异丁基,R 12=乙基,M=Ni,Y=O,X=Br;
式III所示的配合物,其中R 1=R 3=Cl,R 2=R 4-R 7=R 10=H,R 8=R 9=甲基,R 11=CH 2Br,R 3=异丁基,R 12=乙基,M=Ni,Y=O,X=Br;
式III所示的配合物,其中R 1=R 3=Br,R 2=R 4-R 7=R 10=H,R 8=R 9=甲基,R 11=CH 2Br,R 3=异丁基,R 12=乙基,M=Ni,Y=O,X=Br。
在一个亚方面,本发明的胺基亚胺金属配合物具有如式IV所示的结构:
Figure PCTCN2020125279-appb-000004
其中,R 1和R 2各自独立地选自含取代基Q或不含取代基Q的C1-C30烃基;R 21-R 24各自独立地选自氢、卤素、羟基、含取代基Q或不含取代基Q的C1-C20烃基和含取代基Q或不含取代基Q的C1-C20烃氧基,并且R 21-R 24任选地相互连接形成环或环体系,优选取代或未取代的苯环;R 5独立地选自氢和含取代基Q或不含取代基Q的C1-C20烃基;R 11独立地选自含取代基Q或不含取代基Q的C1-C20烃基;Y独立地选自VIA族非金属原子;M独立地选自Ⅷ族金属;X独立地选自卤素、含取代基Q或不含取代基Q的C1-C10烃基和含取代基Q或不含取代基Q的C1-C10烃氧基。
本文中使用的术语“取代的”是指例如被取代基Q取代。
在此亚方面的一些实施方案中,所述R 1和R 2独立地选自含取代基Q或不含取代基Q的C1-C20烷基和含取代基Q或不含取代基Q的C6-C20芳基。优选地,R 1和/或R 2是如式A所示的基团:
Figure PCTCN2020125279-appb-000005
其中,R 1-R 5各自独立地选自氢、卤素、羟基、含取代基Q或不含取代基Q的C1-C20烷基、含取代基Q或不含取代基Q的C2-C20烯基、含取代基Q或不含取代基Q的C2-C20炔基、含取代基Q或不含取代基Q的C1-C20烷氧基、含取代基Q或不含取代基Q的C2-C20烯氧基、含取代基Q或不含取代基Q的C2-C20炔氧基、含取代基Q或不含取代基Q的C6-C20芳基、含取代基Q或不含取代基Q的C6-C20芳氧基、含取代基Q或不含取代基Q的C7-C20芳烷基、含取代基Q或不含取代基Q的C7-C20芳烷氧基、含取代基Q或不含取代基Q的C7-C20烷芳基和含取代基Q或不含取代基Q的C7-C20烷芳氧基,并且R 1-R 5任选地相互连接形成环或环体系。优选地,R 1-R 5各自独立地选自氢、卤素、羟基、含取代基Q或不含取代基Q的C1-C10烷基、含取代基Q或不含取代基Q的C2-C10烯基、含取代基Q或不含取代基Q的C2-C10炔基、含取代基Q或不含取代基Q的C1-C10烷氧基、含取代基Q或不含取代基Q的C2-C10烯氧基、含取代基Q或不含取代基Q的C2-C10炔氧基、含取代基Q或不含取代基Q的C6-C15芳基、含取代基Q或 不含取代基Q的C6-C15芳氧基、含取代基Q或不含取代基Q的C7-C15芳烷基、含取代基Q或不含取代基Q的C7-C15芳烷氧基、含取代基Q或不含取代基Q的C7-C15烷芳基和含取代基Q或不含取代基Q的C7-C15烷芳氧基。更优选地,R 1-R 5各自独立地选自氢、卤素、羟基、含取代基Q或不含取代基Q的C1-C6烷基、含取代基Q或不含取代基Q的C2-C6烯基、含取代基Q或不含取代基Q的C2-C6炔基、含取代基Q或不含取代基Q的C1-C6烷氧基、含取代基Q或不含取代基Q的C2-C6烯氧基、含取代基Q或不含取代基Q的C2-C6炔氧基、含取代基Q或不含取代基Q的C6-C10芳基、含取代基Q或不含取代基Q的C7-C10芳烷基、含取代基Q或不含取代基Q的C7-C10烷芳基、含取代基Q或不含取代基Q的C6-C10芳氧基、含取代基Q或不含取代基Q的C7-C10芳烷氧基和含取代基Q或不含取代基Q的C7-C10烷芳氧基。
在此亚方面的一些实施方案中,M独立地选自镍和钯。
在此亚方面的一些实施方案中,Y独立地选自O和S。
在此亚方面的一些实施方案中,X独立地选自卤素、含取代基Q或不含取代基Q的C1-C10烷基和含取代基Q或不含取代基Q的C1-C10烷氧基,优选独立地选自卤素、含取代基Q或不含取代基Q的C1-C6烷基和含取代基Q或不含取代基Q的C1-C6烷氧基。
在此亚方面的一些实施方案中,R 11独立地选自含取代基Q或不含取代基Q的C1-C20烷基,优选含取代基Q或不含取代基Q的C1-C10烷基,更优选含取代基Q或不含取代基Q的C1-C6烷基。
在此亚方面的一些实施方案中,R 5独立地选自含取代基Q或不含取代基Q的C1-C20烷基、含取代基Q或不含取代基Q的C6-C20芳基、含取代基Q或不含取代基Q的C7-C20芳烷基和含取代基Q或不含取代基Q的C7-C20烷芳基。优选地,R 5独立地选自含取代基Q或不含取代基Q的C1-C10烷基、含取代基Q或不含取代基Q的C6-C10芳基、含取代基Q或不含取代基Q的C7-C15芳烷基和含取代基Q或不含取代基Q的C7-C15烷芳基。更优选地,R 5独立地选自含取代基Q或不含取代基Q的C1-C6烷基,如甲基、乙基、丙基或丁基。
在此亚方面的一些实施方案中,所述取代基Q选自卤素、羟基、C1-C10烷基、卤代的C1-C10烷基、C1-C10烷氧基和卤代的C1-C10烷氧基,优选选自卤素、羟基、C1-C6烷基、卤代的C1-C6烷基、C1-C6烷氧基和卤代的C1-C6烷氧基。优选地,所述C1-C6烷基选自甲基、乙基、正丙基、异丙基、正丁基、异丁基、正戊基、异戊基、正己基、异己基和3,3-二甲基丁基。优选地,所述C1-C6烷氧基选自甲氧基、乙氧基、正丙氧基、异丙氧基、正丁氧基、异丁氧基、正戊氧基、异戊氧基、正己氧基、异己氧基和3,3-二甲基丁氧基。
在此亚方面的一些实施方案中,R 21-R 24各自独立地选自氢、卤素、羟基、含取代基Q或不含取代基Q的C1-C20烷基、含取代基Q或不含取代基Q的C2-C20烯基、含取代基Q或不含取代基Q的C2-C20炔基、含取代基Q或不含取代基Q的C1-C20烷氧基、含取代基Q或不含取代基Q的C2-C20烯氧基、含取代基Q或不含取代基Q的C2-C20炔氧基、含取代基Q或不含取代基Q的C6-C20芳基、含取代基Q或不含取代基Q的C7-C20芳烷基、含取代基Q或不含取代基Q的C7-C20烷芳基、取代基或不含取代基的C6-C20芳氧基、含取代基Q或不含取代基Q的C7-C20芳烷氧基和含取代基Q或不含取代基Q 的C7-C20烷芳氧基,并且R 21-R 24任选地相互连接形成环或环体系。优选地,R 21-R 24各自独立地选自氢、卤素、羟基、含取代基Q或不含取代基Q的C1-C10烷基、含取代基Q或不含取代基Q的C2-C10烯基、含取代基Q或不含取代基Q的C2-C10炔基、含取代基Q或不含取代基Q的C1-C10烷氧基、含取代基Q或不含取代基Q的C2-C10烯氧基、含取代基Q或不含取代基Q的C2-C10炔氧基、含取代基Q或不含取代基Q的C6-C15芳基、含取代基Q或不含取代基Q的C7-C15芳烷基、含取代基Q或不含取代基Q的C7-C15烷芳基、含取代基Q或不含取代基Q的C6-C15芳氧基、含取代基Q或不含取代基Q的C7-C15芳烷氧基和含取代基Q或不含取代基Q的C7-C15烷芳氧基。更优选地,R 21-R 24各自独立地选自氢、C1-C10烷基、卤代的C1-C10烷基、C1-C10烷氧基、卤代的C1-C10烷氧基和卤素,更优选选自氢、C1-C6烷基、卤代的C1-C6烷基、C1-C6烷氧基、卤代的C1-C6烷氧基和卤素。
在此亚方面的一些实施方案中,本发明的胺基亚胺金属配合物具有如式IVa所示的结构:
Figure PCTCN2020125279-appb-000006
其中R 31-R 34具有与式IV中R 21-R 24相同的含义,优选地R 33和R 34为氢,并且R 1、R 2、R 5、R 11、Y、M和X如前面针对式IV所定义。
在此亚方面的一些实施方案中,本发明的胺基亚胺金属配合物如下式V或者V’所示:
Figure PCTCN2020125279-appb-000007
Figure PCTCN2020125279-appb-000008
其中各符号如前面所定义。
在此亚方面的一些实施方案中,本发明的胺基亚胺金属配合物选自下组:
1)式V所示配合物,其中R 1=R 3=R 4=R 6=异丙基,R 2=R 5=R 7-R 10=R 21=R 22=H,R 5=CH 3,R 11=乙基,M=Ni,Y=O,X=Br;
2)式V所示配合物,其中R 1=R 3=R 4=R 6=乙基,R 2=R 5=R 7-R 10=R 21=R 22=H,R 5=CH 3,R 11=乙基,M=Ni,Y=O,X=Br;
3)式V所示配合物,其中R 1=R 3=R 4=R 6=甲基,R 2=R 5=R 7-R 10=R 21=R 22=H,R 5=CH 3,R 11=乙基,M=Ni,Y=O,X=Br;
4)式V所示配合物,其中R 1-R 6=甲基,R 7-R 10=R 21=R 22=H,R 5=CH 3,R 11=乙基,M=Ni,Y=O,X=Br;
5)式V所示配合物,其中R 1=R 3=R 4=R 6=Br,R 2=R 5=R 7-R 10=R 21=R 22=H,R 5=CH 3,R 11=乙基,M=Ni,Y=O,X=Br;
6)式V所示配合物,其中R 1=R 3=R 4=R 6=Cl,R 2=R 5=R 7-R 10=R 21=R 22=H,R 5=CH 3,R 11=乙基,M=Ni,Y=O,X=Br;
7)式V所示配合物,其中R 1=R 3=R 4=R 6=F,R 2=R 5=R 7-R 10=R 21=R 22=H,R 5=CH 3,R 11=乙基,M=Ni,Y=O,X=Br;
8)式V所示配合物,其中R 1=R 3=R 4=R 6=异丙基,R 2=R 5=R 7-R 10=R 21=R 22=H,R 5=R 11=乙基,M=Ni,Y=O,X=Br;
9)式V所示配合物,其中R 1=R 3=R 4=R 6=乙基,R 2=R 5=R 7-R 10=R 21=R 22=H,R 5=R 11=乙基,M=Ni,Y=O,X=Br;
10)式V所示配合物,其中R 1=R 3=R 4=R 6=甲基,R 2=R 5=R 7-R 10=R 21=R 22=H,R 5=R 11=乙基,M=Ni,Y=O,X=Br;
11)式V所示配合物,其中R 1-R 6=甲基,R 7-R 10=R 21=R 22=H,R 5=R 11=乙基,M=Ni,Y=O,X=Br;
12)式V所示配合物,其中R 1=R 3=R 4=R 6=Br,R 2=R 5=R 7-R 10=R 21=R 22=H,R 5=R 11=乙基,M=Ni,Y=O,X=Br;
13)式V所示配合物,其中R 1=R 3=R 4=R 6=Cl,R 2=R 5=R 7-R 10=R 21=R 22=H,R 5=R 11=乙基,M=Ni,Y=O,X=Br;
14)式V所示配合物,其中R 1=R 3=R 4=R 6=F,R 2=R 5=R 7-R 10=R 21=R 22=H,R 5=R 11=乙基,M=Ni,Y=O,X=Br;
15)式V所示配合物,其中R 1=R 3=R 4=R 6=异丙基,R 2=R 5=R 7-R 10=R 21=R 22=H,
R 5=CH 3,R 11=异丁基,M=Ni,Y=O,X=Br;
16)式V所示配合物,其中R 1=R 3=R 4=R 6=乙基,R 2=R 5=R 7-R 10=R 21=R 22=H,R 5=CH 3,R 11=异丁基,M=Ni,Y=O,X=Br;
17)式V所示配合物,其中R 1=R 3=R 4=R 6=甲基,R 2=R 5=R 7-R 10=R 21=R 22=H,R 5=CH 3,R 11=异丁基,M=Ni,Y=O,X=Br;
18)式V所示配合物,其中R 1-R 6=甲基,R 7-R 10=R 21=R 22=H,R 5=CH 3,R 11=异丁基,M=Ni,Y=O,X=Br;
19)式V所示配合物,其中R 1=R 3=R 4=R 6=Br,R 2=R 5=R 7-R 10=R 21=R 22=H,R 5=CH 3,R 11=异丁基,M=Ni,Y=O,X=Br;
20)式V所示配合物,其中R 1=R 3=R 4=R 6=Cl,R 2=R 5=R 7-R 10=R 21=R 22=H,R 5=CH 3,R 11=异丁基,M=Ni,Y=O,X=Br;
21)式V所示配合物,其中R 1=R 3=R 4=R 6=F,R 2=R 5=R 7-R 10=R 21=R 22=H,R 5=CH 3,R 11=异丁基,M=Ni,Y=O,X=Br;
22)式V所示配合物,其中R 1=R 3=R 4=R 6=异丙基,R 2=R 5=R 7-R 10=R 22=H,R 21=叔丁基,R 5=CH 3,R 11=乙基,M=Ni,Y=O,X=Br;
23)式V所示配合物,其中R 1=R 3=R 4=R 6=乙基,R 2=R 5=R 7-R 10=R 22=H,R 21=叔丁基,R 5=CH 3,R 11=乙基,M=Ni,Y=O,X=Br;
24)式V所示配合物,其中R 1=R 3=R 4=R 6=甲基,R 2=R 5=R 7-R 10=R 22=H,R 21=叔丁基,R 5=CH 3,R 11=乙基,M=Ni,Y=O,X=Br;
25)式V所示配合物,其中R 1-R 6=甲基,R 7-R 10=R 22=H,R 21=叔丁基,R 5=CH 3,R 11=乙基,M=Ni,Y=O,X=Br;
26)式V所示配合物,其中R 1=R 3=R 4=R 6=Br,R 2=R 5=R 7-R 10=R 22=H,R 21=叔丁基,R 5=CH 3,R 11=乙基,M=Ni,Y=O,X=Br;
27)式V所示配合物,其中R 1=R 3=R 4=R 6=Cl,R 2=R 5=R 7-R 10=R 22=H,R 21=叔丁基,R 5=CH 3,R 11=乙基,M=Ni,Y=O,X=Br;
28)式V所示配合物,其中R 1=R 3=R 4=R 6=F,R 2=R 5=R 7-R 10=R 22=H,R 21=叔丁基,R 5=CH 3,R 11=乙基,M=Ni,Y=O,X=Br;
29)式V所示配合物,其中R 1=R 3=R 4=R 6=异丙基,R 2=R 5=R 7-R 10=R 22=H,R 21=叔丁基,R 5=CH 3,R 11=异丁基,M=Ni,Y=O,X=Br;
30)式V所示配合物,其中R 1=R 3=R 4=R 6=乙基,R 2=R 5=R 7-R 10=R 22=H,R 21=叔丁基,R 5=CH 3,R 11=异丁基,M=Ni,Y=O,X=Br;
31)式V所示配合物,其中R 1=R 3=R 4=R 6=甲基,R 2=R 5=R 7-R 10=R 22=H,R 21=叔丁基,R 5=CH 3,R 11=异丁基,M=Ni,Y=O,X=Br;
32)式V所示配合物,其中R 1-R 6=甲基,R 7-R 10=R 22=H,R 21=叔丁基,R 5=CH 3,R 11=异丁基,M=Ni,Y=O,X=Br;
33)式V所示配合物,其中R 1=R 3=R 4=R 6=Br,R 2=R 5=R 7-R 10=R 22=H,R 21=叔丁基,R 5=CH 3,R 11=异丁基,M=Ni,Y=O,X=Br;
34)式V所示配合物,其中R 1=R 3=R 4=R 6=Cl,R 2=R 5=R 7-R 10=R 22=H,R 21=叔丁基, R 5=CH 3,R 11=异丁基,M=Ni,Y=O,X=Br;
35)式V所示配合物,其中R 1=R 3=R 4=R 6=F,R 2=R 5=R 7-R 10=R 22=H,R 21=叔丁基,R 5=CH 3,R 11=异丁基,M=Ni,Y=O,X=Br;
36)式V’所示配合物,其中R 1=R 3=R 4=R 6=异丙基,R 2=R 5=R 7-R 10=R 31=R 32=H,R 5=CH 3,R 11=乙基,M=Ni,Y=O,X=Br;
37)式V’所示配合物,其中R 1=R 3=R 4=R 6=乙基,R 2=R 5=R 7-R 10=R 31=R 32=H,R 5=CH 3,R 11=乙基,M=Ni,Y=O,X=Br;
38)式V’所示配合物,其中R 1=R 3=R 4=R 6=甲基,R 2=R 5=R 7-R 10=R 31=R 32=H,R 5=CH 3,R 11=乙基,M=Ni,Y=O,X=Br;
39)式V’所示配合物,其中R 1-R 6=甲基,R 7-R 10=R 31=R 32=H,R 5=CH 3,R 11=乙基,M=Ni,Y=O,X=Br;
40)式V’所示配合物,其中R 1=R 3=R 4=R 6=Br,R 2=R 5=R 7-R 10=R 31=R 32=H,R 5=CH 3,R 11=乙基,M=Ni,Y=O,X=Br;
41)式V’所示配合物,其中R 1=R 3=R 4=R 6=Cl,R 2=R 5=R 7-R 10=R 31=R 32=H,R 5=CH 3,R 11=乙基,M=Ni,Y=O,X=Br;
42)式V’所示配合物,其中R 1=R 3=R 4=R 6=F,R 2=R 5=R 7-R 10=R 31=R 32=H,R 5=CH 3,R 11=乙基,M=Ni,Y=O,X=Br;
43)式V’所示配合物,其中R 1=R 3=R 4=R 6=异丙基,R 2=R 5=R 7-R 10=R 31=R 32=H,R 5=CH 3,R 11=异丁基,M=Ni,Y=O,X=Br;
44)式V’所示配合物,其中R 1=R 3=R 4=R 6=乙基,R 2=R 5=R 7-R 10=R 31=R 32=H,R 5=CH 3,R 11=异丁基,M=Ni,Y=O,X=Br;
45)式V’所示配合物,其中R 1=R 3=R 4=R 6=甲基,R 2=R 5=R 7-R 10=R 31=R 32=H,R 5=CH 3,R 11=异丁基,M=Ni,Y=O,X=Br;
46)式V’所示配合物,其中R 1-R 6=甲基,R 7-R 10=R 31=R 32=H,R 5=CH 3,R 11=异丁基,M=Ni,Y=O,X=Br;
47)式V’所示配合物,其中R 1=R 3=R 4=R 6=Br,R 2=R 5=R 7-R 10=R 31=R 32=H,R 5=CH 3,R 11=异丁基,M=Ni,Y=O,X=Br;
48)式V’所示配合物,其中R 1=R 3=R 4=R 6=Cl,R 2=R 5=R 7-R 10=R 31=R 32=H,R 5=CH 3,R 11=异丁基,M=Ni,Y=O,X=Br;
49)式V’所示配合物,其中R 1=R 3=R 4=R 6=F,R 2=R 5=R 7-R 10=R 31=R 32=H,R 5=CH 3,R 11=异丁基,M=Ni,Y=O,X=Br;
50)式V’所示配合物,其中R 1=R 3=R 4=R 6=异丙基,R 2=R 5=R 7-R 10=H R 31=R 32=R 11=乙基,R 5=CH 3,M=Ni,Y=O,X=Br;
512)式V’所示配合物,其中R 1=R 3=R 4=R 6=乙基,R 2=R 5=R 7-R 10=H,R 31=R 32=R 11=乙基,R 5=CH 3,M=Ni,Y=O,X=Br;
52)式V’所示配合物,其中R 1=R 3=R 4=R 6=甲基,R 2=R 5=R 7-R 10=H,R 31=R 32=R 11=乙基,R 5=CH 3,M=Ni,Y=O,X=Br;
53)式V’所示配合物,其中R 1-R 6=甲基,R 7-R 10=H,R 31=R 32=R 11=乙基,R 5=CH 3,M=Ni,Y=O,X=Br;
54)式V’所示配合物,其中R 1=R 3=R 4=R 6=Br,R 2=R 5=R 7-R 10=H,R 31=R 32=R 11=乙基,R 5=CH 3,M=Ni,Y=O,X=Br;
55)式V’所示配合物,其中R 1=R 3=R 4=R 6=Cl,R 2=R 5=R 7-R 10=H,R 31=R 32=R 11=乙基,R 5=CH 3,M=Ni,Y=O,X=Br;
56)式V’所示配合物,其中R 1=R 3=R 4=R 6=F,R 2=R 5=R 7-R 10=H,R 31=R 32=R 11=乙基,R 5=CH 3,M=Ni,Y=O,X=Br;
57)式V’所示配合物,其中R 1=R 3=R 4=R 6=异丙基,R 2=R 5=R 7-R 10=H,R 31=R 32=R 11=乙基,R 5=CH 3,M=Ni,Y=O,X=Br;
58)式V’所示配合物,其中R 1=R 3=R 4=R 6=乙基,R 2=R 5=R 7-R 10=H,R 31=R 32=乙基,R 5=CH 3,R 11=异丁基,M=Ni,Y=O,X=Br;
59)式V’所示配合物,其中R 1=R 3=R 4=R 6=甲基,R 2=R 5=R 7-R 10=H,R 31=R 32=乙基,R 5=CH 3,R 11=异丁基,M=Ni,Y=O,X=Br;
60)式V’所示配合物,其中R 1-R 6=甲基,R 7-R 10=H,R 31=R 32=乙基,R 5=CH 3,R 11=异丁基,M=Ni,Y=O,X=Br;
61)式V’所示配合物,其中R 1=R 3=R 4=R 6=Br,R 2=R 5=R 7-R 10=H,R 31=R 32=乙基,R 5=CH 3,R 11=异丁基,M=Ni,Y=O,X=Br;
62)式V’所示配合物,其中R 1=R 3=R 4=R 6=Cl,R 2=R 5=R 7-R 10=H,R 31=R 32=乙基,R 5=CH 3,R 11=异丁基,M=Ni,Y=O,X=Br;
63)式V’所示配合物,其中R 1=R 3=R 4=R 6=F,R 2=R 5=R 7-R 10=H,R 31=R 32=乙基,R 5=CH 3,R 11=异丁基,M=Ni,Y=O,X=Br。
在第二个方面,本发明提供了一种所述的胺基亚胺金属配合物的制备方法,包括:步骤1)使式VI所示的胺基亚胺化合物与MX n和R 12YH进行反应,生成所述式I所示的胺基亚胺金属配合物,
Figure PCTCN2020125279-appb-000009
式VI中的R 1、R 2、R 3、R 5-R 8具有与式I中相同的定义;
MX n中的M和X具有与式I中相同的定义,n为满足M价态的X的个数;
R 12YH中的Y和R 12具有与式I中相同的定义。
根据本发明的一些实施方式,所述式VI所示的胺基亚胺化合物如下式VIa所示:
Figure PCTCN2020125279-appb-000010
其中,R 1-R 11、R 3具有与式III中相同的定义。
根据本发明的一些实施方式,所述式VI所示的胺基亚胺化合物的制备包括步骤2)使式VII所示的二酮化合物与A(R 3) a和胺类化合物反应,生成所述式VI所示的胺基亚胺化合物,所述胺类化合物为R 1NH 2和R 2NH 2
Figure PCTCN2020125279-appb-000011
其中,R 1、R 2、R 3、R 5-R 8具有与式I相同的定义,A选自铝、锌、锂和镁中的一种或多种。优选地,A(R 3) a与所述胺类化合物的摩尔比大于等于2.0,优选为2.0-6.0,更优选为3.0-6.0。
根据本发明的一些实施方式,所述式VII所示的二酮化合物如下式VIIa所示:
Figure PCTCN2020125279-appb-000012
其中R 6-R 11具有与式III中相同的定义。
根据本发明的一些实施方式,步骤1)中所述反应在有机溶剂中进行,优选所述有机溶剂为卤代烷烃,更优选所述有机溶剂选自二氯甲烷、三氯甲烷和1,2-二氯乙烷中的一种或多种。
根据本发明的一些实施方式,步骤2)中所述反应在非质子溶剂中进行,优选所述非质子溶剂为甲苯、苯、二甲苯中的一种或多种。
根据本发明的一些实施方式,所述式VI所示的胺基亚胺化合物的制备包括将式VIII所示的二亚胺化合物与A(R 3) a或格氏试剂接触反应,生成所述式VI所示的胺基亚胺化合物,
Figure PCTCN2020125279-appb-000013
式VIII中,R 1、R 2、R 5-R 8具有与式I中相同的定义;
A(R 3) a中,A选自铝、锌、锂和镁中的一种或多种,R 3具有与式I中相同的定义,a为满足A价态R 3的个数;
格氏试剂的通式为R 3MgX,其中,R 3具有与式I中相同的定义,X为卤素,优选为溴和/或氯。
根据本发明的一些实施方式,所述式VIII所示的二亚胺化合物如下式VIIIa所示:
Figure PCTCN2020125279-appb-000014
其中,R 1-R 11具有与式III中相同的定义。
根据本发明的一些实施方式,所述制备方法包括将式(a)所示的胺类化合物与A(R 3) a于溶剂中进行第一回流反应,然后再与式VIIa所示的二酮化合物进行第二回流反应,生成式VIa所示的化合物,
Figure PCTCN2020125279-appb-000015
根据本发明的优选实施方式,胺类化合物的实例可以为2,6-二甲基苯胺、2,6-二乙基苯胺、2,6-二异丙基苯胺、2,4,6-三甲基苯胺、2,4,6-三乙基苯胺和2,4,6-三异丙基苯胺、2,6-二氟苯胺、2,6-二溴苯胺、2,6-二氯苯胺、2,6-二甲基-4-溴苯胺。
根据本发明的优选实施方式,胺类化合物与A(R 3) a在溶剂甲苯中进行回流反应。
根据本发明的优选实施方式,第一回流反应的条件包括:反应的温度为10-120℃,反应的时间为2-12小时。
根据本发明的优选实施方式,第二回流反应的时间为2-12小时,优选为4-12小时。
采用上述方法制备胺基亚胺配体的过程中,在第一回流反应之后无需将产物进行后处理,可直接加入二酮进行第二回流反应,操作简单。
根据本发明的优选实施方式,A(R 3) a包括烷基铝、烷基锌和烷基锂,优选选自C1-C6烷基铝、C1-C6烷基锌和C1-C6烷基锂,更优选选自三C1-C6烷基铝、二C1-C6烷基锌和C1-C6烷基锂中的一种或多种,例如三甲基铝、三乙基铝、三丙基铝、二乙基锌和丁基锂。
在本发明的一些实施方式中,所述MXn包括卤化镍,例如溴化镍和氯化镍,MXn的衍生物包括1,2-二甲氧基乙烷卤化镍,例如1,2-二甲氧基乙烷溴化镍和1,2-二甲氧基乙烷氯化镍。
在第三个方面,本发明还提供了上述的胺基亚胺金属配合物在烯烃聚合中的应用。优选地,所述烯烃包括乙烯和带有极性基团的ɑ-烯烃。
在第四个方面,本发明还提供了一种烯烃聚合用催化剂,所述催化剂包括上述胺基亚胺金属配合物。
根据本发明的一些实施方式,所述催化剂还包括助催化剂,所述助催化剂选自有机铝化合物和/或有机硼化合物;所述有机铝化合物选自烷基铝氧烷或通式为AlR nX 1 3-n的有机铝化合物(烷基铝或烷基铝卤化物),通式AlR nX 1 3-n中,R为H、C 1-C 20的烃基或C 1-C 20烃氧基,优选C 1-C 20烷基、C 1-C 20烷氧基、C 7-C 20芳烷基或C 6-C 20芳基;X 1为卤素,优选为氯或溴;0<n≤3。
根据本发明的一些实施方式,所述有机铝化合物的具体实例包括但不限于:三甲基铝、三乙基铝、三异丁基铝、三正己基铝、三辛基铝、一氢二乙基铝、一氢二异丁基铝、一氯二乙基铝、一氯二异丁基铝、倍半乙基氯化铝、二氯乙基铝、甲基铝氧烷(MAO)和改性甲基铝氧烷(MMAO)。优选地,所述有机铝化合物为甲基铝氧烷(MAO)。
根据本发明的一些实施方式,所述有机硼化合物选自芳烃基硼和硼酸盐。所述芳烃基硼优选为取代或未取代的苯基硼,更优选为三(五氟苯基)硼。所述硼酸盐优选为N,N-二甲基苯铵四(五氟苯基)硼酸盐和/或四(五氟苯基)硼酸三苯基甲基盐。
根据本发明的一些实施方式,当所述助催化剂为有机铝化合物时,所述助催化剂中铝与所述主催化剂中M的摩尔比为(10-10 7):1,例如,10:1、20:1、50:1、100:1、200:1、300:1、500:1、700:1、800:1、1000:1、2000:1、3000:1、5000:1、10000:1、100000:1、1000000:1、10000000:1以及它们之间的任意值,优选为(10-100000):1,更优选为(100-10000):1;当所述助催化剂为有机硼化合物时,所述助催化剂中硼与所述主催化剂中M的摩尔比为(0.1-1000):1,例如,0.1:1、0.2:1、0.5:1、1:1、2:1、3:1、5:1、8:1、10:1、20:1、50:1、100:1、200:1、300:1、500:1、700:1、800:1、1000:1以及它们之间的任意值,优选为(0.1-500):1。
根据本发明的一些实施方式,利用本发明的催化剂聚合的烯烃为C2-C16烯烃,优选地,所述烯烃为乙烯或具有3-16个碳原子的α-烯烃。
根据本发明的一些实施方式,所述催化剂还包括链转移剂,所述链转移剂选自烷基铝、 烷基镁、烷基硼和烷基锌中的一种或多种,所述链转移剂与所述主催化剂中M的摩尔比为(0.1-5000):1。
在第五个方面,本发明还提供了一种烯烃聚合方法,包括在上述胺基亚胺金属配合物或上述催化剂的存在下,进行烯烃聚合反应如均聚或共聚。优选地,所述聚合反应的温度为-78℃~200℃,优选为-20℃~150℃;聚合压力为0.01~10.0MPa,优选0.01~2.0MPa。
根据本发明的一些实施方式,所述烯烃包括C2-C16烯烃。
根据本发明的一些实施方式,所述烯烃包括C2-C16的α-烯烃。
根据本发明的一些实施方式,所述烯烃包括乙烯。
根据本发明的一些实施方式,所述聚合的温度为-78℃-200℃,优选为-20℃-150℃。
根据本发明的一些实施方式,所述聚合的压力0.01-10.0MPa,优选为0.01~2.0MPa。
根据本发明的一些实施方式,所述聚合由烯烃单体在溶剂内进行,聚合用溶剂选自烷烃、芳香烃和卤代烃中的一种或多种。
根据本发明的一些具体实施方式,聚合用溶剂选自己烷、戊烷、庚烷、苯、甲苯、二氯甲烷、氯仿和二氯乙烷中的一种或多种,优选为己烷、甲苯和庚烷中的一种或多种。
本申请中不同通式或结构式中使用的符号如R 1、R 2、R 3、R 4、R 5、R 6、R 7、R 8、R 9、R 10、R 11、R 12、R 3、X、M、A、Y等,若无特别说明,则在各通式或结构式中具有相同定义。
本发明中,烷基是指直链烷基、支链烷基或环烷基。例如,C 1-C 20烷基是指C 1-C 20的直链烷基、C 3-C 20的支链烷基或者C 3-C 20的环烷基。实例包括但不限于:甲基、乙基、正丙基、异丙基、正丁基、仲丁基、异丁基、叔丁基、正戊基、异戊基、叔戊基、新戊基、正己基、正庚基、正辛基和正癸基。C 3-C 20环烷基的实例包括但不限于:环丙基、环戊基、环己基、4-甲基环己基、4-乙基环己基、4-正丙基环己基和4-正丁基环己基。
C 6-C 20芳基的实例包括但不限于:苯基、4-甲基苯基、4-乙基苯基、二甲基苯基、乙烯基苯基。
本发明中,烯基是指直链烯基、支链烯基或环烯基。例如,C 2-C 20烯基是指C 2-C 20的直链烯基、C 3-C 20的支链烯基或者C 3-C 20的环烯基。实例包括但不限于:乙烯基、烯丙基、丁烯基。
C 7-C 20芳烷基的实例包括但不限于:苯基甲基、苯基乙基、苯基正丙基、苯基异丙基、苯基正丁基和苯基叔丁基。
C 7-C 20烷芳基的实例包括但不限于:甲苯基、乙苯基、正丙基苯基、异丙基苯基、正丁基苯基和叔丁基苯基。
本发明与现有技术相比有如下优点:
1、本发明所述配合物合成方法简单易行,可由配体直接制得三核配合物。
2、本发明所述的催化剂在有机铝或者有机硼助催化剂作用下,能高活性的催化乙烯聚合。特别可在较高聚合温度下(高于90度)仍保持较高的聚合活性。(以往文献或专利报道的二亚胺镍催化剂在50度以上活性即大幅度衰减,且分子量大幅度降低)。
3、本发明所述的催化剂具有更高的同α-烯烃或极性单体更好的共聚合性能。
实施例
以下结合实施例对本发明进行详细说明,但本发明并不受下述实施例限定。
本发明中所使用的分析表征仪器和分析方法如下:
核磁共振仪:Bruker DMX 300(300MHz),四甲基硅(TMS)为内标。
聚合物的分子量及分子量分布PDI(PDI=Mw/Mn):采用PL-GPC220,以三氯苯为溶剂,在150℃下测定(标样:PS,流速:1.0mL/min,柱子:3×Plgel 10um M1×ED-B 300×7.5nm)。
活性测量方法:重量分析法,活性表示为聚合物重量(g)/镍(mol)×2。
在以下实施例中涉及以下化合物、配体和配合物:
Figure PCTCN2020125279-appb-000016
二亚胺化合物A1:式VIIIa所示的ɑ-二亚胺化合物,其中R 1=R 3=异丙基,R 2=R 4=R 5=R 6=R 7=R 10=H,R 8=R 9=R 11=CH 3
二亚胺化合物A2:式VIIIa所示的ɑ-二亚胺化合物,其中R 1=R 3=甲基,R 2=R 4=R 5=R 6=R 7=R 10=H,R 8=R 9=R 11=CH 3
配体L1:式VIa所示的胺基亚胺化合物,其中R 1=R 3=异丙基,R 2=R 4=R 5=R 6=R 7=R 10=H,R 8=R 9=R 11=CH 3,R 3=CH 3
配体L2:式VIa所示的胺基亚胺化合物,其中R 1=R 3=i-Pr,R 2=R 4=R 5=R 6=R 7=R 10=H,R 8=R 9=R 11=CH 3,R 3=乙基;
配体L3:式VIa所示的胺基亚胺化合物,其中R 1=R 3=甲基,R 2=R 4=R 5=R 6=R 7=R 10=H,R 8=R 9=R 11=CH 3,R 3=CH 3
配合物Ni1:式III所示的配合物,其中R 1=R 3=异丙基,R 2=R 4=R 5=R 6=R 7=R 10=H,R 8=R 9=R 11=CH 3,R 3=CH 3,R 12=乙基,M=Ni,Y=O,X=Br;
配合物Ni2:式III所示的配合物,其中R 1=R 3=异丙基,R 2=R 4=R 5=R 6=R 7=R 10=H,R 8=R 9=R 11=CH 3,R 3=乙基,R 12=乙基,M=Ni,Y=O,X=Br;
配合物Ni3:式III所示的配合物,其中R 1=R 3=甲基,R 2=R 4=R 5=R 6=R 7=R 10=H,R 8=R 9=R 11=CH 3,R 3=CH 3,R 12=乙基,M=Ni,Y=O,X=Br。
Figure PCTCN2020125279-appb-000017
二亚胺化合物A3:式VIII’所示的ɑ-二亚胺化合物,其中R 1=R 3=R 4=R 6=CH 3,R 2=R 5=R 7=R 8=R 9=R 10=R 21=R 22=H;
二亚胺化合物A4为式VIII’所示的ɑ-二亚胺化合物,其中R 1=R 3=R 4=R 6=i-Pr,R 2=R 5=R 7=R 8=R 9=R 10=R 21=R 22=H;
二亚胺化合物A5为式VIII”所示的ɑ-二亚胺化合物,其中R 1=R 3=R 4=R 6=甲基,R 2=R 5=R 7=R 8=R 9=R 10=R 21=R 22=H;
Figure PCTCN2020125279-appb-000018
配体L4为式IX所示的胺基亚胺化合物,其中R 1=R 3=R 4=R 6=CH 3,R 2=R 5=R 7=R 8=R 9=R 10=R 21=R 22=H,R 5=CH 3
配体L5为式IX所示的胺基亚胺化合物,其中R 1=R 3=R 4=R 6=异丙基,R 2=R 5=R 7=R 8=R 9=R 10=R 21=R 22=H,R 5=CH 3
配体L6为式IX所示的胺基亚胺化合物,其中R 1=R 3=R 4=R 6=CH 3,R 2=R 5=R 7=R 8=R 9=R 10=R 21=R 22=H,R 5=乙基;
配体L7为式IX’所示的胺基亚胺化合物,其中R 1=R 3=R 4=R 6=甲基,R 2=R 5=R 7=R 8=R 9=R 10=R 31=R 32=H,R 5=CH 3
Figure PCTCN2020125279-appb-000019
配合物Ni4:式V所示的配合物,其中R 1=R 3=R 4=R 6=CH 3,R 2=R 5=R 7=R 8=R 9=R 10=R 21=R 22=H,R 5=CH 3,R 11=乙基,M=Ni,Y=O,X=Br;
配合物Ni5:式V所示的配合物,其中R 1=R 3=R 4=R 6=异丙基, R 2=R 5=R 7=R 8=R 9=R 10=R 21=R 22=H;R 5=CH 3,R 11=乙基,M=Ni,Y=O,X=Br;
配合物Ni6:式V所示的配合物,其中R 1=R 3=R 4=R 6=异丙基,R 2=R 5=R 7=R 8=R 9=R 10=R 21=R 22=H;R 5=CH 3,R 11=异丁基,M=Ni,Y=O,X=Br;
配合物Ni7:式V所示的配合物,其中R 1=R 3=R 4=R 6=CH 3,R 2=R 5=R 7=R 8=R 9=R 10=R 21=R 22=H;R 5=乙基,R 11=乙基,M=Ni,Y=O,X=Br;
配合物Ni8:式V’所示的配合物,其中R 1=R 3=R 4=R 6=CH 3,R 2=R 5=R 7=R 8=R 9=R 10=R 31=R 32=H;R 5=甲基,R 11=乙基,M=Ni,Y=O,X=Br。
实施例1
1)配体L1的制备:
向反应瓶中依次加入ɑ-二亚胺化合物A1 3.88g(8mmol),30ml甲苯,和1M三甲基铝(16ml,16mmol),回流反应8小时。用氢氧化钠/冰水终止反应,乙酸乙酯萃取,合并有机相,无水硫酸镁干燥,产物经石油醚/乙酸乙酯柱层色谱分离,得到无色晶体配体L1,产率为84.2%。 1HNMRδ(ppm)7.19-7.06(m,6H,Ar-H),3.42(s,1H,NH),2.98(m,2H,CH(CH 3) 2),2.88(m,2H,CH(CH 3) 2),2.32(m,1H,CH),1.81(m,4H,CH 2),1.50(s,3H,CH 3),1.21(m,24H,CH 3),0.92(s,3H,CH 3),0.75(s,3H,CH 3),0.72(s,3H,CH 3).
2)配合物Ni1的制备:将(DME)NiBr 2(277mg,0.9mmol)的乙醇(10ml)溶液滴加到10ml配体L1(300mg,0.6mmol)的二氯甲烷(10ml)溶液中,室温搅拌6小时,析出沉淀,过滤后滤饼用乙醚洗涤后干燥,得到红色粉末固体,产率为78%。元素分析(C 74H 114Br 6N 4Ni 3O 2):C,50.87;H,6.58;N,3.21;实验值(%):C,50.57;H,6.73;N,3.04。
3)10atm乙烯聚合:将装有机械搅拌的1L不锈钢聚合釜在130℃连续干燥6hrs,趁热抽真空并用N 2气置换3次。注入500ml的己烷,再加入5.0ml甲基铝氧烷(MAO)(1.53mol/l的甲苯溶液),加入4.4mg(2.5μmol)配合物Ni1。在30℃下,保持10atm的乙烯压力,剧烈搅拌反应30min。用10wt%盐酸酸化的乙醇溶液中和,得到聚乙烯。结果见表1。
实施例2
按照实施例1中描述的乙烯聚合程序进行乙烯聚合,但是聚合温度为60℃。结果如表1所示。
实施例3
按照实施例1中描述的乙烯聚合程序进行乙烯聚合,但是聚合温度为60℃并且聚合时间为10min。结果如表1所示。
实施例4
按照实施例1中描述的乙烯聚合程序进行乙烯聚合,但是聚合温度为60℃并且聚合时间为20min。结果如表1所示。
实施例5
按照实施例1中描述的乙烯聚合程序进行乙烯聚合,但是聚合温度为60℃并且聚合时间为60min。结果如表1所示。
实施例6
按照实施例1中描述的乙烯聚合程序进行乙烯聚合,但是聚合温度为90℃。结果如表 1所示。
实施例7
10atm乙烯聚合:将装有机械搅拌的1L不锈钢聚合釜在130℃连续干燥6hrs,趁热抽真空并用N 2气置换3次。注入500ml的己烷,再加入0.8ml一氯二乙基铝(2.0mol/l的甲苯溶液),加入4.4mg(2.5μmol)配合物Ni1。在60℃下,保持10atm的乙烯压力,剧烈搅拌反应30min。用10wt%盐酸酸化的乙醇溶液中和,得到聚乙烯。结果如表1所示。
实施例8
将装有机械搅拌的1L不锈钢聚合釜在130℃连续干燥6h,趁热抽真空并用N 2气置换3次。向聚合釜注入500mL的己烷,同时加入4.4mg(2.5μmol)配合物Ni1,6mL 10-十一烯-1-醇,30mL三乙基铝(1.0mol/L的己烷溶液),5.0mL MAO(1.53mol/L的甲苯溶液),在30℃下,保持10atm的乙烯压力,搅拌反应30min。最后用10wt%盐酸酸化的乙醇溶液中和,得到聚合物。结果如表1所示。
实施例9
将装有机械搅拌的1L不锈钢聚合釜在130℃连续干燥6h,趁热抽真空并用N 2气置换3次。向聚合釜注入500mL的己烷,同时加入4.4mg(2.5μmol)配合物Ni1,5.52g 10-十一烯酸,30mL三乙基铝(1.0mol/L的己烷溶液),5.0mL MAO(1.53mol/L的甲苯溶液),在30℃下,保持10atm的乙烯压力,搅拌反应30min。最后用10wt%盐酸酸化的乙醇溶液中和,得到聚合物。结果如表1所示。
实施例10
1)配体L2的制备:
向反应瓶中依次加入ɑ-二亚胺化合物A1 3.88g(8mmol),30ml乙醚,2M二乙基锌(4ml,8mmol),常温搅拌3小时,用冰水终止反应。将反应混合物用乙酸乙酯萃取,合并有机相,无水硫酸镁干燥,产物经石油醚/乙酸乙酯柱层色谱分离,得到无色晶体配体L2,产率为52.1%。 1HNMRδ(ppm)7.17-7.06(m,6H,Ar-H),4.44(s,1H,NH),2.98(m,2H,CH(CH 3) 2),2.87(m,2H,CH(CH 3) 2),2.33(m,1H),1.86(m,2H,CH 2),1.81(m,4H,CH 2),1.21(m,24H,CH 3),1.08(t,3H,CH 3),0.93(s,3H,CH 3),0.75(s,3H,CH 3),0.72(s,3H,CH 3).
2)配合物Ni2的制备:将(DME)NiBr 2(277mg,0.9mmol)的乙醇(10ml)溶液滴加到10ml配体L2(309mg,0.6mmol)的二氯甲烷(10ml)溶液中,室温搅拌6小时,析出沉淀,过滤后滤饼用乙醚洗涤后干燥得到红色粉末固体,产率为72%。元素分析(C 76H 118Br 6N 4Ni 3O 2):C,51.42;H,6.70;N,3.16;实验值(%):C,51.29;H,6.98;N,3.04。
3)10atm乙烯聚合:将装有机械搅拌的1L不锈钢聚合釜在130℃连续干燥6hrs,趁热抽真空并用N 2气置换3次。注入500ml的己烷,再加入5.0ml甲基铝氧烷(MAO)(1.53mol/l的甲苯溶液),加入4.4mg(2.5μmol)配合物Ni2。在30℃下,保持10atm的乙烯压力,剧烈搅拌反应30min。用10wt%盐酸酸化的乙醇溶液中和,得到聚乙烯。结果如表1所示。
实施例11
按照实施例10中描述的乙烯聚合程序进行乙烯聚合,但是聚合温度为60℃。结果如表1所示。
实施例12
1)配体L3的制备:
1.5ml 2,6-二甲基苯胺(12mmol)同57ml 1M的三甲基铝在甲苯中反应,回流3h后加入樟脑醌(1.05g,5mmol),回流反应8小时,冷却后,用氢氧化钠/冰水终止反应,反应混合物用乙酸乙酯萃取,合并有机相,无水硫酸镁干燥,产物经石油醚/乙酸乙酯柱层色谱分离,得到无色晶体配体L3,产率为70.2%。 1HNMRδ(ppm)7.00-6.89(m,6H,Ar-H),3.57(s,1H,NH),2.18(s,6H,CAr-CH 3),2.05(s,6H,CH 3),1.74(m,4H,CH 2),1.44(s,3H,CH 3),1.35(m,1H,CH),1.21(s,3H,CH 3),1.01(s,3H,CH 3),0.87(s,3H,CH 3).
2)配合物Ni3的制备:将(DME)NiBr 2(277mg,0.9mmol)的乙醇(10ml)溶液滴加到10ml配体L3(233mg,0.6mmol)的二氯甲烷(10ml)溶液中,室温搅拌6小时,析出沉淀,过滤后滤饼用乙醚洗涤后干燥得到红色粉末固体,产率为70%。元素分析(C 58H 82Br 6N 4Ni 3O 2):C,45.75;H,5.43;N,3.68;实验值(%):C,45.56;H,5.83;N,3.46。
3)10atm乙烯聚合:将装有机械搅拌的1L不锈钢聚合釜在130℃连续干燥6hrs,趁热抽真空并用N 2气置换3次。注入500ml的己烷,再加入5.0ml甲基铝氧烷(MAO)(1.53mol/l的甲苯溶液),加入3.8mg(2.5μmol)配合物Ni3。在60℃下,保持10atm的乙烯压力,剧烈搅拌反应30min。用10wt%盐酸酸化的乙醇溶液中和,得到聚乙烯。结果如表1所示。
实施例13
将装有机械搅拌的1L不锈钢聚合釜在130℃连续干燥6hrs,趁热抽真空并用N 2气置换3次。注入500ml的己烷,再加入5.0ml甲基铝氧烷(MAO)(1.53mol/l的甲苯溶液),加入3.8mg(2.5μmol)配合物Ni3,10ml 1-己烯。在60℃下,保持10atm的乙烯压力,剧烈搅拌反应30min。用10wt%盐酸酸化的乙醇溶液中和,得到聚合物。结果如表1所示。
对比例1
将装有机械搅拌的1L不锈钢聚合釜在130℃连续干燥6hrs,趁热抽真空并用N 2气置换3次。注入500ml的己烷,再加入5.0ml甲基铝氧烷(MAO)(1.53mol/l的甲苯溶液),加入5.5mg(7.5μmol)对比催化剂A。在60℃下,保持10atm的乙烯压力,剧烈搅拌反应30min。用10wt%盐酸酸化的乙醇溶液中和,得到聚合物。结果如表1所示。
Figure PCTCN2020125279-appb-000020
对比例2
按照对比例1中描述的程序进行乙烯聚合,但是使用4.8mg(7.5μmol)对比催化剂B代替对比催化剂A。结果如表1所示。
Figure PCTCN2020125279-appb-000021
表1
实施例号 配合物 活性/(10 6g/mol cat·h) Mw(万) Mw/Mn
实施例1 Ni1 7.62 51.0 1.02
实施例2 Ni1 8.33 38.4 1.05
实施例3 Ni1 8.62 14.2 1.02
实施例4 Ni1 8.42 30.4 1.03
实施例5 Ni1 7.67 62.4 1.02
实施例6 Ni1 4.27 13.2 1.07
实施例7 Ni1 6.24 27.2 1.23
实施例8 Ni1 4.72 37.2 1.53
实施例9 Ni1 4.60 14.2 1.11
实施例10 Ni2 4.08 15.4 1.03
实施例11 Ni2 4.28 8.4 1.03
实施例12 Ni3 3.21 9.3 1.05
实施例13 Ni3 3.54 10.1 1.04
对比例1 A 0.78 21.3 1.54
对比例2 B 0.43 18.4 1.43
由表1可以看出,本发明的配合物可在较高温度下高活性地催化乙烯聚合,本发明催化剂的乙烯聚合活性最高可达8.62×10 6g·mol -1(Ni)·h -1,且能高活性地催化乙烯与高级α-烯烃的共聚合,得到的共聚物的分子量分布窄。相比于对比例1-2所采用的配合物,在高温聚合条件下,本发明的配合物作为主催化剂使用时,聚合活性要高很多,且得到的聚合物的分子量分布更窄。
实施例14
1)配体L4的制备:
向反应瓶中依次加入ɑ-二亚胺化合物A3 3.52g(8mmol),30mL甲苯,1M三甲基铝(16mL,16mmol),回流反应8小时,用氢氧化钠/冰水终止反应,乙酸乙酯萃取,合并有机相,无水硫酸镁干燥,产物经石油醚/乙酸乙酯柱层色谱分离,得到无色晶体配体L4,产率为85.2%。 1HNMRδ(ppm)7.23-6.88(m,14H),4.84(s,1H),4.73(s,1H),3.85(s,1H,NH),2.02(s,3H,CH 3),1.87(s,6H,CH 3),1.75(s,6H,CH 3).
2)配合物Ni4的制备:
将10mL(DME)NiBr 2(277mg,0.9mmol)的乙醇溶液滴加到10mL配体L4(274mg,0.6mmol)的二氯甲烷溶液中,室温搅拌6小时,析出沉淀,过滤后滤饼用乙醚洗涤后干燥得到红色粉末固体Ni4,产率为74%。元素分析(C 70H 74Br 6N 4Ni 3O 2):C,50.68;H,4.50;N,3.38;实验值(%):C,50.53;H,4.73;N,3.21。
3)乙烯聚合:
将装有机械搅拌的1L不锈钢聚合釜在130℃连续干燥6hrs,趁热抽真空并用N 2气置换3次。注入500mL的己烷,再加入5.0mL甲基铝氧烷(MAO)(1.53mol/l的甲苯溶液), 加入4.1mg(2.5μmol)配合物Ni4。在60℃下,保持10atm的乙烯压力,剧烈搅拌反应30min。用10wt%盐酸酸化的乙醇溶液中和,得到聚乙烯。结果如表2所示。
实施例15
按照实施例14中描述的乙烯聚合程序进行乙烯聚合,但是聚合温度为100℃。结果如表2所示。
实施例16
按照实施例14中描述的乙烯聚合程序进行乙烯聚合,但是使用0.75mL一氯二乙基铝(2.0mol/L的甲苯溶液)代替所述甲基铝氧烷。结果如表2所示。
实施例17
1)配体L5的制备:
向反应瓶中依次加入ɑ-二亚胺化合物A4 4.42g(8mmol),30mL甲苯,1M三甲基铝(16mL,16mmol),回流反应8小时,用氢氧化钠/冰水终止反应,乙酸乙酯萃取,合并有机相,无水硫酸镁干燥,产物经石油醚/乙酸乙酯柱层色谱分离,得到无色晶体配体L5,产率为76.2%。 1HNMRδ(ppm)7.21-6.95(m,14H),4.96(s,1H),4.87(s,1H),3.85(s,1H,NH),2.51(m,4H,CH(CH 3) 2),2.02(s,3H,CH 3),1.18(d,3H,CH 3),1.11(d,3H,CH 3),1.05(d,6H,CH 3),0.98(d,6H,CH 3),0.60(d,6H,CH 3).
2)配合物Ni5的制备:
将10mL(DME)NiBr 2(277mg,0.9mmol)的乙醇溶液滴加到10mL配体L5(341mg,0.6mmol)的二氯甲烷溶液中,室温搅拌6小时,析出沉淀,过滤后滤饼用乙醚洗涤后干燥得到红色粉末固体Ni5,产率为76%。元素分析(C 86H 106Br 6N 4Ni 3O 2):C,54.85;H,5.67;N,2.97;实验值(%):C,54.61;H,5.73;N,3.14。
3)乙烯聚合:
将装有机械搅拌的1L不锈钢聚合釜在130℃连续干燥6hrs,趁热抽真空并用N 2气置换3次。注入500mL的己烷,再加入5.0mL甲基铝氧烷(MAO)(1.53mol/L的甲苯溶液),加入4.7mg(2.5μmol)配合物Ni5。在60℃下,保持10atm的乙烯压力,剧烈搅拌反应30min。用10wt%盐酸酸化的乙醇溶液中和,得到聚乙烯。结果如表2所示。
实施例18
按照实施例17中描述的乙烯聚合程序进行乙烯聚合,但是聚合时间为10min。结果如表2所示。
实施例19
按照实施例17中描述的乙烯聚合程序进行乙烯聚合,但是聚合时间为20min。结果如表2所示。
实施例20
按照实施例17中描述的乙烯聚合程序进行乙烯聚合,但是聚合时间为60min。结果如表2所示。
实施例21
按照实施例17中描述的乙烯聚合程序进行乙烯聚合,但是聚合温度为100℃。结果如表2所示。
实施例22
将装有机械搅拌的1L不锈钢聚合釜在130℃连续干燥6hrs,趁热抽真空并用N 2气置换3次。注入500mL的己烷,10mL 1-己烯,再加入5.0mL甲基铝氧烷(MAO)(1.53mol/L的甲苯溶液),加入4.7mg(2.5μmol)配合物Ni5,然后再抽真空并用乙烯置换3次。在100℃下,保持10atm的乙烯压力,剧烈搅拌反应30min。用10wt%盐酸酸化的乙醇溶液中和,得到聚乙烯。结果如表2所示。
实施例23
将装有机械搅拌的1L不锈钢聚合釜在130℃连续干燥6h,趁热抽真空并用N 2气置换3次。向聚合体系注入500mL的己烷,同时加入6mL 10-十一烯-1-醇,30mL三乙基铝(1.0mol/L的己烷溶液),5.0mL甲基铝氧烷MAO(1.53mol/L的甲苯溶液),4.7mg(2.5μmol)配合物Ni5,在30℃下,保持10atm的乙烯压力,搅拌反应30min。最后用体积5%盐酸酸化的乙醇溶液中和,得到聚合物。结果如表2所示。
实施例24
按照实施例23中描述的乙烯共聚合程序进行乙烯共聚合,但是聚合温度为60℃。结果如表2所示。
实施例25
将装有机械搅拌的1L不锈钢聚合釜在130℃连续干燥6h,趁热抽真空并用N 2气置换3次。向聚合体系注入500mL的己烷,同时加入5.52g 10-十一烯酸,30mL三乙基铝(1.0mol/L的己烷溶液),5.0mL甲基铝氧烷MAO(1.53mol/L的甲苯溶液),4.7mg(2.5μmol)配合物Ni5,在30℃下,保持10atm的乙烯压力,搅拌反应30min。最后用体积5%盐酸酸化的乙醇溶液中和,得到聚合物。结果如表2所示。
实施例26
按照实施例25中描述的乙烯共聚合程序进行乙烯共聚合,但是聚合温度为60℃。结果如表2所示。
实施例27
配合物Ni6的制备:
将含有277mg(0.9mmol)(DME)NiBr 2的2-甲基-1-丙醇(10mL)溶液缓慢滴加到含有341mg(0.6mmol)配体L5的二氯甲烷(10mL)溶液中。溶液的颜色立刻变为深红色,并有大量沉淀生成。室温下搅拌6h,加入无水乙醚沉淀。过滤留得滤饼,用无水乙醚洗涤滤饼,真空干燥后得到棕红色粉末状固体Ni6。产率为84.0%。元素分析(C 90H 114Br 6N 4Ni 3O 2):C,55.74;H,5.92;N,2.89;实验值(%):C,56.08;H,6.12;N,3.08。
3)乙烯聚合:
将装有机械搅拌的1L不锈钢聚合釜在130℃连续干燥6hrs,趁热抽真空并用N 2气置换3次。注入500mL的己烷,再加入5.0mL甲基铝氧烷(MAO)(1.53mol/L的甲苯溶液),加入4.8mg(2.5μmol)配合物Ni6。在100℃下,保持10atm的乙烯压力,剧烈搅拌反应30min。用10wt%盐酸酸化的乙醇溶液中和,得到聚乙烯。结果如表2所示。
实施例28
1)配体L6的制备:
向反应瓶中依次加入ɑ-二亚胺化合物A3 3.52g(8mmol),30mL乙醚,2M二乙基锌(4mL,8mmol)常温搅拌3小时,用冰水终止反应,乙酸乙酯萃取,合并有机相,无 水硫酸镁干燥,产物经石油醚/乙酸乙酯柱层色谱分离,得到无色晶体配体L 3,产率为50.1%。 1HNMRδ(ppm)7.22-6.86(m,14H),4.82(s,1H),4.73(s,1H),3.85(s,1H,NH),2.04(m,2H,CH 2CH 3),1.89(s,6H,CH 3),1.74(s,6H,CH 3),0.89(t,3H,CH 3).
2)配合物Ni7的制备:
将10mL(DME)NiBr 2(277mg,0.9mmol)的乙醇溶液滴加到10mL配体L6(282mg,0.6mmol)的二氯甲烷溶液中,室温搅拌6小时,析出沉淀,过滤后滤饼用乙醚洗涤后干燥得到红色粉末固体Ni7,产率为73%。元素分析(C 72H 78Br 6N 4Ni 3O 2):C,51.26;H,4.66;N,3.32;实验值(%):C,51.39;H,4.93;N,3.24。
3)乙烯聚合:
将装有机械搅拌的1L不锈钢聚合釜在130℃连续干燥6hrs,趁热抽真空并用N 2气置换3次。注入500mL的己烷,再加入5.0mL甲基铝氧烷(MAO)(1.53mol/L的甲苯溶液),加入4.2mg(2.5μmol)配合物Ni7。在60℃下,保持10atm的乙烯压力,剧烈搅拌反应30min。用10wt%盐酸酸化的乙醇溶液中和,得到聚乙烯。结果如表2所示。
实施例29
按照实施例28中描述的乙烯聚合程序进行乙烯聚合,但是聚合温度为100℃。结果如表2所示。
实施例30
Figure PCTCN2020125279-appb-000022
1)配体L7的制备:
向反应瓶中依次加入ɑ-二亚胺化合物A5 4.32g(8mmol),30mL甲苯,1M三甲基铝(16mL,16mmol),常温搅拌3小时,用冰水终止反应,乙酸乙酯萃取,合并有机相,无水硫酸镁干燥,产物经石油醚/乙酸乙酯柱层色谱分离,得到无色晶体配体L7,产率为72.1%。 1HNMRδ(ppm)7.68-7.54(m,8H),7.37(m,4H),7.11-7.04(m,6H),5.16(s,1H),5.08(s,1H),4.05(s,1H,NH),1.94(s,3H,CH3),1.89(s,6H,CH3),1.73(s,6H,CH 3).
2)配合物Ni8的制备:将10mL(DME)NiBr 2(277mg,0.9mmol)的乙醇溶液滴加到10mL配体L7(334mg,0.6mmol)的二氯甲烷溶液中,室温搅拌6小时,析出沉淀,过滤后滤饼用乙醚洗涤后干燥得到红色粉末固体,产率为72%。元素分析(C 86H 82Br 6N 4Ni 3O 2):C,55.56;H,4.45;N,3.01;实验值(%):C,55.74;H,4.73;N,3.14。
3)乙烯聚合:将装有机械搅拌的1L不锈钢聚合釜在130℃连续干燥6hrs,趁热抽真空并用N 2气置换3次。注入500mL的己烷,再加入5.0mL甲基铝氧烷(MAO)(1.53mol/L的甲苯溶液),加入4.6mg(2.5μmol)配合物Ni8。在60℃下,保持10atm的乙烯压力,剧烈搅拌反应30min。用10wt%盐酸酸化的乙醇溶液中和,得到聚乙烯。结果如表2所示。
实施例31
按照实施例30中描述的乙烯聚合程序进行乙烯聚合,但是聚合温度为100℃。结果如表2所示。
实施例32
将装有机械搅拌的1L不锈钢聚合釜在130℃连续干燥6hrs,趁热抽真空并用N 2气置换3次。注入500mL的己烷,再加入5.0mL甲基铝氧烷(MAO)(1.53mol/L的甲苯溶液),10mL 1-己烯,加入4.6mg(2.5μmol)配合物Ni8。在100℃下,保持10atm的乙烯压力,剧烈搅拌反应30min。用10wt%盐酸酸化的乙醇溶液中和,得到聚合物。结果如表2所示。
对比例3
对比催化剂C的制备参考专利申请CN102250152A。
乙烯聚合:将装有机械搅拌的1L不锈钢聚合釜在130℃连续干燥6hrs,趁热抽真空并用N 2气置换3次。注入500mL的己烷,再加入5.0mL甲基铝氧烷(MAO)(1.53mol/L的甲苯溶液),加入5.5mg(7.5μmol)对比催化剂C。在100℃下,保持10atm的乙烯压力,剧烈搅拌反应30min。用10wt%盐酸酸化的乙醇溶液中和,得到聚乙烯。结果如表2所示。
Figure PCTCN2020125279-appb-000023
对比例4
对比催化剂D的制备参考专利申请CN102250152A。
乙烯聚合:按照对比例3中描述的乙烯聚合程序进行乙烯聚合,但是使用4.8mg(7.5μmol)对比催化剂D代替对比催化剂C。结果如表2所示。
Figure PCTCN2020125279-appb-000024
表2
Figure PCTCN2020125279-appb-000025
Figure PCTCN2020125279-appb-000026
由表2可以看出,相对于对比例3和4使用的催化剂,使用本发明的胺基亚胺金属配合物作为主催化剂时,在高温聚合条件下聚合活性更高,所得聚合物的分子量高于对比例所得聚合物,且所得聚合物的分子量分布比对比例所得聚合物窄。
应当注意的是,以上所述的实施例仅用于解释本发明,并不对本发明构成任何限制。通过参照典型实施例对本发明进行了描述,但应当理解为其中所用的词语为描述性和解释性词汇,而不是限定性的词汇。可以按规定在本发明权利要求的范围内对本发明作出修改,以及在不背离本发明的范围和精神内对本发明进行修订。尽管其中描述的本发明涉及特定的方法、材料和实施例,但是并不意味着本发明限于其中公开的特定例,相反,本发明可以扩展至其它所有具有相同功能的方法和应用。

Claims (16)

  1. 一种胺基亚胺金属配合物,如式I所示:
    Figure PCTCN2020125279-appb-100001
    其中,R 1和R 2各自独立地选自含取代基Q或不含取代基Q的C1-C30烃基;R 3独立地选自氢和含取代基Q或不含取代基Q的C1-C20烃基;R 5-R 8各自独立地选自氢、卤素、羟基、含取代基Q或不含取代基Q的C1-C20烃基,并且R 5-R 8任选地相互连接以形成环或环体系;R 12独立地选自含取代基Q或不含取代基Q的C1-C20烃基;Y独立地选自VIA族非金属原子;M独立地选自Ⅷ族金属;X独立地选自卤素、含取代基Q或不含取代基Q的C1-C10烃基和含取代基Q或不含取代基Q的C1-C10烃氧基。
  2. 权利要求1所述的胺基亚胺金属配合物,其具有以下特征至少之一:
    -R 1和R 2独立地选自含取代基Q或不含取代基Q的C1-C20烷基和含取代基Q或不含取代基Q的C6-C20芳基,优选地R 1和/或R 2是如式A所示的基团:
    Figure PCTCN2020125279-appb-100002
    其中,R 1-R 5各自独立地选自氢、卤素、羟基、含取代基Q或不含取代基Q的C1-C20烷基、含取代基Q或不含取代基Q的C2-C20烯基、含取代基Q或不含取代基Q的C2-C20炔基、含取代基Q或不含取代基Q的C1-C20烷氧基、含取代基Q或不含取代基Q的C2-C20烯氧基、含取代基Q或不含取代基Q的C2-C20炔氧基、含取代基Q或不含取代基Q的C6-C20芳基、含取代基Q或不含取代基Q的C6-C20芳氧基、含取代基Q或不含取代基Q的C7-C20芳烷基、含取代基Q或不含取代基Q的C7-C20芳烷氧基、含取代基Q或不含取代基Q的C7-C20烷芳基和含取代基Q或不含取代基Q的C7-C20烷芳氧基,并且R 1-R 5任选地相互连接形成环或环体系;
    优选地,R 1-R 5各自独立地选自氢、卤素、羟基、含取代基Q或不含取代基Q的C1-C10烷基、含取代基Q或不含取代基Q的C2-C10烯基、含取代基Q或不含取代基Q的C2-C10炔基、含取代基Q或不含取代基Q的C1-C10烷氧基、含取代基Q或不含取代基Q的C2-C10烯氧基、含取代基Q或不含取代基Q的C2-C10炔氧基、含取代基Q或不含取代基Q的C6-C15芳基、含取代基Q或不含取代基Q的C6-C15芳氧基、含取代基Q或不含取代基Q的C7-C15芳烷基、含取代基Q或不含取代基Q的C7-C15芳烷氧基、含取代基Q或不含取代基Q的C7-C15烷芳基和含取代基Q或不含取代基Q的C7-C15烷芳氧基;
    -M独立地选自镍和钯;
    -Y独立地选自O和S;
    -X独立地选自卤素、含取代基Q或不含取代基Q的C1-C10烷基和含取代基Q或不含取代基Q的C1-C10烷氧基,优选独立地选自卤素、含取代基Q或不含取代基Q的C1-C6烷基和含取代基Q或不含取代基Q的C1-C6烷氧基;
    -R 12独立地选自含取代基Q或不含取代基Q的C1-C20烷基,优选含取代基Q或不含取代基Q的C1-C10烷基,更优选含取代基Q或不含取代基Q的C1-C6烷基;
    -R 3选自含取代基Q或不含取代基Q的C1-C20烷基、含取代基Q或不含取代基Q的C6-C20芳基、含取代基Q或不含取代基Q的C7-C20芳烷基和含取代基Q或不含取代基Q的C7-C20烷芳基;优选地,R 3选自含取代基Q或不含取代基Q的C1-C10烷基、含取代基Q或不含取代基Q的C6-C10芳基、含取代基Q或不含取代基Q的C7-C15芳烷基和含取代基Q或不含取代基Q的C7-C15烷芳基;更优选地,R 3选自含取代基Q或不含取代基Q的C1-C6烷基,如甲基、乙基、丙基或丁基;
    -所述取代基Q选自卤素、羟基、C1-C10烷基、卤代的C1-C10烷基、C1-C10烷氧基和卤代的C1-C10烷氧基,优选选自卤素、羟基、C1-C6烷基、卤代的C1-C6烷基、C1-C6烷氧基和卤代的C1-C6烷氧基;
    优选地,所述C1-C6烷基选自甲基、乙基、正丙基、异丙基、正丁基、异丁基、正戊基、异戊基、正己基、异己基和3,3-二甲基丁基;
    优选地,所述C1-C6烷氧基选自甲氧基、乙氧基、正丙氧基、异丙氧基、正丁氧基、异丁氧基、正戊氧基、异戊氧基、正己氧基、异己氧基和3,3-二甲基丁氧基。
  3. 权利要求1或2所述的胺基亚胺金属配合物,其如式III所示:
    Figure PCTCN2020125279-appb-100003
    其中,R 1-R 11各自独立地选自氢、卤素、羟基、含取代基Q或不含取代基Q的C1-C20烷基、含取代基Q或不含取代基Q的C2-C20烯基、含取代基Q或不含取代基Q的C2-C20炔基、含取代基Q或不含取代基Q的C1-C20烷氧基、含取代基Q或不含取代基Q的C2-C20烯氧基、含取代基Q或不含取代基Q的C2-C20炔氧基、含取代基Q或不含取代基Q的C6-C20芳基、含取代基Q或不含取代基Q的C6-C20芳氧基、含取代基Q或不含取代基Q的C7-C20芳烷基、含取代基Q或不含取代基Q的C7-C20芳烷氧基、含取代基Q或不含取代基Q的C7-C20烷芳基和含取代基Q或不含取代基Q的C7-C20烷芳氧基;
    R 3、R 12、Y、M和X如权利要求1中所定义。
  4. 权利要求3所述的胺基亚胺金属配合物,其中R 1-R 11各自独立地选自氢、卤素、羟基、含取代基Q或不含取代基Q的C1-C10烷基、含取代基Q或不含取代基Q的C2-C10烯基、含取代基Q或不含取代基Q的C2-C10炔基、含取代基Q或不含取代基Q的C1-C10烷氧基、含取代基Q或不含取代基Q的C2-C10烯氧基、含取代基Q或不含取代基Q的C2-C10炔氧基、含取代基Q或不含取代基Q的C6-C15芳基、含取代基Q或不含取代基Q的C6-C15芳氧基、含取代基Q或不含取代基Q的C7-C15芳烷基、含取代基Q或不含取代基Q的C7-C15芳烷氧基、含取代基Q或不含取代基Q的C7-C15烷芳基和含取代基Q或不含取代基Q的C7-C15烷芳氧基;优选地,R 1-R 11各自独立地选自氢、C1-C10烷基、卤代的C1-C10烷基、C1-C10烷氧基、卤代的C1-C10烷氧基和卤素,更优选选自氢、C1-C6烷基、卤代的C1-C6烷基、C1-C6烷氧基、卤代的C1-C6烷氧基和卤素。
  5. 权利要求1-4中任一项所述的胺基亚胺金属配合物,其选自下组:
    式III所示的配合物,其中R 1=R 3=异丙基,R 2=R 4=R 5=R 6=R 7=R 10=H,R 8=R 9=R 11=CH 3,R 3=CH 3,R 12=甲基,M=Ni,Y=O,X=Br;
    式III所示的配合物,其中R 1=R 3=异丙基,R 2=R 4=R 5=R 6=R 7=R 10=H,R 8=R 9=R 11=CH 3,R 3=乙基,R 12=甲基,M=Ni,Y=O,X=Br;
    式III所示的配合物,其中R 1=R 3=乙基,R 2=R 4=R 5=R 6=R 7=R 10=H,R 8=R 9=R 11=CH 3,R 3=CH 3,R 12=甲基,M=Ni,Y=O,X=Br;
    式III所示的配合物,其中R 1=R 3=乙基,R 2=R 4=R 5=R 6=R 7=R 10=H,R 8=R 9=R 11=CH 3,R 3=乙基,R 12=甲基,M=Ni,Y=O,X=Br;
    式III所示的配合物,其中R 1=R 3=甲基,R 2=R 4=R 5=R 6=R 7=R 10=H,R 8=R 9=R 11=CH 3,R 3=CH 3,R 12=甲基,M=Ni,Y=O,X=Br;
    式III所示的配合物,其中R 1=R 3=甲基,R 2=R 4=R 5=R 6=R 7=R 10=H,R 8=R 9=R 11=CH 3,R 3=乙基,R 12=甲基,M=Ni,Y=O,X=Br;
    式III所示的配合物,其中R 1=R 3=异丙基,R 2=R 4=R 5=R 6=R 7=R 10=H,R 8=R 9=R 11=CH 3,R 3=CH 3,R 12=乙基,M=Ni,Y=O,X=Br;
    式III所示的配合物,其中R 1=R 3=异丙基,R 2=R 4=R 5=R 6=R 7=R 10=H,R 8=R 9=R 11=CH 3,R 3=乙基,R 12=乙基,M=Ni,Y=O,X=Br;
    式III所示的配合物,其中R 1=R 3=乙基,R 2=R 4=R 5=R 6=R 7=R 10=H,R 8=R 9=R 11=CH 3,R 3=CH 3,R 12=乙基,M=Ni,Y=O,X=Br;
    式III所示的配合物,其中R 1=R 3=乙基,R 2=R 4=R 5=R 6=R 7=R 10=H,R 8=R 9=R 11=CH 3,R 3=乙基,R 12=乙基,M=Ni,Y=O,X=Br;
    式III所示的配合物,其中R 1=R 3=甲基,R 2=R 4=R 5=R 6=R 7=R 10=H,R 8=R 9=R 11=CH 3,R 3=CH 3,R 12=乙基,M=Ni,Y=O,X=Br;
    式III所示的配合物,其中R 1=R 3=甲基,R 2=R 4=R 5=R 6=R 7=R 10=H,R 8=R 9=R 11=CH 3,R 3=乙基,R 12=乙基,M=Ni,Y=O,X=Br;
    式III所示的配合物,其中R 1=R 3=甲基,R 2=R 4=R 5=R 6=R 7=R 10=H,R 8=R 9=R 11=CH 3,R 3=CH 3,R 12=i-Pr,M=Ni,Y=O,X=Br;
    式III所示的配合物,其中R 1-R 3=甲基,R 4-R 7=R 10=H,R 8=R 9=R 11=CH 3,R 3=乙基, R 12=乙基,M=Ni,Y=O,X=Br;
    式III所示的配合物,其中R 1-R 3=甲基,R 4-R 7=R 10=H,R 8=R 9=R 11=CH 3,R 3=CH 3,R 12=乙基,M=Ni,Y=O,X=Br;
    式III所示的配合物,其中R 1=R 3=甲基,R 2=Br,R 4-R 7=R 10=H,R 8=R 9=R 11=R 3=CH 3,R 12=乙基,M=Ni,Y=O,X=Br;
    式III所示的配合物,其中R 1=R 3=甲基,R 2=Br,R 4-R 7=R 10=H,R 8=R 9=R 11=CH 3,R 3=乙基,R 12=乙基,M=Ni,Y=O,X=Br;
    式III所示的配合物,其中R 1=R 3=F,R 2=R 4-R 7=R 10=H,R 8=R 9=R 11=CH 3,R 3=乙基,R 12=乙基,M=Ni,Y=O,X=Br;
    式III所示的配合物,其中R 1=R 3=Cl,R 2=R 4-R 7=R 10=H,R 8=R 9=R 11=CH 3,R 3=乙基,R 12=乙基,M=Ni,Y=O,X=Br;
    式III所示的配合物,其中R 1=R 3=Br,R 2=R 4-R 7=R 10=H,R 8=R 9=R 11=CH 3,R 3=乙基,R 12=乙基,M=Ni,Y=O,X=Br;
    式III所示的配合物,其中R 1=R 3=甲基,R 2=R 4-R 7=R 10=H,R 8=R 9=R 11=CH 3,R 3=乙基,R 12=异丁基,M=Ni,Y=O,X=Br;
    式III所示的配合物,其中R 1=R 3=乙基,R 2=R 4-R 7=R 10=H,R 8=R 9=R 11=CH 3,R 3=CH 3,R 12=异丁基,M=Ni,Y=O,X=Br;
    式III所示的配合物,其中R 1=R 3=异丙基,R 2=R 4-R 7=R 10=H,R 8=R 9=R 11=CH 3,R 3=CH 3,R 12=异丁基,M=Ni,Y=O,X=Br;
    式III所示的配合物,其中R 1-R 3=甲基,R 4-R 7=R 10=H,R 8=R 9=R 11=CH 3,R 3=CH 3,R 12=异丁基,M=Ni,Y=O,X=Br;
    式III所示的配合物,其中R 1=R 3=甲基,R 2=Br,R 4-R 7=R 10=H,R 8=R 9=R 11=甲基,R 3=异丙基,R 12=异丁基,M=Ni,Y=O,X=Br;
    式III所示的配合物,其中R 1=R 3=F,R 2=R 4-R 7=R 10=H,R 8=R 9=R 11=CH 3,R 3=异丙基,R 12=异丁基,M=Ni,Y=O,X=Br;
    式III所示的配合物,其中R 1=R 3=Cl,R 2=R 4-R 7=R 10=H,R 8=R 9=R 11=CH 3,R 3=异丙基,R 12=异丁基,M=Ni,Y=O,X=Br;
    式III所示的配合物,其中R 1=R 3=Br,R 2=R 4-R 7=R 10=H,R 8=R 9=R 11=CH 3,R 3=异丙基,R 12=异丁基,M=Ni,Y=O,X=Br;
    式III所示的配合物,其中R 1=R 3=甲基,R 2=R 4-R 7=R 10=H,R 8=R 9=CH 3,R 11=溴代甲基,R 3=异丙基,R 12=乙基,M=Ni,Y=O,X=Br;
    式III所示的配合物,其中R 1=R 3=乙基,R 2=R 4-R 7=R 10=H,R 8=R 9=CH 3,R 11=CH 2Br,R 3=异丙基,R 12=乙基,M=Ni,Y=O,X=Br;
    式III所示的配合物,其中R 1=R 3=异丙基,R 2=R 4-R 7=R 10=H,R 8=R 9=CH 3,R 11=CH 2Br,R 3=乙基,R 12=乙基,M=Ni,Y=O,X=Br;
    式III所示的配合物,其中R 1-R 3=甲基,R 4-R 7=R 10=H,R 8=R 9=CH 3,R 11=CH 2Br,R 12=乙基,M=Ni,Y=O,X=Br;
    式III所示的配合物,其中R 1=R 3=甲基,R 2=Br,R 4-R 7=R 10=H,R 8=R 9=甲基,R 3=乙基,R 11=CH 2Br,R 12=乙基,M=Ni,Y=O,X=Br;
    式III所示的配合物,其中R 1=R 3=F,R 2=R 4-R 7=R 10=H,R 8=R 9=甲基,R 11=CH 2Br,R 3=异丁基,R 12=乙基,M=Ni,Y=O,X=Br;
    式III所示的配合物,其中R 1=R 3=Cl,R 2=R 4-R 7=R 10=H,R 8=R 9=甲基,R 11=CH 2Br,R 3=异丁基,R 12=乙基,M=Ni,Y=O,X=Br;
    式III所示的配合物,其中R 1=R 3=Br,R 2=R 4-R 7=R 10=H,R 8=R 9=甲基,R 11=CH 2Br,R 3=异丁基,R 12=乙基,M=Ni,Y=O,X=Br。
  6. 权利要求1所述的胺基亚胺金属配合物,其具有如式IV所示的结构:
    Figure PCTCN2020125279-appb-100004
    其中,R 1和R 2各自独立地选自含取代基Q或不含取代基Q的C1-C30烃基;R 21-R 24各自独立地选自氢、卤素、羟基、含取代基Q或不含取代基Q的C1-C20烃基和含取代基Q或不含取代基Q的C1-C20烃氧基,并且R 21-R 24任选地相互连接形成环或环体系,优选取代或未取代的苯环;R 5独立地选自氢和含取代基Q或不含取代基Q的C1-C20烃基;R 11独立地选自含取代基Q或不含取代基Q的C1-C20烃基;Y独立地选自VIA族非金属原子;M独立地选自Ⅷ族金属;X独立地选自卤素、含取代基Q或不含取代基Q的C1-C10烃基和含取代基Q或不含取代基Q的C1-C10烃氧基。
  7. 权利要求6所述的胺基亚胺金属配合物,其具有以下特征至少之一:
    -R 1和R 2独立地选自含取代基Q或不含取代基Q的C1-C20烷基和含取代基Q或不含取代基Q的C6-C20芳基,优选地R 1和/或R 2是如式A所示的基团:
    Figure PCTCN2020125279-appb-100005
    其中,R 1-R 5各自独立地选自氢、卤素、羟基、含取代基Q或不含取代基Q的C1-C20烷基、含取代基Q或不含取代基Q的C2-C20烯基、含取代基Q或不含取代基Q的C2-C20炔基、含取代基Q或不含取代基Q的C1-C20烷氧基、含取代基Q或不含取代基Q的C2-C20烯氧基、含取代基Q或不含取代基Q的C2-C20炔氧基、含取代基Q或不含取代基Q的C6-C20芳基、含取代基Q或不含取代基Q的C6-C20芳氧基、含取代基Q或不含取代基Q的C7-C20芳烷基、含取代基Q或不含取代基Q的C7-C20芳烷氧基、含取代基Q或不含取代基Q的C7-C20烷芳基和含取代基Q或不含取代基Q的C7-C20烷芳氧基,并且R 1-R 5任选地相互连接形成环或环体系;
    优选地,R 1-R 5各自独立地选自氢、卤素、羟基、含取代基Q或不含取代基Q的C1-C10烷基、含取代基Q或不含取代基Q的C2-C10烯基、含取代基Q或不含取代基Q的C2-C10 炔基、含取代基Q或不含取代基Q的C1-C10烷氧基、含取代基Q或不含取代基Q的C2-C10烯氧基、含取代基Q或不含取代基Q的C2-C10炔氧基、含取代基Q或不含取代基Q的C6-C15芳基、含取代基Q或不含取代基Q的C6-C15芳氧基、含取代基Q或不含取代基Q的C7-C15芳烷基、含取代基Q或不含取代基Q的C7-C15芳烷氧基、含取代基Q或不含取代基Q的C7-C15烷芳基和含取代基Q或不含取代基Q的C7-C15烷芳氧基;
    更优选地,R 1-R 5各自独立地选自氢、卤素、羟基、含取代基Q或不含取代基Q的C1-C6烷基、含取代基Q或不含取代基Q的C2-C6烯基、含取代基Q或不含取代基Q的C2-C6炔基、含取代基Q或不含取代基Q的C1-C6烷氧基、含取代基Q或不含取代基Q的C2-C6烯氧基、含取代基Q或不含取代基Q的C2-C6炔氧基、含取代基Q或不含取代基Q的C6-C10芳基、含取代基Q或不含取代基Q的C7-C10芳烷基、含取代基Q或不含取代基Q的C7-C10烷芳基、含取代基Q或不含取代基Q的C6-C10芳氧基、含取代基Q或不含取代基Q的C7-C10芳烷氧基和含取代基Q或不含取代基Q的C7-C10烷芳氧基;
    -M独立地选自镍和钯;
    -Y独立地选自O和S;
    -X独立地选自卤素、含取代基Q或不含取代基Q的C1-C10烷基和含取代基Q或不含取代基Q的C1-C10烷氧基,优选独立地选自卤素、含取代基Q或不含取代基Q的C1-C6烷基和含取代基Q或不含取代基Q的C1-C6烷氧基;
    -R 11独立地选自含取代基Q或不含取代基Q的C1-C20烷基,优选含取代基Q或不含取代基Q的C1-C10烷基,更优选含取代基Q或不含取代基Q的C1-C6烷基;
    -R 5独立地选自含取代基Q或不含取代基Q的C1-C20烷基、含取代基Q或不含取代基Q的C6-C20芳基、含取代基Q或不含取代基Q的C7-C20芳烷基和含取代基Q或不含取代基Q的C7-C20烷芳基;优选地,R 5独立地选自含取代基Q或不含取代基Q的C1-C10烷基、含取代基Q或不含取代基Q的C6-C10芳基、含取代基Q或不含取代基Q的C7-C15芳烷基和含取代基Q或不含取代基Q的C7-C15烷芳基,更优选地R 5独立地选自含取代基Q或不含取代基Q的C1-C6烷基,如甲基、乙基、丙基或丁基;和
    -所述取代基Q选自卤素、羟基、C1-C10烷基、卤代的C1-C10烷基、C1-C10烷氧基和卤代的C1-C10烷氧基,优选选自卤素、羟基、C1-C6烷基、卤代的C1-C6烷基、C1-C6烷氧基和卤代的C1-C6烷氧基;优选地,所述C1-C6烷基选自甲基、乙基、正丙基、异丙基、正丁基、异丁基、正戊基、异戊基、正己基、异己基和3,3-二甲基丁基;优选地,所述C1-C6烷氧基选自甲氧基、乙氧基、正丙氧基、异丙氧基、正丁氧基、异丁氧基、正戊氧基、异戊氧基、正己氧基、异己氧基和3,3-二甲基丁氧基;
    -R 21-R 24各自独立地选自氢、卤素、羟基、含取代基Q或不含取代基Q的C1-C20烷基、含取代基Q或不含取代基Q的C2-C20烯基、含取代基Q或不含取代基Q的C2-C20炔基、含取代基Q或不含取代基Q的C1-C20烷氧基、含取代基Q或不含取代基Q的C2-C20烯氧基、含取代基Q或不含取代基Q的C2-C20炔氧基、含取代基Q或不含取代基Q的C6-C20芳基、含取代基Q或不含取代基Q的C7-C20芳烷基、含取代基Q或不含取代基Q的C7-C20烷芳基、取代基或不含取代基的C6-C20芳氧基、含取代基Q或不含取代基Q的C7-C20芳烷氧基和含取代基Q或不含取代基Q的C7-C20烷芳氧基,并且 R 21-R 24任选地相互连接形成环或环体系;
    优选地,R 21-R 24各自独立地选自氢、卤素、羟基、含取代基Q或不含取代基Q的C1-C10烷基、含取代基Q或不含取代基Q的C2-C10烯基、含取代基Q或不含取代基Q的C2-C10炔基、含取代基Q或不含取代基Q的C1-C10烷氧基、含取代基Q或不含取代基Q的C2-C10烯氧基、含取代基Q或不含取代基Q的C2-C10炔氧基、含取代基Q或不含取代基Q的C6-C15芳基、含取代基Q或不含取代基Q的C7-C15芳烷基、含取代基Q或不含取代基Q的C7-C15烷芳基、含取代基Q或不含取代基Q的C6-C15芳氧基、含取代基Q或不含取代基Q的C7-C15芳烷氧基和含取代基Q或不含取代基Q的C7-C15烷芳氧基;
    更优选地,R 21-R 24各自独立地选自氢、C1-C10烷基、卤代的C1-C10烷基、C1-C10烷氧基、卤代的C1-C10烷氧基和卤素,更优选选自氢、C1-C6烷基、卤代的C1-C6烷基、C1-C6烷氧基、卤代的C1-C6烷氧基和卤素。
  8. 权利要求6-7中任一项所述的胺基亚胺金属配合物,其具有如式IVa所示的结构:
    Figure PCTCN2020125279-appb-100006
    其中R 31-R 34具有与式IV中R 21-R 24相同的含义,优选地R 33和R 34为氢,并且R 1、R 2、R 5、R 11、Y、M和X如权利要求6中针对式IV所定义。
  9. 权利要求6-8中任一项所述的胺基亚胺金属配合物,其如下式V或者V’所示:
    Figure PCTCN2020125279-appb-100007
    Figure PCTCN2020125279-appb-100008
    其中各符号如前面所定义,
    优选地,所述胺基亚胺金属配合物选自下组:
    1)式V所示配合物,其中R 1=R 3=R 4=R 6=异丙基,R 2=R 5=R 7-R 10=R 21=R 22=H,R 5=CH 3,R 11=乙基,M=Ni,Y=O,X=Br;
    2)式V所示配合物,其中R 1=R 3=R 4=R 6=乙基,R 2=R 5=R 7-R 10=R 21=R 22=H,R 5=CH 3,R 11=乙基,M=Ni,Y=O,X=Br;
    3)式V所示配合物,其中R 1=R 3=R 4=R 6=甲基,R 2=R 5=R 7-R 10=R 21=R 22=H,R 5=CH 3,R 11=乙基,M=Ni,Y=O,X=Br;
    4)式V所示配合物,其中R 1-R 6=甲基,R 7-R 10=R 21=R 22=H,R 5=CH 3,R 11=乙基,M=Ni,Y=O,X=Br;
    5)式V所示配合物,其中R 1=R 3=R 4=R 6=Br,R 2=R 5=R 7-R 10=R 21=R 22=H,R 5=CH 3,R 11=乙基,M=Ni,Y=O,X=Br;
    6)式V所示配合物,其中R 1=R 3=R 4=R 6=Cl,R 2=R 5=R 7-R 10=R 21=R 22=H,R 5=CH 3,R 11=乙基,M=Ni,Y=O,X=Br;
    7)式V所示配合物,其中R 1=R 3=R 4=R 6=F,R 2=R 5=R 7-R 10=R 21=R 22=H,R 5=CH 3,R 11=乙基,M=Ni,Y=O,X=Br;
    8)式V所示配合物,其中R 1=R 3=R 4=R 6=异丙基,R 2=R 5=R 7-R 10=R 21=R 22=H,R 5=R 11=乙基,M=Ni,Y=O,X=Br;
    9)式V所示配合物,其中R 1=R 3=R 4=R 6=乙基,R 2=R 5=R 7-R 10=R 21=R 22=H,R 5=R 11=乙基,M=Ni,Y=O,X=Br;
    10)式V所示配合物,其中R 1=R 3=R 4=R 6=甲基,R 2=R 5=R 7-R 10=R 21=R 22=H,R 5=R 11=乙基,M=Ni,Y=O,X=Br;
    11)式V所示配合物,其中R 1-R 6=甲基,R 7-R 10=R 21=R 22=H,R 5=R 11=乙基,M=Ni,Y=O,X=Br;
    12)式V所示配合物,其中R 1=R 3=R 4=R 6=Br,R 2=R 5=R 7-R 10=R 21=R 22=H,R 5=R 11=乙基,M=Ni,Y=O,X=Br;
    13)式V所示配合物,其中R 1=R 3=R 4=R 6=Cl,R 2=R 5=R 7-R 10=R 21=R 22=H,R 5=R 11=乙基,M=Ni,Y=O,X=Br;
    14)式V所示配合物,其中R 1=R 3=R 4=R 6=F,R 2=R 5=R 7-R 10=R 21=R 22=H,R 5=R 11=乙基,M=Ni,Y=O,X=Br;
    15)式V所示配合物,其中R 1=R 3=R 4=R 6=异丙基,R 2=R 5=R 7-R 10=R 21=R 22=H,R 5=CH 3,R 11=异丁基,M=Ni,Y=O,X=Br;
    16)式V所示配合物,其中R 1=R 3=R 4=R 6=乙基,R 2=R 5=R 7-R 10=R 21=R 22=H,R 5=CH 3,R 11=异丁基,M=Ni,Y=O,X=Br;
    17)式V所示配合物,其中R 1=R 3=R 4=R 6=甲基,R 2=R 5=R 7-R 10=R 21=R 22=H,R 5=CH 3,R 11=异丁基,M=Ni,Y=O,X=Br;
    18)式V所示配合物,其中R 1-R 6=甲基,R 7-R 10=R 21=R 22=H,R 5=CH 3,R 11=异丁基,M=Ni,Y=O,X=Br;
    19)式V所示配合物,其中R 1=R 3=R 4=R 6=Br,R 2=R 5=R 7-R 10=R 21=R 22=H,R 5=CH 3,R 11=异丁基,M=Ni,Y=O,X=Br;
    20)式V所示配合物,其中R 1=R 3=R 4=R 6=Cl,R 2=R 5=R 7-R 10=R 21=R 22=H,R 5=CH 3,R 11=异丁基,M=Ni,Y=O,X=Br;
    21)式V所示配合物,其中R 1=R 3=R 4=R 6=F,R 2=R 5=R 7-R 10=R 21=R 22=H,R 5=CH 3,R 11=异丁基,M=Ni,Y=O,X=Br;
    22)式V所示配合物,其中R 1=R 3=R 4=R 6=异丙基,R 2=R 5=R 7-R 10=R 22=H,R 21=叔丁基,R 5=CH 3,R 11=乙基,M=Ni,Y=O,X=Br;
    23)式V所示配合物,其中R 1=R 3=R 4=R 6=乙基,R 2=R 5=R 7-R 10=R 22=H,R 21=叔丁基,R 5=CH 3,R 11=乙基,M=Ni,Y=O,X=Br;
    24)式V所示配合物,其中R 1=R 3=R 4=R 6=甲基,R 2=R 5=R 7-R 10=R 22=H,R 21=叔丁基,R 5=CH 3,R 11=乙基,M=Ni,Y=O,X=Br;
    25)式V所示配合物,其中R 1-R 6=甲基,R 7-R 10=R 22=H,R 21=叔丁基,R 5=CH 3,R 11=乙基,M=Ni,Y=O,X=Br;
    26)式V所示配合物,其中R 1=R 3=R 4=R 6=Br,R 2=R 5=R 7-R 10=R 22=H,R 21=叔丁基,R 5=CH 3,R 11=乙基,M=Ni,Y=O,X=Br;
    27)式V所示配合物,其中R 1=R 3=R 4=R 6=Cl,R 2=R 5=R 7-R 10=R 22=H,R 21=叔丁基,R 5=CH 3,R 11=乙基,M=Ni,Y=O,X=Br;
    28)式V所示配合物,其中R 1=R 3=R 4=R 6=F,R 2=R 5=R 7-R 10=R 22=H,R 21=叔丁基,R 5=CH 3,R 11=乙基,M=Ni,Y=O,X=Br;
    29)式V所示配合物,其中R 1=R 3=R 4=R 6=异丙基,R 2=R 5=R 7-R 10=R 22=H,R 21=叔丁基,R 5=CH 3,R 11=异丁基,M=Ni,Y=O,X=Br;
    30)式V所示配合物,其中R 1=R 3=R 4=R 6=乙基,R 2=R 5=R 7-R 10=R 22=H,R 21=叔丁基,R 5=CH 3,R 11=异丁基,M=Ni,Y=O,X=Br;
    31)式V所示配合物,其中R 1=R 3=R 4=R 6=甲基,R 2=R 5=R 7-R 10=R 22=H,R 21=叔丁基,R 5=CH 3,R 11=异丁基,M=Ni,Y=O,X=Br;
    32)式V所示配合物,其中R 1-R 6=甲基,R 7-R 10=R 22=H,R 21=叔丁基,R 5=CH 3,R 11=异丁基,M=Ni,Y=O,X=Br;
    33)式V所示配合物,其中R 1=R 3=R 4=R 6=Br,R 2=R 5=R 7-R 10=R 22=H,R 21=叔丁基,R 5=CH 3,R 11=异丁基,M=Ni,Y=O,X=Br;
    34)式V所示配合物,其中R 1=R 3=R 4=R 6=Cl,R 2=R 5=R 7-R 10=R 22=H,R 21=叔丁基, R 5=CH 3,R 11=异丁基,M=Ni,Y=O,X=Br;
    35)式V所示配合物,其中R 1=R 3=R 4=R 6=F,R 2=R 5=R 7-R 10=R 22=H,R 21=叔丁基,R 5=CH 3,R 11=异丁基,M=Ni,Y=O,X=Br;
    36)式V’所示配合物,其中R 1=R 3=R 4=R 6=异丙基,R 2=R 5=R 7-R 10=R 31=R 32=H,R 5=CH 3,R 11=乙基,M=Ni,Y=O,X=Br;
    37)式V’所示配合物,其中R 1=R 3=R 4=R 6=乙基,R 2=R 5=R 7-R 10=R 31=R 32=H,R 5=CH 3,R 11=乙基,M=Ni,Y=O,X=Br;
    38)式V’所示配合物,其中R 1=R 3=R 4=R 6=甲基,R 2=R 5=R 7-R 10=R 31=R 32=H,R 5=CH 3,R 11=乙基,M=Ni,Y=O,X=Br;
    39)式V’所示配合物,其中R 1-R 6=甲基,R 7-R 10=R 31=R 32=H,R 5=CH 3,R 11=乙基,M=Ni,Y=O,X=Br;
    40)式V’所示配合物,其中R 1=R 3=R 4=R 6=Br,R 2=R 5=R 7-R 10=R 31=R 32=H,R 5=CH 3,R 11=乙基,M=Ni,Y=O,X=Br;
    41)式V’所示配合物,其中R 1=R 3=R 4=R 6=Cl,R 2=R 5=R 7-R 10=R 31=R 32=H,R 5=CH 3,R 11=乙基,M=Ni,Y=O,X=Br;
    42)式V’所示配合物,其中R 1=R 3=R 4=R 6=F,R 2=R 5=R 7-R 10=R 31=R 32=H,R 5=CH 3,R 11=乙基,M=Ni,Y=O,X=Br;
    43)式V’所示配合物,其中R 1=R 3=R 4=R 6=异丙基,R 2=R 5=R 7-R 10=R 31=R 32=H,R 5=CH 3,R 11=异丁基,M=Ni,Y=O,X=Br;
    44)式V’所示配合物,其中R 1=R 3=R 4=R 6=乙基,R 2=R 5=R 7-R 10=R 31=R 32=H,R 5=CH 3,R 11=异丁基,M=Ni,Y=O,X=Br;
    45)式V’所示配合物,其中R 1=R 3=R 4=R 6=甲基,R 2=R 5=R 7-R 10=R 31=R 32=H,R 5=CH 3,R 11=异丁基,M=Ni,Y=O,X=Br;
    46)式V’所示配合物,其中R 1-R 6=甲基,R 7-R 10=R 31=R 32=H,R 5=CH 3,R 11=异丁基,M=Ni,Y=O,X=Br;
    47)式V’所示配合物,其中R 1=R 3=R 4=R 6=Br,R 2=R 5=R 7-R 10=R 31=R 32=H,R 5=CH 3,R 11=异丁基,M=Ni,Y=O,X=Br;
    48)式V’所示配合物,其中R 1=R 3=R 4=R 6=Cl,R 2=R 5=R 7-R 10=R 31=R 32=H,R 5=CH 3,R 11=异丁基,M=Ni,Y=O,X=Br;
    49)式V’所示配合物,其中R 1=R 3=R 4=R 6=F,R 2=R 5=R 7-R 10=R 31=R 32=H,R 5=CH 3,R 11=异丁基,M=Ni,Y=O,X=Br;
    50)式V’所示配合物,其中R 1=R 3=R 4=R 6=异丙基,R 2=R 5=R 7-R 10=H R 31=R 32=R 11=乙基,R 5=CH 3,M=Ni,Y=O,X=Br;
    51)式V’所示配合物,其中R 1=R 3=R 4=R 6=乙基,R 2=R 5=R 7-R 10=H,R 31=R 32=R 11=乙基,R 5=CH 3,M=Ni,Y=O,X=Br;
    52)式V’所示配合物,其中R 1=R 3=R 4=R 6=甲基,R 2=R 5=R 7-R 10=H,R 31=R 32=R 11=乙基,R 5=CH 3,M=Ni,Y=O,X=Br;
    53)式V’所示配合物,其中R 1-R 6=甲基,R 7-R 10=H,R 31=R 32=R 11=乙基,R 5=CH 3,M=Ni,Y=O,X=Br;
    54)式V’所示配合物,其中R 1=R 3=R 4=R 6=Br,R 2=R 5=R 7-R 10=H,R 31=R 32=R 11=乙基,R 5=CH 3,M=Ni,Y=O,X=Br;
    55)式V’所示配合物,其中R 1=R 3=R 4=R 6=Cl,R 2=R 5=R 7-R 10=H,R 31=R 32=R 11=乙基,R 5=CH 3,M=Ni,Y=O,X=Br;
    56)式V’所示配合物,其中R 1=R 3=R 4=R 6=F,R 2=R 5=R 7-R 10=H,R 31=R 32=R 11=乙基,R 5=CH 3,M=Ni,Y=O,X=Br;
    57)式V’所示配合物,其中R 1=R 3=R 4=R 6=异丙基,R 2=R 5=R 7-R 10=H,R 31=R 32=R 11=乙基,R 5=CH 3,M=Ni,Y=O,X=Br;
    58)式V’所示配合物,其中R 1=R 3=R 4=R 6=乙基,R 2=R 5=R 7-R 10=H,R 31=R 32=乙基,R 5=CH 3,R 11=异丁基,M=Ni,Y=O,X=Br;
    59)式V’所示配合物,其中R 1=R 3=R 4=R 6=甲基,R 2=R 5=R 7-R 10=H,R 31=R 32=乙基,R 5=CH 3,R 11=异丁基,M=Ni,Y=O,X=Br;
    60)式V’所示配合物,其中R 1-R 6=甲基,R 7-R 10=H,R 31=R 32=乙基,R 5=CH 3,R 11=异丁基,M=Ni,Y=O,X=Br;
    61)式V’所示配合物,其中R 1=R 3=R 4=R 6=Br,R 2=R 5=R 7-R 10=H,R 31=R 32=乙基,R 5=CH 3,R 11=异丁基,M=Ni,Y=O,X=Br;
    62)式V’所示配合物,其中R 1=R 3=R 4=R 6=Cl,R 2=R 5=R 7-R 10=H,R 31=R 32=乙基,R 5=CH 3,R 11=异丁基,M=Ni,Y=O,X=Br;
    63)式V’所示配合物,其中R 1=R 3=R 4=R 6=F,R 2=R 5=R 7-R 10=H,R 31=R 32=乙基,R 5=CH 3,R 11=异丁基,M=Ni,Y=O,X=Br。
  10. 制备权利要求1所述的胺基亚胺金属配合物的方法,包括步骤1)使式VI所示的胺基亚胺化合物与MX n和R 12YH反应,生成所述式I所示的胺基亚胺金属配合物,
    Figure PCTCN2020125279-appb-100009
    式VI中的R 1、R 2、R 3、R 5-R 8具有与权利要求1中针对式I所定义的相同含义;
    MX n中的M和X具有与权利要求1中针对式I所定义的相同含义,n为满足M价态的X的个数;
    R 12YH中的Y和R 12具有与权利要求1中针对式I所定义的相同含义;
    优选地,所述式VI所示的胺基亚胺化合物如下式VIa所示:
    Figure PCTCN2020125279-appb-100010
    其中,R 1-R 11、R 3具有与权利要求3中针对式III所定义的相同含义。
  11. 权利要求10所述的制备方法,其中所述式VI所示的胺基亚胺化合物的制备包括步骤2)使式VII所示的二酮化合物与A(R 3) a和胺类化合物反应,生成所述式VI所示的胺基亚胺化合物,所述胺类化合物为R 1NH 2和R 2NH 2
    Figure PCTCN2020125279-appb-100011
    其中,R 1、R 2、R 3、R 5-R 8具有与权利要求1中针对式I所定义的相同含义,A是选自铝、锌、锂和镁中的一种或多种,优选地A(R 3) a与所述胺类化合物的摩尔比大于等于2.0,优选为2.0-6.0,更优选为3.0-6.0;
    优选地,所述式VII所示的二酮化合物如下式VIIa所示:
    Figure PCTCN2020125279-appb-100012
    其中R 6-R 11具有与式III中相同的定义。
  12. 权利要求11所述的方法,其中步骤1)中所述反应在有机溶剂中进行,优选所述有机溶剂为卤代烷烃,更优选所述有机溶剂选自二氯甲烷、三氯甲烷和1,2-二氯乙烷中的一种或多种;
    步骤2)中所述反应在非质子溶剂中进行,优选所述非质子溶剂为甲苯、苯、二甲苯中的一种或多种。
  13. 权利要求10所述的方法,其中所述式VI所示的胺基亚胺化合物的制备包括将式VIII所示的二亚胺化合物与A(R 3) a或格氏试剂接触反应,生成所述式VI所示的胺基亚胺化合物,
    Figure PCTCN2020125279-appb-100013
    其中,R 1、R 2、R 5-R 8具有与式I中相同的定义;
    A(R 3) a中,A是选自铝、锌、锂和镁中的一种或多种,R 3具有与式I中相同的定义,a为满足A价态R 3的数目;
    格氏试剂的通式为R 3MgX,其中R 3具有与式I中相同的定义,X为卤素,优选为溴和/或氯;
    优选地,所述式VIII所示的二亚胺化合物如下式VIIIa所示:
    Figure PCTCN2020125279-appb-100014
    其中,R 1-R 11具有与式III中相同定义。
  14. 权利要求1-9中任一项所述的胺基亚胺金属配合物在烯烃聚合中的应用。
  15. 烯烃聚合用催化剂,其包含权利要求1-9中任一项所述的胺基亚胺金属配合物、助催化剂和/或链转移剂;
    优选地,所述助催化剂选自有机铝化合物和有机硼化合物;所述有机铝化合物选自烷基铝氧烷、烷基铝和烷基铝卤化物;所述有机硼化合物选自芳烃基硼和硼酸盐。
  16. 烯烃聚合方法,包括在权利要求1-9中任一项所述的胺基亚胺金属配合物或权利要求15所述的催化剂的存在下进行烯烃聚合反应,优选地所述聚合反应的温度为-78℃~200℃,优选为-20℃~150℃;聚合压力为0.01~10.0MPa,优选0.01~2.0MPa。
PCT/CN2020/125279 2019-10-31 2020-10-30 胺基亚胺金属配合物及其制备方法和应用 WO2021083330A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2022525360A JP2022554294A (ja) 2019-10-31 2020-10-30 アミノイミン金属錯体並びにその調製方法および適用
KR1020227018118A KR20220106983A (ko) 2019-10-31 2020-10-30 아미노-이민 금속 착물, 및 이의 제조 방법 및 용도
BR112022008291A BR112022008291A2 (pt) 2019-10-31 2020-10-30 Complexo metálico de amino-imina, método para preparar o complexo metálico de amino-imina, uso do complexo metálico de amino-imina, catalisador para polimerização de olefinas e processo de polimerização de olefinas
US17/755,484 US20230002432A1 (en) 2019-10-31 2020-10-30 Amino-imine metal complex and preparation method therefor and application thereof
EP20882056.3A EP4053138A4 (en) 2019-10-31 2020-10-30 AMINO-IMINE METAL COMPLEX AS WELL AS ITS PREPARATION PROCESS AND ITS APPLICATION
CA3159750A CA3159750A1 (en) 2019-10-31 2020-10-30 Amino-imine metal complex and preparation method therefor and application thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201911049822.8 2019-10-31
CN201911049911.2 2019-10-31
CN201911049822.8A CN112745360B (zh) 2019-10-31 2019-10-31 一种胺基亚胺类配合物及其制备方法和应用
CN201911049911.2A CN112745363B (zh) 2019-10-31 2019-10-31 胺基亚胺金属配合物及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2021083330A1 true WO2021083330A1 (zh) 2021-05-06

Family

ID=75715880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/125279 WO2021083330A1 (zh) 2019-10-31 2020-10-30 胺基亚胺金属配合物及其制备方法和应用

Country Status (7)

Country Link
US (1) US20230002432A1 (zh)
EP (1) EP4053138A4 (zh)
JP (1) JP2022554294A (zh)
KR (1) KR20220106983A (zh)
BR (1) BR112022008291A2 (zh)
CA (1) CA3159750A1 (zh)
WO (1) WO2021083330A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116023537A (zh) * 2021-10-26 2023-04-28 中国石油化工股份有限公司 一种用于烯烃聚合的催化剂组合物及其制备方法与应用

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE889229C (de) 1950-08-17 1953-09-07 Karl Dr Dr E H Ziegler Verfahren zur Polymerisation und Mischpolymerisation von Olefinen
BE530617A (zh) 1953-01-27 1957-10-11
WO1996023010A2 (en) 1995-01-24 1996-08-01 E.I. Du Pont De Nemours And Company α-OLEFINS AND OLEFIN POLYMERS AND PROCESSES THEREFOR
WO1998003521A1 (en) 1996-07-23 1998-01-29 Symyx Technologies Combinatorial synthesis and analysis of organometallic compounds and catalysts
WO1998040374A2 (en) 1997-03-10 1998-09-17 Eastman Chemical Company Olefin polymerization catalysts containing group 8-10 transition metals, bidentate ligands, processes employing such catalysts and polymers obtained therefrom
WO1999005189A1 (en) 1997-07-23 1999-02-04 E.I. Du Pont De Nemours And Company Polymerization of olefins
WO1999062968A1 (en) 1998-06-01 1999-12-09 Eastman Chemical Company Supported group 8-10 transition metal olefin polymerization catalysts
WO2000006620A2 (en) 1998-07-29 2000-02-10 E.I. Du Pont De Nemours And Company Polymerization of olefins
US6660677B1 (en) 1997-03-10 2003-12-09 Eastman Chemical Company Supported group 8-10 transition metal olefin polymerization catalysts
CN102250152A (zh) 2011-05-26 2011-11-23 中山大学 胺基亚胺镍乙烯聚合催化剂的制备方法和应用
CN105482000A (zh) * 2014-09-18 2016-04-13 中国石油化工股份有限公司 一种烯烃聚合催化剂及其制备和应用方法
CN106397264A (zh) * 2015-07-31 2017-02-15 中国石油化工股份有限公司 一种二亚胺配体化合物、配合物及应用
CN106397260A (zh) * 2015-07-31 2017-02-15 中国石油化工股份有限公司 一种二亚胺配体化合物、镍配合物及应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220097939A (ko) * 2019-10-31 2022-07-08 차이나 페트로리움 앤드 케미컬 코포레이션 올레핀-극성 단량체 공중합체의 제조 방법

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE889229C (de) 1950-08-17 1953-09-07 Karl Dr Dr E H Ziegler Verfahren zur Polymerisation und Mischpolymerisation von Olefinen
BE530617A (zh) 1953-01-27 1957-10-11
WO1996023010A2 (en) 1995-01-24 1996-08-01 E.I. Du Pont De Nemours And Company α-OLEFINS AND OLEFIN POLYMERS AND PROCESSES THEREFOR
WO1998003521A1 (en) 1996-07-23 1998-01-29 Symyx Technologies Combinatorial synthesis and analysis of organometallic compounds and catalysts
US6660677B1 (en) 1997-03-10 2003-12-09 Eastman Chemical Company Supported group 8-10 transition metal olefin polymerization catalysts
US6103658A (en) 1997-03-10 2000-08-15 Eastman Chemical Company Olefin polymerization catalysts containing group 8-10 transition metals, processes employing such catalysts and polymers obtained therefrom
WO1998040374A2 (en) 1997-03-10 1998-09-17 Eastman Chemical Company Olefin polymerization catalysts containing group 8-10 transition metals, bidentate ligands, processes employing such catalysts and polymers obtained therefrom
WO1999005189A1 (en) 1997-07-23 1999-02-04 E.I. Du Pont De Nemours And Company Polymerization of olefins
WO1999062968A1 (en) 1998-06-01 1999-12-09 Eastman Chemical Company Supported group 8-10 transition metal olefin polymerization catalysts
WO2000006620A2 (en) 1998-07-29 2000-02-10 E.I. Du Pont De Nemours And Company Polymerization of olefins
CN102250152A (zh) 2011-05-26 2011-11-23 中山大学 胺基亚胺镍乙烯聚合催化剂的制备方法和应用
CN105482000A (zh) * 2014-09-18 2016-04-13 中国石油化工股份有限公司 一种烯烃聚合催化剂及其制备和应用方法
CN106397264A (zh) * 2015-07-31 2017-02-15 中国石油化工股份有限公司 一种二亚胺配体化合物、配合物及应用
CN106397260A (zh) * 2015-07-31 2017-02-15 中国石油化工股份有限公司 一种二亚胺配体化合物、镍配合物及应用

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
BAZAN ET AL., MACROMOLECULES, vol. 36, 2003, pages 9731 - 9735
CHEM. COMMUN., 2009, pages 6177 - 6179
CHEM. REV., vol. 100, 2000, pages 1169
CHEM. REV., vol. 96, 1996, pages 3327
GAO RONG; GUO ZIFANG; ZHOU JUNLING; LI YAN; LIU DONGBING; ZHANG XIAOFAN: "One-step synthesis of hollow spherical polyethylene by dispersion polymerization", JOURNAL OF CATALYSIS, vol. 385, 31 March 2020 (2020-03-31), pages 103 - 106, XP086198222, ISSN: 0021-9517, DOI: 10.1016/j.jcat.2020.03.007 *
GOMES CLARA S. B., RIBEIRO ALEJANDRO F. G., FERNANDES ANABELA C., BENTO ARTUR, ROSÁRIO RIBEIRO M., KOCIOK-KÖHN GABRIELE, PASCU SOF: "Reactivity of cationic α-diimine cyclopentadienyl nickel complexes towards AlEt2Cl: synthesis, characterisation and ethylene polymerisation", CATALYSIS SCIENCE & TECHNOLOGY, vol. 7, no. 14, 5 June 2017 (2017-06-05), pages 3128 - 3142, XP055807394, ISSN: 2044-4753, DOI: 10.1039/C7CY00875A *
HE XIAOHUI, DENG YINGJIAO, HAN ZHILONG, YANG YINGPING, CHEN DEFU: "Highly Symmetric Single Nickel Catalysts Bearing Bulky Bis(a-Diimine) Ligand: Synthesis, Characterization, and Electron-Effects on Copolymerization of Norbornene with 1-Alkene at Elevated Temperarure", JOURNAL OF POLYMER SCIENCE PART A: POLYMER CHEMISTRY, vol. 54, no. 21, 2 August 2016 (2016-08-02), pages 3495 - 3505, XP055807391, ISSN: 0887-624X, DOI: 10.1002/pola.28240 *
LONG ET AL.: "reported that a large sterically hindered a-diimide nickel catalyst can catalyze the living polymerization of ethylene at 60°C with a molecular weight distribution of 1.11", ACS CATALYSIS, vol. 4, 2014, pages 2501 - 2504
MASOUD MAMDOUH S , ALI ALAA E, ELASALA GEHAN S.,ELWARDANY REHAB E: "Structural and thermal studies on some morpholine complexes", JOURNAL OF MOLECULAR STRUCTURE, vol. 1175, 10 August 2018 (2018-08-10), pages 648 - 662, XP085504187, ISSN: 0022-2860, DOI: 10.1016/j.molstruc.2018.08.023 *
SUN YAT-SEN: "University can also realize living polymerization of ethylene", CHEM., vol. 46, 2010, pages 4321 - 4323

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116023537A (zh) * 2021-10-26 2023-04-28 中国石油化工股份有限公司 一种用于烯烃聚合的催化剂组合物及其制备方法与应用
CN116023537B (zh) * 2021-10-26 2024-05-07 中国石油化工股份有限公司 一种用于烯烃聚合的催化剂组合物及其制备方法与应用

Also Published As

Publication number Publication date
EP4053138A4 (en) 2023-11-15
JP2022554294A (ja) 2022-12-28
KR20220106983A (ko) 2022-08-01
US20230002432A1 (en) 2023-01-05
CA3159750A1 (en) 2021-05-06
EP4053138A1 (en) 2022-09-07
BR112022008291A2 (pt) 2022-07-26

Similar Documents

Publication Publication Date Title
CN111116806B (zh) 一种烯烃-不饱和羧酸共聚物的制备方法
WO2021083358A1 (zh) 用于制备烯烃-极性单体共聚物的方法
CN111116783A (zh) 一种烯烃聚合物及其制备方法
CN111116412B (zh) 胺基亚胺配体、胺基亚胺配合物及其应用
CN112745363B (zh) 胺基亚胺金属配合物及其制备方法和应用
CN112745358B (zh) 二亚胺金属配合物及其制备方法和应用
CN112745359B (zh) 一种二亚胺金属配合物及其制备方法和应用
WO2021083330A1 (zh) 胺基亚胺金属配合物及其制备方法和应用
EP3252064A1 (en) Metallocene compound
CN112745362B (zh) 二亚胺金属配合物及其制备方法和应用
CN112745361B (zh) 一种二亚胺类配合物及其制备方法和应用
CN112745423B (zh) 一种烯烃-不饱和羧酸共聚物的制备方法、烯烃-不饱和羧酸共聚物及其应用
CN112745429B (zh) 用于制备烯烃-不饱和羧酸共聚物的方法
CN112745424B (zh) 一种用于制备烯烃-不饱和羧酸共聚物的方法
WO2021083350A1 (zh) 二亚胺金属配合物及其制备方法和应用
CN111116787B (zh) 二胺配体、二胺配合物、包含该二胺配合物的催化剂
WO2022227924A1 (zh) 支化烯烃聚合物及其制备方法和应用
CN112745360B (zh) 一种胺基亚胺类配合物及其制备方法和应用
CN115260363B (zh) 一种金属配合物在催化烯烃聚合中的应用
WO2022227933A1 (zh) 一种聚合物的制备方法及所得到的聚合物
CN111116786B (zh) 二胺配体、二胺配合物以及包含该二胺配合物的催化剂
CN111116408B (zh) 胺基亚胺配体、胺基亚胺配合物及其应用
WO2024078528A1 (zh) 一种膦-酚过渡金属配合物及其制备方法和应用
CN112745425B (zh) 用于制备烯烃-烯烃醇共聚物的方法
CN115246900A (zh) 一种聚合物的制备方法及聚合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20882056

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022525360

Country of ref document: JP

Kind code of ref document: A

Ref document number: 3159750

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022008291

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020882056

Country of ref document: EP

Effective date: 20220531

ENP Entry into the national phase

Ref document number: 112022008291

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220429