WO2021056851A1 - 一种MXene/金属复合气凝胶、其制备方法、用途及包含其的热界面材料 - Google Patents

一种MXene/金属复合气凝胶、其制备方法、用途及包含其的热界面材料 Download PDF

Info

Publication number
WO2021056851A1
WO2021056851A1 PCT/CN2019/125184 CN2019125184W WO2021056851A1 WO 2021056851 A1 WO2021056851 A1 WO 2021056851A1 CN 2019125184 W CN2019125184 W CN 2019125184W WO 2021056851 A1 WO2021056851 A1 WO 2021056851A1
Authority
WO
WIPO (PCT)
Prior art keywords
mxene
metal
composite aerogel
metal composite
silver
Prior art date
Application number
PCT/CN2019/125184
Other languages
English (en)
French (fr)
Inventor
闫长增
纪超
王英
孙蓉
Original Assignee
中国科学院深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院深圳先进技术研究院 filed Critical 中国科学院深圳先进技术研究院
Publication of WO2021056851A1 publication Critical patent/WO2021056851A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/048Elimination of a frozen liquid phase
    • C08J2201/0484Elimination of a frozen liquid phase the liquid phase being aqueous
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0806Silver
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • C08K3/14Carbides

Definitions

  • This application belongs to the technical field of thermally conductive materials, and specifically relates to a MXene/metal composite aerogel, its preparation method, application and thermal interface material containing the same.
  • Thermal interface material is a general term for a class of materials that are used to reduce the contact thermal resistance between the heat dissipating device and the heating device.
  • the thermal conductivity of air is very small, which will cause a large contact thermal resistance between the interfaces.
  • the use of thermal interface materials can fill this gap well and improve heat dissipation. performance.
  • Thermal interface materials are widely used in thermal interface materials due to their good flexibility, low cost and good processability.
  • the intrinsic thermal conductivity of polymers is generally too low, and it is difficult to achieve effective heat transfer effects when used alone in practical applications. For this reason, it is usually necessary to add thermally conductive fillers (for example, ceramics, metals, and carbon materials) to the polymer.
  • MXene is a two-dimensional material with an accordion-like morphology.
  • the composition is a carbide or nitride of a transition metal. It is mainly prepared by etching MAX (such as Ti 3 AlC 2 ), where "M” represents a transition metal element, and "A” Represents an element of the third or fourth main group, and "X" represents carbon or nitrogen.
  • MAX such as Ti 3 AlC 2
  • the ice template method to prepare aerogels is a very effective way.
  • the principle of the ice template method is that the solvent water in the aqueous solution crystallizes into ice during the freezing process.
  • the two-dimensional flake filler dispersed in it also forms an orderly network structure with the growth of ice crystals. This frozen structure is It is sublimated and dried in a vacuum to remove ice crystals to obtain a two-dimensional aerogel.
  • Li Yecan et al. used silver nanoparticles and graphene oxide as raw materials to prepare a three-dimensional graphene/silver nanoparticle aerogel by the ice template method, and studied its electrical conductivity ("Three-dimensional graphene/silver nanoparticle aerogel” The construction of glue", Li Yecan et al., Journal of Qingdao University of Science and Technology, Volume 39 Supplement 1). Based on the structure of the three-dimensional graphene/silver nanoparticle aerogel, it is speculated that it may have a certain thermal conductivity, but the silver nanoparticles in this aerogel are only adsorbed on the surface of the graphene, and its thermal conductivity is limited.
  • the purpose of this application is to provide a MXene/metal composite aerogel, its preparation method, application and thermal interface material containing the same.
  • the MXene/metal composite aerogel has good thermal conductivity, structural stability and thermal conductivity, and can be used as a thermally conductive filler. Compared with thermally conductive fillers such as graphene, it has a wider range of application to polymer substrates.
  • the present application provides an MXene/metal composite aerogel, including an MXene framework and a metal, and the MXene framework is cross-linked into a network structure through the metal.
  • MXene two-dimensional materials have excellent intra-layer thermal conductivity, but because the layers are separated from each other, the overall thermal conductivity is limited.
  • This application uses metal to "weld" the MXene sheets to improve the heat transfer efficiency between the MXene sheets, so that the MXene/metal composite aerogel forms a complete heat conduction path, so the obtained MXene/metal composite Aerogel has high thermal conductivity, can be used as a thermally conductive filler, and the required amount of addition is low; moreover, because the metal network has a supporting effect on the MXene framework, the obtained MXene/metal composite aerogel has good properties
  • the structural stability and thermal conductivity of MXene are stable; in addition, compared with two-dimensional materials such as graphene, the compatibility between MXene and organic polymer materials is better. Therefore, when the MXene/metal composite aerogel provided in this application is used as a filler , It has a wider application range for polymer substrates and stronger
  • the metal is selected from one or a combination of at least two of silver, iron, nickel, or copper, and more preferably silver.
  • silver is the best thermal conductor, and its nanoparticles can be melted at about 200°C, and the "welding" temperature is relatively low. Therefore, in this application, the metal in the MXene/metal composite aerogel can be selected as silver.
  • the mass percentage of the metal in the MXene/metal composite aerogel is 0.5%-10%; for example, it can be 0.5%, 0.6%, 0.8%, 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5%, 5%, 5.5%, 6%, 6.5%, 7%, 7.5%, 8%, 8.5%, 9%, 9.5% or 10% Wait.
  • the crosslinking degree of the MXene/metal composite aerogel will be lower, and the thermal conductivity will decrease; if the metal content is too high, the mechanical properties of the aerogel will be Will fall.
  • the apparent density of the MXene/metal composite aerogel is 0.9-3 kg/m 3 ; for example, it may be 0.9 kg/m 3 , 1 kg/m 3 , 1.2 kg/m 3 , 1.5 kg/m 3 , 1.8kg/m 3 , 2kg/m 3 , 2.2kg/m 3 , 2.5kg/m 3 , 2.8kg/m 3 or 3kg/m 3, etc.
  • this application provides a method for preparing the above-mentioned MXene/metal composite aerogel, which includes the following steps:
  • step (2) freeze-dry the dispersion obtained in step (1) to obtain MXene/metal nanoparticle composite aerogel
  • step (3) Anneal the MXene/metal nanoparticle composite aerogel obtained in step (2) to melt the metal nanoparticles in the MXene/metal nanoparticle composite aerogel. After the annealing is completed, the MXene/metal composite aerogel.
  • This application uses the suspended bonds of titanium and oxygen contained on the surface of MXene to reduce the metal ions into metal nanoparticles in situ, and then uses the ice template method to grow the MXene/metal nanoparticle composite material to form an ordered network structure (water is in the freezing process). Crystallize into ice, and the dispersed MXene/metal nanoparticle composite material also forms an ordered structure with the growth of ice crystals). After freeze-drying, this network structure is temporarily fixed to form MXene/metal nanoparticle composite gas.
  • the melting temperature at this size is much lower than the melting point of the metal, so in step (3), the MXene is treated by annealing.
  • the metal nanoparticles on the flakes are heated and melted, so that the MXene flakes are "welded" to form an MXene/metal composite aerogel.
  • the metal layer in MAX is etched away with a mixed solution of hydrochloric acid and lithium chloride to form accordion-like MXene.
  • the etched sample is collected by washing and centrifugation, and then the obtained sample is dispersed in deionized water and mechanically shaken for 5 minutes.
  • the sample is peeled off into thin slices, centrifuged at 3500 rpm for 30 minutes, and the supernatant is collected, which is the MXene dispersion;
  • the MAX powder in a hydrofluoric acid solution for etching, wash the etched sample and collect it by centrifugation, and then disperse it in a solution of cetyltrimethylammonium bromide and shake it mechanically for 5 minutes to make the sample Peel into thin slices, centrifuge at 3500 rpm for 30 minutes, and collect the supernatant, which is the MXene dispersion.
  • the temperature of the reaction in the step (1) is -5 to 80°C, for example, -5°C, -2°C, 0°C, 2°C, 5°C, 8°C , 10°C, 15°C, 20°C, 23°C, 25°C, 30°C, 35°C, 40°C, 45°C, 50°C, 55°C, 60°C, 65°C, 70°C, 75°C or 80°C etc.
  • the temperature of the reaction in step (1) is more preferably -5-50°C.
  • the reaction time in step (1) is 10-30 min; for example, it can be 10 min, 12 min, 15 min, 18 min, 20 min, 22 min, 25 min, 28 min, or 30 min.
  • reaction in step (1) is carried out under ultrasonic oscillation conditions.
  • the annealing temperature in step (3) is 150-500°C, for example 150°C, 160°C, 170°C, 180°C, 190°C, 200°C, 210°C, 220°C, 250°C, 280°C, 300°C, 320°C, 350°C, 380°C, 400°C, 420°C, 45°C, 480°C or 500°C, etc.; time is 0.5-3h, such as 0.5h, 0.8h, 1h, 1.2h , 1.5h, 1.8h, 2h, 2.2h, 2.5h, 2.8h or 3h etc.
  • the annealing temperature is 150-300°C;
  • the annealing temperature is 300-500°C;
  • the annealing temperature is 200-350°C;
  • the annealing temperature is 250-400°C.
  • the annealing in step (3) is performed in a protective atmosphere.
  • the protective atmosphere is an argon atmosphere.
  • the preparation method further includes: before the freeze-drying in step (2), mixing the dispersion obtained in step (1) with polyvinyl alcohol.
  • step (2) is: mixing the dispersion obtained in step (1) with polyvinyl alcohol, and then freeze-drying to obtain MXene/metal nanoparticle composite aerogel.
  • polyvinyl alcohol may not be added in step (2), but the obtained MXene/metal nanoparticle composite aerogel has an unstable structure and is easy to collapse; adding polyvinyl alcohol can play a role in connecting the MXene skeleton and improve Stability of MXene/metal nanoparticle composite aerogel.
  • the added polyvinyl alcohol will be thermally decomposed and removed during the annealing process in step (3).
  • the preparation method includes the following steps:
  • step (2) Mix the dispersion obtained in step (1) with the polyvinyl alcohol solution, add it to a mold, place it on a copper column immersed in liquid nitrogen for freezing, and then place it in a freeze dryer for drying to obtain MXene/ Metal nanoparticle composite aerogel;
  • the MXene/metal nanoparticle composite aerogel obtained in step (2) is annealed at 150-500°C for 0.5-3h to make the metal in the MXene/metal nanoparticle composite aerogel The nanoparticles are melted, and after the annealing is completed, the MXene/metal composite aerogel is obtained.
  • this application provides a use of the MXene/metal composite aerogel described in the first aspect, where the MXene/metal composite aerogel is used as a thermally conductive filler.
  • the present application provides a thermal interface material.
  • the thermal interface material includes a polymer substrate and the MXene/metal composite aerogel described in the first aspect of the application.
  • the volume percentage of MXene/metal composite aerogel in the thermal interface material is 3-40%; for example, it can be 3%, 3.5%, 4%, 4.5%, 5% , 5.5%, 6%, 6.5%, 7%, 7.5%, 8%, 8.5%, 9%, 9.5%, 10%, 12%, 15%, 18%, 20%, 22%, 25%, 28 %, 30%, 32%, 35%, 38% or 40% etc. More optional is 10-15%.
  • the polymer substrates can be selected from epoxy resins, polyimides, and polyesters.
  • the MXene/metal composite aerogel can be immersed in the precursor solution of the polymer substrate, cured after deaeration, and polished into a thin sheet of the desired thickness. , To obtain a thermal interface material; or dissolve the polymer substrate in a solvent, infiltrate the MXene/metal composite aerogel, then dry to remove the solvent, and polish into a thin sheet of the desired thickness to obtain the thermal interface material.
  • This application uses the suspended bonds contained on the surface of MXene to reduce metal ions into metal nanoparticles in situ, and uses the ice template method to grow MXene/metal nanoparticle composites to form an orderly network structure.
  • the melting temperature of metal nanoparticles is lower.
  • the properties of MXene sheets are "welded" at low temperatures to obtain a MXene/metal composite aerogel with a metal cross-linked MXene network structure inside.
  • the resulting MXene/metal composite aerogel has high thermal conductivity;
  • the supporting effect of the metal network, the structure and thermal conductivity of the MXene/metal composite aerogel provided in this application are stable.
  • the MXene/metal composite aerogel provided in this application can be used as a thermally conductive filler. Compared with thermally conductive fillers such as graphene, it has better compatibility with organic polymer materials, and has a wider application range for polymer substrates. Less addition is required for the same thermal conductivity, and the thermal conductivity of the thermal interface material prepared therefrom can be as high as 2.8W m -1 K -1 .
  • Figure 1 is a low-resolution transmission electron micrograph of the MXene/silver composite aerogel provided in Example 1 of the application;
  • Figure 2 is a high-resolution transmission electron micrograph of the MXene/silver composite aerogel provided in Example 1 of the application;
  • Fig. 3 is a scanning electron micrograph of the thermal interface material provided in Application Example 1 of this application.
  • This embodiment provides an MXene/silver composite aerogel, which includes an MXene skeleton and silver, and the MXene skeleton is cross-linked by silver to form a network structure.
  • the specific preparation method is as follows:
  • step (2) Take 200 mL of the MXene dispersion obtained in step (1), drop in 1 mL of silver nitrate solution with a concentration of 0.5 mol/L, and after fully stirring, the mixture is ultrasonically shaken in an ice bath for 30 minutes to reduce the silver ions Form silver nanoparticles, centrifuge, and remove the supernatant to obtain a high-concentration dispersion of MXene/silver nanoparticle composite materials;
  • step (3) Take 16 mg of the dispersion obtained in step (2) and disperse it in 4 mL of 30 mg/mL polyvinyl alcohol aqueous solution, and pour it into a square polytetrafluoroethylene mold (the mold runs through the top and bottom, and the lower surface is made of aluminum Tape sealing), then place it on the surface of a copper column immersed in liquid nitrogen for freezing, and use a freeze dryer for drying to obtain MXene/silver nanoparticle composite aerogel;
  • step (3) The MXene/silver nanoparticle composite aerogel obtained in step (3) is annealed in an argon atmosphere at 250°C for 2 hours to melt the silver nanoparticles, weld the MXene sheet, and cool down to obtain the MXene/silver composite gas Gel (with XPS test, the silver content is 0.5wt%).
  • FIGs. 1 and 2 are transmission electron micrographs of MXene/silver nanoparticle composites at low resolution and high resolution, respectively. From Figure 1, we can observe the Ag particles deposited on the surface of MXene. The diameter of these particles is about 20-50nm; from Figure 2, the lattice spacing of silver (the black circular area in the center of Figure 2) is 0.235nm, MXene ( The lattice spacing of the area except silver in Figure 2 is 0.215nm, which matches the JCPDS card. The results prove that Ag NPs are successfully modified on the surface of MXene.
  • This embodiment provides an MXene/silver composite aerogel, which includes an MXene skeleton and silver, and the MXene skeleton is cross-linked by silver to form a network structure.
  • the specific preparation method is as follows:
  • step (2) Take 200 mL of the MXene dispersion obtained in step (1), drop 1 mL of silver nitrate solution with a concentration of 1 mol/L, and after fully stirring, the mixture is ultrasonically shaken in an ice bath for 30 minutes to reduce the silver ions to Centrifuge the silver nanoparticles to remove the supernatant to obtain a high-concentration dispersion of MXene/silver nanoparticle composites;
  • step (3) Take 16 mg of the dispersion obtained in step (2) and disperse it in 4 mL of 30 mg/mL polyvinyl alcohol aqueous solution, and pour it into a square polytetrafluoroethylene mold (the mold runs through the top and bottom, and the lower surface is made of aluminum Tape sealing), then place it on the surface of a copper column immersed in liquid nitrogen for freezing, and use a freeze dryer for drying to obtain MXene/silver nanoparticle composite aerogel;
  • step (3) The MXene/silver nanoparticle composite aerogel obtained in step (3) is annealed in an argon atmosphere at 150°C for 3 hours to melt the silver nanoparticles, weld the MXene sheet, and cool down to obtain the MXene/silver composite gas Gel (using XPS test to obtain a silver content of 0.8 wt%).
  • This embodiment provides an MXene/silver composite aerogel, which includes an MXene skeleton and silver, and the MXene skeleton is cross-linked by silver to form a network structure.
  • the specific preparation method is as follows:
  • step (2) Take 200 mL of the MXene dispersion obtained in step (1), and drop 1 mL of silver nitrate solution with a concentration of 2 mol/L. After fully stirring, the mixture is ultrasonically shaken in an ice bath for 30 minutes to reduce the silver ions to Centrifuge the silver nanoparticles to remove the supernatant to obtain a high-concentration dispersion of MXene/silver nanoparticle composites;
  • step (3) Take 16 mg of the dispersion obtained in step (2) and disperse it in 4 mL of 30 mg/mL polyvinyl alcohol aqueous solution, and pour it into a square polytetrafluoroethylene mold (the mold runs through the top and bottom, and the lower surface is made of aluminum Tape sealing), then place it on the surface of a copper column immersed in liquid nitrogen for freezing, and use a freeze dryer for drying to obtain MXene/silver nanoparticle composite aerogel;
  • step (3) The MXene/silver nanoparticle composite aerogel obtained in step (3) was annealed in an argon atmosphere at 200°C for 2.5 hours to melt the silver nanoparticles and weld the MXene sheet layer, and after cooling to obtain the MXene/silver composite gas Gel (using XPS test to obtain a silver content of 1.6 wt%).
  • This embodiment provides an MXene/silver composite aerogel, which includes an MXene skeleton and silver, and the MXene skeleton is cross-linked by silver to form a network structure.
  • the specific preparation method is as follows:
  • step (2) Take 200 mL of the MXene dispersion obtained in step (1), and drop 1 mL of silver nitrate solution with a concentration of 4 mol/L. After fully stirring, the mixture is ultrasonically shaken in an ice bath for 30 minutes to reduce the silver ions to Centrifuge the silver nanoparticles to remove the supernatant to obtain a high-concentration dispersion of MXene/silver nanoparticle composites;
  • step (3) Take 16 mg of the dispersion obtained in step (2) and disperse it in 4 mL of 30 mg/mL polyvinyl alcohol aqueous solution, and pour it into a square polytetrafluoroethylene mold (the mold runs through the top and bottom, and the lower surface is made of aluminum Tape sealing), then place it on the surface of a copper column immersed in liquid nitrogen for freezing, and use a freeze dryer for drying to obtain MXene/silver nanoparticle composite aerogel;
  • step (3) The MXene/silver nanoparticle composite aerogel obtained in step (3) is annealed in an argon atmosphere at 250°C for 2 hours to melt the silver nanoparticles, weld the MXene sheet, and cool down to obtain the MXene/silver composite gas Gel (using XPS test to get a silver content of 2.4 wt%).
  • This embodiment provides an MXene/silver composite aerogel, which includes an MXene skeleton and silver, and the MXene skeleton is cross-linked by silver to form a network structure.
  • the specific preparation method is as follows:
  • step (2) Take 200 mL of the MXene dispersion obtained in step (1), and drop 1 mL of silver nitrate solution with a concentration of 8 mol/L. After fully stirring, the mixture is ultrasonically shaken in an ice bath for 30 minutes to reduce the silver ions to Centrifuge the silver nanoparticles to remove the supernatant to obtain a high-concentration dispersion of MXene/silver nanoparticle composites;
  • step (3) Take 16 mg of the dispersion obtained in step (2) and disperse it in 4 mL of 30 mg/mL polyvinyl alcohol aqueous solution, and pour it into a square polytetrafluoroethylene mold (the mold runs through the top and bottom, and the lower surface is made of aluminum Tape sealing), then place it on the surface of a copper column immersed in liquid nitrogen for freezing, and use a freeze dryer for drying to obtain MXene/silver nanoparticle composite aerogel;
  • step (3) The MXene/silver nanoparticle composite aerogel obtained in step (3) is annealed in an argon atmosphere at 300°C for 1 hour to melt the silver nanoparticles and weld the MXene sheets. After cooling, the MXene/silver composite gas is obtained Gel (using XPS test to obtain a silver content of 3.2 wt%).
  • This embodiment provides a MXene/iron composite aerogel, including MXene framework and iron, the MXene framework is cross-linked by iron into a network structure; the specific preparation method differs from that in Example 1 in that the nitric acid in step (2) The silver is replaced with the same molar amount of ferrous chloride, and the annealing temperature in step (4) is 400° C. and the time is 2 h.
  • This embodiment provides a MXene/nickel composite aerogel, which includes a MXene skeleton and nickel.
  • the MXene skeleton is cross-linked by nickel to form a network structure; the specific preparation method differs from that in Example 1 in that the nitric acid in step (2)
  • the silver is replaced with the same molar amount of nickel nitrate, the annealing temperature in step (4) is 250° C., and the time is 2 h.
  • This embodiment provides an MXene/copper composite aerogel, which includes an MXene framework and copper.
  • the MXene framework is cross-linked by copper to form a network structure; the specific preparation method differs from that in Example 1 in that the nitric acid in step (2) The silver is replaced with copper sulfate of the same molar amount, and the annealing temperature in step (4) is 350° C. and the time is 2 h.
  • Example 1 The difference from Example 1 is that steps (2) and (4) are not performed, and the MXene dispersion obtained in step (1) is directly mixed with an aqueous polyvinyl alcohol solution, and step (3) is performed to obtain MXene aerogel.
  • the apparent density and thermal conductivity of the MXene/metal composite aerogel provided in Examples 1-8 and the MXene aerogel provided in Comparative Example 1 were tested.
  • the test methods are as follows:
  • Example 1 Example 2
  • Example 3 Example 4
  • Example 5 Metal content (wt%) 0.5 0.8 1.6 2.4 3.2 Apparent density (g/m 3 ) 1.1 1.2 1.5 1.6 1.8
  • Test items Example 6
  • Example 7 Example 8 Comparative example 1 To Metal content (wt%) 0.3 0.32 0.36 0 To Apparent density (g/m 3 ) 0.92 0.94 0.98 0.9
  • To Metal content (wt%) 0.3 0.32 0.36 0
  • Apparent density (g/m 3 ) 0.92 0.94 0.98 0.9
  • the preparation method is as follows: hexahydrophthalic anhydride (curing agent), epoxy resin (E-54) and N,N-dimethylbenzylamine (catalyst) at 10:10: The mass ratio of 1 is mixed to form an epoxy resin matrix, the MXene/silver composite aerogel provided in Example 1 is poured, and then placed in a vacuum oven at 40°C for 3 hours to remove all bubbles, and then placed in the oven. It was cured at 120°C for 1 hour, then at 160°C for 2 hours, and finally at 200°C for 2 hours. After natural cooling, it was polished to obtain a thermal interface material (MXene/silver composite aerogel content 12vol%).
  • the morphology of the thermal interface material provided in Application Example 1 was characterized by using a scanning electron microscope, and the result is shown in FIG. 3. It can be seen from Figure 3 that the epoxy resin adheres well to the MXene/Ag composite aerogel skeleton, and there is no obvious interface peeling and blistering in the thermal interface material. In addition, the 3D framework structure of the MXene/Ag composite aerogel is well maintained, which is conducive to effective heat transfer.
  • a thermal interface material is provided.
  • the preparation method is as follows: Stir polyethylene terephthalate uniformly at 80°C, pour the MXene/silver composite aerogel provided in Example 1, and then cure it in an oven at 100°C for 6 hours , And polished after curing to obtain a thermal interface material (MXene/silver composite aerogel content 12vol%).
  • a thermal interface material is provided.
  • the preparation method is as follows: dissolve methyl methacrylate in azobisisobutyronitrile, heat and stir uniformly in a water bath, and pour the slurry into the MXene/silver composite aerogel provided in Example 1. It was placed in an oven at 40°C for low-temperature polymerization for 10 hours, then cured at 100°C for 1.5 hours, and slowly cooled to room temperature to obtain a thermal interface material (MXene/silver composite aerogel content 12vol%).
  • a thermal interface material is provided separately.
  • the difference between the preparation method and application example 1 is that the MXene/silver composite aerogel provided in Example 1 is replaced by the MXene/metal composite aerogel provided in Examples 2-8. And the content of MXene/metal composite aerogel is different (the specific content is shown in Table 2).
  • a thermal interface material is provided.
  • the difference between the preparation method and Application Example 1 is that the MXene/silver composite aerogel provided in Example 1 is replaced with the MXene aerogel provided in Comparative Example 1.
  • the thermal interface material prepared by the MXene/metal composite aerogel provided by this application has higher thermal conductivity at the same addition amount, indicating that the metal has a higher thermal conductivity.
  • the cross-linked structure reduces the interface contact thermal resistance between the MXene sheets.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Powder Metallurgy (AREA)

Abstract

本文公开了一种MXene/金属复合气凝胶、其制备方法、用途及包含其的热界面材料。所述MXene/金属复合气凝胶包括MXene骨架和金属,所述MXene骨架通过所述金属交联成网络结构。所述MXene/金属复合气凝胶是通过先将MXene与金属盐反应,将金属离子原位还原成金属纳米颗粒,然后用冰模板法形成网络结构并冷冻干燥,最后退火使金属纳米颗粒熔融,"焊接"MXene片层的方法制备得到。本申请提供的MXene/金属复合气凝胶具有良好的导热性、结构稳定性和导热稳定性,可用作导热填料,用于制备热界面材料,其与有机高分子材料间的相容性良好,对于聚合物基底具有较广的适用范围。

Description

一种MXene/金属复合气凝胶、其制备方法、用途及包含其的热界面材料 技术领域
本申请属于导热材料技术领域,具体涉及一种MXene/金属复合气凝胶、其制备方法、用途及包含其的热界面材料。
背景技术
热界面材料是用于设置在散热器件与发热器件之间,降低它们之间接触热阻的一类材料的总称。散热器件与发热器件接触时,不可避免地存在空隙,而空气的导热系数非常小,因此会导致界面之间存在较大的接触热阻,使用热界面材料可以很好地填充这个空隙,提高散热性能。
但是随着集成电路的小型化、高密度化和高功率化,电子元器件的散热问题已经严重限制了集成电路产业的发展。因此为了保证电子元器件的工作性能和使用寿命,开发高导热的新型热界面材料尤为重要。
聚合物材料由于具有良好的柔韧性、低成本和良好的可加工性,因此被广泛应用于热界面材料中。然而,聚合物的本征导热率普遍太低,在实际应用中单独使用时难以达到有效的传热效果。为此,通常需要向聚合物中添加导热填料(例如,陶瓷,金属和碳材料)。
最近,MXene(导热系数为471W m -1K -1左右)为代表的二维材料,它们由于优异的面内导热率而被广泛应用于导热填料。MXene是一类具有类似手风琴形态的二维材料,成分为过渡金属的碳化物或氮化物,主要通过侵蚀MAX(例如Ti 3AlC 2)来制备,其中“M”代表过渡金属元素,“A”代表第三主族或第四主族元素,“X”代表碳或氮。为了发挥二维填料面内导热率高的优点,需要对填料进行取向化排列,冰模板法制备气凝胶是一种非常有效的途径。冰模板法 的原理是水溶液中的溶剂水在冷冻过程中结晶成冰,与此同时分散在其中的二维片状填料也随着冰晶的生长形成有序的网络结构,将这种冰冻结构在真空中升华干燥,去除冰晶,从而得到二维材料的气凝胶。
李叶灿等人以银纳米粒子与氧化石墨烯为原料,通过冰模板法制备了一种三维石墨烯/银纳米粒子气凝胶,并研究了其导电性能(“三维石墨烯/银纳米粒子气凝胶的构筑”,李叶灿等,青岛科技大学学报,第39卷增刊1)。基于该三维石墨烯/银纳米粒子气凝胶的结构推测其可能具有一定的导热性能,但是这种气凝胶中的银纳米粒子仅是吸附在石墨烯表面,其导热性能有限。
因此,在本领域有待研发一种具有较高热导率的热界面材料,以满足小型化、高度集成化的电子设备的散热需求。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请的目的在于提供一种MXene/金属复合气凝胶、其制备方法、用途及包含其的热界面材料。该MXene/金属复合气凝胶具有良好的导热性、结构稳定性和导热稳定性,可用作导热填料,且相较于石墨烯等导热填料,其对聚合物基底的适用范围更大。
为达此目的,本申请采用以下技术方案:
第一方面,本申请提供一种MXene/金属复合气凝胶,包括MXene骨架和金属,所述MXene骨架通过所述金属交联成网络结构。
MXene二维材料具有优异的层内导热性,但是由于其层间是相互分离的,因此整体导热性受到限制。本申请通过采用金属将MXene片层之间“焊接”起 来,提高了MXene片层之间的传热效率,使MXene/金属复合气凝胶形成了完整的导热通路,因此得到的MXene/金属复合气凝胶具有较高的热导率,可用作导热填料,且所需的添加量较低;而且,由于金属网络对于MXene骨架具有支撑作用,因此得到的MXene/金属复合气凝胶具有良好的结构稳定性和导热稳定;此外,相较于石墨烯等二维材料,MXene与有机高分子材料之间的相容性更好,因此本申请提供的MXene/金属复合气凝胶作为填料时,对于聚合物基底的适用范围更广,普适性更强。
作为本申请的可选技术方案,所述金属选自银、铁、镍或铜中的一种或至少两种的组合,更可选为银。
在所有金属中,银是最好的热导体,且其纳米颗粒在200℃左右即可熔融,“焊接”温度较低,因此本申请中,MXene/金属复合气凝胶内的金属可选为银。
作为本申请的可选技术方案,所述金属占所述MXene/金属复合气凝胶的质量百分比为0.5%-10%;例如可以是0.5%、0.6%、0.8%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%或10%等。可选为1-3.2%。
MXene/金属复合气凝胶中,若金属的含量过低,则MXene/金属复合气凝胶的交联程度较低,热导率下降;若金属的含量过高,该气凝胶的机械性能将会下降。
可选地,所述MXene/金属复合气凝胶的表观密度为0.9-3kg/m 3;例如可以是0.9kg/m 3、1kg/m 3、1.2kg/m 3、1.5kg/m 3、1.8kg/m 3、2kg/m 3、2.2kg/m 3、2.5kg/m 3、2.8kg/m 3或3kg/m 3等。
MXene/金属复合气凝胶的表观密度越大,其材质越紧密,热导率越大,但 作为填料的填充性会较差;表观密度越小,其材质越疏松,结构不稳定,且导热性较差。
第二方面,本申请提供一种上述MXene/金属复合气凝胶的制备方法,包括如下步骤:
(1)将MXene分散液与金属盐溶液混合,反应,使金属离子还原成金属纳米颗粒,得到MXene/金属纳米颗粒复合材料的分散液;
(2)将步骤(1)得到的分散液冷冻干燥,得到MXene/金属纳米颗粒复合气凝胶;
(3)对步骤(2)得到的MXene/金属纳米颗粒复合气凝胶进行退火,使所述MXene/金属纳米颗粒复合气凝胶中的金属纳米颗粒熔融,所述退火完成后,得到所述MXene/金属复合气凝胶。
本申请利用MXene表面含有的钛、氧等悬浮键,将金属离子原位还原成金属纳米颗粒,然后利用冰模板法使MXene/金属纳米颗粒复合材料生长形成有序的网络结构(水在冷冻过程中结晶成冰,分散其中的MXene/金属纳米颗粒复合材料也随着冰晶的生长而形成有序结构),经冷冻干燥后,这种网络结构被暂时固定下来,形成MXene/金属纳米颗粒复合气凝胶;由于MXene/金属纳米颗粒复合气凝胶中的金属纳米颗粒的尺寸极小,在该尺寸下的熔融温度远低于该金属的熔点,因此步骤(3)中采用退火的方式将MXene片层上的金属纳米颗粒加热熔融,从而将MXene片层“焊接”起来,形成MXene/金属复合气凝胶。
本申请对于MXene的制备方法没有特殊限制,本领域技术人员可选择现有的方法进行制备。示例性地,可以采用如下方法:
用盐酸和氯化锂的混合溶液将MAX中的金属层刻蚀掉,形成手风琴状 MXene,洗涤离心收集刻蚀后的样品,然后将获得的样品分散在去离子水中,机械振荡5分钟,使样品剥离成薄片,以3500转/分钟的转速离心30分钟,收取上清液,即为MXene分散液;
或者,将MAX粉末放入氢氟酸溶液中进行刻蚀,将刻蚀后的样品洗涤后离心收集,然后分散在十六烷基三甲基溴化铵溶液中,机械振荡5分钟,使样品剥离成薄片,以3500转/分钟的转速离心30分钟,收取上清液,即为MXene分散液。
作为本申请的可选技术方案,所述步骤(1)中所述反应的温度为-5~80℃,例如可以是-5℃、-2℃、0℃、2℃、5℃、8℃、10℃、15℃、20℃、23℃、25℃、30℃、35℃、40℃、45℃、50℃、55℃、60℃、65℃、70℃、75℃或80℃等。
但是温度较高时,容易导致MXene二维材料被氧化,结构发生破坏,因此步骤(1)中所述反应的温度更可选为-5~50℃。
可选地,步骤(1)中所述反应的时间为10-30min;例如可以是10min、12min、15min、18min、20min、22min、25min、28min或30min等。
可选地,步骤(1)中所述反应是在超声振荡条件下进行。
可选地,步骤(3)中所述退火的温度为150-500℃,例如可以是150℃、160℃、170℃、180℃、190℃、200℃、210℃、220℃、250℃、280℃、300℃、320℃、350℃、380℃、400℃、420℃、45℃、480℃或500℃等;时间为0.5-3h,例如可以是0.5h、0.8h、1h、1.2h、1.5h、1.8h、2h、2.2h、2.5h、2.8h或3h等。
本申请中,当MXene/金属复合气凝胶中的金属为银时,所述退火温度为150-300℃;
当MXene/金属复合气凝胶中的金属为铁时,所述退火温度为300-500℃;
当MXene/金属复合气凝胶中的金属为镍时,所述退火温度为200-350℃;
当MXene/金属复合气凝胶中的金属为铜时,所述退火温度为250-400℃。
可选地,步骤(3)中所述退火是在保护气氛下进行。
可选地,所述保护气氛为氩气气氛。
可选地,所述制备方法还包括:在步骤(2)中所述冷冻干燥之前,将步骤(1)得到的分散液与聚乙烯醇混合。此时,步骤(2)为:将步骤(1)得到的分散液与聚乙烯醇混合,然后冷冻干燥,得到MXene/金属纳米颗粒复合气凝胶。
本申请中,步骤(2)中可以不添加聚乙烯醇,但得到的MXene/金属纳米颗粒复合气凝胶结构不稳定,容易崩塌;添加聚乙烯醇,可以起到连接MXene骨架的作用,提高MXene/金属纳米颗粒复合气凝胶的稳定性。所添加的聚乙烯醇会在步骤(3)的退火过程中热分解去除。
作为本申请的可选技术方案,所述制备方法包括如下步骤:
(1)将MXene分散液与金属盐溶液搅拌混合,在超声振荡条件下,在-5~50℃下反应0.5-5h,使金属离子还原成金属纳米颗粒,得到MXene/金属纳米颗粒复合材料的分散液;
(2)将步骤(1)得到的分散液与聚乙烯醇溶液混合,加入模具中,放置在浸泡于液氮中的铜柱上进行冷冻,然后置于冷冻干燥机中进行干燥,得到MXene/金属纳米颗粒复合气凝胶;
(3)在保护气氛下,将步骤(2)得到的MXene/金属纳米颗粒复合气凝胶在150-500℃下退火0.5-3h,使所述MXene/金属纳米颗粒复合气凝胶中的金属纳米颗粒熔融,所述退火完成后,得到所述MXene/金属复合气凝胶。
第三方面,本申请提供一种第一方面所述的MXene/金属复合气凝胶的用途, 所述MXene/金属复合气凝胶用作导热填料。
第四方面,本申请提供一种热界面材料,所述热界面材料包括聚合物基底和本申请第一方面所述的MXene/金属复合气凝胶。
作为本申请的可选技术方案,所述热界面材料中MXene/金属复合气凝胶的体积百分含量为3-40%;例如可以是3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、10%、12%、15%、18%、20%、22%、25%、28%、30%、32%、35%、38%或40%等。更可选为10-15%。
本申请对于热界面材料中聚合物基底的种类没有特殊限制,本领域技术人员可根据实际需要进行选择,示例性地,所述聚合物基底可以选自环氧树脂、聚酰亚胺、聚酯、聚二甲基硅氧烷、聚氨酯、聚偏氟乙烯、丙烯腈-丁二烯-苯乙烯共聚物、聚氯乙烯、聚乙烯、聚苯乙烯、聚丙烯、天然橡胶、丁苯橡胶、硅橡胶、顺丁橡胶、异戊橡胶、氯丁橡胶、聚甲基丙烯酸甲酯、聚酰胺、聚甲醛、聚碳酸酯、乙烯基硅油或二甲基硅油中的一种或至少两种的组合。
本申请对于所述热界面材料的制备方法没有特殊限制,示例性地,可以将MXene/金属复合气凝胶浸入聚合物基底的前体溶液中,脱泡后固化,打磨成所需厚度的薄片,得到热界面材料;或者将聚合物基底溶于溶剂中,浸润MXene/金属复合气凝胶,然后烘干去除溶剂,打磨成所需厚度的薄片,得到热界面材料。
与现有技术相比,本申请具有以下有益效果:
本申请利用MXene表面含有的悬浮键,将金属离子原位还原成金属纳米颗粒,利用冰模板法使MXene/金属纳米颗粒复合材料生长形成有序的网络结构,利用金属纳米颗粒的熔融温度较低的性质,在低温下将MXene片层“焊接”起 来,从而得到了一种内部具有金属交联MXene网络结构的MXene/金属复合气凝胶。
由于这种金属交联结构明显降低了MXene片层之间的界面接触热阻,且MXene本身具有高面内热导率,因此得到的MXene/金属复合气凝胶具有较高的导热性;而且由于金属网络的支撑作用,本申请提供的MXene/金属复合气凝胶结构和导热性稳定。
本申请提供的MXene/金属复合气凝胶可作为导热填料,相较于石墨烯等导热填料,其与有机高分子材料间相容性更好,对于聚合物基底的适用范围更广,且达到相同热导率所需的添加量更少,由其制备得到的热界面材料的热导率可高达2.8W m -1K -1
在阅读并理解了详细描述和附图后,可以明白其他方面。
附图说明
图1为本申请实施例1提供的MXene/银复合气凝胶在低分辨率下的透射电镜照片;
图2为本申请实施例1提供的MXene/银复合气凝胶在高分辨率下的透射电镜照片;
图3为本申请应用实施例1提供的热界面材料的扫描电子显微照片。
具体实施方式
下面结合附图并通过具体实施方式来进一步说明本申请的技术方案。本领域技术人员应该明了,所述具体实施方式仅仅是帮助理解本申请,不应视为对本申请的具体限制。
实施例1
本实施例提供一种MXene/银复合气凝胶,包括MXene骨架和银,MXene骨架通过银交联成网络结构。
具体的制备方法如下:
(1)将2g氟化锂溶解在20mL盐酸(9mol/L)中,然后将2g MAX(Ti 3AlC 2)粉末加入上述溶液中,室温下搅拌24h进行刻蚀,刻蚀后的样品洗涤后离心收集,然后分散在去离子水中,机械震荡5分钟,以3500转/分钟的转速离心30分钟,收取上清液,即为MXene(Ti 3C 2)分散液(浓度约0.7mg/mL);
(2)取200mL步骤(1)得到的MXene分散液,滴入1mL浓度为0.5mol/L的硝酸银溶液,充分搅拌后,将该混合液在冰浴中超声振荡30分钟,使银离子还原成银纳米颗粒,离心,去除上清液,得到高浓度的MXene/银纳米颗粒复合材料的分散液;
(3)取16mg步骤(2)得到的分散液,分散在4mL,30mg/mL的聚乙烯醇水溶液中,将其倒入方形的聚四氟乙烯模具中(模具上下贯通,且下表面用铝胶带封口),然后放置在浸泡于液氮中的铜柱表面进行冷冻,采用冷冻干燥机进行干燥,得到MXene/银纳米颗粒复合气凝胶;
(4)将步骤(3)得到的MXene/银纳米颗粒复合气凝胶在氩气气氛,250℃下退火2小时,以熔融银纳米颗粒,焊接MXene片层,冷却后得到MXene/银复合气凝胶(用XPS测试得到银含量为0.5wt%)。
采用透射电镜对步骤(2)得到的MXene/银纳米颗粒复合材料的形貌进行表征,结果如图1和图2所示。图1和图2分别为MXene/银纳米颗粒复合材料在低分辨率下和高分辨率下的透射电子显微镜照片。由图1可以观察到沉积在MXene表面上的Ag颗粒,这些颗粒的直径约为20-50nm;由图2计算得到银(图 2中心黑色圆形区域)的晶格间距为0.235nm,MXene(图2中除银之外的区域)的晶格间距为0.215nm,与JCPDS卡片匹配,结果证明Ag NPs在MXene表面上成功修饰。
实施例2
本实施例提供一种MXene/银复合气凝胶,包括MXene骨架和银,MXene骨架通过银交联成网络结构。
具体的制备方法如下:
(1)将2g氟化锂溶解在20mL盐酸(9mol/L)中,然后将2g MAX(Ti 2AlC)粉末加入上述溶液中,室温下搅拌24h进行刻蚀,刻蚀后的样品洗涤后离心收集,然后分散在去离子水中,机械震荡5分钟,以3500转/分钟的转速离心30分钟,收取上清液,即为MXene(Ti 2C)分散液;
(2)取200mL步骤(1)得到的MXene分散液,滴入1mL浓度为1mol/L的硝酸银溶液,充分搅拌后,将该混合液在冰浴中超声振荡30分钟,使银离子还原成银纳米颗粒,离心,去除上清液,得到高浓度的MXene/银纳米颗粒复合材料的分散液;
(3)取16mg步骤(2)得到的分散液,分散在4mL,30mg/mL的聚乙烯醇水溶液中,将其倒入方形的聚四氟乙烯模具中(模具上下贯通,且下表面用铝胶带封口),然后放置在浸泡于液氮中的铜柱表面进行冷冻,采用冷冻干燥机进行干燥,得到MXene/银纳米颗粒复合气凝胶;
(4)将步骤(3)得到的MXene/银纳米颗粒复合气凝胶在氩气气氛,150℃下退火3小时,以熔融银纳米颗粒,焊接MXene片层,冷却后得到MXene/银复合气凝胶(用XPS测试得到银含量为0.8wt%)。
实施例3
本实施例提供一种MXene/银复合气凝胶,包括MXene骨架和银,MXene骨架通过银交联成网络结构。
具体的制备方法如下:
(1)将2g氟化锂溶解在20mL盐酸(9mol/L)中,然后将2g MAX(V 2AlC)粉末加入上述溶液中,室温下搅拌24h进行刻蚀,刻蚀后的样品洗涤后离心收集,然后分散在去离子水中,机械震荡5分钟,以3500转/分钟的转速离心30分钟,收取上清液,即为MXene(V 2C)分散液;
(2)取200mL步骤(1)得到的MXene分散液,滴入1mL浓度为2mol/L的硝酸银溶液,充分搅拌后,将该混合液在冰浴中超声振荡30分钟,使银离子还原成银纳米颗粒,离心,去除上清液,得到高浓度的MXene/银纳米颗粒复合材料的分散液;
(3)取16mg步骤(2)得到的分散液,分散在4mL,30mg/mL的聚乙烯醇水溶液中,将其倒入方形的聚四氟乙烯模具中(模具上下贯通,且下表面用铝胶带封口),然后放置在浸泡于液氮中的铜柱表面进行冷冻,采用冷冻干燥机进行干燥,得到MXene/银纳米颗粒复合气凝胶;
(4)将步骤(3)得到的MXene/银纳米颗粒复合气凝胶在氩气气氛,200℃下退火2.5小时,以熔融银纳米颗粒,焊接MXene片层,冷却后得到MXene/银复合气凝胶(用XPS测试得到银含量为1.6wt%)。
实施例4
本实施例提供一种MXene/银复合气凝胶,包括MXene骨架和银,MXene骨架通过银交联成网络结构。
具体的制备方法如下:
(1)将2g氟化锂溶解在20mL盐酸(9mol/L)中,然后将2g MAX(Ti 3AlCN)粉末加入上述溶液中,室温下搅拌24h进行刻蚀,刻蚀后的样品洗涤后离心收集,然后分散在去离子水中,机械震荡5分钟,以3500转/分钟的转速离心30分钟,收取上清液,即为MXene(Ti 3CN)分散液;
(2)取200mL步骤(1)得到的MXene分散液,滴入1mL浓度为4mol/L的硝酸银溶液,充分搅拌后,将该混合液在冰浴中超声振荡30分钟,使银离子还原成银纳米颗粒,离心,去除上清液,得到高浓度的MXene/银纳米颗粒复合材料的分散液;
(3)取16mg步骤(2)得到的分散液,分散在4mL,30mg/mL的聚乙烯醇水溶液中,将其倒入方形的聚四氟乙烯模具中(模具上下贯通,且下表面用铝胶带封口),然后放置在浸泡于液氮中的铜柱表面进行冷冻,采用冷冻干燥机进行干燥,得到MXene/银纳米颗粒复合气凝胶;
(4)将步骤(3)得到的MXene/银纳米颗粒复合气凝胶在氩气气氛,250℃下退火2小时,以熔融银纳米颗粒,焊接MXene片层,冷却后得到MXene/银复合气凝胶(用XPS测试得到银含量为2.4wt%)。
实施例5
本实施例提供一种MXene/银复合气凝胶,包括MXene骨架和银,MXene骨架通过银交联成网络结构。
具体的制备方法如下:
(1)将2g氟化锂溶解在20mL盐酸(9mol/L)中,然后将2g MAX(Nb 4AlC 3)粉末加入上述溶液中,室温下搅拌24h进行刻蚀,刻蚀后的样品洗 涤后离心收集,然后分散在去离子水中,机械震荡5分钟,以3500转/分钟的转速离心30分钟,收取上清液,即为MXene(Nb 4C 3)分散液;
(2)取200mL步骤(1)得到的MXene分散液,滴入1mL浓度为8mol/L的硝酸银溶液,充分搅拌后,将该混合液在冰浴中超声振荡30分钟,使银离子还原成银纳米颗粒,离心,去除上清液,得到高浓度的MXene/银纳米颗粒复合材料的分散液;
(3)取16mg步骤(2)得到的分散液,分散在4mL,30mg/mL的聚乙烯醇水溶液中,将其倒入方形的聚四氟乙烯模具中(模具上下贯通,且下表面用铝胶带封口),然后放置在浸泡于液氮中的铜柱表面进行冷冻,采用冷冻干燥机进行干燥,得到MXene/银纳米颗粒复合气凝胶;
(4)将步骤(3)得到的MXene/银纳米颗粒复合气凝胶在氩气气氛,300℃下退火1小时,以熔融银纳米颗粒,焊接MXene片层,冷却后得到MXene/银复合气凝胶(用XPS测试得到银含量为3.2wt%)。
实施例6
本实施例提供一种MXene/铁复合气凝胶,包括MXene骨架和铁,MXene骨架通过铁交联成网络结构;具体的制备方法与实施例1的区别在于,将步骤(2)中的硝酸银替换为相同摩尔量的氯化亚铁,步骤(4)中的退火温度为400℃,时间为2h。
实施例7
本实施例提供一种MXene/镍复合气凝胶,包括MXene骨架和镍,MXene骨架通过镍交联成网络结构;具体的制备方法与实施例1的区别在于,将步骤(2)中的硝酸银替换为相同摩尔量的硝酸镍,步骤(4)中的退火温度为250℃, 时间为2h。
实施例8
本实施例提供一种MXene/铜复合气凝胶,包括MXene骨架和铜,MXene骨架通过铜交联成网络结构;具体的制备方法与实施例1的区别在于,将步骤(2)中的硝酸银替换为相同摩尔量的硫酸铜,步骤(4)中的退火温度为350℃,时间为2h。
对比例1
与实施例1的区别在于,不进行步骤(2)和(4),将步骤(1)得到的MXene分散液直接与聚乙烯醇水溶液混合,进行步骤(3),得到MXene气凝胶。
对实施例1-8提供的MXene/金属复合气凝胶和对比例1提供的MXene气凝胶的表观密度和热导率进行测试,测试方法如下:
表观密度:ASTM D792;
热导率:ASTM D5470。
上述测试的结果如下表1所示:
表1
测试项目 实施例1 实施例2 实施例3 实施例4 实施例5
金属含量(wt%) 0.5 0.8 1.6 2.4 3.2
表观密度(g/m 3) 1.1 1.2 1.5 1.6 1.8
测试项目 实施例6 实施例7 实施例8 对比例1  
金属含量(wt%) 0.3 0.32 0.36 0  
表观密度(g/m 3) 0.92 0.94 0.98 0.9  
应用实施例1
提供一种热界面材料,制备方法如下:将六氢邻苯二甲酸酐(固化剂)、环氧树脂(E-54)和N,N-二甲基苄胺(催化剂)以10:10:1的质量比混合以形成环 氧树脂基质,浇注实施例1提供的MXene/银复合气凝胶,然后置于40℃的真空烘箱中放置3小时以除去所有气泡,然后放置于烘箱中,先在120℃下固化1h,再在160℃下固化2h,最后在200℃下固化2h,自然冷却后打磨得到热界面材料(MXene/银复合气凝胶含量12vol%)。
采用扫描电子显微镜对应用实施例1提供的热界面材料的形貌进行表征,结果如图3所示。由图3可以看出,环氧树脂很好地粘附到MXene/Ag复合气凝胶骨架上,在热界面材料中没有明显的界面剥离和起泡。此外,MXene/Ag复合气凝胶的3D骨架结构得到良好维护,有利于有效传热。
应用实施例2
提供一种热界面材料,制备方法如下:将聚对苯二甲酸乙二醇酯在80℃搅拌均匀,浇注实施例1提供的MXene/银复合气凝胶,然后在100℃的烘箱中固化6h,固化后打磨得到热界面材料(MXene/银复合气凝胶含量12vol%)。
应用实施例3
提供一种热界面材料,制备方法如下:将甲基丙烯酸甲酯溶解在偶氮二异丁腈中,水浴加热并搅拌均匀,将浆料倒入实施例1提供的MXene/银复合气凝胶中,放入40℃的烘箱中低温聚合10h,再在100℃固化1.5h,缓慢降温至室温,得到热界面材料(MXene/银复合气凝胶含量12vol%)。
应用实施例4-10
分别提供一种热界面材料,制备方法与应用实施例1的区别在于,将实施例1提供的MXene/银复合气凝胶分别依次替换为实施例2-8提供的MXene/金属复合气凝胶,且MXene/金属复合气凝胶的含量有所不同(具体含量如表2所示)。
应用对比例1
提供一种热界面材料,制备方法与应用实施例1的区别在于,将实施例1提供的MXene/银复合气凝胶替换为对比例1提供的MXene气凝胶。
按照ASTMD5470标准,对应用实施例1-8提供的热界面材料的热导率进行测试,结果如下表2所示:
表2
Figure PCTCN2019125184-appb-000001
由表2的结果可以看出,相较于MXene气凝胶,在相同添加量下,由本申请提供的MXene/金属复合气凝胶制备的热界面材料具有更高的热导率,表明金属的交联结构降低了MXene片层之间的界面接触热阻。
申请人声明,以上所述仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,所属技术领域的技术人员应该明了,任何属于本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,均落在本申请的保护范围和公开范围之内。

Claims (11)

  1. 一种MXene/金属复合气凝胶,其中,所述MXene/金属复合气凝胶包括MXene骨架和金属,所述MXene骨架通过所述金属交联成网络结构。
  2. 根据权利要求1所述的MXene/金属复合气凝胶,其中,所述金属占所述MXene/金属复合气凝胶的质量百分比为0.5%-10%,可选为1-3.2%。
  3. 根据权利要求1或2所述的MXene/金属复合气凝胶,其中,所述MXene/金属复合气凝胶的表观密度为0.9-3kg/m 3
    可选地,所述金属选自银、铁、镍或铜中的一种或至少两种的组合,可选为银。
  4. 一种如权利要求1-3任一项所述的MXene/金属复合气凝胶的制备方法,其中,所述制备方法包括如下步骤:
    (1)将MXene分散液与金属盐溶液混合,反应,使金属离子还原成金属纳米颗粒,得到MXene/金属纳米颗粒复合材料的分散液;
    (2)将步骤(1)得到的分散液冷冻干燥,得到MXene/金属纳米颗粒复合气凝胶;
    (3)对步骤(2)得到的MXene/金属纳米颗粒复合气凝胶进行退火,使所述MXene/金属纳米颗粒复合气凝胶中的金属纳米颗粒熔融,所述退火完成后,得到所述MXene/金属复合气凝胶。
  5. 根据权利要求4所述的制备方法,其中,所述步骤(1)中所述反应的温度为-5~80℃,可选为-5~50℃;
    可选地,步骤(1)中所述反应的时间为10-30min;
    可选地,步骤(1)中所述反应是在超声振荡条件下进行。
  6. 根据权利要求4或5所述的制备方法,其中,所述制备方法还包括:在步骤(2)中所述冷冻干燥之前,将步骤(1)得到的分散液与聚乙烯醇混合;
    可选地,步骤(3)中所述退火的温度为150-500℃,时间为0.5-3h;
    可选地,步骤(3)中所述退火是在保护气氛下进行。
  7. 根据权利要求4-6任一项所述的制备方法,其中,所述制备方法包括如下步骤:
    (1)将MXene分散液与金属盐溶液搅拌混合,在超声振荡条件下,在-5~50℃下反应10min~30min,使金属离子还原成金属纳米颗粒,得到MXene/金属纳米颗粒复合材料的分散液;
    (2)将步骤(1)得到的分散液与聚乙烯醇溶液混合,加入模具中,放置在浸泡于液氮中的铜柱上进行冷冻,然后置于冷冻干燥机中进行干燥,得到MXene/金属纳米颗粒复合气凝胶;
    (3)在保护气氛下,将步骤(2)得到的MXene/金属纳米颗粒复合气凝胶在150-500℃下退火0.5-3h,使所述MXene/金属纳米颗粒复合气凝胶中的金属纳米颗粒熔融,所述退火完成后,得到所述MXene/金属复合气凝胶。
  8. 一种如权利要求1-3任一项所述的MXene/金属复合气凝胶的用途,其中,所述MXene/金属复合气凝胶用作导热填料。
  9. 一种热界面材料,其中,所述热界面材料包括聚合物基底和如权利要求1-3任一项所述的MXene/金属复合气凝胶。
  10. 根据权利要求9所述的热界面材料,其中,所述热界面材料中MXene/金属复合气凝胶的体积百分含量为3-40%,可选为10-15%。
  11. 根据权利要求9或10所述的热界面材料,其中,所述聚合物基底选自 环氧树脂、聚酰亚胺、聚酯、聚二甲基硅氧烷、聚氨酯、聚偏氟乙烯、丙烯腈-丁二烯-苯乙烯共聚物、聚氯乙烯、聚乙烯、聚苯乙烯、聚丙烯、天然橡胶、丁苯橡胶、硅橡胶、顺丁橡胶、异戊橡胶、氯丁橡胶、聚甲基丙烯酸甲酯、聚酰胺、聚甲醛、聚碳酸酯、乙烯基硅油或二甲基硅油中的一种或至少两种的组合。
PCT/CN2019/125184 2019-09-27 2019-12-13 一种MXene/金属复合气凝胶、其制备方法、用途及包含其的热界面材料 WO2021056851A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910925938.7 2019-09-27
CN201910925938.7A CN110628155B (zh) 2019-09-27 2019-09-27 一种MXene/金属复合气凝胶、其制备方法、用途及包含其的热界面材料

Publications (1)

Publication Number Publication Date
WO2021056851A1 true WO2021056851A1 (zh) 2021-04-01

Family

ID=68973397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/125184 WO2021056851A1 (zh) 2019-09-27 2019-12-13 一种MXene/金属复合气凝胶、其制备方法、用途及包含其的热界面材料

Country Status (2)

Country Link
CN (1) CN110628155B (zh)
WO (1) WO2021056851A1 (zh)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113209933A (zh) * 2021-04-15 2021-08-06 中国工程物理研究院材料研究所 一种MXene气凝胶的制备方法及其对磷和铀酰的吸附应用
CN113285070A (zh) * 2021-04-30 2021-08-20 天津大学 一种孔隙可调的MXene致密多孔膜的制备方法及其应用
CN113316379A (zh) * 2021-05-26 2021-08-27 湖南工程学院 一种纳米复合结构吸波剂材料、制备方法及应用
CN113318257A (zh) * 2021-05-28 2021-08-31 厦门大学 空气净化杀菌用银纳米线负载的石墨烯气凝胶制备方法
CN113526507A (zh) * 2021-06-11 2021-10-22 厦门大学 一种新型MXene金属纳米复合材料、制备方法及应用
CN113764203A (zh) * 2021-08-16 2021-12-07 中国石油大学(华东) 一种用于超级电容器的硫化钴镍-MXene电极材料及其制备方法
CN114053988A (zh) * 2021-09-29 2022-02-18 山东农业大学 一种MXene复合气凝胶材料的制备方法及其应用
CN114085484A (zh) * 2021-11-26 2022-02-25 江南大学 一种高强高韧性复合材料、制备方法及应用
CN114516973A (zh) * 2022-02-15 2022-05-20 华东理工大学 一种ANFs/MXene复合电磁屏蔽气凝胶及其制备方法
CN114597362A (zh) * 2022-03-09 2022-06-07 吉林师范大学 一种锂离子电池负极材料及其制备方法
CN114774084A (zh) * 2022-04-02 2022-07-22 广东工业大学 一种光热定型相变储能复合材料及其制备方法
CN115064663A (zh) * 2022-08-18 2022-09-16 昆明理工大学 一种MXene基凝胶态正极的制备方法及其应用
CN115216118A (zh) * 2022-07-01 2022-10-21 中科和智诚(厦门)新材料有限公司 一种绝缘材料及其制备工艺
CN115246952A (zh) * 2021-12-10 2022-10-28 浙江理工大学 一种纤维素纳米纤维/MXene复合气凝胶材料及其制备方法
CN115490241A (zh) * 2022-09-27 2022-12-20 大连理工大学 一种基于MXene-蛭石复合气凝胶的气体水合物促进剂的制备方法和应用
CN115591534A (zh) * 2022-10-28 2023-01-13 重庆大学(Cn) 用于吸附钒离子的MXene基气凝胶的制备方法及应用
CN115737931A (zh) * 2022-11-03 2023-03-07 四川大学 一种3d打印骨组织修复支架材料及其制备方法
CN115785528A (zh) * 2022-11-29 2023-03-14 中国科学院兰州化学物理研究所 MXene@二硫化钼-碳纳米纤维杂化气凝胶和环氧树脂基复合材料及制备方法
CN115850968A (zh) * 2022-10-18 2023-03-28 中科院广州化学有限公司 一种MXene基高导热防火复合薄膜及其制备方法与应用
CN116351403A (zh) * 2023-05-08 2023-06-30 青岛科技大学 MXene/rGO气凝胶、PDA/CS/MXene/rGO气凝胶及其制备方法和应用
CN116446177A (zh) * 2023-03-15 2023-07-18 天津工业大学 一种MXene/金属纳米粒子多功能涂层复合材料的制备方法
CN116790024A (zh) * 2023-06-15 2023-09-22 北京林业大学 纳米纤维素复合气凝胶及其制备方法和水伏发电器件
CN117126430A (zh) * 2023-10-27 2023-11-28 涿州市柯林电子产品有限公司 一种具有循环散热功能的冷凝胶及其制备工艺
WO2024031904A1 (zh) * 2022-08-12 2024-02-15 齐鲁工业大学 一种基于纳米纤维素的多功能导电复合水凝胶及其制备方法
CN117821024A (zh) * 2023-12-28 2024-04-05 兰州大学第一医院 一种MXene/高粱秸秆生物质气凝胶基复合相变材料的制备方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110499142A (zh) * 2019-09-25 2019-11-26 深圳大学 一种高效屏蔽电磁干扰MXene/金属离子复合材料及其制备方法
CN111153405B (zh) * 2020-01-03 2021-08-27 武汉科技大学 Ti3C2 MXene纳米片材料的制备方法
CN111422873B (zh) * 2020-03-23 2021-09-28 北京化工大学 一种MXene/海藻酸钠衍生碳三维气凝胶及其制备方法和应用
CN111841457B (zh) * 2020-08-20 2022-06-24 广东工业大学 一种金属离子/磷酸锆气凝胶及其制备方法与复合相变储能材料
CN112521754B (zh) * 2020-10-30 2022-05-17 广东工业大学 一种MXene纳米片复合的具有热自修复性能的导热凝胶及其制备方法
CN112892428B (zh) * 2020-12-17 2022-09-23 江苏集萃先进高分子材料研究所有限公司 一种MXene复合相变微胶囊及其制备方法
CN112646094B (zh) * 2020-12-19 2022-03-04 南京工业职业技术大学 一种抗磨耐高温的视窗玻璃的制备方法及制得的视窗玻璃
CN112745636A (zh) * 2020-12-29 2021-05-04 哈尔滨工业大学(深圳) 一种聚合物基金属气凝胶复合热界面材料及其制备方法
CN112831143A (zh) * 2021-01-08 2021-05-25 西安理工大学 可压缩MXene/聚合物电磁屏蔽气凝胶的制备方法
CN112850711A (zh) * 2021-02-18 2021-05-28 同济大学 一种具有球形孔结构MXene气凝胶的制备方法
CN113105735B (zh) * 2021-02-22 2022-07-08 安徽大学 一种高导热的高分子聚合物复合导热材料及其制备方法
CN113512207B (zh) * 2021-05-28 2022-03-15 吉林大学 一种取向性导电耐低温水凝胶制备方法及其应用
CN113411918B (zh) * 2021-06-08 2022-08-09 合肥工业大学 一种在空气中耐高温的Ti3C2复合薄膜加热器
CN113567510B (zh) * 2021-06-11 2023-06-20 厦门大学 一种MXene基复合金属纳米点结构气体传感器的制备方法
CN113532700A (zh) * 2021-06-24 2021-10-22 浙江大学 一种灵敏度可调的柔性压力传感器及其制备方法和应用
CN113860309B (zh) * 2021-10-28 2023-05-12 赛轮集团股份有限公司 具有静音功能的气凝胶泡沫及其制备方法、轮胎
CN114561192B (zh) * 2022-01-21 2022-09-23 贵州大学 一种镀镍泡沫和MXene协同支撑的多功能相变复合材料及其制备方法
CN114540834A (zh) * 2022-02-22 2022-05-27 中国工程物理研究院材料研究所 一种MXene基催化剂及其制备方法和应用
CN114539984B (zh) * 2022-03-22 2022-08-26 广东工业大学 一种单畴水合无机盐相变材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107058851A (zh) * 2016-12-29 2017-08-18 上海大学 一种二维片层材料增强的金属基复合材料
CN108489644A (zh) * 2018-02-12 2018-09-04 华中科技大学 基于MXene/rGO复合三维结构的高灵敏传感器
CN109851313A (zh) * 2019-01-22 2019-06-07 华南理工大学 一种高灵敏、宽线性传感范围的可压缩复合碳气凝胶及其制备与应用
CN110079050A (zh) * 2019-05-13 2019-08-02 华中科技大学 一种导热阻燃环氧树脂复合材料及其制备方法
CN110272611A (zh) * 2018-03-14 2019-09-24 中国科学院深圳先进技术研究院 一种导热材料的制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103922289B (zh) * 2014-04-08 2015-08-12 河南理工大学 一种二维晶体化合物复合金属氧化物纳米粉体及其制备、应用
US10826113B2 (en) * 2015-04-13 2020-11-03 Global Graphene Group, Inc. Zinc ion-exchanging energy storage device
CN106611653B (zh) * 2016-11-21 2018-06-12 南京邮电大学 一种mof复合材料及其制备方法和应用
CN107146650B (zh) * 2017-05-03 2019-03-12 东南大学 一种Ag-MXene触头材料及制备方法和用途
CN108516528B (zh) * 2018-04-12 2019-11-08 大连理工大学 一种基于三维MXene的三维复合结构及其通用合成方法
CN109712769B (zh) * 2019-01-30 2020-11-03 郑州大学 一种MXene-磁性金属复合材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107058851A (zh) * 2016-12-29 2017-08-18 上海大学 一种二维片层材料增强的金属基复合材料
CN108489644A (zh) * 2018-02-12 2018-09-04 华中科技大学 基于MXene/rGO复合三维结构的高灵敏传感器
CN110272611A (zh) * 2018-03-14 2019-09-24 中国科学院深圳先进技术研究院 一种导热材料的制备方法
CN109851313A (zh) * 2019-01-22 2019-06-07 华南理工大学 一种高灵敏、宽线性传感范围的可压缩复合碳气凝胶及其制备与应用
CN110079050A (zh) * 2019-05-13 2019-08-02 华中科技大学 一种导热阻燃环氧树脂复合材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JIANG YANJUN, ZHANG XIAONING, PEI LIJUAN, YUE SHU, MA LI, ZHOU LIYA, HUANG ZHIHONG, HE YING, GAO JING: "Silver nanoparticles modified two-dimensional transition metal carbides as nanocarriers to fabricate acetycholinesterase-based electrochemical biosensor", CHEMICAL ENGENEERING JOURNAL, ELSEVIER, AMSTERDAM, NL, vol. 339, 1 May 2018 (2018-05-01), AMSTERDAM, NL, pages 547 - 556, XP055795593, ISSN: 1385-8947, DOI: 10.1016/j.cej.2018.01.111 *
LIU RUI, ZHANG AITANG, TANG JIANGUO, TIAN JINMI, HUANG WEIGUO, CAI JINTAO, BARROW COLIN, YANG WENRONG, LIU JINGQUAN: "Fabrication of Cobaltosic Oxide Nanoparticle‐Doped 3 D MXene/Graphene Hybrid Porous Aerogels for All‐Solid‐State Supercapacitors", CHEMISTRY - A EUROPEAN JOURNAL, ¬VERLAG CHEMIE| :, vol. 25, no. 21, 11 April 2019 (2019-04-11), pages 5547 - 5554, XP055795597, ISSN: 0947-6539, DOI: 10.1002/chem.201806342 *

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113209933A (zh) * 2021-04-15 2021-08-06 中国工程物理研究院材料研究所 一种MXene气凝胶的制备方法及其对磷和铀酰的吸附应用
CN113285070A (zh) * 2021-04-30 2021-08-20 天津大学 一种孔隙可调的MXene致密多孔膜的制备方法及其应用
CN113285070B (zh) * 2021-04-30 2024-05-07 天津大学 一种孔隙可调的MXene致密多孔膜的制备方法及其应用
CN113316379A (zh) * 2021-05-26 2021-08-27 湖南工程学院 一种纳米复合结构吸波剂材料、制备方法及应用
CN113318257A (zh) * 2021-05-28 2021-08-31 厦门大学 空气净化杀菌用银纳米线负载的石墨烯气凝胶制备方法
CN113526507A (zh) * 2021-06-11 2021-10-22 厦门大学 一种新型MXene金属纳米复合材料、制备方法及应用
CN113526507B (zh) * 2021-06-11 2023-02-28 厦门大学 一种MXene金属纳米复合材料、制备方法及应用
CN113764203B (zh) * 2021-08-16 2022-10-28 中国石油大学(华东) 一种用于超级电容器的硫化钴镍-MXene电极材料及其制备方法
CN113764203A (zh) * 2021-08-16 2021-12-07 中国石油大学(华东) 一种用于超级电容器的硫化钴镍-MXene电极材料及其制备方法
CN114053988A (zh) * 2021-09-29 2022-02-18 山东农业大学 一种MXene复合气凝胶材料的制备方法及其应用
CN114085484B (zh) * 2021-11-26 2022-09-27 江南大学 一种高强高韧性复合材料、制备方法及应用
CN114085484A (zh) * 2021-11-26 2022-02-25 江南大学 一种高强高韧性复合材料、制备方法及应用
CN115246952A (zh) * 2021-12-10 2022-10-28 浙江理工大学 一种纤维素纳米纤维/MXene复合气凝胶材料及其制备方法
CN114516973A (zh) * 2022-02-15 2022-05-20 华东理工大学 一种ANFs/MXene复合电磁屏蔽气凝胶及其制备方法
CN114597362B (zh) * 2022-03-09 2023-12-29 吉林师范大学 一种锂离子电池负极材料及其制备方法
CN114597362A (zh) * 2022-03-09 2022-06-07 吉林师范大学 一种锂离子电池负极材料及其制备方法
CN114774084A (zh) * 2022-04-02 2022-07-22 广东工业大学 一种光热定型相变储能复合材料及其制备方法
CN115216118A (zh) * 2022-07-01 2022-10-21 中科和智诚(厦门)新材料有限公司 一种绝缘材料及其制备工艺
WO2024031904A1 (zh) * 2022-08-12 2024-02-15 齐鲁工业大学 一种基于纳米纤维素的多功能导电复合水凝胶及其制备方法
CN115064663B (zh) * 2022-08-18 2022-10-28 昆明理工大学 一种MXene基凝胶态正极的制备方法及其应用
CN115064663A (zh) * 2022-08-18 2022-09-16 昆明理工大学 一种MXene基凝胶态正极的制备方法及其应用
CN115490241A (zh) * 2022-09-27 2022-12-20 大连理工大学 一种基于MXene-蛭石复合气凝胶的气体水合物促进剂的制备方法和应用
CN115490241B (zh) * 2022-09-27 2023-09-19 大连理工大学 一种基于MXene-蛭石复合气凝胶的气体水合物促进剂的制备方法和应用
CN115850968A (zh) * 2022-10-18 2023-03-28 中科院广州化学有限公司 一种MXene基高导热防火复合薄膜及其制备方法与应用
CN115591534A (zh) * 2022-10-28 2023-01-13 重庆大学(Cn) 用于吸附钒离子的MXene基气凝胶的制备方法及应用
CN115591534B (zh) * 2022-10-28 2023-10-27 重庆大学 用于吸附钒离子的MXene基气凝胶的制备方法及应用
CN115737931A (zh) * 2022-11-03 2023-03-07 四川大学 一种3d打印骨组织修复支架材料及其制备方法
CN115785528A (zh) * 2022-11-29 2023-03-14 中国科学院兰州化学物理研究所 MXene@二硫化钼-碳纳米纤维杂化气凝胶和环氧树脂基复合材料及制备方法
CN115785528B (zh) * 2022-11-29 2023-12-01 中国科学院兰州化学物理研究所 MXene@二硫化钼-碳纳米纤维杂化气凝胶和环氧树脂基复合材料及制备方法
CN116446177A (zh) * 2023-03-15 2023-07-18 天津工业大学 一种MXene/金属纳米粒子多功能涂层复合材料的制备方法
CN116446177B (zh) * 2023-03-15 2024-05-28 天津工业大学 一种MXene/金属纳米粒子多功能涂层复合材料的制备方法
CN116351403B (zh) * 2023-05-08 2023-10-13 青岛科技大学 MXene/rGO气凝胶、PDA/CS/MXene/rGO气凝胶及其制备方法和应用
CN116351403A (zh) * 2023-05-08 2023-06-30 青岛科技大学 MXene/rGO气凝胶、PDA/CS/MXene/rGO气凝胶及其制备方法和应用
CN116790024B (zh) * 2023-06-15 2024-01-23 北京林业大学 纳米纤维素复合气凝胶及其制备方法和水伏发电器件
CN116790024A (zh) * 2023-06-15 2023-09-22 北京林业大学 纳米纤维素复合气凝胶及其制备方法和水伏发电器件
CN117126430A (zh) * 2023-10-27 2023-11-28 涿州市柯林电子产品有限公司 一种具有循环散热功能的冷凝胶及其制备工艺
CN117126430B (zh) * 2023-10-27 2023-12-26 涿州市柯林电子产品有限公司 一种具有循环散热功能的冷凝胶及其制备工艺
CN117821024A (zh) * 2023-12-28 2024-04-05 兰州大学第一医院 一种MXene/高粱秸秆生物质气凝胶基复合相变材料的制备方法

Also Published As

Publication number Publication date
CN110628155B (zh) 2022-01-04
CN110628155A (zh) 2019-12-31

Similar Documents

Publication Publication Date Title
WO2021056851A1 (zh) 一种MXene/金属复合气凝胶、其制备方法、用途及包含其的热界面材料
Li et al. Vertically aligned, ultralight and highly compressive all-graphitized graphene aerogels for highly thermally conductive polymer composites
Ma et al. Strategies for enhancing thermal conductivity of polymer-based thermal interface materials: A review
Huang et al. A facile, high‐yield, and freeze‐and‐thaw‐assisted approach to fabricate MXene with plentiful wrinkles and its application in on‐chip micro‐supercapacitors
Yuan et al. Highly thermal conductive and electrically insulating polymer composites based on polydopamine-coated copper nanowire
CN108251076B (zh) 碳纳米管-石墨烯复合散热膜、其制备方法与应用
WO2017084561A1 (zh) 一种大尺寸氧化石墨烯或石墨烯的制备方法
TWI423925B (zh) SiCO-Li-based composite, a method for producing the same, and a negative electrode material for a non-electrolyte battery
CN106977771B (zh) 氮化硼-银/纤维素复合材料及其制备方法
Wu et al. A review of three-dimensional graphene networks for use in thermally conductive polymer composites: construction and applications
Liu et al. Silver nanoparticle-enhanced three-dimensional boron nitride/reduced graphene oxide skeletons for improving thermal conductivity of polymer composites
CN108217627B (zh) 一种独立自支撑石墨烯碳管复合膜的制备方法
Li et al. Improving thermal conductivity of poly (vinyl alcohol) composites by using functionalized nanodiamond
CN106832782A (zh) 一种片状填料粒子/高分子复合材料及其制备方法
CN104497357B (zh) 杂化颗粒及其制备方法、绝缘复合材料
Wang et al. Brief review of nanosilver sintering: manufacturing and reliability
CN103937241A (zh) 一种基于聚酰亚胺基体纳米SiO2空心球复合材料的制备方法
CN110753480B (zh) 散热片及其制备方法和电子设备
CN104164208A (zh) 一种石墨烯/聚酰亚胺复合胶黏剂的制备方法
CN110760189A (zh) 一种不同层型Ti3C2填充的高导热硅脂热界面材料及其制备方法
CN113105735A (zh) 一种高导热的高分子聚合物复合导热材料及其制备方法
CN113043680A (zh) 一种高散热金属铝基覆铜板
Huang et al. Highly enhanced thermal conductivity from boron nitride nanosheets and MXene phonon resonance in 3D PMMA spheres composites
Peng et al. Fabrication of low dielectric constant fluorinated poly (arylene ether nitrile) composites by cross-linking with metal-organic frameworks
CN106311581A (zh) 一种电子产品高效复合散热片的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19946354

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19946354

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14/10/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19946354

Country of ref document: EP

Kind code of ref document: A1